1
|
NUNOBIKI S, YOSHIMOTO A, ITO M, YONOICHI S, HARA Y, ISHIDA Y, MORISHITA R, MANTANI Y, YOKOYAMA T, HIRANO T, IKENAKA Y, HOSHI N. Effect of the neonicotinoid pesticide clothianidin at a no-observed-adverse-effect-level (NOAEL) dose on maternal behavior in pregnant mice and their female offspring. J Vet Med Sci 2025; 87:411-418. [PMID: 39993733 PMCID: PMC11964861 DOI: 10.1292/jvms.24-0372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
Our previous reports showed that exposure to the neonicotinoid pesticide clothianidin (CLO) at a no-observed-adverse-effect-level (NOAEL) dose during fetal development and lactation in mice led to higher rates of maternal neglect and infanticide. Although the demonstrated association between decreased oxytocin secretion and decreased maternal parenting behavior implies a link to declining oxytocin levels, no evidence has yet emerged in CLO to clearly establish such an association. This study investigated the effects of CLO on maternal behavior and oxytocin in C57BL/6N mice exposed during pregnancy and lactation (F0 mothers) as well as in their adult female offspring (F1 mothers). The effects were assessed using nest building assays during pregnancy and pup retrieval assessment after delivery. The results showed a decrease in oxytocin secretion and a marked decrease in pup retrieval behavior among the F0 mothers in the CLO exposure group compared to those in the control group. Their offspring, the F1 mothers, showed significantly lower nest-building scores during pregnancy. In conclusion, this study is the first to examine the potential mechanisms by which CLO exposure in mothers at the NOAEL dose during pregnancy and lactation results in reduced plasma oxytocin levels, subsequently leading to a decline in maternal behaviors such as pup retrieval. Furthermore, these effects may impair maternal behaviors in the next generation, when the offspring mice become mothers.
Collapse
Affiliation(s)
- Sarika NUNOBIKI
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| | - Ayano YOSHIMOTO
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| | - Makiko ITO
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| | - Sakura YONOICHI
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| | - Yukako HARA
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| | - Yuya ISHIDA
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| | - Rinako MORISHITA
- Laboratory of Histophysiology, Department of Animal Science,
Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Youhei MANTANI
- Laboratory of Histophysiology, Department of Animal Science,
Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Toshifumi YOKOYAMA
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| | - Tetsushi HIRANO
- Faculty of Pharmaceutical Sciences, University of Toyama,
Toyama, Japan
| | - Yoshinori IKENAKA
- Laboratory of Toxicology, Department of Environmental
Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido,
Japan
- Translational Research Unit, Veterinary Teaching Hospital,
Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Hokkaido,
Japan
- Water Research Group, Unit for Environmental Sciences and
Management, North-West University, Potchefstroom, South Africa
| | - Nobuhiko HOSHI
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| |
Collapse
|
2
|
Addy-Orduna LM, Ortiz-Santaliestra ME, Mougeot F, Bolívar-Muñoz P, Camarero PR, Mateo R. Behavioral Responses of Imidacloprid-Dosed Farmland Birds to a Simulated Predation Risk. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39034620 DOI: 10.1021/acs.est.4c01893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Sublethal exposure to imidacloprid and other neonicotinoid insecticides may affect the neurological functions of birds. As such, behavior may be compromised. Here, we tested experimentally the effects of 1 and 6 mg/kg bw of imidacloprid on the antipredator behavioral responses of the red-legged partridge (Alectoris rufa) to simulated predator threats. Sixty-six partridges were challenged in groups or individually to intra- and interspecific alarm calls, to a raptor silhouette (aerial predation risk), and to a fox model (terrestrial predation risk). Antipredator behaviors were recorded as active (escape, active vigilance) and passive (passive vigilance, crouching, and freezing) responses. Latency in response to the stimuli, percentage of individuals who responded, response duration, speed of active responses, and vocalizations were measured. In experiments with partridges in the group, crouching against simulated predation risk lasted less time in birds treated with 6 mg a.i./kg bw than in control birds. In the experiments with individual partridges, passive vigilance against the intraspecific alarm lasted longer in birds treated with 6 mg a.i./kg bw than in control birds. The observed hyperreactivity to the predatory threat after a sublethal imidacloprid exposure can have consequences on survival under field conditions, where predation is a main driver of population dynamics.
Collapse
Affiliation(s)
- Laura M Addy-Orduna
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Paraná, Ruta 11 km 12.5, 3100 Paraná, Entre Ríos, Argentina
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Manuel E Ortiz-Santaliestra
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - François Mougeot
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Paula Bolívar-Muñoz
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Pablo R Camarero
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
- Instituto de Diagnóstico Ambiental y Estudios del Agua (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Spain
| |
Collapse
|
3
|
Tang Z, Su Z, Jia C, Wei X, Zhu Z, Qi Y, Zhang Z, Yao L, Tu H, Huang X, Niu Q, Sun W, Wu H, Yin R, Li AJ, Wu F. Neonicotinoid insecticides and metabolites levels in neonatal first urine from southern China: Exploring links to preterm birth. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133910. [PMID: 38432095 DOI: 10.1016/j.jhazmat.2024.133910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Neonicotinoids (NEOs) have indeed become the most widely used insecticides worldwide. Concerns have been raised about their potential impact on newborns due to maternal exposure and their unique neurotoxic mode of action. However, it is still poorly understood whether in utero exposure of pregnant women to environmental NEOs and their metabolites can cause carryover effects on vulnerable newborns and subsequent health consequences. In this study, we determined the concentrations of 13 NEOs and their metabolites in the first urine collected from 92 newborns, both preterm and full-term, in southern China during 2020 and 2021. NEOs and their metabolites were identified in 91 urine samples, with over 93% of samples containing a cocktail of these compounds, confirming their maternal-fetal transfer. N-desmethyl-acetamiprid, imidaclothiz, clothianidin and flonicamid were the most commonly detected analytes, with detection frequencies of 59-87% and medians of 0.024-0.291 ng/mL in the urine. The relative abundance of imidaclothiz was significantly higher in preterm newborns, those with head circumferences below 33 cm, birth lengths less than 47 cm, and weights below 2500 g (p < 0.05). When comparing newborns in the 2nd quartile of imidaclothiz concentrations with those in the 1st quartile, we observed a significant increase in the odds of preterm outcomes in the unadjusted model (odds ratio = 3.24, 95% confidence interval = 1.02-10.3). These results suggest that exposure to elevated concentrations of imidaclothiz may be associated with preterm birth.
Collapse
Affiliation(s)
- Zixiong Tang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zhiwen Su
- Department of Neonatology, Guangzhou Key Laboratory of Neonatal Intestinal Diseases, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Chunhong Jia
- Department of Neonatology, Guangzhou Key Laboratory of Neonatal Intestinal Diseases, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Xin Wei
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zhenni Zhu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yifei Qi
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zhenyan Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Linjie Yao
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Haixin Tu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xiaohui Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Qianqian Niu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Wenwen Sun
- Shanghai AB Sciex Analytical Instrument Trading Co., Ltd, Shanghai 200335, China
| | - Haijun Wu
- Shanghai AB Sciex Analytical Instrument Trading Co., Ltd, Shanghai 200335, China
| | - Renli Yin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Adela Jing Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Fan Wu
- Department of Neonatology, Guangzhou Key Laboratory of Neonatal Intestinal Diseases, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China.
| |
Collapse
|
4
|
ISHIDA Y, YONOICHI S, HARA Y, SHODA A, KIMURA M, MURATA M, ITO M, NUNOBIKI S, YOSHIMOTO A, MANTANI Y, YOKOYAMA T, HIRANO T, MATSUO E, IKENAKA Y, HOSHI N. Effect of clothianidin exposure at the no-observed-adverse-effect level (NOAEL) in a mouse model of atopic dermatitis. J Vet Med Sci 2024; 86:333-339. [PMID: 38311400 PMCID: PMC10963095 DOI: 10.1292/jvms.23-0515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/24/2024] [Indexed: 02/10/2024] Open
Abstract
The effects of exposure to clothianidin (CLO), a neonicotinoid pesticide (NN), on the thymus and intestinal microbiota were recently revealed. Immune cells express nicotinic acetylcholine receptors (nAChRs), an NN target, suggesting CLO may disrupt the immune system. However, the relationship between CLO and atopic dermatitis (AD) is unknown. We administered a no-adverse-effect-level (NOAEL) dose of CLO to male NC/Nga mice with induced AD and measured, at three time points, key AD symptom indicators: epidermal thickening, mast cell number, total plasma IgE, and histamine levels. CLO increased total plasma IgE levels but reduced epidermal thickening, mast cell number, and plasma histamine levels in the early stages of AD. This demonstrates for the first time that CLO exposure inhibits AD's early symptoms.
Collapse
Affiliation(s)
- Yuya ISHIDA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Sakura YONOICHI
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Yukako HARA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Asuka SHODA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Mako KIMURA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Midori MURATA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Makiko ITO
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Sarika NUNOBIKI
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Ayano YOSHIMOTO
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Youhei MANTANI
- Laboratory of Histophysiology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Toshifumi YOKOYAMA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Tetsushi HIRANO
- Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Eiko MATSUO
- Laboratory of Microbiology and Immunology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Yoshinori IKENAKA
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- Translational Research Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Hokkaido, Japan
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Nobuhiko HOSHI
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| |
Collapse
|
5
|
HARA Y, SHODA A, YONOICHI S, ISHIDA Y, MURATA M, KIMURA M, ITO M, NUNOBIKI S, YOSHIMOTO A, MANTANI Y, YOKOYAMA T, HIRANO T, IKENAKA Y, TABUCHI Y, HOSHI N. No-observed-adverse-effect-level (NOAEL) clothianidin, a neonicotinoid pesticide, impairs hippocampal memory and motor learning associated with alteration of gene expression in cerebellum. J Vet Med Sci 2024; 86:340-348. [PMID: 38311399 PMCID: PMC10963099 DOI: 10.1292/jvms.23-0516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/24/2024] [Indexed: 02/10/2024] Open
Abstract
Neonicotinoid pesticides (NNs) have been associated with numerous neurobehavioral effects in rodents, raising concerns about their impact on cognitive function. Clothianidin (CLO), a type of NN, was orally administered to male mice (10 weeks old, C57BL/6N) at the no-observed-adverse-effect level (NOAEL) of 50 mg/kg/day as indicated in the pesticide risk assessment report. Behavioral tests (novel location recognition and rotarod tests) evaluated hippocampal memory and cerebellar motor learning. After each test, plasma monoamines (3-methoxytyramine, histamine, serotonin, tryptamine) were measured by LC-ESI/MS/MS (Liquid chromatography-electrospray ionization/tandem mass spectrometry), and cerebellar mRNA expression was quantified by microarray and qRT-PCR analyses. The NOAEL of CLO was found to impair hippocampal memory, leading to decreased spontaneous locomotor activity and motor function. We reported, for the first time, multiple alterations of gene expression in the cerebellum associated with motor dysfunction.
