1
|
Swoger M, Ho Thanh MT, Patteson AE. Vimentin - Force regulator in confined environments. Curr Opin Cell Biol 2025; 94:102521. [PMID: 40288055 DOI: 10.1016/j.ceb.2025.102521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/16/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025]
Abstract
Cells must navigate crowded and confining 3D environments during normal function in vivo. Essential to their ability to navigate these environments safely and efficiently is their ability to mediate and endure both self-generated and external forces. The cytoskeleton, composed of F-actin, microtubules, and intermediate filaments, provides the mechanical support necessary for force mediation. The role of F-actin and microtubules in this process has been well studied, whereas vimentin, a cytoplasmic intermediate filament associated with mesenchymal cells, is less studied. However, there is growing evidence that vimentin has functions in both force transmission and protection of the cell from mechanical stress that actin and microtubules cannot fulfill. This review focuses on recent reports highlighting vimentin's role in regulating forces in confining environments.
Collapse
Affiliation(s)
- Maxx Swoger
- Department of Physics, Syracuse University, USA; BioInspired Institute, Syracuse University, USA; Department of Medicine, University of Pennsylvania, USA.
| | - Minh Tri Ho Thanh
- Department of Physics, Syracuse University, USA; BioInspired Institute, Syracuse University, USA
| | - Alison E Patteson
- Department of Physics, Syracuse University, USA; BioInspired Institute, Syracuse University, USA.
| |
Collapse
|
2
|
Samardak K, Bâcle J, Moriel-Carretero M. Behind the stoNE wall: A fervent activity for nuclear lipids. Biochimie 2024; 227:53-84. [PMID: 39111564 DOI: 10.1016/j.biochi.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/27/2024]
Abstract
The four main types of biomolecules are nucleic acids, proteins, carbohydrates and lipids. The knowledge about their respective interactions is as important as the individual understanding of each of them. However, while, for example, the interaction of proteins with the other three groups is extensively studied, that of nucleic acids and lipids is, in comparison, very poorly explored. An iconic paradigm of physical (and likely functional) proximity between DNA and lipids is the case of the genomic DNA in eukaryotes: enclosed within the nucleus by two concentric lipid bilayers, the wealth of implications of this interaction, for example in genome stability, remains underassessed. Nuclear lipid-related phenotypes have been observed for 50 years, yet in most cases kept as mere anecdotical descriptions. In this review, we will bring together the evidence connecting lipids with both the nuclear envelope and the nucleoplasm, and will make critical analyses of these descriptions. Our exploration establishes a scenario in which lipids irrefutably play a role in nuclear homeostasis.
Collapse
Affiliation(s)
- Kseniya Samardak
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM) UMR5237, Université de Montpellier, Centre National de La Recherche Scientifique, 34293 Montpellier Cedex 5, France
| | - Janélie Bâcle
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM) UMR5237, Université de Montpellier, Centre National de La Recherche Scientifique, 34293 Montpellier Cedex 5, France
| | - María Moriel-Carretero
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM) UMR5237, Université de Montpellier, Centre National de La Recherche Scientifique, 34293 Montpellier Cedex 5, France.
| |
Collapse
|
3
|
Tashiro M, Nakamura A, Kuratani Y, Takada M, Iwamoto S, Oka M, Ando S. Effects of truncations in the N- and C-terminal domains of filensin on filament formation with phakinin in cell-free conditions and cultured cells. FEBS Open Bio 2023; 13:1990-2004. [PMID: 37615966 PMCID: PMC10626283 DOI: 10.1002/2211-5463.13700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/27/2023] [Accepted: 08/22/2023] [Indexed: 08/25/2023] Open
Abstract
Filensin and phakinin are lens fiber cell-specific proteins that constitute the beaded filaments (BFs) that are critical for maintaining lens transparency. In the Shumiya cataract rat, filensin 94 kDa undergoes N- and C-terminal proteolytic processing to give a transient 50 kDa fragment and a final 38 kDa fragment, just before opacification. To characterize the effects of this processing on filensin function, recombinant proteins representing the two filensin fragments, termed Fil(30-416) and Fil(30-369), respectively, were examined. Fil(30-416) lacks the N-terminal 29 amino acids and the C-terminal 248 amino acids. Fil(30-369) lacks the N-terminal 29 residues and the C-terminal 295 residues. In cell-free assembly characterized by electron microscopy, filensin and Fil(30-416) co-polymerized with phakinin and formed rugged, entangled filaments, whereas Fil(30-369) formed only aggregates. In cultured SW-13 and MCF-7 cells expressing fluorescent fusion proteins, filensin and Fil(30-416) co-polymerized with phakinin and formed cytoplasmic sinuous filaments with different widths, while Fil(30-369) gave aggregates. Therefore, while truncation of the N-terminal 29 amino acids did not affect filament formation, truncation of the C-terminal 295 but not the 248 residues resulted in failure of filament formation. These results indicate that the tail B region (residues 370-416) of rat filensin is essential for filament formation with phakinin. Truncation of the tail B region by proteolytic processing in the cataract rat lens might interfere with BF formation and thereby contribute to opacification.
Collapse
Affiliation(s)
- Moe Tashiro
- Faculty of Biotechnology and Life ScienceSojo UniversityKumamotoJapan
| | - Akari Nakamura
- Faculty of Biotechnology and Life ScienceSojo UniversityKumamotoJapan
| | - Yamato Kuratani
- Faculty of Biotechnology and Life ScienceSojo UniversityKumamotoJapan
| | - Miyako Takada
- Faculty of Biotechnology and Life ScienceSojo UniversityKumamotoJapan
| | - Satoshi Iwamoto
- Faculty of Biotechnology and Life ScienceSojo UniversityKumamotoJapan
| | - Mikako Oka
- Faculty of PharmacyKeio UniversityTokyoJapan
- Present address:
Yokohama University of Pharmacy601 Matano‐cho, Totsuka‐kuYokohama245‐0066Japan
| | - Shoji Ando
- Faculty of Biotechnology and Life ScienceSojo UniversityKumamotoJapan
| |
Collapse
|
4
|
Hakim F, Kazemiraad C, Akbari-Birgani S, Abdollahpour D, Mohammadi S. Caspase-9-mediated cleavage of vimentin attenuates the aggressiveness of leukemic NB4 cells. Mol Cell Biochem 2023; 478:2435-2444. [PMID: 36807844 DOI: 10.1007/s11010-023-04671-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 01/30/2023] [Indexed: 02/21/2023]
Abstract
Vimentin is a main type 3 intermediate filament protein. It seems that abnormal expression of vimentin is contributed to the appearance of the aggressive feature of cancer cells. So that it has been reported that malignancy and epithelial-mesenchymal transition in solid tumors, and poor clinical outcomes in patients with lymphocytic leukemia and acute myelocytic leukemia have been associated with the high expression of vimentin. Vimentin is a non-caspase substrate of caspase-9 although its cleavage by caspase-9 in biological processes has not been reported. In the present study, we sought to understand whether vimentin cleavage mediated by caspase-9 could reverse the malignancy in leukemic cells. Herein, to address the issue, we investigated vimentin changes in differentiation and took advantage of the inducible caspase-9 (iC9)/AP1903 system in human leukemic NB4 cells. Following the transfection and treatment of the cells using the iC9/AP1903 system, vimentin expression, cleavage, and subsequently, the cell invasion and the relevant markers such as CD44 and MMP-9 were evaluated. Our results revealed the downregulation and cleavage of vimentin which attenuates the malignant phenotype of the NB4 cells. Considering the favorable effect of this strategy in keeping down the malignant features of the leukemic cells, the effect of the iC9/AP1903 system in combination with all-trans-retinoic acid (ATRA) treatment was evaluated. The obtained data prove that iC9/AP1903 significantly makes the leukemic cells more sensitive to ATRA.
Collapse
Affiliation(s)
- Fatemeh Hakim
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), 45137-66731, Zanjan, Iran
| | - Cyrus Kazemiraad
- Laboratory for Functional and Metabolic Imaging, Institute of Physics, Swiss Federal Institute of Technology (EPFL), Station6, 1015, Lausanne, Switzerland
| | - Shiva Akbari-Birgani
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), 45137-66731, Zanjan, Iran.
- Research Center for Basic Sciences and Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), 45137-66731, Zanjan, Iran.
| | - Daryoush Abdollahpour
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), 45137-66731, Zanjan, Iran
- Optics Research Center, Institute for Advanced Studies in Basic Sciences (IASBS), 45137-66731, Zanjan, Iran
| | - Saeed Mohammadi
- Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran.
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Huynh DT, Tsolova KN, Watson AJ, Khal SK, Green JR, Li D, Hu J, Soderblom EJ, Chi JT, Evans CS, Boyce M. O-GlcNAcylation regulates neurofilament-light assembly and function and is perturbed by Charcot-Marie-Tooth disease mutations. Nat Commun 2023; 14:6558. [PMID: 37848414 PMCID: PMC10582078 DOI: 10.1038/s41467-023-42227-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 10/02/2023] [Indexed: 10/19/2023] Open
Abstract
The neurofilament (NF) cytoskeleton is critical for neuronal morphology and function. In particular, the neurofilament-light (NF-L) subunit is required for NF assembly in vivo and is mutated in subtypes of Charcot-Marie-Tooth (CMT) disease. NFs are highly dynamic, and the regulation of NF assembly state is incompletely understood. Here, we demonstrate that human NF-L is modified in a nutrient-sensitive manner by O-linked-β-N-acetylglucosamine (O-GlcNAc), a ubiquitous form of intracellular glycosylation. We identify five NF-L O-GlcNAc sites and show that they regulate NF assembly state. NF-L engages in O-GlcNAc-mediated protein-protein interactions with itself and with the NF component α-internexin, implying that O-GlcNAc may be a general regulator of NF architecture. We further show that NF-L O-GlcNAcylation is required for normal organelle trafficking in primary neurons. Finally, several CMT-causative NF-L mutants exhibit perturbed O-GlcNAc levels and resist the effects of O-GlcNAcylation on NF assembly state, suggesting a potential link between dysregulated O-GlcNAcylation and pathological NF aggregation. Our results demonstrate that site-specific glycosylation regulates NF-L assembly and function, and aberrant NF O-GlcNAcylation may contribute to CMT and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Duc T Huynh
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kalina N Tsolova
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Abigail J Watson
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Sai Kwan Khal
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jordan R Green
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Di Li
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jimin Hu
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Erik J Soderblom
- Proteomics and Metabolomics Shared Resource, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Chantell S Evans
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Michael Boyce
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
6
|
Moneo-Corcuera D, Viedma-Poyatos Á, Stamatakis K, Pérez-Sala D. Desmin Reorganization by Stimuli Inducing Oxidative Stress and Electrophiles: Role of Its Single Cysteine Residue. Antioxidants (Basel) 2023; 12:1703. [PMID: 37760006 PMCID: PMC10525603 DOI: 10.3390/antiox12091703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 09/29/2023] Open
Abstract
The type III intermediate filament proteins vimentin and GFAP are modulated by oxidants and electrophiles, mainly through perturbation of their single cysteine residues. Desmin, the type III intermediate filament protein specific to muscle cells, is critical for muscle homeostasis, playing a key role in sarcomere organization and mitochondrial function. Here, we have studied the impact of oxidants and cysteine-reactive agents on desmin behavior. Our results show that several reactive species and drugs induce covalent modifications of desmin in vitro, of which its single cysteine residue, C333, is an important target. Moreover, stimuli eliciting oxidative stress or lipoxidation, including H2O2, 15-deoxy-prostaglandin J2, and CoCl2-elicited chemical hypoxia, provoke desmin disorganization in H9c2 rat cardiomyoblasts transfected with wild-type desmin, which is partially attenuated in cells expressing a C333S mutant. Notably, in cells lacking other cytoplasmic intermediate filaments, network formation by desmin C333S appears less efficient than that of desmin wt, especially when these proteins are expressed as fluorescent fusion constructs. Nevertheless, in these cells, the desmin C333S organization is also protected from disruption by oxidants. Taken together, our results indicate that desmin is a target for oxidative and electrophilic stress, which elicit desmin remodeling conditioned by the presence of its single cysteine residue.
