1
|
Millan-Solsona R, Brown SR, Zhang L, Madugula SS, Zhao H, Dumerer B, Bible AN, Lavrik NV, Vasudevan RK, Biswas A, Morrell-Falvey JL, Retterer S, Checa M, Collins L. Analysis of biofilm assembly by large area automated AFM. NPJ Biofilms Microbiomes 2025; 11:75. [PMID: 40341406 PMCID: PMC12062311 DOI: 10.1038/s41522-025-00704-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 04/12/2025] [Indexed: 05/10/2025] Open
Abstract
Biofilms are complex microbial communities critical in medical, industrial, and environmental contexts. Understanding their assembly, structure, genetic regulation, interspecies interactions, and environmental responses is key to developing effective control and mitigation strategies. While atomic force microscopy (AFM) offers critically important high-resolution insights on structural and functional properties at the cellular and even sub-cellular level, its limited scan range and labor-intensive nature restricts the ability to link these smaller scale features to the functional macroscale organization of the films. We begin to address this limitation by introducing an automated large area AFM approach capable of capturing high-resolution images over millimeter-scale areas, aided by machine learning for seamless image stitching, cell detection, and classification. Large area AFM is shown to provide a very detailed view of spatial heterogeneity and cellular morphology during the early stages of biofilm formation which were previously obscured. Using this approach, we examined the organization of Pantoea sp. YR343 on PFOTS-treated glass surfaces. Our findings reveal a preferred cellular orientation among surface-attached cells, forming a distinctive honeycomb pattern. Detailed mapping of flagella interactions suggests that flagellar coordination plays a role in biofilm assembly beyond initial attachment. Additionally, we use large-area AFM to characterize surface modifications on silicon substrates, observing a significant reduction in bacterial density. This highlights the potential of this method for studying surface modifications to better understand and control bacterial adhesion and biofilm formation.
Collapse
Affiliation(s)
- Ruben Millan-Solsona
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Spenser R Brown
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Lance Zhang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Sita Sirisha Madugula
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - HuanHuan Zhao
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, USA
| | - Blythe Dumerer
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Amber N Bible
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Nickolay V Lavrik
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Rama K Vasudevan
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Arpan Biswas
- University of Tennessee-Oak Ridge Innovation Institute, Knoxville, TN, 37996, USA
| | | | - Scott Retterer
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Martí Checa
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Liam Collins
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| |
Collapse
|
2
|
Ma J, Zhai Y, Ren X, Wu H, Yang M, Chai L, Chen J. Transformative insights in breast cancer: review of atomic force microscopy applications. Discov Oncol 2025; 16:256. [PMID: 40021496 PMCID: PMC11871204 DOI: 10.1007/s12672-025-02003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 02/20/2025] [Indexed: 03/03/2025] Open
Abstract
Breast cancer remains one of the foremost global health concerns, highlighting the urgent need for innovative diagnostic and therapeutic strategies. Traditional imaging techniques, such as mammography and ultrasound, play essential roles in clinical practice; however, they often fall short in detecting early-stage tumors and providing comprehensive insights into the mechanical properties of cancer cells. In this context, Atomic Force Microscopy (AFM) has emerged as a transformative tool in breast cancer research, owing to its high-resolution imaging capabilities and nanomechanical characterization. This review explores recent advancements in AFM technology as applied to breast cancer research, emphasizing key findings that include the differentiation of various stages of tumor progression through high-resolution imaging, precise characterization of mechanical properties, and the capability for single-cell analysis. These capabilities not only enhance our understanding of tumor heterogeneity but also reveal potential biomarkers for early detection and therapeutic targets. Furthermore, the review critically examines several challenges and limitations associated with the application of AFM in breast cancer research. Issues such as complexities in sample preparation, accessibility, and the cost of AFM technology are discussed. Despite these challenges, the potential of AFM to transform our understanding of breast cancer biology is significant. Looking ahead, continued advancements in AFM technology promise to deepen our insights into breast cancer biology and guide innovative therapeutic strategies aimed at improving patient outcomes.
Collapse
Affiliation(s)
- Jiamin Ma
- Department of Breast Surgery, The Second Affiliated Hospital of Zhengzhou University, No.2 Jingba Road, Zhengzhou, 450000, Henan, China.
| | - Yuanyuan Zhai
- Department of Breast Surgery, The Second Affiliated Hospital of Zhengzhou University, No.2 Jingba Road, Zhengzhou, 450000, Henan, China
| | - Xiaoyi Ren
- Department of Breast Surgery, The Second Affiliated Hospital of Zhengzhou University, No.2 Jingba Road, Zhengzhou, 450000, Henan, China
| | - Huifang Wu
- Department of Pathology, The Second Affiliated Hospital of Zhengzhou University, No.2 Jingba Road, Zhengzhou, 450000, Henan, China
| | - Mengjie Yang
- Department of Breast Surgery, The Second Affiliated Hospital of Zhengzhou University, No.2 Jingba Road, Zhengzhou, 450000, Henan, China
| | - Lijun Chai
- Department of Breast Surgery, The Second Affiliated Hospital of Zhengzhou University, No.2 Jingba Road, Zhengzhou, 450000, Henan, China.
| | - Jianzhong Chen
- Department of Breast Surgery, The Second Affiliated Hospital of Zhengzhou University, No.2 Jingba Road, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
3
|
Selle M, Kircher M, Schwennen C, Visscher C, Jung K. Dimension reduction and outlier detection of 3-D shapes derived from multi-organ CT images. BMC Med Inform Decis Mak 2024; 24:49. [PMID: 38355504 PMCID: PMC10865689 DOI: 10.1186/s12911-024-02457-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 02/08/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Unsupervised clustering and outlier detection are important in medical research to understand the distributional composition of a collective of patients. A number of clustering methods exist, also for high-dimensional data after dimension reduction. Clustering and outlier detection may, however, become less robust or contradictory if multiple high-dimensional data sets per patient exist. Such a scenario is given when the focus is on 3-D data of multiple organs per patient, and a high-dimensional feature matrix per organ is extracted. METHODS We use principal component analysis (PCA), t-distributed stochastic neighbor embedding (t-SNE) and multiple co-inertia analysis (MCIA) combined with bagplots to study the distribution of multi-organ 3-D data taken by computed tomography scans. After point-set registration of multiple organs from two public data sets, multiple hundred shape features are extracted per organ. While PCA and t-SNE can only be applied to each organ individually, MCIA can project the data of all organs into the same low-dimensional space. RESULTS MCIA is the only approach, here, with which data of all organs can be projected into the same low-dimensional space. We studied how frequently (i.e., by how many organs) a patient was classified to belong to the inner or outer 50% of the population, or as an outlier. Outliers could only be detected with MCIA and PCA. MCIA and t-SNE were more robust in judging the distributional location of a patient in contrast to PCA. CONCLUSIONS MCIA is more appropriate and robust in judging the distributional location of a patient in the case of multiple high-dimensional data sets per patient. It is still recommendable to apply PCA or t-SNE in parallel to MCIA to study the location of individual organs.
Collapse
Affiliation(s)
- Michael Selle
- Institute of Animal Genomics, University of Veterinary Medicine Hannover, Hannover, Germany.
| | - Magdalena Kircher
- Institute of Animal Genomics, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Cornelia Schwennen
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Christian Visscher
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Klaus Jung
- Institute of Animal Genomics, University of Veterinary Medicine Hannover, Hannover, Germany.
| |
Collapse
|
4
|
Soha SA, Santhireswaran A, Huq S, Casimir-Powell J, Jenkins N, Hodgson GK, Sugiyama M, Antonescu CN, Impellizzeri S, Botelho RJ. Improved imaging and preservation of lysosome dynamics using silver nanoparticle-enhanced fluorescence. Mol Biol Cell 2023; 34:ar96. [PMID: 37405751 PMCID: PMC10551705 DOI: 10.1091/mbc.e22-06-0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/06/2023] Open
Abstract
The dynamics of living cells can be studied by live-cell fluorescence microscopy. However, this requires the use of excessive light energy to obtain good signal-to-noise ratio, which can then photobleach fluorochromes, and more worrisomely, lead to phototoxicity. Upon light excitation, noble metal nanoparticles such as silver nanoparticles (AgNPs) generate plasmons, which can then amplify excitation in direct proximity of the nanoparticle's surface and couple to the oscillating dipole of nearby radiating fluorophores, modifying their rate of emission and thus, enhancing their fluorescence. Here, we show that AgNPs fed to cells to accumulate within lysosomes enhanced the fluorescence of lysosome-targeted Alexa488-conjugated dextran, BODIPY-cholesterol, and DQ-BSA. Moreover, AgNP increased the fluorescence of GFP fused to the cytosolic tail of LAMP1, showing that metal enhanced fluorescence can occur across the lysosomal membrane. The inclusion of AgNPs in lysosomes did not disturb lysosomal properties such as lysosomal pH, degradative capacity, autophagy and autophagic flux, and membrane integrity, though AgNP seemed to increase basal lysosome tubulation. Importantly, by using AgNP, we could track lysosome motility with reduced laser power without damaging and altering lysosome dynamics. Overall, AgNP-enhanced fluorescence may be a useful tool to study the dynamics of the endo-lysosomal pathway while minimizing phototoxicity.
Collapse
Affiliation(s)
- Sumaiya A. Soha
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario, Canada, M5B 2K3
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada, M5B 2K3
| | - Araniy Santhireswaran
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada, M5B 2K3
| | - Saaimatul Huq
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada, M5B 2K3
| | - Jayde Casimir-Powell
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario, Canada, M5B 2K3
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada, M5B 2K3
| | - Nicala Jenkins
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario, Canada, M5B 2K3
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada, M5B 2K3
| | - Gregory K. Hodgson
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada, M5B 2K3
| | - Michael Sugiyama
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada, M5B 2K3
| | - Costin N. Antonescu
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario, Canada, M5B 2K3
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada, M5B 2K3
| | - Stefania Impellizzeri
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario, Canada, M5B 2K3
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada, M5B 2K3
| | - Roberto J. Botelho
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario, Canada, M5B 2K3
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada, M5B 2K3
| |
Collapse
|
5
|
Tamada H. Three-dimensional ultrastructure analysis of organelles in injured motor neuron. Anat Sci Int 2023; 98:360-369. [PMID: 37071350 PMCID: PMC10256651 DOI: 10.1007/s12565-023-00720-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/23/2023] [Indexed: 04/19/2023]
Abstract
Morphological analysis of organelles is one of the important clues for understanding the cellular conditions and mechanisms occurring in cells. In particular, nanoscale information within crowded intracellular organelles of tissues provide more direct implications when compared to analyses of cells in culture or isolation. However, there are some difficulties in detecting individual shape using light microscopy, including super-resolution microscopy. Transmission electron microscopy (TEM), wherein the ultrastructure can be imaged at the membrane level, cannot determine the whole structure, and analyze it quantitatively. Volume EM, such as focused ion beam/scanning electron microscopy (FIB/SEM), can be a powerful tool to explore the details of three-dimensional ultrastructures even within a certain volume, and to measure several parameters from them. In this review, the advantages of FIB/SEM analysis in organelle studies are highlighted along with the introduction of mitochondrial analysis in injured motor neurons. This would aid in understanding the morphological details of mitochondria, especially those distributed in the cell bodies as well as in the axon initial segment (AIS) in mouse tissues. These regions have not been explored thus far due to the difficulties encountered in accessing their images by conditional microscopies. Some mechanisms of nerve regeneration have also been discussed with reference to the obtained findings. Finally, future perspectives on FIB/SEM are introduced. The combination of biochemical and genetic understanding of organelle structures and a nanoscale understanding of their three-dimensional distribution and morphology will help to match achievements in genomics and structural biology.
Collapse
Affiliation(s)
- Hiromi Tamada
- Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan.
