1
|
Freisem D, Hoenigsperger H, Catanese A, Sparrer KMJ. Inborn errors of canonical autophagy in neurodegenerative diseases. Hum Mol Genet 2025:ddae179. [PMID: 40304712 DOI: 10.1093/hmg/ddae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 05/02/2025] Open
Abstract
Neurodegenerative disorders (NDDs), characterized by a progressive loss of neurons and cognitive function, are a severe burden to human health and mental fitness worldwide. A hallmark of NDDs such as Alzheimer's disease, Huntington's disease, Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and prion diseases is disturbed cellular proteostasis, resulting in pathogenic deposition of aggregated protein species. Autophagy is a major cellular process maintaining proteostasis and integral to innate immune defenses that mediates lysosomal protein turnover. Defects in autophagy are thus frequently associated with NDDs. In this review, we discuss the interplay between NDDs associated proteins and autophagy and provide an overview over recent discoveries in inborn errors in canonical autophagy proteins that are associated with NDDs. While mutations in autophagy receptors seems to be associated mainly with the development of ALS, errors in mitophagy are mainly found to promote PD. Finally, we argue whether autophagy may impact progress and onset of the disease, as well as the potential of targeting autophagy as a therapeutic approach. Concludingly, understanding disorders due to inborn errors in autophagy-"autophagopathies"-will help to unravel underlying NDD pathomechanisms and provide unique insights into the neuroprotective role of autophagy, thus potentially paving the way for novel therapeutic interventions.
Collapse
Affiliation(s)
- Dennis Freisem
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstr. 1, Baden-Wuerttemberg, Ulm 89081, Germany
| | - Helene Hoenigsperger
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstr. 1, Baden-Wuerttemberg, Ulm 89081, Germany
| | - Alberto Catanese
- German Center for Neurodegenerative Diseases, Albert-Einstein-Allee 11, Baden-Wuerttemberg, Ulm 89081, Germany
- Institute of Anatomy and Cell Biology, Ulm University Medical Center, Albert-Einstein-Allee 11, Baden-Wuerttemberg, Ulm 89081, Germany
| | - Konstantin M J Sparrer
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstr. 1, Baden-Wuerttemberg, Ulm 89081, Germany
| |
Collapse
|
2
|
Dashti A, Hosseini HM, Mirhosseini SA. Epsilon toxin induces cytotoxicity by mediating autophagy and apoptosis via the PI3K/AKT/mTOR signaling pathway in A549 cells. Mol Biol Rep 2025; 52:403. [PMID: 40252125 DOI: 10.1007/s11033-025-10439-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 03/14/2025] [Indexed: 04/21/2025]
Abstract
BACKGROUND Epsilon toxin, which is synthesized by Clostridium perfringens, is a type of pore-forming protein that is associated with the development of enterotoxemia in ruminants. As toxins are agents of bioterrorism, exposure to toxin aerosols causes endothelial cell damage and cytotoxicity in human lung cells. However, little information is available regarding the cytotoxicity and mechanisms associated with lung cancer cell lines. The aim of the present study was to explore the cytotoxic effects of epsilon toxin on the human lung cell line A549 and its involvement in the PI3K/AKT/mTOR signaling pathway to clarify the underlying molecular mechanism involved. METHODS AND RESULTS A549 cells were treated with epsilon toxin, and cytotoxicity was assessed via MTT and LDH assays. Flow cytometry evaluated ROS levels, cell cycle arrest, and apoptosis, while Hoechst 33,258 staining confirmed apoptotic morphology. qRT‒PCR and Western blotting measured apoptosis-, autophagy-, and PI3K/AKT/mTOR-related markers. Epsilon toxin reduced cell viability and increased membrane leakage in a concentration-dependent manner, accompanied by ROS overproduction. It upregulated autophagy markers (beclin-1, LC3 II/I, p62) and suppressed PI3K/AKT/mTOR signaling. Cell cycle arrest at the sub-G1 phase and apoptosis were induced via p53 activation, Bax/Bcl-2 imbalance, and caspase-3 cleavage, as confirmed by annexin V/PI and Hoechst 33,258 staining. CONCLUSIONS Epsilon toxin triggers cytotoxicity in A549 cells by activating apoptosis and autophagy through PI3K/AKT/mTOR pathway inhibition. These findings elucidate molecular mechanisms underlying epsilon toxin's action in lung cancer cells, highlighting its dual role in programmed cell death and potential therapeutic relevance.
Collapse
Affiliation(s)
- Ayat Dashti
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamideh Mahmoodzadeh Hosseini
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Mirhosseini
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Zhang H, Meléndez A. Conserved components of the macroautophagy machinery in Caenorhabditis elegans. Genetics 2025; 229:iyaf007. [PMID: 40180610 PMCID: PMC12005284 DOI: 10.1093/genetics/iyaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 12/13/2024] [Indexed: 04/05/2025] Open
Abstract
Macroautophagy involves the sequestration of cytoplasmic contents in a double-membrane autophagosome and its subsequent delivery to lysosomes for degradation and recycling. In Caenorhabditis elegans, autophagy participates in diverse processes such as stress resistance, cell fate specification, tissue remodeling, aging, and adaptive immunity. Genetic screens in C. elegans have identified a set of metazoan-specific autophagy genes that form the basis for our molecular understanding of steps unique to the autophagy pathway in multicellular organisms. Suppressor screens have uncovered multiple mechanisms that modulate autophagy activity under physiological conditions. C. elegans also provides a model to investigate how autophagy activity is coordinately controlled at an organismal level. In this chapter, we will discuss the molecular machinery, regulation, and physiological functions of autophagy, and also methods utilized for monitoring autophagy during C. elegans development.
Collapse
Affiliation(s)
- Hong Zhang
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Alicia Meléndez
- Department of Biology, Queens College, City University of New York, Flushing, NY 11367, USA
- Molecular, Cellular and Developmental Biology and Biochemistry Ph.D. Programs, The Graduate Center of the City University of New York, New York, NY 10016, USA
| |
Collapse
|
4
|
Cai Z, Wang S, Cao S, Chen Y, Penati S, Peng V, Yuede CM, Beatty WL, Lin K, Zhu Y, Zhou Y, Colonna M. Loss of ATG7 in microglia impairs UPR, triggers ferroptosis, and weakens amyloid pathology control. J Exp Med 2025; 222:e20230173. [PMID: 39945772 PMCID: PMC11823820 DOI: 10.1084/jem.20230173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 11/19/2024] [Accepted: 01/08/2025] [Indexed: 02/16/2025] Open
Abstract
Microglia impact brain development, homeostasis, and pathology. One important microglial function in Alzheimer's disease (AD) is to contain proteotoxic amyloid-β (Aβ) plaques. Recent studies reported the involvement of autophagy-related (ATG) proteins in this process. Here, we found that microglia-specific deletion of Atg7 in an AD mouse model impaired microglia coverage of Aβ plaques, increasing plaque diffusion and neurotoxicity. Single-cell RNA sequencing, biochemical, and immunofluorescence analyses revealed that Atg7 deficiency reduces unfolded protein response (UPR) while increasing oxidative stress. Cellular assays demonstrated that these changes lead to lipoperoxidation and ferroptosis of microglia. In aged mice without Aβ buildup, UPR reduction and increased oxidative damage induced by Atg7 deletion did not impact microglia numbers. We conclude that reduced UPR and increased oxidative stress in Atg7-deficient microglia lead to ferroptosis when exposed to proteotoxic stress from Aβ plaques. However, these microglia can still manage misfolded protein accumulation and oxidative stress as they age.
Collapse
Affiliation(s)
- Zhangying Cai
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Shoutang Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Siyan Cao
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yun Chen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Silvia Penati
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Vincent Peng
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Carla M. Yuede
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Wandy L. Beatty
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kent Lin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yiyang Zhu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yingyue Zhou
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
5
|
Bone B, Griffith L, Jefferson M, Yamauchi Y, Wileman T, Powell PP. ATG16L1 WD domain and linker regulates lipid trafficking to maintain plasma membrane integrity to limit influenza virus infection. Autophagy 2025:1-16. [PMID: 40143422 DOI: 10.1080/15548627.2025.2482516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 03/12/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
The non-canonical functions of autophagy protein ATG16L1 are dependent on a C-terminal WD domain. Recent studies show that the WD domain is required for conjugation of LC3 to single membranes during endocytosis and phagocytosis, where it is thought to promote fusion with lysosomes. Studies in cells lacking the WD domain suggest additional roles in the regulation of cytokine receptor recycling and plasma membrane repair. The WD domain also protects mice against lethal influenza virus in vivo. Here, analysis of mice lacking the WD domain (ΔWD) shows enrichment of cholesterol in brain tissue suggesting a role for the WD domain in cholesterol transport. Brain tissue and cells from ΔWD mice showed reduced cholesterol and phosphatidylserine (PS) in the plasma membrane. Cells from ΔWD mice also showed an intracellular accumulation of cholesterol predominantly in late endosomes. Infection studies using IAV suggest that the loss of cholesterol and PS from the plasma membrane in cells from ΔWD mice results in increased endocytosis and nuclear delivery of IAV, as well as increased Ifnb/Ifnβ and Isg15 gene expression. Upregulation of Il6, Ifnb and Isg15 mRNA were observed in "ex vivo" precision cut lung slices from ΔWD mice both at rest and in response to IAV infection. Overall, we present evidence that regulation of lipid transport by the WD domain of ATG16L1 may have downstream implications in attenuating viral infection and limiting lethal cytokine signaling.Abbreviations: BMDM: bone marrow-derived macrophages, CASM: conjugation of ATG8 to single membranes, CCD: coil-coil domain, IAV: influenza virus A, IFIT1: interferon-induced protein with tetratricopeptide repeats 1, IFITM3: interferon induced transmembrane protein 3, IFN: interferon, ISG15: ISG15 ubiquitin-like modifier, LANDO: LC3-associated endocytosis, LAP: LC3-associated phagocytosis, LDL: low density lipoprotein, NP: nucleoprotein, PS: phosphatidylserine, WD: WD40-repeat-containing C-terminal domain, WT: wild type.
Collapse
Affiliation(s)
- Benjamin Bone
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich, Norfolk, UK
| | - Luke Griffith
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich, Norfolk, UK
| | - Matthew Jefferson
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich, Norfolk, UK
| | - Yohei Yamauchi
- Molecular Medicine Laboratory, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zurich, Zurich, Switzerland
- Department of Virology, Graduate School of Medicine, Nagoya University, Japan
| | - Thomas Wileman
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich, Norfolk, UK
| | - Penny P Powell
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich, Norfolk, UK
| |
Collapse
|
6
|
Chen D, Fearns A, Gutierrez MG. Mycobacterium tuberculosis phagosome Ca 2+ leakage triggers multimembrane ATG8/LC3 lipidation to restrict damage in human macrophages. SCIENCE ADVANCES 2025; 11:eadt3311. [PMID: 40138395 PMCID: PMC11939036 DOI: 10.1126/sciadv.adt3311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 02/21/2025] [Indexed: 03/29/2025]
Abstract
The role of canonical autophagy in controlling Mycobacterium tuberculosis (Mtb), referred to as xenophagy, is understood to involve targeting Mtb to autophagosomes, which subsequently fuse with lysosomes for degradation. Here, we found that Ca2+ leakage after Mtb phagosome damage in human macrophages is the signal that triggers autophagy-related protein 8/microtubule-associated proteins 1A/1B light chain 3 (ATG8/LC3) lipidation. Unexpectedly, ATG8/LC3 lipidation did not target Mtb to lysosomes, excluding the canonical xenophagy. Upon Mtb phagosome damage, the Ca2+ leakage-dependent ATG8/LC3 lipidation occurred on multiple membranes instead of single or double membranes excluding the noncanonical autophagy pathways. Mechanistically, Ca2+ leakage from the phagosome triggered the recruitment of the V-ATPase-ATG16L1 complex independently of FIP200, ATG13, and proton gradient disruption. Furthermore, the Ca2+ leakage-dependent ATG8/LC3 lipidation limited Mtb phagosome damage and restricted Mtb replication. Together, we uncovered Ca2+ leakage as the key signal that triggers ATG8/LC3 lipidation on multiple membranes to mitigate Mtb phagosome damage.
Collapse
Affiliation(s)
- Di Chen
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Antony Fearns
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Maximiliano G. Gutierrez
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
7
|
Gremke N, Besong I, Stroh A, von Wichert L, Witt M, Elmshäuser S, Wanzel M, Fromm MF, Taudte RV, Schmatloch S, Karn T, Reinisch M, Hirmas N, Loibl S, Wündisch T, Litmeyer AS, Jank P, Denkert C, Griewing S, Wagner U, Stiewe T. Targeting PI3K inhibitor resistance in breast cancer with metabolic drugs. Signal Transduct Target Ther 2025; 10:92. [PMID: 40113784 PMCID: PMC11926384 DOI: 10.1038/s41392-025-02180-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 01/31/2025] [Accepted: 02/17/2025] [Indexed: 03/22/2025] Open
Abstract
Activating PIK3CA mutations, present in up to 40% of hormone receptor-positive (HR+), human epidermal growth factor receptor 2-negative (Her2-) breast cancer (BC) patients, can be effectively targeted with the alpha isoform-specific PI3K inhibitor Alpelisib. This treatment significantly improves outcomes for HR+, Her2-, and PIK3CA-mutated metastatic BC patients. However, acquired resistance, often due to aberrant activation of the mTOR complex 1 (mTORC1) pathway, remains a significant clinical challenge. Our study, using in vitro and orthotopic xenograft mouse models, demonstrates that constitutively active mTORC1 signaling renders PI3K inhibitor-resistant BC exquisitely sensitive to various drugs targeting cancer metabolism. Mechanistically, mTORC1 suppresses the induction of autophagy during metabolic perturbation, leading to energy stress, a critical depletion of aspartate, and ultimately cell death. Supporting this mechanism, BC cells with CRISPR/Cas9-engineered knockouts of canonical autophagy genes showed similar vulnerability to metabolically active drugs. In BC patients, high mTORC1 activity, indicated by 4E-BP1T37/46 phosphorylation, correlated with p62 accumulation, a sign of impaired autophagy. Together, these markers predicted poor overall survival in multiple BC subgroups. Our findings reveal that aberrant mTORC1 signaling, a common cause of PI3K inhibitor resistance in BC, creates a druggable metabolic vulnerability by suppressing autophagy. Additionally, the combination of 4E-BP1T37/46 phosphorylation and p62 accumulation serves as a biomarker for poor overall survival, suggesting their potential utility in identifying BC patients who may benefit from metabolic therapies.