Collapse
Affiliation(s)
- Yukako HARA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Asuka SHODA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Sakura YONOICHI
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Yuya ISHIDA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Midori MURATA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Mako KIMURA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Makiko ITO
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Sarika NUNOBIKI
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Ayano YOSHIMOTO
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Youhei MANTANI
- Laboratory of Histophysiology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Toshifumi YOKOYAMA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Tetsushi HIRANO
- Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yoshinori IKENAKA
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- Translational Research Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Hokkaido, Japan
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Yoshiaki TABUCHI
- Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Nobuhiko HOSHI
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| |
Collapse
|
6
|
YONOICHI S, HARA Y, ISHIDA Y, SHODA A, KIMURA M, MURATA M, NUNOBIKI S, ITO M, YOSHIMOTO A, MANTANI Y, YOKOYAMA T, HIRANO T, IKENAKA Y, YOKOI Y, AYABE T, NAKAMURA K, HOSHI N. Effects of exposure to the neonicotinoid pesticide clothianidin on α-defensin secretion and gut microbiota in mice. J Vet Med Sci 2024; 86:277-284. [PMID: 38267031 PMCID: PMC10963084 DOI: 10.1292/jvms.23-0514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/15/2024] [Indexed: 01/26/2024] Open
Abstract
The mechanism by which the neonicotinoid pesticide clothianidin (CLO) disrupts the intestinal microbiota of experimental animals is unknown. We focused on α-defensins, which are regulators of the intestinal microbiota. Subchronic exposure to CLO induced dysbiosis and reduced short-chain fatty acid-producing bacteria in the intestinal microbiota of mice. Levels of cryptdin-1 (Crp1, a major α-defensin in mice) in feces and cecal contents were lower in the CLO-exposed groups than in control. In Crp1 immunostaining, Paneth cells in the jejunum and ileum of the no-observed-adverse-effect-level CLO-exposed group showed a stronger positive signal than control, likely due to the suppression of Crp1 release. Our results showed that CLO exposure suppresses α-defensin secretion from Paneth cells as part of the mechanism underlying CLO-induced dysbiosis.
Collapse
Affiliation(s)
- Sakura YONOICHI
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Yukako HARA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Yuya ISHIDA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Asuka SHODA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Mako KIMURA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Midori MURATA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Sarika NUNOBIKI
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Makiko ITO
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Ayano YOSHIMOTO
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Youhei MANTANI
- Laboratory of Histophysiology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Toshifumi YOKOYAMA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Tetsushi HIRANO
- Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yoshinori IKENAKA
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- Translational Research Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Hokkaido, Japan
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Yuki YOKOI
- Innate Immunity Laboratory, Department of Cell Biological Science, Faculty of Advanced Life Science, Hokkaido University Graduate School of Life Science,
Hokkaido, Japan
| | - Tokiyoshi AYABE
- Innate Immunity Laboratory, Department of Cell Biological Science, Faculty of Advanced Life Science, Hokkaido University Graduate School of Life Science,
Hokkaido, Japan
| | - Kiminori NAKAMURA
- Innate Immunity Laboratory, Department of Cell Biological Science, Faculty of Advanced Life Science, Hokkaido University Graduate School of Life Science,
Hokkaido, Japan
| | - Nobuhiko HOSHI
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| |
Collapse
|
7
|
Hirano T, Ohno S, Ikenaka Y, Onaru K, Kubo S, Miyata Y, Maeda M, Mantani Y, Yokoyama T, Nimako C, Yohannes YB, Nakayama SMM, Ishizuka M, Hoshi N. Quantification of the tissue distribution and accumulation of the neonicotinoid pesticide clothianidin and its metabolites in maternal and fetal mice. Toxicol Appl Pharmacol 2024; 484:116847. [PMID: 38336252 DOI: 10.1016/j.taap.2024.116847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Neonicotinoids (NNs) are commonly used pesticides that have a selective agonistic action on insect nicotinic acetylcholine receptors. Recent evidence has shown that NNs have adverse effects in the next generation of mammals, but it remains unclear how NNs transferred from dams to fetuses are distributed and accumulated in fetal tissues. Here, we aimed to clarify the tissue distribution and accumulation properties of the NN clothianidin (CLO) and its 6 metabolites in 7 tissues and blood in both dams and fetuses of mice administered CLO for a single day or for 9 consecutive days. The results showed that the total concentrations of CLO-related compounds in the brain and kidney were higher in fetuses than in dams, whereas in the liver, heart, and blood they were lower in fetuses. The multi-day administration increased the total levels in heart and blood only in the fetuses of the single administration group. In addition, dimethyl metabolites of CLO showed fetus/dam ratios >1 in some tissues, suggesting that fetuses have higher accumulation property and are thus at higher risks of exposure to CLO-related compounds than dams. These findings revealed differences in the tissue-specific distribution patterns of CLO and its metabolites between dams and fetuses, providing new insights into the assessment of the developmental toxicity of NNs.
Collapse
Affiliation(s)
- Tetsushi Hirano
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194, Japan.
| | - Shuji Ohno
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Yoshinori Ikenaka
- Translational Research Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa; One Health Research Center, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan; Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Kanoko Onaru
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Shizuka Kubo
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Yuka Miyata
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Mizuki Maeda
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Youhei Mantani
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Toshifumi Yokoyama
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Collins Nimako
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Yared Beyene Yohannes
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Shouta M M Nakayama
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Nobuhiko Hoshi
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan.
| |
Collapse
|
8
|
Yonoichi S, Hirano T, Hara Y, Ishida Y, Shoda A, Kimura M, Murata M, Mantani Y, Yokoyama T, Ikenaka Y, Hoshi N. Effects of exposure to the neonicotinoid pesticide clothianidin on mouse intestinal microbiota under unpredictable environmental stress. Toxicol Appl Pharmacol 2024; 482:116795. [PMID: 38160895 DOI: 10.1016/j.taap.2023.116795] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/28/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Recent research has demonstrated the toxicity of neonicotinoid pesticides (NNs) in mammals through their interaction with nicotinic acetylcholine receptors (nAChRs). These effects are reported to extend to the intestinal microbiota as well. In addition, environmental stress affects the expression of nAChRs, which may alter sensitivity to NNs. In this study, we analyzed the intestinal microbiota of mice exposed to clothianidin (CLO), a type of NN, under environmental stress, and aimed to clarify the effects of such combined exposure on the intestinal microbiota. C57BL/6N male mice (9 weeks old) were subchronically administered a no-observed-adverse-effect-level (NOAEL) CLO-mixed rehydration gel for 29 days and simultaneously subjected to chronic unpredictable mild stress (CUMS). After the administration period, cecum contents were collected and analyzed by 16S rRNA sequencing for intestinal microbiota. CLO exposure alone resulted in alterations in the relative abundance of Alistipes and ASF356, which produce short-chain fatty acids. The addition of CUMS amplified these changes. On the other hand, CLO alone did not affect the relative abundance of Lactobacillus, but the abundance decreased when CUMS was added. This study revealed that the combined exposure to CLO and stress not only amplifies their individual effects on intestinal microbiota but also demonstrates combined and multifaceted toxicities.
Collapse
Affiliation(s)
- Sakura Yonoichi
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Tetsushi Hirano
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Yukako Hara
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Yuya Ishida
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Asuka Shoda
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Mako Kimura
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Midori Murata
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Youhei Mantani
- Laboratory of Histophysiology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Toshifumi Yokoyama
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan; Translational Research Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan; One Health Research Center, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Nobuhiko Hoshi
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan.
| |
Collapse
|
9
|
SHODA A, MURATA M, KIMURA M, HARA Y, YONOICHI S, ISHIDA Y, MANTANI Y, YOKOYAMA T, HIRANO T, IKENAKA Y, HOSHI N. Transgenerational effects of developmental neurotoxicity induced by exposure to a no-observed-adverse-effect level (NOAEL) of neonicotinoid pesticide clothianidin. J Vet Med Sci 2023; 85:1023-1029. [PMID: 37544714 PMCID: PMC10539822 DOI: 10.1292/jvms.23-0101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/01/2023] [Indexed: 08/08/2023] Open
Abstract
Neonicotinoid pesticides (NNs) transfer rapidly from mother to offspring, which exhibit neurobehavioral effects. However, no studies have investigated NNs' transgenerational effects. We exposed F0 generation mice (mothers) to a no-observed-adverse-effect level (NOAEL) of clothianidin (CLO) during gestation and lactation, and examined the adult neurobehavioral effects of three generations of offspring (F1, F2, F3). F1 had lower birth weight, decreased locomotor activity, and increased anxiety-like behavior. In F2, body weight was affected, and there was a decreasing trend in locomotor activity and an increasing trend in anxiety-like behavior. In F3, locomotor activity tended to increase. Thus, even when only the mothers were exposed, the effects of CLOs were still observed in F1, F2, and F3 but the effects became smaller.
Collapse
Affiliation(s)
- Asuka SHODA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Midori MURATA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Mako KIMURA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Yukako HARA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Sakura YONOICHI
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Yuya ISHIDA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Youhei MANTANI
- Laboratory of Histophysiology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Toshifumi YOKOYAMA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Tetsushi HIRANO
- Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yoshinori IKENAKA
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- Translational Research Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Hokkaido, Japan
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Nobuhiko HOSHI
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| |
Collapse
|
10
|
KIMURA M, SHODA A, MURATA M, HARA Y, YONOICHI S, ISHIDA Y, MANTANI Y, YOKOYAMA T, HIRANO T, IKENAKA Y, HOSHI N. Neurotoxicity and behavioral disorders induced in mice by acute exposure to the diamide insecticide chlorantraniliprole. J Vet Med Sci 2023; 85:497-506. [PMID: 36858584 PMCID: PMC10139785 DOI: 10.1292/jvms.23-0041] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 02/14/2023] [Indexed: 03/03/2023] Open
Abstract
Diamide insecticides activate ryanodine receptors expressed in lepidopteran skeletal muscle and promote Ca2+ release in the sarcoplasmic reticulum, causing abnormal contractions and paralysis, leading to death of the pest. Although they had been thought not to act on nontarget organisms, including mammals, adverse effects on vertebrates were recently reported, raising concerns about their safety in humans. We investigated the neurotoxicity of the acute no-observed-adverse-effect level of chlorantraniliprole (CAP), a diamide insecticide, in mice using clothianidin (CLO), a neonicotinoid insecticide, as a positive control. The CLO-administered group showed decreased locomotor activities, increased anxiety-like behaviors, and abnormal human-audible vocalizations, while the CAP-administered group showed anxiety-like behaviors but no change in locomotor activities. The CAP-administered group had greater numbers of c-fos-immunoreactive cells in the hippocampal dentate gyrus, and similar to the results in a CLO-administered group in our previous study. Blood corticosterone levels increased in the CLO-administered group but did not change in the CAP-administered group. Additionally, CAP was found to decreased 3-Methoxytyramine and histamine in mice at the time to maximum concentration. These results suggest that CAP-administered mice are less vulnerable to stress than CLO-administered mice, and the first evidence that CAP exposure increases neuronal activity and induces anxiety-like behavior as well as neurotransmitter disturbances in mammals.