- Anatomy, Graduate School of Medicines, University of Fukui, Matsuokashimoaizuki, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan.
| |
Collapse
|
6
|
Arias A, Manubens-Gil L, Dierssen M. Fluorescent transgenic mouse models for whole-brain imaging in health and disease. Front Mol Neurosci 2022; 15:958222. [PMID: 36211979 PMCID: PMC9538927 DOI: 10.3389/fnmol.2022.958222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
A paradigm shift is occurring in neuroscience and in general in life sciences converting biomedical research from a descriptive discipline into a quantitative, predictive, actionable science. Living systems are becoming amenable to quantitative description, with profound consequences for our ability to predict biological phenomena. New experimental tools such as tissue clearing, whole-brain imaging, and genetic engineering technologies have opened the opportunity to embrace this new paradigm, allowing to extract anatomical features such as cell number, their full morphology, and even their structural connectivity. These tools will also allow the exploration of new features such as their geometrical arrangement, within and across brain regions. This would be especially important to better characterize brain function and pathological alterations in neurological, neurodevelopmental, and neurodegenerative disorders. New animal models for mapping fluorescent protein-expressing neurons and axon pathways in adult mice are key to this aim. As a result of both developments, relevant cell populations with endogenous fluorescence signals can be comprehensively and quantitatively mapped to whole-brain images acquired at submicron resolution. However, they present intrinsic limitations: weak fluorescent signals, unequal signal strength across the same cell type, lack of specificity of fluorescent labels, overlapping signals in cell types with dense labeling, or undetectable signal at distal parts of the neurons, among others. In this review, we discuss the recent advances in the development of fluorescent transgenic mouse models that overcome to some extent the technical and conceptual limitations and tradeoffs between different strategies. We also discuss the potential use of these strains for understanding disease.
Collapse
Affiliation(s)
- Adrian Arias
- Department of System Biology, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Linus Manubens-Gil
- Institute for Brain and Intelligence, Southeast University, Nanjing, China
| | - Mara Dierssen
- Department of System Biology, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Experimental and Health Sciences, University Pompeu Fabra, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| |
Collapse
|
7
|
Aishwarya R, Abdullah CS, Remex NS, Nitu S, Hartman B, King J, Bhuiyan MS. Visualizing Subcellular Localization of a Protein in the Heart using Quantum Dots-Mediated Immuno-Labeling followed by Transmission Electron Microscopy. J Vis Exp 2022. [PMID: 36190289 PMCID: PMC11232498 DOI: 10.3791/64085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023] Open
Abstract
The subcellular localization is critical to delineating proper function and determining the molecular mechanisms of a particular protein. Several qualitative and quantitative techniques are used to determine the subcellular localization of proteins. One of the emerging techniques in determining the subcellular localization of a protein is quantum dots (QD)-mediated immunolabeling of a protein followed by imaging them with transmission electron microscopy (TEM). QD is a semiconductor nanocrystal with a dual property of crystalline structure and high electron density, which makes them applicable to electron microscopy. This current method visualized the subcellular localization of Sigma 1 receptor (Sigmar1) protein using QD-TEM in the heart tissue at ultrastructural level. Small cubes of the heart tissue sections from a wild-type mouse were fixed in 3% glutaraldehyde, subsequently osmicated, stained with uranyl acetate, followed by sequential dehydration with ethanol and acetone. These dehydrated heart tissue sections were embedded in low-viscosity epoxy resins, cut into thin sections of 500 nm thickness, put on the grid, and subsequently subjected to antigen unmasking with 5% sodium metaperiodate, followed by quenching of the residual aldehydes with glycine. The tissues were blocked, followed by sequential incubation in primary antibody, biotinylated secondary antibody, and streptavidin-conjugated QD. These stained sections were blot dried and imaged at high magnification using TEM. The QD-TEM technique allowed the visualization of Sigmar1 protein's subcellular localization at the ultrastructural level in the heart. These techniques can be used to visualize the presence of any protein and subcellular localization in any organ system.
Collapse
Affiliation(s)
- Richa Aishwarya
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport
| | - Chowdhury S Abdullah
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport
| | - Naznin Sultana Remex
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport
| | - Sadia Nitu
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport
| | - Brandon Hartman
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport
| | - Judy King
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport
| | - Md Shenuarin Bhuiyan
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport; Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport;
| |
Collapse
|
8
|
Nanometer-Resolution Imaging of Living Cells Using Soft X-ray Contact Microscopy. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12147030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Soft X-ray microscopy is a powerful technique for imaging cells with nanometer resolution in their native state without chemical fixation, staining, or sectioning. The studies performed in several laboratories have demonstrated the potential of applying this technique for imaging the internal structures of intact cells. However, it is currently used mainly on synchrotrons with restricted access. Moreover, the operation of these instruments and the associated sample-preparation protocols require interdisciplinary and highly specialized personnel, limiting their wide application in practice. This is why soft X-ray microscopy is not commonly used in biological laboratories as an imaging tool. Thus, a laboratory-based and user-friendly soft X-ray contact microscope would facilitate the work of biologists. A compact, desk-top laboratory setup for soft X-ray contact microscopy (SXCM) based on a laser-plasma soft X-ray source, which can be used in any biological laboratory, together with several applications for biological imaging, are described. Moreover, the perspectives of the correlation of SXCM with other super-resolution imaging techniques based on the current literature are discussed.
Collapse
|
9
|
Garza-Lopez E, Vue Z, Katti P, Neikirk K, Biete M, Lam J, Beasley HK, Marshall AG, Rodman TA, Christensen TA, Salisbury JL, Vang L, Mungai M, AshShareef S, Murray SA, Shao J, Streeter J, Glancy B, Pereira RO, Abel ED, Hinton A. Protocols for Generating Surfaces and Measuring 3D Organelle Morphology Using Amira. Cells 2021; 11:65. [PMID: 35011629 PMCID: PMC8750564 DOI: 10.3390/cells11010065] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 12/14/2022] Open
Abstract
High-resolution 3D images of organelles are of paramount importance in cellular biology. Although light microscopy and transmission electron microscopy (TEM) have provided the standard for imaging cellular structures, they cannot provide 3D images. However, recent technological advances such as serial block-face scanning electron microscopy (SBF-SEM) and focused ion beam scanning electron microscopy (FIB-SEM) provide the tools to create 3D images for the ultrastructural analysis of organelles. Here, we describe a standardized protocol using the visualization software, Amira, to quantify organelle morphologies in 3D, thereby providing accurate and reproducible measurements of these cellular substructures. We demonstrate applications of SBF-SEM and Amira to quantify mitochondria and endoplasmic reticulum (ER) structures.
Collapse
Affiliation(s)
- Edgar Garza-Lopez
- Hinton and Garza Lopez Family Consulting Company, Iowa City, IA 52246, USA;
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA; (Z.V.); (H.K.B.); (A.G.M.); (T.A.R.); (L.V.)
| | - Prasanna Katti
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (P.K.); (B.G.)
| | - Kit Neikirk
- Department of Biology, University of Hawaii at Hilo, Hilo, HI 96720, USA; (K.N.); (M.B.)
| | - Michelle Biete
- Department of Biology, University of Hawaii at Hilo, Hilo, HI 96720, USA; (K.N.); (M.B.)
| | - Jacob Lam
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (J.L.); (M.M.); (S.A.); (J.S.)
| | - Heather K. Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA; (Z.V.); (H.K.B.); (A.G.M.); (T.A.R.); (L.V.)
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA
| | - Andrea G. Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA; (Z.V.); (H.K.B.); (A.G.M.); (T.A.R.); (L.V.)
| | - Taylor A. Rodman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA; (Z.V.); (H.K.B.); (A.G.M.); (T.A.R.); (L.V.)
| | - Trace A. Christensen
- Microscopy and Cell Analysis Core Facility, Mayo Clinic, Rochester, MN 55905, USA; (T.A.C.); (J.L.S.)
| | - Jeffrey L. Salisbury
- Microscopy and Cell Analysis Core Facility, Mayo Clinic, Rochester, MN 55905, USA; (T.A.C.); (J.L.S.)
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Larry Vang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA; (Z.V.); (H.K.B.); (A.G.M.); (T.A.R.); (L.V.)
| | - Margaret Mungai
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (J.L.); (M.M.); (S.A.); (J.S.)
| | - Salma AshShareef
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (J.L.); (M.M.); (S.A.); (J.S.)
| | - Sandra A. Murray
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 52013, USA;
| | - Jianqiang Shao
- Central Microscopy Research Facility, University of Iowa, Iowa City, IA 52242, USA;
| | - Jennifer Streeter
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (J.L.); (M.M.); (S.A.); (J.S.)
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, IA 52242, USA
| | - Brian Glancy
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (P.K.); (B.G.)
| | - Renata O. Pereira
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (J.L.); (M.M.); (S.A.); (J.S.)
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, IA 52242, USA
| | - E. Dale Abel
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (J.L.); (M.M.); (S.A.); (J.S.)
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, IA 52242, USA
| | - Antentor Hinton
- Hinton and Garza Lopez Family Consulting Company, Iowa City, IA 52246, USA;
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA; (Z.V.); (H.K.B.); (A.G.M.); (T.A.R.); (L.V.)
| |
Collapse
|
10
|
Reactive oxygen FIB spin milling enables correlative workflow for 3D super-resolution light microscopy and serial FIB/SEM of cultured cells. Sci Rep 2021; 11:13162. [PMID: 34162977 PMCID: PMC8222390 DOI: 10.1038/s41598-021-92608-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/08/2021] [Indexed: 12/28/2022] Open
Abstract
Correlative light and electron microscopy (CLEM) is a powerful tool for defining the ultrastructural context of molecularly-labeled biological specimens, particularly when superresolution fluorescence microscopy (SRM) is used for CLEM. Current CLEM, however, is limited by the stark differences in sample preparation requirements between the two modalities. For CLEM using SRM, the small region of interest (ROI) of either or both modalities also leads to low success rate and imaging throughput. To overcome these limitations, here we present a CLEM workflow based on a novel focused ion beam/scanning electron microscope (FIB/SEM) compatible with common SRM for imaging biological specimen with ultrahigh 3D resolution and improved imaging throughput. By using a reactive oxygen source in a plasma FIB (PFIB) and a rotating sample stage, the novel FIB/SEM was able to achieve several hundreds of micrometer large area 3D analysis of resin embedded cells through a process named oxygen serial spin mill (OSSM). Compared with current FIB mechanisms, OSSM offers gentle erosion, highly consistent slice thickness, reduced charging during SEM imaging, and improved SEM contrast without increasing the dose of post-staining and fixation. These characteristics of OSSM-SEM allowed us to pair it with interferometric photoactivated localization microscopy (iPALM), a recent SRM technique that affords 10–20 nm isotropic spatial resolution on hydrated samples, for 3D CLEM imaging. We demonstrate a CLEM workflow generalizable to using other SRM strategies using mitochondria in human osteosarcoma (U2OS) cells as a model system, where immunostained TOM20, a marker for the mitochondrial outer membrane, was used for iPALM. Owing to the large scan area of OSSM-SEM, it is now possible to select as many FOVs as needed for iPALM and conveniently re-locate them in EM, this improving the imaging throughput. The significantly reduced dose of post-fixation also helped to better preserve the sample ultrastructures as evidenced by the excellent 3D registration between OSSM-SEM and iPALM images and by the accurate localization of TOM20 (by iPALM) to the peripheries of mitochondria (by OSSM-SEM). These advantages make OSSM-SEM an ideal modality for CLEM applications. As OSSM-SEM is still in development, we also discuss some of the remaining issues and the implications to biological imaging with SEM alone or with CLEM.