Collapse
Affiliation(s)
- Niklas Gremke
- Institute of Molecular Oncology, Universities of Gießen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany.
- Department of Gynecology, Gynecological Endocrinology and Oncology, University Hospital Gießen and Marburg Campus Marburg, Philipps-University, Marburg, Germany.
| | - Isabelle Besong
- Institute of Molecular Oncology, Universities of Gießen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
- Department of Gynecology, Gynecological Endocrinology and Oncology, University Hospital Gießen and Marburg Campus Marburg, Philipps-University, Marburg, Germany
| | - Alina Stroh
- Institute of Molecular Oncology, Universities of Gießen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
- Department of Gynecology, Gynecological Endocrinology and Oncology, University Hospital Gießen and Marburg Campus Marburg, Philipps-University, Marburg, Germany
| | - Luise von Wichert
- Institute of Molecular Oncology, Universities of Gießen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
- Department of Gynecology, Gynecological Endocrinology and Oncology, University Hospital Gießen and Marburg Campus Marburg, Philipps-University, Marburg, Germany
| | - Marie Witt
- Institute of Molecular Oncology, Universities of Gießen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
- Department of Gynecology, Gynecological Endocrinology and Oncology, University Hospital Gießen and Marburg Campus Marburg, Philipps-University, Marburg, Germany
| | - Sabrina Elmshäuser
- Institute of Molecular Oncology, Universities of Gießen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
| | - Michael Wanzel
- Institute of Molecular Oncology, Universities of Gießen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
| | - Martin F Fromm
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- FAU NeW - Research Center New Bioactive Compounds, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - R Verena Taudte
- Core Facility for Metabolomics, Philipps University, Marburg, Germany
| | | | - Thomas Karn
- UCT Frankfurt-Marburg, Department of Gynecology and Obstetrics, Goethe University, Frankfurt, Germany
| | - Mattea Reinisch
- Breast Unit, University Hospital Mannheim, Mannheim, Germany
- Department of Gynecology with Breast Center, University Medicine Berlin, Berlin, Germany
| | - Nader Hirmas
- German Breast Group (GBG), Neu-Isenburg, Germany
| | | | - Thomas Wündisch
- UCT Frankfurt-Marburg, Comprehensive Cancer Center Marburg, University Hospital Gießen and Marburg Campus Marburg, Philipps-University, Marburg, Germany
| | - Anne-Sophie Litmeyer
- Institute of Pathology, University Hospital Gießen and Marburg Campus Marburg, Philipps-University, Marburg, Germany
| | - Paul Jank
- Institute of Pathology, University Hospital Gießen and Marburg Campus Marburg, Philipps-University, Marburg, Germany
| | - Carsten Denkert
- Institute of Pathology, University Hospital Gießen and Marburg Campus Marburg, Philipps-University, Marburg, Germany
| | - Sebastian Griewing
- Department of Gynecology, Gynecological Endocrinology and Oncology, University Hospital Gießen and Marburg Campus Marburg, Philipps-University, Marburg, Germany
| | - Uwe Wagner
- Department of Gynecology, Gynecological Endocrinology and Oncology, University Hospital Gießen and Marburg Campus Marburg, Philipps-University, Marburg, Germany
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Universities of Gießen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
- Genomics Core Facility, Philipps-University, Marburg, Germany
- Institute of Lung Health, Justus Liebig University, Gießen, Germany
| |
Collapse
|
8
|
Magalie LP, Yline C, Olivier P, Blandine DP, Nathalie C. A second RUBCN variant associated with epileptic encephalopathy and neurodevelopmental delay. Am J Med Genet A 2025; 197:e63937. [PMID: 39520129 DOI: 10.1002/ajmg.a.63937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/18/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
The RUBCN gene encodes a widely expressed protein called Rubicon, the main function of which is to negatively regulate macroautophagy. A single homozygous pathogenic variant of the RUBCN gene has been reported to date in two unrelated consanguineous Saudi families with spinocerebellar ataxia autosomal recessive 15 (OMIM#613516). This variant is responsible for the deletion of the highly conserved Rubicon Homology (RH) domain, which is important for the colocalization of Rubicon with Rab7 in the late endosome. In this work, we describe a female patient with childhood-onset epileptic encephalopathy and neurodevelopmental delay carrying a novel homozygous variant in RUBCN (NM_014687.3: c.2126 + 1G>A). A functional study of the RNA revealed that this variant completely abolishes the consensus donor site at the exon 14/intron 14 junction, resulting in the absence of expression of the reference transcript. Two alternative transcripts were expressed: a major transcript resulting from activation of an alternative exonic splice site and a minor transcript with skipping of exon 14. The two alternative transcripts lead to a shift in the reading frame introducing a premature stop codon. The resulting truncated protein lacks the RH domain, which may lead to defective endosomal trafficking as previously described. To our best knowledge, this is the first report of an impairment of RUBCN caused by a splice variant.
Collapse
Affiliation(s)
| | - Capri Yline
- Department of Genetics, APHP-Robert Debré University Hospital, Paris, France; INSERM UMR1141, Neurodiderot, University of Paris Cité, Paris, France
| | - Patat Olivier
- Department of Medical Genetics, Toulouse University Hospital, Toulouse, France
| | | | - Couque Nathalie
- Department of Genetics, APHP-Robert Debré University Hospital, Paris, France; INSERM UMR1141, Neurodiderot, University of Paris Cité, Paris, France
| |
Collapse
|
9
|
Jeong S, Yang K, Lee Y, Park JW, Park EM, Kang JL. Gas6 induces AIM to suppress acute lung injury in mice by inhibiting NLRP3 inflammasome activation and inducing autophagy. Front Immunol 2025; 16:1523166. [PMID: 40034700 PMCID: PMC11873840 DOI: 10.3389/fimmu.2025.1523166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/28/2025] [Indexed: 03/05/2025] Open
Abstract
Introduction Growth arrest-specific 6 (Gas6) protein signaling plays a critical role in maintaining immune homeostasis and regulating inflammation. However, novel mechanisms for modulating macrophage activity through the Gas6 axis are being identified. Gas6 enhances the production of apoptosis inhibitor of macrophages (AIM), a protein with potent anti-inflammatory properties. This study investigates whether Gas6-induced AIM suppresses acute lung injury (ALI) in mice by modulating key inflammatory pathways, including inflammasome activation, autophagy, reactive oxygen species (ROS) generation, and efferocytosis. Methods ALI was induced in wild-type (WT) and AIM-/- mice via intratracheal administration of LPS. To evaluate the effects of the Gas6-AIM axis on lung inflammation, recombinant Gas6 (rGas6) was treated intraperitoneally. Inflammatory responses were evaluated using enzyme-linked immunosorbent assay, a cell-sizing analyzer, and Bicinchoninic acid assays. Lung pathology was assessed using hematoxylin-eosin staining. NLRP3 inflammasome activation and autophagy were evaluated using western blot, quantitative real-time PCR, and immunofluorescence. Reactive oxygen species (ROS) levels in alveolar macrophages were measured via fluorescence microscopy, while efferocytosis was assessed in cytospin-stained BAL cells and cultured alveolar macrophages co-cultured with apoptotic Jurkat cells. Additionally, rGas6-mediated effects on NLRP3 inflammasome activation and autophagy were validated in mouse bone marrow-derived macrophages (BMDMs) using siRNAs targeting AIM, Axl, LXRα, or LXRβ. Results Proinflammatory cytokine production, neutrophil infiltration, and protein levels in BALF were significantly reduced by rGas6 administration in WT mice but not in AIM-/- mice. Specifically, rGas6 reduced IL-1β and IL-18 levels, caspase-1 activity, and the production of apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC) in alveolar macrophages. Additionally, rGas6 promoted autophagy and efferocytosis in alveolar macrophages while reducing ROS levels through AIM production. These protective effects were absent in AIM-/- mice. Furthermore, siRNA-mediated silencing of Axl, LXRα, LXRβ, or AIM reversed the inhibitory effects of rGas6 on NLRP3 inflammasome activation in BMDMs, and AIM was essential for rGas6-induced autophagy. Conclusion Gas6-induced AIM production protects against LPS-induced ALI by inhibiting NLRP3 inflammasome activation, enhancing autophagy and efferocytosis, and reducing oxidative stress. These findings highlight the Gas6-AIM axis as a potential therapeutic target for mitigating inflammatory lung diseases.
Collapse
Affiliation(s)
- Seonghee Jeong
- Department of Physiology, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Kyungwon Yang
- Department of Physiology, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Ye‐Ji Lee
- Department of Physiology, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Joo-Won Park
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Eun-Mi Park
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Jihee Lee Kang
- Department of Physiology, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Ławkowska K, Bonowicz K, Jerka D, Bai Y, Gagat M. Integrins in Cardiovascular Health and Disease: Molecular Mechanisms and Therapeutic Opportunities. Biomolecules 2025; 15:233. [PMID: 40001536 PMCID: PMC11853560 DOI: 10.3390/biom15020233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/30/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
Cardiovascular diseases, including atherosclerosis, hypertension, and heart failure, remain the leading cause of global mortality, with endothelial dysfunction and vascular remodeling as critical contributors. Integrins, as transmembrane adhesion proteins, are central regulators of cell adhesion, migration, and signaling, playing a pivotal role in maintaining vascular homeostasis and mediating pathological processes such as inflammation, angiogenesis, and extracellular matrix remodeling. This article comprehensively examines the role of integrins in the pathogenesis of cardiovascular diseases, focusing on their dysfunction in endothelial cells and interactions with inflammatory mediators, such as TNF-α. Molecular mechanisms of integrin action are discussed, including their involvement in mechanotransduction, leukocyte adhesion, and signaling pathways that regulate vascular integrity. The review also highlights experimental findings, such as the use of specific integrin-targeting plasmids and immunofluorescence to elucidate integrin functions under inflammatory conditions. Additionally, potential therapeutic strategies are explored, including the development of integrin inhibitors, monoclonal antibodies, and their application in regenerative medicine. These approaches aim not only to mitigate pathological vascular remodeling but also to promote tissue repair and angiogenesis. By bridging insights from molecular studies with their translational potential, this work underscores the promise of integrin-based therapies in advancing the management and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Karolina Ławkowska
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
| | - Klaudia Bonowicz
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
- Collegium Medicum, Mazovian Academy in Płock, 09-402 Płock, Poland
| | - Dominika Jerka
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
| | - Yidong Bai
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX 78229, USA;
| | - Maciej Gagat
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
- Collegium Medicum, Mazovian Academy in Płock, 09-402 Płock, Poland
| |
Collapse
|
11
|
Arbogast F, Sal-Carro R, Boufenghour W, Frenger Q, Bouis D, Filippi De La Palavesa L, Fauny JD, Griso O, Puccio H, Fima R, Huby T, Gautier EL, Molitor A, Carapito R, Bahram S, Romani N, Clausen BE, Voisin B, Mueller CG, Gros F, Flacher V. Epidermal maintenance of Langerhans cells relies on autophagy-regulated lipid metabolism. J Cell Biol 2025; 224:e202403178. [PMID: 39535446 PMCID: PMC11561468 DOI: 10.1083/jcb.202403178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/12/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Macroautophagy (often-named autophagy), a catabolic process involving autophagy-related (Atg) genes, prevents the accumulation of harmful cytoplasmic components and mobilizes energy reserves in long-lived and self-renewing cells. Autophagy deficiency affects antigen presentation in conventional dendritic cells (DCs) without impacting their survival. However, previous studies did not address epidermal Langerhans cells (LCs). Here, we demonstrate that deletion of either Atg5 or Atg7 in LCs leads to their gradual depletion. ATG5-deficient LCs showed metabolic dysregulation and accumulated neutral lipids. Despite increased mitochondrial respiratory capacity, they were unable to process lipids, eventually leading them to ferroptosis. Finally, metabolically impaired LCs upregulated proinflammatory transcripts and showed decreased expression of neuronal interaction receptors. Altogether, autophagy represents a critical regulator of lipid storage and metabolism in LCs, allowing their maintenance in the epidermis.