Collapse
Affiliation(s)
- Mako KIMURA
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| | - Asuka SHODA
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| | - Midori MURATA
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| | - Yukako HARA
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| | - Sakura YONOICHI
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| | - Yuya ISHIDA
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| | - Youhei MANTANI
- Laboratory of Histophysiology, Department of Animal Science,
Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Toshifumi YOKOYAMA
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| | - Tetsushi HIRANO
- Life Science Research Center, University of Toyama, Toyama,
Japan
| | - Yoshinori IKENAKA
- Laboratory of Toxicology, Department of Environmental
Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido,
Japan
- Water Research Group, Unit for Environmental Sciences and
Management, North-West University, Potchefstroom, South Africa
| | - Nobuhiko HOSHI
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| |
Collapse
|
11
|
Zhang H, Wang Y, Zhu H, Lu S, Wang Y, Xue J, Zhang T, Kannan K, Sun H. Infantile Internal and External Exposure to Neonicotinoid Insecticides: A Comparison of Levels across Various Sources. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5358-5367. [PMID: 36947550 DOI: 10.1021/acs.est.2c09538] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Little is known about exposure of infants to neonicotinoid insecticides (NEOs). In this study, concentrations of six parent NEOs (p-NEOs) and N-desmethyl-acetamiprid (N-dm-ACE) were measured in urine and whole blood samples from infants, in addition to breast milk, infant formula, and tap water collected in South China. The p-NEO with the highest median concentration in urine (0.25 ng/mL) and blood (1.30) samples was dinotefuran (DIN), while imidacloprid (IMI) was abundant in breast milk (median: 0.27 ng/mL), infant formula (0.22), and tap water (0.028). The older infants (181-360 days) might face higher NEO and N-dm-ACE exposure than younger infants (0-180 days). Blood samples contained a significantly (p < 0.01) higher median concentration of ∑6p-NEOs (2.03 ng/mL) than that of urine samples (0.41), similar to acetamiprid (ACE), IMI, thiacloprid (THD), DIN, and N-dm-ACE, suggesting that NEOs readily partition into blood. Furthermore, breast-fed infants tend to have higher exposure levels than formula-fed infants. Infant formula prepared with tap water augmented the daily intake of ∑NEOs. The external sources contributed 80% of the total dose to IMI and clothianidin (CLO) exposure, while other unknown sources contributed to ACE, THD, and DIN exposure in infants. To the best of our knowledge, this is the first study to assess levels and sources of infantile exposure to NEOs through internal and external exposure assessment.
Collapse
Affiliation(s)
- Henglin Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - You Wang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Huimin Zhu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-Sen University, Guangzhou 510006, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jingchuan Xue
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Kurunthachalam Kannan
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, New York 10016, United States
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
12
|
Sevim Ç, Akpınar E, Aksu EH, Ömür AD, Yıldırım S, Kara M, Bolat İ, Tsatsakis A, Mesnage R, Golokhvast KS, Uzunçakmak SK, Ersoylu RN. Reproductive Effects of S. boulardii on Sub-Chronic Acetamiprid and Imidacloprid Toxicity in Male Rats. TOXICS 2023; 11:170. [PMID: 36851045 PMCID: PMC9965457 DOI: 10.3390/toxics11020170] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
The potential health-promoting effects of probiotics against intoxication by pesticides is a topic of increasing commercial interest with limited scientific evidence. In this study, we aimed to investigate the positive effects of probiotic Saccharomyces boulardii on the male reproductive system under low dose neonicotinoid pesticide exposure conditions. We observed that acetamiprid and imidacloprid caused a degeneration and necrosis of the spermatocytes in the tubular wall, a severe edema of the intertubular region and a hyperemia. This was concomittant to increased levels of 8-hydroxy-2'-deoxyguanosine reflecting oxidative stress, and an increase in caspase 3 expression, reflecting apoptosis. According to our results, Saccharomyces boulardii supplementation mitigates these toxic effects. Further in vivo and clinical studies are needed to clarify the molecular mechanisms of protection. Altogether, our study reinforces the burden of evidence from emerging studies linking the composition of the gut microbiome to the function of the reproductive system.
Collapse
Affiliation(s)
- Çiğdem Sevim
- Department of Medical Pharmacology, Medicine Faculty, Kastamonu University, 37150 Kastamonu, Turkey
| | - Erol Akpınar
- Department of Medical Pharmacology, Medicine Faculty, Ataturk University, 25240 Erzurum, Turkey
| | - Emrah Hicazi Aksu
- Department of Reproduction and Artificial Insemination, Veterinary Medicine Faculty, Kastamonu University, 37150 Kastamonu, Turkey
| | - Ali Doğan Ömür
- Department of Reproduction and Artificial Insemination, Veterinary Medicine Faculty, Atatürk University, 25240 Erzurum, Turkey
| | - Serkan Yıldırım
- Department of Pathology, Veterinary Medicine Faculty, Atatürk University, 25240 Erzurum, Turkey
| | - Mehtap Kara
- Department of Pharmeceutical Toxicology, Pharmacy Faculty, Istanbul University, 34452 Istanbul, Turkey
| | - İsmail Bolat
- Department of Pathology, Veterinary Medicine Faculty, Atatürk University, 25240 Erzurum, Turkey
| | - Aristides Tsatsakis
- Department of Toxicology & Forensic Sciences, Medicine Faculty, University of Crete, 71003 Heraklion, Greece
| | - Robin Mesnage
- Department of Medical and Molecular Genetics, King’s College London School of Medicine, Guy’s Hospital, London SE1 9RT, UK
| | - Kirill S. Golokhvast
- Siberian Federal Scientific Center of Agrobiotechnology RAS, 630501 Krasnoobsk, Russia
| | | | - Rabia Nilüfer Ersoylu
- Department of Medical Pharmacology, Medicine Faculty, Ataturk University, 25240 Erzurum, Turkey
| |
Collapse
|
13
|
Bittencourt KC, Souza RRDE. Insecticidal activity of the organotellurium 2-Phenylethynyl-Butyltellurium on the Drosophila melanogaster model. AN ACAD BRAS CIENC 2023; 95:e20211486. [PMID: 36946808 DOI: 10.1590/0001-3765202320211486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/04/2022] [Indexed: 03/18/2023] Open
Abstract
2-Phenylethynyl-Butyltellurium (PEBT) is a synthetic organotellurium compound that has shown various pharmacological properties on mammals without any signs of toxicity, but its effects on insects have not been reported before. Therefore, the aim of this study was to assess whether acute exposure to PEBT would promote an insecticidal effect against Drosophila melanogaster. The flies were exposed to three concentrations of PEBT (0.325 µmol L-1, 1.300 µmol L-1, and 5.200 µmol L-1) and a control solution (vehicle), using 450 flies per treatment (three repetitions of 150 flies), for 48 hours. Negative geotaxis and open field tests were performed (in vivo) after 24 and 48h, and acetylcholinesterase (AChE) activity was assessed (ex vivo) after 48h. Also, the mortality rate, 50% Lethal Concentration (LC50), 80% Lethal Concentration (LC80), and 95% Lethal Concentration (LC95) were calculated. Our results show that PEBT presented insecticidal activity against Drosophila melanogaster at all tested concentrations, which caused locomotor impairment and increased acetylcholinesterase activity in the flies' heads.
Collapse
Affiliation(s)
- Karina Chertok Bittencourt
- Federal University of Santa Maria (UFSM), Department of Agronomic and Environmental Sciences, Linha 7 de Setembro, s/n, BR 386, Km 40, 98400-000 Frederico Westphalen, RS, Brazil
| | - Rafael Rodrigues DE Souza
- Federal University of Santa Maria (UFSM), Department of Plant Science, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| |
Collapse
|
14
|
Hirai A, Yamazaki R, Kobayashi A, Kimura T, Nomiyama K, Shimma S, Nakayama SMM, Ishizuka M, Ikenaka Y. Detection of Changes in Monoamine Neurotransmitters by the Neonicotinoid Pesticide Imidacloprid Using Mass Spectrometry. TOXICS 2022; 10:696. [PMID: 36422903 PMCID: PMC9695199 DOI: 10.3390/toxics10110696] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Monoamine neurotransmitters (MAs), including dopamine (DA) and serotonin (5-HT), regulate brain functions such as behavior, memory, and learning. Neonicotinoids are pesticides that are being used more frequently. Neonicotinoid exposure has been observed to produce neurological symptoms, such as altered spontaneous movements and anxiety-like behaviors, which are suspected to be caused by altered MA levels. However, current neurotoxicity tests are not sufficiently sensitive enough to make these determinations. In this study, we performed some behavior tests, and derivatization reagents to improve the ionization efficiency, which was applied to liquid chromatography mass spectrometry (LC-MS/MS) to reveal the effect of neonicotinoid administration on MAs in the brain. We orally administered the neonicotinoid imidacloprid (0, 10, and 50 mg/kg body weight) to C57BL/6NCrSlc mice. In the behavior tests, a decrease in activity was observed. The LC-MS/MS quantification of MAs in various brain regions showed a decrease in some MA levels in the olfactory bulb and the striatum. These results showed, for the first time, that even a low dose of imidacloprid could alter MA levels in various parts of the brain.
Collapse
Affiliation(s)
- Anri Hirai
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Ryo Yamazaki
- Laboratory of Comparative Pathology, Department of Veterinary Clinical Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Atsushi Kobayashi
- Laboratory of Comparative Pathology, Department of Veterinary Clinical Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Takashi Kimura
- Laboratory of Comparative Pathology, Department of Veterinary Clinical Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Kei Nomiyama
- Center for Marine Environmental Studies, Ehime University, Matsuyama 790-8577, Japan
| | - Shuichi Shimma
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
| | - Shouta M. M. Nakayama
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
- Translational Research Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
- One Health Research Center, Hokkaido University, Sapporo 060-0818, Japan
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, 11 Hoffman Street, Potchefstroom 2531, South Africa
| |
Collapse
|
15
|
Quantitative elucidation of the transfer of the neonicotinoid pesticide clothianidin to the breast milk in mice. Toxicol Lett 2022; 373:33-40. [PMID: 36328233 DOI: 10.1016/j.toxlet.2022.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 09/13/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Neonicotinoid pesticides (NNs) have been reported to have neurobehavioral effects on offspring after fetal and lactational exposure. In this study, clothianidin (CLO), an NN, was administered orally as a single dose (6.5 mg/kg: 1/10 of the no-observed-adverse-effect level in the current Pesticide Evaluation Report) to 10-day post-partum ICR mice, and CLO and its metabolites desmethyl-CLO (dm-CLO) were quantified using liquid chromatography-electrospray ionization/tandem mass spectrometry (LC-ESI/MS/MS) after collecting maternal breast milk and blood samples over time (1, 3, 6, 9, 12, and 24 h after administration). CLO and dm-CLO were detected in the breast milk at 1 h after the administration, and their concentrations were significantly higher than those in blood at all time points. The concentrations of CLO and dm-CLO in the breast milk were at their highest levels at 1 and 3 h, respectively, and then decreased over time to become almost undetectable at 24 h after the administration. These results show that CLO is metabolized in the mother's body and is rapidly transferred to and concentrated in the breast milk. Since CLO concentrations in breast milk are higher than those in the blood, there is concern about the effects of CLO during lactation.
Collapse
|
16
|
Terayama H, Sakabe K, Kiyoshima D, Qu N, Sato T, Suyama K, Hayashi S, Sakurai K, Todaka E, Mori C. Effect of Neonicotinoid Pesticides on Japanese Water Systems: Review with Focus on Reproductive Toxicity. Int J Mol Sci 2022; 23:ijms231911567. [PMID: 36232869 PMCID: PMC9570366 DOI: 10.3390/ijms231911567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022] Open
Abstract
Neonicotinoid pesticides (NPs) are neurotoxic substances. They are highly effective as insecticides owing to their water solubility, permeability, and long-lasting activity. These molecules are structurally similar to nicotine and act as nicotinic acetylcholine receptor agonists. The administration of NPs to experimental animals reportedly causes neuromuscular and reproductive disorders. Moreover, recently reported problems caused by NPs include damage to land-dwelling creatures (such as mammals and birds), hydrobiology, and ecosystems. This review summarizes the recent reports on NP concentrations detected in river systems in several Japanese regions. These values were lower than the environmental standard values; however, seasonal variations were observed. Furthermore, reports on NP-induced testicular and ovarian toxicity were examined, revealing that the mechanism of injury is mainly driven by oxidative stress. The use of NPs is declining worldwide, except in Japan; therefore, continuous monitoring remains necessary.