Collapse
|
11
|
Rostami I. Empowering the Emission of Upconversion Nanoparticles for Precise Subcellular Imaging. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1541. [PMID: 34207983 PMCID: PMC8230588 DOI: 10.3390/nano11061541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/25/2021] [Accepted: 05/29/2021] [Indexed: 11/16/2022]
Abstract
Upconversion nanoparticles (UCNPs) are a class of inorganic fluorophores that follow the anti-Stokes mechanism, to which the wavelength of emission is shorter than absorption. This unique optical behavior generates relatively long-lived intermediate energy levels of lanthanides that stabilize the excitation state in the fluorescence process. Longer-wavelength light sources, e.g., near-infrared (NIR), penetrate deeper into biological materials such as tissue and cells that provide a larger working space for cell biology applications and imaging, whereby UCNPs have recently gained increasing interest in medicine. In this report, the emission intensity of a gadolinium-based UCNP was screened by changing the concentrations of the constituents. The optimized condition was utilized as a luminescent nanoprobe for targeting the mitochondria as a distinguished subcellular organelle within differentiated neuroblastoma cells. The main goal of this study is to illustrate the targeting process within the cells in a native state using modified UCNPs. Confocal microscopy on the cells treated with the functionalized UCNPs indicated a selective accumulation of UCNPs after immunolabeling. To tackle the insolubility of as-synthesized particles in water-based media, the optimized UCNPs were surface-coated with polyamidoamine (PAMAM) dendrimers that due to peripheral amino groups are suitable for functionalizing with peptides and antibodies. Ultimately, we concluded that UCNPs are potentially versatile and ideal tools for NIR bioimaging and capable of making adequate contrast against biomaterials to be detectable in electron microscopy (EM) imaging.
Collapse
Affiliation(s)
- Iman Rostami
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| |
Collapse
|
12
|
Roscian M, Herrel A, Cornette R, Delapré A, Cherel Y, Rouget I. Underwater photogrammetry for close-range 3D imaging of dry-sensitive objects: The case study of cephalopod beaks. Ecol Evol 2021; 11:7730-7742. [PMID: 34188847 PMCID: PMC8216959 DOI: 10.1002/ece3.7607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 11/11/2022] Open
Abstract
Technical advances in 3D imaging have contributed to quantifying and understanding biological variability and complexity. However, small, dry-sensitive objects are not easy to reconstruct using common and easily available techniques such as photogrammetry, surface scanning, or micro-CT scanning. Here, we use cephalopod beaks as an example as their size, thickness, transparency, and dry-sensitive nature make them particularly challenging. We developed a new, underwater, photogrammetry protocol in order to add these types of biological structures to the panel of photogrammetric possibilities.We used a camera with a macrophotography mode in a waterproof housing fixed in a tank with clear water. The beak was painted and fixed on a colored rotating support. Three angles of view, two acquisitions, and around 300 pictures per specimen were taken in order to reconstruct a full 3D model. These models were compared with others obtained with micro-CT scanning to verify their accuracy.The models can be obtained quickly and cheaply compared with micro-CT scanning and have sufficient precision for quantitative interspecific morphological analyses. Our work shows that underwater photogrammetry is a fast, noninvasive, efficient, and accurate way to reconstruct 3D models of dry-sensitive objects while conserving their shape. While the reconstruction of the shape is accurate, some internal parts cannot be reconstructed with photogrammetry as they are not visible. In contrast, these structures are visible using reconstructions based on micro-CT scanning. The mean difference between both methods is very small (10-5 to 10-4 mm) and is significantly lower than differences between meshes of different individuals.This photogrammetry protocol is portable, easy-to-use, fast, and reproducible. Micro-CT scanning, in contrast, is time-consuming, expensive, and nonportable. This protocol can be applied to reconstruct the 3D shape of many other dry-sensitive objects such as shells of shellfish, cartilage, plants, and other chitinous materials.
Collapse
Affiliation(s)
- Marjorie Roscian
- Centre de Recherche en Paléontologie‐Paris (CR2P)Muséum National d'Histoire NaturelleCNRSSorbonne UniversitéParisFrance
- Mécanismes Adaptatifs et Evolution (Mecadev)Muséum National d'Histoire NaturelleCNRSBâtiment d'Anatomie ComparéeParisFrance
| | - Anthony Herrel
- Mécanismes Adaptatifs et Evolution (Mecadev)Muséum National d'Histoire NaturelleCNRSBâtiment d'Anatomie ComparéeParisFrance
| | - Raphaël Cornette
- Institut de Systématique, Évolution, Biodiversité (ISYEB)Muséum national d'Histoire naturelleCNRSSorbonne UniversitéEPHEUniversité des AntillesParisFrance
| | - Arnaud Delapré
- Institut de Systématique, Évolution, Biodiversité (ISYEB)Muséum national d'Histoire naturelleCNRSSorbonne UniversitéEPHEUniversité des AntillesParisFrance
| | - Yves Cherel
- Centre d'Etudes Biologiques de ChizéUMR7372CNRS‐La Rochelle UniversitéVilliers‐en‐BoisFrance
| | - Isabelle Rouget
- Centre de Recherche en Paléontologie‐Paris (CR2P)Muséum National d'Histoire NaturelleCNRSSorbonne UniversitéParisFrance
| |
Collapse
|
13
|
Tian T, Yang Z, Li X. Tissue clearing technique: Recent progress and biomedical applications. J Anat 2021; 238:489-507. [PMID: 32939792 PMCID: PMC7812135 DOI: 10.1111/joa.13309] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/19/2020] [Accepted: 08/24/2020] [Indexed: 02/03/2023] Open
Abstract
Organisms are inherently three dimensional, thus comprehensive understanding of the complicated biological system requires analysis of organs or even whole bodies in the context of three dimensions. However, this is a tremendous task since the biological specimens are naturally opaque, a major obstacle in whole-body and whole-organ imaging. Tissue clearing technique provides a prospective solution and has become a powerful tool for three-dimensional imaging and quantification of organisms. Tissue clearing technique aims to make tissue transparent by minimizing light scattering and light absorption, thus allowing deep imaging of large volume samples. When combined with diverse molecular labeling methods and high-throughput optical sectioning microscopes, tissue clearing technique enables whole-body and whole-organ imaging at cellular or subcellular resolution, providing detailed and comprehensive information about the intact biological systems. Here, we give an overview of recent progress and biomedical applications of tissue clearing technique. We introduce the mechanisms and basic principles of tissue clearing, and summarize the current tissue clearing methods. Moreover, the available imaging techniques and software packages for data processing are also presented. Finally, we introduce the recent advances in applications of tissue clearing in biomedical fields. Tissue clearing contributes to the investigation of structure-function relationships in intact mammalian organs, and opens new avenues for cellular and molecular mapping of intact human organs. We hope this review contributes to a better understanding of tissue clearing technique and can help researchers to select the best-suited clearing protocol for their experiments.
Collapse
Affiliation(s)
- Ting Tian
- Beijing Key Laboratory for Biomaterials and Neural RegenerationSchool of Biological Science and Medical EngineeringBeihang UniversityBeijingChina
| | - Zhaoyang Yang
- Department of NeurobiologySchool of Basic Medical SciencesCapital Medical UniversityBeijingChina,Beijing International Cooperation Bases for Science and Technology on Biomaterials and Neural RegenerationBeijing Advanced Innovation Center for Biomedical EngineeringBeihang UniversityBeijingChina
| | - Xiaoguang Li
- Beijing Key Laboratory for Biomaterials and Neural RegenerationSchool of Biological Science and Medical EngineeringBeihang UniversityBeijingChina,Department of NeurobiologySchool of Basic Medical SciencesCapital Medical UniversityBeijingChina,Beijing International Cooperation Bases for Science and Technology on Biomaterials and Neural RegenerationBeijing Advanced Innovation Center for Biomedical EngineeringBeihang UniversityBeijingChina
| |
Collapse
|
14
|
Polo CC, Fonseca-Alaniz MH, Chen JH, Ekman A, McDermott G, Meneau F, Krieger JE, Miyakawa AA. Three-dimensional imaging of mitochondrial cristae complexity using cryo-soft X-ray tomography. Sci Rep 2020; 10:21045. [PMID: 33273629 PMCID: PMC7713364 DOI: 10.1038/s41598-020-78150-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are dynamic organelles that change morphology to adapt to cellular energetic demands under both physiological and stress conditions. Cardiomyopathies and neuronal disorders are associated with structure-related dysfunction in mitochondria, but three-dimensional characterizations of the organelles are still lacking. In this study, we combined high-resolution imaging and 3D electron density information provided by cryo-soft X-ray tomography to characterize mitochondria cristae morphology isolated from murine. Using the linear attenuation coefficient, the mitochondria were identified (0.247 ± 0.04 µm-1) presenting average dimensions of 0.90 ± 0.20 µm in length and 0.63 ± 0.12 µm in width. The internal mitochondria structure was successfully identified by reaching up the limit of spatial resolution of 35 nm. The internal mitochondrial membranes invagination (cristae) complexity was calculated by the mitochondrial complexity index (MCI) providing quantitative and morphological information of mitochondria larger than 0.90 mm in length. The segmentation to visualize the cristae invaginations into the mitochondrial matrix was possible in mitochondria with MCI ≥ 7. Altogether, we demonstrated that the MCI is a valuable quantitative morphological parameter to evaluate cristae modelling and can be applied to compare healthy and disease state associated to mitochondria morphology.
Collapse
Affiliation(s)
- Carla C Polo
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Centre for Research in Energy and Materials (CNPEM), Campinas, SP, 13083-970, Brazil.
| | - Miriam H Fonseca-Alaniz
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Jian-Hua Chen
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Axel Ekman
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Gerry McDermott
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Florian Meneau
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Centre for Research in Energy and Materials (CNPEM), Campinas, SP, 13083-970, Brazil
| | - José E Krieger
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Ayumi A Miyakawa
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, SP, Brazil.
| |
Collapse
|
15
|
Tian T, Li X. Applications of tissue clearing in the spinal cord. Eur J Neurosci 2020; 52:4019-4036. [DOI: 10.1111/ejn.14938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/22/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Ting Tian
- Beijing Key Laboratory for Biomaterials and Neural Regeneration School of Biological Science and Medical Engineering Beihang University Beijing China
| | - Xiaoguang Li
- Beijing Key Laboratory for Biomaterials and Neural Regeneration School of Biological Science and Medical Engineering Beihang University Beijing China
- Beijing International Cooperation Bases for Science and Technology on Biomaterials and Neural Regeneration Beijing Advanced Innovation Center for Biomedical Engineering Beihang University Beijing China
- Department of Neurobiology School of Basic Medical Sciences Capital Medical University Beijing China
| |
Collapse
|
16
|
Keevend K, Coenen T, Herrmann IK. Correlative cathodoluminescence electron microscopy bioimaging: towards single protein labelling with ultrastructural context. NANOSCALE 2020; 12:15588-15603. [PMID: 32677648 DOI: 10.1039/d0nr02563a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The understanding of living systems and their building blocks relies heavily on the assessment of structure-function relationships at the nanoscale. Ever since the development of the first optical microscope, the reliance of scientists across disciplines on microscopy has increased. The development of the first electron microscope and with it the access to information at the nanoscale has prompted numerous disruptive discoveries. While fluorescence imaging allows identification of specific entities based on the labelling with fluorophores, the unlabelled constituents of the samples remain invisible. In electron microscopy on the other hand, structures can be comprehensively visualized based on their distinct electron density and geometry. Although electron microscopy is a powerful tool, it does not implicitly provide information on the location and activity of specific organic molecules. While correlative light and electron microscopy techniques have attempted to unify the two modalities, the resolution mismatch between the two data sets poses major challenges. Recent developments in optical super resolution microscopy enable high resolution correlative light and electron microscopy, however, with considerable constraints due to sample preparation requirements. Labelling of specific structures directly for electron microscopy using small gold nanoparticles (i.e. immunogold) has been used extensively. However, identification of specific entities solely based on electron contrast, and the differentiation from endogenous dense granules, remains challenging. Recently, the use of correlative cathodoluminescence electron microscopy (CCLEM) imaging based on luminescent inorganic nanocrystals has been proposed. While nanometric resolution can be reached for both the electron and the optical signal, high energy electron beams are potentially damaging to the sample. In this review, we discuss the opportunities of (volumetric) multi-color single protein labelling based on correlative cathodoluminescence electron microscopy, and its prospective impact on biomedical research in general. We elaborate on the potential challenges of correlative cathodoluminescence electron microscopy-based bioimaging and benchmark CCLEM against alternative high-resolution correlative imaging techniques.