Collapse
Affiliation(s)
- Florent Arbogast
- Laboratory CNRS I2CT/UPR3572 Immunology, Immunopathology and Therapeutic Chemistry, Strasbourg Drug Discovery and Development Institute (IMS), Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Raquel Sal-Carro
- Laboratory CNRS I2CT/UPR3572 Immunology, Immunopathology and Therapeutic Chemistry, Strasbourg Drug Discovery and Development Institute (IMS), Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Wacym Boufenghour
- Laboratory CNRS I2CT/UPR3572 Immunology, Immunopathology and Therapeutic Chemistry, Strasbourg Drug Discovery and Development Institute (IMS), Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | | - Delphine Bouis
- Laboratory CNRS I2CT/UPR3572 Immunology, Immunopathology and Therapeutic Chemistry, Strasbourg Drug Discovery and Development Institute (IMS), Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Louise Filippi De La Palavesa
- Laboratory CNRS I2CT/UPR3572 Immunology, Immunopathology and Therapeutic Chemistry, Strasbourg Drug Discovery and Development Institute (IMS), Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Jean-Daniel Fauny
- Laboratory CNRS I2CT/UPR3572 Immunology, Immunopathology and Therapeutic Chemistry, Strasbourg Drug Discovery and Development Institute (IMS), Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Olivier Griso
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U1258/CNRS UMR7104, Illkirch, France
| | - Hélène Puccio
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U1258/CNRS UMR7104, Illkirch, France
| | - Rebecca Fima
- Sorbonne Université, INSERM UMR_S 1166 ICAN, Paris, France
| | - Thierry Huby
- Sorbonne Université, INSERM UMR_S 1166 ICAN, Paris, France
| | | | - Anne Molitor
- Laboratoire d’Immunorhumatologie Moléculaire, Plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, ITI TRANSPLANTEX NG, Université de Strasbourg, Strasbourg, France
- Strasbourg Federation of Translational Medicine (FMTS), Strasbourg University, Strasbourg, France
| | - Raphaël Carapito
- Laboratoire d’Immunorhumatologie Moléculaire, Plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, ITI TRANSPLANTEX NG, Université de Strasbourg, Strasbourg, France
- Strasbourg Federation of Translational Medicine (FMTS), Strasbourg University, Strasbourg, France
- Service d’Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Seiamak Bahram
- Laboratoire d’Immunorhumatologie Moléculaire, Plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, ITI TRANSPLANTEX NG, Université de Strasbourg, Strasbourg, France
- Strasbourg Federation of Translational Medicine (FMTS), Strasbourg University, Strasbourg, France
- Service d’Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Nikolaus Romani
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Björn E. Clausen
- Institute for Molecular Medicine and Paul Klein Center for Immunotherapy (PKZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Benjamin Voisin
- Laboratory CNRS I2CT/UPR3572 Immunology, Immunopathology and Therapeutic Chemistry, Strasbourg Drug Discovery and Development Institute (IMS), Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Christopher G. Mueller
- Laboratory CNRS I2CT/UPR3572 Immunology, Immunopathology and Therapeutic Chemistry, Strasbourg Drug Discovery and Development Institute (IMS), Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Frédéric Gros
- Laboratory CNRS I2CT/UPR3572 Immunology, Immunopathology and Therapeutic Chemistry, Strasbourg Drug Discovery and Development Institute (IMS), Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Vincent Flacher
- Laboratory CNRS I2CT/UPR3572 Immunology, Immunopathology and Therapeutic Chemistry, Strasbourg Drug Discovery and Development Institute (IMS), Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| |
Collapse
|
12
|
Lu T, Li W. Neutrophil Engulfment in Cancer: Friend or Foe? Cancers (Basel) 2025; 17:384. [PMID: 39941753 PMCID: PMC11816126 DOI: 10.3390/cancers17030384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Neutrophils, the most abundant circulating white blood cells, are essential for the initial immune response to infection and injury. Emerging research reveals a dualistic function of neutrophils in cancer, where they can promote or inhibit tumor progression. This dichotomy is influenced by the tumor microenvironment, with neutrophils capable of remodeling the extracellular matrix, promoting angiogenesis, or alternatively inducing cancer cell death and enhancing immune responses. An intriguing yet poorly understood aspect of neutrophil-cancer interactions is the phenomenon of neutrophil engulfment by cancer cells, which has been observed across various cancers. This process, potentially mediated by LC3-associated phagocytosis (LAP), raises questions about whether it serves as a mechanism for immune evasion or contributes to tumor cell death through pathways like ferroptosis. This review examines current knowledge on neutrophil development, their roles in cancer, and the mechanisms of LAP in neutrophil engulfment by tumor cells. We discuss how manipulating LAP impacts cancer progression and may represent a therapeutic strategy. We also explore neutrophils' potential as delivery vehicles for cancer therapeutic agents. Understanding the complex functions of tumor-associated neutrophils (TANs) and the molecular mechanisms underlying LAP in cancer may open new avenues for effective therapeutic interventions and mitigate potential risks.
Collapse
Affiliation(s)
- Tong Lu
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Wei Li
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA 17033, USA
- Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA 17033, USA
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
13
|
Woglar A, Busso C, Garcia-Rodriguez G, Douma F, Croisier M, Knott G, Gönczy P. Mechanisms of axoneme and centriole elimination in Naegleria gruberi. EMBO Rep 2025; 26:385-406. [PMID: 39623167 PMCID: PMC11772885 DOI: 10.1038/s44319-024-00329-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/23/2024] [Accepted: 11/06/2024] [Indexed: 01/29/2025] Open
Abstract
The early branching eukaryote Naegleria gruberi can transform transiently from an amoeboid life form lacking centrioles and flagella to a flagellate life form where these elements are present, followed by reversion to the amoeboid state. The mechanisms imparting elimination of axonemes and centrioles during this reversion process are not known. Here, we uncover that flagella primarily fold onto the cell surface and fuse within milliseconds with the plasma membrane. Once internalized, axonemes are severed by Spastin into similarly-sized fragments that are then enclosed by membranes, before their contents are eliminated through the lysosomal pathway. Moreover, we discovered that centrioles undergo progressive K63 autophagy-linked poly-ubiquitination and K48 proteasome-promoting poly-ubiquitination, and that such ubiquitination occurs next to centriolar microtubules. Most centrioles are eliminated in either lysosomes or the cytoplasm in a lysosomal- and proteasome-dependent manner. Strikingly, we uncover in addition that centrioles can be shed in the extracellular milieu and taken up by other cells. Collectively, these findings reveal fundamental mechanisms governing the elimination of essential cellular constituents in Naegleria that may operate broadly in eukaryotic systems.
Collapse
Affiliation(s)
- Alexander Woglar
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Coralie Busso
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Gabriela Garcia-Rodriguez
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Friso Douma
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Marie Croisier
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Graham Knott
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
14
|
Chvanov M, Voronina S, Jefferson M, Mayer U, Sutton R, Criddle DN, Wileman T, Tepikin AV. Deletion of the WD40 domain of ATG16L1 exacerbates acute pancreatitis, abolishes LAP-like non-canonical autophagy and slows trypsin degradation. Autophagy 2025; 21:210-222. [PMID: 39216469 PMCID: PMC11702947 DOI: 10.1080/15548627.2024.2392478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
The WD40 domain (WDD) of ATG16L1 plays a pivotal role in non-canonical autophagy. This study examined the role of recently identified LAP-like non-canonical autophagy (LNCA) in acute pancreatitis. LNCA involves rapid single-membrane LC3 conjugation to endocytic vacuoles in pancreatic acinar cells. The rationale for this study was the previously observed presence of trypsin in the organelles undergoing LNCA; aberrant trypsin formation is an important factor in pancreatitis development. Here we report that the deletion of WDD (attained in ATG16L1[E230] mice) eliminated LNCA, aggravated caerulein-induced acute pancreatitis and suppressed the fast trypsin degradation observed in both a rapid caerulein-induced disease model and in caerulein-treated isolated pancreatic acinar cells. These experiments indicate that LNCA is a WDD-dependent mechanism and suggest that it plays not an activating but a protective role in acute pancreatitis. Furthermore, palmitoleic acid, another inducer of experimental acute pancreatitis, strongly inhibited LNCA, suggesting a novel mechanism of pancreatic lipotoxicity.Abbreviation: AMY: amylase; AP: acute pancreatitis; CASM: conjugation of Atg8 to single membranes; CCK: cholecystokinin; FAEE model: fatty acid and ethanol model; IL6: interleukin 6; LA: linoleic acid; LAP: LC3-associated phagocytosis; LMPO: lung myeloperoxidase; LNCA: LAP-like non-canonical autophagy; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MPO: myeloperoxidase; PMPO: pancreatic myeloperoxidase; POA: palmitoleic acid; WDD: WD40 domain; WT: wild type.
Collapse
Affiliation(s)
- Michael Chvanov
- Department of Molecular & Clinical Cancer Medicine, Institute of Systems Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Svetlana Voronina
- Department of Molecular & Clinical Cancer Medicine, Institute of Systems Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Matthew Jefferson
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Ulrike Mayer
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Robert Sutton
- Department of Molecular & Clinical Cancer Medicine, Institute of Systems Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - David N. Criddle
- Department of Molecular & Clinical Cancer Medicine, Institute of Systems Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Thomas Wileman
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Alexei V. Tepikin
- Department of Molecular & Clinical Cancer Medicine, Institute of Systems Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
15
|
Gao L, Manaenko A, Zeng F, Li J, Liu L, Xie R, Zhang X, Zhang JH, Mei Q, Tang J, Hu Q. Efferocytosis: A new therapeutic target for stroke. Chin Med J (Engl) 2024; 137:2843-2850. [PMID: 39528491 DOI: 10.1097/cm9.0000000000003363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Indexed: 11/16/2024] Open
Abstract
ABSTRACT Efferocytosis refers to the process that phagocytes recognize and remove the apoptotic cells, which is essential for maintaining tissue homeostasis both in physiological and pathological conditions. Numerous studies have demonstrated that efferocytosis can prevent secondary necrosis and proinflammatory factor release, leading to the resolution of inflammation and tissue immunological tolerance in numerous diseases such as stroke. Stroke is a leading cause of death and morbidity for adults worldwide. Persistent inflammation triggered by the dead cells or cell debris is a major contributor to post-stroke brain damage. Effective efferocytosis might be an efficient strategy to minimize inflammation and restore brain homeostasis for neuronal regeneration and function recovery. In this review, we will discuss the phagocytes in the brain, the molecular mechanisms underlying efferocytosis, the role of efferocytosis in inflammation resolution, and the potential therapeutic applications targeting efferocytosis in stroke.
Collapse
Affiliation(s)
- Li Gao
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Anatol Manaenko
- Clinical Neuroanatomy, Department of Neurology, School of Medicine, Ulm University, Ulm 89081, Germany
| | - Feng Zeng
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Jingchen Li
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Lele Liu
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Ruichuan Xie
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Xiaohua Zhang
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA
| | - Qiyong Mei
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA
| | - Qin Hu
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai 200127, China
| |
Collapse
|
16
|
Eo H, Kim S, Jung UJ, Kim SR. Alpha-Synuclein and Microglia in Parkinson's Disease: From Pathogenesis to Therapeutic Prospects. J Clin Med 2024; 13:7243. [PMID: 39685702 DOI: 10.3390/jcm13237243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/14/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by both motor symptoms and non-motor features. A hallmark of PD is the misfolding and accumulation of alpha-synuclein (α-syn), which triggers neuroinflammation and drives neurodegeneration. Microglia, brain cells that play a central role in neuroinflammatory responses and help clear various unnecessary molecules within the brain, thus maintaining the brain's internal environment, respond to α-syn through mechanisms involving inflammation, propagation, and clearance. This review delves into the complex interplay between α-syn and microglia, elucidating how these interactions drive PD pathogenesis. Furthermore, we discuss emerging therapeutic strategies targeting the α-syn-microglia axis, with a focus on modulating microglial functions to mitigate neuroinflammation, enhance clearance, and prevent α-syn propagation, emphasizing their potential to slow PD progression.
Collapse
Affiliation(s)
- Hyemi Eo
- School of Life Science and Biotechnology, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sehwan Kim
- School of Life Science and Biotechnology, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Un Ju Jung
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - Sang Ryong Kim
- School of Life Science and Biotechnology, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41404, Republic of Korea
| |
Collapse
|
17
|
Zhang B, Zou Y, Yuan Z, Jiang K, Zhang Z, Chen S, Zhou X, Wu Q, Zhang X. Efferocytosis: the resolution of inflammation in cardiovascular and cerebrovascular disease. Front Immunol 2024; 15:1485222. [PMID: 39660125 PMCID: PMC11628373 DOI: 10.3389/fimmu.2024.1485222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Cardiovascular and cerebrovascular diseases have surpassed cancer as significant global health challenges, which mainly include atherosclerosis, myocardial infarction, hemorrhagic stroke and ischemia stroke. The inflammatory response immediately following these diseases profoundly impacts patient prognosis and recovery. Efficient resolution of inflammation is crucial not only for halting the inflammatory process but also for restoring tissue homeostasis. Efferocytosis, the phagocytic clearance of dying cells by phagocytes, especially microglia and macrophages, plays a critical role in this resolution process. Upon tissue injury, phagocytes are recruited to the site of damage where they engulf and clear dying cells through efferocytosis. Efferocytosis suppresses the secretion of pro-inflammatory cytokines, stimulates the production of anti-inflammatory cytokines, modulates the phenotype of microglia and macrophages, accelerates the resolution of inflammation, and promotes tissue repair. It involves three main stages: recognition, engulfment, and degradation of dying cells. Optimal removal of apoptotic cargo by phagocytes requires finely tuned machinery and associated modifications. Key molecules in efferocytosis, such as 'Find-me signals', 'Eat-me signals', and 'Don't eat-me signals', have been shown to enhance efferocytosis following cardiovascular and cerebrovascular diseases. Moreover, various additional molecules, pathways, and mitochondrial metabolic processes have been identified to enhance prognosis and outcomes via efferocytosis in diverse experimental models. Impaired efferocytosis can lead to inflammation-associated pathologies and prolonged recovery periods. Therefore, this review consolidates current understanding of efferocytosis mechanisms and its application in cardiovascular and cerebrovascular diseases, proposing future research directions.
Collapse
Affiliation(s)
- Bingtao Zhang
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yan Zou
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zixuan Yuan
- Department of Neurosurgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Kun Jiang
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhaoxiang Zhang
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Shujuan Chen
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiaoming Zhou
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qi Wu
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xin Zhang
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
18
|
Xue S, Lin Y, Chen H, Yang Z, Zha J, Jiang X, Han Z, Wang K. Mechanisms of autophagy and their implications in dermatological disorders. Front Immunol 2024; 15:1486627. [PMID: 39559368 PMCID: PMC11570406 DOI: 10.3389/fimmu.2024.1486627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/18/2024] [Indexed: 11/20/2024] Open
Abstract
Autophagy is a highly conserved cellular self-digestive process that underlies the maintenance of cellular homeostasis. Autophagy is classified into three types: macrophage, chaperone-mediated autophagy (CMA) and microphagy, which maintain cellular homeostasis through different mechanisms. Altered autophagy regulation affects the progression of various skin diseases, including psoriasis (PA), systemic lupus erythematosus (SLE), vitiligo, atopic dermatitis (AD), alopecia areata (AA) and systemic sclerosis (SSc). In this review, we review the existing literature focusing on three mechanisms of autophagy, namely macrophage, chaperone-mediated autophagy and microphagy, as well as the roles of autophagy in the above six dermatological disorders in order to aid in further studies in the future.
Collapse
Affiliation(s)
- Shenghao Xue
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| | - Yumeng Lin
- Health Management Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Haoran Chen
- Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Zhengyu Yang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| | - Junting Zha
- Health Management Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xuan Jiang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| | - Zhongyu Han
- Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Ke Wang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| |
Collapse
|
19
|
Chen X, Su Q, Gong R, Ling X, Xu R, Feng Q, Ke J, Liu M, Kahaerjiang G, Liu Y, Yang Y, Jiang Z, Wu H, Qi Y. LC3-associated phagocytosis and human diseases: Insights from mechanisms to therapeutic potential. FASEB J 2024; 38:e70130. [PMID: 39446073 DOI: 10.1096/fj.202402126r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/02/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
LC3-associated phagocytosis (LAP) is a distinct type of autophagy that involves the sequestration of extracellular material by phagocytes. Beyond the removal of dead cells and cellular debris from eukaryotic cells, LAP is also involved in the removal of a variety of pathogens, including bacteria, fungi, and viruses. These events are integral to multiple physiological and pathological processes, such as host defense, inflammation, and tissue homeostasis. Dysregulation of LAP has been associated with the pathogenesis of several human diseases, including infectious diseases, autoimmune diseases, and neurodegenerative diseases. Thus, understanding the molecular mechanisms underlying LAP and its involvement in human diseases may provide new insights into the development of novel therapeutic strategies for these conditions. In this review, we summarize and highlight the current consensus on the role of LAP and its biological functions in disease progression to propose new therapeutic strategies. Further studies are needed to illustrate the precise role of LAP in human disease and to determine new therapeutic targets for LAP-associated pathologies.