Collapse
Affiliation(s)
- Hayato Terayama
- Department of Anatomy, Division of Basic Medical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
- Correspondence: ; Tel.: +81-463-931121
| | - Kou Sakabe
- Department of Anatomy, Division of Basic Medical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
- Department of Environmental Preventive Medicine (Yamada Bee Company, Inc.), Center for Preventive Medical Sciences, Chiba University, 1-33 Yayoicho, Inageku, Chiba 263-8522, Japan
| | - Daisuke Kiyoshima
- Department of Anatomy, Division of Basic Medical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Ning Qu
- Department of Anatomy, Division of Basic Medical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Tsutomu Sato
- Department of Anatomy, Division of Basic Medical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Kaori Suyama
- Department of Anatomy, Division of Basic Medical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Shogo Hayashi
- Department of Anatomy, Division of Basic Medical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Kenichi Sakurai
- Division of Environmental Preventive Medical Sciences, Center for Preventive Medical Sciences, Chiba University, 1-33 Yayoicho, Inageku, Chiba 263-8522, Japan
| | - Emiko Todaka
- Division of Environmental Preventive Medical Sciences, Center for Preventive Medical Sciences, Chiba University, 1-33 Yayoicho, Inageku, Chiba 263-8522, Japan
- Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Chisato Mori
- Division of Environmental Preventive Medical Sciences, Center for Preventive Medical Sciences, Chiba University, 1-33 Yayoicho, Inageku, Chiba 263-8522, Japan
- Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| |
Collapse
|
17
|
Shinya S, Sashika M, Minamikawa M, Itoh T, Yohannes YB, Nakayama SMM, Ishizuka M, Nimako C, Ikenaka Y. Estimation of the Effects of Neonicotinoid Insecticides on Wild Raccoon, Procyon lotor, in Hokkaido, Japan: Urinary Concentrations and Hepatic Metabolic Capability of Neonicotinoids. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1865-1874. [PMID: 35452528 PMCID: PMC9544187 DOI: 10.1002/etc.5349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/07/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Toxicological effects of neonicotinoid insecticides (NNIs) have been reported for mammals, such as humans, rats, and mice. However, there are limited reports on their toxic effects on wild mammals. To predict NNI-induced toxic effects on wild mammals, it is necessary to determine the exposure levels and metabolic ability of these species. We considered that raccoons could be an animal model for evaluating NNI-induced toxicities on wildlife because they live near agricultural fields and eat crops treated with NNIs. The objective of the present study was to estimate the effects of NNI exposure on wild raccoons. Urinary concentrations of NNI compounds (n = 59) and cytochrome P450-dependent metabolism of NNIs (n = 3) were evaluated in wild raccoons captured in Hokkaido, Japan, in 2020. We detected either one of the six NNIs or one metabolite, including acetamiprid, imidacloprid, clothianidin, dinotefuran, thiacloprid, thiamethoxam, and desmethyl-acetamiprid in 90% of raccoons (53/59); the average cumulative concentration of the seven NNI compounds was 3.1 ng/ml. The urinary concentrations were not much different from those reported previously for humans. Furthermore, we performed an in vitro assessment of the ability of raccoons to metabolize NNIs using hepatic microsomes. The amounts of NNI metabolites were measured using liquid chromatography-electrospray ionization-tandem mass spectrometry and compared with those in rats. Raccoons showed much lower metabolic ability; the maximum velocity/Michaelis-Menten constant (Vmax /Km ) values for raccoons were one-tenth to one-third of those for rats. For the first time, we show that wild raccoons could be frequently exposed to NNIs in the environment, and that the cytochrome P450-dependent metabolism of NNIs in the livers of raccoons might be low. Our results contribute to a better understanding of the effects of NNIs on raccoons, leading to better conservation efforts for wild mammals. Environ Toxicol Chem 2022;41:1865-1874. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- So Shinya
- Laboratory of Toxicology, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
| | - Mariko Sashika
- Laboratory of Wildlife Biology and Medicine, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
| | - Miku Minamikawa
- Laboratory of Wildlife Biology and Medicine, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
| | - Tetsuji Itoh
- Laboratory of Wildlife Management, Department of Environmental and SymbiosisRakuno Gakuen UniversityEbetsuJapan
| | - Yared Beyene Yohannes
- Laboratory of Toxicology, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
| | - Shouta M. M. Nakayama
- Laboratory of Toxicology, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
- Biomedical Science Department, School of Veterinary MedicineThe University of ZambiaLusakaZambia
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
| | - Collins Nimako
- Laboratory of Toxicology, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
- Translational Research Unit, Veterinary Teaching Hospital, Faculty of Veterinary MedicineHokkaido UniversitySapporoJapan
- One Health Research CenterHokkaido UniversitySapporoJapan
- Water Research Group, Unit for Environmental Sciences and ManagementNorth‐West University, PotchefstroomSouth Africa
| |
Collapse
|
18
|
Nishi M, Sugio S, Hirano T, Kato D, Wake H, Shoda A, Murata M, Ikenaka Y, Tabuchi Y, Mantani Y, Yokoyama T, Hoshi N. Elucidation of the neurological effects of clothianidin exposure at the no-observed-adverse-effect level (NOAEL) using two-photon microscopy in vivo imaging. J Vet Med Sci 2022; 84:585-592. [PMID: 35264496 PMCID: PMC9096047 DOI: 10.1292/jvms.22-0013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Neonicotinoid pesticides (NNs) cause behavioral abnormalities in mammals, raising
concerns about their effects on neural circuit activity. We herein examined the
neurological effects of the NN clothianidin (CLO) by in vivo
Ca2+ imaging using two-photon microscopy. Mice were fed the
no-observed-adverse-effect-level (NOAEL) dose of CLO for 2 weeks and their neuronal
activity in the primary somatosensory cortex (S1) was observed weekly for 2 weeks. CLO
exposure caused a sustained influx of Ca2+ in neurons in the S1 2/3 layers,
indicating hyperactivation of neurons. In addition, microarray gene expression analysis
suggested the induction of neuroinflammation and changes in synaptic activity. These
results demonstrate that exposure to the NOAEL dose of CLO can overactivate neurons and
disrupt neuronal homeostasis.
Collapse
Affiliation(s)
- Misaki Nishi
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University
| | - Shouta Sugio
- Department of Anatomy and Molecular Cell Biology, Graduate School of Medicine, Nagoya University
| | | | - Daisuke Kato
- Department of Anatomy and Molecular Cell Biology, Graduate School of Medicine, Nagoya University
| | - Hiroaki Wake
- Department of Anatomy and Molecular Cell Biology, Graduate School of Medicine, Nagoya University
| | - Asuka Shoda
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University
| | - Midori Murata
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University.,Translational Research Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University.,One Health Research Center, Hokkaido University.,Water Research Group, Unit for Environmental Sciences and Management, North-West University
| | | | - Youhei Mantani
- Laboratory of Histophysiology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University
| | - Toshifumi Yokoyama
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University
| | - Nobuhiko Hoshi
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University
| |
Collapse
|
19
|
Yuan TH, Yu MT, Ikenaka Y, Chen YH, Nakayama SF, Chan CC. Characteristics of neonicotinoid and metabolite residues in Taiwanese tea leaves. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:341-349. [PMID: 34111305 DOI: 10.1002/jsfa.11363] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/13/2021] [Accepted: 06/10/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Neonicotinoids are widely used insecticides, and tea is a popular non-alcoholic beverage in Taiwan. However, the levels of neonicotinoids in Taiwanese tea leaves remain unclear. Therefore, this study aims to understand the characteristics of neonicotinoid and metabolite residues in Taiwanese tea leaves. METHODS In this study, 12 tea leaf samples were collected in Taiwan and extracted by solid-phase extraction before analysis by liquid chromatography-tandem mass spectrometry. In addition, the levels of neonicotinoids were compared with the maximum residue level standards from other countries. RESULTS In Taiwanese tea leaves, five neonicotinoids and seven metabolites were detected. Different tea species influenced the levels of neonicotinoids and their metabolites in the present study. Moreover, the levels of neonicotinoids and their metabolites in partially fermented leaves were higher than in completely fermented leaves. In Jin-Xuan tea, the levels of neonicotinoids and their metabolites in most winter-harvested teas were lower than in summer-harvested teas. CONCLUSION The residue levels of neonicotinoids and their metabolites were detectable in Taiwanese tea leaves. Moreover, different tea species, manufacturing processes, and harvest seasons might influence the levels of these pesticides. Therefore, the government should monitor the use of neonicotinoids. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tzu-Hsuen Yuan
- Department of Health and Welfare, College of City Management, University of Taipei, Taipei, Taiwan
| | - Meng-Ting Yu
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Department of Environmental Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Yi-Hsuan Chen
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Shoji F Nakayama
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Japan
| | - Chang-Chuan Chan
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
- Innovation and Policy Center for Population Health and Sustainable Environment (Population Health Research Center, PHRC), College of Public Health, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
20
|
Vuong AM, Zhang C, Chen A. Associations of neonicotinoids with insulin and glucose homeostasis parameters in US adults: NHANES 2015-2016. CHEMOSPHERE 2022; 286:131642. [PMID: 34351280 PMCID: PMC8578312 DOI: 10.1016/j.chemosphere.2021.131642] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/13/2021] [Accepted: 07/20/2021] [Indexed: 05/19/2023]
Abstract
Neonicotinoids are replacement insecticides increasingly used for organophosphates, methylcarbamates, and pyrethroids. Experimental evidence suggests neonicotinoids may affect glucose metabolism and insulin secretion through pancreatic β cell dysfunction, oxidative stress, and inflammation. However, no epidemiologic study has investigated neonicotinoids as potential diabetogens. We examined associations between neonicotinoids with insulin and glucose homeostasis parameters among 1381 non-diabetic adults in the National Health and Nutrition Examination Survey (2015-2016). Urinary concentrations of acetamiprid, clothianidin, imidacloprid, N-desmethyl-acetamiprid, and 5-hydroxy-imidacloprid were quantified. Fasting plasma glucose, insulin, and hemoglobin A1c (HbA1c) were assessed. Insulin resistance was defined as a homeostatic model assessment of insulin resistance ≥2.5. We used weighted linear and logistic regression to estimate associations between detectable neonicotinoids with insulin and glucose homeostasis parameters compared to non-detectable neonicotinoid concentrations. Weighted detection frequencies for imidacloprid, 5-hydroxy-imidacloprid, and N-desmethyl-acetamiprid were 4.4 %, 21.5 %, and 32.8 %, respectively. Detectable imidacloprid (β = -4.7 μIU/mL, 95 % confidence interval [CI] -8.5, -0.8) and 5-hydroxy-imidacloprid (β = -2.4 μIU/mL, 95 % CI -4.6, -0.2) were associated with lower fasting plasma insulin levels. Individuals with detectable 5-hydroxy-imidacloprid had lower odds of insulin resistance (odds ratio [OR] = 0.3, 95 % CI 0.2, 0.7). We observed evidence of sexually dimorphic associations between N-desmethyl-acetamiprid with glucose (pint = 0.079) and 5-hydroxy-imidacloprid with HbA1c (pint = 0.038), with patterns suggesting positive associations in males and negative associations in females. Associations between 5-hydroxy-imidacloprid and insulin were modified by body mass index (BMI) (pint = 0.013). We additionally observed age modified associations between 5-hydyroxy-imidacloprid and glucose (pint = 0.048). Results suggest neonicotinoids may be associated with insulin and glucose homeostasis indices and call for prospective studies to examine the metabolic impact of these replacement insecticides in humans.