Collapse
Affiliation(s)
- Kerda Keevend
- Laboratory for Particles Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, CH-9014, St Gallen, Switzerland.
| | | | | |
Collapse
|
17
|
Lee D, Kim J, Song E, Jeong JY, Jeon EC, Kim P, Lee W. Micromirror-Embedded Coverslip Assembly for Bidirectional Microscopic Imaging. MICROMACHINES 2020; 11:mi11060582. [PMID: 32532128 PMCID: PMC7345240 DOI: 10.3390/mi11060582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 11/16/2022]
Abstract
3D imaging of a biological sample provides information about cellular and subcellular structures that are important in cell biology and related diseases. However, most 3D imaging systems, such as confocal and tomographic microscopy systems, are complex and expensive. Here, we developed a quasi-3D imaging tool that is compatible with most conventional microscopes by integrating micromirrors and microchannel structures on coverslips to provide bidirectional imaging. Microfabricated micromirrors had a precisely 45° reflection angle and optically clean reflective surfaces with high reflectance over 95%. The micromirrors were embedded on coverslips that could be assembled as a microchannel structure. We demonstrated that this simple disposable device allows a conventional microscope to perform bidirectional imaging with simple control of a focal plane. Images of microbeads and cells under bright-field and fluorescent microscopy show that the device can provide a quick analysis of 3D information, such as 3D positions and subcellular structures.
Collapse
Affiliation(s)
- Dongwoo Lee
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (D.L.); (J.K.); (E.S.); (P.K.)
| | - Jihye Kim
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (D.L.); (J.K.); (E.S.); (P.K.)
| | - Eunjoo Song
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (D.L.); (J.K.); (E.S.); (P.K.)
| | - Ji-Young Jeong
- Department of Nano Manufacturing Technology, Korea Institute of Machinery & Materials (KIMM), Daejeon 34103, Korea;
| | - Eun-chae Jeon
- School of Materials Science and Engineering, University of Ulsan, Ulsan 44776, Korea;
| | - Pilhan Kim
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (D.L.); (J.K.); (E.S.); (P.K.)
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Wonhee Lee
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (D.L.); (J.K.); (E.S.); (P.K.)
- Department of Physics, Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Correspondence:
| |
Collapse
|
18
|
Rasheed F, Markgren J, Hedenqvist M, Johansson E. Modeling to Understand Plant Protein Structure-Function Relationships-Implications for Seed Storage Proteins. Molecules 2020; 25:E873. [PMID: 32079172 PMCID: PMC7071054 DOI: 10.3390/molecules25040873] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 11/30/2022] Open
Abstract
Proteins are among the most important molecules on Earth. Their structure and aggregation behavior are key to their functionality in living organisms and in protein-rich products. Innovations, such as increased computer size and power, together with novel simulation tools have improved our understanding of protein structure-function relationships. This review focuses on various proteins present in plants and modeling tools that can be applied to better understand protein structures and their relationship to functionality, with particular emphasis on plant storage proteins. Modeling of plant proteins is increasing, but less than 9% of deposits in the Research Collaboratory for Structural Bioinformatics Protein Data Bank come from plant proteins. Although, similar tools are applied as in other proteins, modeling of plant proteins is lagging behind and innovative methods are rarely used. Molecular dynamics and molecular docking are commonly used to evaluate differences in forms or mutants, and the impact on functionality. Modeling tools have also been used to describe the photosynthetic machinery and its electron transfer reactions. Storage proteins, especially in large and intrinsically disordered prolamins and glutelins, have been significantly less well-described using modeling. These proteins aggregate during processing and form large polymers that correlate with functionality. The resulting structure-function relationships are important for processed storage proteins, so modeling and simulation studies, using up-to-date models, algorithms, and computer tools are essential for obtaining a better understanding of these relationships.
Collapse
Affiliation(s)
- Faiza Rasheed
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, Box 101, SE-230 53 Alnarp, Sweden; (F.R.); (J.M.)
- School of Chemical Science and Engineering, Fibre and Polymer Technology, KTH Royal Institute of Technology, SE–100 44 Stockholm, Sweden;
| | - Joel Markgren
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, Box 101, SE-230 53 Alnarp, Sweden; (F.R.); (J.M.)
| | - Mikael Hedenqvist
- School of Chemical Science and Engineering, Fibre and Polymer Technology, KTH Royal Institute of Technology, SE–100 44 Stockholm, Sweden;
| | - Eva Johansson
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, Box 101, SE-230 53 Alnarp, Sweden; (F.R.); (J.M.)
| |
Collapse
|
19
|
Vasan R, Rudraraju S, Akamatsu M, Garikipati K, Rangamani P. A mechanical model reveals that non-axisymmetric buckling lowers the energy barrier associated with membrane neck constriction. SOFT MATTER 2020; 16:784-797. [PMID: 31830191 DOI: 10.1039/c9sm01494b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Membrane neck formation is essential for scission, which, as recent experiments on tubules have demonstrated, can be location dependent. The diversity of biological machinery that can constrict a neck such as dynamin, actin, ESCRTs and BAR proteins, and the range of forces and deflection over which they operate, suggest that the constriction process is functionally mechanical and robust to changes in biological environment. In this study, we used a mechanical model of the lipid bilayer to systematically investigate the influence of location, symmetry constraints, and helical forces on membrane neck constriction. Simulations from our model demonstrated that the energy barriers associated with constriction of a membrane neck are location-dependent. Importantly, if symmetry restrictions are relaxed, then the energy barrier for constriction is dramatically lowered and the membrane buckles at lower values of forcing parameters. Our simulations also show that constriction due to helical proteins further reduces the energy barrier for neck formation when compared to cylindrical proteins. These studies establish that despite different molecular mechanisms of neck formation in cells, the mechanics of constriction naturally leads to a loss of symmetry that can lower the energy barrier to constriction.
Collapse
Affiliation(s)
- R Vasan
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093, USA.
| | | | | | | | | |
Collapse
|
20
|
Vasan R, Rowan MP, Lee CT, Johnson GR, Rangamani P, Holst M. Applications and Challenges of Machine Learning to Enable Realistic Cellular Simulations. FRONTIERS IN PHYSICS 2020; 7:247. [PMID: 36188416 PMCID: PMC9521042 DOI: 10.3389/fphy.2019.00247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this perspective, we examine three key aspects of an end-to-end pipeline for realistic cellular simulations: reconstruction and segmentation of cellular structures; generation of cellular structures; and mesh generation, simulation, and data analysis. We highlight some of the relevant prior work in these distinct but overlapping areas, with a particular emphasis on current use of machine learning technologies, as well as on future opportunities.
Collapse
Affiliation(s)
- Ritvik Vasan
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, United States
| | - Meagan P. Rowan
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
| | - Christopher T. Lee
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, United States
| | | | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, United States
| | - Michael Holst
- Department of Mathematics, University of California San Diego, La Jolla, CA, United States
- Department of Physics, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
21
|
Martino Adami PV, Nichtová Z, Weaver DB, Bartok A, Wisniewski T, Jones DR, Do Carmo S, Castaño EM, Cuello AC, Hajnóczky G, Morelli L. Perturbed mitochondria-ER contacts in live neurons that model the amyloid pathology of Alzheimer's disease. J Cell Sci 2019; 132:jcs.229906. [PMID: 31515277 DOI: 10.1242/jcs.229906] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 09/02/2019] [Indexed: 01/05/2023] Open
Abstract
The use of fixed fibroblasts from familial and sporadic Alzheimer's disease patients has previously indicated an upregulation of mitochondria-ER contacts (MERCs) as a hallmark of Alzheimer's disease. Despite its potential significance, the relevance of these results is limited because they were not extended to live neurons. Here we performed a dynamic in vivo analysis of MERCs in hippocampal neurons from McGill-R-Thy1-APP transgenic rats, a model of Alzheimer's disease-like amyloid pathology. Live FRET imaging of neurons from transgenic rats revealed perturbed 'lipid-MERCs' (gap width <10 nm), while 'Ca2+-MERCs' (10-20 nm gap width) were unchanged. In situ TEM showed no significant differences in the lipid-MERCs:total MERCs or lipid-MERCs:mitochondria ratios; however, the average length of lipid-MERCs was significantly decreased in neurons from transgenic rats as compared to controls. In accordance with FRET results, untargeted lipidomics showed significant decreases in levels of 12 lipids and bioenergetic analysis revealed respiratory dysfunction of mitochondria from transgenic rats. Thus, our results reveal changes in MERC structures coupled with impaired mitochondrial functions in Alzheimer's disease-related neurons.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Pamela V Martino Adami
- Laboratory of Brain Aging and Neurodegeneration, Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, C1405BWE Ciudad Autónoma de Buenos Aires, Argentina.,Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, 50937 Cologne, Germany
| | - Zuzana Nichtová
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - David B Weaver
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Adam Bartok
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Thomas Wisniewski
- Departments of Neurology, Pathology and Psychiatry, Center for Cognitive Neurology, NYU School of Medicine, New York, NY 10016, USA
| | - Drew R Jones
- NYU School of Medicine, Metabolomics Core Resource Laboratory at NYU Langone Health, 550 First Avenue, New York, NY 10016, USA
| | - Sonia Do Carmo
- Department of Pharmacology and Therapeutics, McGill University, McIntyre Medical Building 3655 Prom. Sir-William-Osler, Montreal, QC H3G 1Y6, Canada
| | - Eduardo M Castaño
- Laboratory of Brain Aging and Neurodegeneration, Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, C1405BWE Ciudad Autónoma de Buenos Aires, Argentina
| | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, McIntyre Medical Building 3655 Prom. Sir-William-Osler, Montreal, QC H3G 1Y6, Canada
| | - György Hajnóczky
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Laura Morelli
- Laboratory of Brain Aging and Neurodegeneration, Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, C1405BWE Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
22
|
Scott GR, Guo KH, Dawson NJ. The Mitochondrial Basis for Adaptive Variation in Aerobic Performance in High-Altitude Deer Mice. Integr Comp Biol 2019; 58:506-518. [PMID: 29873740 DOI: 10.1093/icb/icy056] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mitochondria play a central role in aerobic performance. Studies aimed at elucidating how evolved variation in mitochondrial physiology contributes to adaptive variation in aerobic performance can therefore provide a unique and powerful lens to understanding the evolution of complex physiological traits. Here, we review our ongoing work on the importance of changes in mitochondrial quantity and quality to adaptive variation in aerobic performance in high-altitude deer mice. Whole-organism aerobic capacity in hypoxia (VO2max) increases in response to hypoxia acclimation in this species, but high-altitude populations have evolved consistently greater VO2max than populations from low altitude. The evolved increase in VO2max in highlanders is associated with an evolved increase in the respiratory capacity of the gastrocnemius muscle. This appears to result from highlanders having more mitochondria in this tissue, attributed to a higher proportional abundance of oxidative fiber-types and a greater mitochondrial volume density within oxidative fibers. The latter is primarily caused by an over-abundance of subsarcolemmal mitochondria in high-altitude mice, which is likely advantageous for mitochondrial O2 supply because more mitochondria are situated adjacent to the cell membrane and close to capillaries. Evolved changes in gastrocnemius phenotype appear to be underpinned by population differences in the expression of genes involved in energy metabolism, muscle development, and vascular development. Hypoxia acclimation has relatively little effect on respiratory capacity of the gastrocnemius, but it increases respiratory capacity of the diaphragm. However, the mechanisms responsible for this increase differ between populations: lowlanders appear to adjust mitochondrial quantity and quality (i.e., increases in citrate synthase [CS] activity, and mitochondrial respiration relative to CS activity) and they exhibit higher rates of mitochondrial release of reactive oxygen species, whereas highlanders only increase mitochondrial quantity in response to hypoxia acclimation. In contrast to the variation in skeletal muscles, the respiratory capacity of cardiac muscle does not appear to be affected by hypoxia acclimation and varies little between populations. Therefore, evolved changes in mitochondrial quantity and quality make important tissue-specific contributions to adaptive variation in aerobic performance in high-altitude deer mice.