Collapse
Affiliation(s)
- Diego Moneo-Corcuera
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040 Madrid, Spain; (D.M.-C.); (Á.V.-P.)
| | - Álvaro Viedma-Poyatos
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040 Madrid, Spain; (D.M.-C.); (Á.V.-P.)
| | - Konstantinos Stamatakis
- Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain;
- Centro de Biología Molecular Severo Ochoa (UAM/CSIC), 28049 Madrid, Spain
| | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040 Madrid, Spain; (D.M.-C.); (Á.V.-P.)
| |
Collapse
|
7
|
González-Jiménez P, Duarte S, Martínez AE, Navarro-Carrasco E, Lalioti V, Pajares MA, Pérez-Sala D. Vimentin single cysteine residue acts as a tunable sensor for network organization and as a key for actin remodeling in response to oxidants and electrophiles. Redox Biol 2023; 64:102756. [PMID: 37285743 DOI: 10.1016/j.redox.2023.102756] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/09/2023] Open
Abstract
Cysteine residues can undergo multiple posttranslational modifications with diverse functional consequences, potentially behaving as tunable sensors. The intermediate filament protein vimentin has important implications in pathophysiology, including cancer progression, infection, and fibrosis, and maintains a close interplay with other cytoskeletal structures, such as actin filaments and microtubules. We previously showed that the single vimentin cysteine, C328, is a key target for oxidants and electrophiles. Here, we demonstrate that structurally diverse cysteine-reactive agents, including electrophilic mediators, oxidants and drug-related compounds, disrupt the vimentin network eliciting morphologically distinct reorganizations. As most of these agents display broad reactivity, we pinpointed the importance of C328 by confirming that local perturbations introduced through mutagenesis provoke structure-dependent vimentin rearrangements. Thus, GFP-vimentin wild type (wt) forms squiggles and short filaments in vimentin-deficient cells, the C328F, C328W, and C328H mutants generate diverse filamentous assemblies, and the C328A and C328D constructs fail to elongate yielding dots. Remarkably, vimentin C328H structures resemble the wt, but are strongly resistant to electrophile-elicited disruption. Therefore, the C328H mutant allows elucidating whether cysteine-dependent vimentin reorganization influences other cellular responses to reactive agents. Electrophiles such as 1,4-dinitro-1H-imidazole and 4-hydroxynonenal induce robust actin stress fibers in cells expressing vimentin wt. Strikingly, under these conditions, vimentin C328H expression blunts electrophile-elicited stress fiber formation, apparently acting upstream of RhoA. Analysis of additional vimentin C328 mutants shows that electrophile-sensitive and assembly-defective vimentin variants permit induction of stress fibers by reactive species, whereas electrophile-resistant filamentous vimentin structures prevent it. Together, our results suggest that vimentin acts as a break for actin stress fibers formation, which would be released by C328-aided disruption, thus allowing full actin remodeling in response to oxidants and electrophiles. These observations postulate C328 as a "sensor" transducing structurally diverse modifications into fine-tuned vimentin network rearrangements, and a gatekeeper for certain electrophiles in the interplay with actin.
Collapse
Affiliation(s)
- Patricia González-Jiménez
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain
| | - Sofia Duarte
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain
| | - Alma E Martínez
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain
| | - Elena Navarro-Carrasco
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain
| | - Vasiliki Lalioti
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain
| | - María A Pajares
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain
| | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain.
| |
Collapse
|
8
|
Huynh DT, Hu J, Schneider JR, Tsolova KN, Soderblom EJ, Watson AJ, Chi JT, Evans CS, Boyce M. O-GlcNAcylation regulates neurofilament-light assembly and function and is perturbed by Charcot-Marie-Tooth disease mutations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.22.529563. [PMID: 36865196 PMCID: PMC9980138 DOI: 10.1101/2023.02.22.529563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The neurofilament (NF) cytoskeleton is critical for neuronal morphology and function. In particular, the neurofilament-light (NF-L) subunit is required for NF assembly in vivo and is mutated in subtypes of Charcot-Marie-Tooth (CMT) disease. NFs are highly dynamic, and the regulation of NF assembly state is incompletely understood. Here, we demonstrate that human NF-L is modified in a nutrient-sensitive manner by O-linked-β-N-acetylglucosamine (O-GlcNAc), a ubiquitous form of intracellular glycosylation. We identify five NF-L O-GlcNAc sites and show that they regulate NF assembly state. Interestingly, NF-L engages in O-GlcNAc-mediated protein-protein interactions with itself and with the NF component α-internexin, implying that O-GlcNAc is a general regulator of NF architecture. We further show that NF-L O-GlcNAcylation is required for normal organelle trafficking in primary neurons, underlining its functional significance. Finally, several CMT-causative NF-L mutants exhibit perturbed O-GlcNAc levels and resist the effects of O-GlcNAcylation on NF assembly state, indicating a potential link between dysregulated O-GlcNAcylation and pathological NF aggregation. Our results demonstrate that site-specific glycosylation regulates NF-L assembly and function, and aberrant NF O-GlcNAcylation may contribute to CMT and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Duc T. Huynh
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jimin Hu
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jordan R. Schneider
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kalina N. Tsolova
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Erik J. Soderblom
- Proteomics and Metabolomics Shared Resource, Duke University School of Medicine, Durham, NC 27710, USA
| | - Abigail J. Watson
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jen-Tsan Chi
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Chantell S. Evans
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Michael Boyce
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
9
|
Shaebani MR, Stankevicins L, Vesperini D, Urbanska M, Flormann DAD, Terriac E, Gad AKB, Cheng F, Eriksson JE, Lautenschläger F. Effects of vimentin on the migration, search efficiency, and mechanical resilience of dendritic cells. Biophys J 2022; 121:3950-3961. [PMID: 36056556 PMCID: PMC9675030 DOI: 10.1016/j.bpj.2022.08.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/20/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
Dendritic cells use amoeboid migration to pass through narrow passages in the extracellular matrix and confined tissue in search for pathogens and to reach the lymph nodes and alert the immune system. Amoeboid migration is a migration mode that, instead of relying on cell adhesion, is based on mechanical resilience and friction. To better understand the role of intermediate filaments in ameboid migration, we studied the effects of vimentin on the migration of dendritic cells. We show that the lymph node homing of vimentin-deficient cells is reduced in our in vivo experiments in mice. Lack of vimentin also reduces the cell stiffness, the number of migrating cells, and the migration speed in vitro in both 1D and 2D confined environments. Moreover, we find that lack of vimentin weakens the correlation between directional persistence and migration speed. Thus, vimentin-expressing dendritic cells move faster in straighter lines. Our numerical simulations of persistent random search in confined geometries verify that the reduced migration speed and the weaker correlation between the speed and direction of motion result in longer search times to find regularly located targets. Together, these observations show that vimentin enhances the ameboid migration of dendritic cells, which is relevant for the efficiency of their random search for pathogens.
Collapse
Affiliation(s)
- M Reza Shaebani
- Department of Theoretical Physics, Saarland University, Saarbrücken, Germany; Centre for Biophysics, Saarland University, Saarbrücken, Germany
| | - Luiza Stankevicins
- Department of Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Doriane Vesperini
- Department of Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Marta Urbanska
- Biotechnology Centre, Centre for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Daniel A D Flormann
- Department of Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Emmanuel Terriac
- Department of Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Annica K B Gad
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom; Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - Fang Cheng
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland; School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - John E Eriksson
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Franziska Lautenschläger
- Centre for Biophysics, Saarland University, Saarbrücken, Germany; Department of Experimental Physics, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
10
|
Usman S, Aldehlawi H, Nguyen TKN, Teh MT, Waseem A. Impact of N-Terminal Tags on De Novo Vimentin Intermediate Filament Assembly. Int J Mol Sci 2022; 23:ijms23116349. [PMID: 35683030 PMCID: PMC9181571 DOI: 10.3390/ijms23116349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 02/01/2023] Open
Abstract
Vimentin, a type III intermediate filament protein, is found in most cells along with microfilaments and microtubules. It has been shown that the head domain folds back to associate with the rod domain and this association is essential for filament assembly. The N-terminally tagged vimentin has been widely used to label the cytoskeleton in live cell imaging. Although there is previous evidence that EGFP tagged vimentin fails to form filaments but is able to integrate into a pre-existing network, no study has systematically investigated or established a molecular basis for this observation. To determine whether a tag would affect de novo filament assembly, we used vimentin fused at the N-terminus with two different sized tags, AcGFP (239 residues, 27 kDa) and 3 × FLAG (22 residues; 2.4 kDa) to assemble into filaments in two vimentin-deficient epithelial cells, MCF-7 and A431. We showed that regardless of tag size, N-terminally tagged vimentin aggregated into globules with a significant proportion co-aligning with β-catenin at cell–cell junctions. However, the tagged vimentin aggregates could form filaments upon adding untagged vimentin at a ratio of 1:1 or when introduced into cells containing pre-existing filaments. The resultant filament network containing a mixture of tagged and untagged vimentin was less stable compared to that formed by only untagged vimentin. The data suggest that placing a tag at the N-terminus may create steric hinderance in case of a large tag (AcGFP) or electrostatic repulsion in case of highly charged tag (3 × FLAG) perhaps inducing a conformational change, which deleteriously affects the association between head and rod domains. Taken together our results shows that a free N-terminus is essential for filament assembly as N-terminally tagged vimentin is not only incapable of forming filaments, but it also destabilises when integrated into a pre-existing network.
Collapse
Affiliation(s)
- Saima Usman
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Newark Street, London E1 2AT, UK; (S.U.); (T.K.N.N.); (M.-T.T.)
| | - Hebah Aldehlawi
- Department of Oral Diagnostic Sciences, Division of Oral Pathology and Medicine, Faculty of Dentistry, King Abdul Aziz University, Jeddah 21589, Saudi Arabia;
| | - Thuan Khanh Ngoc Nguyen
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Newark Street, London E1 2AT, UK; (S.U.); (T.K.N.N.); (M.-T.T.)
| | - Muy-Teck Teh
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Newark Street, London E1 2AT, UK; (S.U.); (T.K.N.N.); (M.-T.T.)
| | - Ahmad Waseem
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Newark Street, London E1 2AT, UK; (S.U.); (T.K.N.N.); (M.-T.T.)
