1
|
Dou H, Sun W, Chen S, Chen K. Predicting bone aging using spatially offset Raman spectroscopy: a longitudinal analysis on mice. Anal Bioanal Chem 2025; 417:2311-2320. [PMID: 40050511 DOI: 10.1007/s00216-025-05819-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 04/15/2025]
Abstract
Osteoporosis, a global health concern, poses an increasing challenge due to the aging population. While dual-energy X-ray absorptiometry (DXA) scans measuring bone mineral density (BMD) remain the clinical standard for osteoporosis diagnosis, this method's inability to detect changes in bone chemical composition limits its effectiveness in early diagnosis. This study applies Raman spectroscopy on examining bone aging in Senescence Accelerated Mouse Prone 6 (SAMP6) mice compared to their senescence-resistant controls (SAMR1) over an age period from 6 to 10 months. We performed Raman spectroscopic analysis on mouse tibiae both transcutaneously and on exposed bone. Leave-one-out cross-validation combined with partial least squares regression (LOOCV-PLSR) was applied to analyze Raman spectra to predict age, BMD, and maximum torque (MT) as determined by biomechanical testing. Our results revealed significant correlations between Raman spectroscopic predictions and reference values, particularly for age determination. To our knowledge, this study represents the first demonstration of transcutaneous Raman spectroscopy for accurate bone aging prediction, showing a strong correlation with established reference measurements.
Collapse
Affiliation(s)
- Hongmei Dou
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China
- Foshan Graduate School of Innovation, Northeastern University, Foshan, 528311, China
| | - Wendong Sun
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China
- Foshan Graduate School of Innovation, Northeastern University, Foshan, 528311, China
| | - Shuo Chen
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, 110169, China
| | - Keren Chen
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China.
- Foshan Graduate School of Innovation, Northeastern University, Foshan, 528311, China.
| |
Collapse
|
2
|
Wang J, Zhang X, Zeng Y, Xu J, Zhang Y, Lu X, Wang F. Mo and Sn exposure associated with the increased of bone mineral density. Biometals 2025; 38:559-572. [PMID: 39831951 DOI: 10.1007/s10534-024-00662-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/29/2024] [Indexed: 01/22/2025]
Abstract
Bone mineral density (BMD) measured by T-score is strongly associated with bone health, but research on its association with metals in humans body remains limited. To investigate the relationship between metal exposure and BMD, numbers of 159 participants in eastern China were studied. Urine and blood samples were collected and levels of 20 metals in the samples were measured using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). Binary Logistic Regression model (BLR) and Generalized Linear Models (GLM) were used to explore the relationship between metals and BMD. Bayesian Kernel Machine Regression (BKMR) model was further used to explore the effect of multiple metal interactions on BMD. Six metals (Mn, Co, As, Se, Mo, Cd) were selected and the concentrations in blood and urine were compared using Wilcoxon and Spearman tests. In the single-metal model, BLR and GLM commonly showed positive significant correlations between four metals (As, Mo, Se, Sn) in urine and BMD. Strong correlations between five metals (Mn, Co, As, Se, Mo) in blood and urine were observed (P ≤ 0.05). The BKMR model indicated a predominant synergistic effect of urine Mo and Sn, increased co-exposure to these metals is associated with a higher trend of BMD. These findings suggest that exposure to metals is associated with an increased level of BMD in humans. To better understand the impact of metals on bone health, further investigation into the common roles of these metals and their interactions is needed.
Collapse
Affiliation(s)
- Jihui Wang
- Department of Orthopedics, The Fifth People's Hospital of Jinan, Jinan, 250000, China.
| | - Xiyan Zhang
- School of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Yuzhuo Zeng
- School of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Jing Xu
- Department of Stomatology, Shandong Medical College Jinan, Jinan, 250000, China
| | - Yong Zhang
- Department of Orthopedics, The Fifth People's Hospital of Jinan, Jinan, 250000, China
| | - Xingwen Lu
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Fei Wang
- School of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
3
|
Zhang J, Ma H, Yang Y, Liu L, Luo D, Yu D, Chen T. Iron-lead mixed exposure causes bone damage in mice: A multi-omics analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117967. [PMID: 40037083 DOI: 10.1016/j.ecoenv.2025.117967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 02/18/2025] [Accepted: 02/23/2025] [Indexed: 03/06/2025]
Abstract
Excessive intake of essential and toxic metals affects the pathological process of osteoporosis. At present, the effects of single forms of iron (Fe), lead (Pb) and other metals on bone injury have been widely studied. However, these metal elements usually do not exist in the environment in a separate form. They are ingested in various ways and are often found together in the human body. However, the mechanism of bone damage caused by Fe and Pb mixed exposure is still unclear at this stage. At present, the combined analysis of multi-omics is the conventional method to explore the molecular mechanism behind the disease. Therefore, we attempted to combine proteomics and metabolomics to explain the mechanism of bone damage caused by mixed Fe and Pb exposure. Differential proteins and metabolites were found to be predominantly enriched in the JAK-STAT signalling pathway, inflammatory bowel disease (IBD), and osteoclast differentiation. Combined analysis showed that Fpr2, Lifr, Lisofylline, 7-Ketocholesterol, LacCer (d18: 1/14:0) and other substances may be involved in the process of bone injury mediated by mixed metal exposure. In summary, we hypothesise that mixed exposure to Fe and Pb leads to osteoclast activation via the JAK-STAT signalling pathway in situ and indirectly via the gut-bone axis, resulting in bone damage. In general, our study potentially suggests that bone injury induced by mixed exposure of Fe and Pb may be related to osteoclast proliferation mediated by changes in inflammatory levels in vivo.
Collapse
Affiliation(s)
| | - Haitao Ma
- Bengbu Medical University, Bengbu 233030, China
| | | | - Liyin Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Dasheng Luo
- Department of Orthopedic Surgery, Anhui No. 2 Provincial People's Hospital, Hefei 230041, China
| | - Defu Yu
- Department of Orthopedic Surgery, Anhui No. 2 Provincial People's Hospital, Hefei 230041, China
| | - Tao Chen
- Bengbu Medical University, Bengbu 233030, China; Department of Orthopedic Surgery, Anhui No. 2 Provincial People's Hospital, Hefei 230041, China.
| |
Collapse
|
4
|
Chen K, Yao C, Sun M, Li Q, Luo Z, Lan Y, Chen Y, Chen S. Raman spectroscopic analysis for osteoporosis identification in humans with hip fractures. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 314:124193. [PMID: 38569386 DOI: 10.1016/j.saa.2024.124193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/02/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
Osteoporosis is a significant health concern. While multiple techniques have been utilized to diagnose this condition, certain limitations still persist. Raman spectroscopy has shown promise in predicting bone strength in animal models, but its application to humans requires further investigation. In this study, we present an in vitro approach for predicting osteoporosis in 10 patients with hip fractures using Raman spectroscopy. Raman spectra were acquired from exposed femoral heads collected during surgery. Employing a leave-one-out cross-validated linear discriminant analysis (LOOCV-LDA), we achieved accurate classification (90 %) between osteoporotic and osteopenia groups. Additionally, a LOOCV partial least squares regression (PLSR) analysis based on the complete Raman spectra demonstrated a significant prediction (r2 = 0.84, p < 0.05) of bone mineral density as measured by dual X-ray absorptiometry (DXA). To the best of our knowledge, this study represents the first successful demonstration of Raman spectroscopy correlating with osteoporotic status in humans.
Collapse
Affiliation(s)
- Keren Chen
- Foshan Graduate School of Innovation, Northeastern University, Foshan 528311, China.
| | - Chunguang Yao
- Foshan Graduate School of Innovation, Northeastern University, Foshan 528311, China; College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Mengya Sun
- Foshan Graduate School of Innovation, Northeastern University, Foshan 528311, China; College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Qiang Li
- The Fifth People's Hospital of Foshan, Foshan 528211, China
| | - Zhaoxin Luo
- The Fifth People's Hospital of Foshan, Foshan 528211, China
| | - Yifeng Lan
- The Fifth People's Hospital of Foshan, Foshan 528211, China
| | - Yangxin Chen
- The Fifth People's Hospital of Foshan, Foshan 528211, China.
| | - Shuo Chen
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China; Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang 110169, China.
| |
Collapse
|
5
|
Guo JT, Li HY, Cheng C, Shi JX, Ruan HN, Li J, Liu CM. Lead-induced liver fibrosis and inflammation in mice by the AMPK/MAPKs/NF-κB and STAT3/TGF-β1/Smad2/3 pathways: the role of Isochlorogenic acid a. Toxicol Res (Camb) 2024; 13:tfae072. [PMID: 38737339 PMCID: PMC11081073 DOI: 10.1093/toxres/tfae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 05/14/2024] Open
Abstract
Lead (Pb) is a nonessential heavy metal, which can cause many health problems. Isochlorogenic acid A (ICAA), a phenolic acid present in tea, fruits, vegetables, coffee, plant-based food products, and various medicinal plants, exerts multiple effects, including anti-oxidant, antiviral, anti-inflammatory and antifibrotic functions. Thus, the purpose of our study was to determine if ICAA could prevent Pb-induced hepatotoxicity in ICR mice. An evaluation was performed on oxidative stress, inflammation and fibrosis, and related signaling. The results indicate that ICAA attenuates Pb-induced abnormal liver function. ICAA reduced liver fibrosis, inflammation and oxidative stress caused by Pb. ICAA abated Pb-induced fibrosis and decreased inflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-alpha (TNF-α). ICAA abrogated reductions in activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Masson staining revealed that ICAA reduced collagen fiber deposition in Pb-induced fibrotic livers. Western blot and immunohistochemistry analyses showed ICAA increased phosphorylated AMP-activated protein kinase (p-AMPK) expression. ICAA also reduced the expression of collagen I, α-smooth muscle actin (α-SMA), phosphorylated extracellular signal-regulated kinase (p-ERK), phosphorylated c-jun N-terminal kinase (p-JNK), p-p38, phosphorylated signal transducer and phosphorylated activator of transcription 3 (p-STAT3), transforming growth factor β1 (TGF-β1), and p-Smad2/3 in livers of mice. Overall, ICAA ameliorates Pb-induced hepatitis and fibrosis by inhibiting the AMPK/MAPKs/NF-κB and STAT3/TGF-β1/Smad2/3 pathways.
Collapse
Affiliation(s)
- Jun-Tao Guo
- School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan New Area, 221116, Xuzhou City, Jiangsu Province, PR China
| | - Han-Yu Li
- School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan New Area, 221116, Xuzhou City, Jiangsu Province, PR China
| | - Chao Cheng
- School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan New Area, 221116, Xuzhou City, Jiangsu Province, PR China
| | - Jia-Xue Shi
- School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan New Area, 221116, Xuzhou City, Jiangsu Province, PR China
| | - Hai-Nan Ruan
- School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan New Area, 221116, Xuzhou City, Jiangsu Province, PR China
| | - Jun Li
- School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan New Area, 221116, Xuzhou City, Jiangsu Province, PR China
| | - Chan-Min Liu
- School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan New Area, 221116, Xuzhou City, Jiangsu Province, PR China
| |
Collapse
|
6
|
Chen S, Abdulla A, Yan H, Mi Q, Ding X, He J, Yan C. Proteome signatures of joint toxicity to arsenic (As) and lead (Pb) in human brain organoids with optic vesicles. ENVIRONMENTAL RESEARCH 2024; 243:117875. [PMID: 38072110 DOI: 10.1016/j.envres.2023.117875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/19/2023] [Accepted: 12/03/2023] [Indexed: 02/06/2024]
Abstract
Arsenic (As) and lead (Pb) are toxins found in the natural surroundings, and the harmful health outcomes caused by the co-exposure of such toxins have become a considerable problem. However, the joint neurotoxicity of As and Pb to neurodevelopment and the underlying mechanisms remain unclear. Pluripotent stem cell-derived human brain organoids are emerging animal model alternatives for understanding neurological-related diseases. Therefore, we utilized brain organoids with optic vesicles (OVB-organoids) to systematically analyze the neurotoxicity of As and Pb. After 24 h of As and/or Pb exposure, hematoxylin-eosin staining revealed that As and Pb exposure could cause disorders in the structure of the ventricular zone and general cell disarrangement in OVB-organoids. Immunostaining displayed that OVB-organoids are more susceptible to As and Pb co-exposure than independent exposure in apoptosis, proliferation, and cell differentiation. Meanwhile, even though As and Pb could both hinder cell proliferation, contrary to Pb, As could induce an increasing proportion of mitotic (G2/M) cells. The proteome landscape of OVB-organoids illustrated that Pb synergized with As in G2/M arrest and the common role of As and Pb in carcinogenesis. Besides, proteomics analyses suggested the consequential role of autophagy and Wnt pathway in the neurotoxicity of As and Pb co-exposure. Overall, our findings provide penetrating insights into the cell cycle, carcinogenesis, autophagy, and Wnt pathway underlying the As and Pb binary exposure scenarios, which could enhance our understanding of the mixture neurotoxicity mechanisms.