Collapse
Affiliation(s)
- Graham R Scott
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| | - Kevin H Guo
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| | - Neal J Dawson
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| |
Collapse
|
23
|
Sun R, Chen X, Yin CY, Qi L, Lau PM, Han H, Bi GQ. Correlative light and electron microscopy for complex cellular structures on PDMS substrates with coded micro-patterns. LAB ON A CHIP 2018; 18:3840-3848. [PMID: 30417906 DOI: 10.1039/c8lc00703a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fluorescence light microscopy (FLM) is commonly used for localizing specific cellular and subcellular targets. Electron microscopy (EM), on the other hand, can reveal ultrastructural details of cellular architectures beyond the limit of optical resolution. Correlative light and electron microscopy (CLEM) that combines the two techniques has proven valuable in various cell biological applications that require both specificity and resolution. Here, we report an efficient and easy-to-use CLEM system, and its applications in studying neuronal synapses. The system utilizes patterned symbols to encode coordinates on micro-fabricated polydimethylsiloxane (PDMS) substrates, on which dissociated primary hippocampal neurons grow and form synaptic connections. After imaging and localizing specifically labeled synapses with FLM, samples are embedded in resin blocks and sectioned for EM analysis. The patterned symbols on PDMS substrates provide coordinate information, allowing efficient co-registration between FLM and EM images with high precision. A custom-developed software package achieves automated EM image collection, FLM/EM alignment, and EM navigation. With this CLEM system, we have obtained high quality electron tomograms of fluorescently labeled synapses along dendrites of hippocampal neurons and analyzed docking statistics of synaptic vesicles (SVs) in different subtypes of excitatory synapses. This technique provides an efficient approach to combine functional studies with ultrastructural analysis of heterogeneous neuronal synapses, as well as other subcellular structures in general.
Collapse
Affiliation(s)
- Rong Sun
- Center for Integrative Imaging, National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Valero T, Delgado-González A, Unciti-Broceta JD, Cano-Cortés V, Pérez-López AM, Unciti-Broceta A, Sánchez Martín RM. Drug "Clicking" on Cell-Penetrating Fluorescent Nanoparticles for In Cellulo Chemical Proteomics. Bioconjug Chem 2018; 29:3154-3160. [PMID: 30122043 DOI: 10.1021/acs.bioconjchem.8b00481] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Chemical proteomics approaches are widely used to identify molecular targets of existing or novel drugs. This manuscript describes the development of a straightforward approach to conjugate azide-labeled drugs via click chemistry to alkyne-tagged cell-penetrating fluorescent nanoparticles as a novel tool to study target engagement and/or identification inside living cells. A modification of the Baeyer test for alkynes allows monitoring the Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction, guaranteeing the presence of the drug on the solid support. As a proof of concept, the conjugation of the promiscuous kinase inhibitor dasatinib to Cy5-labeled nanoparticles is presented. Dasatinib-decorated fluorescent nanoparticles efficiently inhibited its protein target SRC in vitro, entered cancer cells, and colocalized with SRC in cellulo.
Collapse
Affiliation(s)
- Teresa Valero
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics & Molecular Medicine , University of Edinburgh , Edinburgh EH4 2XR , United Kingdom.,GENYO, Centre for Genomics and Oncological Research , Pfizer/University of Granada/Andalusian Regional Government , PTS Granada, Avda. Ilustración 114 , 18016 Granada , Spain.,Department of Medicinal & Organic Chemistry, Faculty of Pharmacy , University of Granada , Campus de Cartuja s/n , 18071 Granada , Spain
| | - Antonio Delgado-González
- GENYO, Centre for Genomics and Oncological Research , Pfizer/University of Granada/Andalusian Regional Government , PTS Granada, Avda. Ilustración 114 , 18016 Granada , Spain.,Department of Medicinal & Organic Chemistry, Faculty of Pharmacy , University of Granada , Campus de Cartuja s/n , 18071 Granada , Spain
| | - Juan Diego Unciti-Broceta
- GENYO, Centre for Genomics and Oncological Research , Pfizer/University of Granada/Andalusian Regional Government , PTS Granada, Avda. Ilustración 114 , 18016 Granada , Spain.,R&D Department , NanoGetic SL , Health Science Technological Park (PTS), Avenida de la Innovación 1, Edificio BIC , 18016 Granada , Spain
| | - Victoria Cano-Cortés
- GENYO, Centre for Genomics and Oncological Research , Pfizer/University of Granada/Andalusian Regional Government , PTS Granada, Avda. Ilustración 114 , 18016 Granada , Spain.,Department of Medicinal & Organic Chemistry, Faculty of Pharmacy , University of Granada , Campus de Cartuja s/n , 18071 Granada , Spain
| | - Ana M Pérez-López
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics & Molecular Medicine , University of Edinburgh , Edinburgh EH4 2XR , United Kingdom
| | - Asier Unciti-Broceta
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics & Molecular Medicine , University of Edinburgh , Edinburgh EH4 2XR , United Kingdom
| | - Rosario M Sánchez Martín
- GENYO, Centre for Genomics and Oncological Research , Pfizer/University of Granada/Andalusian Regional Government , PTS Granada, Avda. Ilustración 114 , 18016 Granada , Spain.,Department of Medicinal & Organic Chemistry, Faculty of Pharmacy , University of Granada , Campus de Cartuja s/n , 18071 Granada , Spain
| |
Collapse
|
25
|
Ayoub S, Tsai KC, Khalighi AH, Sacks MS. The Three-Dimensional Microenvironment of the Mitral Valve: Insights into the Effects of Physiological Loads. Cell Mol Bioeng 2018; 11:291-306. [PMID: 31719888 PMCID: PMC6816749 DOI: 10.1007/s12195-018-0529-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 05/14/2018] [Indexed: 10/24/2022] Open
Abstract
INTRODUCTION In the mitral valve (MV), numerous pathological factors, especially those resulting from changes in external loading, have been shown to affect MV structure and composition. Such changes are driven by the MV interstitial cell (MVIC) population via protein synthesis and enzymatic degradation of extracellular matrix (ECM) components. METHODS While cell phenotype, ECM composition and regulation, and tissue level changes in MVIC shape under stress have been studied, a detailed understanding of the three-dimensional (3D) microstructural mechanisms are lacking. As a first step in addressing this challenge, we applied focused ion beam scanning electron microscopy (FIB-SEM) to reveal novel details of the MV microenvironment in 3D. RESULTS We demonstrated that collagen is organized into large fibers consisting of an average of 605 ± 113 fibrils, with a mean diameter of 61.2 ± 9.8 nm. In contrast, elastin was organized into two distinct structural subtypes: (1) sheet-like lamellar elastin, and (2) circumferentially oriented elastin struts, based on both the aspect ratio and transmural tilt. MVICs were observed to have a large cytoplasmic volume, as evidenced by the large mean surface area to volume ratio 3.68 ± 0.35, which increased under physiological loading conditions to 4.98 ± 1.17. CONCLUSIONS Our findings suggest that each MVIC mechanically interacted only with the nearest 3-4 collagen fibers. This key observation suggests that in developing multiscale MV models, each MVIC can be considered a mechanically integral part of the local fiber ensemble and is unlikely to be influenced by more distant structures.
Collapse
Affiliation(s)
- Salma Ayoub
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, 201 East 24th Street, POB 5.236, 1 University Station C0200, Austin, TX 78712 USA
| | - Karen C. Tsai
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, 201 East 24th Street, POB 5.236, 1 University Station C0200, Austin, TX 78712 USA
| | - Amir H. Khalighi
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, 201 East 24th Street, POB 5.236, 1 University Station C0200, Austin, TX 78712 USA
| | - Michael S. Sacks
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, 201 East 24th Street, POB 5.236, 1 University Station C0200, Austin, TX 78712 USA
| |
Collapse
|
26
|
Abstract
Multichannel imaging is used as a readout of relative localization of two or more components and is often the first step in investigating functional ensembles in cells. However, the localization volume of diffraction-limited light microscopy (approx. 200 nm by 500 nm) can accommodate hundred of proteins, calling for increased resolution for these types of analyses. Here, we present a protocol for 4-channel imaging using structured illumination microscopy (SIM), which increases resolution by a factor of two. We use adherent, fixed cells to identify the localization of adhesion proteins using immunofluorescence and fluorescent proteins. We discuss how labeling with the necessary brightness is achieved and how data has to be processed for colocalization analysis.
Collapse
|
27
|
Cheng A, Chen H, Schwartz Z, Boyan BD. Imaging analysis of the interface between osteoblasts and microrough surfaces of laser-sintered titanium alloy constructs. J Microsc 2017; 270:41-52. [PMID: 28960365 DOI: 10.1111/jmi.12648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/07/2017] [Accepted: 09/07/2017] [Indexed: 11/30/2022]
Abstract
Previous work using focused ion beam (FIB) analysis of osteoblasts on smooth and microrough Ti surfaces showed that the average cell aspect ratio and distance from the surface are greater on the rough surface. In order to better interrogate the relationship between individual cells and their substrate using multiple imaging modalities, we developed a method that tracks the same cell across confocal laser scanning microscopy (CLSM) to correlate surface microroughness with cell morphology and cytoskeleton; scanning electron microscopy (SEM) to provide higher resolution for observation of nanoroughness as well as chemical mapping via energy dispersive X-ray spectroscopy; and transmission electron microscopy (TEM) for high-resolution imaging. FIB was used to prepare thin sections of the cell-material interface for TEM, or for three-dimensional electron tomography. Cells were cultured on laser-sintered Ti-6Al-4V substrates with polished or etched surfaces. Direct cell to surface attachments were observed across surfaces, though bridging across macroscale surface features occurred on rough substrates. Our results show that surface roughness, cell cytoskeleton and gross morphology can be correlated with the cell-material cross-sectional interface at the single cell level across multiple high-resolution imaging modalities. This work provides a platform method for further investigating mechanisms of the cell-material interface.
Collapse
Affiliation(s)
- A Cheng
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, U.S.A.,Department of Biomedical Engineering, Peking University, Beijing, China
| | - H Chen
- Department of Biomedical Engineering, Peking University, Beijing, China
| | - Z Schwartz
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, U.S.A.,Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, U.S.A
| | - B D Boyan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, U.S.A.,Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, U.S.A
| |
Collapse
|
28
|
Paillusson S, Gomez-Suaga P, Stoica R, Little D, Gissen P, Devine MJ, Noble W, Hanger DP, Miller CCJ. α-Synuclein binds to the ER-mitochondria tethering protein VAPB to disrupt Ca 2+ homeostasis and mitochondrial ATP production. Acta Neuropathol 2017; 134:129-149. [PMID: 28337542 PMCID: PMC5486644 DOI: 10.1007/s00401-017-1704-z] [Citation(s) in RCA: 285] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 03/17/2017] [Accepted: 03/18/2017] [Indexed: 12/29/2022]
Abstract
α-Synuclein is strongly linked to Parkinson’s disease but the molecular targets for its toxicity are not fully clear. However, many neuronal functions damaged in Parkinson’s disease are regulated by signalling between the endoplasmic reticulum (ER) and mitochondria. This signalling involves close physical associations between the two organelles that are mediated by binding of the integral ER protein vesicle-associated membrane protein-associated protein B (VAPB) to the outer mitochondrial membrane protein, protein tyrosine phosphatase-interacting protein 51 (PTPIP51). VAPB and PTPIP51 thus act as a scaffold to tether the two organelles. Here we show that α-synuclein binds to VAPB and that overexpression of wild-type and familial Parkinson’s disease mutant α-synuclein disrupt the VAPB-PTPIP51 tethers to loosen ER–mitochondria associations. This disruption to the VAPB-PTPIP51 tethers is also seen in neurons derived from induced pluripotent stem cells from familial Parkinson’s disease patients harbouring pathogenic triplication of the α-synuclein gene. We also show that the α-synuclein induced loosening of ER–mitochondria contacts is accompanied by disruption to Ca2+ exchange between the two organelles and mitochondrial ATP production. Such disruptions are likely to be particularly damaging to neurons that are heavily dependent on correct Ca2+ signaling and ATP.