Collapse
Affiliation(s)
- Xu Chen
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Qi Su
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Ruize Gong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Xing Ling
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Runxiao Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Qijia Feng
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Jialiang Ke
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Meng Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | | | - Yuhang Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yanyan Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Zhihong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Hongmei Wu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yitao Qi
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| |
Collapse
|
20
|
Lee M, Kim HG. Anti-Cancer Strategy Based on Changes in the Role of Autophagy Depending on the Survival Environment and Tumorigenesis Stages. Molecules 2024; 29:5134. [PMID: 39519774 PMCID: PMC11547988 DOI: 10.3390/molecules29215134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/21/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Autophagy is a crucial mechanism for recycling intracellular materials, and under normal metabolic conditions, it is maintained at low levels in cells. However, when nutrients are deficient or under hypoxic conditions, the level of autophagy significantly increases. Particularly in cancer cells, which grow more rapidly than normal cells and tend to grow in a three-dimensional manner, cells inside the cell mass often face limited oxygen supply, leading to inherently higher levels of autophagy. Therefore, the initial development of anticancer drugs targeting autophagy was based on a strategy to suppress these high levels of autophagy. However, anticancer drugs that inhibit autophagy have not shown promising results in clinical trials, as it has been revealed that autophagy does not always play a role that favors cancer cell survival. Hence, this review aims to suggest anticancer strategies based on the changes in the role of autophagy according to survival conditions and tumorigenesis stage.
Collapse
Affiliation(s)
- Michael Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Institute for New Drug Development, Incheon National University, Incheon 22012, Republic of Korea
| | - Hye-Gyo Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
21
|
Marques-da-Silva C, Schmidt-Silva C, Bowers C, Charles-Chess E, Shiau JC, Park ES, Yuan Z, Kim BH, Kyle DE, Harty JT, MacMicking JD, Kurup SP. Type-I IFNs induce GBPs and lysosomal defense in hepatocytes to control malaria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619707. [PMID: 39484443 PMCID: PMC11526971 DOI: 10.1101/2024.10.22.619707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Plasmodium parasites undergo development and replication within the hepatocytes before infecting the erythrocytes and initiating clinical malaria. Although type-I interferons (IFNs) are known to hinder Plasmodium infection within the liver, the underlying mechanisms remain unclear. Here, we describe two IFN-I-driven hepatocyte antimicrobial programs controlling liver-stage malaria. First, oxidative defense by NADPH oxidases 2 and 4 triggers a pathway of lysosomal fusion with the parasitophorous vacuole (PV) to help clear Plasmodium . Second, guanylate-binding protein (GBP) 1 disruption of the PV activates caspase-1 inflammasome, inducing pyroptosis to remove the infected host cells. Remarkably, both human and mouse hepatocytes enlist these cell-autonomous immune programs to eliminate Plasmodium ; their pharmacologic or genetic inhibition led to profound malarial susceptibility, and are essential in vivo . In addition to identifying the IFN-I-mediated cell-autonomous immune circuits controlling Plasmodium infection in the hepatocytes, this study extends our understanding of how non-immune cells are integral to protective immunity against malaria.
Collapse
|
22
|
Herb M, Schatz V, Hadrian K, Hos D, Holoborodko B, Jantsch J, Brigo N. Macrophage variants in laboratory research: most are well done, but some are RAW. Front Cell Infect Microbiol 2024; 14:1457323. [PMID: 39445217 PMCID: PMC11496307 DOI: 10.3389/fcimb.2024.1457323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/06/2024] [Indexed: 10/25/2024] Open
Abstract
Macrophages play a pivotal role in the innate immune response. While their most characteristic function is phagocytosis, it is important not to solely characterize macrophages by this activity. Their crucial roles in body development, homeostasis, repair, and immune responses against pathogens necessitate a broader understanding. Macrophages exhibit remarkable plasticity, allowing them to modify their functional characteristics in response to the tissue microenvironment (tissue type, presence of pathogens or inflammation, and specific signals from neighboring cells) swiftly. While there is no single defined "macrophage" entity, there is a diverse array of macrophage types because macrophage ontogeny involves the differentiation of progenitor cells into tissue-resident macrophages, as well as the recruitment and differentiation of circulating monocytes in response to tissue-specific cues. In addition, macrophages continuously sense and respond to environmental cues and tissue conditions, adjusting their functional and metabolic states accordingly. Consequently, it is of paramount importance to comprehend the heterogeneous origins and functions of macrophages employed in in vitro studies, as each available in vitro macrophage model is associated with specific sets of strengths and limitations. This review centers its attention on a comprehensive comparison between immortalized mouse macrophage cell lines and primary mouse macrophages. It provides a detailed analysis of the strengths and weaknesses inherent in these in vitro models. Finally, it explores the subtle distinctions between diverse macrophage cell lines, offering insights into numerous factors beyond the model type that can profoundly influence macrophage function.
Collapse
Affiliation(s)
- Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Valentin Schatz
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Karina Hadrian
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Deniz Hos
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Bohdan Holoborodko
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg and University of Regensburg, Regensburg, Germany
| | - Jonathan Jantsch
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Natascha Brigo
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
23
|
Xie XD, Dong SS, Liu RJ, Shi LL, Zhu T. Mechanism of Efferocytosis in Determining Ischaemic Stroke Resolution-Diving into Microglia/Macrophage Functions and Therapeutic Modality. Mol Neurobiol 2024; 61:7583-7602. [PMID: 38409642 DOI: 10.1007/s12035-024-04060-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/17/2024] [Indexed: 02/28/2024]
Abstract
After ischaemic cerebral vascular injury, efferocytosis-a process known as the efficient clearance of apoptotic cells (ACs) by various phagocytes in both physiological and pathological states-is crucial for maintaining central nervous system (CNS) homeostasis and regaining prognosis. The mechanisms of efferocytosis in ischaemic stroke and its influence on preventing inflammation progression from secondary injury were still not fully understood, despite the fact that the fundamental process of efferocytosis has been described in a series of phases, including AC recognition, phagocyte engulfment, and subsequent degradation. The genetic reprogramming of macrophages and brain-resident microglia after an ischaemic stroke has been equated by some researchers to that of the peripheral blood and brain. Based on previous studies, some molecules, such as signal transducer and activator of transcription 6 (STAT6), peroxisome proliferator-activated receptor γ (PPARG), CD300A, and sigma non-opioid intracellular receptor 1 (SIGMAR1), were discovered to be largely associated with aspects of apoptotic cell elimination and accompanying neuroinflammation, such as inflammatory cytokine release, phenotype transformation, and suppressing of antigen presentation. Exacerbated stroke outcomes are brought on by defective efferocytosis and improper modulation of pertinent signalling pathways in blood-borne macrophages and brain microglia, which also results in subsequent tissue inflammatory damage. This review focuses on recent researches which contain a number of recently discovered mechanisms, such as studies on the relationship between benign efferocytosis and the regulation of inflammation in ischaemic stroke, the roles of some risk factors in disease progression, and current immune approaches that aim to promote efferocytosis to treat some autoimmune diseases. Understanding these pathways provides insight into novel pathophysiological processes and fresh characteristics, which can be used to build cerebral ischaemia targeting techniques.
Collapse
Affiliation(s)
- Xiao-Di Xie
- Department of Pathophysiology, School of Basic Medicine, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, No. 308 Ningxia Road, Qingdao, China
| | - Shan-Shan Dong
- Department of Pathophysiology, School of Basic Medicine, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, No. 308 Ningxia Road, Qingdao, China
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ru-Juan Liu
- Department of Pathophysiology, School of Basic Medicine, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, No. 308 Ningxia Road, Qingdao, China
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Liu-Liu Shi
- Department of Pathophysiology, School of Basic Medicine, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, No. 308 Ningxia Road, Qingdao, China
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ting Zhu
- Department of Pathophysiology, School of Basic Medicine, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, No. 308 Ningxia Road, Qingdao, China.
| |
Collapse
|
24
|
Yao X, Cao B, Liu J, Lv Q, Zhang J, Cheng X, Mao C, Ma Q, Wang F, Liu C. Microglial Melatonin Receptor 1 Degrades Pathological Alpha-Synuclein Through Activating LC3-Associated Phagocytosis In Vitro. CNS Neurosci Ther 2024; 30:e70088. [PMID: 39444113 PMCID: PMC11499215 DOI: 10.1111/cns.70088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/27/2024] [Accepted: 10/06/2024] [Indexed: 10/25/2024] Open
Abstract
AIMS Parkinson's disease (PD) is characterized by the formation of Lewy bodies (LBs), primarily constituted of α-synuclein (α-Syn). Microglial cells exhibit specific reactivity toward misfolded proteins such as α-Syn. However, the exact clearance mechanism and related molecular targets remain elusive. METHODS BV2 cells, primary microglia from wild-type and MT1 knockout mice, and primary cortical neurons were utilized as experimental models. The study investigated relevant mechanisms by modulating microglial MT1 expression through small RNA interference (RNAi) and lentiviral overexpression techniques. Furthermore, pathological aggregation of α-Syn was induced using pre-formed fibrils (PFF) α-Syn. Co-immunoprecipitation, immunofluorescence, Western blot (WB), and quantitative real-time PCR were used to elucidate the mechanisms of molecular regulation. RESULTS In this study, we elucidated the regulatory role of the melatonin receptor 1 (MT1) in the microglial phagocytic process. Following MT1 knockout, the ability of microglial cells to engulf latex beads and zymosan particles decreased, subsequently affecting the phagocytic degradation of fibrillar α-Syn by microglial cells. Furthermore, the loss of MT1 receptors in microglial cells exacerbates the aggregation of α-Syn in neurons induced by pre-formed fibrils (PFF) α-Syn. Mechanistically, MT1 influences the phagocytic function of microglial cells by regulating the Rubicon-dependent LC3-associated phagocytosis (LAP) pathway. CONCLUSION Taken together, the results suggest the neuroprotective function of microglial cells in clearing α-Syn through MT1-mediated LAP, highlighting the potential key role of MT1 in pathogenic mechanisms associated with α-Syn.
Collapse
Affiliation(s)
- Xiao‐Yu Yao
- Department of Neurology and Clinical Research Center of Neurological DiseaseThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of NeuroscienceSoochow UniversitySuzhouChina
| | - Bing‐Er Cao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of NeuroscienceSoochow UniversitySuzhouChina
| | - Jun‐Yi Liu
- Department of NeurologyThe Fourth Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Qian‐Kun Lv
- Department of Neurology and Clinical Research Center of Neurological DiseaseThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of NeuroscienceSoochow UniversitySuzhouChina
| | - Jia‐Rui Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of NeuroscienceSoochow UniversitySuzhouChina
| | - Xiao‐Yu Cheng
- Department of Neurology and Clinical Research Center of Neurological DiseaseThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Cheng‐Jie Mao
- Department of Neurology and Clinical Research Center of Neurological DiseaseThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Quan‐Hong Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of NeuroscienceSoochow UniversitySuzhouChina
| | - Fen Wang
- Department of Neurology and Clinical Research Center of Neurological DiseaseThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of NeuroscienceSoochow UniversitySuzhouChina
| | - Chun‐Feng Liu
- Department of Neurology and Clinical Research Center of Neurological DiseaseThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of NeuroscienceSoochow UniversitySuzhouChina
- Department of NeurologyXiongan Xuanwu HospitalXionganChina
| |
Collapse
|
25
|
Mohamud Y, Lin JC, Hwang SW, Bahreyni A, Wang ZC, Luo H. Coxsackievirus B3 Activates Macrophages Independently of CAR-Mediated Viral Entry. Viruses 2024; 16:1456. [PMID: 39339932 PMCID: PMC11437450 DOI: 10.3390/v16091456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Enteroviruses are a genus of small RNA viruses that are responsible for approximately one billion global infections annually. These infections range in severity from the common cold and flu-like symptoms to more severe diseases, such as viral myocarditis, pancreatitis, and neurological disorders, that continue to pose a global health challenge with limited therapeutic strategies currently available. In the current study, we sought to understand the interaction between coxsackievirus B3 (CVB3), which is a model enterovirus, and macrophage cells, as there is limited understanding of how this virus interacts with macrophage innate immune cells. Our study demonstrated that CVB3 can robustly activate macrophages without apparent viral replication in these cells. We also showed that myeloid cells lacked the viral entry receptor coxsackievirus and adenovirus receptor (CAR). However, the expression of exogenous CAR in RAW264.7 macrophages was unable to overcome the viral replication deficit. Interestingly, the CAR expression was associated with altered inflammatory responses during prolonged infection. Additionally, we identified the autophagy protein LC3 as a novel stimulus for macrophage activation. These findings provide new insights into the mechanisms of CVB3-induced macrophage activation and its implications for viral pathogenesis.