Collapse
Affiliation(s)
- Shujin Chen
- Ministry of Education, Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Aynur Abdulla
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200092, China; State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Haoni Yan
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Quanying Mi
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, 200031, China
| | - Xianting Ding
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Jie He
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, 200031, China.
| | - Chonghuai Yan
- Ministry of Education, Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China.
| |
Collapse
|
7
|
Snega Priya P, Pratiksha Nandhini P, Arockiaraj J. A comprehensive review on environmental pollutants and osteoporosis: Insights into molecular pathways. ENVIRONMENTAL RESEARCH 2023; 237:117103. [PMID: 37689340 DOI: 10.1016/j.envres.2023.117103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/28/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
A significant problem that has an impact on community wellbeing is environmental pollution. Environmental pollution due to air, water, or soil pollutants might pose a severe risk to global health, necessitating intense scientific effort. Osteoporosis is a common chronic condition with substantial clinical implications on mortality, morbidity, and quality of life. It is closely linked to bone fractures. Worldwide, osteoporosis affects around 200 million people, and every year, there are almost 9 million fractures. There is evidence that certain environmental factors may increase the risk of osteoporosis in addition to traditional risk factors. It is crucial to understand the molecular mechanisms at play because there is a connection between osteoporosis and exposure to environmental pollutants such as heavy metals, air pollutants, endocrine disruptors, metal ions and trace elements. Hence, in this scoping review, we explore potential explanations for the link between pollutants and bone deterioration through deep insights into molecular pathways. Understanding and recognizing these pollutants as modifiable risk factors for osteoporosis would possibly help to enhance environmental policy thereby aiding in the improvement of bone health and improving patient quality of life.
Collapse
Affiliation(s)
- P Snega Priya
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India
| | - P Pratiksha Nandhini
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
8
|
Xu X, Zhao L, Terry PD, Chen J. Reciprocal Effect of Environmental Stimuli to Regulate the Adipogenesis and Osteogenesis Fate Decision in Bone Marrow-Derived Mesenchymal Stem Cells (BM-MSCs). Cells 2023; 12:1400. [PMID: 37408234 PMCID: PMC10216952 DOI: 10.3390/cells12101400] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/02/2023] [Accepted: 05/12/2023] [Indexed: 07/07/2023] Open
Abstract
Mesenchymal stem cells derived from bone marrow (BM-MSCs) can differentiate into adipocytes and osteoblasts. Various external stimuli, including environmental contaminants, heavy metals, dietary, and physical factors, are shown to influence the fate decision of BM-MSCs toward adipogenesis or osteogenesis. The balance of osteogenesis and adipogenesis is critical for the maintenance of bone homeostasis, and the interruption of BM-MSCs lineage commitment is associated with human health issues, such as fracture, osteoporosis, osteopenia, and osteonecrosis. This review focuses on how external stimuli shift the fate of BM-MSCs towards adipogenesis or osteogenesis. Future studies are needed to understand the impact of these external stimuli on bone health and elucidate the underlying mechanisms of BM-MSCs differentiation. This knowledge will inform efforts to prevent bone-related diseases and develop therapeutic approaches to treat bone disorders associated with various pathological conditions.
Collapse
Affiliation(s)
- Xinyun Xu
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996, USA
| | - Ling Zhao
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996, USA
| | - Paul D. Terry
- Department of Medicine, Graduate School of Medicine, The University of Tennessee, Knoxville, TN 37920, USA;
| | - Jiangang Chen
- Department of Public Health, The University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
9
|
Yildirim G, Budell W, Berezovska O, Yagerman S, Maliath S, Mastrokostas P, Tommasini S, Dowd T. Lead induced differences in bone properties in osteocalcin +/+ and −/− female mice. Bone Rep 2023; 18:101672. [PMID: 37064000 PMCID: PMC10090701 DOI: 10.1016/j.bonr.2023.101672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/25/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Lead (Pb) toxicity is a major health problem and bone is the major reservoir. Lead is detrimental to bone, affects bone remodeling and is associated with elderly fractures. Osteocalcin (OC) affects bone remodeling, improves fracture resistance and decreases with age and in some diseases. The effect of lead in osteocalcin depleted bone is unknown and of interest. We compared bone mineral properties of control and Pb exposed (from 2 to 6 months) femora from female adult C57BL6 OC+/+ and OC-/- mice using Fourier Transform Infrared Imaging (FTIRI), Micro-computed tomography (uCT), bone biomechanical measurements and serum turnover markers (P1NP, CTX). Lead significantly increased turnover in OC+/+ and in OC-/- bones producing increased total volume, area and marrow area/total area with decreased BV/TV compared to controls. The increased turnover decreased mineral/matrix vs. Oc+/+ and increased mineral/matrix and crystallinity vs. OC-/-. PbOC-/- had increased bone formation, cross-sectional area (Imin) and decreased collagen maturity compared OC-/- and PbOC+/+. Imbalanced turnover in PbOC-/- confirmed the role of osteocalcin as a coupler of formation and resorption. Bone strength and stiffness were reduced in OC-/- and PbOC-/- due to reduced material properties vs. OC+/+ and PbOC+/+ respectively. The PbOC-/- bones had increased area to compensate for weaker material properties but were not proportionally stronger for increased size. However, at low lead levels osteocalcin plays the major role in bone strength suggesting increased fracture risk in low Pb2+ exposed elderly could be due to reduced osteocalcin as well. Years of low lead exposure or higher blood lead levels may have an additional effect on bone strength.
Collapse
Affiliation(s)
- G. Yildirim
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, NY, USA
| | - W.C. Budell
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, NY, USA
| | - O. Berezovska
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, NY, USA
| | - S. Yagerman
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - S.S. Maliath
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, NY, USA
| | - P. Mastrokostas
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, NY, USA
| | - S. Tommasini
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
| | - T.L. Dowd
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, NY, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
- Corresponding author at: Department of Chemistry, Rm. 359 NE, Brooklyn College of the City University of New York, 2900 Bedford Ave., Brooklyn, NY 11210, USA.
| |
Collapse
|
10
|
Humphries M, Myburgh J, Campbell R, Combrink X. High lead exposure and clinical signs of toxicosis in wild Nile crocodiles (Crocodylus niloticus) from a World Heritage site: Lake St Lucia estuarine system, South Africa. CHEMOSPHERE 2022; 303:134977. [PMID: 35595117 DOI: 10.1016/j.chemosphere.2022.134977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Lead (Pb) exposure is a widespread wildlife conservation threat, but impacts on reptile populations remain poorly documented. In this study, we examined Pb exposure and accumulation in a wild population of Nile crocodiles (Crocodylus niloticus) at Lake St Lucia, South Africa. Recreational angling has occurred in the area since the 1930s and incidental ingestion of Pb fishing weights has previously been identified as a major source of Pb poisoning in the local crocodile population. In 2019, we sampled blood and tail fat tissues from wild (n = 22) and captive (n = 3) crocodiles at Lake St Lucia to investigate potential impacts of chronic Pb exposure on crocodilian health. Lead was detected in blood samples of all wild crocodiles, although concentrations varied widely between individuals (86-13,100 ng ml-1). The incidence of Pb poisoning was higher in male crocodiles, with mean blood lead (BPb) concentrations in males (3780 ± 4690 ng ml-1) significantly (p < 0.001) higher compared to females (266 ± 230 ng ml-1). Blood Pb concentrations were correlated with concentrations measured in tail fat tissue (n.d - 4175 ng g-1 wet wt.). Although most of the crocodiles sampled appeared to be in good physical condition, highly elevated BPb concentrations (>6000 ng ml-1) were associated with markedly suppressed packed cell volumes (4.6-10.8%) and severe deterioration in tooth condition. These findings suggest that anaemia and tooth loss may be clinical signs of long-term environmental exposure to Pb. Although previously undocumented in crocodilians, these symptoms are consistent with Pb poisoning observed in birds and mammals, and suggest that crocodilians may be more susceptible to the long-term toxic effects of Pb than previously thought. In light of these findings, we suggest that the impact of accumulated Pb on crocodilian fitness, reproduction and mortality requires urgent attention.
Collapse
Affiliation(s)
- Marc Humphries
- School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa.
| | - Jan Myburgh
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, South Africa
| | - Robert Campbell
- National Zoological Garden, South African National Biodiversity Institute, Pretoria, South Africa
| | - Xander Combrink
- Department of Nature Conservation, Tshwane University of Technology, South Africa
| |
Collapse
|
11
|
Davis LL, Aragão WAB, de Oliveira Lopes G, Eiró LG, Freire AR, Prado FB, Rossi AC, da Silva Cruz A, das Graças Fernandes Dantas K, Albuquerque ARL, Paz SPA, Angélica RS, Lima RR. Chronic exposure to lead acetate promotes changes in the alveolar bone of rats: microstructural and physical-chemical characterization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:13930-13940. [PMID: 34599710 DOI: 10.1007/s11356-021-16723-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
There are a few data relating to the effects of lead (Pb) exposure on the alveolar bone, which has very distinct morphophysiological characteristics and is of great importance in the oral cavity. In this context, the aim of this study was to investigate the changes promoted after long-term exposure to Pb in the microstructure of the alveolar bone of rats. Twenty adult Wistar rats were exposed to 50 mg/kg/day of lead acetate for 55 days. These animals were euthanized and had their mandible removed. Each mandible was divided into hemimandibles, and the alveolar bone was used for bone lead quantification, crystallinity analysis, microstructure evaluation by the percentage of bone volume (BV/TV), number of trabeculae (Tb.N), thickness of the trabecular (Tb.Th), and trabecular space (Tb.Sp). Morphometric analysis of the exposed root area was also performed. Long-term exposure to Pb resulted in high levels of Pb in the alveolar bone but showed no changes in the organization of crystallinity. The microstructural analyses showed a reduction of BV/TV, Tb.Th, and Tb.N and increase of Tb.Sp parameters, resulting in an increase in the exposed root area and an alveolar bone loss in height. The findings of this study reveal the ability of Pb to alter the alveolar bone microstructure after long-term exposure to the metal, possibly due to changes in tissue homeostasis, contributing to the reduction of bone quality.
Collapse
Affiliation(s)
- Lodinikki Lemoy Davis
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa street, N. 1. Campus do Guamá. - CEP, Belém, PA, 66075-110, Brazil
| | - Walessa Alana Bragança Aragão
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa street, N. 1. Campus do Guamá. - CEP, Belém, PA, 66075-110, Brazil
| | - Géssica de Oliveira Lopes
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa street, N. 1. Campus do Guamá. - CEP, Belém, PA, 66075-110, Brazil
| | - Luciana Guimaraes Eiró
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa street, N. 1. Campus do Guamá. - CEP, Belém, PA, 66075-110, Brazil
| | - Alexandre Rodrigues Freire
- Laboratory of research in Mechanobiology, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, Brazil
| | - Felippe Bevilacqua Prado
- Laboratory of research in Mechanobiology, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, Brazil
| | - Ana Cláudia Rossi
- Laboratory of research in Mechanobiology, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, Brazil
| | - Allan da Silva Cruz
- Group of Applied Analytical Spectrometry, Institute of Natural and Exact Sciences, Federal University of Pará, Belém, PA, Brazil
| | | | - Alan Rodrigo Leal Albuquerque
- Group of Applied Analytical Spectrometry, Institute of Natural and Exact Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Simone Patricia Aranha Paz
- Group of Applied Analytical Spectrometry, Institute of Natural and Exact Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Rômulo Simões Angélica
- Laboratory of Mineral Characterization, Institute of Geology and Geochemistry, Federal University of Pará, Belém, PA, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa street, N. 1. Campus do Guamá. - CEP, Belém, PA, 66075-110, Brazil.
| |
Collapse
|
12
|
Cui A, Xiao P, Hu B, Ma Y, Fan Z, Wang H, Zhou F, Zhuang Y. Blood Lead Level Is Negatively Associated With Bone Mineral Density in U.S. Children and Adolescents Aged 8-19 Years. Front Endocrinol (Lausanne) 2022; 13:928752. [PMID: 35846292 PMCID: PMC9283721 DOI: 10.3389/fendo.2022.928752] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
CONTEXT The relationship of lead (Pb) exposure with bone health in children and adolescents remains controversial. OBJECTION We aimed to investigate the association of blood lead levels (BLL) with bone mineral density (BMD) in American children and adolescents using data from the National Health and Nutrition Examination Survey (NHANES), 2005-2010. METHODS We analyzed 5,583 subjects aged 8-19 years (mean age, 13.49 ± 3.35 years) from the NHANES 2005-2010. BLL was tested using inductively coupled plasma mass spectrometry. BMD was measured by dual-energy X-ray absorptiometry (DXA) at the lumbar spine, total femur, and femur neck. Multivariate linear regression models were used to explore the association between BLL and BMD, adjusting for age, gender, race/ethnicity, poverty income ratio (PIR), body mass index (BMI), serum calcium, and serum phosphorus. RESULTS BLL was negatively correlated with BMD at different sites of interest in children and adolescents. For every 1mg/dl increase in BLL, the BMD of the total spine, total hip, and femoral neck decreased by 0.011 g/cm2, 0.008 g/cm2, and 0.006 g/cm2. In addition, Pb affected the lumbar spine more than the femur. The effect estimates were stronger in girls than boys at the lumbar spine (P for interaction= 0.006). This negative association remained significant in American children and adolescents after excluding individuals with BLL more than 3.5 ug/dl. CONCLUSION Our study indicates that BLL is negatively correlated with BMD at different sites of interest in children and adolescents aged 8-19 years, even in the reference range. More research is needed to elucidate the relationships between Pb and bone health in children and adolescents, including specific mechanisms and confounding factors like race/ethnicity, gender, and age.