Collapse
Affiliation(s)
- Ann M Vuong
- Department of Epidemiology and Biostatistics, University of Nevada Las Vegas, School of Public Health, Las Vegas, NV, United States.
| | - Cai Zhang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
21
|
Chen T, Zhou Y, Liu X, Liu Y, Yuan J, Wang Z. Adenylyl cyclase 3 deficiency results in dysfunction of blood-testis barrier during mouse spermiogenesis. Theriogenology 2021; 180:40-52. [PMID: 34953349 DOI: 10.1016/j.theriogenology.2021.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 10/19/2022]
Abstract
Human infertility has become a global medical and social health problem. Mice deficient in type 3 adenylyl cyclase (AC3), a key enzyme that synthesizes cyclic adenosine monophosphate (cAMP), develop male infertility, although the underlying molecular mechanisms remain unknown. We performed a label-free quantitative (LFQ) proteomics analyses to identify testicular differentially expressed proteins (DEPs) and their respective biological processes. Furthermore, histological examination demonstrated that AC3 deficiency in mice led to mild impairment of spermatogenesis, including the thinning of seminiferous epithelium and local lesions in the testis. We further identified that the integrity of the blood-testis barrier (BTB) was impaired in AC3 knockout (AC3-/-) mice accompanied with the reduction in the expression of tight junctions (TJs) and ectoplasmic specialization (ESs)-related proteins. In addition, the deletion of AC3 in mice also reduced the germ cell proliferation, increased apoptosis, and decreased lipid deposition in the seminiferous tubules. Collectively, our results revealed a role of AC3 in regulating the BTB integrity during spermatogenesis. Thus, our findings provide new perspectives for future research in male infertility.
Collapse
Affiliation(s)
- Tingrong Chen
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, Hebei, PR China
| | - Yanfen Zhou
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, Hebei, PR China
| | - Xinxia Liu
- School of Basic Medical Sciences, Hebei University, Baoding, 071030, Hebei, PR China
| | - Yuxin Liu
- School of Basic Medical Sciences, Hebei University, Baoding, 071030, Hebei, PR China
| | - Junkai Yuan
- School of Basic Medical Sciences, Hebei University, Baoding, 071030, Hebei, PR China
| | - Zhenshan Wang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, Hebei, PR China.
| |
Collapse
|
22
|
Astaxanthin Mitigates Thiacloprid-Induced Liver Injury and Immunotoxicity in Male Rats. Mar Drugs 2021; 19:md19090525. [PMID: 34564187 PMCID: PMC8467938 DOI: 10.3390/md19090525] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/18/2022] Open
Abstract
Thiacloprid (TCP) is a widely used neonicotinoid insecticide with a probable toxic hazard to animals and human beings. This hazard has intensified the demand for natural compounds to alleviate the expected toxic insults. This study aimed at determining whether astaxanthin (ASX) could mitigate the hepatotoxic effect of TCP and diminish its suppressive effect on immune responses in rats. Animals received TCP by gavage at 62.1 mg/kg (1/10th LD50) with or without ASX at 40 mg/kg for 60 days. Intoxicated rats showed modulation of serum transaminases and protein profiles. The hemagglutination antibody titer to sheep red blood cells (SRBC) and the number of plaque-forming cells in the spleen were reduced. The cell-mediated immunity and phagocytosis were suppressed, while serum interleukins IL-1β, IL-6, and IL-10 were elevated. Additionally, malondialdehyde, nitric oxide, and 8-hydroxy-2'-deoxyguanosine levels were increased in the liver, spleen, and thymus, with depletion of glutathione and suppression of superoxide dismutase and catalase activities. The expressions of inducible nitric oxide synthase and the high mobility group box protein 1 genes were upregulated with histomorphological alterations in the aforementioned organs. Cotreatment with ASX markedly ameliorated the toxic effects of TCP, and all markers showed a regression trend towards control values. Collectively, our data suggest that the protective effects of ASX on the liver and immune system of TCP-treated animals depend upon improving the antioxidant status and relieving the inflammatory response, and thus it may be used as a promising therapeutic agent to provide superior hepato- and immunoprotection.
Collapse
|
23
|
Pro-oxidant potency of clothianidin in rainbow trout. ACTA ACUST UNITED AC 2021; 72:164-172. [PMID: 34187107 PMCID: PMC8265201 DOI: 10.2478/aiht-2021-72-3522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 05/01/2021] [Indexed: 11/28/2022]
Abstract
Clothianidin is a systemic neonicotinoid insecticide interfering with the central nervous system by acting as a nicotinic acetylcholine receptor agonist. Although previous studies on fish report low toxicity, its proven toxic potential for aquatic invertebrates and lack of data on its effect on juvenile fish have prompted us to investigate its adverse effects in environmentally relevant concentrations of 3, 15 and 30 μg/L for 7, 14 and 21 days on heart and spleen tissues of 10-month-old rainbow trout (Oncorhynchus mykiss). We detected a conspicuous increase in protein carbonyl and malondialdehyde (MDA) levels, which triggered antioxidant response of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), resulting in increased levels of glutathione (GSH). Clothianidin inhibited the activity of acetylcholinesterase (AChE) and lowered tissue protein levels. Heart tissue weight increased, while that of spleen decreased significantly. The effects were time- and concentration-dependent. What raises particular concern is the inhibition of AChE in the trout, even though clothianidin is claimed to be selective for insect receptors. Increased antioxidant activity in response to oxidative stress was clearly insufficient to keep MDA and protein carbonyl at normal levels, which evidences the pro-oxidant potency of the insecticide. All this calls for further investigation into potential adverse effects on biological pathways in different fish species.
Collapse
|
24
|
Yang C, Lim W, Song G. Mechanisms of deleterious effects of some pesticide exposure on pigs. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 175:104850. [PMID: 33993968 DOI: 10.1016/j.pestbp.2021.104850] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/29/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
The increase in the size of the global population increases the food and energy demand, making the use of pesticides in agricultural and livestock industries unavoidable. Exposure to pesticides can be toxic to the non-target species, such as humans, wildlife, and livestock, in addition to the target organisms. Various chemicals are used in the livestock industry to control harmful organisms, such as insects, weeds, and parasites. Pigs are one of the most important food sources for humans. In addition, pigs can be used as promising models for assessing the risk of absorption of environmental pollutants through the skin and oral exposure since they are physiologically similar to humans. Exposure to numerous environmental pollutants, such as mycotoxins, persistent organic pollutants, and heavy metals, has been reported to adversely affect growth, fertility, and endocrine homeostasis in pigs. Various pesticides have been observed in porcine tissues, blood, urine, and processed foods; however, there is a lack of comprehensive understanding of their effects on porcine health. This review provides a comprehensive description of the characteristics of pesticides that pigs can be exposed to and how their exposure affects porcine reproductive function, intestinal health, and endocrine homeostasis in vivo and in vitro.
Collapse
Affiliation(s)
- Changwon Yang
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul 02707, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
25
|
Park J, Taly A, Bourreau J, De Nardi F, Legendre C, Henrion D, Guérineau NC, Legros C, Mattei C, Tricoire-Leignel H. Partial Agonist Activity of Neonicotinoids on Rat Nicotinic Receptors: Consequences over Epinephrine Secretion and In Vivo Blood Pressure. Int J Mol Sci 2021; 22:ijms22105106. [PMID: 34065933 PMCID: PMC8151892 DOI: 10.3390/ijms22105106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022] Open
Abstract
Neonicotinoid insecticides are nicotine-derived molecules which exert acute neurotoxic effects over the insect central nervous system by activating nicotinic acetylcholine receptors (nAChRs). However, these receptors are also present in the mammalian central and peripheral nervous system, where the effects of neonicotinoids are faintly known. In mammals, cholinergic synapses are crucial for the control of vascular tone, blood pressure and skeletal muscle contraction. We therefore hypothesized that neonicotinoids could affect cholinergic networks in mammals and sought to highlight functional consequences of acute intoxication in rats with sub-lethal concentrations of the highly used acetamiprid (ACE) and clothianidin (CLO). In this view, we characterized their electrophysiological effects on rat α3β4 nAChRs, knowing that it is predominantly expressed in ganglia of the vegetative nervous system and the adrenal medulla, which initiates catecholamine secretion. Both molecules exhibited a weak agonist effect on α3β4 receptors. Accordingly, their influence on epinephrine secretion from rat adrenal glands was also weak at 100 μM, but it was stronger at 500 μM. Challenging ACE or CLO together with nicotine (NIC) ended up with paradoxical effects on secretion. In addition, we measured the rat arterial blood pressure (ABP) in vivo by arterial catheterization. As expected, NIC induced a significant increase in ABP. ACE and CLO did not affect the ABP in the same conditions. However, simultaneous exposure of rats to both NIC and ACE/CLO promoted an increase of ABP and induced a biphasic response. Modeling the interaction of ACE or CLO on α3β4 nAChR is consistent with a binding site located in the agonist pocket of the receptor. We present a transversal experimental approach of mammal intoxication with neonicotinoids at different scales, including in vitro, ex vivo, in vivo and in silico. It paves the way of the acute and chronic toxicity for this class of insecticides on mammalian organisms.
Collapse
Affiliation(s)
- Joohee Park
- University of Angers, INSERM U1083, CNRS UMR 6015, MITOVASC, SFR ICAT, 49000 Angers, France; (J.P.); (J.B.); (F.D.N.); (C.L.); (D.H.); (N.C.G.); (C.L.)
| | - Antoine Taly
- Theoretical Biochemistry Laboratory, Institute of Physico-Chemical Biology, CNRS UPR 9080, University of Paris Diderot Sorbonne Paris Cité, 75005 Paris, France;
| | - Jennifer Bourreau
- University of Angers, INSERM U1083, CNRS UMR 6015, MITOVASC, SFR ICAT, 49000 Angers, France; (J.P.); (J.B.); (F.D.N.); (C.L.); (D.H.); (N.C.G.); (C.L.)
| | - Frédéric De Nardi
- University of Angers, INSERM U1083, CNRS UMR 6015, MITOVASC, SFR ICAT, 49000 Angers, France; (J.P.); (J.B.); (F.D.N.); (C.L.); (D.H.); (N.C.G.); (C.L.)
| | - Claire Legendre
- University of Angers, INSERM U1083, CNRS UMR 6015, MITOVASC, SFR ICAT, 49000 Angers, France; (J.P.); (J.B.); (F.D.N.); (C.L.); (D.H.); (N.C.G.); (C.L.)
| | - Daniel Henrion
- University of Angers, INSERM U1083, CNRS UMR 6015, MITOVASC, SFR ICAT, 49000 Angers, France; (J.P.); (J.B.); (F.D.N.); (C.L.); (D.H.); (N.C.G.); (C.L.)
| | - Nathalie C. Guérineau
- University of Angers, INSERM U1083, CNRS UMR 6015, MITOVASC, SFR ICAT, 49000 Angers, France; (J.P.); (J.B.); (F.D.N.); (C.L.); (D.H.); (N.C.G.); (C.L.)
- IGF, University of Montpellier, CNRS, INSERM, 34000 Montpellier, France
| | - Christian Legros
- University of Angers, INSERM U1083, CNRS UMR 6015, MITOVASC, SFR ICAT, 49000 Angers, France; (J.P.); (J.B.); (F.D.N.); (C.L.); (D.H.); (N.C.G.); (C.L.)
| | - César Mattei
- University of Angers, INSERM U1083, CNRS UMR 6015, MITOVASC, SFR ICAT, 49000 Angers, France; (J.P.); (J.B.); (F.D.N.); (C.L.); (D.H.); (N.C.G.); (C.L.)
- Correspondence: (C.M.); (H.T.-L.)
| | - Hélène Tricoire-Leignel
- University of Angers, INSERM U1083, CNRS UMR 6015, MITOVASC, SFR ICAT, 49000 Angers, France; (J.P.); (J.B.); (F.D.N.); (C.L.); (D.H.); (N.C.G.); (C.L.)