Collapse
Affiliation(s)
- Yasir Mohamud
- Centre for Heart Lung Innovation, University of British Columbia, St. Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Jingfei Carly Lin
- Centre for Heart Lung Innovation, University of British Columbia, St. Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Sinwoo Wendy Hwang
- Centre for Heart Lung Innovation, University of British Columbia, St. Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Amirhossein Bahreyni
- Centre for Heart Lung Innovation, University of British Columbia, St. Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Zhihan Claire Wang
- Centre for Heart Lung Innovation, University of British Columbia, St. Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Honglin Luo
- Centre for Heart Lung Innovation, University of British Columbia, St. Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| |
Collapse
|
26
|
Kilinç G, Boland R, Heemskerk MT, Spaink HP, Haks MC, van der Vaart M, Ottenhoff THM, Meijer AH, Saris A. Host-directed therapy with amiodarone in preclinical models restricts mycobacterial infection and enhances autophagy. Microbiol Spectr 2024; 12:e0016724. [PMID: 38916320 PMCID: PMC11302041 DOI: 10.1128/spectrum.00167-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/23/2024] [Indexed: 06/26/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb) as well as nontuberculous mycobacteria are intracellular pathogens whose treatment is extensive and increasingly impaired due to the rise of mycobacterial drug resistance. The loss of antibiotic efficacy has raised interest in the identification of host-directed therapeutics (HDT) to develop novel treatment strategies for mycobacterial infections. In this study, we identified amiodarone as a potential HDT candidate that inhibited both intracellular Mtb and Mycobacterium avium in primary human macrophages without directly impairing bacterial growth, thereby confirming that amiodarone acts in a host-mediated manner. Moreover, amiodarone induced the formation of (auto)phagosomes and enhanced autophagic targeting of mycobacteria in macrophages. The induction of autophagy by amiodarone is likely due to enhanced transcriptional regulation, as the nuclear intensity of the transcription factor EB, the master regulator of autophagy and lysosomal biogenesis, was strongly increased. Furthermore, blocking lysosomal degradation with bafilomycin impaired the host-beneficial effect of amiodarone. Finally, amiodarone induced autophagy and reduced bacterial burden in a zebrafish embryo model of tuberculosis, thereby confirming the HDT activity of amiodarone in vivo. In conclusion, we have identified amiodarone as an autophagy-inducing antimycobacterial HDT that improves host control of mycobacterial infections. IMPORTANCE Due to the global rise in antibiotic resistance, there is a strong need for alternative treatment strategies against intracellular bacterial infections, including Mycobacterium tuberculosis (Mtb) and non-tuberculous mycobacteria. Stimulating host defense mechanisms by host-directed therapy (HDT) is a promising approach for treating mycobacterial infections. This study identified amiodarone, an antiarrhythmic agent, as a potential HDT candidate that inhibits the survival of Mtb and Mycobacterium avium in primary human macrophages. The antimycobacterial effect of amiodarone was confirmed in an in vivo tuberculosis model based on Mycobacterium marinum infection of zebrafish embryos. Furthermore, amiodarone induced autophagy and inhibition of the autophagic flux effectively impaired the host-protective effect of amiodarone, supporting that activation of the host (auto)phagolysosomal pathway is essential for the mechanism of action of amiodarone. In conclusion, we have identified amiodarone as an autophagy-inducing HDT that improves host control of a wide range of mycobacteria.
Collapse
Affiliation(s)
- Gül Kilinç
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Ralf Boland
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | - Matthias T. Heemskerk
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Herman P. Spaink
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | - Mariëlle C. Haks
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Tom H. M. Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Anno Saris
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
27
|
Lin X, Shao K, Lin Z, Liang Q, Li X, Chen H, Wu J. Identification of a ferroptosis-related gene signature for the prognosis of pediatric neuroblastoma. Transl Cancer Res 2024; 13:3678-3694. [PMID: 39145053 PMCID: PMC11319987 DOI: 10.21037/tcr-24-269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/24/2024] [Indexed: 08/16/2024]
Abstract
Background Ferroptosis-related genes are correlated with the prognosis of patients with neuroblastoma (NB) remains unknown. This study aims to establish a prognostic ferroptosis-related gene model for predicting prognostic value in pediatric NB patients. Methods The gene expression array and clinical characteristics of NB were downloaded from a public database. Correlations between ferroptosis-related genes and drug responses were analyzed by Childhood Cancer Therapeutics. The prognostic model was constructed by least absolute shrinkage and selection operator (LASSO) Cox regression and was validated in NB patients from the ICGC cohort. The survival analysis was performed by Cox regression analysis. single-sample gene set enrichment analysis (ssGSEA) was used to quantify the immune cell infiltration correlation. Results Overall, 70 genes were identified as ferroptosis-related differentially expressed genes (DEGs) from 247 samples. Then, 13 ferroptosis-related genes were correlated with OS in the univariate Cox regression analysis. Five prognostic ferroptosis-related DEGs (pFR-DEGs) (STEAP3, MAP1LC3A, ULK2, MTOR and TUBE1), which were defined as the intersection of DEGs and prognostic ferroptosis-related genes, were identified and utilized to construct the prognostic signature. The correlation between five pFR-DEGs and drug responses was analyzed, and the box plots indicated that MTOR gene expression was highest, suggesting that MTOR expression is related to progressive NB disease. The receiver operating characteristic (ROC) curve showed that the model had moderate predictive power. The survival analysis indicated that the high-risk group had poor overall survival (OS) (P=2.087×10-06). Univariate and multivariate analyses identified the risk score as a significant prognostic risk factor [P=0.003, hazard ratio (HR) =1.933]. Immune cell infiltration correlation analysis showed that the high-risk group was related to more immune cells. Conclusions The present study indicated a difference in ferroptosis-related gene expression between low- and high-risk NB patients. The ferroptosis-related signature could serve as a prognostic prediction tool. Additionally, immune infiltration might play an important role in different risk groups for NB patients.
Collapse
Affiliation(s)
- Xijin Lin
- Department of Radiation Oncology, Fujian Children’s Hospital (Fujian Branch of Shanghai Children’s Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Kongfeng Shao
- Department of Radiation Oncology, Fujian Children’s Hospital (Fujian Branch of Shanghai Children’s Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Zhuangbin Lin
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Qiandong Liang
- Department of Radiation Oncology, Fujian Children’s Hospital (Fujian Branch of Shanghai Children’s Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Xiaoyan Li
- Department of Radiation Oncology, Fujian Children’s Hospital (Fujian Branch of Shanghai Children’s Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Haiyan Chen
- Department of Radiation Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junxin Wu
- Department of Radiation Oncology, Fujian Children’s Hospital (Fujian Branch of Shanghai Children’s Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| |
Collapse
|
28
|
Ben-Hur S, Sernik S, Afar S, Kolpakova A, Politi Y, Gal L, Florentin A, Golani O, Sivan E, Dezorella N, Morgenstern D, Pietrokovski S, Schejter E, Yacobi-Sharon K, Arama E. Egg multivesicular bodies elicit an LC3-associated phagocytosis-like pathway to degrade paternal mitochondria after fertilization. Nat Commun 2024; 15:5715. [PMID: 38977659 PMCID: PMC11231261 DOI: 10.1038/s41467-024-50041-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 06/27/2024] [Indexed: 07/10/2024] Open
Abstract
Mitochondria are maternally inherited, but the mechanisms underlying paternal mitochondrial elimination after fertilization are far less clear. Using Drosophila, we show that special egg-derived multivesicular body vesicles promote paternal mitochondrial elimination by activating an LC3-associated phagocytosis-like pathway, a cellular defense pathway commonly employed against invading microbes. Upon fertilization, these egg-derived vesicles form extended vesicular sheaths around the sperm flagellum, promoting degradation of the sperm mitochondrial derivative and plasma membrane. LC3-associated phagocytosis cascade of events, including recruitment of a Rubicon-based class III PI(3)K complex to the flagellum vesicular sheaths, its activation, and consequent recruitment of Atg8/LC3, are all required for paternal mitochondrial elimination. Finally, lysosomes fuse with strings of large vesicles derived from the flagellum vesicular sheaths and contain degrading fragments of the paternal mitochondrial derivative. Given reports showing that in some mammals, the paternal mitochondria are also decorated with Atg8/LC3 and surrounded by multivesicular bodies upon fertilization, our findings suggest that a similar pathway also mediates paternal mitochondrial elimination in other flagellated sperm-producing organisms.
Collapse
Affiliation(s)
- Sharon Ben-Hur
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Shoshana Sernik
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Sara Afar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Alina Kolpakova
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yoav Politi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Liron Gal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Anat Florentin
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ofra Golani
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ehud Sivan
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Nili Dezorella
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - David Morgenstern
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalised Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Shmuel Pietrokovski
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eyal Schejter
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Keren Yacobi-Sharon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eli Arama
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
29
|
Masson JD, Badran G, Gherardi RK, Authier FJ, Crépeaux G. Widespread Myalgia and Chronic Fatigue: Phagocytes from Macrophagic Myofasciitis Patients Exposed to Aluminum Oxyhydroxide-Adjuvanted Vaccine Exhibit Specific Inflammatory, Autophagic, and Mitochondrial Responses. TOXICS 2024; 12:491. [PMID: 39058143 PMCID: PMC11281175 DOI: 10.3390/toxics12070491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024]
Abstract
(1) Background: Macrophagic myofasciitis (MMF) is an inflammatory histopathological lesion demonstrating long-term biopersistence of vaccine-derived aluminum adjuvants within muscular phagocytic cells. Affected patients suffer from widespread myalgia and severe fatigue consistent with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), a poorly understood disorder suspected to result from chronic immune stimulation by infectious and inorganic particles. (2) Methods: In this study we determined the immuno-metabolic properties of MMF phagocytic cells compared to controls, at rest and upon exposure to aluminum oxyhydroxide adjuvant, with or without adsorbed antigens, using protein quantification and an oxygen consumption assay. (3) Results: MMF and control cells similarly internalized the adjuvant and vaccine but MMF cells specifically expressed Rubicon and Nox2, two molecules unique to the LC3-associated phagocytosis (LAP) machinery, a non-canonical autophagic pathway able to downregulate canonical autophagy. MMF cells exhibited an altered inflammatory secretome, producing more pain-inducing CXC chemokines and less TNF-α than controls, consistent with chronic myalgia and exhaustion of the immune system previously documented in ME/CFS. MMF cells exhibited mitochondrial metabolism dysfunction, with exacerbated reaction to adjuvanted vaccine, contrasting with limited spare respiratory capacity and marked proton leak weakening energy production. (4) Conclusions: MMF phagocytes seemingly use LAP to handle aluminum oxyhydroxide vaccine particles, secrete pain-inducing molecules, and exhibit exacerbated metabolic reaction to the vaccine with limited capacity to respond to ongoing energetic requests.
Collapse
Affiliation(s)
- Jean-Daniel Masson
- Institut National de la Santé Et de la Recherche Médicale, Institut Mondor de Recherche Biomédicale, Université Paris Est Créteil, F-94010 Creteil, France
| | - Ghidaa Badran
- Institut National de la Santé Et de la Recherche Médicale, Institut Mondor de Recherche Biomédicale, Université Paris Est Créteil, F-94010 Creteil, France
| | - Romain K. Gherardi
- Institut National de la Santé Et de la Recherche Médicale, Institut Mondor de Recherche Biomédicale, Université Paris Est Créteil, F-94010 Creteil, France
- Hôpitaux Universitaires Henri Mondor, Service d’Histologie/Centre Expert de Pathologie Neuromusculaire, Assistance Publique-Hôpitaux de Paris, F-94010 Creteil, France
| | - François-Jérôme Authier
- Institut National de la Santé Et de la Recherche Médicale, Institut Mondor de Recherche Biomédicale, Université Paris Est Créteil, F-94010 Creteil, France
- Hôpitaux Universitaires Henri Mondor, Service d’Histologie/Centre Expert de Pathologie Neuromusculaire, Assistance Publique-Hôpitaux de Paris, F-94010 Creteil, France
| | - Guillemette Crépeaux
- Institut National de la Santé Et de la Recherche Médicale, Institut Mondor de Recherche Biomédicale, Université Paris Est Créteil, F-94010 Creteil, France
- Ecole Nationale Vétérinaire d’Alfort, Institut Mondor de Recherche Biomédicale, F-94700 Maisons Alfort, France
| |
Collapse
|
30
|
Conway S, Jefferson M, Warren DT, Wileman T, Morris CJ. The WD Domain of Atg16l1 Crucial for LC3-Associated Phagocytosis Is Not Required for Preserving Skin Barrier Function in Mice. JID INNOVATIONS 2024; 4:100283. [PMID: 38827330 PMCID: PMC11137747 DOI: 10.1016/j.xjidi.2024.100283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 06/04/2024] Open
Abstract
The skin is a multifunctional organ, forming a barrier between the external and internal environment, thereby functioning as a safeguard against extrinsic factors. Autophagy has been implicated in epidermal differentiation and in preserving skin homeostasis. LC3-associated phagocytosis (LAP) uses some but not all components of autophagy. The Atg16l1 (Δ WD) mouse model lacks the WD40 domain required for LAP and has been widely used to study the effects of LAP deficiency and autophagy on tissue homeostasis and response to infection. In this study, the Δ WD model was used to study the relationship between LAP and skin homeostasis by determining whether LAP-deficient mice display a cutaneous phenotype. Skin histology of wild-type and Δ WD mice aged 1 year revealed minor morphological differences in the tail skin dermal layer. RT-qPCR and western blot analysis showed no differences in key keratin expression between genotypes. Skin barrier formation, assessed by dye permeation assays, demonstrated full and proper formation of the skin barrier at embryonic day 18.5 in both genotypes. Biomechanical analysis of the skin showed decreased skin elasticity in aged Δ WD but not wild-type mice. In summary, the LAP-deficient Δ WD mice displayed subtle alterations in dermal histology and age-related biomechanical changes.
Collapse
Affiliation(s)
- Shannon Conway
- School of Pharmacy, University of East Anglia, Norwich, United Kingdom
- Biomedical Research Centre, University of East Anglia, Norwich, United Kingdom
| | - Matthew Jefferson
- Biomedical Research Centre, University of East Anglia, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Derek T. Warren
- School of Pharmacy, University of East Anglia, Norwich, United Kingdom
- Biomedical Research Centre, University of East Anglia, Norwich, United Kingdom
| | - Thomas Wileman
- Biomedical Research Centre, University of East Anglia, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
- Quadram Institute Bioscience, Norwich, United Kingdom
| | | |
Collapse
|
31
|
Bindschedler A, Schmuckli-Maurer J, Buchser S, Fischer TD, Wacker R, Davalan T, Brunner J, Heussler VT. LC3B labeling of the parasitophorous vacuole membrane of Plasmodium berghei liver stage parasites depends on the V-ATPase and ATG16L1. Mol Microbiol 2024; 121:1095-1111. [PMID: 38574236 DOI: 10.1111/mmi.15259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 04/06/2024]
Abstract
The protozoan parasite Plasmodium, the causative agent of malaria, undergoes an obligatory stage of intra-hepatic development before initiating a blood-stage infection. Productive invasion of hepatocytes involves the formation of a parasitophorous vacuole (PV) generated by the invagination of the host cell plasma membrane. Surrounded by the PV membrane (PVM), the parasite undergoes extensive replication. During intracellular development in the hepatocyte, the parasites provoke the Plasmodium-associated autophagy-related (PAAR) response. This is characterized by a long-lasting association of the autophagy marker protein, and ATG8 family member, LC3B with the PVM. LC3B localization at the PVM does not follow the canonical autophagy pathway since upstream events specific to canonical autophagy are dispensable. Here, we describe that LC3B localization at the PVM of Plasmodium parasites requires the V-ATPase and its interaction with ATG16L1. The WD40 domain of ATG16L1 is crucial for its recruitment to the PVM. Thus, we provide new mechanistic insight into the previously described PAAR response targeting Plasmodium liver stage parasites.