Collapse
Affiliation(s)
- Aiyong Cui
- Department of Pelvic and Acetabular Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Peilun Xiao
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Baoliang Hu
- Department of gastroenterology surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Yuzhuo Ma
- Department of Orthopedics, HongHui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Zhiqiang Fan
- Department of Pelvic and Acetabular Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Hu Wang
- Department of Pelvic and Acetabular Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Fengjin Zhou
- Department of Pelvic and Acetabular Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Yan Zhuang, ; Fengjin Zhou,
| | - Yan Zhuang
- Department of Pelvic and Acetabular Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Yan Zhuang, ; Fengjin Zhou,
| |
Collapse
|
13
|
Wei MH, Cui Y, Zhou HL, Song WJ, Di DS, Zhang RY, Huang Q, Liu JA, Wang Q. Associations of multiple metals with bone mineral density: A population-based study in US adults. CHEMOSPHERE 2021; 282:131150. [PMID: 34470175 DOI: 10.1016/j.chemosphere.2021.131150] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Epidemiologic studies focus on combined effects of multiple metals on bone mineral density (BMD) are scarce. Therefore, this study was conducted to examine associations of multiple metals exposure with BMD. Data of adults aged ≥20 years (n = 2545) from the US National Health and Nutrition Examination Survey (NHANES, 2011-2016) were collected and analyzed. Concentrations of metals were measured in blood (cadmium [Cd], lead [Pb], mercury [Hg], and manganese [Mn]) and serum (copper [Cu], selenium [Se], and zinc [Zn]) using inductively coupled plasma mass spectrometry and inductively coupled plasma dynamic reaction cell mass spectrometry, respectively. The weighted quantile sum (WQS) and Bayesian kernel machine regression (BKMR) models were performed to determine the joint effects of multiple metals exposure on lumbar and total BMD. The linear regression analyses showed Pb was negatively associated with BMDs. The WQS regression analyses revealed that the WQS index was inversely related to lumbar (β = -0.022, 95% CI: -0.036, -0.008) and total BMD (β = -0.015, 95% CI: -0.024, -0.006), and Se, Mn, and Pb were the main contributors for the combined effects. Additionally, nonlinear dose-response relationships between Pb, Mn, and Se and BMD, as well as a synergistic interaction of Pb and Mn, were found in the BKMR analyses. Our findings suggested co-exposure to Cd, Pb, Hg, Mn, Cu, Se, and Zn (above their 50th percentiles) was associated with reduced BMD, and Pb, Mn, and Se were the main contributors driving the overall effects.
Collapse
Affiliation(s)
- Mu-Hong Wei
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuan Cui
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hao-Long Zhou
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wen-Jing Song
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dong-Sheng Di
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ru-Yi Zhang
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qin Huang
- Department of Rehabilitation Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jun-An Liu
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Qi Wang
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
14
|
Khalid M, Hodjat M, Abdollahi M. Environmental Exposure to Heavy Metals Contributes to Diseases Via Deregulated Wnt Signaling Pathways. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:370-382. [PMID: 34567167 PMCID: PMC8457726 DOI: 10.22037/ijpr.2021.114897.15089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Wnt signaling plays a critical role during embryogenesis and is responsible for regulating the homeostasis of the adult stem cells and cells fate via a multitude of signaling pathways and associated transcription factors, receptors, effectors, and inhibitors. For this review, published articles were searched from PubMed Central, Embase, Medline, and Google Scholar. The search terms were Wnt, canonical, noncanonical, signaling pathway, β-catenin, environment, and heavy metals. Published articles on Wnt signaling pathways and heavy metals as contributing factors for causing diseases via influencing Wnt signaling pathways were included. Wnt canonical or noncanonical signaling pathways are the key regulators of stem cell homeostasis that control many mechanisms. There is an adequate balance between β-catenin dependent and independent Wnt signaling pathways and remain highly conserved throughout different development stages. Environmental heavy metal exposure may cause either inhibition or overexpression of any component of Wnt signaling pathways such as Wnt protein, transcription factors, receptors, ligands, or transducers to impede normal cellular function via negatively affecting Wnt signaling pathways. Environmental exposure to heavy metals potentially contributes to diseases via deregulated Wnt signaling pathways.
Collapse
Affiliation(s)
- Madiha Khalid
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mahshid Hodjat
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Osorio-Yáñez C, Sanchez-Guerra M, Solano M, Baccarelli A, Wright R, Sanders AP, Tellez-Rojo MM, Tamayo-Ortiz M. Metal exposure and bone remodeling during pregnancy: Results from the PROGRESS cohort study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 282:116962. [PMID: 33823308 PMCID: PMC11064930 DOI: 10.1016/j.envpol.2021.116962] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 02/20/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Pregnancy is characterized by high bone remodeling and might be a window of susceptibility to the toxic effects of metals on bone tissue. The aim of this study was to assess associations between metals in blood [lead (Pb), cadmium (Cd)and arsenic (As)] and bone remodeling during pregnancy. We studied pregnant woman from the PROGRESS Cohort (Programming Research in Obesity, Growth, and Environment and Social Stress). We measured concentrations of metals in blood and obtained measures of bone remodeling by quantitative ultrasound (QUS) at the radius in the second and third trimester of pregnancy. To account for chronic lead exposure, we measured lead in tibia and patella one-month postpartum with K-shell X-ray fluorescence. We assessed cross-sectional and longitudinal associations between multiple-metal concentrations and QUS z-scores using linear regression models and linear mixed models adjusted for potential confounders. Third trimester blood Cd concentrations were marginal associated with lower QUS z-scores [-0.16 (95% CI: -0.33, 0.007); P-Value = 0.06]. Mixed models showed that blood Cd was longitudinally and marginally associated with an average of -0.10 z-score (95% CI: -0.21, 0.002; P-Value = 0.06) over the course of pregnancy. Associations for Pb and As were all inverse however none reached significance. Additionally, bone Pb concentrations in patella, an index of cumulative exposure, were significantly associated with -0.06 z-score at radius (95% CI: -0.10, -0.01; P-Value = 0.03) during pregnancy. Pb and Cd blood levels are associated with lower QUS distal radius z-scores in pregnant women. Bone Pb concentrations in patella were negatively associated with z-score at radius showing the long-term effects of Pb on bone tissue. However, we cannot exclude the possibility of reverse causality for patella Pb and radius z-score associations. Our results support the importance of reducing women's metal exposure during pregnancy, as metals exposure during pregnancy may have consequences for bone strength later in life. The main finding of our study is the association between Cd blood levels and radius z-score during pregnancy. Bone lead in patella was also negatively associated with radius z-scores.
Collapse
Affiliation(s)
- Citlalli Osorio-Yáñez
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, Mexico; Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Ciudad Universitaria S/N, Mexico
| | - Marco Sanchez-Guerra
- Department of Developmental Neurobiology, National Institute of Perinatology, Montes Urales 800, Lomas Virreyes, Mexico City, 1100, Mexico
| | - Maritsa Solano
- Center for Evaluation Research & Surveys, National Institute of Public Health, Cuernavaca, Morelos, 62100, Mexico
| | - Andrea Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Robert Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, NY, 10029, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
| | - Alison P Sanders
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, NY, 10029, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
| | - Martha Maria Tellez-Rojo
- Center for Evaluation Research & Surveys, National Institute of Public Health, Cuernavaca, Morelos, 62100, Mexico.
| | - Marcela Tamayo-Ortiz
- Occupational Research Unit, Mexican Social Security Institute (IMSS), Mexico City, Mexico
| |
Collapse
|
16
|
Mandair GS, Akhter MP, Esmonde-White FWL, Lappe JM, Bare SP, Lloyd WR, Long JP, Lopez J, Kozloff KM, Recker RR, Morris MD. Altered collagen chemical compositional structure in osteopenic women with past fractures: A case-control Raman spectroscopic study. Bone 2021; 148:115962. [PMID: 33862262 PMCID: PMC8259347 DOI: 10.1016/j.bone.2021.115962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/25/2021] [Accepted: 04/08/2021] [Indexed: 12/17/2022]
Abstract
Incidences of low-trauma fractures among osteopenic women may be related to changes in bone quality. In this blinded, prospective-controlled study, compositional and heterogeneity contributors of bone quality to fracture risk were examined. We hypothesize that Raman spectroscopy can differentiate between osteopenic women with one or more fractures (cases) from women without fractures (controls). This study involved the Raman spectroscopic analysis of cortical and cancellous bone composition using iliac crest biopsies obtained from 59-cases and 59-controls, matched for age (62.0 ± 7.5 and 61.7 ± 7.3 years, respectively, p = 0.38) and hip bone mineral density (BMD, 0.827 ± 0.083 and 0.823 ± 0.072 g/cm3, respectively, p = 0.57). Based on aggregate univariate case-control and odds ratio based logistic regression analyses, we discovered two Raman ratiometric parameters that were predictive of past fracture risk. Specifically, 1244/1268 and 1044/959 cm-1 ratios, were identified as the most differential aspects of bone quality in cortical cases with odds ratios of 0.617 (0.406-0.938 95% CI, p = 0.024) and 1.656 (1.083-2.534 95% CI, p = 0.020), respectively. Both 1244/1268 and 1044/959 cm-1 ratios exhibited moderate sensitivity (59.3-64.4%) but low specificity (49.2-52.5%). These results suggest that the organization of mineralized collagen fibrils were significantly altered in cortical cases compared to controls. In contrast, compositional and heterogeneity parameters related to mineral/matrix ratios, B-type carbonate substitutions, and mineral crystallinity, were not significantly different between cases and controls. In conclusion, a key outcome of this study is the significant odds ratios obtained for two Raman parameters (1244/1268 and 1044/959 cm-1 ratios), which from a diagnostic perspective, may assist in the screening of osteopenic women with suspected low-trauma fractures. One important implication of these findings includes considering the possibility that changes in the organization of collagen compositional structure plays a far greater role in postmenopausal women with osteopenic fractures.
Collapse
Affiliation(s)
- Gurjit S Mandair
- School of Dentistry, Departments of Biologic and Materials, University of Michigan, Ann Arbor, MI, USA.
| | | | | | - Joan M Lappe
- Osteoporosis Research Center, Creighton University, Omaha, NE, USA
| | - Susan P Bare
- Osteoporosis Research Center, Creighton University, Omaha, NE, USA
| | - William R Lloyd
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Jason P Long
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Jessica Lopez
- School of Dentistry, Departments of Biologic and Materials, University of Michigan, Ann Arbor, MI, USA
| | - Kenneth M Kozloff
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Robert R Recker
- Osteoporosis Research Center, Creighton University, Omaha, NE, USA
| | - Michael D Morris
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
17
|
Shan B, Hao R, Xu H, Li J, Li Y, Xu X, Zhang J. A review on mechanism of biomineralization using microbial-induced precipitation for immobilizing lead ions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:30486-30498. [PMID: 33900555 DOI: 10.1007/s11356-021-14045-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
Lead (Pb) is a toxic metal originating from natural processes and anthropogenic activities such as coal power plants, mining, waste gas fuel, leather whipping, paint, and battery factories, which has adverse effects on the ecosystem and the health of human beings. Hence, the studies about investigating the remediation of Pb pollution have aroused extensive attention. Microbial remediation has the advantages of lower cost, higher efficiency, and less impact on the environment. This paper represented a review on the mechanism of biomineralization using microbial-induced precipitation for immobilizing Pb(II), including microbial-induced carbonate precipitation (MICP), microbial-induced phosphate precipitation (MIPP), and direct mineralization. The main mechanisms including biosorption, bioaccumulation, complexation, and biomineralization could decrease Pb(II) concentrations and convert exchangeable state into less toxic residual state. We also discuss the factors that govern methods for the bioremediation of Pb such as microbe characteristics, pH, temperature, and humic substances. Based on the above reviews, we provide a scientific basis for the remediation performance of microbial-induced precipitation technique and theoretical guidance for the application of Pb(II) remediation in soils and wastewater.
Collapse
Affiliation(s)
- Bing Shan
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Ruixia Hao
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China.
| | - Hui Xu
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Jiani Li
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Yinhuang Li
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Xiyang Xu
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Junman Zhang
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
18
|
Li M, Cheng D, Li H, Yao W, Guo D, Wang S, Si J. Tributyltin perturbs femoral cortical architecture and polar moment of inertia in rat. BMC Musculoskelet Disord 2021; 22:427. [PMID: 33962613 PMCID: PMC8106170 DOI: 10.1186/s12891-021-04298-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/20/2021] [Indexed: 01/22/2023] Open
Abstract
Background Tributyltin, a well-known endocrine disruptor, is widely used in agriculture and industry. Previous studies have shown that tributyltin could cause deleterious effects on bone health by impairing the adipo-osteogenic balance in bone marrow. Methods To investigate further the effects of tributyltin on bone, weaned male SD rats were treated with tributyltin (0.5, 5 or 50 μg·kg− 1) or corn oil by gavage once every 3 days for 60 days in this study. Then, we analyzed the effects of tributyltin on geometry, the polar moment of inertia, mineral content, relative abundances of mRNA from representative genes related to adipogenesis and osteogenesis, serum calcium ion and inorganic phosphate levels. Results Micro-computed tomography analysis revealed that treatment with 50 μg·kg− 1 tributyltin caused an obvious decrease in femoral cortical cross sectional area, marrow area, periosteal circumference and derived polar moment of inertia in rats. However, other test results showed that exposure to tributyltin resulted in no significant changes in the expression of genes detected, femoral cancellous architecture, ash content, as well as serum calcium ion and inorganic phosphate levels. Conclusions Exposure to a low dose of tributyltin from the prepubertal to adult stage produced adverse effects on skeletal architecture and strength. Supplementary Information The online version contains supplementary material available at 10.1186/s12891-021-04298-2.