- Centre for Immunobiology and Regenerative Medicine, Blizard Institute, 4 Newark Street, London E1 2AT, UK
- Correspondence: ; Tel.: +44-207-882-2387; Fax: +44-207-882-7137
| |
Collapse
|
11
|
Lalioti V, González-Sanz S, Lois-Bermejo I, González-Jiménez P, Viedma-Poyatos Á, Merino A, Pajares MA, Pérez-Sala D. Cell surface detection of vimentin, ACE2 and SARS-CoV-2 Spike proteins reveals selective colocalization at primary cilia. Sci Rep 2022; 12:7063. [PMID: 35487944 PMCID: PMC9052736 DOI: 10.1038/s41598-022-11248-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/04/2022] [Indexed: 12/24/2022] Open
Abstract
The SARS-CoV-2 Spike protein mediates docking of the virus onto cells prior to viral invasion. Several cellular receptors facilitate SARS-CoV-2 Spike docking at the cell surface, of which ACE2 plays a key role in many cell types. The intermediate filament protein vimentin has been reported to be present at the surface of certain cells and act as a co-receptor for several viruses; furthermore, its potential involvement in interactions with Spike proteins has been proposed. Nevertheless, the potential colocalization of vimentin with Spike and its receptors on the cell surface has not been explored. Here we have assessed the binding of Spike protein constructs to several cell types. Incubation of cells with tagged Spike S or Spike S1 subunit led to discrete dotted patterns at the cell surface, which consistently colocalized with endogenous ACE2, but sparsely with a lipid raft marker. Vimentin immunoreactivity mostly appeared as spots or patches unevenly distributed at the surface of diverse cell types. Of note, vimentin could also be detected in extracellular particles and in the cytoplasm underlying areas of compromised plasma membrane. Interestingly, although overall colocalization of vimentin-positive spots with ACE2 or Spike was moderate, a selective enrichment of the three proteins was detected at elongated structures, positive for acetylated tubulin and ARL13B. These structures, consistent with primary cilia, concentrated Spike binding at the top of the cells. Our results suggest that a vimentin-Spike interaction could occur at selective locations of the cell surface, including ciliated structures, which can act as platforms for SARS-CoV-2 docking.
Collapse
Affiliation(s)
- Vasiliki Lalioti
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu, 9, 28040, Madrid, Spain
| | - Silvia González-Sanz
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu, 9, 28040, Madrid, Spain
| | - Irene Lois-Bermejo
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu, 9, 28040, Madrid, Spain
| | - Patricia González-Jiménez
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu, 9, 28040, Madrid, Spain
| | - Álvaro Viedma-Poyatos
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu, 9, 28040, Madrid, Spain
| | - Andrea Merino
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu, 9, 28040, Madrid, Spain
| | - María A Pajares
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu, 9, 28040, Madrid, Spain
| | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu, 9, 28040, Madrid, Spain.
| |
Collapse
|
12
|
Modelling Nuclear Morphology and Shape Transformation: A Review. MEMBRANES 2021; 11:membranes11070540. [PMID: 34357190 PMCID: PMC8304582 DOI: 10.3390/membranes11070540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 11/20/2022]
Abstract
As one of the most important cellular compartments, the nucleus contains genetic materials and separates them from the cytoplasm with the nuclear envelope (NE), a thin membrane that is susceptible to deformations caused by intracellular forces. Interestingly, accumulating evidence has also indicated that the morphology change of NE is tightly related to nuclear mechanotransduction and the pathogenesis of diseases such as cancer and Hutchinson–Gilford Progeria Syndrome. Theoretically, with the help of well-designed experiments, significant progress has been made in understanding the physical mechanisms behind nuclear shape transformation in different cellular processes as well as its biological implications. Here, we review different continuum-level (i.e., energy minimization, boundary integral and finite element-based) approaches that have been developed to predict the morphology and shape change of the cell nucleus. Essential gradients, relative advantages and limitations of each model will be discussed in detail, with the hope of sparking a greater research interest in this important topic in the future.
Collapse
|
13
|
Yamamoto M, Sakamoto Y, Honda Y, Koike K, Nakamura H, Matsumoto T, Ando S. De novo filament formation by human hair keratins K85 and K35 follows a filament development pattern distinct from cytokeratin filament networks. FEBS Open Bio 2021; 11:1299-1312. [PMID: 33605551 PMCID: PMC8091587 DOI: 10.1002/2211-5463.13126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/24/2021] [Accepted: 02/18/2021] [Indexed: 11/23/2022] Open
Abstract
In human hair follicles, the hair‐forming cells express 16 hair keratin genes depending on the differentiation stages. K85 and K35 are the first hair keratins expressed in cortical cells at the early stage of the differentiation. Two types of mutations in the gene encoding K85 are associated with ectodermal dysplasia of hair and nail type. Here, we transfected cultured SW‐13 cells with human K85 and K35 genes and characterized filament formation. The K85–K35 pair formed short filaments in the cytoplasm, which gradually elongated and became thicker and entangled around the nucleus, indicating that K85–K35 promotes lateral association of short intermediate filaments (IFs) into bundles but cannot form IF networks in the cytoplasm. Of the K85 mutations related to ectodermal dysplasia of hair and nail type, a two‐nucleotide (C1448T1449) deletion (delCT) in the protein tail domain of K85 interfered with the K85–K35 filament formation and gave only aggregates, whereas a missense mutation (233A>G) that replaces Arg78 with His (R78H) in the head domain of K85 did not interfere with the filament formation. Transfection of cultured MCF‐7 cells with all the hair keratin gene combinations, K85–K35, K85(R78H)–K35 and K85(delCT)–K35, as well as the individual hair keratin genes, formed well‐developed cytoplasmic IF networks, probably by incorporating into the endogenous cytokeratin IF networks. Thus, the unique de novo assembly properties of the K85–K35 pair might play a key role in the early stage of hair formation.
Collapse
Affiliation(s)
- Masaki Yamamoto
- Faculty of Biotechnology and Life Science, Sojo University, Kumamoto, Japan
| | - Yasuko Sakamoto
- Faculty of Biotechnology and Life Science, Sojo University, Kumamoto, Japan
| | - Yuko Honda
- Faculty of Medicine, Saga University, Japan
| | - Kenzo Koike
- Hair Care Research Center, KAO Corporation, Tokyo, Japan
| | - Hideaki Nakamura
- Faculty of Pharmaceutical Science, Sojo University, Kumamoto, Japan
| | | | - Shoji Ando
- Faculty of Biotechnology and Life Science, Sojo University, Kumamoto, Japan
| |
Collapse
|
14
|
Chimento A, De Luca A, Nocito MC, Sculco S, Avena P, La Padula D, Zavaglia L, Sirianni R, Casaburi I, Pezzi V. SIRT1 is involved in adrenocortical cancer growth and motility. J Cell Mol Med 2021; 25:3856-3869. [PMID: 33650791 PMCID: PMC8051751 DOI: 10.1111/jcmm.16317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/26/2022] Open
Abstract
Adrenocortical cancer (ACC) is a rare tumour with unfavourable prognosis, lacking an effective treatment. This tumour is characterized by IGF‐II (insulin‐like growth factor II) overproduction, aromatase and ERα (oestrogen receptor alpha) up‐regulation. Previous reports suggest that ERα expression can be regulated by sirt1 (sirtuin 1), a nicotinamide adenine dinucleotide (NAD+)‐dependent class III histone deacetylases that modulates activity of several substrates involved in cellular stress, metabolism, proliferation, senescence, protein degradation and apoptosis. Nevertheless, sirt1 can act as a tumour suppressor or oncogenic protein. In this study, we found that in H295R and SW13 cell lines, sirt1 expression is inhibited by sirtinol, a potent inhibitor of sirt1 activity. In addition, sirtinol is able to decrease ACC cell proliferation, colony and spheroids formation and to activate the intrinsic apoptotic mechanism. Particularly, we observed that sirtinol interferes with E2/ERα and IGF1R (insulin growth factor 1 receptor) pathways by decreasing receptors expression. Sirt1 involvement was confirmed by using a specific sirt1 siRNA. More importantly, we observed that sirtinol can synergize with mitotane, a selective adrenolitic drug, in inhibiting adrenocortical cancer cell growth. Collectively, our data reveal an oncogenic role for sirt1 in ACC and its targeting could implement treatment options for this type of cancer.
Collapse
Affiliation(s)
- Adele Chimento
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Arianna De Luca
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Marta Claudia Nocito
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Sara Sculco
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Paola Avena
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Davide La Padula
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Lucia Zavaglia
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Rosa Sirianni
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Ivan Casaburi
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Vincenzo Pezzi
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| |
Collapse
|
15
|
Type III intermediate filaments as targets and effectors of electrophiles and oxidants. Redox Biol 2020; 36:101582. [PMID: 32711378 PMCID: PMC7381704 DOI: 10.1016/j.redox.2020.101582] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/05/2020] [Accepted: 05/13/2020] [Indexed: 12/20/2022] Open
Abstract
Intermediate filaments (IFs) play key roles in cell mechanics, signaling and homeostasis. Their assembly and dynamics are finely regulated by posttranslational modifications. The type III IFs, vimentin, desmin, peripherin and glial fibrillary acidic protein (GFAP), are targets for diverse modifications by oxidants and electrophiles, for which their conserved cysteine residue emerges as a hot spot. Pathophysiological examples of these modifications include lipoxidation in cell senescence and rheumatoid arthritis, disulfide formation in cataracts and nitrosation in endothelial shear stress, although some oxidative modifications can also be detected under basal conditions. We previously proposed that cysteine residues of vimentin and GFAP act as sensors for oxidative and electrophilic stress, and as hinges influencing filament assembly. Accumulating evidence indicates that the structurally diverse cysteine modifications, either per se or in combination with other posttranslational modifications, elicit specific functional outcomes inducing distinct assemblies or network rearrangements, including filament stabilization, bundling or fragmentation. Cysteine-deficient mutants are protected from these alterations but show compromised cellular performance in network assembly and expansion, organelle positioning and aggresome formation, revealing the importance of this residue. Therefore, the high susceptibility to modification of the conserved cysteine of type III IFs and its cornerstone position in filament architecture sustains their role in redox sensing and integration of cellular responses. This has deep pathophysiological implications and supports the potential of this residue as a drug target. Type III intermediate filaments can be modified by many oxidants and electrophiles. Oxidative modifications of type III IFs occur in normal and pathological conditions. The conserved cysteine residue acts as a hub for redox/electrophilic modifications. Cysteine modifications elicit structure-dependent type III IF rearrangements. Type III intermediate filaments act as sensors for oxidative and electrophilic stress.
Collapse
|
16
|
Klymkowsky MW. Filaments and phenotypes: cellular roles and orphan effects associated with mutations in cytoplasmic intermediate filament proteins. F1000Res 2019; 8. [PMID: 31602295 PMCID: PMC6774051 DOI: 10.12688/f1000research.19950.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/20/2019] [Indexed: 12/11/2022] Open
Abstract
Cytoplasmic intermediate filaments (IFs) surround the nucleus and are often anchored at membrane sites to form effectively transcellular networks. Mutations in IF proteins (IFps) have revealed mechanical roles in epidermis, muscle, liver, and neurons. At the same time, there have been phenotypic surprises, illustrated by the ability to generate viable and fertile mice null for a number of IFp-encoding genes, including vimentin. Yet in humans, the vimentin ( VIM) gene displays a high probability of intolerance to loss-of-function mutations, indicating an essential role. A number of subtle and not so subtle IF-associated phenotypes have been identified, often linked to mechanical or metabolic stresses, some of which have been found to be ameliorated by the over-expression of molecular chaperones, suggesting that such phenotypes arise from what might be termed "orphan" effects as opposed to the absence of the IF network per se, an idea originally suggested by Toivola et al. and Pekny and Lane.