Collapse
Affiliation(s)
- Annina Bindschedler
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | - Sophie Buchser
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Tara D Fischer
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Rahel Wacker
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Tim Davalan
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Jessica Brunner
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Volker T Heussler
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
| |
Collapse
|
32
|
da Silva RG, Stocks CJ, Hu G, Kline KA, Chen J. Bosutinib Stimulates Macrophage Survival, Phagocytosis, and Intracellular Killing of Bacteria. ACS Infect Dis 2024; 10:1725-1738. [PMID: 38602352 PMCID: PMC11091880 DOI: 10.1021/acsinfecdis.4c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024]
Abstract
Host-acting compounds are emerging as potential alternatives to combating antibiotic resistance. Here, we show that bosutinib, an FDA-approved chemotherapeutic for treating chronic myelogenous leukemia, does not possess any antibiotic activity but enhances macrophage responses to bacterial infection. In vitro, bosutinib stimulates murine and human macrophages to kill bacteria more effectively. In a murine wound infection with vancomycin-resistant Enterococcus faecalis, a single intraperitoneal bosutinib injection or multiple topical applications on the wound reduce the bacterial load by approximately 10-fold, which is abolished by macrophage depletion. Mechanistically, bosutinib stimulates macrophage phagocytosis of bacteria by upregulating surface expression of bacterial uptake markers Dectin-1 and CD14 and promoting actin remodeling. Bosutinib also stimulates bacterial killing by elevating the intracellular levels of reactive oxygen species. Moreover, bosutinib drives NF-κB activation, which protects infected macrophages from dying. Other Src kinase inhibitors such as DMAT and tirbanibulin also upregulate expression of bacterial uptake markers in macrophages and enhance intracellular bacterial killing. Finally, cotreatment with bosutinib and mitoxantrone, another chemotherapeutic in clinical use, results in an additive effect on bacterial clearance in vitro and in vivo. These results show that bosutinib stimulates macrophage clearance of bacterial infections through multiple mechanisms and could be used to boost the host innate immunity to combat drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Ronni
A. G. da Silva
- Singapore-MIT
Alliance for Research and Technology Centre, Antimicrobial Drug Resistance Interdisciplinary Research Group, 138602 Singapore
- Singapore
Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551 Singapore
| | - Claudia J. Stocks
- Singapore
Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551 Singapore
| | - Guangan Hu
- Koch
Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Kimberly A. Kline
- Singapore-MIT
Alliance for Research and Technology Centre, Antimicrobial Drug Resistance Interdisciplinary Research Group, 138602 Singapore
- Singapore
Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551 Singapore
- Department
of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva1211, Switzerland
| | - Jianzhu Chen
- Singapore-MIT
Alliance for Research and Technology Centre, Antimicrobial Drug Resistance Interdisciplinary Research Group, 138602 Singapore
- Koch
Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
33
|
Shi Z, Yang S, Shen C, Shao J, Zhou F, Liu H, Zhou G. LAMP2A regulates cisplatin resistance in colorectal cancer through mediating autophagy. J Cancer Res Clin Oncol 2024; 150:242. [PMID: 38717639 PMCID: PMC11078844 DOI: 10.1007/s00432-024-05775-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Drug resistance is an important constraint on clinical outcomes in advanced cancers. LAMP2A is a limiting protein in molecular chaperone-mediated autophagy. This study was aimed to explore LAMP2A function in cisplatin (cis-diamminedichloroplatinum, DDP) resistance colorectal cancer (CRC) to seek new ideas for CRC clinical treatment. METHODS In this study, LAMP2A expression was analyzed by molecular experimental techniques,such as qRT-PCR and western blot. Then, LAMP2A in cells was interfered by cell transfection experiments. Subsequently, the function of LAMP2A on proliferation, migration, invasion, DDP sensitivity, and autophagy of CRC/DDP cells were further investigated by a series of experiments, such as CCK-8, transwell, and western blot. RESULTS We revealed that LAMP2A was clearly augmented in DDP-resistant CRC and was related to poor patient prognosis. Functionally, LAMP2A insertion remarkably CRC/DDP proliferation, migration, invasion ability and DDP resistance by strengthen autophagy. In contrast, LAMP2A knockdown limited the proliferation, migration, and invasion while heightened cellular sensitivity to DDP by restraining autophagy in CRC/DDP cells. Furthermore, LAMP2A silencing was able to curb tumor formation and enhance sensitivity to DDP in vivo. CONCLUSION In summary, LAMP2A boosted malignant progression and DDP resistance in CRC/DDP cells through mediating autophagy. Clarifying LAMP2A function in DDP resistance is promising to seek cancer therapies biomarkers targeting LAMP2A activity.
Collapse
Affiliation(s)
- Zhiliang Shi
- Department of Gastrointestinal Surgery, Affiliated Changshu Hospital to Nantong University, Changshu No. 2 Hospital, Changshu, 215500, Jiangsu Province, China
| | - Shuting Yang
- Department of Gastrointestinal Surgery, Affiliated Changshu Hospital to Nantong University, Changshu No. 2 Hospital, Changshu, 215500, Jiangsu Province, China
| | - Chenglong Shen
- Department of Gastrointestinal Surgery, Affiliated Changshu Hospital to Nantong University, Changshu No. 2 Hospital, Changshu, 215500, Jiangsu Province, China
| | - Jiazhe Shao
- Department of Gastrointestinal Surgery, Affiliated Changshu Hospital to Nantong University, Changshu No. 2 Hospital, Changshu, 215500, Jiangsu Province, China
| | - Fang Zhou
- Department of Gastrointestinal Surgery, Affiliated Changshu Hospital to Nantong University, Changshu No. 2 Hospital, Changshu, 215500, Jiangsu Province, China
| | - Haichen Liu
- Department of Gastrointestinal Surgery, Affiliated Changshu Hospital to Nantong University, Changshu No. 2 Hospital, Changshu, 215500, Jiangsu Province, China
| | - Guoqiang Zhou
- Department of Gastrointestinal Surgery, Affiliated Changshu Hospital to Nantong University, Changshu No. 2 Hospital, Changshu, 215500, Jiangsu Province, China.
- Department of Gastrointestinal Surgery, Affiliated Changshu Hospital to Nantong University, Changshu No. 2 Hospital, Suzhou, 215000, Jiangsu Province, China.
| |
Collapse
|
34
|
Xu Y, Qian C, Wang Q, Song L, He Z, Liu W, Wan W. Deacetylation of ATG7 drives the induction of macroautophagy and LC3-associated microautophagy. Autophagy 2024; 20:1134-1146. [PMID: 37999993 PMCID: PMC11135844 DOI: 10.1080/15548627.2023.2287932] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023] Open
Abstract
LC3 lipidation plays an important role in the regulation of macroautophagy and LC3-associated microautophagy. The E1-like enzyme ATG7 is one of the core components that are directly involved in LC3 lipidation reaction. Here, we provide evidence showing that acetylation of ATG7 tightly controls its enzyme activity to regulate the induction of macroautophagy and LC3-associated microautophagy. Mechanistically, acetylation of ATG7 disrupts its interaction with the E2-like enzyme ATG3, leading to an inhibition of LC3 lipidation in vitro and in vivo. Functionally, in response to various different stimuli, cellular ATG7 undergoes deacetylation to induce macroautophagy and LC3-associated microautophagy, which are necessary for cells to eliminate cytoplasmic DNA and degrade lysosome membrane proteins, respectively. Taken together, these findings reveal that ATG7 acetylation acts as a critical rheostat in controlling LC3 lipidation and related cellular processes.Abbreviations: AMPK: AMP-activated protein kinase; ATG: autophagy-related; cGAMP: cyclic GMP-AMP; CGAS: cyclic GMP-AMP synthase; CREBBP/CBP: CREB binding protein; EGF: epidermal growth factor; EGFR: epidermal growth factor receptor; EP300/p300: E1A binding protein p300; IFNB1: interferon beta 1; ISD: interferon stimulatory DNA; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MCOLN1/TRPML1: mucolipin TRP cation channel 1; MEF: mouse embryonic fibroblast; MTOR: mechanistic target of rapamycin kinase; NAM: nicotinamide; PE: phosphatidylethanolamine; PTM: post-translational modification; RB1CC1/FIP200: RB1 inducible coiled-coil 1; SIRT: sirtuin; SQSTM1/p62: sequestosome 1; STING1: stimulator of interferon response cGAMP interactor 1; TSA: trichostatin A; ULK1: unc-51 like autophagy activating kinase 1; WIPI2: WD repeat domain, phosphoinositide interacting 2; WT: wild-type.
Collapse
Affiliation(s)
- Yinfeng Xu
- Laboratory of Basic Biology, Hunan First Normal University, Changsha, Hunan, China
| | - Chuying Qian
- Department of Biochemistry, and Department of Thoracic Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qian Wang
- Department of Biochemistry, and Department of Thoracic Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lijiang Song
- Department of Biochemistry, and Department of Thoracic Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhengfu He
- Department of Biochemistry, and Department of Thoracic Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wei Liu
- Department of Metabolic Medicine, International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Wei Wan
- Department of Biochemistry, and Department of Thoracic Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
35
|
Tsomidis I, Voumvouraki A, Kouroumalis E. The Pathogenesis of Pancreatitis and the Role of Autophagy. GASTROENTEROLOGY INSIGHTS 2024; 15:303-341. [DOI: 10.3390/gastroent15020022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
The pathogenesis of acute and chronic pancreatitis has recently evolved as new findings demonstrate a complex mechanism operating through various pathways. In this review, the current evidence indicating that several mechanisms act in concert to induce and perpetuate pancreatitis were presented. As autophagy is now considered a fundamental mechanism in the pathophysiology of both acute and chronic pancreatitis, the fundamentals of the autophagy pathway were discussed to allow for a better understanding of the pathophysiological mechanisms of pancreatitis. The various aspects of pathogenesis, including trypsinogen activation, ER stress and mitochondrial dysfunction, the implications of inflammation, and macrophage involvement in innate immunity, as well as the significance of pancreatic stellate cells in the development of fibrosis, were also analyzed. Recent findings on exosomes and the miRNA regulatory role were also presented. Finally, the role of autophagy in the protection and aggravation of pancreatitis and possible therapeutic implications were reviewed.
Collapse
Affiliation(s)
- Ioannis Tsomidis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Greece
| | - Elias Kouroumalis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
| |
Collapse
|
36
|
Banerjee S, Gadpayle MP, Samanta S, Dutta P, Das S, Datta R, Maiti S. Role of Macrophage PIST Protein in Regulating Leishmania major Infection. ACS Infect Dis 2024; 10:1414-1428. [PMID: 38556987 DOI: 10.1021/acsinfecdis.4c00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
PDZ protein interacting specifically with Tc10 or PIST is a mammalian trans-Golgi resident protein that regulates subcellular sorting of plasma membrane receptors. PIST has recently emerged as a key player in regulating viral pathogenesis. Nevertheless, the involvement of PIST in parasitic infections remains unexplored. Leishmania parasites infiltrate their host macrophage cells through phagocytosis, where they subsequently multiply within the parasitophorous vacuole (PV). Host cell autophagy has been found to be important in regulating this parasite infection. Since PIST plays a pivotal role in triggering autophagy through the Beclin 1-PI3KC3 pathway, it becomes interesting to identify the status of PIST during Leishmania infection. We found that while macrophage cells are infected with Leishmania major (L. major), the expression of PIST protein remains unaltered; however, it traffics from the Golgi compartment to PV. Further, we identified that in L. major-infected macrophage cells, PIST associates with the autophagy regulatory protein Beclin 1 within the PVs; however, PIST does not interact with LC3. Reduction in PIST protein through siRNA silencing significantly increased parasite burden, whereas overexpression of PIST in macrophages restricted L. major infectivity. Together, our study reports that the macrophage PIST protein is essential in regulating L. major infectivity.
Collapse
Affiliation(s)
- Sourav Banerjee
- Department of Biological Sciences, Indian Institute of Science Education & Research Kolkata (IISER-Kolkata), Mohanpur Campus, Kolkata, West Bengal 741 246, India
| | - Mandip Pratham Gadpayle
- Department of Biological Sciences, Indian Institute of Science Education & Research Kolkata (IISER-Kolkata), Mohanpur Campus, Kolkata, West Bengal 741 246, India
| | - Suman Samanta
- Department of Biological Sciences, Indian Institute of Science Education & Research Kolkata (IISER-Kolkata), Mohanpur Campus, Kolkata, West Bengal 741 246, India
| | - Priyanka Dutta
- Department of Biological Sciences, Indian Institute of Science Education & Research Kolkata (IISER-Kolkata), Mohanpur Campus, Kolkata, West Bengal 741 246, India
| | - Swagata Das
- Department of Biological Sciences, Indian Institute of Science Education & Research Kolkata (IISER-Kolkata), Mohanpur Campus, Kolkata, West Bengal 741 246, India
| | - Rupak Datta
- Department of Biological Sciences, Indian Institute of Science Education & Research Kolkata (IISER-Kolkata), Mohanpur Campus, Kolkata, West Bengal 741 246, India
| | - Sankar Maiti
- Department of Biological Sciences, Indian Institute of Science Education & Research Kolkata (IISER-Kolkata), Mohanpur Campus, Kolkata, West Bengal 741 246, India
| |
Collapse
|
37
|
Yang Y, Chen W, Lin Z, Wu Y, Li Y, Xia X. Panax notoginseng saponins prevent dementia and oxidative stress in brains of SAMP8 mice by enhancing mitophagy. BMC Complement Med Ther 2024; 24:144. [PMID: 38575939 PMCID: PMC10993618 DOI: 10.1186/s12906-024-04403-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 02/14/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Mitochondrial dysfunction is one of the distinctive features of neurons in patients with Alzheimer's disease (AD). Intraneuronal autophagosomes selectively phagocytose and degrade the damaged mitochondria, mitigating neuronal damage in AD. Panax notoginseng saponins (PNS) can effectively reduce oxidative stress and mitochondrial damage in the brain of animals with AD, but their exact mechanism of action is unknown. METHODS Senescence-accelerated mouse prone 8 (SAMP8) mice with age-related AD were treated with PNS for 8 weeks. The effects of PNS on learning and memory abilities, cerebral oxidative stress status, and hippocampus ultrastructure of mice were observed. Moreover, changes of the PTEN-induced putative kinase 1 (PINK1)-Parkin, which regulates ubiquitin-dependent mitophagy, and the recruit of downstream autophagy receptors were investigated. RESULTS PNS attenuated cognitive dysfunction in SAMP8 mice in the Morris water maze test. PNS also enhanced glutathione peroxidase and superoxide dismutase activities, and increased glutathione levels by 25.92% and 45.55% while inhibiting 8-hydroxydeoxyguanosine by 27.74% and the malondialdehyde production by 34.02% in the brains of SAMP8 mice. Our observation revealed the promotion of mitophagy, which was accompanied by an increase in microtubule-associated protein 1 light chain 3 (LC3) mRNA and 70.00% increase of LC3-II/I protein ratio in the brain tissues of PNS-treated mice. PNS treatment increased Parkin mRNA and protein expression by 62.80% and 43.80%, while increasing the mRNA transcription and protein expression of mitophagic receptors such as optineurin, and nuclear dot protein 52. CONCLUSION PNS enhanced the PINK1/Parkin pathway and facilitated mitophagy in the hippocampus, thereby preventing cerebral oxidative stress in SAMP8 mice. This may be a mechanism contributing to the cognition-improvement effect of PNS.