Collapse
Affiliation(s)
- Mingjun Li
- Department of Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Lu, Jinan, 250012, Shandong, China
| | - Dong Cheng
- Department of Toxicology, Shandong Center for Disease Control and Prevention, Jinan, China
| | - Hui Li
- Department of Toxicology, Shandong Center for Disease Control and Prevention, Jinan, China
| | - Wenhuan Yao
- Department of Toxicology, Shandong Center for Disease Control and Prevention, Jinan, China
| | - Dongmei Guo
- Department of Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Lu, Jinan, 250012, Shandong, China
| | - Shu'e Wang
- Department of Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Lu, Jinan, 250012, Shandong, China
| | - Jiliang Si
- Department of Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Lu, Jinan, 250012, Shandong, China.
| |
Collapse
|
19
|
Pizzorno J, Pizzorno L. Environmental Toxins Are a Major Cause of Bone Loss. Integr Med (Encinitas) 2021; 20:10-17. [PMID: 34393671 PMCID: PMC8352419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The environmental metals cadmium, lead, and mercury, and chemicals such as pesticides, phthalates, and bisphenols, disrupt bone metabolism in many ways. Body levels of these toxins directly correlate, in a dose-dependent manner, with risk of fracture and osteoporosis. This editorial provides a brief summary of key research showing mechanisms of damage, sources, and key strategies to decrease body load.
Collapse
|
20
|
Yang W, Guo Y, Ni W, Tian T, Jin L, Liu J, Li Z, Ren A, Wang L. Hypermethylation of WNT3A gene and non-syndromic cleft lip and/or palate in association with in utero exposure to lead: A mediation analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111415. [PMID: 33091767 DOI: 10.1016/j.ecoenv.2020.111415] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVES We aim to investigate association between WNT3A methylation and risk of non-syndromic cleft lip and/or palate (NSCL/P), and examine mediating effect of WNT3A methylation on the association of NSCL/P and lead (Pb) exposure in fetuses. METHODS DNA methylation of WNT3A in umbilical cord blood was determined among 59 NSCL/P cases and 118 non-malformed controls. Mediation analysis was performed to evaluate the potential mediating effect of WNT3A methylation on association between concentrations of Pb in umbilical cord and risk for NSCL/P. Additionally, an animal experiment in which cleft palates were induced by lead acetate was conducted. RESULTS The overall average methylation level of WNT3A was significant higher in NSCL/P cases as compared to controls. The risk for NSCL/P was increased by 1.90-fold with hypermethylation of WNT3A. Significant correlation was observed between concentrations of Pb in umbilical cord and methylation level of WNT3A. The hypermethylation of WNT3A had a mediating effect by 9.32% of total effect of Pb on NSCL/P risk. Gender-specific association between WNT3A methylation and NSCL/P was observed in male fetuses, and the percentage of the mediating effect increased to 14.28%. Animal experiment of mice showed that maternal oral exposure to lead acetate may result in cleft palate in offspring. CONCLUSION Hypermethylation of WNT3A was associated with the risk for NSCL/P and may be partly explain the association between exposure to Pb and risk for NSCL/P. The teratogenic and fetotoxic effects of Pb were found in mice.
Collapse
Affiliation(s)
- Wenlei Yang
- Institute of Reproductive and Child Health, NHC Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Yingnan Guo
- Institute of Reproductive and Child Health, NHC Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Wenli Ni
- Institute of Reproductive and Child Health, NHC Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Tian Tian
- Institute of Reproductive and Child Health, NHC Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Lei Jin
- Institute of Reproductive and Child Health, NHC Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Jufen Liu
- Institute of Reproductive and Child Health, NHC Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Zhiwen Li
- Institute of Reproductive and Child Health, NHC Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Aiguo Ren
- Institute of Reproductive and Child Health, NHC Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Linlin Wang
- Institute of Reproductive and Child Health, NHC Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
21
|
Chou H, Grant MP, Bolt AM, Guilbert C, Plourde D, Mwale F, Mann KK. Tungsten Increases Sex-Specific Osteoclast Differentiation in Murine Bone. Toxicol Sci 2021; 179:135-146. [PMID: 33146397 PMCID: PMC7797767 DOI: 10.1093/toxsci/kfaa165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tungsten is a naturally occurring metal that is increasingly used in industry and medical devices, and is labeled as an emerging environmental contaminant. Like many metals, tungsten accumulates in bone. Our previous data indicate that tungsten decreases differentiation of osteoblasts, bone-forming cells. Herein, we explored the impact of tungsten on osteoclast differentiation, which function in bone resorption. We observed significantly elevated osteoclast numbers in the trabecular bone of femurs following oral exposure to tungsten in male, but not female mice. In order to explore the mechanism(s) by which tungsten increases osteoclast number, we utilized in vitro murine primary and cell line pre-osteoclast models. Although tungsten did not alter the adhesion of osteoclasts to the extracellular matrix protein, vitronectin, we did observe that tungsten enhanced RANKL-induced differentiation into tartrate-resistant acid phosphatase (TRAP)-positive mononucleated osteoclasts. Importantly, tungsten alone had no effect on differentiation or on the number of multinucleated TRAP-positive osteoclasts. Enhanced RANKL-induced differentiation correlated with increased gene expression of differentiated osteoclast markers Nfatc1, Acp5, and Ctsk. Although tungsten did not alter the RANK surface receptor expression, it did modulate its downstream signaling. Co-exposure of tungsten and RANKL resulted in sustained positive p38 signaling. These findings demonstrate that tungsten enhances sex-specific osteoclast differentiation, and together with previous findings of decreased osteoblastogenesis, implicate tungsten as a modulator of bone homeostasis.
Collapse
Affiliation(s)
- Hsiang Chou
- Division of Experimental Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Michael P Grant
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | - Alicia M Bolt
- College of Pharmacy, Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque 87131, New Mexico
| | - Cynthia Guilbert
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | - Dany Plourde
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | - Fackson Mwale
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
- Department of Experimental Surgery, McGill University, Montreal, Quebec H3G 1A4, Canada
| | - Koren K Mann
- Division of Experimental Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec H4A 3T2, Canada
| |
Collapse
|
22
|
Li D, Liang H, Li Y, Zhang J, Qiao L, Luo H. Allicin Alleviates Lead-Induced Bone Loss by Preventing Oxidative Stress and Osteoclastogenesis Via SIRT1/FOXO1 Pathway in Mice. Biol Trace Elem Res 2021; 199:237-243. [PMID: 32314144 DOI: 10.1007/s12011-020-02136-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/25/2020] [Indexed: 12/18/2022]
Abstract
The aim of this study was to investigate the effects of allicin on lead-induced bone loss in mice. Male C57BL/6 J mice (3-weeks-old) were randomly divided into four groups: control group, lead group, allicin+lead group, and allicin group. Micro-CT, histology, oxidative stress, and osteoclastogenesis-related gene expression were analyzed. The results showed that allicin significantly ameliorated lead-induced bone loss, reduced oxidative stress, and inhibited osteoclastogenesis in mice. Moreover, we found that allicin upregulated the expression of SIRT1 and deacetylation of FoxO1. In conclusion, our study demonstrated that allicin exerts protective effects on lead-induced bone loss via antioxidant activity, preventing osteoclastogenesis, and activating SIRT1/FOXO1 pathway in mice, implying a potential therapy for lead-induced bone loss.
Collapse
Affiliation(s)
- Dong Li
- Department of Orthopaedics, the Second Hospital of Shanxi Medical University, No.382, Wuyi road, xinghualing district, Taiyuan, Shanxi, China
| | - Haipeng Liang
- Department of Orthopaedics, the Second Hospital of Shanxi Medical University, No.382, Wuyi road, xinghualing district, Taiyuan, Shanxi, China
| | - Yuan Li
- Department of Orthopaedics, the Second Hospital of Shanxi Medical University, No.382, Wuyi road, xinghualing district, Taiyuan, Shanxi, China
| | - Jianhui Zhang
- Department of Orthopaedics, the Second Hospital of Shanxi Medical University, No.382, Wuyi road, xinghualing district, Taiyuan, Shanxi, China
| | - Liang Qiao
- Department of Orthopaedics, the Second Hospital of Shanxi Medical University, No.382, Wuyi road, xinghualing district, Taiyuan, Shanxi, China
| | - Huayun Luo
- Department of Orthopaedics, the Second Hospital of Shanxi Medical University, No.382, Wuyi road, xinghualing district, Taiyuan, Shanxi, China.
| |
Collapse
|
23
|
Descalzo E, Camarero PR, Sánchez-Barbudo IS, Martinez-Haro M, Ortiz-Santaliestra ME, Moreno-Opo R, Mateo R. Integrating active and passive monitoring to assess sublethal effects and mortality from lead poisoning in birds of prey. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:142260. [PMID: 33182217 DOI: 10.1016/j.scitotenv.2020.142260] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 06/11/2023]
Abstract
The ingestion of lead (Pb) ammunition is the most important exposure pathway to this metal in birds and involve negative consequences to their health. We have performed a passive monitoring of Pb poisoning in birds of prey by measuring liver (n = 727) and blood (n = 32) Pb levels in individuals of 16 species found dead or sick in Spain between 2004 and 2020. We also performed an active monitoring by measuring blood Pb levels and biomarkers of haem biosynthesis, phosphorus (P) and calcium (Ca) metabolism, oxidative stress and immune function in individuals (n = 194) of 9 species trapped alive in the field between 2016 and 2017. Passive monitoring results revealed some species with liver Pb levels associated with severe clinical poisoning (>30 μg/g d.w. of Pb): Eurasian griffon vulture (27/257, 10.5%), red kite (1/132, 0.8%), golden eagle (4/38, 10.5%), and Northern goshawk (1/8, 12.5%). The active monitoring results showed that individuals of bearded vulture (1/3, 33.3%), Eurasian griffon vulture (87/118, 73.7%), Spanish imperial eagle (1/6, 16.7%) and red kite (1/18, 5.6%) had abnormal blood Pb levels (>20 μg/dL). Blood Pb levels increased with age, and both monitoring methods showed seasonality in Pb exposure associated with a delayed effect of the hunting season. In Eurasian griffon, blood Pb concentration was associated with lower δ-ALAD activity in blood and P levels in plasma, and with higher blood lipid peroxidation and plasma carotenoid levels in agreement with other experimental and field studies in Pb-exposed birds. The study reveals that Pb poisoning is a significant cause of death and sublethal effects on haem biosynthesis, P metabolism and oxidative stress in birds of prey in Spain.
Collapse
Affiliation(s)
- Esther Descalzo
- Instituto de Investigación en Recursos Cinegéticos (IREC - CSIC, UCLM, JCCM), Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Pablo R Camarero
- Instituto de Investigación en Recursos Cinegéticos (IREC - CSIC, UCLM, JCCM), Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Inés S Sánchez-Barbudo
- Instituto de Investigación en Recursos Cinegéticos (IREC - CSIC, UCLM, JCCM), Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Mónica Martinez-Haro
- Instituto de Investigación en Recursos Cinegéticos (IREC - CSIC, UCLM, JCCM), Ronda de Toledo 12, 13005 Ciudad Real, Spain; Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), CIAG del Chaparrillo, 13071 Ciudad Real, Spain
| | - Manuel E Ortiz-Santaliestra
- Instituto de Investigación en Recursos Cinegéticos (IREC - CSIC, UCLM, JCCM), Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Rubén Moreno-Opo
- Subdirección General de Biodiversidad Terrestre y Marina, Ministerio para la Transición Ecológica y el Reto Demográfico Pza, San Juan de la Cruz s/n, 28071, Madrid, Spain
| | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos (IREC - CSIC, UCLM, JCCM), Ronda de Toledo 12, 13005 Ciudad Real, Spain.
| |
Collapse
|
24
|
Geng R, Li H, Wang H, Ye C, Mao Y, Huang X. Venlafaxine Inhibits the Apoptosis of SHSY-5Y Cells Through Active Wnt/β-Catenin Signaling Pathway. Neuropsychiatr Dis Treat 2021; 17:1145-1151. [PMID: 33907406 PMCID: PMC8071209 DOI: 10.2147/ndt.s294998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/01/2021] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE This study aimed to explore the mechanism of venlafaxine in regulating the apoptosis of SHSY-5Y cells induced by hypoxia. METHODS The CoCl2-induced neuronal hypoxia model was established based on SHSY-5Y cells. The morphology and related protein expression of SHSY-5Y cells were detected by qPCR, ELISA and Western blot. RESULTS Under the condition of hypoxia-induced by CoCl2, the expression of HIF-1α in SHSY-5Y cells was up-regulated and the expression of β-catenin was down-regulated. After adding siRNA targeting HIF-1 α to the culture cell system, down-regulation of β -catenin expression in SHSY-5Y cells was restored. This confirmed the existence of the "hypoxia-HIF-1α-Wnt/β-catenin-depression" axis. Further studies have shown that venlafaxine can alleviate neuronal apoptosis induced by hypoxia by upregulating the Wnt/β-catenin signaling pathway. CONCLUSION Venlafaxine regulates apoptosis induced by hypoxia through the Wnt/β-catenin signaling pathway, which provides a new theoretical basis for the treatment of depression.