Collapse
Affiliation(s)
- Michael W Klymkowsky
- Molecular, Cellular & Developmental Biology, University of Colorado, Boulder, Boulder, CO, 80303, USA
| |
Collapse
|
17
|
Duarte S, Viedma-Poyatos Á, Navarro-Carrasco E, Martínez AE, Pajares MA, Pérez-Sala D. Vimentin filaments interact with the actin cortex in mitosis allowing normal cell division. Nat Commun 2019; 10:4200. [PMID: 31519880 PMCID: PMC6744490 DOI: 10.1038/s41467-019-12029-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 08/09/2019] [Indexed: 01/27/2023] Open
Abstract
The vimentin network displays remarkable plasticity to support basic cellular functions and reorganizes during cell division. Here, we show that in several cell types vimentin filaments redistribute to the cell cortex during mitosis, forming a robust framework interwoven with cortical actin and affecting its organization. Importantly, the intrinsically disordered tail domain of vimentin is essential for this redistribution, which allows normal mitotic progression. A tailless vimentin mutant forms curly bundles, which remain entangled with dividing chromosomes leading to mitotic catastrophes or asymmetric partitions. Serial deletions of vimentin tail domain gradually impair cortical association and mitosis progression. Disruption of f-actin, but not of microtubules, causes vimentin bundling near the chromosomes. Pathophysiological stimuli, including HIV-protease and lipoxidation, induce similar alterations. Interestingly, full filament formation is dispensable for cortical association, which also occurs in vimentin particles. These results unveil implications of vimentin dynamics in cell division through its interplay with the actin cortex. The intermediate filament vimentin reorganizes during mitosis, but its molecular regulation and impact on the cell during cell division is unclear. Here, the authors show that vimentin filaments redistribute to the cell cortex during mitosis intertwining with and affecting actin organization.
Collapse
Affiliation(s)
- Sofia Duarte
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Álvaro Viedma-Poyatos
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Elena Navarro-Carrasco
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Alma E Martínez
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - María A Pajares
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.
| |
Collapse
|
18
|
Danielsson F, Peterson MK, Caldeira Araújo H, Lautenschläger F, Gad AKB. Vimentin Diversity in Health and Disease. Cells 2018; 7:E147. [PMID: 30248895 PMCID: PMC6210396 DOI: 10.3390/cells7100147] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/16/2018] [Accepted: 09/17/2018] [Indexed: 12/11/2022] Open
Abstract
Vimentin is a protein that has been linked to a large variety of pathophysiological conditions, including cataracts, Crohn's disease, rheumatoid arthritis, HIV and cancer. Vimentin has also been shown to regulate a wide spectrum of basic cellular functions. In cells, vimentin assembles into a network of filaments that spans the cytoplasm. It can also be found in smaller, non-filamentous forms that can localise both within cells and within the extracellular microenvironment. The vimentin structure can be altered by subunit exchange, cleavage into different sizes, re-annealing, post-translational modifications and interacting proteins. Together with the observation that different domains of vimentin might have evolved under different selection pressures that defined distinct biological functions for different parts of the protein, the many diverse variants of vimentin might be the cause of its functional diversity. A number of review articles have focussed on the biology and medical aspects of intermediate filament proteins without particular commitment to vimentin, and other reviews have focussed on intermediate filaments in an in vitro context. In contrast, the present review focusses almost exclusively on vimentin, and covers both ex vivo and in vivo data from tissue culture and from living organisms, including a summary of the many phenotypes of vimentin knockout animals. Our aim is to provide a comprehensive overview of the current understanding of the many diverse aspects of vimentin, from biochemical, mechanical, cellular, systems biology and medical perspectives.
Collapse
Affiliation(s)
- Frida Danielsson
- Science for Life Laboratory, Royal Institute of Technology, 17165 Stockholm, Sweden.
| | | | | | - Franziska Lautenschläger
- Campus D2 2, Leibniz-Institut für Neue Materialien gGmbH (INM) and Experimental Physics, NT Faculty, E 2 6, Saarland University, 66123 Saarbrücken, Germany.
| | - Annica Karin Britt Gad
- Centro de Química da Madeira, Universidade da Madeira, 9020105 Funchal, Portugal.
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75237 Uppsala, Sweden.
| |
Collapse
|
19
|
Trogden KP, Battaglia RA, Kabiraj P, Madden VJ, Herrmann H, Snider NT. An image-based small-molecule screen identifies vimentin as a pharmacologically relevant target of simvastatin in cancer cells. FASEB J 2018; 32:2841-2854. [PMID: 29401610 DOI: 10.1096/fj.201700663r] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Vimentin is a cytoskeletal intermediate filament protein that is expressed in mesenchymal cells and cancer cells during the epithelial-mesenchymal transition. The goal of this study was to identify vimentin-targeting small molecules by using the Tocriscreen library of 1120 biochemically active compounds. We monitored vimentin filament reorganization and bundling in adrenal carcinoma SW13 vimentin-positive (SW13-vim+) cells via indirect immunofluorescence. The screen identified 18 pharmacologically diverse hits that included 2 statins-simvastatin and mevastatin. Simvastatin induced vimentin reorganization within 15-30 min and significant perinuclear bundling within 60 min (IC50 = 6.7 nM). Early filament reorganization coincided with increased vimentin solubility. Mevastatin produced similar effects at >1 µM, whereas the structurally related pravastatin and lovastatin did not affect vimentin. In vitro vimentin filament assembly assays revealed a direct targeting mechanism, as determined biochemically and by electron microscopy. In SW13-vim+ cells, simvastatin, but not pravastatin, reduced total cell numbers (IC50 = 48.1 nM) and promoted apoptosis after 24 h. In contrast, SW13-vim- cell viability was unaffected by simvastatin, unless vimentin was ectopically expressed. Simvastatin similarly targeted vimentin filaments and induced cell death in MDA-MB-231 (vim+), but lacked effect in MCF7 (vim-) breast cancer cells. In conclusion, this study identified vimentin as a direct molecular target that mediates simvastatin-induced cell death in 2 different cancer cell lines.-Trogden, K. P., Battaglia, R. A., Kabiraj, P., Madden, V. J., Herrmann, H., Snider, N. T. An image-based small-molecule screen identifies vimentin as a pharmacologically relevant target of simvastatin in cancer cells.
Collapse
Affiliation(s)
- Kathryn P Trogden
- Department of Cell Biology and Physiology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rachel A Battaglia
- Department of Cell Biology and Physiology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Parijat Kabiraj
- Department of Cell Biology and Physiology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Victoria J Madden
- Department of Pathology and Laboratory Medicine, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Harald Herrmann
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany.,Institute of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Natasha T Snider
- Department of Cell Biology and Physiology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
20
|
Schirmer I, Dieding M, Klauke B, Brodehl A, Gaertner-Rommel A, Walhorn V, Gummert J, Schulz U, Paluszkiewicz L, Anselmetti D, Milting H. A novel desmin (DES) indel mutation causes severe atypical cardiomyopathy in combination with atrioventricular block and skeletal myopathy. Mol Genet Genomic Med 2017; 6:288-293. [PMID: 29274115 PMCID: PMC5902401 DOI: 10.1002/mgg3.358] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/02/2017] [Accepted: 11/08/2017] [Indexed: 12/31/2022] Open
Abstract
Background DES mutations cause different cardiac and skeletal myopathies. Most of them are missense mutations. Methods Using a next‐generation sequencing cardiac 174 gene panel, we identified a novel heterozygous in‐frame indel mutation (DES‐c.493_520del28insGCGT, p.Q165_A174delinsAS) in a Caucasian patient with cardiomyopathy in combination with atrioventricular block and skeletal myopathy. This indel mutation is located in the coding region of the first exon. Family anamnesis revealed a history of sudden cardiac death. We performed cell transfection experiments and in vitro assembly experiments to prove the pathogenicity of this novel DES indel mutation. Results These experiments revealed a severe filament formation defect of mutant desmin supporting the pathogenicity. In addition, we labeled a skeletal muscle biopsy from the mutation carrier revealing cytoplasmic desmin positive protein aggregates. In summary, we identified and functionally characterized a pathogenic DES indel mutation causing cardiac and skeletal myopathy. Conclusion Our study has relevance for the clinical and genetic interpretation of further DES indel mutations causing cardiac or skeletal myopathies and might be helpful for risk stratification.
Collapse
Affiliation(s)
- Ilona Schirmer
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development (EHKI), Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, Bad Oeynhausen, Germany
| | - Mareike Dieding
- Faculty of Physics, Experimental Biophysics and Applied Nanoscience, Bielefeld Institute for Nanoscience (BINAS), Bielefeld University, Bielefeld, Germany
| | - Bärbel Klauke
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development (EHKI), Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, Bad Oeynhausen, Germany
| | - Andreas Brodehl
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development (EHKI), Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, Bad Oeynhausen, Germany
| | - Anna Gaertner-Rommel
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development (EHKI), Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, Bad Oeynhausen, Germany
| | - Volker Walhorn
- Faculty of Physics, Experimental Biophysics and Applied Nanoscience, Bielefeld Institute for Nanoscience (BINAS), Bielefeld University, Bielefeld, Germany
| | - Jan Gummert
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development (EHKI), Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, Bad Oeynhausen, Germany
| | - Uwe Schulz
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development (EHKI), Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, Bad Oeynhausen, Germany
| | - Lech Paluszkiewicz
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development (EHKI), Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, Bad Oeynhausen, Germany
| | - Dario Anselmetti
- Faculty of Physics, Experimental Biophysics and Applied Nanoscience, Bielefeld Institute for Nanoscience (BINAS), Bielefeld University, Bielefeld, Germany
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development (EHKI), Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, Bad Oeynhausen, Germany
| |
Collapse
|
21
|
Cofilin Regulates Nuclear Architecture through a Myosin-II Dependent Mechanotransduction Module. Sci Rep 2017; 7:40953. [PMID: 28102353 PMCID: PMC5244421 DOI: 10.1038/srep40953] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 12/14/2016] [Indexed: 01/02/2023] Open
Abstract
Structural features of the nucleus including shape, size and deformability impact its function affecting normal cellular processes such as cell differentiation and pathological conditions such as tumor cell migration. Despite the fact that abnormal nuclear morphology has long been a defining characteristic for diseases such as cancer relatively little is known about the mechanisms that control normal nuclear architecture. Mounting evidence suggests close coupling between F-actin cytoskeletal organization and nuclear morphology however, mechanisms regulating this coupling are lacking. Here we identify that Cofilin/ADF-family F-actin remodeling proteins are essential for normal nuclear structure in different cell types. siRNA mediated silencing of Cofilin/ADF provokes striking nuclear defects including aberrant shapes, nuclear lamina disruption and reductions to peripheral heterochromatin. We provide evidence that these anomalies are primarily due to Rho kinase (ROCK) controlled excessive contractile myosin-II activity and not to elevated F-actin polymerization. Furthermore, we demonstrate a requirement for nuclear envelope LINC (linker of nucleoskeleton and cytoskeleton) complex proteins together with lamin A/C for nuclear aberrations induced by Cofilin/ADF loss. Our study elucidates a pivotal regulatory mechanism responsible for normal nuclear structure and which is expected to fundamentally influence nuclear function.
Collapse
|
22
|
Intermediate Filaments as Organizers of Cellular Space: How They Affect Mitochondrial Structure and Function. Cells 2016; 5:cells5030030. [PMID: 27399781 PMCID: PMC5040972 DOI: 10.3390/cells5030030] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/24/2016] [Accepted: 06/30/2016] [Indexed: 12/17/2022] Open
Abstract
Intermediate filaments together with actin filaments and microtubules form the cytoskeleton, which is a complex and highly dynamic 3D network. Intermediate filaments are the major mechanical stress protectors but also affect cell growth, differentiation, signal transduction, and migration. Using intermediate filament-mitochondrial crosstalk as a prominent example, this review emphasizes the importance of intermediate filaments as crucial organizers of cytoplasmic space to support these functions. We summarize observations in different mammalian cell types which demonstrate how intermediate filaments influence mitochondrial morphology, subcellular localization, and function through direct and indirect interactions and how perturbations of these interactions may lead to human diseases.