Collapse
Affiliation(s)
- Yingying Yang
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Wenya Chen
- Key Laboratory of TCM Neuro-metabolism and Immunopharmacology of Guangxi Education Department, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Zhenmei Lin
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Yijing Wu
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Yuqing Li
- School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, 530200, China.
| | - Xing Xia
- Key Laboratory of TCM Neuro-metabolism and Immunopharmacology of Guangxi Education Department, Guangxi University of Chinese Medicine, Nanning, 530200, China.
| |
Collapse
|
38
|
Meng J, Song Z, Cong S, Sun Q, Ma Q, Shi W, Wang L. Regulatory role of the miR-142-3p/ CDC25C axis in modulating autophagy in non-small cell lung cancer. Transl Lung Cancer Res 2024; 13:552-572. [PMID: 38601452 PMCID: PMC11002511 DOI: 10.21037/tlcr-24-82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/15/2024] [Indexed: 04/12/2024]
Abstract
Background With its diverse genetic foundation and heterogeneous nature, non-small cell lung cancer (NSCLC) needs a better comprehension of prognostic evaluation and efficient treatment targeting. Methods Bioinformatics analysis was performed of The Cancer Genome Atlas (TCGA)-NSCLC and GSE68571 dataset. Overlapping differentially expressed genes (DEGs) were used for functional enrichment analysis and constructing the protein-protein interaction (PPI) network. In addition, key prognostic genes were identified through prognostic risk models, and their expression levels were verified. The phenotypic effects of cell division cycle 25C (CDC25C) regulation on NSCLC cell lines were assessed by in vitro experiments using various techniques such as flow cytometry, Transwell, and colony formation. Protein levels related to autophagy and apoptosis were assessed, specifically examining the impact of autophagy inhibition [3-methyladenine (3-MA)] and the miR-142-3p/CDC25C axis on this regulatory system. Results CDC25C was identified as a key prognostic marker in NSCLC, showing high expression in tumor samples. In vitro experiments showed that CDC25C knockdown markedly reduced the capacity of cells to proliferate, migrate, invade, trigger apoptosis, and initiate cell cycle arrest. CDC25C and miR-142-3p displayed a reciprocal regulatory relationship. CDC25C reversed the inhibitory impacts of miR-142-3p on NSCLC cell cycle proliferation and progression. The synergy of miR-142-3p inhibition, CDC25C silencing, and 3-MA treatment was shown to regulate NSCLC cell processes including proliferation, apoptosis, and autophagy. Conclusions MiR-142-3p emerged as a key player in governing autophagy and apoptosis by directly targeting CDC25C expression. This emphasizes the pivotal role of the miR-142-3p/CDC25C axis as a critical regulatory pathway in NSCLC.
Collapse
Affiliation(s)
- Jing Meng
- Department of Oncology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zongchang Song
- Department of Oncology, Shanghai University Affiliated Mengchao Cancer Hospital, Shanghai, China
| | - Shuxian Cong
- Department of Thoracic Surgery, PKUCare Zibo Hospital, Zibo, China
| | - Qiong Sun
- Department of Oncology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qinyun Ma
- Department of Thoracic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Weiwei Shi
- Department of Oncology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Linxuan Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| |
Collapse
|
39
|
Su MSW, Cheng YL, Lin YS, Wu JJ. Interplay between group A Streptococcus and host innate immune responses. Microbiol Mol Biol Rev 2024; 88:e0005222. [PMID: 38451081 PMCID: PMC10966951 DOI: 10.1128/mmbr.00052-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
Abstract
SUMMARYGroup A Streptococcus (GAS), also known as Streptococcus pyogenes, is a clinically well-adapted human pathogen that harbors rich virulence determinants contributing to a broad spectrum of diseases. GAS is capable of invading epithelial, endothelial, and professional phagocytic cells while evading host innate immune responses, including phagocytosis, selective autophagy, light chain 3-associated phagocytosis, and inflammation. However, without a more complete understanding of the different ways invasive GAS infections develop, it is difficult to appreciate how GAS survives and multiplies in host cells that have interactive immune networks. This review article attempts to provide an overview of the behaviors and mechanisms that allow pathogenic GAS to invade cells, along with the strategies that host cells practice to constrain GAS infection. We highlight the counteractions taken by GAS to apply virulence factors such as streptolysin O, nicotinamide-adenine dinucleotidase, and streptococcal pyrogenic exotoxin B as a hindrance to host innate immune responses.
Collapse
Affiliation(s)
- Marcia Shu-Wei Su
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
- Department of Biotechnology and Laboratory Science in Medicine, College of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Lin Cheng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yee-Shin Lin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jiunn-Jong Wu
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
- Department of Biotechnology and Laboratory Science in Medicine, College of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
40
|
Settembre C, Perera RM. Lysosomes as coordinators of cellular catabolism, metabolic signalling and organ physiology. Nat Rev Mol Cell Biol 2024; 25:223-245. [PMID: 38001393 DOI: 10.1038/s41580-023-00676-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 11/26/2023]
Abstract
Every cell must satisfy basic requirements for nutrient sensing, utilization and recycling through macromolecular breakdown to coordinate programmes for growth, repair and stress adaptation. The lysosome orchestrates these key functions through the synchronised interplay between hydrolytic enzymes, nutrient transporters and signalling factors, which together enable metabolic coordination with other organelles and regulation of specific gene expression programmes. In this Review, we discuss recent findings on lysosome-dependent signalling pathways, focusing on how the lysosome senses nutrient availability through its physical and functional association with mechanistic target of rapamycin complex 1 (mTORC1) and how, in response, the microphthalmia/transcription factor E (MiT/TFE) transcription factors exert feedback regulation on lysosome biogenesis. We also highlight the emerging interactions of lysosomes with other organelles, which contribute to cellular homeostasis. Lastly, we discuss how lysosome dysfunction contributes to diverse disease pathologies and how inherited mutations that compromise lysosomal hydrolysis, transport or signalling components lead to multi-organ disorders with severe metabolic and neurological impact. A deeper comprehension of lysosomal composition and function, at both the cellular and organismal level, may uncover fundamental insights into human physiology and disease.
Collapse
Affiliation(s)
- Carmine Settembre
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy.
| | - Rushika M Perera
- Department of Anatomy, University of California at San Francisco, San Francisco, CA, USA.
- Department of Pathology, University of California at San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA.
| |
Collapse
|
41
|
Caruso L, Fields M, Rimondi E, Zauli G, Longo G, Marcuzzi A, Previati M, Gonelli A, Zauli E, Milani D. Classical and Innovative Evidence for Therapeutic Strategies in Retinal Dysfunctions. Int J Mol Sci 2024; 25:2124. [PMID: 38396799 PMCID: PMC10889839 DOI: 10.3390/ijms25042124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The human retina is a complex anatomical structure that has no regenerative capacity. The pathogenesis of most retinopathies can be attributed to inflammation, with the activation of the inflammasome protein platform, and to the impact of oxidative stress on the regulation of apoptosis and autophagy/mitophagy in retinal cells. In recent years, new therapeutic approaches to treat retinopathies have been investigated. Experimental data suggest that the secretome of mesenchymal cells could reduce oxidative stress, autophagy, and the apoptosis of retinal cells, and in turn, the secretome of the latter could induce changes in mesenchymal cells. Other studies have evidenced that noncoding (nc)RNAs might be new targets for retinopathy treatment and novel disease biomarkers since a correlation has been found between ncRNA levels and retinopathies. A new field to explore is the interaction observed between the ocular and intestinal microbiota; indeed, recent findings have shown that the alteration of gut microbiota seems to be linked to ocular diseases, suggesting a gut-eye axis. To explore new therapeutical strategies for retinopathies, it is important to use proper models that can mimic the complexity of the retina. In this context, retinal organoids represent a good model for the study of the pathophysiology of the retina.
Collapse
Affiliation(s)
- Lorenzo Caruso
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy; (L.C.); (A.G.)
| | - Matteo Fields
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.F.); (G.L.); (A.M.); (M.P.); (D.M.)
| | - Erika Rimondi
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialist Hospital, Riyadh 11462, Saudi Arabia;
| | - Giovanna Longo
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.F.); (G.L.); (A.M.); (M.P.); (D.M.)
| | - Annalisa Marcuzzi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.F.); (G.L.); (A.M.); (M.P.); (D.M.)
| | - Maurizio Previati
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.F.); (G.L.); (A.M.); (M.P.); (D.M.)
| | - Arianna Gonelli
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy; (L.C.); (A.G.)
| | - Enrico Zauli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.F.); (G.L.); (A.M.); (M.P.); (D.M.)
| | - Daniela Milani
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.F.); (G.L.); (A.M.); (M.P.); (D.M.)
| |
Collapse
|
42
|
Pan Q, Chen C, Yang YJ. Top Five Stories of the Cellular Landscape and Therapies of Atherosclerosis: Current Knowledge and Future Perspectives. Curr Med Sci 2024; 44:1-27. [PMID: 38057537 DOI: 10.1007/s11596-023-2818-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/22/2023] [Indexed: 12/08/2023]
Abstract
Atherosclerosis (AS) is characterized by impairment and apoptosis of endothelial cells, continuous systemic and focal inflammation and dysfunction of vascular smooth muscle cells, which is documented as the traditional cellular paradigm. However, the mechanisms appear much more complicated than we thought since a bulk of studies on efferocytosis, transdifferentiation and novel cell death forms such as ferroptosis, pyroptosis, and extracellular trap were reported. Discovery of novel pathological cellular landscapes provides a large number of therapeutic targets. On the other side, the unsatisfactory therapeutic effects of current treatment with lipid-lowering drugs as the cornerstone also restricts the efforts to reduce global AS burden. Stem cell- or nanoparticle-based strategies spurred a lot of attention due to the attractive therapeutic effects and minimized adverse effects. Given the complexity of pathological changes of AS, attempts to develop an almighty medicine based on single mechanisms could be theoretically challenging. In this review, the top stories in the cellular landscapes during the initiation and progression of AS and the therapies were summarized in an integrated perspective to facilitate efforts to develop a multi-targets strategy and fill the gap between mechanism research and clinical translation. The future challenges and improvements were also discussed.
Collapse
Affiliation(s)
- Qi Pan
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, China
| | - Cheng Chen
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, China
| | - Yue-Jin Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, China.
| |
Collapse
|
43
|
Pang H, Wu H, Zhan Z, Wu T, Xiang M, Wang Z, Song L, Wei B. Exploration of anti‑osteosarcoma activity of asiatic acid based on network pharmacology and in vitro experiments. Oncol Rep 2024; 51:33. [PMID: 38186298 PMCID: PMC10777446 DOI: 10.3892/or.2023.8692] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/02/2023] [Indexed: 01/09/2024] Open
Abstract
Osteosarcomas are malignant bone tumors that typically originate in the epiphyses of the long bones of the extremities in adolescents. Asiatic acid has been reported to possess anti‑inflammatory, neuroprotective, antidiabetic, antitumor and antimicrobial activities. The present study used a combination of network pharmacological prediction and in vitro experimental validation to explore the potential pharmacological mechanism of asiatic acid against osteosarcoma. A total of 78 potential asiatic acid targets in osteosarcoma were identified using databases. Kyoto Encyclopedia of Genes and Genomes analysis indicated that the PI3K/AKT and MAPK signaling pathways are essential in the treatment of osteosarcoma with asiatic acid. Molecular docking revealed binding of asiatic acid to EGFR, Caspase‑3, ESR1, HSP90AA1, IL‑6 and SRC proteins. asiatic acid inhibited proliferation through G2/M cell cycle arrest in osteosarcoma cells. In addition, asiatic acid induced mitochondria‑dependent apoptosis as demonstrated by increases in Bax and VDAC1 expression, and a decrease in Bcl‑2 protein expression. The increased autophagosomes, increased LC3‑II/I ratios and decreased p62 expression in the treatment group indicated that asiatic acid triggered autophagy. In addition, asiatic acid decreased the levels of phosphorylated (p‑)PI3K/PI3K and p‑AKT/AKT, increased reactive oxygen species (ROS) and upregulated the levels of p‑ERK1/2/ERK1/2, p‑p38/p38 and p‑JNK/JNK in osteosarcoma cells. These results demonstrated that asiatic acid inhibited osteosarcoma cells proliferation by inhibiting PI3K/AKT and activating ROS/MAPK signaling pathways, suggesting asiatic acid is a potential agent against osteosarcoma.
Collapse
Affiliation(s)
- He Pang
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Hang Wu
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Zeyu Zhan
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Tingrui Wu
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Min Xiang
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Zhiyan Wang
- Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Lijun Song
- Reproductive Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Bo Wei
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| |
Collapse
|
44
|
Abstract
Rapid removal of apoptotic cells by phagocytes, a process known as efferocytosis, is key for the maintenance of tissue homeostasis, the resolution of inflammation, and tissue repair. However, impaired efferocytosis can result in the accumulation of apoptotic cells, subsequently triggering sterile inflammation through the release of endogenous factors such as DNA and nuclear proteins from membrane permeabilized dying cells. Here, we review the molecular basis of the three key phases of efferocytosis, that is, the detection, uptake, and degradation of apoptotic materials by phagocytes. We also discuss how defects in efferocytosis due to the alteration of phagocytes and dying cells can contribute to the low-grade chronic inflammation that occurs during aging, described as inflammaging. Lastly, we explore opportunities in targeting and harnessing the efferocytic machinery to limit aging-associated inflammatory diseases.