Collapse
Affiliation(s)
- Sébastien Paillusson
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe road, London, SE5 9RX, UK
| | - Patricia Gomez-Suaga
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe road, London, SE5 9RX, UK
| | - Radu Stoica
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe road, London, SE5 9RX, UK
| | - Daniel Little
- MRC Laboratory of Molecular Cell Biology, University College London, London, UK
| | - Paul Gissen
- MRC Laboratory of Molecular Cell Biology, University College London, London, UK
| | - Michael J Devine
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Wendy Noble
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe road, London, SE5 9RX, UK
| | - Diane P Hanger
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe road, London, SE5 9RX, UK
| | - Christopher C J Miller
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe road, London, SE5 9RX, UK.
| |
Collapse
|
29
|
Liu AP, Chaudhuri O, Parekh SH. New advances in probing cell-extracellular matrix interactions. Integr Biol (Camb) 2017; 9:383-405. [PMID: 28352896 PMCID: PMC5708530 DOI: 10.1039/c6ib00251j] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 03/20/2017] [Indexed: 12/17/2022]
Abstract
The extracellular matrix (ECM) provides structural and biochemical support to cells within tissues. An emerging body of evidence has established that the ECM plays a key role in cell mechanotransduction - the study of coupling between mechanical inputs and cellular phenotype - through either mediating transmission of forces to the cells, or presenting mechanical cues that guide cellular behaviors. Recent progress in cell mechanotransduction research has been facilitated by advances of experimental tools, particularly microtechnologies, engineered biomaterials, and imaging and analytical methods. Microtechnologies have enabled the design and fabrication of controlled physical microenvironments for the study and measurement of cell-ECM interactions. Advances in engineered biomaterials have allowed researchers to develop synthetic ECMs that mimic tissue microenvironments and investigate the impact of altered physicochemical properties on various cellular processes. Finally, advanced imaging and spectroscopy techniques have facilitated the visualization of the complex interaction between cells and ECM in vitro and in living tissues. This review will highlight the application of recent innovations in these areas to probing cell-ECM interactions. We believe cross-disciplinary approaches, combining aspects of the different technologies reviewed here, will inspire innovative ideas to further elucidate the secrets of ECM-mediated cell control.
Collapse
Affiliation(s)
- Allen P. Liu
- Department of Mechanical Engineering , University of Michigan , Ann Arbor , MI 48109 , USA .
- Department of Biomedical Engineering , University of Michigan , Ann Arbor , MI 48109 , USA
- Cellular and Molecular Biology Program , University of Michigan , Ann Arbor , MI 48109 , USA
- Biophysics Program , University of Michigan , Ann Arbor , MI 48109 , USA
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering , Stanford University , Stanford , CA 94305 , USA .
| | - Sapun H. Parekh
- Department of Molecular Spectroscopy , Max Planck Institute for Polymer Research , Mainz 55128 , Germany .
| |
Collapse
|
30
|
Johnson E, Kaufmann R. Correlative In-Resin Super-Resolution Fluorescence and Electron Microscopy of Cultured Cells. Methods Mol Biol 2017; 1663:163-177. [PMID: 28924667 DOI: 10.1007/978-1-4939-7265-4_14] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Correlative super-resolution light and electron microscopy (super-resolution CLEM) is a powerful and emerging tool in biological research. The practical realization of these two very different microscopy techniques with their individual requirements remains a challenging task. There is a broad range of approaches to choose from, each with their own advantages and limitations. Here, we present a detailed protocol for in-resin super-resolution CLEM of high-pressure frozen and freeze substituted cultured cells. The protocol makes use of a strategy to preserve the fluorescence and photo-switching capabilities of standard fluorescent proteins, such as GFP and YFP, to enable single-molecule localization microscopy (SMLM) in-resin sections followed by transmission electron microscopy (TEM) imaging. This results in a fivefold improvement in resolution in the fluorescence image and a more precise correlation of the distribution of fluorescently labeled molecules with EM ultrastructure compared with conventional CLEM.
Collapse
Affiliation(s)
- Errin Johnson
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Rainer Kaufmann
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK.
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
31
|
Jadot M, Boonen M, Thirion J, Wang N, Xing J, Zhao C, Tannous A, Qian M, Zheng H, Everett JK, Moore DF, Sleat DE, Lobel P. Accounting for Protein Subcellular Localization: A Compartmental Map of the Rat Liver Proteome. Mol Cell Proteomics 2016; 16:194-212. [PMID: 27923875 DOI: 10.1074/mcp.m116.064527] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 11/18/2016] [Indexed: 11/06/2022] Open
Abstract
Accurate knowledge of the intracellular location of proteins is important for numerous areas of biomedical research including assessing fidelity of putative protein-protein interactions, modeling cellular processes at a system-wide level and investigating metabolic and disease pathways. Many proteins have not been localized, or have been incompletely localized, partly because most studies do not account for entire subcellular distribution. Thus, proteins are frequently assigned to one organelle whereas a significant fraction may reside elsewhere. As a step toward a comprehensive cellular map, we used subcellular fractionation with classic balance sheet analysis and isobaric labeling/quantitative mass spectrometry to assign locations to >6000 rat liver proteins. We provide quantitative data and error estimates describing the distribution of each protein among the eight major cellular compartments: nucleus, mitochondria, lysosomes, peroxisomes, endoplasmic reticulum, Golgi, plasma membrane and cytosol. Accounting for total intracellular distribution improves quality of organelle assignments and assigns proteins with multiple locations. Protein assignments and supporting data are available online through the Prolocate website (http://prolocate.cabm.rutgers.edu). As an example of the utility of this data set, we have used organelle assignments to help analyze whole exome sequencing data from an infant dying at 6 months of age from a suspected neurodegenerative lysosomal storage disorder of unknown etiology. Sequencing data was prioritized using lists of lysosomal proteins comprising well-established residents of this organelle as well as novel candidates identified in this study. The latter included copper transporter 1, encoded by SLC31A1, which we localized to both the plasma membrane and lysosome. The patient harbors two predicted loss of function mutations in SLC31A1, suggesting that this may represent a heretofore undescribed recessive lysosomal storage disease gene.
Collapse
Affiliation(s)
- Michel Jadot
- From the ‡URPhyM-Laboratoire de Chimie Physiologique, Université de Namur, 61 rue de Bruxelles, Namur 5000, Belgium;
| | - Marielle Boonen
- From the ‡URPhyM-Laboratoire de Chimie Physiologique, Université de Namur, 61 rue de Bruxelles, Namur 5000, Belgium
| | - Jaqueline Thirion
- From the ‡URPhyM-Laboratoire de Chimie Physiologique, Université de Namur, 61 rue de Bruxelles, Namur 5000, Belgium
| | - Nan Wang
- §Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Jinchuan Xing
- §Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Caifeng Zhao
- ¶Center for Advanced Biotechnology and Medicine, Rutgers Biomedical and Health Sciences, 679 Hoes Lane West, Piscataway, New Jersey 08854
| | - Abla Tannous
- ¶Center for Advanced Biotechnology and Medicine, Rutgers Biomedical and Health Sciences, 679 Hoes Lane West, Piscataway, New Jersey 08854
| | - Meiqian Qian
- ¶Center for Advanced Biotechnology and Medicine, Rutgers Biomedical and Health Sciences, 679 Hoes Lane West, Piscataway, New Jersey 08854
| | - Haiyan Zheng
- ¶Center for Advanced Biotechnology and Medicine, Rutgers Biomedical and Health Sciences, 679 Hoes Lane West, Piscataway, New Jersey 08854
| | - John K Everett
- ¶Center for Advanced Biotechnology and Medicine, Rutgers Biomedical and Health Sciences, 679 Hoes Lane West, Piscataway, New Jersey 08854
| | - Dirk F Moore
- ‖Department of Biostatistics, School of Public Health, Rutgers Biomedical and Health Sciences, 683 Hoes Lane West, Piscataway, New Jersey 08854
| | - David E Sleat
- ¶Center for Advanced Biotechnology and Medicine, Rutgers Biomedical and Health Sciences, 679 Hoes Lane West, Piscataway, New Jersey 08854;
| | - Peter Lobel
- ¶Center for Advanced Biotechnology and Medicine, Rutgers Biomedical and Health Sciences, 679 Hoes Lane West, Piscataway, New Jersey 08854;
| |
Collapse
|
32
|
Abstract
Lipids and nucleic acids (NAs) can hierarchically self-organize into a variety of nanostructures of increasingly complex geometries such as the 1D lamellar, 2D hexagonal, and 3D bicontinuous cubic phases. The diversity and complexity of those lipid-NA assemblies are interesting from a fundamental perspective as well as being relevant to the performance in gene delivery and gene silencing applications. The finding that not only the chemical make of the lipid-NA constructs, but their actual supramolecular organization, affects their gene transfection and silencing efficiencies has inspired physicists, chemists, and engineers to this field of research. At the moment it remains an open question how exactly the different lipid-NA structures interact with cells and organelles in order to output an optimal response. This article reviews our current understanding of the structures of different lipid-NA complexes and the corresponding cellular interaction mechanisms. The recent advances in designing optimal lipid-based NA carriers will be introduced with an emphasis on the structure-function relations.
Collapse
Affiliation(s)
- Minjee Kang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Hojun Kim
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Cecilia Leal
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
33
|
Bobrowska J, Pabijan J, Wiltowska-Zuber J, Jany BR, Krok F, Awsiuk K, Rysz J, Budkowski A, Lekka M. Protocol of single cells preparation for time of flight secondary ion mass spectrometry. Anal Biochem 2016; 511:52-60. [PMID: 27318241 DOI: 10.1016/j.ab.2016.06.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/03/2016] [Accepted: 06/07/2016] [Indexed: 12/30/2022]
Abstract
There are several techniques like time of flight secondary ion mass spectrometry (ToF SIMS) that require a special protocol for preparation of biological samples, in particular, those containing single cells due to high vacuum conditions that must be kept during the experiment. Frequently, preparation methodology involves liquid nitrogen freezing what is not always convenient. In our studies, we propose and validate a protocol for preparation of single cells. It consists of four steps: (i) paraformaldehyde fixation, (ii) salt removal, (iii) dehydrating, and (iv) sample drying under ambient conditions. The protocol was applied to samples with single melanoma cells i.e. WM115 and WM266-4 characterized by similar morphology. The surface and internal structures of cells were monitored using atomic force, scanning electron and fluorescent microscopes, used to follow any potential protocol-induced alterations. To validate the proposed methodology for sample preparation, ToF SIMS experiments were carried out using C60(+) cluster ion beam. The applied principal component analysis (PCA) revealed that chemical changes on cell surface of melanoma cells were large enough to differentiate between primary and secondary tumor sites. Subject category: Mass spectrometry.