Collapse
|
23
|
Davis MR, Daggett JJ, Pascual AS, Lam JM, Leyva KJ, Cooper KE, Hull EE. Epigenetically maintained SW13+ and SW13- subtypes have different oncogenic potential and convert with HDAC1 inhibition. BMC Cancer 2016; 16:316. [PMID: 27188282 PMCID: PMC4870788 DOI: 10.1186/s12885-016-2353-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 05/11/2016] [Indexed: 12/19/2022] Open
Abstract
Background The BRM and BRG1 tumor suppressor genes are mutually exclusive ATPase subunits of the SWI/SNF chromatin remodeling complex. The human adrenal carcinoma SW13 cell line can switch between a subtype which expresses these subunits, SW13+, and one that expresses neither subunit, SW13-. Loss of BRM expression occurs post-transcriptionally and can be restored via histone deacetylase (HDAC) inhibition. However, most previously used HDAC inhibitors are toxic and broad-spectrum, providing little insight into the mechanism of the switch between subtypes. In this work, we explore the mechanisms of HDAC inhibition in promoting subtype switching and further characterize the oncogenic potential of the two epigenetically distinct SW13 subtypes. Methods SW13 subtype morphology, chemotaxis, growth rates, and gene expression were assessed by standard immunofluorescence, transwell, growth, and qPCR assays. Metastatic potential was measured by anchorage-independent growth and MMP activity. The efficacy of HDAC inhibitors in inducing subtype switching was determined by immunofluorescence and qPCR. Histone modifications were assessed by western blot. Results Treatment of SW13- cells with HDAC1 inhibitors most effectively promotes re-expression of BRM and VIM, characteristic of the SW13+ phenotype. During treatment, hyperacetylation of histone residues and hypertrimethylation of H3K4 is pronounced. Furthermore, histone modification enzymes, including HDACs and KDM5C, are differentially expressed during treatment but several features of this differential expression pattern differs from that seen in the SW13- and SW13+ subtypes. As the SW13- subtype is more proliferative while the SW13+ subtype is more metastatic, treatment with HDACi increases the metastatic potential of SW13 cells while restoring expression of the BRM tumor suppressor. Conclusions When compared to the SW13- subtype, SW13+ cells have restored BRM expression, increased metastatic capacity, and significantly different expression of a variety of chromatin remodeling factors including those involved with histone acetylation and methylation. These data are consistent with a multistep mechanism of SW13- to SW13+ conversion and subtype stabilization: histone hypermodification results in the altered expression of chromatin remodeling factors and chromatin epigenetic enzymes and the re-expression of BRM which results in restoration of SWI/SNF complex function and leads to changes in chromatin structure and gene expression that stabilize the SW13+ phenotype. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2353-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- McKale R Davis
- Department of Biomedical Sciences, Midwestern University, Glendale, AZ, USA
| | - Juliane J Daggett
- Department of Biomedical Sciences, Midwestern University, Glendale, AZ, USA
| | - Agnes S Pascual
- Department of Biomedical Sciences, Midwestern University, Glendale, AZ, USA
| | - Jessica M Lam
- Department of Biomedical Sciences, Midwestern University, Glendale, AZ, USA
| | - Kathryn J Leyva
- Department of Microbiology and Immunology, Midwestern University, Glendale, AZ, USA
| | - Kimbal E Cooper
- Department of Biomedical Sciences, Midwestern University, Glendale, AZ, USA
| | - Elizabeth E Hull
- Department of Biomedical Sciences, Midwestern University, Glendale, AZ, USA.
| |
Collapse
|
24
|
Carvalho LO, Aquino EN, Neves ACD, Fontes W. The Neutrophil Nucleus and Its Role in Neutrophilic Function. J Cell Biochem 2016; 116:1831-6. [PMID: 25727365 DOI: 10.1002/jcb.25124] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 02/02/2015] [Indexed: 12/11/2022]
Abstract
The cell nucleus plays a key role in differentiation processes in eukaryotic cells. It is not the nucleus in particular, but the organization of the genes and their remodeling that provides the data for the adjustments to be made according to the medium. The neutrophil nucleus has a different morphology. It is a multi-lobed nucleus where some researchers argue no longer function. However, studies indicate that it is very probable the occurrence of chromatin remodeling during activation steps. It may be that the human neutrophil nucleus also contributes to the mobility of neutrophils through thin tissue spaces. Questions like these will be discussed in this small review. The topics include morphology of human neutrophil nucleus, maturation process and modifications of the neutrophil nucleus, neutrophil activation and chromatin modifications, causes and consequences of multi-lobulated segmented morphology, and importance of the nucleus in the formation of neutrophil extracellular traps (NETs).
Collapse
Affiliation(s)
- Leonardo Olivieri Carvalho
- Laboratory of Biochemistry and Protein Chemistry (Proteomics Research), University of Brasilia (UNB), Brasília, Brazil
| | - Elaine Nascimento Aquino
- Laboratory of Biochemistry and Protein Chemistry (Proteomics Research), University of Brasilia (UNB), Brasília, Brazil
| | - Anne Caroline Dias Neves
- Laboratory of Biochemistry and Protein Chemistry (Proteomics Research), University of Brasilia (UNB), Brasília, Brazil
| | - Wagner Fontes
- Laboratory of Biochemistry and Protein Chemistry (Proteomics Research), University of Brasilia (UNB), Brasília, Brazil
| |
Collapse
|
25
|
Role of Intermediate Filaments in Vesicular Traffic. Cells 2016; 5:cells5020020. [PMID: 27120621 PMCID: PMC4931669 DOI: 10.3390/cells5020020] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/13/2016] [Accepted: 04/20/2016] [Indexed: 12/28/2022] Open
Abstract
Intermediate filaments are an important component of the cellular cytoskeleton. The first established role attributed to intermediate filaments was the mechanical support to cells. However, it is now clear that intermediate filaments have many different roles affecting a variety of other biological functions, such as the organization of microtubules and microfilaments, the regulation of nuclear structure and activity, the control of cell cycle and the regulation of signal transduction pathways. Furthermore, a number of intermediate filament proteins have been involved in the acquisition of tumorigenic properties. Over the last years, a strong involvement of intermediate filament proteins in the regulation of several aspects of intracellular trafficking has strongly emerged. Here, we review the functions of intermediate filaments proteins focusing mainly on the recent knowledge gained from the discovery that intermediate filaments associate with key proteins of the vesicular membrane transport machinery. In particular, we analyze the current understanding of the contribution of intermediate filaments to the endocytic pathway.
Collapse
|
26
|
Lazarova DL, Bordonaro M. Vimentin, colon cancer progression and resistance to butyrate and other HDACis. J Cell Mol Med 2016; 20:989-93. [PMID: 27072512 PMCID: PMC4882977 DOI: 10.1111/jcmm.12850] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 02/25/2016] [Indexed: 12/17/2022] Open
Abstract
Dietary fibre protects against colorectal cancer (CRC) most likely through the activity of its fermentation product, butyrate. Butyrate functions as a histone deacetylase inhibitor (HDACi) that hyperactivates Wnt signalling and induces apoptosis of CRC cells. However, individuals who consume a high‐fibre diet may still develop CRC; therefore, butyrate resistance may develop over time. Furthermore, CRC cells that are resistant to butyrate are cross‐resistant to clinically relevant therapeutic HDACis, suggesting that the development of butyrate resistance in vivo can result in HDACi‐resistant CRCs. Butyrate/HDACi‐resistant CRC cells differ from their butyrate/HDACi‐sensitive counterparts in the expression of many genes, including the gene encoding vimentin (VIM) that is usually expressed in normal mesenchymal cells and is involved in cancer metastasis. Interestingly, vimentin is overexpressed in butyrate/HDACi‐resistant CRC cells although Wnt signalling is suppressed in such cells and that VIM is a Wnt activity‐targeted gene. The expression of vimentin in colonic neoplastic cells could be correlated with the stage of neoplastic progression. For example, comparative analyses of LT97 microadenoma cells and SW620 colon carcinoma cells revealed that although vimentin is not detectable in LT97 cells, it is highly expressed in SW620 cells. Based upon these observations, we propose that the differential expression of vimentin contributes to the phenotypic differences between butyrate‐resistant and butyrate‐sensitive CRC cells, as well as to the differences between early‐stage and metastatic colorectal neoplastic cells. We discuss the hypothesis that vimentin is a key factor integrating epithelial to mesenchymal transition, colonic neoplastic progression and resistance to HDACis.
Collapse
Affiliation(s)
- Darina L Lazarova
- Department of Basic Sciences, The Commonwealth Medical College, Scranton, PA, USA
| | - Michael Bordonaro
- Department of Basic Sciences, The Commonwealth Medical College, Scranton, PA, USA
| |
Collapse
|
27
|
Diokmetzidou A, Tsikitis M, Nikouli S, Kloukina I, Tsoupri E, Papathanasiou S, Psarras S, Mavroidis M, Capetanaki Y. Strategies to Study Desmin in Cardiac Muscle and Culture Systems. Methods Enzymol 2015; 568:427-59. [PMID: 26795479 DOI: 10.1016/bs.mie.2015.09.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Intermediate filament (IF) cytoskeleton comprises the fine-tuning cellular machinery regulating critical homeostatic mechanisms. In skeletal and cardiac muscle, deficiency or disturbance of the IF network leads to severe pathology, particularly in the latter. The three-dimensional scaffold of the muscle-specific IF protein desmin interconnects key features of the cardiac muscle cells, including the Z-disks, intercalated disks, plasma membrane, nucleus, mitochondria, lysosomes, and potentially sarcoplasmic reticulum. This is crucial for the highly organized striated muscle, in which effective energy production and transmission as well as mechanochemical signaling are tightly coordinated among the organelles and the contractile apparatus. The role of desmin and desmin-associated proteins in the biogenesis, trafficking, and organelle function, as well as the development, differentiation, and survival of the cardiac muscle begins to be enlightened, but the precise mechanisms remain elusive. We propose a set of experimental tools that can be used, in vivo and in vitro, to unravel crucial new pathways by which the IF cytoskeleton facilitates proper organelle function, homeostasis, and cytoprotection and further understand how its disturbance and deficiency lead to disease.
Collapse
Affiliation(s)
- Antigoni Diokmetzidou
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Mary Tsikitis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Sofia Nikouli
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Ismini Kloukina
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Elsa Tsoupri
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Stamatis Papathanasiou
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Stelios Psarras
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Manolis Mavroidis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Yassemi Capetanaki
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece.
| |
Collapse
|
28
|
Vimentin filament organization and stress sensing depend on its single cysteine residue and zinc binding. Nat Commun 2015; 6:7287. [PMID: 26031447 PMCID: PMC4458873 DOI: 10.1038/ncomms8287] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 04/24/2015] [Indexed: 12/30/2022] Open
Abstract
The vimentin filament network plays a key role in cell architecture and signalling, as well as in epithelial-mesenchymal transition. Vimentin C328 is targeted by various oxidative modifications, but its role in vimentin organization is not known. Here we show that C328 is essential for vimentin network reorganization in response to oxidants and electrophiles, and is required for optimal vimentin performance in network expansion, lysosomal distribution and aggresome formation. C328 may fulfil these roles through interaction with zinc. In vitro, micromolar zinc protects vimentin from iodoacetamide modification and elicits vimentin polymerization into optically detectable structures; in cells, zinc closely associates with vimentin and its depletion causes reversible filament disassembly. Finally, zinc transport-deficient human fibroblasts show increased vimentin solubility and susceptibility to disruption, which are restored by zinc supplementation. These results unveil a critical role of C328 in vimentin organization and open new perspectives for the regulation of intermediate filaments by zinc.