Collapse
Affiliation(s)
- Ivan K H Poon
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, and Research Centre for Extracellular Vesicles, La Trobe University, Melbourne, Victoria, Australia;
| | - Kodi S Ravichandran
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA;
- VIB Center for Inflammation Research, and Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
45
|
Aguilera MO, Delgui LR, Reggiori F, Romano PS, Colombo MI. Autophagy as an innate immunity response against pathogens: a Tango dance. FEBS Lett 2024; 598:140-166. [PMID: 38101809 DOI: 10.1002/1873-3468.14788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/18/2023] [Accepted: 10/27/2023] [Indexed: 12/17/2023]
Abstract
Intracellular infections as well as changes in the cell nutritional environment are main events that trigger cellular stress responses. One crucial cell response to stress conditions is autophagy. During the last 30 years, several scenarios involving autophagy induction or inhibition over the course of an intracellular invasion by pathogens have been uncovered. In this review, we will present how this knowledge was gained by studying different microorganisms. We intend to discuss how the cell, via autophagy, tries to repel these attacks with the objective of destroying the intruder, but also how some pathogens have developed strategies to subvert this. These two fates can be compared with a Tango, a dance originated in Buenos Aires, Argentina, in which the partner dancers are in close connection. One of them is the leader, embracing and involving the partner, but the follower may respond escaping from the leader. This joint dance is indeed highly synchronized and controlled, perfectly reflecting the interaction between autophagy and microorganism.
Collapse
Affiliation(s)
- Milton O Aguilera
- Laboratorio de Mecanismos Moleculares Implicados en el Tráfico Vesicular y la Autofagia-Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Facultad de Odontología, Microbiología, Parasitología e Inmunología, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Laura R Delgui
- Instituto de Histología y Embriología de Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Universitario M5502JMA, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| | - Fulvio Reggiori
- Department of Biomedicine, Aarhus University, Denmark
- Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Denmark
| | - Patricia S Romano
- Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora - Instituto de Histología y Embriología de Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Universitario M5502JMA, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
- Facultad de Ciencias Médicas, Centro Universitario M5502JMA, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| | - María I Colombo
- Laboratorio de Mecanismos Moleculares Implicados en el Tráfico Vesicular y la Autofagia-Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Facultad de Ciencias Médicas, Centro Universitario M5502JMA, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| |
Collapse
|
46
|
Zhang S, Liu X, Li C, Wang Q, Yang S, Peng X, Hu L, Zhao G, Lin J. Role of Inhibiting Inflammation of LC3-Associated Phagocytosis in Dry Eye Disease. Curr Eye Res 2024; 49:25-32. [PMID: 37732765 DOI: 10.1080/02713683.2023.2262169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 09/18/2023] [Indexed: 09/22/2023]
Abstract
PURPOSE To confirm the expression and investigate the role of LC3-associated phagocytosis (LAP) in dry eye disease (DED). METHODS The DED model of mice was established by scopolamine subcutaneous injection in a low-humidity environment chamber. Tear secretion test and corneal fluorescein sodium staining were used to evaluate the severity of DED. Expression levels of Rubicon, microtubule-associated protein light chain 3-II (LC3-II), Beclin-1 and autophagy-related gene-7 (Atg-7) in corneas of mice with DED were tested by western blot. Cell Counting Kit-8 (CCK-8) assay was used to detect the effects of different concentrations of hypertonic solutions on the proliferation activity of human corneal epithelial cells (HCECs). The expression levels of Dectin-1, IL-6 and IL-1β in HCECs after stimulation with different concentrations of hypertonic solutions were tested. The expressions of Rubicon, LC3-II, Beclin-1 and ATG-7 in HCECs were detected by reverse transcription polymerase chain reaction (RT-PCR). After being pretreated with 10 μM si-Rubicon, the severity of the disease was documented by corneal fluorescein sodium staining. And the expression levels of IL-6 and IL-1β were also tested by RT-PCR. RESULTS Compared with the normal control group, the corneal fluorescein sodium staining scores and tear secretion were significantly reduced. Rubicon, LC3-II, Beclin-1 and ATG-7 were significantly elevated. CCK-8 showed that the 400 and 450 mOsM hypertonic solutions did not affect the proliferation activity of HCECs. The expression of Dectin-1, IL-1β and IL-6 were elevated after stimulation with 450 mOsM solution. LC3-II, Rubicon, ATG-7 and Beclin-1 increased after stimulation with 450 mOsM hyperosmolar solution in HCECs. Corneal fluorescein staining showed that si-Rubicon increased the severity of DED in mice. Moreover, the mRNA expressions of inflammatory factors IL-1β and IL-6 in the cornea of mice were significantly increased. CONCLUSION DED increased the expression of proteins associated with LAP. LAP could play an anti-inflammatory effect in DED.
Collapse
Affiliation(s)
- Sasa Zhang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Xing Liu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Cui Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Qian Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Shanshan Yang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Xudong Peng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Liting Hu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| |
Collapse
|
47
|
Chatzichristofi A, Sagris V, Pallaris A, Eftychiou M, Kalvari I, Price N, Theodosiou T, Iliopoulos I, Nezis IP, Promponas VJ. LIRcentral: a manually curated online database of experimentally validated functional LIR motifs. Autophagy 2023; 19:3189-3200. [PMID: 37530436 PMCID: PMC10621281 DOI: 10.1080/15548627.2023.2235851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/06/2023] [Indexed: 08/03/2023] Open
Abstract
Several selective macroautophagy receptor and adaptor proteins bind members of the Atg8 (autophagy related 8) family using short linear motifs (SLiMs), most often referred to as Atg8-family interacting motifs (AIMs) or LC3-interacting regions (LIRs). AIM/LIR motifs have been extensively studied during the last fifteen years, since they can uncover the underlying biological mechanisms and possible substrates for this key catabolic process of eukaryotic cells. Prompted by the fact that experimental information regarding LIR motifs can be found scattered across heterogeneous literature resources, we have developed LIRcentral (https://lircentral.eu), a freely available online repository for user-friendly access to comprehensive, high-quality information regarding LIR motifs from manually curated publications. Herein, we describe the development of LIRcentral and showcase currently available data and features, along with our plans for the expansion of this resource. Information incorporated in LIRcentral is useful for accomplishing a variety of research tasks, including: (i) guiding wet biology researchers for the characterization of novel instances of LIR motifs, (ii) giving bioinformaticians/computational biologists access to high-quality LIR motifs for building novel prediction methods for LIR motifs and LIR containing proteins (LIRCPs) and (iii) performing analyses to better understand the biological importance/features of functional LIR motifs. We welcome feedback on the LIRcentral content and functionality by all interested researchers and anticipate this work to spearhead a community effort for sustaining this resource which will further promote progress in studying LIR motifs/LIRCPs.Abbreviations: AIM, Atg8-family interacting motif; Atg8, autophagy related 8; GABARAP, GABA type A receptor-associated protein; LIR, LC3-interacting region; LIRCP, LIR-containing protein; MAP1LC3/LC3, microtubule associated protein 1 light chain 3; PMID, PubMed identifier; PPI, protein-protein interaction; SLiM, short linear motif.
Collapse
Affiliation(s)
- Agathangelos Chatzichristofi
- Division of Basic Sciences, School of Medicine, University of Crete, Heraklion, Crete, Greece
- Bioinformatics Research Laboratory, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Vasileios Sagris
- Bioinformatics Research Laboratory, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Aristos Pallaris
- Bioinformatics Research Laboratory, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Marios Eftychiou
- Bioinformatics Research Laboratory, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Ioanna Kalvari
- Bioinformatics Research Laboratory, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Nicholas Price
- Bioinformatics Research Laboratory, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Theodosios Theodosiou
- Bioinformatics Research Laboratory, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Ioannis Iliopoulos
- Division of Basic Sciences, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | | | - Vasilis J Promponas
- Bioinformatics Research Laboratory, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
48
|
Ali W, Deng K, Sun J, Ma Y, Liu Z, Zou H. A new insight of cadmium-induced cellular evidence of autophagic-associated spermiophagy during spermatogenesis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:101064-101074. [PMID: 37646926 DOI: 10.1007/s11356-023-29548-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
Autophagy plays a dynamic role in spermatozoa development during spermatogenesis. However, the disruption of autophagic flux induces cell death under metal toxicity and severe oxidative stress. Therefore, we hypothesized that cadmium-induced autophagy might be involved in this mechanism. To verify this hypothesis, we studied cadmium-induced cellular evidence of autophagic-associated spermiophagy within the testis. In the present study, treatment with cadmium caused nuclear depressive disorders and vacuolated mitochondrial damage of Sertoli cells. In addition, spermiophagy through the cellular evidence of spermatozoa phagocytosis, the high lysosomal activity (lysosome engulfment and phagolysosome), and autophagy activity (autolysosome and autophagosome) were observed in the Sertoli cells. The immunohistochemistry of lysosomal membrane protein (LAMP2) to target the phagocytosis of spermatozoa revealed that the immunoreactivity of LAMP2 was overstimulated in the luminal compartment of testis's seminiferous tubules. In addition, the immunohistochemistry and immunofluorescence of autophagy-related protein and microtubule-associated light chain (LC3) results showed the strong immunoreactivity and immunosignaling of LC3 in the Sertoli cells of the testis. Moreover, cadmium caused the overactivation of the expression level of autophagy-related proteins, autophagy-related gene (ATG7), (ATG5), beclin1, LC3, sequestosome 1 (P62), and LAMP2 which were confirmed by western blotting. In summary, this study demonstrated that hazards related to cadmium-induced autophagic-associated spermiophagy with the disruption of autophagic flux, providing new insights into the toxicity of cadmium in mammals and representing a high risk to male fertility.
Collapse
Affiliation(s)
- Waseem Ali
- College of Veterinary Medicine, Yangzhou University Yangzhou, Yangzhou, Jiangsu, 225009, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Kai Deng
- College of Veterinary Medicine, Yangzhou University Yangzhou, Yangzhou, Jiangsu, 225009, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Jian Sun
- College of Veterinary Medicine, Yangzhou University Yangzhou, Yangzhou, Jiangsu, 225009, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Yonggang Ma
- College of Veterinary Medicine, Yangzhou University Yangzhou, Yangzhou, Jiangsu, 225009, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University Yangzhou, Yangzhou, Jiangsu, 225009, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University Yangzhou, Yangzhou, Jiangsu, 225009, People's Republic of China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, People's Republic of China.
| |
Collapse
|
49
|
Omrane M, Ben M'Barek K, Santinho A, Nguyen N, Nag S, Melia TJ, Thiam AR. LC3B is lipidated to large lipid droplets during prolonged starvation for noncanonical autophagy. Dev Cell 2023; 58:1266-1281.e7. [PMID: 37315562 PMCID: PMC10686041 DOI: 10.1016/j.devcel.2023.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/23/2022] [Accepted: 05/17/2023] [Indexed: 06/16/2023]
Abstract
Lipid droplets (LDs) store lipids that can be utilized during times of scarcity via autophagic and lysosomal pathways, but how LDs and autophagosomes interact remained unclear. Here, we discovered that the E2 autophagic enzyme, ATG3, localizes to the surface of certain ultra-large LDs in differentiated murine 3T3-L1 adipocytes or Huh7 human liver cells undergoing prolonged starvation. Subsequently, ATG3 lipidates microtubule-associated protein 1 light-chain 3B (LC3B) to these LDs. In vitro, ATG3 could bind alone to purified and artificial LDs to mediate this lipidation reaction. We observed that LC3B-lipidated LDs were consistently in close proximity to collections of LC3B-membranes and were lacking Plin1. This phenotype is distinct from macrolipophagy, but it required autophagy because it disappeared following ATG5 or Beclin1 knockout. Our data suggest that extended starvation triggers a noncanonical autophagy mechanism, similar to LC3B-associated phagocytosis, in which the surface of large LDs serves as an LC3B lipidation platform for autophagic processes.
Collapse
Affiliation(s)
- Mohyeddine Omrane
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, 75005 Paris, France
| | - Kalthoum Ben M'Barek
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, 75005 Paris, France
| | - Alexandre Santinho
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, 75005 Paris, France
| | - Nathan Nguyen
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Shanta Nag
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Thomas J Melia
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Abdou Rachid Thiam
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, 75005 Paris, France.
| |
Collapse
|
50
|
Muñoz-Sánchez S, Varela M, van der Vaart M, Meijer AH. Using Zebrafish to Dissect the Interaction of Mycobacteria with the Autophagic Machinery in Macrophages. BIOLOGY 2023; 12:817. [PMID: 37372102 DOI: 10.3390/biology12060817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023]
Abstract
Existing drug treatment against tuberculosis is no match against the increasing number of multi-drug resistant strains of its causative agent, Mycobacterium tuberculosis (Mtb). A better understanding of how mycobacteria subvert the host immune defenses is crucial for developing novel therapeutic strategies. A potential approach is enhancing the activity of the autophagy machinery, which can direct bacteria to autophagolysosomal degradation. However, the interplay specifics between mycobacteria and the autophagy machinery must be better understood. Here, we analyzed live imaging data from the zebrafish model of tuberculosis to characterize mycobacteria-autophagy interactions during the early stages of infection in vivo. For high-resolution imaging, we microinjected fluorescent Mycobacterium marinum (Mm) into the tail fin tissue of zebrafish larvae carrying the GFP-LC3 autophagy reporter. We detected phagocytosed Mm clusters and LC3-positive Mm-containing vesicles within the first hour of infection. LC3 associations with these vesicles were transient and heterogeneous, ranging from simple vesicles to complex compound structures, dynamically changing shape by fusions between Mm-containing and empty vesicles. LC3-Mm-vesicles could adopt elongated shapes during cell migration or alternate between spacious and compact morphologies. LC3-Mm-vesicles were also observed in cells reverse migrating from the infection site, indicating that the autophagy machinery fails to control infection before tissue dissemination.
Collapse
Affiliation(s)
- Salomé Muñoz-Sánchez
- Institute of Biology Leiden, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Mónica Varela
- Institute of Biology Leiden, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Michiel van der Vaart
- Institute of Biology Leiden, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Annemarie H Meijer
- Institute of Biology Leiden, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|