- Correspondence: (C.M.); (H.T.-L.)
| |
Collapse
|
26
|
Dogan D, Deveci HA, Nur G. Manifestations of oxidative stress and liver injury in clothianidin exposed Oncorhynchus mykiss. Toxicol Res (Camb) 2021; 10:501-510. [PMID: 34141164 DOI: 10.1093/toxres/tfab027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 01/15/2021] [Accepted: 02/19/2021] [Indexed: 12/25/2022] Open
Abstract
This investigation was conducted to evaluate the effects of clothianidin, a neonicotinoid insecticide, on hepatic oxidative stress biomarkers, biochemical indices of blood serum and liver integrity in juvenile Oncorhynchus mykiss following 7, 14 and 21 days of application to environmentally relevant concentrations of 3, 15 and 30 μg/l. The observed hypertrophy caused elevation in hepatosomatic index, a significant increase in serum glucose and a decrease in tissue protein level with extended period of exposure were determined. The treatment resulted in a marked induction in the activities of antioxidant enzymes which were accompanied with simultaneous elevation in MDA and protein carbonyl level reflecting loss of membrane integrity and protein function. Histopathological examination showed liver injury manifested as hepatocellular degeneration, fibrosis, vacuolation, congestion, necrosis, steatosis and pyknosis proceding with the concentration. The stressful condition triggered hyperglycemic and hypoproteinemic conditions which might be proposed as general adaptive response. Moreover, altered liver histology reveals the hepatotoxic potential of clothianidin via oxidative stress as a common pathological mechanism leading to liver injury.
Collapse
Affiliation(s)
- Demet Dogan
- Department of Veterinary Medicine, Vocational School of Araban, University of Gaziantep, Araban-Gaziantep 27650, Turkey
| | - Haci Ahmet Deveci
- Faculty of Health and Sciences, Department of Nutrition and Dietetics, University of Gaziantep, Gaziantep 27310, Turkey
| | - Gokhan Nur
- Faculty of Medicine, Department of Histology and Embryology, University of Gaziantep, Gaziantep 27310, Turkey
| |
Collapse
|
27
|
Kolbasi B, Bulbul MV, Karabulut S, Altun CE, Cakici C, Ulfer G, Mudok T, Keskin I. Chronic unpredictable stress disturbs the blood-testis barrier affecting sperm parameters in mice. Reprod Biomed Online 2021; 42:983-995. [PMID: 33653651 DOI: 10.1016/j.rbmo.2020.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 11/19/2022]
Abstract
RESEARCH QUESTION Does chronic stress affect the key proteins and sperm parameters of the blood-testis barrier (BTB)? DESIGN C57Bl/6 mice were divided into two groups: a non-treated control group and a chronic unpredictable stress (CUS) applied group. The stress status of the animals was confirmed with behavioural tests. Histopathologic evaluation was conducted by haematoxylin and eosin staining and electron microscope. Malondialdehyde, corticosterone and testosterone levels were evaluated in peripheral blood. Expression levels of BTB proteins, namely zonula occludens-1 (ZO-1), claudin-11 (CLDN11) and clathrin in Sertoli cells, were assessed by Western blotting and immunofluorescence techniques. Sperm samples were collected from cauda epididymis, and sperm parameters analysed. RESULTS The stress model was confirmed by behavioural tests. Histopathological evaluation of the testes demonstrated a mild degeneration in seminiferous tubules. Malondialdehyde (P = 0.008) and corticosterone levels increased (P = 0.004) and testosterone levels decreased (P = 0.005) in the CUS group. Electron microscopic evaluation confirmed the damage in BTB integrity in the CUS group. Western blot analysis showed that ZO-1 and CLDN11 levels were significantly decreased, although clathrin levels were unchanged. Although sperm concentration and total motility rate were not significantly different between the groups, progressive motility (P = 0.03), normal sperm morphology (P = 0.04), chromatin integrity (toluidine blue) (P = 0.002) and the acrosomal reaction rate (P = 0.002) were significantly decreased, and acrosomal abnormality rate was dramatically increased (P = 0.04) in the CUS group. CONCLUSIONS In mice, CUS disrupted BTB integrity and impaired sperm parameters. A decrease in ZO-1 and CLDN11 expression levels may be proposed as the causative factor.
Collapse
Affiliation(s)
- Bircan Kolbasi
- Department of Histology and Embryology, School of Medicine, Istanbul Medipol University Istanbul, Turkey; Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University Istanbul, Turkey
| | - Muhammet Volkan Bulbul
- Department of Histology and Embryology, School of Medicine, Istanbul Medipol University Istanbul, Turkey; Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University Istanbul, Turkey
| | - Seda Karabulut
- Department of Histology and Embryology, School of Medicine, Istanbul Medipol University Istanbul, Turkey; Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University Istanbul, Turkey
| | - Ceren Erdem Altun
- Department of Histology and Embryology, School of Medicine, Istanbul Medipol University Istanbul, Turkey; Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University Istanbul, Turkey
| | - Cagri Cakici
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University Istanbul, Turkey; Department of Biochemistry, Istanbul Medipol University Istanbul, Turkey
| | - Gozde Ulfer
- Department of Biochemistry, Istanbul Medipol University Hospital Istanbul, Turkey
| | - Tangul Mudok
- Department of Histology and Embryology, Faculty of Dentistry, Istanbul Kent University Istanbul, Turkey
| | - Ilknur Keskin
- Department of Histology and Embryology, School of Medicine, Istanbul Medipol University Istanbul, Turkey; Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University Istanbul, Turkey.
| |
Collapse
|
28
|
Huang W, Lu Y, Chen L, Sun D, An Y. Impact of pesticide/fertilizer mixtures on the rhizosphere microbial community of field-grown sugarcane. 3 Biotech 2021; 11:210. [PMID: 33927998 DOI: 10.1007/s13205-021-02770-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/30/2021] [Indexed: 10/21/2022] Open
Abstract
The rhizosphere microbial community is important for plant health and is shaped by numerous environmental factors. This study aimed to unravel the effects of a pesticide/fertilizer mixture on the soil rhizosphere microbiome of field-grown sugarcane. A field trial on sugarcane was conducted in Zhanjian City, Guangdong Province, China, and soil samples from the rhizosphere were collected after clothianidin pesticide and/or organic fertilizer treatments. The effects of pesticide and/or organic fertilizer treatments on the composition, diversity, and predictive function of the rhizosphere microbial communities were examined using 16S rRNA gene and ITS1 amplicon sequencing. Compared with the controls (no pesticide or fertilizer used), the microbial community that resulted from treatment with the pesticide/fertilizer mixture (SPF) had a higher relative bacterial diversity and fungal richness, and contributed more beneficial functions to sugarcane, including xenobiotics biodegradation and metabolism of amino acids. The bacterial and fungal compositions at various taxonomic levels were not significantly different in SPF and SP (pesticide only) treatments compared to treatments without the pesticide, suggesting that the clothianidin addition did not cause a detrimental impact on the soil microbiome. Moreover, five bacterial genera, including Dyella, Sphingomonas, Catenulispora, Mucilaginibacter, and Tumebacillus, were significantly more abundant in the SPF and SP treatments, which could be associated with the pesticide addition. With the addition of organic fertilizers in SPF, the abundances of some soil-beneficial bacteria Bacillus, Paenibacillus, and Brevibacillus were highly increased. Our study provides insights into the interactions between the rhizosphere soil microbiome and pesticide-fertilizer integration, which may help improve the application of pesticide-fertilizer to sugarcane fields. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02770-3.
Collapse
|
29
|
KITAUCHI S, MAEDA M, HIRANO T, IKENAKA Y, NISHI M, SHODA A, MURATA M, MANTANI Y, YOKOYAMA T, TABUCHI Y, HOSHI N. Effects of in utero and lactational exposure to the no-observed-adverse-effect level (NOAEL) dose of the neonicotinoid clothianidin on the reproductive organs of female mice. J Vet Med Sci 2021; 83:746-753. [PMID: 33563863 PMCID: PMC8111362 DOI: 10.1292/jvms.21-0014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 01/31/2021] [Indexed: 01/22/2023] Open
Abstract
Recently, developmental exposure to clothianidin (CLO) has been shown to cause reproductive toxicity in male mice, but the effects in female mice remain to be clarified. Pregnant C57BL/6N mice were given a no-observed-adverse-effect-level (NOAEL) dose of CLO until weaning. We then examined ovaries of 3- or 10-week-old female offspring. In the CLO-administered group, morphological changes, a decrease in the immunoreactivity of the antioxidant enzyme glutathione peroxidase 4 (GPx4), and activation of genes in the steroid hormone biosynthesis pathway were observed in 3-week-old mice, and decreases of GPx4 immunoreactivity, 17OH-progesterone and corticosterone levels were observed in 10-week-old mice, along with high rates of infanticide and severe neglect, providing new evidence that developmental exposure to CLO affects juvenile and adult mice differently.
Collapse
Affiliation(s)
- Sayaka KITAUCHI
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai,
Nada, Kobe, Hyogo 657-8501, Japan
| | - Mizuki MAEDA
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai,
Nada, Kobe, Hyogo 657-8501, Japan
| | - Tetsushi HIRANO
- Life Science Research Center, Toyama University, 2630
Sugitani, Toyama, Toyama 930-0194, Japan
| | - Yoshinori IKENAKA
- Laboratory of Toxicology, Department of Environmental
Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi
9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
- Translational Research Unit, Veterinary Teaching Hospital,
Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo,
Hokkaido 060-0818, Japan
- Water Research Group, Unit for Environmental Sciences and
Management, North-West University, 11 Hoffman Street, Potchefstroom 2531, South
Africa
| | - Misaki NISHI
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai,
Nada, Kobe, Hyogo 657-8501, Japan
| | - Asuka SHODA
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai,
Nada, Kobe, Hyogo 657-8501, Japan
| | - Midori MURATA
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai,
Nada, Kobe, Hyogo 657-8501, Japan
| | - Youhei MANTANI
- Laboratory of Histophysiology, Department of Animal Science,
Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo
657-8501, Japan
| | - Toshifumi YOKOYAMA
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai,
Nada, Kobe, Hyogo 657-8501, Japan
| | - Yoshiaki TABUCHI
- Life Science Research Center, Toyama University, 2630
Sugitani, Toyama, Toyama 930-0194, Japan
| | - Nobuhiko HOSHI
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai,
Nada, Kobe, Hyogo 657-8501, Japan
| |
Collapse
|
30
|
Dogan D, Nur G, Deveci HA. Tissue-specific toxicity of clothianidin on rainbow trout ( Oncorhynchus mykiss). Drug Chem Toxicol 2021; 45:1851-1861. [PMID: 33641563 DOI: 10.1080/01480545.2021.1892128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
This study was performed to investigate the tissue-specific effects of clothianidin on Oncorhynchus mykiss by evaluating the biochemical and histological alterations following 21 days of treatment to environmentally relevant concentrations of 3, 15, and 30 µg/L. The emerged behavioral changes in feeding and swimming performance were considered as adaptive responses to avoid the chemical. The toxic effect of pesticide on nervous system and osmoregulation was evidenced with the inhibition of AChE and Na+K+-ATPase. The sustained lipid peroxidation, ranging from muscle (196%) > brain (154%) > gill (140%) > kidney (129%), might be suggested as a mechanism mediating the inhibition of membrane-bound enzymes. Histological evaluation showed clothianidin-induced lesions appearing as necrosis, atrophy, and edema in muscle, hyperplasia, and hypertrophy causing shortening and fusion of the secondary lamellae in gill, vacuolization, and hydropic degeneration in brain, degeneration of tubular epithelium, and existence of melanomacrophage centers in kidney. The pronounced degenerative changes observed in gill indicate the vulnerability of tissue possibly due to its role as first contact and entry point for the pesticide. Consequently, clothianidin exerted its toxic effects by altering normal behavior, causing neurotoxicity and disturbing osmoregulation. Moreover, the imposed stress was responded in a tissue-specific manner and histological lesions become more severe with increasing concentration. The findings clearly reveal the potential threat caused by environmentally relevant concentrations of clothianidin to early life stages of fish.