Collapse
Affiliation(s)
- Ruijie Geng
- Department of Psychological Medicine, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Haibin Li
- Department of Psychological Medicine, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Hao Wang
- Teaching Center of Experimental Medicine, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Chenyu Ye
- Department of Psychological Medicine, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yemeng Mao
- Department of Pharmacy, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Xiao Huang
- Department of Psychological Medicine, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China.,Department of Psychological Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, Fujian, People's Republic of China
| |
Collapse
|
25
|
Crisóstomo L, Pereira SC, Monteiro MP, Raposo JF, Oliveira PF, Alves MG. Lifestyle, metabolic disorders and male hypogonadism - A one-way ticket? Mol Cell Endocrinol 2020; 516:110945. [PMID: 32707080 DOI: 10.1016/j.mce.2020.110945] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/27/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022]
Abstract
Hypogonadism is more frequent among men with common metabolic diseases, notably obesity and type 2 diabetes. Indeed, endocrine disruption caused by metabolic diseases can trigger the onset of hypogonadism, although the underlying molecular mechanisms are not entirely understood. Metabolic diseases are closely related to unhealthy lifestyle choices, such as dietary habits and sedentarism. Therefore, hypogonadism is part of a pathological triad gathering unhealthy lifestyle, metabolic disease and genetic background. Additionally, hypogonadism harbors the potential to aggravate underlying metabolic disorders, further sustaining the mechanisms leading to disease. To what extent does lifestyle intervention in men suffering from these metabolic disorders can prevent, improve or reverse hypogonadism, is still controversial. Moreover, recent evidence suggests that the metabolic status of the father is related to the risk of inter and transgenerational inheritance of hypogonadism. In this review, we will address the proposed mechanisms of disease, as well as currently available interventions for hypogonadism.
Collapse
Affiliation(s)
- Luís Crisóstomo
- Department of Microscopy, Laboratory of Cell Biology, And Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Portugal
| | - Sara C Pereira
- Department of Microscopy, Laboratory of Cell Biology, And Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Portugal
| | - Mariana P Monteiro
- Department of Anatomy, And Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Portugal
| | - João F Raposo
- NOVA Medical School - New University Lisbon, Lisbon, Portugal; APDP - Diabetes Portugal, Lisbon, Portugal
| | - Pedro F Oliveira
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, Portugal
| | - Marco G Alves
- Department of Microscopy, Laboratory of Cell Biology, And Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Portugal.
| |
Collapse
|
26
|
Zhou CC, He YQ, Gao ZY, Wu MQ, Yan CH. Sex differences in the effects of lead exposure on growth and development in young children. CHEMOSPHERE 2020; 250:126294. [PMID: 32113092 DOI: 10.1016/j.chemosphere.2020.126294] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/31/2020] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
The adverse effects of lead exposure on children's health have been widely investigated. Physical growth is a central indicator of health in early childhood. However, studies on the associations between lead exposure and the physical growth of young children are still equivocal. This study aimed to investigate the effects of lead exposure on young children's growth. A cross-sectional survey was conducted, and a total of 1678 young children were recruited. Blood lead levels were determined by graphite furnace atomic absorption spectrophotometry and anthropometric measurements were obtained by nurses. The weight-for-age Z-score (WAZ), height-for-age Z-score (HAZ) and BMI for-age Z-score (BMIZ) of the children were calculated according to World Health Organization standards. Multivariable linear models after adjustment for potential confounders were used to evaluate the associations between lead exposure and childhood anthropometric characteristics. Meanwhile, the sex differences in these associations were also examined. The median blood lead levels in total subjects, in boys and in girls were 46.44, 49.00 and 43.27 μg/L, respectively. After adjusting for confounders, a significantly negative association of blood lead levels with WAZ and HAZ was observed. After stratification by sex, the blood lead levels in children were negatively associated with WAZ and HAZ in boys but not in girls. Meanwhile, we further provide evidence that blood lead levels below 50 μg/L may also have adverse effects on young children's HAZ. Our findings suggest that lead exposure may have sex-specific effects on physical growth in young children and that blood lead level in a low levels may also have adverse effects on children's physical growth and development.
Collapse
Affiliation(s)
- Can-Can Zhou
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Yu-Qiong He
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Chinese Materia Madica, Shanghai University of TCM, Shanghai, 201203, China
| | - Zhen-Yan Gao
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Gynaecology and Obstetrics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mei-Qin Wu
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chong-Huai Yan
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
27
|
Sheng Z, Wang S, Zhang X, Li X, Li B, Zhang Z. Long-Term Exposure to Low-Dose Lead Induced Deterioration in Bone Microstructure of Male Mice. Biol Trace Elem Res 2020; 195:491-498. [PMID: 31407216 DOI: 10.1007/s12011-019-01864-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 08/04/2019] [Indexed: 10/26/2022]
Abstract
The aim of this study was to investigate the long-term effects of low-dose lead exposure on bone microstructure in mice. Ten SPF 12-week-old male C57BL/6J mice were randomly divided into two groups: control (deionized water) and lead exposure (150 ppm of lead acetate in drinking water). After 24 weeks treatment, mice were weighed and the left femurs were collected and stored at - 80 °C. The right femurs of the mice were scanned by Micro-CT for three-dimensional reconstruction, and bone mineral density, bone volume fraction, trabeculae thickness, trabeculae number, and trabeculae separation were measured. The right tibia was collected to investigate histopathological changes in H&E-stained sections. The gene expression of osteoprotegerin (OPG), RANKL, and runt-related transcription factor 2 (Runx2) was determined using real-time PCR. The bone density of femoral cancellous bone and the number of cancellous bone trabeculae in the lead exposure group were both significantly decreased compared with the control group. Bone marrow stromal cell numbers were decreased following lead administration, and lipid droplet vacuoles were observed in the lead group. Levels of OPG were significantly decreased in the lead group, and lead also inhibited the expression of Runx2 compared with the control group. Long-term exposure to low doses of lead can cause bone damage without inducing other obvious symptoms through decreasing bone density and the number of cancellous bone trabeculae, further suppressing bone formation. It suggests that lead may exacerbate bone loss and osteoporosis, especially in the elderly.
Collapse
Affiliation(s)
- Zhijie Sheng
- School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Shuai Wang
- School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Xiang Zhang
- School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Xiaoyin Li
- School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Bingyan Li
- Experimental Center of Medical College of Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Zengli Zhang
- School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
28
|
Martini CN, Sosa FN, Fuchs J, Vila MDC. Effect of lead on proliferation, oxidative stress and genotoxic damage of 3T3-L1 fibroblasts. Toxicol Res (Camb) 2020; 9:158-163. [PMID: 32670547 DOI: 10.1093/toxres/tfaa018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/04/2020] [Accepted: 04/07/2020] [Indexed: 11/14/2022] Open
Abstract
Lead (Pb) is an environmental and industrial contaminant that still represents a public health problem. In this paper, we investigated the effect of Pb on proliferation, lipid peroxidation and the number of micronucleated cells in exponentially growing 3T3-L1 fibroblasts, a cell line previously used to evaluate different environmental contaminants. We found that Pb (10 μM or higher) was able to inhibit proliferation of exponentially growing cells after 24-h treatment, which was evaluated by the MTT assay and cell counting in Neubauer chamber, but cell survival was not affected according to the trypan blue exclusion assay. On the other hand, Pb was able to increase lipid peroxidation and the number of micronucleated cells, which are indicative of oxidative stress and genotoxic damage respectively. We also found that removal of Pb after 24-h treatment allowed cells to recover proliferation. Our results indicate that Pb was able to induce oxidative stress and genotoxicity in this cell line under standardized conditions, which supports the involvement of Pb in similar effects observed in human exposed to this heavy metal. In addition, Pb inhibits proliferation of exponentially growing fibroblasts but cells resume proliferation after removal of this metal, which suggests that it is important to move away Pb-exposed individuals from the source of contamination.
Collapse
Affiliation(s)
- Claudia Noemi Martini
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - Fernando Nicolás Sosa
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - Julio Fuchs
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Del Carmen Vila
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
29
|
Castro BBAD, Carmo WB, Oliveira RSMF, Peters VM, Jorgetti V, Custodio MR, Sanders-Pinheiro H. Digital radiography as an alternative method in the evaluation of bone density in uremic rats. J Bras Nefrol 2020; 42:8-17. [PMID: 31419270 PMCID: PMC7213932 DOI: 10.1590/2175-8239-jbn-2019-0008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/24/2019] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION Digital radiography (DRx) may provide a suitable alternative to investigate mineral and bone disorder (MBD) and loss of bone density (BD) in rodent models of chronic kidney disease (CKD). The objective of this study was to use DRx to evaluate BD in CKD rats, and to evaluate the correlation between DRx findings and serum MBD markers and bone histomorphometry. METHODS Uremia was induced by feeding Wistar rats an adenine-enriched diet (0.75% for 4 weeks/0.10% for 3 weeks); outcomes were compared to a control group at experimental weeks 3, 4, and 7. The following biochemical markers were measured: creatinine clearance (CrC), phosphate (P), calcium (Ca), fractional excretion of P (FeP), alkaline phosphatase (ALP), fibroblast growth factor-23 (FGF-23), and parathyroid hormone (PTH). DRx imaging was performed and histomorphometry analysis was conducted using the left femur. RESULTS As expected, at week 7, uremic rats presented with reduced CrC and higher levels of P, FeP, and ALP compared to controls. DRx confirmed the lower BD in uremic animals (0.57±0.07 vs. 0.68 ± 0.06 a.u.; p = 0.016) compared to controls at the end of week 7, when MBD was more prominent. A severe form of high-turnover bone disease accompanied these biochemical changes. BD measured on DRx correlated to P (r=-0.81; p = 0.002), ALP (r = -0.69, p = 0.01), PTH (r = -0.83, p = 0.01), OS/BS (r = -0.70; p = 0.02), and ObS/BS (r = -0.70; p = 0.02). CONCLUSION BD quantified by DRx was associated with the typical complications of MBD in CKD and showed to be viable in the evaluation of bone alterations in CKD.
Collapse
Affiliation(s)
- Bárbara Bruna Abreu de Castro
- Núcleo de Experimentação Animal, Laboratório de Nefrologia Experimental, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brasil
| | - Wander Barros Carmo
- Núcleo de Experimentação Animal, Laboratório de Nefrologia Experimental, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brasil
| | | | - Vera Maria Peters
- Centro de Biologia da Reprodução, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brasil
| | - Vanda Jorgetti
- Laboratório de Fisiopatologia Renal, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Melani Ribeiro Custodio
- Laboratório de Fisiopatologia Renal, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Helady Sanders-Pinheiro
- Núcleo de Experimentação Animal, Laboratório de Nefrologia Experimental, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brasil
| |
Collapse
|
30
|
González-Casanova JE, Pertuz-Cruz SL, Caicedo-Ortega NH, Rojas-Gomez DM. Adipogenesis Regulation and Endocrine Disruptors: Emerging Insights in Obesity. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7453786. [PMID: 32149131 PMCID: PMC7049431 DOI: 10.1155/2020/7453786] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 12/03/2019] [Accepted: 12/12/2019] [Indexed: 02/07/2023]
Abstract
Endocrine disruptors (EDs) are defined as environmental pollutants capable of interfering with the functioning of the hormonal system. They are environmentally distributed as synthetic fertilizers, electronic waste, and several food additives that are part of the food chain. They can be considered as obesogenic compounds since they have the capacity to influence cellular events related to adipose tissue, altering lipid metabolism and adipogenesis processes. This review will present the latest scientific evidence of different EDs such as persistent organic pollutants (POPs), heavy metals, "nonpersistent" phenolic compounds, triclosan, polybrominated diphenyl ethers (PBDEs), and smoke-derived compounds (benzo -alpha-pyrene) and their influence on the differentiation processes towards adipocytes in both in vitro and in vivo models.
Collapse
Affiliation(s)
| | - Sonia Liliana Pertuz-Cruz
- Programa de Nutrición y Dietética, Departamento de Nutrición Humana, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | | |
Collapse
|
31
|
Conti ME, Tudino MB, Finoia MG, Simone C, Stripeikis J. Applying the monitoring breakdown structure model to trace metal content in edible biomonitors: An eight-year survey in the Beagle Channel (southern Patagonia). Food Res Int 2020; 128:108777. [DOI: 10.1016/j.foodres.2019.108777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/22/2019] [Accepted: 10/26/2019] [Indexed: 01/22/2023]
|
32
|
Yao W, Wei X, Guo H, Cheng D, Li H, Sun L, Wang S, Guo D, Yang Y, Si J. Tributyltin reduces bone mineral density by reprograming bone marrow mesenchymal stem cells in rat. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 73:103271. [PMID: 31627035 DOI: 10.1016/j.etap.2019.103271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Abstract
Tributyltin (TBT), a proven endocrine disrupter, was widely used in industry and agriculture. Previous research showed that TBT could alter the balance between osteogenesis and adipogenesis, which may have significant consequences for bone health. Herein, we exposed male rats to TBT chloride (TBTCl) to evaluate the deleterious effects of TBT on bone. Exposure to 50 μg kg-1 TBT resulted in a significant decrease in bone mineral density (BMD) at the femur diaphysis region in the rat. A dose-dependent increase in lipid accumulation and adipocyte number was observed in the bone marrow (BM) of the femur. Meanwhile, TBTCl treatment significantly enhanced the expression of PPARγ and attenuated the expression of Runx2 and β-catenin in BM. In addition, serum ALP activity of TBT-exposed rats also showed a dose-dependent decrease. These results suggest that TBT could reduce BMD via inhibition of the Wnt/β-catenin pathway and skew the adipo-osteogenic balance in the BM of rats.