Collapse
Affiliation(s)
- Justyna Bobrowska
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Cracow, Poland
| | - Joanna Pabijan
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Cracow, Poland
| | - Joanna Wiltowska-Zuber
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Cracow, Poland
| | - Benedykt R Jany
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Lojasiewicza 11, 30-348 Cracow, Poland
| | - Franciszek Krok
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Lojasiewicza 11, 30-348 Cracow, Poland
| | - Kamil Awsiuk
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Lojasiewicza 11, 30-348 Cracow, Poland
| | - Jakub Rysz
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Lojasiewicza 11, 30-348 Cracow, Poland
| | - Andrzej Budkowski
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Lojasiewicza 11, 30-348 Cracow, Poland
| | - Malgorzata Lekka
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Cracow, Poland.
| |
Collapse
|
34
|
There's Something Wrong with my MAM; the ER-Mitochondria Axis and Neurodegenerative Diseases. Trends Neurosci 2016; 39:146-157. [PMID: 26899735 PMCID: PMC4780428 DOI: 10.1016/j.tins.2016.01.008] [Citation(s) in RCA: 360] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 01/19/2016] [Accepted: 01/21/2016] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis with associated frontotemporal dementia (ALS/FTD) are major neurodegenerative diseases for which there are no cures. All are characterised by damage to several seemingly disparate cellular processes. The broad nature of this damage makes understanding pathogenic mechanisms and devising new treatments difficult. Can the different damaged functions be linked together in a common disease pathway and which damaged function should be targeted for therapy? Many functions damaged in neurodegenerative diseases are regulated by communications that mitochondria make with a specialised region of the endoplasmic reticulum (ER; mitochondria-associated ER membranes or 'MAM'). Moreover, several recent studies have shown that disturbances to ER-mitochondria contacts occur in neurodegenerative diseases. Here, we review these findings.
Collapse
|
35
|
Belevich I, Joensuu M, Kumar D, Vihinen H, Jokitalo E. Microscopy Image Browser: A Platform for Segmentation and Analysis of Multidimensional Datasets. PLoS Biol 2016; 14:e1002340. [PMID: 26727152 PMCID: PMC4699692 DOI: 10.1371/journal.pbio.1002340] [Citation(s) in RCA: 270] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding the structure-function relationship of cells and organelles in their natural context requires multidimensional imaging. As techniques for multimodal 3-D imaging have become more accessible, effective processing, visualization, and analysis of large datasets are posing a bottleneck for the workflow. Here, we present a new software package for high-performance segmentation and image processing of multidimensional datasets that improves and facilitates the full utilization and quantitative analysis of acquired data, which is freely available from a dedicated website. The open-source environment enables modification and insertion of new plug-ins to customize the program for specific needs. We provide practical examples of program features used for processing, segmentation and analysis of light and electron microscopy datasets, and detailed tutorials to enable users to rapidly and thoroughly learn how to use the program.
Collapse
Affiliation(s)
- Ilya Belevich
- Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Merja Joensuu
- Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Darshan Kumar
- Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Helena Vihinen
- Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Eija Jokitalo
- Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
36
|
Choi J, Lee EK, Choo J, Yuh J, Hong JW. Micro 3D cell culture systems for cellular behavior studies: Culture matrices, devices, substrates, and in-situ sensing methods. Biotechnol J 2015; 10:1682-8. [PMID: 26358782 DOI: 10.1002/biot.201500092] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/19/2015] [Accepted: 07/08/2015] [Indexed: 02/01/2023]
Abstract
Microfabricated systems equipped with 3D cell culture devices and in-situ cellular biosensing tools can be a powerful bionanotechnology platform to investigate a variety of biomedical applications. Various construction substrates such as plastics, glass, and paper are used for microstructures. When selecting a construction substrate, a key consideration is a porous microenvironment that allows for spheroid growth and mimics the extracellular matrix (ECM) of cell aggregates. Various bio-functionalized hydrogels are ideal candidates that mimic the natural ECM for 3D cell culture. When selecting an optimal and appropriate microfabrication method, both the intended use of the system and the characteristics and restrictions of the target cells should be carefully considered. For highly sensitive and near-cell surface detection of excreted cellular compounds, SERS-based microsystems capable of dual modal imaging have the potential to be powerful tools; however, the development of optical reporters and nanoprobes remains a key challenge. We expect that the microsystems capable of both 3D cell culture and cellular response monitoring would serve as excellent tools to provide fundamental cellular behavior information for various biomedical applications such as metastasis, wound healing, high throughput screening, tissue engineering, regenerative medicine, and drug discovery and development.
Collapse
Affiliation(s)
- Jonghoon Choi
- Department of Bionanotechnology, Graduate School, Hanyang University - ERICA, Ansan, Korea
| | - Eun Kyu Lee
- Department of Bionanotechnology, Graduate School, Hanyang University - ERICA, Ansan, Korea
| | - Jaebum Choo
- Department of Bionanotechnology, Graduate School, Hanyang University - ERICA, Ansan, Korea
| | - Junhan Yuh
- New Technology Department, Corporate Technology Division, POSCO, Seoul, Korea
| | - Jong Wook Hong
- Department of Bionanotechnology, Graduate School, Hanyang University - ERICA, Ansan, Korea.
| |
Collapse
|
37
|
van den Dries K, Bolomini-Vittori M, Cambi A. Spatiotemporal organization and mechanosensory function of podosomes. Cell Adh Migr 2015; 8:268-72. [PMID: 24658050 DOI: 10.4161/cam.28182] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Podosomes are small, circular adhesions formed by cells such as osteoclasts, macrophages, dendritic cells, and endothelial cells. They comprise a protrusive actin core module and an adhesive ring module composed of integrins and cytoskeletal adaptor proteins such as vinculin and talin. Furthermore, podosomes are associated with an actin network and often organize into large clusters. Recent results from our laboratory and others have shed new light on podosome structure and dynamics, suggesting a revision of the classical "core-ring" model. Also, these studies demonstrate that the adhesive and protrusive module are functionally linked by the actin network likely facilitating mechanotransduction as well as providing feedback between these two modules. In this commentary, we briefly summarize these recent advances with respect to the knowledge on podosome structure and discuss force distribution mechanisms within podosomes and their emerging role in mechanotransduction.
Collapse
Affiliation(s)
- Koen van den Dries
- Department of Tumor Immunology; Radboud Institute for Molecular Life Sciences; Radboud University Medical Center; Nijmegen, The Netherlands
| | - Matteo Bolomini-Vittori
- Department of Tumor Immunology; Radboud Institute for Molecular Life Sciences; Radboud University Medical Center; Nijmegen, The Netherlands
| | - Alessandra Cambi
- Department of Tumor Immunology; Radboud Institute for Molecular Life Sciences; Radboud University Medical Center; Nijmegen, The Netherlands; Department of Nanobiophysics; MESA+ Institute for Nanotechnology and MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; Enschede, The Netherlands
| |
Collapse
|
38
|
Quantitatively imaging chromosomes by correlated cryo-fluorescence and soft x-ray tomographies. Biophys J 2015; 107:1988-1996. [PMID: 25418180 DOI: 10.1016/j.bpj.2014.09.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/28/2014] [Accepted: 09/09/2014] [Indexed: 11/24/2022] Open
Abstract
Soft x-ray tomography (SXT) is increasingly being recognized as a valuable method for visualizing and quantifying the ultrastructure of cryopreserved cells. Here, we describe the combination of SXT with cryogenic confocal fluorescence tomography (CFT). This correlative approach allows the incorporation of molecular localization data, with isotropic precision, into high-resolution three-dimensional (3-D) SXT reconstructions of the cell. CFT data are acquired first using a cryogenically adapted confocal light microscope in which the specimen is coupled to a high numerical aperture objective lens by an immersion fluid. The specimen is then cryo-transferred to a soft x-ray microscope (SXM) for SXT data acquisition. Fiducial markers visible in both types of data act as common landmarks, enabling accurate coalignment of the two complementary tomographic reconstructions. We used this method to identify the inactive X chromosome (Xi) in female v-abl transformed thymic lymphoma cells by localizing enhanced green fluorescent protein-labeled macroH2A with CFT. The molecular localization data were used to guide segmentation of Xi in the SXT reconstructions, allowing characterization of the Xi topological arrangement in near-native state cells. Xi was seen to adopt a number of different topologies with no particular arrangement being dominant.
Collapse
|
39
|
Galler K, Bräutigam K, Große C, Popp J, Neugebauer U. Making a big thing of a small cell--recent advances in single cell analysis. Analyst 2015; 139:1237-73. [PMID: 24495980 DOI: 10.1039/c3an01939j] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Single cell analysis is an emerging field requiring a high level interdisciplinary collaboration to provide detailed insights into the complex organisation, function and heterogeneity of life. This review is addressed to life science researchers as well as researchers developing novel technologies. It covers all aspects of the characterisation of single cells (with a special focus on mammalian cells) from morphology to genetics and different omics-techniques to physiological, mechanical and electrical methods. In recent years, tremendous advances have been achieved in all fields of single cell analysis: (1) improved spatial and temporal resolution of imaging techniques to enable the tracking of single molecule dynamics within single cells; (2) increased throughput to reveal unexpected heterogeneity between different individual cells raising the question what characterizes a cell type and what is just natural biological variation; and (3) emerging multimodal approaches trying to bring together information from complementary techniques paving the way for a deeper understanding of the complexity of biological processes. This review also covers the first successful translations of single cell analysis methods to diagnostic applications in the field of tumour research (especially circulating tumour cells), regenerative medicine, drug discovery and immunology.
Collapse
Affiliation(s)
- Kerstin Galler
- Integrated Research and Treatment Center "Center for Sepsis Control and Care", Jena University Hospital, Erlanger Allee 101, 07747 Jena, Germany
| | | | | | | | | |
Collapse
|
40
|
Valley CC, Liu S, Lidke DS, Lidke KA. Sequential superresolution imaging of multiple targets using a single fluorophore. PLoS One 2015; 10:e0123941. [PMID: 25860558 PMCID: PMC4393115 DOI: 10.1371/journal.pone.0123941] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/09/2015] [Indexed: 12/11/2022] Open
Abstract
Fluorescence superresolution (SR) microscopy, or fluorescence nanoscopy, provides nanometer scale detail of cellular structures and allows for imaging of biological processes at the molecular level. Specific SR imaging methods, such as localization-based imaging, rely on stochastic transitions between on (fluorescent) and off (dark) states of fluorophores. Imaging multiple cellular structures using multi-color imaging is complicated and limited by the differing properties of various organic dyes including their fluorescent state duty cycle, photons per switching event, number of fluorescent cycles before irreversible photobleaching, and overall sensitivity to buffer conditions. In addition, multiple color imaging requires consideration of multiple optical paths or chromatic aberration that can lead to differential aberrations that are important at the nanometer scale. Here, we report a method for sequential labeling and imaging that allows for SR imaging of multiple targets using a single fluorophore with negligible cross-talk between images. Using brightfield image correlation to register and overlay multiple image acquisitions with ~10 nm overlay precision in the x-y imaging plane, we have exploited the optimal properties of AlexaFluor647 for dSTORM to image four distinct cellular proteins. We also visualize the changes in co-localization of the epidermal growth factor (EGF) receptor and clathrin upon EGF addition that are consistent with clathrin-mediated endocytosis. These results are the first to demonstrate sequential SR (s-SR) imaging using direct stochastic reconstruction microscopy (dSTORM), and this method for sequential imaging can be applied to any superresolution technique.
Collapse
Affiliation(s)
- Christopher C. Valley
- Department of Pathology and Cancer Research and Treatment Center, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Sheng Liu
- Department of Physics & Astronomy, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Diane S. Lidke
- Department of Pathology and Cancer Research and Treatment Center, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Keith A. Lidke
- Department of Physics & Astronomy, University of New Mexico, Albuquerque, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
41
|
Ober RJ, Tahmasbi A, Ram S, Lin Z, Ward ES. Quantitative Aspects of Single Molecule Microscopy. IEEE SIGNAL PROCESSING MAGAZINE 2015; 32:58-69. [PMID: 26167102 PMCID: PMC4494126 DOI: 10.1109/msp.2014.2353664] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Single molecule microscopy is a relatively new optical microscopy technique that allows the detection of individual molecules such as proteins in a cellular context. This technique has generated significant interest among biologists, biophysicists and biochemists, as it holds the promise to provide novel insights into subcellular processes and structures that otherwise cannot be gained through traditional experimental approaches. Single molecule experiments place stringent demands on experimental and algorithmic tools due to the low signal levels and the presence of significant extraneous noise sources. Consequently, this has necessitated the use of advanced statistical signal and image processing techniques for the design and analysis of single molecule experiments. In this tutorial paper, we provide an overview of single molecule microscopy from early works to current applications and challenges. Specific emphasis will be on the quantitative aspects of this imaging modality, in particular single molecule localization and resolvability, which will be discussed from an information theoretic perspective. We review the stochastic framework for image formation, different types of estimation techniques and expressions for the Fisher information matrix. We also discuss several open problems in the field that demand highly non-trivial signal processing algorithms.