Collapse
Affiliation(s)
- Demet Dogan
- Vocational School of Araban, University of Gaziantep, Araban-Gaziantep, Turkey
| | - Gokhan Nur
- Faculty of Medicine, Department of Histology and Embryology, University of Gaziantep, Gaziantep, Turkey
| | - Haci Ahmet Deveci
- Faculty of Health and Sciences, Department of Nutrition and Dietetics, University of Gaziantep, Gaziantep, Turkey
| |
Collapse
|
31
|
Pisa L, Goulson D, Yang EC, Gibbons D, Sánchez-Bayo F, Mitchell E, Aebi A, van der Sluijs J, MacQuarrie CJK, Giorio C, Long EY, McField M, Bijleveld van Lexmond M, Bonmatin JM. An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 2: impacts on organisms and ecosystems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:11749-11797. [PMID: 29124633 PMCID: PMC7921077 DOI: 10.1007/s11356-017-0341-3] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/25/2017] [Indexed: 05/15/2023]
Abstract
New information on the lethal and sublethal effects of neonicotinoids and fipronil on organisms is presented in this review, complementing the previous Worldwide Integrated Assessment (WIA) in 2015. The high toxicity of these systemic insecticides to invertebrates has been confirmed and expanded to include more species and compounds. Most of the recent research has focused on bees and the sublethal and ecological impacts these insecticides have on pollinators. Toxic effects on other invertebrate taxa also covered predatory and parasitoid natural enemies and aquatic arthropods. Little new information has been gathered on soil organisms. The impact on marine and coastal ecosystems is still largely uncharted. The chronic lethality of neonicotinoids to insects and crustaceans, and the strengthened evidence that these chemicals also impair the immune system and reproduction, highlights the dangers of this particular insecticidal class (neonicotinoids and fipronil), with the potential to greatly decrease populations of arthropods in both terrestrial and aquatic environments. Sublethal effects on fish, reptiles, frogs, birds, and mammals are also reported, showing a better understanding of the mechanisms of toxicity of these insecticides in vertebrates and their deleterious impacts on growth, reproduction, and neurobehaviour of most of the species tested. This review concludes with a summary of impacts on the ecosystem services and functioning, particularly on pollination, soil biota, and aquatic invertebrate communities, thus reinforcing the previous WIA conclusions (van der Sluijs et al. 2015).
Collapse
Affiliation(s)
| | - Dave Goulson
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - En-Cheng Yang
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - David Gibbons
- RSPB Centre for Conservation of Science, The Lodge, Sandy, Bedfordshire, SG19 2DL, UK
| | - Francisco Sánchez-Bayo
- School of Life and Environmental Sciences, The University of Sydney, 1 Central Avenue, Eveleigh, NSW, 2015, Australia
| | - Edward Mitchell
- Laboratory of Soil Biodiversity, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| | - Alexandre Aebi
- Laboratory of Soil Biodiversity, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
- Anthropology Institute, University of Neuchâtel, Rue Saint-Nicolas 4, 2000, Neuchâtel, Switzerland
| | - Jeroen van der Sluijs
- Centre for the Study of the Sciences and the Humanities, University of Bergen, Postboks 7805, 5020, Bergen, Norway
- Department of Chemistry, University of Bergen, Postboks 7805, 5020, Bergen, Norway
- Copernicus Institute of Sustainable Development, Environmental Sciences, Utrecht University, Heidelberglaan 2, 3584 CS, Utrecht, The Netherlands
| | - Chris J K MacQuarrie
- Natural Resources Canada, Canadian Forest Service, 1219 Queen St. East, Sault Ste. Marie, ON, P6A 2E5, Canada
| | | | - Elizabeth Yim Long
- Department of Entomology, The Ohio State University, 1680 Madison Ave, Wooster, OH, 44691, USA
| | - Melanie McField
- Smithsonian Institution, 701 Seaway Drive Fort Pierce, Florida, 34949, USA
| | | | - Jean-Marc Bonmatin
- Centre National de la Recherche Scientifique (CNRS), Centre de Biophysique Moléculaire, Rue Charles Sadron, 45071, Orléans, France.
| |
Collapse
|
32
|
Maeda M, Kitauchi S, Hirano T, Ikenaka Y, Nishi M, Shoda A, Murata M, Mantani Y, Tabuchi Y, Yokoyama T, Hoshi N. Fetal and lactational exposure to the no-observed-adverse-effect level (NOAEL) dose of the neonicotinoid pesticide clothianidin inhibits neurogenesis and induces different behavioral abnormalities at the developmental stages in male mice. J Vet Med Sci 2021; 83:542-548. [PMID: 33518607 PMCID: PMC8025408 DOI: 10.1292/jvms.20-0721] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Recently, it has been reported that neonicotinoid pesticides (NNs) are transferred from mother to child and are assumed to affect the next generation, but the
behavioral effects of NN exposure at different developmental stages have not been investigated. We exposed mice to no-observed-adverse-effect level (NOAEL)
doses of clothianidin (CLO) during the fetal and lactational period, and then evaluated the neurobehavioral effects in juvenile and adult mice. Significant
increases in anxiety-like behavior and locomotor activity were observed in juveniles and adults, respectively, and neuronal activity and neurogenesis in the
hippocampal dentate gyrus were affected in both stages. These results suggest that fetal and lactational exposure to CLO may inhibit neurogenesis and cause
different behavioral abnormalities at different developmental stages.
Collapse
Affiliation(s)
- Mizuki Maeda
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Sayaka Kitauchi
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Tetsushi Hirano
- Life Science Research Center, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan.,Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Misaki Nishi
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Asuka Shoda
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Midori Murata
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Youhei Mantani
- Laboratory of Histophysiology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Yoshiaki Tabuchi
- Life Science Research Center, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Toshifumi Yokoyama
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Nobuhiko Hoshi
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| |
Collapse
|
33
|
Somogyvári D, Vehovszky Á, Farkas A, Horváth R, Győri J. Multi-marker approach for the evaluation of environmental impacts of APACS 50WG on aquatic ecosystems. INVERTEBRATE NEUROSCIENCE 2020; 20:23. [PMID: 33191441 PMCID: PMC7667133 DOI: 10.1007/s10158-020-00254-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 10/22/2020] [Indexed: 11/26/2022]
Abstract
Neonicotinoids are the most widely used synthetic insecticides in the world. These insecticides are widely distributed in the ecosystem, indicating that more attention should be paid to the potential risks regarding their use in agriculture. Due their intensive use, non-target species in the environment are also exposed to their putative effects. Within acute exposure trials, the time related effect of sublethal dose of the neonicotinoid preparation APACS 50 WG was investigated on swimming behaviour and the multi-xenobiotic resistance system (MXR) activity, as a first line defence pathway of adult Dikerogammarus villosus. Results showed that treated animals manifested an increased swimming activity. Exposed animals were monitored by the rhodamine B accumulation assay, and APACS 50 WG exerted distinct changes in the MXR activity as well. Our results suggested that application of neonicotinoid at a low concentration (3.9 ng/l) contributed to the activation of locomotor activity and at the same concentration range the transmembrane transport mechanisms was altered too.
Collapse
Affiliation(s)
- Dávid Somogyvári
- Department of Engineering, University of Pannonia, Veszprém, 8200, Hungary.
| | - Ágnes Vehovszky
- Department of Experimental Zoology, Balaton Limnological Institute, MTA Centre for Ecological Research, Tihany, 8237, Hungary
| | - Anna Farkas
- Department of Experimental Zoology, Balaton Limnological Institute, MTA Centre for Ecological Research, Tihany, 8237, Hungary
| | - Réka Horváth
- Department of Experimental Zoology, Balaton Limnological Institute, MTA Centre for Ecological Research, Tihany, 8237, Hungary
| | - János Győri
- Department of Experimental Zoology, Balaton Limnological Institute, MTA Centre for Ecological Research, Tihany, 8237, Hungary
| |
Collapse
|
34
|
Roy CL, Coy PL. Wildlife consumption of neonicotinoid-treated seeds at simulated seed spills. ENVIRONMENTAL RESEARCH 2020; 190:109830. [PMID: 32862016 DOI: 10.1016/j.envres.2020.109830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
The most likely route of exposure to high concentrations of neonicotinoids capable of producing lethal or sublethal effects in birds and mammals is consumption of treated seeds. We placed trail cameras at simulated seed spills to document wildlife consuming treated seeds during the spring planting season. We simulated 4 types of spills, corn treated with 2 concentrations of clothiandin (0.50 or 0.25 mg/seed), corn treated with thiamethoxam (0.25 mg/seed), and soybean treated with imidacloprid (0.15 mg/seed). We documented 16 species of birds and 14 species of mammals eating neonicotinoid-treated seeds at spills. Of these, we quantified consumption of treated seeds by 12 species of birds and 13 species of mammals. Birds and mammals did not consume enough seeds to exceed published LD50s in related taxa, but most species did consume enough seeds to reach or exceed thresholds for sublethal effects based on currently available studies. Birds and mammals did not increase the amount of seeds consumed over time, as would be expected if responsive to the concentration of neonicotinoids on seeds, but more birds and mammals consumed seeds over time, as a proportion of the number at spills each day. More birds also consumed seeds after a soaking rain event, which likely reduced the amount of treatment on the seeds. Importantly, wildlife are consuming seeds while neonicotinoids are still concentrated on seeds. Our findings indicate that previously held assumptions about the safety of neonicotinoid seed treatments for vertebrate wildlife need to be revisited.
Collapse
Affiliation(s)
- Charlotte L Roy
- Minnesota Department of Natural Resources, Grand Rapids, MN, 55744, USA.
| | - Pamela L Coy
- Minnesota Department of Natural Resources, Grand Rapids, MN, 55744, USA.
| |
Collapse
|
35
|
Exposure Level of Neonicotinoid Insecticides in the Food Chain and the Evaluation of Their Human Health Impact and Environmental Risk: An Overview. SUSTAINABILITY 2020. [DOI: 10.3390/su12187523] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neonicotinoid insecticides (neonics) were the most rapidly growing class of insecticides over the past few decades, and are used mainly for vegetables, fruits, and grains. Although neonics exhibit lower toxicity in mammals and humans compared to traditional insecticides, increasing numbers of studies are demonstrating that neonics may accumulate in the food chain and environmental media. Long-term exposure to neonics may raise potential risks to animals and even to humans. The present report reviews the development, application, and prohibition of neonics in the farmland ecosystem, and summarizes the exposure level and harmful effects of these insecticides in the food chain. In addition, the present review analyzes and summarizes the evaluation of the human health impact and environmental risk of the neonics, and overviews the unresolved problems and future research directions in this field. The aim of the present report was to review the exposure level, potential toxicity, human health impact, and environmental risk assessment of neonics in various media in order to provide reliable technical support for strengthening the environmental and food safety supervision and green pesticide designing.