Collapse
Affiliation(s)
- Wenhuan Yao
- Institute of Preventive Medicine, Shandong University, Jinan, China; Department of Toxicology, Shandong Center for Disease Control and Prevention, Jinan, China
| | - Xinglong Wei
- Institute of Preventive Medicine, Shandong University, Jinan, China; Department of Environmental Health, School of Public Health, Shandong University, Jinan, China
| | - Hao Guo
- Institute of Preventive Medicine, Shandong University, Jinan, China; Department of Environmental Health, School of Public Health, Shandong University, Jinan, China
| | - Dong Cheng
- Institute of Preventive Medicine, Shandong University, Jinan, China; Department of Toxicology, Shandong Center for Disease Control and Prevention, Jinan, China
| | - Hui Li
- Institute of Preventive Medicine, Shandong University, Jinan, China; Department of Toxicology, Shandong Center for Disease Control and Prevention, Jinan, China
| | - Limin Sun
- Orthopedics Department, Shandong Provincial Third Hospital, Jinan, China
| | - Shu'e Wang
- Institute of Preventive Medicine, Shandong University, Jinan, China; Department of Environmental Health, School of Public Health, Shandong University, Jinan, China
| | - Dongmei Guo
- Institute of Preventive Medicine, Shandong University, Jinan, China; Department of Environmental Health, School of Public Health, Shandong University, Jinan, China
| | - Yanli Yang
- Department of Environmental Health, School of Public Health, Shandong University, Jinan, China
| | - Jiliang Si
- Institute of Preventive Medicine, Shandong University, Jinan, China; Department of Environmental Health, School of Public Health, Shandong University, Jinan, China.
| |
Collapse
|
33
|
Ventura M, Cardoso C, Bandarra NM, Delgado I, Coelho I, Gueifão S, Martins M, Costa MH, Castanheira I. Effect of season and proximate composition on the Br, As, Cd and Pb contents in different kinds of key foods consumed in Portugal. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marta Ventura
- Food and Nutrition Department National Health Institute Doutor Ricardo Jorge (INSA, IP) Av. Padre Cruz 1649‐016 Lisbon Portugal
- MARE ‐ Marine and Environmental Sciences Centre Department of Sciences and Environmental Engineering Nova School of Science and Technology (FCT Nova) 2829-516 Caparica Portugal
| | - Carlos Cardoso
- Division of Aquaculture and Upgrading Portuguese Institute for the Sea and Atmosphere IPMA Avenida de Brasília 1449‐006 Lisboa Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR) University of Porto Rua dos Bragas 289 4050‐123 Porto Portugal
| | - Narcisa Maria Bandarra
- Division of Aquaculture and Upgrading Portuguese Institute for the Sea and Atmosphere IPMA Avenida de Brasília 1449‐006 Lisboa Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR) University of Porto Rua dos Bragas 289 4050‐123 Porto Portugal
| | - Inês Delgado
- Food and Nutrition Department National Health Institute Doutor Ricardo Jorge (INSA, IP) Av. Padre Cruz 1649‐016 Lisbon Portugal
- Chemical Engineering Department Instituto Superior Técnico Universidade de Lisboa Av. Rovisco Pais, 1 1049‐001 Lisboa Portugal
| | - Inês Coelho
- Food and Nutrition Department National Health Institute Doutor Ricardo Jorge (INSA, IP) Av. Padre Cruz 1649‐016 Lisbon Portugal
- Chemical Engineering Department Instituto Superior Técnico Universidade de Lisboa Av. Rovisco Pais, 1 1049‐001 Lisboa Portugal
| | - Sandra Gueifão
- Food and Nutrition Department National Health Institute Doutor Ricardo Jorge (INSA, IP) Av. Padre Cruz 1649‐016 Lisbon Portugal
| | - Marta Martins
- MARE ‐ Marine and Environmental Sciences Centre Department of Sciences and Environmental Engineering Nova School of Science and Technology (FCT Nova) 2829-516 Caparica Portugal
| | - Maria Helena Costa
- MARE ‐ Marine and Environmental Sciences Centre Department of Sciences and Environmental Engineering Nova School of Science and Technology (FCT Nova) 2829-516 Caparica Portugal
| | - Isabel Castanheira
- Food and Nutrition Department National Health Institute Doutor Ricardo Jorge (INSA, IP) Av. Padre Cruz 1649‐016 Lisbon Portugal
| |
Collapse
|
34
|
Zhang Y, Zhou L, Li S, Liu J, Sun S, Ji X, Yan C, Xu J. Impacts of lead exposure and chelation therapy on bone metabolism during different developmental stages of rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109441. [PMID: 31404725 DOI: 10.1016/j.ecoenv.2019.109441] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVE To explore the impacts of Pb exposure and the dimercaptosuccinic acid (DMSA) chelation therapy on bone metabolisms in young rats of different ages, as well as the potential mechanisms. METHOD Young rats were exposed to 0.05%-0.1% Pb acetate for 19 days, during infanthood (postnatal day, PND2-20), childhood (PND21-39) and adolescenthood (PND40-58) respectively. In each developmental stage, rats were further divided into three subgroups: lead-exposed, one-course and two-course DMSA chelation therapy subgroups. Blood/bone lead concentrations, serum calciotropic hormones concentrations, and mRNA and protein expressions of bone turnover markers in the serum and bones were measured. Bone microstructures were analyzed using Micro-CT. RESULTS Compared with lead-exposed during childhood and adolescenthood, increases in blood/bone lead levels, and the changes of blood/bone lead and trabecular bone microstructures after one-course DMSA chelation were most significant in rats lead-exposed during infanthood (P < .05). The serum osteocalcin (OC) concentrations, mRNA/protein expressions of OC and runt-related transcription factor 2 (RUNX2) in bones all decreased after Pb exposure, along with significant increases in serum C-terminal telopeptide of type I collagen (CTX) concentrations (P < .05). These effects were accompanied by changes of serum parathormone (PTH) and 1,25-dihydroxyvitamin D3 (1,25-(OH2)-D3) concentrations. DMSA chelation partially reversed the changes of bone microarchitectures, bone formation and resorption markers, and calciotropic-hormones, and the efficiency was greatest when the therapy was provided during infanthood. CONCLUSION Developmental Pb exposure impaired bone microstructures and interfered bone metabolism, and the exposure effect was more obvious during infanthood than during childhood and adolescenthood. Lead effects were partially reversed by chelation therapy, and the efficacy may be most significant when the therapy was provided at younger ages.
Collapse
Affiliation(s)
- Yijing Zhang
- Xinhua Hospital, MOE-Shanghai Key Laboratory of Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China; The International Peace Maternity & Child Health Hospital of China Welfare Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Leilei Zhou
- Xinhua Hospital, MOE-Shanghai Key Laboratory of Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Shufang Li
- Xinhua Hospital, MOE-Shanghai Key Laboratory of Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Junxia Liu
- Xinhua Hospital, MOE-Shanghai Key Laboratory of Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Shuangyuan Sun
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China
| | - Xiaofan Ji
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China
| | - Chonghuai Yan
- Xinhua Hospital, MOE-Shanghai Key Laboratory of Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jian Xu
- Xinhua Hospital, MOE-Shanghai Key Laboratory of Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China; The International Peace Maternity & Child Health Hospital of China Welfare Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
35
|
Bartlow AW. Histological Findings in Wild Rodents of the Great Basin. WEST N AM NATURALIST 2019. [DOI: 10.3398/064.079.0304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Andrew W. Bartlow
- Los Alamos National Laboratory, Biosecurity and Public Health, Los Alamos, NM 87545
| |
Collapse
|
36
|
Goodrich JM, Ingle ME, Domino SE, Treadwell MC, Dolinoy DC, Burant C, Meeker JD, Padmanabhan V. First trimester maternal exposures to endocrine disrupting chemicals and metals and fetal size in the Michigan Mother-Infant Pairs study. J Dev Orig Health Dis 2019; 10:447-458. [PMID: 30696509 PMCID: PMC6660406 DOI: 10.1017/s204017441800106x] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Exposures to endocrine disrupting chemicals and metals are near ubiquitous worldwide, and their potential impact on children is a major public health concern. This pilot study was designed to characterize exposures to phthalates, phenols and metals among pregnant women in the first trimester, and to examine associations with fetal biometrics and birth weight. A total of 41 chemicals and elements were analyzed in urine from 56 mothers with full-term newborns from the Michigan Mother-Infant Pairs study. Bivariate analyses identified predictors of exposure biomarkers. Associations between birth weight, Fenton z-scores and second trimester fetal biometrics with toxicants were examined via multivariable linear regression. An average of 30 toxicants were detected in maternal urine. Fast food consumption was associated with several phthalate metabolites, phenols and metals, and canned food consumption with bisphenol F (P <0.05). Mono (3-carboxypropyl) phthalate was significantly associated with higher birth weight and Fenton z-score while the opposite was observed for bisphenol S. Estimated femur length from ultrasonography was significantly inversely associated with arsenic, barium and lead. While limited by sample size, this study is one of the first to evaluate birth outcomes with respect to emerging endocrine disrupting chemicals and to examine associations between toxicants and fetal biometrics. Exposure assessment was provided by the National Institute of Environmental Health Sciences' Children's Health Exposure Analysis Resource (NIEHS CHEAR), a resource available to children's studies with the goal of combining data across cohorts in an effort to characterize the impact of toxicants on child health from birth and beyond.
Collapse
Affiliation(s)
- Jaclyn M. Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, United States of America
| | - Mary E. Ingle
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, United States of America
| | - Steven E. Domino
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Marjorie C. Treadwell
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Dana C. Dolinoy
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, United States of America
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, United States of America
| | - Charles Burant
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - John D. Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, United States of America
| | - Vasantha Padmanabhan
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, United States of America
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
37
|
Liu W, Qin H, Pan Y, Luo F, Zhang Z. Low concentrations of perfluorooctane sulfonate repress osteogenic and enhance adipogenic differentiation of human mesenchymal stem cells. Toxicol Appl Pharmacol 2019; 367:82-91. [DOI: 10.1016/j.taap.2019.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 01/09/2023]
|
38
|
Qi S, Zheng H, Chen C, Jiang H. Du-Zhong (Eucommia ulmoides Oliv.) Cortex Extract Alleviates Lead Acetate-Induced Bone Loss in Rats. Biol Trace Elem Res 2019; 187:172-180. [PMID: 29740803 DOI: 10.1007/s12011-018-1362-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 04/23/2018] [Indexed: 12/13/2022]
Abstract
The purpose of this study was to evaluate the protective effect of Du-Zhong cortex extract (DZCE) on lead acetate-induced bone loss in rats. Forty female Sprague-Dawley rats were randomly divided into four groups: group I (control) was provided with distilled water. Group II (PbAc) received 500 ppm lead acetate in drinking water for 60 days. Group III (PbAc+DZCE) received 500 ppm lead acetate in drinking water, and given intragastric DZCE (100 mg/kg body weight) for 60 days. Group IV (DZCE) was given intragastric DZCE (100 mg/kg body weight) for 60 days. The bone mineral density, serum biochemical markers, bone histomorphology, and bone marrow adipocyte parameters were analyzed using dual-energy X-ray absorptiometry, biochemistry, histomorphometry, and histopathology, respectively. The results showed that the lumbar spine and femur bone mineral density was significantly decreased in PbAc group compared with the control (P < 0.05); however, this decrease was inhibited by the intake of Du-Zhong cortex extract (P < 0.05, vs. PbAc group; P > 0.05, vs. control and DZCE group). Serum calcium and serum phosphorus in the PbAc+DZCE group were greater than that in the PbAc group (P < 0.05). The PbAc group had higher ALP, osteocalcin, and RANKL than the control group (P < 0.01), and they were significantly lower in the PbAc+DZCE group compared with the PbAc group. There were no significant differences of ALP, osteocalcin, and RANKL among the PbAc+DZCE, control, and DZCE groups (P > 0.05). Serum OPG and OPG/RANKL ration were significantly higher in the PbAc+DZCE group than that in the PbAc group (P < 0.05). The bone histomorphometric analyses showed that bone volume and trabecular thickness in the femoral trabecular bone were significantly lower in the PbAc group than that in the control group, but those were restored in the PbAc+DZCE groups. The bone marrow adipocyte number, percent adipocyte volume per tissue volume (AV/TV), and mean adipocyte diameter were significantly increased in the PbAc group compared to the control (P < 0.01), and those were restored in the PbAc+DZCE group. The differences of those parameters between PbAc+DZCE, DZCE, and the control group were not significant. The results above indicate that the Du-Zhong cortex extract has protective effects on both stimulation of bone formation and suppression of bone resorption in lead-exposed rats, therefore, Du-Zhong cortex extract has the potential to prevent or treat osteoporosis resulting from lead expose.