Collapse
|
29
|
Kamphuis W, Middeldorp J, Kooijman L, Sluijs JA, Kooi EJ, Moeton M, Freriks M, Mizee MR, Hol EM. Glial fibrillary acidic protein isoform expression in plaque related astrogliosis in Alzheimer's disease. Neurobiol Aging 2013; 35:492-510. [PMID: 24269023 DOI: 10.1016/j.neurobiolaging.2013.09.035] [Citation(s) in RCA: 185] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 09/16/2013] [Accepted: 09/22/2013] [Indexed: 12/12/2022]
Abstract
In Alzheimer's disease (AD), amyloid plaques are surrounded by reactive astrocytes with an increased expression of intermediate filaments including glial fibrillary acidic protein (GFAP). Different GFAP isoforms have been identified that are differentially expressed by specific subpopulations of astrocytes and that impose different properties to the intermediate filament network. We studied transcript levels and protein expression patterns of all known GFAP isoforms in human hippocampal AD tissue at different stages of the disease. Ten different transcripts for GFAP isoforms were detected at different abundancies. Transcript levels of most isoforms increased with AD progression. GFAPδ-immunopositive astrocytes were observed in subgranular zone, hilus, and stratum-lacunosum-moleculare. GFAPδ-positive cells also stained for GFAPα. In AD donors, astrocytes near plaques displayed increased staining of both GFAPα and GFAPδ. The reading-frame-shifted isoform, GFAP(+1), staining was confined to a subset of astrocytes with long processes, and their number increased in the course of AD. In conclusion, the various GFAP isoforms show differential transcript levels and are upregulated in a concerted manner in AD. The GFAP(+1) isoform defines a unique subset of astrocytes, with numbers increasing with AD progression. These data indicate the need for future exploration of underlying mechanisms concerning the functions of GFAPδ and GFAP(+1) isoforms in astrocytes and their possible role in AD pathology.
Collapse
Affiliation(s)
- Willem Kamphuis
- Netherlands Institute for Neuroscience-an Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Department of Astrocyte Bology and Neurodegeneration, Amsterdam, the Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Fay N, Panté N. The intermediate filament network protein, vimentin, is required for parvoviral infection. Virology 2013; 444:181-90. [PMID: 23838001 DOI: 10.1016/j.virol.2013.06.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/21/2013] [Accepted: 06/07/2013] [Indexed: 12/27/2022]
Abstract
Intermediate filaments (IFs) have recently been shown to serve novel roles during infection by many viruses. Here we have begun to study the role of IFs during the early steps of infection by the parvovirus minute virus of mice (MVM). We found that during early infection with MVM, after endosomal escape, the vimentin IF network was considerably altered, yielding collapsed immunofluorescence staining near the nuclear periphery. Furthermore, we found that vimentin plays an important role in the life cycle of MVM. The number of cells, which successfully replicated MVM, was reduced in infected cells in which the vimentin network was genetically or pharmacologically modified; viral endocytosis, however, remained unaltered. Perinuclear accumulation of MVM-containing vesicles was reduced in cells lacking vimentin. Our data suggests that vimentin is required for the MVM life cycle, presenting possibly a dual role: (1) following MVM escape from endosomes and (2) during endosomal trafficking of MVM.
Collapse
Affiliation(s)
- Nikta Fay
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, Canada V6T 1Z4
| | | |
Collapse
|
31
|
Capanni C, Bruschi M, Columbaro M, Cuccarolo P, Ravera S, Dufour C, Candiano G, Petretto A, Degan P, Cappelli E. Changes in vimentin, lamin A/C and mitofilin induce aberrant cell organization in fibroblasts from Fanconi anemia complementation group A (FA-A) patients. Biochimie 2013; 95:1838-47. [PMID: 23831462 DOI: 10.1016/j.biochi.2013.06.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/21/2013] [Indexed: 01/03/2023]
Abstract
Growing number of publication has proved an increasing of cellular function of the Fanconi anemia proteins. To chromosome stability and DNA repair new roles have been attributed to FA proteins in oxidative stress response and homeostasis, immune response and cytokines sensibility, gene expression. Our work shows a new role for FA-A protein: the organization of the cellular structure. By 2D-PAGE of FA-A and correct fibroblasts treated and untreated with H2O2 we identify different expression of protein involved in the structural organization of nucleus, intermediate filaments and mitochondria. Immunofluorescence and electronic microscopy analysis clearly show an already altered cellular structure in normal culture condition and this worsted after oxidative stress. FA-A cell appears structurally prone to physiologic stress and this could explain part of the phenotype of FA cells.
Collapse
|
32
|
Zhang G, Jin L, Selzer ME. Assembly properties of lamprey neurofilament subunits and their expression after spinal cord transection. J Comp Neurol 2012; 519:3657-71. [PMID: 21618230 DOI: 10.1002/cne.22673] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In mammals neurofilaments (NF) are formed by coassembly of three subunits: NFL, NFM, and NFH (light, medium, and heavy). It had been believed that lampreys have only one subunit, NF180. However, a previous study showed that NF180 could not self-assemble but could coassemble with rat NFL, suggesting the existence of additional NF subunits in lamprey. More recently, we cloned three additional NF subunits. These new subunits and NF180 have now been transfected in combinations into SW13cl.2Vim(-) cells, which lack endogenous cytoplasmic intermediate filaments. None of the subunits could self-assemble. No combination of NF subunits could form filaments in the absence of lamprey NFL (L-NFL). Assembly occurred at 28°C, but not at 37°C. L-NFL could form thick NF bundles with NF180 but not with NF132 and NF95, which formed only fine filamentous arrays. To determine which parts of the NF subunits are required for filament or bundle formation, we constructed deletion mutants of NF180 and cotransfected them with L-NFL. As with mammalian NF, only constructs with intact head and core domains could form filaments with L-NFL. However, the full length of NF180 was required to form NF bundles. As with NF180, in situ hybridization indicated that mRNA for L-NFL and NF132 was downregulated in identified reticulospinal neurons by 5 weeks after spinal cord transection, but was reexpressed at 10 weeks selectively in those neurons whose axons have a high probability of regenerating. This is consistent with a possible role of NFs in the mechanism of axon regeneration.
Collapse
Affiliation(s)
- Guixin Zhang
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA.
| | | | | |
Collapse
|
33
|
Hoogerhout P, Kamphuis W, Brugghe HF, Sluijs JA, Timmermans HAM, Westdijk J, Zomer G, Boog CJP, Hol EM, van den Dobbelsteen GPJM. A cyclic undecamer peptide mimics a turn in folded Alzheimer amyloid β and elicits antibodies against oligomeric and fibrillar amyloid and plaques. PLoS One 2011; 6:e19110. [PMID: 21526148 PMCID: PMC3079747 DOI: 10.1371/journal.pone.0019110] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 03/17/2011] [Indexed: 01/17/2023] Open
Abstract
The 39- to 42-residue amyloid β (Aβ) peptide is deposited in extracellular fibrillar plaques in the brain of patients suffering from Alzheimer's Disease (AD). Vaccination with these peptides seems to be a promising approach to reduce the plaque load but results in a dominant antibody response directed against the N-terminus. Antibodies against the N-terminus will capture Aβ immediately after normal physiological processing of the amyloid precursor protein and therefore will also reduce the levels of non-misfolded Aβ, which might have a physiologically relevant function. Therefore, we have targeted an immune response on a conformational neo-epitope in misfolded amyloid that is formed in advance of Aβ-aggregation. A tetanus toxoid-conjugate of the 11-meric cyclic peptide Aβ(22-28)-YNGK' elicited specific antibodies in Balb/c mice. These antibodies bound strongly to the homologous cyclic peptide-bovine serum albumin conjugate, but not to the homologous linear peptide-conjugate, as detected in vitro by enzyme-linked immunosorbent assay. The antibodies also bound--although more weakly--to Aβ(1-42) oligomers as well as fibrils in this assay. Finally, the antibodies recognized Aβ deposits in AD mouse and human brain tissue as established by immunohistological staining. We propose that the cyclic peptide conjugate might provide a lead towards a vaccine that could be administered before the onset of AD symptoms. Further investigation of this hypothesis requires immunization of transgenic AD model mice.
Collapse
Affiliation(s)
- Peter Hoogerhout
- Department of Vaccinology, Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Zeindl-Eberhart E, Liebmann S, Jungblut PR, Mattow J, Schmid M, Kerler R, Rabes HM. Influence of RET/PTC1 and RET/PTC3 oncoproteins in radiation-induced papillary thyroid carcinomas on amounts of cytoskeletal protein species. Amino Acids 2010; 41:415-25. [PMID: 20839015 DOI: 10.1007/s00726-010-0733-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 08/26/2010] [Indexed: 10/19/2022]
Abstract
Radiation-induced human papillary thyroid carcinomas (PTCs) show a high prevalence of fusions of the RET proto-oncogene to heterologous genes H4 (RET/PTC1) and ELE1 (RET/PTC3), respectively. In contrast to the normal membrane-bound RET protein, aberrant RET fusion proteins are constitutively active oncogenic cytosolic proteins that can lead to malignant transformation of thyroid epithelia. To detect specific tumor-associated protein changes that reflect the effect of RET/PTC fusion proteins, we analyzed normal thyroid tissues, thyroid tumors of the RET/PTC1 and RET/PTC3 type and their respective lymph node metastases by a combination of high-resolution two-dimensional electrophoresis and matrix-assisted laser desorption/ionization-mass spectrometry. PTCs without RET rearrangements served as controls. Several cytoskeletal protein species showed quantitative changes in tumors and lymph node metastases harboring RET/PTC1 or RET/PTC3. We observed prominent C-terminal actin fragments assumedly generated by protease cleavages induced due to enhanced amounts of the active actin-binding protein cofilin-1. In addition, three truncated vimentin species, one of which was proven to be headless, were shown to be highly abundant in tumors and metastases of both RET/PTC types. The observed protein changes are closely connected with the constitutive activation of RET-rearranged oncoproteins and reflect the importance to elucidate disease-related typical signatures on the protein species level.
Collapse
Affiliation(s)
- Evelyn Zeindl-Eberhart
- Institute of Pathology, Ludwig-Maximilians-University of Munich, Thalkirchner Strasse 36, 80337, Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
35
|
Mähönen AJ, Makkonen KE, Laakkonen JP, Ihalainen TO, Kukkonen SP, Kaikkonen MU, Vihinen-Ranta M, Ylä-Herttuala S, Airenne KJ. Culture medium induced vimentin reorganization associates with enhanced baculovirus-mediated gene delivery. J Biotechnol 2009; 145:111-9. [PMID: 19903502 DOI: 10.1016/j.jbiotec.2009.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 09/16/2009] [Accepted: 11/03/2009] [Indexed: 01/04/2023]
Abstract
Baculoviruses can express transgenes under mammalian promoters in a wide range of vertebrate cells. However, the success of transgene expression is dependent on both the appropriate cell type and culture conditions. We studied the mechanism behind the substantial effect of the cell culture medium on efficiency of the baculovirus transduction in different cell lines. We tested six cell culture mediums; the highest transduction efficiency was detected in the presence of RPMI 1640 medium. Vimentin, a major component of type III intermediate filaments, was reorganized in the optimized medium, which associated with enhanced nuclear entry of baculoviruses. Accordingly, the phosphorylation pattern of vimentin was changed in the studied cell lines. These results suggest that vimentin has an important role in baculovirus entry into vertebrate cells. Enhanced gene delivery in the optimized medium was observed also with adenoviruses and lentiviruses. The results highlight the general importance of the culture medium in the assembly of the cytoskeleton network and in viral gene delivery.