Collapse
|
42
|
Sano Y, Watanabe W, Matsunaga S. Chromophore-assisted laser inactivation--towards a spatiotemporal-functional analysis of proteins, and the ablation of chromatin, organelle and cell function. J Cell Sci 2014; 127:1621-9. [PMID: 24737873 DOI: 10.1242/jcs.144527] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chromophore-assisted laser or light inactivation (CALI) has been employed as a promising technique to achieve spatiotemporal knockdown or loss-of-function of target molecules in situ. CALI is performed using photosensitizers as generators of reactive oxygen species (ROS). There are two CALI approaches that use either transgenic tags with chemical photosensitizers, or genetically encoded fluorescent protein fusions. Using spatially restricted microscopy illumination, CALI can address questions regarding, for example, protein isoforms, subcellular localization or phase-specific analyses of multifunctional proteins that other knockdown approaches, such as RNA interference or treatment with chemicals, cannot. Furthermore, rescue experiments can clarify the phenotypic capabilities of CALI after the depletion of endogenous targets. CALI can also provide information about individual events that are involved in the function of a target protein and highlight them in multifactorial events. Beyond functional analysis of proteins, CALI of nuclear proteins can be performed to induce cell cycle arrest, chromatin- or locus-specific DNA damage. Even at organelle level - such as in mitochondria, the plasma membrane or lysosomes - CALI can trigger cell death. Moreover, CALI has emerged as an optogenetic tool to switch off signaling pathways, including the optical depletion of individual neurons. In this Commentary, we review recent applications of CALI and discuss the utility and effective use of CALI to address open questions in cell biology.
Collapse
Affiliation(s)
- Yukimi Sano
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | | | | |
Collapse
|
43
|
Meddens MBM, van den Dries K, Cambi A. Podosomes revealed by advanced bioimaging: what did we learn? Eur J Cell Biol 2014; 93:380-7. [PMID: 25454791 DOI: 10.1016/j.ejcb.2014.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/04/2014] [Accepted: 09/28/2014] [Indexed: 02/01/2023] Open
Abstract
Podosomes are micrometer-sized, circular adhesions formed by cells such as osteoclasts, macrophages, dendritic cells, and endothelial cells. Because of their small size and the lack of methods to visualize individual proteins and protein complexes, podosomes have long been considered a simple two-module structure with a protrusive actin core and a surrounding adhesive ring composed of integrins and cytoskeletal adaptor proteins such as vinculin and talin. In the past decade, the applications of fluorescence based techniques that circumvent the diffraction limit of conventional light microscopy took a major leap forward. Podosomes have been imaged by a variety of these super-resolution methods, and in this concise review we discuss how these super-resolution data have increased our understanding of the podosome ultra-structure and function.
Collapse
Affiliation(s)
- Marjolein B M Meddens
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA Nijmegen, The Netherlands
| | - Koen van den Dries
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA Nijmegen, The Netherlands
| | - Alessandra Cambi
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA Nijmegen, The Netherlands.
| |
Collapse
|
44
|
Parhamifar L, Wu L, Andersen H, Moghimi SM. Live-cell fluorescent microscopy platforms for real-time monitoring of polyplex–cell interaction: Basic guidelines. Methods 2014; 68:300-7. [DOI: 10.1016/j.ymeth.2014.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/19/2013] [Accepted: 02/06/2014] [Indexed: 02/08/2023] Open
|
45
|
Abstract
Proteins synthesised at the endoplasmic reticulum (ER) have to undergo a number of consecutive and coordinated steps to reach the Golgi complex. To understand the dynamic complexity of ER-to-Golgi transport at the structural and molecular level, light microscopy approaches are fundamental tools that allow in vivo observations of protein dynamics and interactions of fluorescent proteins in living cells. Imaging protein and organelle dynamics close to the ultra-structural level became possible by combining light microscopy with electron microscopy analyses or super-resolution light microscopy methods. Besides, increasing evidence suggests that the early secretory pathway is tightly connected to other cellular processes, such as signal transduction, and quantitative information at the systems level is fundamental to achieve a comprehensive molecular understanding of these connections. High-throughput microscopy in fixed and living cells in combination with systematic perturbation of gene expression by, e.g. RNA interference, will open new avenues to gain such an understanding of the early secretory pathway at the systems level. In this Commentary, we first outline examples that revealed the dynamic organisation of ER-to-Golgi transport in living cells. Next, we discuss the use of advanced imaging methods in studying ER-to-Golgi transport and, finally, delineate the efforts in understanding ER-to-Golgi transport at the systems level.
Collapse
Affiliation(s)
- Fatima Verissimo
- European Molecular Biology Laboratory, Cell Biology and Cell Biophysics Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | | |
Collapse
|
46
|
Zhu H, Li H, Wang P, Chen M, Huang Z, Li K, Li Y, He J, Han J, Zhang Q. Persistent and acute chlamydial infections induce different structural changes in the Golgi apparatus. Int J Med Microbiol 2014; 304:577-85. [PMID: 24780199 DOI: 10.1016/j.ijmm.2014.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 03/20/2014] [Accepted: 03/24/2014] [Indexed: 11/15/2022] Open
Abstract
Chlamydia trachomatis causes a wide range of diseases that have a significant impact on public health. Acute chlamydial infections can cause fragmentation of the Golgi compartment ensuring the lipid transportation from the host cell. However, the changes that occur in the host cell Golgi apparatus after persistent infections are unclear. Here, we examined Golgi-associated gene (golga5) transcription and expression along with the structure of the Golgi apparatus in cells persistently infected with Chlamydia trachomatis. The results showed that persistent infections caused little fragmentation of the Golgi. The results also revealed that Golgi fragmentation might be associated with the suppression of transcription of the gene golga5.
Collapse
Affiliation(s)
- Huiling Zhu
- State Key Laboratory of Biocontrol, School of Life Sciences, Department of Dermatology in the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hongmei Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Department of Dermatology in the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Pu Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Department of Dermatology in the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mukai Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Department of Dermatology in the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zengwei Huang
- State Key Laboratory of Biocontrol, School of Life Sciences, Department of Dermatology in the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangzhou Sugarcane Industry Research Institute, Guangzhou, China
| | - Kunpeng Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Department of Dermatology in the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yinyin Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Department of Dermatology in the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jian He
- State Key Laboratory of Biocontrol, School of Life Sciences, Department of Dermatology in the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiande Han
- State Key Laboratory of Biocontrol, School of Life Sciences, Department of Dermatology in the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Qinfen Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Department of Dermatology in the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
47
|
Abstract
The phloem is the long-distance solute-conducting tissue of plants. The observation of phloem cells is particularly challenging for several reasons and many recent advances in microscopy are, therefore, especially beneficial for the study of phloem anatomy and physiology. This review will give an overview of the imaging techniques that have been used for studying different aspects of phloem biology. It will also highlight some new imaging techniques that have emerged in recent years that will certainly advance our knowledge about phloem function.
Collapse
Affiliation(s)
- Elisabeth Truernit
- Department of Biology, ETH Zürich, Universitätsstrasse 2, 8092 Zürich, Switzerland
| |
Collapse
|
48
|
Peckys DB, de Jonge N. Liquid scanning transmission electron microscopy: imaging protein complexes in their native environment in whole eukaryotic cells. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2014; 20:346-65. [PMID: 24548636 DOI: 10.1017/s1431927614000099] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Scanning transmission electron microscopy (STEM) of specimens in liquid, so-called Liquid STEM, is capable of imaging the individual subunits of macromolecular complexes in whole eukaryotic cells in liquid. This paper discusses this new microscopy modality within the context of state-of-the-art microscopy of cells. The principle of operation and equations for the resolution are described. The obtained images are different from those acquired with standard transmission electron microscopy showing the cellular ultrastructure. Instead, contrast is obtained on specific labels. Images can be recorded in two ways, either via STEM at 200 keV electron beam energy using a microfluidic chamber enclosing the cells, or via environmental scanning electron microscopy at 30 keV of cells in a wet environment. The first series of experiments involved the epidermal growth factor receptor labeled with gold nanoparticles. The labels were imaged in whole fixed cells with nanometer resolution. Since the cells can be kept alive in the microfluidic chamber, it is also feasible to detect the labels in unfixed, live cells. The rapid sample preparation and imaging allows studies of multiple whole cells.
Collapse
Affiliation(s)
- Diana B Peckys
- 1 Leibniz Institute for New Materials (INM), 66123 Saarbrücken, Germany
| | - Niels de Jonge
- 1 Leibniz Institute for New Materials (INM), 66123 Saarbrücken, Germany
| |
Collapse
|
49
|
Gillanders F, Giordano L, Díaz SA, Jovin TM, Jares-Erijman EA. Photoswitchable fluorescent diheteroarylethenes: substituent effects on photochromic and solvatochromic properties. Photochem Photobiol Sci 2014; 13:603-12. [PMID: 24496436 DOI: 10.1039/c3pp50374g] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Photoswitchable fluorescent diheteroarylethenes are promising candidates for applications in super-resolution molecular localization fluorescence microscopy thanks to their high quantum yields and fatigue-resistant photoswitching characteristics. We have studied the effect of varying substituents on the photophysical properties of six sulfone derivatives of diheteroarylethenes, which display fluorescence in one (closed form) of two thermally stable photochromic states. Electron-donating substituents displace the absorption and emission spectra towards the red without substantially affecting the fluorescence quantum yields. Furthermore, ethoxybromo, a very electron-donating substituent, stabilizes the excited state of the closed isomer to the extent of almost entirely inhibiting its cycloreversion. Multi-parameter Hammett correlations indicate a relationship between the emission maxima and electron-donating character, providing a useful tool in the design of future photochromic molecules. Most of the synthesized compounds exhibit small bathochromic shifts and shorter fluorescence lifetimes with an increase in solvent polarity. However, the ethoxybromo-substituted fluorescent photochrome is unique in its strong solvatochromic behaviour, constituting a photoactivatable (photochromic), fluorescent and highly solvatochromic small organic compound. The Catalán formalism identified solvent dipolarity as the principal basis of the solvatochromism, reflecting the highly polarized nature of this molecule.
Collapse
Affiliation(s)
- Florencia Gillanders
- Laboratory of Cellular Dynamics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| | | | | | | | | |
Collapse
|
50
|
Valley CC, Lidke KA, Lidke DS. The spatiotemporal organization of ErbB receptors: insights from microscopy. Cold Spring Harb Perspect Biol 2014; 6:cshperspect.a020735. [PMID: 24370847 DOI: 10.1101/cshperspect.a020735] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Signal transduction is regulated by protein-protein interactions. In the case of the ErbB family of receptor tyrosine kinases (RTKs), the precise nature of these interactions remains a topic of debate. In this review, we describe state-of-the-art imaging techniques that are providing new details into receptor dynamics, clustering, and interactions. We present the general principles of these techniques, their limitations, and the unique observations they provide about ErbB spatiotemporal organization.
Collapse
Affiliation(s)
- Christopher C Valley
- Department of Pathology and the Cancer Research and Treatment Center, University of New Mexico, Albuquerque, New Mexico 87131
| | | | | |
Collapse
|