Collapse
Affiliation(s)
- Shanshan Qi
- Vitamin D Research Institute, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi, China
| | - Hongxing Zheng
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi, China.
| | - Chen Chen
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi, China.
- Chinese-German Joint Laboratory for Natural Product Research, Shaanxi University of Technology, Hanzhong, 723000, China.
| | - Hai Jiang
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi, China
| |
Collapse
|
39
|
POSITIVE INFLUENCE OF ARTICHOKE EXTRACT ON STRUCTURAL AND METABOLIC PROCESSES IN BONE TISSUE OF RATS CONDITIONED UPON CADMIUM-NITRIC INTOXICATION. WORLD OF MEDICINE AND BIOLOGY 2019. [DOI: 10.26724/2079-8334-2019-2-68-204-209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
40
|
Wang X, Mukherjee B, Park SK. Associations of cumulative exposure to heavy metal mixtures with obesity and its comorbidities among U.S. adults in NHANES 2003-2014. ENVIRONMENT INTERNATIONAL 2018; 121:683-694. [PMID: 30316184 PMCID: PMC6268112 DOI: 10.1016/j.envint.2018.09.035] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/27/2018] [Accepted: 09/22/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND Some heavy metals (e.g., arsenic, cadmium, lead, mercury) have been associated with obesity and obesity comorbidities. The analytical approach for those associations has typically focused on individual metals. There is a growing interest in evaluating the health effects of cumulative exposure to metal mixtures. OBJECTIVES We utilized our Environmental Risk Score (ERS), a summary measure to examine the risk of exposure to multi-pollutants in epidemiologic research, to evaluate the associations of cumulative exposure to a mixture of correlated heavy metals with obesity and its comorbidities including hypertension, and type-2 diabetes mellitus (T2DM) while accounting for high degree correlations and interactions among metal mixtures components. METHODS We examined blood and urinary markers of 18 heavy metals among 9537 adults in NHANES 2003-2014. We randomly split data into a training set for the construction of ERS (n = 6675) and a testing set for the evaluation of its statistical performance (n = 2862). ERS of heavy metal mixtures was computed for waist circumference using adaptive elastic-net (AENET) with 189 predictors including 18 main effects, 18 squared terms, and 153 pairwise interactions of heavy metals. Regression analyses with complex survey designs were performed to assess the associations of ERS with other obesity measures, hypertension and T2DM. RESULTS 7 main effects (blood lead, blood cadmium, blood mercury, and urinary markers of monomethylarsonic acid (MMA), barium, mercury and thallium), 4 squared terms (blood cadmium, urinary cadmium, urinary antimony and urinary tungsten), and 7 pairwise interactions (blood lead & urinary cadmium, blood lead & urinary MMA, blood lead & urinary uranium, urinary cadmium & urinary MMA, urinary dimethylarsinic acid (DMA) & urinary tungsten, urinary MMA & urinary cobalt, and urinary lead & urinary antimony) were selected by AENET for construction of ERS of waist circumference-related metal mixtures. An increase in ERS from 10th percentile to 90th percentile in the overall study population was significantly associated with 4.50 kg/m2 (95% CI: 4.06, 4.94) higher BMI, 4.16 mm (95% CI: 3.56, 4.76) higher skinfold thickness, and 4.11 kg (95% CI: 0.83, 7.40) higher total body fat, independent of age, sex, race/ethnicity, education, smoking status, physical activity and NHANES cycle (Ps < 0.05). Significant associations of ERS with both hypertension and T2DM were also observed (Ps < 0.05). CONCLUSIONS Our study suggests that cumulative exposure to heavy metals as mixtures is associated with obesity and its related chronic conditions such as hypertension and T2DM. Additional research is needed to confirm these findings in longitudinal settings.
Collapse
Affiliation(s)
- Xin Wang
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States of America
| | - Bhramar Mukherjee
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, United States of America
| | - Sung Kyun Park
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States of America; Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States of America.
| |
Collapse
|
41
|
Shu C, Chen K, Lynch M, Maher JR, Awad HA, Berger AJ. Spatially offset Raman spectroscopy for in vivo bone strength prediction. BIOMEDICAL OPTICS EXPRESS 2018; 9:4781-4791. [PMID: 30319902 PMCID: PMC6179397 DOI: 10.1364/boe.9.004781] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 05/08/2023]
Abstract
Bone strength is a worldwide health concern. Although multiple techniques have been developed to evaluate bone quality, there are still gaps to be filled. Here we report a non-invasive approach for the prediction of bone strength in vivo using spatially offset Raman spectroscopy. Raman spectra were acquired transcutaneously from the tibiae of mice from 4 to 23 weeks old and subsequently on the exposed bones. Partial least squares regression was applied to generate predictions of the areal bone mineral density (aBMD), volumetric bone mineralization density (vBMD), and maximum torque (MT) of each tibia as quantified by dual-energy X-ray absorptiometry, microCT imaging, and biomechanical tests, respectively. Significant correlations were observed between Raman spectral predictions and the reference values in all three categories. To our knowledge, this is the first demonstration of Raman spectroscopy predicting a biomechanical bone parameter (MT) in vivo with an uncertainty much smaller than the spread in the reference values.
Collapse
Affiliation(s)
- Chi Shu
- The Institute of Optics, University of Rochester, 275 Hutchison Rd, Rochester, NY 14620, USA
- Contributed equally to this work and should be considered joint first authors
| | - Keren Chen
- The Institute of Optics, University of Rochester, 275 Hutchison Rd, Rochester, NY 14620, USA
- Contributed equally to this work and should be considered joint first authors
| | - Maria Lynch
- University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Jason R. Maher
- The Institute of Optics, University of Rochester, 275 Hutchison Rd, Rochester, NY 14620, USA
| | - Hani A. Awad
- University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Andrew J. Berger
- The Institute of Optics, University of Rochester, 275 Hutchison Rd, Rochester, NY 14620, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
42
|
Green AJ, Hoyo C, Mattingly CJ, Luo Y, Tzeng JY, Murphy SK, Buchwalter DB, Planchart A. Cadmium exposure increases the risk of juvenile obesity: a human and zebrafish comparative study. Int J Obes (Lond) 2018; 42:1285-1295. [PMID: 29511319 PMCID: PMC6054604 DOI: 10.1038/s41366-018-0036-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/13/2017] [Accepted: 12/27/2017] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Human obesity is a complex metabolic disorder disproportionately affecting people of lower socioeconomic strata, and ethnic minorities, especially African Americans and Hispanics. Although genetic predisposition and a positive energy balance are implicated in obesity, these factors alone do not account for the excess prevalence of obesity in lower socioeconomic populations. Therefore, environmental factors, including exposure to pesticides, heavy metals, and other contaminants, are agents widely suspected to have obesogenic activity, and they also are spatially correlated with lower socioeconomic status. Our study investigates the causal relationship between exposure to the heavy metal, cadmium (Cd), and obesity in a cohort of children and in a zebrafish model of adipogenesis. DESIGN An extensive collection of first trimester maternal blood samples obtained as part of the Newborn Epigenetics Study (NEST) was analyzed for the presence of Cd, and these results were cross analyzed with the weight-gain trajectory of the children through age 5 years. Next, the role of Cd as a potential obesogen was analyzed in an in vivo zebrafish model. RESULTS Our analysis indicates that the presence of Cd in maternal blood during pregnancy is associated with increased risk of juvenile obesity in the offspring, independent of other variables, including lead (Pb) and smoking status. Our results are recapitulated in a zebrafish model, in which exposure to Cd at levels approximating those observed in the NEST study is associated with increased adiposity. CONCLUSION Our findings identify Cd as a potential human obesogen. Moreover, these observations are recapitulated in a zebrafish model, suggesting that the underlying mechanisms may be evolutionarily conserved, and that zebrafish may be a valuable model for uncovering pathways leading to Cd-mediated obesity in human populations.
Collapse
Affiliation(s)
- Adrian J Green
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Cathrine Hoyo
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA
| | - Carolyn J Mattingly
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA
| | - Yiwen Luo
- Department of Statistics, North Carolina State University, Raleigh, NC, 27695, USA
| | - Jung-Ying Tzeng
- Department of Statistics, North Carolina State University, Raleigh, NC, 27695, USA
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Division of Gynecological Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - David B Buchwalter
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA
| | - Antonio Planchart
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA.
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
43
|
Lee HS, Park T. Nuclear receptor and VEGF pathways for gene-blood lead interactions, on bone mineral density, in Korean smokers. PLoS One 2018; 13:e0193323. [PMID: 29518117 PMCID: PMC5843219 DOI: 10.1371/journal.pone.0193323] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/08/2018] [Indexed: 11/19/2022] Open
Abstract
Osteoporosis has a complex etiology and is considered a multifactorial polygenic disease, in which genetic determinants are modulated by hormonal, lifestyle, environmental, and nutritional factors. Therefore, investigating these multiple factors, and the interactions between them, might lead to a better understanding of osteoporosis pathogenesis, and possible therapeutic interventions. The objective of this study was to identify the relationship between three blood metals (Pb, Cd, and Al), in smoking and nonsmoking patients' sera, and prevalence of osteoporosis. In particular, we focused on gene-environment interactions of metal exposure, including a dataset obtained through genome-wide association study (GWAS). Subsequently, we conducted a pathway-based analysis, using a GWAS dataset, to elucidate how metal exposure influences susceptibility to osteoporosis. In this study, we evaluated blood metal exposures for estimating the prevalence of osteoporosis in 443 participants (aged 53.24 ± 8.29), from the Republic of Korea. Those analyses revealed a negative association between lead blood levels and bone mineral density in current smokers (p trend <0.01). By further using GWAS-based pathway analysis, we found nuclear receptor (FDR<0.05) and VEGF pathways (FDR<0.05) to be significantly upregulated by blood lead burden, with regard to the prevalence of osteoporosis, in current smokers. These findings suggest that the intracellular pathways of angiogenesis and nuclear hormonal signaling can modulate interactions between lead exposure and genetic variation, with regard to susceptibility to diminished bone mineral density. Our findings may provide new leads for understanding the mechanisms underlying the development of osteoporosis, including possible interventions.
Collapse
Affiliation(s)
- Ho-Sun Lee
- Interdisciplinary Program in Bioinformatics and Department of Statistics, Seoul National University, Gwanak 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
- Daegu Institution, National Forensic Service, Hogukro, Waegwon-eup, Chilgok-gun, Gyeomgsamgbuk-do, Republic of Korea
| | - Taesung Park
- Interdisciplinary Program in Bioinformatics and Department of Statistics, Seoul National University, Gwanak 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| |
Collapse
|
44
|
Fang F, Peters TL, Beard JD, Umbach DM, Keller J, Mariosa D, Allen KD, Ye W, Sandler DP, Schmidt S, Kamel F. Blood Lead, Bone Turnover, and Survival in Amyotrophic Lateral Sclerosis. Am J Epidemiol 2017; 186:1057-1064. [PMID: 29020133 DOI: 10.1093/aje/kwx176] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 12/21/2016] [Indexed: 12/16/2022] Open
Abstract
Blood lead and bone turnover may be associated with the risk of amyotrophic lateral sclerosis (ALS). We aimed to assess whether these factors were also associated with time from ALS diagnosis to death through a survival analysis of 145 ALS patients enrolled during 2007 in the National Registry of Veterans with ALS. Associations of survival time with blood lead and plasma biomarkers of bone resorption (C-terminal telopeptides of type I collagen (CTX)) and bone formation (procollagen type I amino-terminal peptide (PINP)) were estimated using Cox models adjusted for age at diagnosis, diagnostic certainty, diagnostic delay, site of onset, and score on the Revised ALS Functional Rating Scale. Hazard ratios were calculated for each doubling of biomarker concentration. Blood lead, plasma CTX, and plasma PINP were mutually adjusted for one another. Increased lead (hazard ratio (HR) = 1.38; 95% confidence interval (CI): 1.03, 1.84) and CTX (HR = 2.03; 95% CI: 1.42, 2.89) were both associated with shorter survival, whereas higher PINP was associated with longer survival (HR = 0.59; 95% CI: 0.42, 0.83), after ALS diagnosis. No interactions were observed between lead or bone turnover and other prognostic indicators. Lead toxicity and bone metabolism may be involved in ALS pathophysiology.
Collapse
|
45
|
Feng G, Ochoa M, Maher JR, Awad HA, Berger AJ. Sensitivity of spatially offset Raman spectroscopy (SORS) to subcortical bone tissue. JOURNAL OF BIOPHOTONICS 2017; 10:990-996. [PMID: 28464501 PMCID: PMC5971662 DOI: 10.1002/jbio.201600317] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/15/2017] [Accepted: 02/28/2017] [Indexed: 05/04/2023]
Abstract
The development of spatially offset Raman spectroscopy (SORS) has enabled deep, non-invasive chemical characterization of turbid media. Here, we use SORS to measure subcortical bone tissue and depth-resolved biochemical variability in intact, exposed murine bones. We also apply the technique to study a mouse model of the genetic bone disorder osteogenesis imperfecta. The results suggest that SORS is more sensitive to disease-related biochemical differences in subcortical trabecular bone and marrow than conventional Raman measurements.