Collapse
Affiliation(s)
- Anssi J Mähönen
- A.I. Virtanen Institute, Department of Biotechnology and Molecular Medicine, University of Kuopio Kuopio, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Bär H, Sharma S, Kleiner H, Mücke N, Zentgraf H, Katus HA, Aebi U, Herrmann H. Interference of amino-terminal desmin fragments with desmin filament formation. ACTA ACUST UNITED AC 2009; 66:986-99. [DOI: 10.1002/cm.20396] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
37
|
Uchida A, Alami NH, Brown A. Tight functional coupling of kinesin-1A and dynein motors in the bidirectional transport of neurofilaments. Mol Biol Cell 2009; 20:4997-5006. [PMID: 19812246 DOI: 10.1091/mbc.e09-04-0304] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We have tested the hypothesis that kinesin-1A (formerly KIF5A) is an anterograde motor for axonal neurofilaments. In cultured sympathetic neurons from kinesin-1A knockout mice, we observed a 75% reduction in the frequency of both anterograde and retrograde neurofilament movement. This transport defect could be rescued by kinesin-1A, and with successively decreasing efficacy by kinesin-1B and kinesin-1C. In wild-type neurons, headless mutants of kinesin-1A and kinesin-1C inhibited both anterograde and retrograde movement in a dominant-negative manner. Because dynein is thought to be the retrograde motor for axonal neurofilaments, we investigated the effect of dynein inhibition on anterograde and retrograde neurofilament transport. Disruption of dynein function by using RNA interference, dominant-negative approaches, or a function-blocking antibody also inhibited both anterograde and retrograde neurofilament movement. These data suggest that kinesin-1A is the principal but not exclusive anterograde motor for neurofilaments in these neurons, that there may be some functional redundancy among the kinesin-1 isoforms with respect to neurofilament transport, and that the activities of the anterograde and retrograde neurofilament motors are tightly coordinated.
Collapse
Affiliation(s)
- Atsuko Uchida
- Center for Molecular Neurobiology and Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
38
|
Zhou Z, Kahns S, Nielsen AL. Identification of a novel vimentin promoter and mRNA isoform. Mol Biol Rep 2009; 37:2407-13. [PMID: 19690979 DOI: 10.1007/s11033-009-9751-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 08/05/2009] [Indexed: 11/26/2022]
Abstract
The intermediate filament protein vimentin is involved in a variety of cellular functions both during the normal developmental processes and in human malignancies. We here describe the identification of an alternative vimentin transcript initiating upstream for the canonical vimentin gene promoter and spliced using the vimentin promoter sequence as an intron. Expression analysis showed that the alternative vimentin promoter had the same expression profile as the canonical vimentin gene promoter. The presented data suggest that alternative promoter usage and alternative splicing could be regulatory mechanisms participating in vimentin gene regulation.
Collapse
Affiliation(s)
- Zhangle Zhou
- Department of Human Genetics, University of Aarhus, Aarhus, Denmark
| | | | | |
Collapse
|
39
|
Robers M, Pinson P, Leong L, Batchelor RH, Gee KR, Machleidt T. Fluorescent labeling of proteins in living cells using the FKBP12 (F36V) tag. Cytometry A 2009; 75:207-24. [PMID: 18837033 DOI: 10.1002/cyto.a.20649] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Over the past decade live cell imaging has become a key technology to monitor and understand the dynamic behavior of proteins in the physiological context of living cells. The visualization of a protein of interest is most commonly achieved by genetically fusing it to green fluorescent protein (GFP) or one of it variants. Considerable effort has been made to develop alternative methods of protein labeling to overcome the intrinsic limitations of fluorescent proteins. In this report we show the optimization of a live cell labeling technology based on the use of a mutant form of FKBP12 (FKBP12(F36V)) in combination with a synthetic high affinity ligand (SLF') that specifically binds to this mutant. It had been previously shown that the use of a fluorescein-conjugated form of SLF' (5'-fluorescein-SLF') allowed the labeling of proteins genetically fused to FKBP-F36V in living cells. Here we describe the identification of novel fluorescent SLF'dye conjugates that allow specific labeling of FKBP12(F36V) fusion proteins in living cells. To further increase the versatility of this technology we developed a number of technical improvements. We implemented the use of pluronics during the labeling process to facilitate the uptake of the SLF'-dye conjugates and the use suppression dyes to reduce background signal. Furthermore, the time and dose dependency of labeling was investigated in order to determine optimal labeling conditions. Finally, the specificity of the FKBP12(F36V) labeling technology was extensively validated by morphological analysis using a diverse set of FKBP12(F36V) fusions proteins. In addition we show a number of different application examples, such as translocation assays, the generation of biosensors, and multiplex labeling in combination with different labeling technologies, such as FlAsH or GFP. In summary we show that the FKBP12(F36V)/SLF' labeling technology has a broad range of applications and should prove useful for the study of protein function in living cells.
Collapse
Affiliation(s)
- Matt Robers
- Invitrogen Discovery Sciences, Madison, Wisconsin 53719, USA
| | | | | | | | | | | |
Collapse
|
40
|
Sen S, Kumar S. Cell-Matrix De-Adhesion Dynamics Reflect Contractile Mechanics. Cell Mol Bioeng 2009; 2:218-230. [PMID: 21297858 PMCID: PMC3018270 DOI: 10.1007/s12195-009-0057-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 04/16/2009] [Indexed: 11/17/2022] Open
Abstract
Measurement of the mechanical properties of single cells is of increasing interest both from a fundamental cell biological perspective and in the context of disease diagnostics. In this study, we show that tracking cell shape dynamics during trypsin-induced de-adhesion can serve as a simple but extremely useful tool for probing the contractility of adherent cells. When treated with trypsin, both SW13(-/-) epithelial cells and U373 MG glioma cells exhibit a brief lag period followed by a concerted retraction to a rounded shape. The time-response of the normalized cell area can be fit to a sigmoidal curve with two characteristic time constants that rise and fall when cells are treated with blebbistatin and nocodazole, respectively. These differences can be attributed to actomyosin-based cytoskeletal remodeling, as evidenced by the prominent buildup of stress fibers in nocodazole-treated SW13(-/-) cells, which are also two-fold stiffer than untreated cells. Similar results observed in U373 MG cells highlights the direct association between cell stiffness and the de-adhesion response. Faster de-adhesion is obtained with higher trypsin concentration, with nocodazole treatment further expediting the process and blebbistatin treatment blunting the response. A simple finite element model confirms that faster contraction is achieved with increased stiffness.
Collapse
Affiliation(s)
- Shamik Sen
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720-1762 USA
| | - Sanjay Kumar
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720-1762 USA
| |
Collapse
|
41
|
Minin AA, Moldaver MV. Intermediate vimentin filaments and their role in intracellular organelle distribution. BIOCHEMISTRY (MOSCOW) 2009; 73:1453-66. [PMID: 19216711 DOI: 10.1134/s0006297908130063] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Intermediate filaments (IF) represent one of three main cytoskeletal structures in most animal cells. The human IF protein family includes about 70 members divided into five main groups. The characteristic feature of IF is that in various cells and tissues they are formed by proteins of different groups. Structures of all IF proteins follow a unique scheme: a central alpha-helical part is flanked at the N and C ends by positively charged polypeptide chains devoid of a clear secondary structure. The central part is highly conserved for all proteins in all animals, whereas the N and C termini strongly differ both in size and amino acid composition. This review covers the broad spectrum of recent investigations of IF structure and diverse functions. Special attention is paid to the regulatory mechanisms of IF functions, mainly to phosphorylation by different protein kinases whose role is well studied. The review gives examples of hereditary diseases associated with mutations of some IF proteins, which point to an important physiological role of these cytoskeletal structures.
Collapse
Affiliation(s)
- A A Minin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | |
Collapse
|
42
|
Onset of human cytomegalovirus replication in fibroblasts requires the presence of an intact vimentin cytoskeleton. J Virol 2009; 83:7015-28. [PMID: 19403668 DOI: 10.1128/jvi.00398-09] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Like all viruses, herpesviruses extensively interact with the host cytoskeleton during entry. While microtubules and microfilaments appear to facilitate viral capsid transport toward the nucleus, evidence for a role of intermediate filaments in herpesvirus entry is lacking. Here, we examined the function of vimentin intermediate filaments in fibroblasts during the initial phase of infection of two genotypically distinct strains of human cytomegalovirus (CMV), one with narrow (AD169) and one with broad (TB40/E) cell tropism. Chemical disruption of the vimentin network with acrylamide, intermediate filament bundling in cells from a patient with giant axonal neuropathy, and absence of vimentin in fibroblasts from vimentin(-/-) mice severely reduced entry of either strain. In vimentin null cells, viral particles remained in the cytoplasm longer than in vimentin(+/+) cells. TB40/E infection was consistently slower than that of AD169 and was more negatively affected by the disruption or absence of vimentin. These findings demonstrate that an intact vimentin network is required for CMV infection onset, that intermediate filaments may function during viral entry to facilitate capsid trafficking and/or docking to the nuclear envelope, and that maintenance of a broader cell tropism is associated with a higher degree of dependence on the vimentin cytoskeleton.
Collapse
|
43
|
Nery FC, Zeng J, Niland BP, Hewett J, Farley J, Irimia D, Li Y, Wiche G, Sonnenberg A, Breakefield XO. TorsinA binds the KASH domain of nesprins and participates in linkage between nuclear envelope and cytoskeleton. J Cell Sci 2008; 121:3476-86. [PMID: 18827015 PMCID: PMC3539201 DOI: 10.1242/jcs.029454] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A specific mutation (DeltaE) in torsinA underlies most cases of the dominantly inherited movement disorder, early-onset torsion dystonia (DYT1). TorsinA, a member of the AAA+ ATPase superfamily, is located within the lumen of the nuclear envelope (NE) and endoplasmic reticulum (ER). We investigated an association between torsinA and nesprin-3, which spans the outer nuclear membrane (ONM) of the NE and links it to vimentin via plectin in fibroblasts. Mouse nesprin-3alpha co-immunoprecipitated with torsinA and this involved the C-terminal region of torsinA and the KASH domain of nesprin-3alpha. This association with human nesprin-3 appeared to be stronger for torsinADeltaE than for torsinA. TorsinA also associated with the KASH domains of nesprin-1 and -2 (SYNE1 and 2), which link to actin. In the absence of torsinA, in knockout mouse embryonic fibroblasts (MEFs), nesprin-3alpha was localized predominantly in the ER. Enrichment of yellow fluorescent protein (YFP)-nesprin-3 in the ER was also seen in the fibroblasts of DYT1 patients, with formation of YFP-positive globular structures enriched in torsinA, vimentin and actin. TorsinA-null MEFs had normal NE structure, but nuclear polarization and cell migration were delayed in a wound-healing assay, as compared with wild-type MEFs. These studies support a role for torsinA in dynamic interactions between the KASH domains of nesprins and their protein partners in the lumen of the NE, with torsinA influencing the localization of nesprins and associated cytoskeletal elements and affecting their role in nuclear and cell movement.