Collapse
Affiliation(s)
- Guanping Feng
- University of Rochester, The Institute of Optics, 275 Hutchinson Road, Rochester, New York 14627
| | - Marien Ochoa
- University of Rochester, The Institute of Optics, 275 Hutchinson Road, Rochester, New York 14627
- University of Rochester, Department of Biomedical Engineering, 207 Robert B. Goergen Hall, Rochester, New York 14627
| | - Jason R. Maher
- University of Rochester, The Institute of Optics, 275 Hutchinson Road, Rochester, New York 14627
| | - Hani A. Awad
- University of Rochester, Department of Biomedical Engineering, 207 Robert B. Goergen Hall, Rochester, New York 14627
- University of Rochester Medical Center, The Center for Musculoskeletal Research, 601 Elmwood Avenue, Rochester, New York 14642
| | - Andrew J. Berger
- University of Rochester, The Institute of Optics, 275 Hutchinson Road, Rochester, New York 14627
- University of Rochester, Department of Biomedical Engineering, 207 Robert B. Goergen Hall, Rochester, New York 14627
| |
Collapse
|
46
|
Beier EE, Sheu TJ, Resseguie EA, Takahata M, Awad HA, Cory-Slechta DA, Puzas JE. Sclerostin activity plays a key role in the negative effect of glucocorticoid signaling on osteoblast function in mice. Bone Res 2017; 5:17013. [PMID: 28529816 PMCID: PMC5422922 DOI: 10.1038/boneres.2017.13] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/02/2016] [Accepted: 01/10/2017] [Indexed: 12/11/2022] Open
Abstract
Stress during prenatal development is correlated with detrimental cognitive and behavioral outcomes in offspring. However, the long-term impact of prenatal stress (PS) and disrupted glucocorticoid signaling on bone mass and strength is not understood. In contrast, the detrimental effect of lead (Pb) on skeletal health is well documented. As stress and Pb act on common biological targets via glucocorticoid signaling pathways and co-occur in the environment, this study first sought to assess the combined effect of stress and Pb on bone quality in association with alterations in glucocorticoid signaling. Bone parameters were evaluated using microCT, histomorphometry, and strength determination in 8-month-old male mouse offspring subjected to PS on gestational days 16 and 17, lifetime Pb exposure (100 p.p.m. Pb in drinking water), or to both. Pb reduced trabecular bone mass and, when combined with PS, Pb unmasked an exaggerated decrement in bone mass and tensile strength. Next, to characterize a mechanism of glucocorticoid effect on bone, prednisolone was implanted subcutaneously (controlled-release pellet, 5 mg·kg-1 per day) in 5-month-old mice that decreased osteoblastic activity and increased sclerostin and leptin levels. Furthermore, the synthetic glucocorticoid dexamethasone alters the anabolic Wnt signaling pathway. The Wnt pathway inhibitor sclerostin has several glucocorticoid response elements, and dexamethasone administration to osteoblastic cells induces sclerostin expression. Dexamethasone treatment of isolated bone marrow cells decreased bone nodule formation, whereas removal of sclerostin protected against this decrement in mineralization. Collectively, these findings suggest that bone loss associated with steroid-induced osteoporosis is a consequence of sclerostin-mediated restriction of Wnt signaling, which may mechanistically facilitate glucocorticoid toxicity in bone.
Collapse
Affiliation(s)
- Eric E Beier
- Department of Environmental Medicine, University of Rochester, School of Medicine and Dentistry, Rochester, NY, USA
- Department of Environmental and Occupational Medicine, Rutgers University, Piscataway, NJ, USA
| | - Tzong-Jen Sheu
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY, USA
| | - Emily A Resseguie
- Department of Environmental Medicine, University of Rochester, School of Medicine and Dentistry, Rochester, NY, USA
| | - Masahiko Takahata
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY, USA
| | - Hani A Awad
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY, USA
| | - Deborah A Cory-Slechta
- Department of Environmental Medicine, University of Rochester, School of Medicine and Dentistry, Rochester, NY, USA
| | - J Edward Puzas
- Department of Environmental Medicine, University of Rochester, School of Medicine and Dentistry, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
47
|
Peters TL, Weibull CE, Fang F, Sandler DP, Lambert PC, Ye W, Kamel F. Association of fractures with the incidence of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2017; 18:419-425. [PMID: 28316249 DOI: 10.1080/21678421.2017.1300287] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Elevated bone turnover observed in ALS patients suggests poor bone health and increased fracture risk. We therefore evaluated the relationship of fracture to subsequent ALS risk. METHODS We followed 4,529,460 Swedes from 1987 to 2010 and identified ALS and fractures from the Swedish National Patient Register. We examined associations of ALS risk with all fractures, osteoporotic and non-osteoporotic fractures, and traumatic and non-traumatic fractures among individuals aged 30-80 years. We used Cox proportional hazards models to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). We analysed the association of ALS with time since fracture using a Poisson regression model. RESULTS All fractures (HR: 1.51, 95% CI 1.39-1.65) as well as osteoporotic (HR: 1.59, 95% CI 1.41-1.79), non-osteoporotic (HR: 1.46, 95% CI 1.31-1.63), traumatic (HR: 1.50, 95% CI 1.37-1.63), and non-traumatic (HR: 1.80, 95% CI 1.35-2.40) fractures were associated with a higher incidence of ALS. Increased ALS incidence was associated with fractures occurring from one (HR: 2.33, 95% CI 2.04-2.66) to 18 (HR: 1.19, 95% CI 1.01-1.43) years before ALS diagnosis. CONCLUSIONS Poor bone health may be related to ALS. These findings may offer insight into ALS pathophysiology.
Collapse
Affiliation(s)
- Tracy L Peters
- a Department of Medical Epidemiology and Biostatistics , Karolinska Institutet , Stockholm , Sweden.,b Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park , NC , USA , and
| | - Caroline E Weibull
- a Department of Medical Epidemiology and Biostatistics , Karolinska Institutet , Stockholm , Sweden
| | - Fang Fang
- a Department of Medical Epidemiology and Biostatistics , Karolinska Institutet , Stockholm , Sweden
| | - Dale P Sandler
- b Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park , NC , USA , and
| | - Paul C Lambert
- a Department of Medical Epidemiology and Biostatistics , Karolinska Institutet , Stockholm , Sweden.,c Department of Health Sciences , University of Leicester , Leicester , UK
| | - Weimin Ye
- a Department of Medical Epidemiology and Biostatistics , Karolinska Institutet , Stockholm , Sweden
| | - Freya Kamel
- b Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park , NC , USA , and
| |
Collapse
|
48
|
Smith JT, Schneider AD, Katchko KM, Yun C, Hsu EL. Environmental Factors Impacting Bone-Relevant Chemokines. Front Endocrinol (Lausanne) 2017; 8:22. [PMID: 28261155 PMCID: PMC5306137 DOI: 10.3389/fendo.2017.00022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/25/2017] [Indexed: 01/07/2023] Open
Abstract
Chemokines play an important role in normal bone physiology and the pathophysiology of many bone diseases. The recent increased focus on the individual roles of this class of proteins in the context of bone has shown that members of the two major chemokine subfamilies-CC and CXC-support or promote the formation of new bone and the remodeling of existing bone in response to a myriad of stimuli. These chemotactic molecules are crucial in orchestrating appropriate cellular homing, osteoblastogenesis, and osteoclastogenesis during normal bone repair. Bone healing is a complex cascade of carefully regulated processes, including inflammation, progenitor cell recruitment, differentiation, and remodeling. The extensive role of chemokines in these processes and the known links between environmental contaminants and chemokine expression/activity leaves ample opportunity for disruption of bone healing by environmental factors. However, despite increased clinical awareness, the potential impact of many of these environmental factors on bone-related chemokines is still ill defined. A great deal of focus has been placed on environmental exposure to various endocrine disruptors (bisphenol A, phthalate esters, etc.), volatile organic compounds, dioxins, and heavy metals, though mainly in other tissues. Awareness of the impact of other less well-studied bone toxicants, such as fluoride, mold and fungal toxins, asbestos, and chlorine, is also reviewed. In many cases, the literature on these toxins in osteogenic models is lacking. However, research focused on their effects in other tissues and cell lines provides clues for where future resources could be best utilized. This review aims to serve as a current and exhaustive resource detailing the known links between several classes of high-interest environmental pollutants and their interaction with the chemokines relevant to bone healing.
Collapse
Affiliation(s)
- Justin T. Smith
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, USA
| | - Andrew D. Schneider
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, USA
| | - Karina M. Katchko
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, USA
| | - Chawon Yun
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, USA
| | - Erin L. Hsu
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, USA
- *Correspondence: Erin L. Hsu,
| |
Collapse
|
49
|
Tsai TL, Pan WH, Chung YT, Wu TN, Tseng YC, Liou SH, Wang SL. Association between urinary lead and bone health in a general population from Taiwan. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2016; 26:481-487. [PMID: 26152405 DOI: 10.1038/jes.2015.30] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 03/08/2015] [Accepted: 03/09/2015] [Indexed: 06/04/2023]
Abstract
Lead accumulates in adult bones for many decades; previous studies have shown lead's detrimental effects on osteoblast and osteoclast activity in association with bone remodeling. Osteoporosis is a disease of the bones resulting in low bone mass that induces fragile bones and hence susceptibility of fracture. We estimated the association between urinary lead (U-Pb) levels and bone health in adults participating in the third Nutrition and Health Survey in Taiwan (NAHSIT) from 2005 to 2008. A total of 398 participants were divided into normal (T-score>-1), osteopenic (T-score between -1 and -2.5), or osteoporotic (T-score<-2.5) groups according to the results of bone mineral density (BMD) measurements. Heavy metals were measured in urine specimens using inductively coupled plasma-mass spectrometry. In the multivariable logistic regression analysis, age (OR=1.08; 95% CI=1.05-1.10), former smokers (OR=2.95; 95% CI=1.22-7.11) and higher U-Pb levels than upper tertile (OR=2.30; 95% CI=1.19-4.48) were associated with osteopenia/osteoporosis. Furthermore, age (OR=1.06; 95% CI=1.02-1.10) and higher U-Pb levels (OR=2.81; 95% CI=1.13-6.97) were significantly associated with osteopenia and osteoporosis in women. These results suggest that adults, particularly in women, with higher U-Pb levels may have increased odds of osteopenia and osteoporosis.
Collapse
Affiliation(s)
- Tsung-Lin Tsai
- Department of Public Health, China Medical University, Taichung, Taiwan
| | - Wen-Harn Pan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-Teh Chung
- Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Trong-Neng Wu
- College of Medicine and Nursing, Department of Nursing, Hungkuang University, Taichung, Taiwan
| | - Ying-Chih Tseng
- Department of Obstetrics and Gynecology, Hsinchu Cathay General Hospital, Hsinchu, Taiwan
| | - Saou-Hsing Liou
- Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Shu-Li Wang
- Department of Public Health, China Medical University, Taichung, Taiwan
- Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Miaoli, Taiwan
| |
Collapse
|
50
|
Lin W, Huang Z, Li X, Liu M, Cheng Y. Bio-remediation of acephate-Pb(II) compound contaminants by Bacillus subtilis FZUL-33. J Environ Sci (China) 2016; 45:94-99. [PMID: 27372122 DOI: 10.1016/j.jes.2015.12.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/18/2015] [Accepted: 12/22/2015] [Indexed: 06/06/2023]
Abstract
Removal of Pb(2+) and biodegradation of organophosphorus have been both widely investigated respectively. However, bio-remediation of both Pb(2+) and organophosphorus still remains largely unexplored. Bacillus subtilis FZUL-33, which was isolated from the sediment of a lake, possesses the capability for both biomineralization of Pb(2+) and biodegradation of acephate. In the present study, both Pb(2+) and acephate were simultaneously removed via biodegradation and biomineralization in aqueous solutions. Batch experiments were conducted to study the influence of pH, interaction time and Pb(2+) concentration on the process of removal of Pb(2+). At the temperature of 25°C, the maximum removal of Pb(2+) by B.subtilis FZUL-33 was 381.31±11.46mg/g under the conditions of pH5.5, initial Pb(2+) concentration of 1300mg/L, and contact time of 10min. Batch experiments were conducted to study the influence of acephate on removal of Pb(2+) and the influence of Pb(2+) on biodegradation of acephate by B.subtilis FZUL-33. In the mixed system of acephate-Pb(2+), the results show that biodegradation of acephate by B.subtilis FZUL-33 released PO4(3+), which promotes mineralization of Pb(2+). The process of biodegradation of acephate was affected slightly when the concentration of Pb(2+) was below 100mg/L. Based on the results, it can be inferred that the B.subtilis FZUL-33 plays a significant role in bio-remediation of organophosphorus-heavy metal compound contamination.
Collapse
Affiliation(s)
- Wenting Lin
- The College of Environment and Resources, Fuzhou University, Fuzhou 350108, China.
| | - Zhen Huang
- The College of Environment and Resources, Fuzhou University, Fuzhou 350108, China
| | - Xuezhen Li
- The College of Environment and Resources, Fuzhou University, Fuzhou 350108, China
| | - Minghua Liu
- The College of Environment and Resources, Fuzhou University, Fuzhou 350108, China
| | - Yangjian Cheng
- The College of Environment and Resources, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|