Collapse
Affiliation(s)
- Flávia C Nery
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Santilman V, Baran J, Anand-Apte B, Evans RM, Parat MO. Caveolin-1 polarization in transmigrating endothelial cells requires binding to intermediate filaments. Angiogenesis 2007; 10:297-305. [DOI: 10.1007/s10456-007-9083-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Accepted: 10/05/2007] [Indexed: 02/07/2023]
|
45
|
Moisan E, Chiasson S, Girard D. The intriguing normal acute inflammatory response in mice lacking vimentin. Clin Exp Immunol 2007; 150:158-68. [PMID: 17680824 PMCID: PMC2219279 DOI: 10.1111/j.1365-2249.2007.03460.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Neutrophils express only two intermediate filament proteins, vimentin and, to a lesser extent, lamin B. Lamin B mutant mice die shortly after birth; however, mice lacking vimentin (vim(-/-)) develop and reproduce normally. Herein, we investigate for the first time the role of vimentin in general inflammation in vivo and in neutrophil functions ex vivo. Using the murine air pouch model, we show that the inflammatory response induced by lipopolysaccharide, interleukin-21 or carageenan is, intriguingly, uncompromised in vim(-/-) mice and that neutrophil functions are not altered ex vivo. Our results suggest that vimentin is dispensable for the establishment of an acute inflammatory response in vivo. In addition, based on several criteria presented in this study, one has to accept the existence of a very complex compensatory mechanism to explain the intriguing normal inflammatory response in absence of vimentin.
Collapse
Affiliation(s)
- E Moisan
- INRS-Institut Armand-Frappier, Université du Québec, Pointe-Claire, PQ, Canada
| | | | | |
Collapse
|
46
|
Hewett JW, Tannous B, Niland BP, Nery FC, Zeng J, Li Y, Breakefield XO. Mutant torsinA interferes with protein processing through the secretory pathway in DYT1 dystonia cells. Proc Natl Acad Sci U S A 2007; 104:7271-6. [PMID: 17428918 PMCID: PMC1855419 DOI: 10.1073/pnas.0701185104] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Indexed: 01/06/2023] Open
Abstract
TorsinA is an AAA(+) protein located predominantly in the lumen of the endoplasmic reticulum (ER) and nuclear envelope responsible for early onset torsion dystonia (DYT1). Most cases of this dominantly inherited movement disorder are caused by deletion of a glutamic acid in the carboxyl terminal region of torsinA. We used a sensitive reporter, Gaussia luciferase (Gluc) to evaluate the role of torsinA in processing proteins through the ER. In primary fibroblasts from controls and DYT1 patients most Gluc activity (95%) was released into the media and processed through the secretory pathway, as confirmed by inhibition with brefeldinA and nocodazole. Fusion of Gluc to a fluorescent protein revealed coalignment and fractionation with ER proteins and association of Gluc with torsinA. Notably, fibroblasts from DYT1 patients were found to secrete markedly less Gluc activity as compared with control fibroblasts. This decrease in processing of Gluc in DYT1 cells appear to arise, at least in part, from a loss of torsinA activity, because mouse embryonic fibroblasts lacking torsinA also had reduced secretion as compared with control cells. These studies demonstrate the exquisite sensitivity of this reporter system for quantitation of processing through the secretory pathway and support a role for torsinA as an ER chaperone protein.
Collapse
Affiliation(s)
- Jeffrey W. Hewett
- *Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, MA 02114; and
| | - Bakhos Tannous
- *Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, MA 02114; and
| | - Brian P. Niland
- *Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, MA 02114; and
| | - Flavia C. Nery
- *Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, MA 02114; and
| | - Juan Zeng
- *Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, MA 02114; and
| | - Yuqing Li
- Department of Neurology and Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Xandra O. Breakefield
- *Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, MA 02114; and
| |
Collapse
|
47
|
Blechingberg J, Holm IE, Nielsen KB, Jensen TH, Jørgensen AL, Nielsen AL. Identification and characterization of GFAPkappa, a novel glial fibrillary acidic protein isoform. Glia 2007; 55:497-507. [PMID: 17203480 DOI: 10.1002/glia.20475] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glial fibrillary acidic protein (GFAP) is the principal component of the intermediary filaments in mature astrocytes of the central nervous system (CNS). The protein consists of three domains: the head, the coiled-coil, and the tail. Here, we describe the isolation of an evolutionary conserved novel GFAP isoform, GFAPkappa, produced by alternative splicing and polyadenylation of the 3'-region of the human GFAP pre-mRNA. As a consequence, the resulting human GFAPkappa protein harbors a nonconserved C-terminal tail sequence distinct from the tails of GFAPalpha, the predominant GFAP isoform, and GFAPepsilon, an isoform which also results from alternative splicing. The head and coiled-coil rod domains are identical between the three GFAP isoforms. Interestingly, GFAPkappa is incapable of forming homomeric filaments, and increasing GFAPkappa expression levels causes a collapse of intermediate filaments formed by GFAPalpha. In searching for a biological relevance of GFAPkappa, we noticed that mRNA expression levels of GFAPalpha, GFAPepsilon, and GFAPkappa are gradually increased during development of the embryonic pig brain. However, whereas the GFAPalpha/GFAPepsilon ratio is constant, the GFAPkappa/GFAPepsilon ratio decreases during brain development. Furthermore, in glioblastoma tumors, an increased GFAPkappa/GFAPepsilon ratio is detected. Our results suggest that the relative expression level of the GFAPkappa isoform could modulate the properties of GFAP intermediate filaments and perhaps thereby influencing the motility of GFAP positive astrocytes and progenitor cells within the CNS.
Collapse
Affiliation(s)
- Jenny Blechingberg
- Institute of Human Genetics, The Bartholin Building, University of Aarhus, Aarhus C DK-8000, Denmark
| | | | | | | | | | | |
Collapse
|
48
|
Timmusk S, Fossum C, Berg M. Porcine circovirus type 2 replicase binds the capsid protein and an intermediate filament-like protein. J Gen Virol 2006; 87:3215-3223. [PMID: 17030855 DOI: 10.1099/vir.0.81785-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Porcine circovirus type 2 (PCV2) is an important porcine pathogen that establishes persistent subclinical infections but may, on activation, contribute to the development of post-weaning multisystemic wasting syndrome (PMWS). This disease is characterized by weight loss, respiratory or digestive disorders and enlarged lymph nodes with lymphocyte depletion. The molecular mechanisms behind the development of the disease are completely unknown. In order to clarify functions of the different viral proteins and, if possible, to connect these new findings to molecular mechanisms behind the pathogenesis or the viral life cycle, a bacterial two-hybrid screening of a porcine expression library from PK-15A cells was conducted. Using viral proteins corresponding to ORFs 1, 2, 3 and 4 as bait, a number of interactions were identified and two of them were chosen for further characterization. GST pull-down assays confirmed that viral replicase (Rep) interacted with an intermediate filament protein, similar to human syncoilin, and with the transcriptional regulator c-myc. Furthermore, interactions of the viral proteins to each other revealed an interaction between PCV2 Rep and the capsid (Cap) protein and Cap to itself.
Collapse
Affiliation(s)
- Sirje Timmusk
- Department of Molecular Biosciences, Section of Veterinary Immunology and Virology, Swedish University of Agricultural Sciences, Box 588, S-751 23 Uppsala, Sweden
| | - Caroline Fossum
- Department of Molecular Biosciences, Section of Veterinary Immunology and Virology, Swedish University of Agricultural Sciences, Box 588, S-751 23 Uppsala, Sweden
| | - Mikael Berg
- Department of Biomedical Sciences and Veterinary Public Health, Section of Parasitology and Virology, Swedish University of Agricultural Sciences, Box 588, S-751 23 Uppsala, Sweden
- Department of Molecular Biosciences, Section of Veterinary Immunology and Virology, Swedish University of Agricultural Sciences, Box 588, S-751 23 Uppsala, Sweden
| |
Collapse
|
49
|
Russell MA, Lund LM, Haber R, McKeegan K, Cianciola N, Bond M. The intermediate filament protein, synemin, is an AKAP in the heart. Arch Biochem Biophys 2006; 456:204-15. [PMID: 16934740 DOI: 10.1016/j.abb.2006.06.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 06/01/2006] [Accepted: 06/06/2006] [Indexed: 11/28/2022]
Abstract
Targeting of protein kinase A (PKA) by A-kinase anchoring proteins (AKAPs) contributes to high specificity of PKA signaling pathways. PKA phosphorylation of myofilament and cytoskeletal proteins may regulate myofibrillogenesis and myocyte remodeling during heart disease; however, known cardiac AKAPs do not localize to these regions. To identify novel AKAPs which target PKA to the cytoskeleton or myofilaments, a human heart cDNA library was screened and the intermediate filament (IF) protein, synemin, was identified as a putative RII (PKA regulatory subunit type II) binding protein. A predicted RII binding region was mutated and resulted in loss of RII binding. Furthermore, synemin co-localized with RII in SW13/cl.1-vim+ cells and co-immunoprecipitated with RII from adult rat cardiomyocytes. Synemin was localized at the level of Z-lines with RII and desmin in adult hearts, however, neonatal cardiomyocytes showed differential synemin and desmin localization. Quantitative Western blots also showed significantly more synemin was present in failing human hearts. We propose that synemin provides temporal and spatial targeting of PKA in adult and neonatal cardiac myocytes.
Collapse
Affiliation(s)
- Mary A Russell
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|
50
|
Roelofs RF, Fischer DF, Houtman SH, Sluijs JA, Van Haren W, Van Leeuwen FW, Hol EM. Adult human subventricular, subgranular, and subpial zones contain astrocytes with a specialized intermediate filament cytoskeleton. Glia 2005; 52:289-300. [PMID: 16001427 DOI: 10.1002/glia.20243] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Human glial fibrillary acidic protein-delta (GFAP-delta) is a GFAP protein isoform that is encoded by an alternative splice variant of the GFAP-gene. As a result, GFAP-delta protein differs from the predominant splice form, GFAP-alpha, by its C-terminal protein sequence. In this study, we show that GFAP-delta protein is not expressed by all GFAP-expressing astrocytes but specifically by a subpopulation located in the subpial zone of the cerebral cortex, the subgranular zone of the hippocampus, and, most intensely, by a ribbon of astrocytes following the ependymal layer of the cerebral ventricles. Therefore, at least in the sub ventricular zone (SVZ), GFAP-delta specifically marks the population of astrocytes that contain the neural stem cells in the adult human brain. Interestingly, the SVZ astrocytes actively splice GFAP-delta transcripts, in contrast to astrocytes adjacent to this layer. Furthermore, we show that GFAP-delta protein, unlike GFAP-alpha, is not upregulated in astrogliosis. Our data therefore indicate a different functional role for GFAP-delta in astrocyte physiology. Finally, transfection studies showed that GFAP-delta protein expression has a negative effect on GFAP filament formation, and therefore could be important for modulating intermediate filament cytoskeletal properties, possibly facilitating astrocyte motility. Further studies on GFAP-delta and the cells that express it are important for gaining insights into its function during differentiation, migration and during health and disease.
Collapse
Affiliation(s)
- Reinko F Roelofs
- Netherlands Institute for Brain Research, Graduate School Neurosciences, Amsterdam, the Netherlands
| | | | | | | | | | | | | |
Collapse
|