Collapse
|
36
|
Thompson DA, Lehmler HJ, Kolpin DW, Hladik ML, Vargo JD, Schilling KE, LeFevre GH, Peeples TL, Poch MC, LaDuca LE, Cwiertny DM, Field RW. A critical review on the potential impacts of neonicotinoid insecticide use: current knowledge of environmental fate, toxicity, and implications for human health. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:1315-1346. [PMID: 32267911 PMCID: PMC11755762 DOI: 10.1039/c9em00586b] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Neonicotinoid insecticides are widely used in both urban and agricultural settings around the world. Historically, neonicotinoid insecticides have been viewed as ideal replacements for more toxic compounds, like organophosphates, due in part to their perceived limited potential to affect the environment and human health. This critical review investigates the environmental fate and toxicity of neonicotinoids and their metabolites and the potential risks associated with exposure. Neonicotinoids are found to be ubiquitous in the environment, drinking water, and food, with low-level exposure commonly documented below acceptable daily intake standards. Available toxicological data from animal studies indicate possible genotoxicity, cytotoxicity, impaired immune function, and reduced growth and reproductive success at low concentrations, while limited data from ecological or cross-sectional epidemiological studies have identified acute and chronic health effects ranging from acute respiratory, cardiovascular, and neurological symptoms to oxidative genetic damage and birth defects. Due to the heavy use of neonicotinoids and potential for cumulative chronic exposure, these insecticides represent novel risks and necessitate further study to fully understand their risks to humans.
Collapse
Affiliation(s)
- Darrin A Thompson
- University of Iowa, College of Public Health, Iowa City, IA, USA. and University of Iowa, Center for Health Effects of Environmental Contamination, Iowa City, IA, USA
| | | | - Dana W Kolpin
- U.S. Geological Survey, Central Midwest Water Science Center, Iowa City, IA, USA
| | - Michelle L Hladik
- U.S. Geological Survey, California Water Science Center, Sacramento, CA, USA
| | - John D Vargo
- State Hygienic Laboratory at the University of Iowa, Iowa City, IA, USA
| | | | - Gregory H LeFevre
- University of Iowa, Department of Civil & Environmental Engineering, Iowa City, IA, USA
| | - Tonya L Peeples
- Department of Chemical Engineering, University Park, PA, USA
| | - Matthew C Poch
- University of Iowa, College of Public Health, Iowa City, IA, USA.
| | - Lauren E LaDuca
- University of Iowa, College of Public Health, Iowa City, IA, USA.
| | - David M Cwiertny
- University of Iowa, Center for Health Effects of Environmental Contamination, Iowa City, IA, USA and University of Iowa, Department of Civil & Environmental Engineering, Iowa City, IA, USA
| | - R William Field
- University of Iowa, College of Public Health, Iowa City, IA, USA.
| |
Collapse
|
37
|
TAKADA T, YONEDA N, HIRANO T, ONARU K, MANTANI Y, YOKOYAMA T, KITAGAWA H, TABUCHI Y, NIMAKO C, ISHIZUKA M, IKENAKA Y, HOSHI N. Combined exposure to dinotefuran and chronic mild stress counteracts the change of the emotional and monoaminergic neuronal activity induced by either exposure singly despite corticosterone elevation in mice. J Vet Med Sci 2020; 82:350-359. [PMID: 31983702 PMCID: PMC7118473 DOI: 10.1292/jvms.19-0635] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/06/2020] [Indexed: 02/05/2023] Open
Abstract
Dinotefuran (DIN) belongs to the neonicotinoids (NNs), a class of globally applied pesticides originally developed to exhibit selective toxicity in insects. However, several reports have suggested that NNs also exert neurotoxic effects in mammals. We previously demonstrated neurobehavioral effects of DIN on mice under non-stressful conditions. For further toxicity assessments in the present study, we investigated the effects of DIN on mice exposed to stressful conditions. After subacutely administering a no-observed-effect-level (NOEL) dose of DIN and/or chronic unpredictable mild stress (CUMS) to mice, we conducted three behavioral tests (i.e., open field test [OFT], tail suspension test [TST] and forced swimming test [FST]). In addition, serotonin (5-HT) and tryptophan hydroxylase 2 (TPH2) of the dorsal raphe nuclei (DRN) and median raphe nuclei (MRN) and tyrosine hydroxylase (TH) of the ventral tegmental area and substantia nigra (SN) were evaluated immunohistochemically. A NOEL dose of DIN or CUMS alone increased of the total distance in OFT, decreased or increased the immobility time in TST or FST, respectively, and increased the positive intensity of 5-HT and TPH2 in the DRN/MRN, and TH in the SN. These changes were suppressed under the conditions of combined exposure to DIN and CUMS, though the blood corticosterone level was increased depending on the blood DIN values and the presence of CUMS. The present study suggests the multifaceted toxicity of the neurotoxin DIN.
Collapse
Affiliation(s)
- Tadashi TAKADA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe,
Hyogo 657-8501, Japan
| | - Naoki YONEDA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe,
Hyogo 657-8501, Japan
| | - Tetsushi HIRANO
- Division of Drug and Structural Research, Life Science Research Center, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Kanoko ONARU
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe,
Hyogo 657-8501, Japan
| | - Youhei MANTANI
- Laboratory of Histophysiology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501,
Japan
| | - Toshifumi YOKOYAMA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe,
Hyogo 657-8501, Japan
| | - Hiroshi KITAGAWA
- Laboratory of Histophysiology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501,
Japan
| | - Yoshiaki TABUCHI
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Collins NIMAKO
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9,
Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Mayumi ISHIZUKA
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9,
Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Yoshinori IKENAKA
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9,
Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Nobuhiko HOSHI
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe,
Hyogo 657-8501, Japan
| |
Collapse
|
38
|
Gomez SD, Bustos PS, Sánchez VG, Ortega MG, Guiñazú N. Trophoblast toxicity of the neonicotinoid insecticide acetamiprid and an acetamiprid-based formulation. Toxicology 2020; 431:152363. [DOI: 10.1016/j.tox.2020.152363] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/11/2019] [Accepted: 01/05/2020] [Indexed: 02/06/2023]
|
39
|
Onaru K, Ohno S, Kubo S, Nakanishi S, Hirano T, Mantani Y, Yokoyama T, Hoshi N. Immunotoxicity evaluation by subchronic oral administration of clothianidin in Sprague-Dawley rats. J Vet Med Sci 2020; 82:360-372. [PMID: 31983703 PMCID: PMC7118483 DOI: 10.1292/jvms.19-0689] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Neonicotinoid pesticides (NNs) act as agonists on nicotinic acetylcholine receptors (nAChRs) of insects, and there have been concerns about the effects of NNs on the health of mammals.
Since nAChRs are expressed in immune cells, it is possible that NNs disturb the immune system. However, few reports have examined the immunotoxicity of clothianidin (CLO), a
widely-used NN. Here, we report the effects of CLO on immune organs and type IV allergic reactions in ear auricles. We orally administered CLO at 0, 30 and 300 mg/kg/day
(CLO-0, 30 and 300) to Sprague-Dawley rats for 28 days. The effects were evaluated by organ and body weights, histopathology, and immunohistochemistry (TCRαβ, CD4, CD8,
CD11b, CD68, CD103). In addition, some cecal contents were subjected to preliminary gut microbiota analysis, because microbiota contribute to host homeostasis, including the immunity. Our
results showed loose stool, suppression of body weight gain, significant changes in organ weights (thymus: decreased; liver: increased) and changes of the gut microbiota in the
CLO-300 group. There were no obvious histopathological changes in immune organs. Granulomas of the ear auricles were found in one rat of each of the
CLO-30 and 300 groups, but CLO had no apparent effect on the thickness or immunohistochemistry in the ear auricles. We present new evidence that CLO affects the thymus and
intestine, and might enhance the local inflammatory response. These findings should contribute to the appropriate evaluation of the safety of NNs in the future.
Collapse
Affiliation(s)
- Kanoko Onaru
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Shuji Ohno
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Shizuka Kubo
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Satoki Nakanishi
- Laboratory of Histophysiology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Tetsushi Hirano
- Division of Drug and Structural Research, Life Science Research Center, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Youhei Mantani
- Laboratory of Histophysiology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Toshifumi Yokoyama
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Nobuhiko Hoshi
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| |
Collapse
|
40
|
Ohno S, Ikenaka Y, Onaru K, Kubo S, Sakata N, Hirano T, Mantani Y, Yokoyama T, Takahashi K, Kato K, Arizono K, Ichise T, Nakayama SMM, Ishizuka M, Hoshi N. Quantitative elucidation of maternal-to-fetal transfer of neonicotinoid pesticide clothianidin and its metabolites in mice. Toxicol Lett 2020; 322:32-38. [PMID: 31923464 DOI: 10.1016/j.toxlet.2020.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 12/30/2019] [Accepted: 01/06/2020] [Indexed: 01/05/2023]
Abstract
Neonicotinoids (NNs), a widely used class of systemic pesticides, are regarded as exhibiting selective toxicity in insects. However, NNs are suspected of exerting adverse effects on mammals as well, including humans. To date, only adult male animal models have been subjected to general toxicity studies of NNs; fetuses have yet to be considered in this context. Here, we focused on the NN clothianidin (CLO) for the first quantitative LC-MS/MS analysis of maternal-to-fetal transfer and residual property of once-daily (single or multiple days), orally administered CLO and its metabolites in mice. The results revealed the presence of CLO and its five metabolites at approximately the same respective blood levels in both dams and fetuses. In the dams, CLO showed a peak value 1 h after administration, after which levels rapidly decreased at 3 and 6 h. In the fetuses of each group, levels of CLO were almost the same as those observed in the corresponding dams. The present results clearly demonstrated rapid passage of CLO through the placental barrier. However, metabolite-dependent differences observed in blood pharmacokinetics and residual levels. This is the first quantitative demonstration of the presence of CLO and its metabolites in fetal mouse blood.
Collapse
Affiliation(s)
- Shuji Ohno
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Kanoko Onaru
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Shizuka Kubo
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Nanami Sakata
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Tetsushi Hirano
- Division of Drug and Structural Research, Life Science Research Center, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Youhei Mantani
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Toshifumi Yokoyama
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Keisuke Takahashi
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Keisuke Kato
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Koji Arizono
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto, Japan
| | - Takahiro Ichise
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Shouta M M Nakayama
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Nobuhiko Hoshi
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan.
| |
Collapse
|
41
|
Zhang T, Song S, Bai X, He Y, Zhang B, Gui M, Kannan K, Lu S, Huang Y, Sun H. A nationwide survey of urinary concentrations of neonicotinoid insecticides in China. ENVIRONMENT INTERNATIONAL 2019; 132:105114. [PMID: 31465954 DOI: 10.1016/j.envint.2019.105114] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 05/19/2023]
Abstract
Neonicotinoid insecticides (NEOs) are emerging pesticides of concern due to their potential toxicity to non-target species (e.g., bees, fish and birds). China is an important producer and user of NEOs in the world. Studies on human exposure to NEOs in China are very limited. In this study, urinary levels of six NEOs, namely acetamiprid (ACE), clothianidin (CLO), dinotefuran (DIN), imidacloprid (IMI), thiacloprid (THD), and thiamethoxam (THM) were determined in 324 individuals from 13 cities in China. Across all sampling locations, total NEO concentrations (ΣNEOs; sum of six NEOs) were dominated by CLO (median: 0.24 ng/mL), IMI (0.21 ng/mL), THM (0.15 ng/mL) and DIN (0.14 ng/mL) collectively accounting for 98% of the concentrations. Urinary concentrations of each NEO varied depending on the sampling location with the median values ranged from 0.057 to 1.2 ng/mL for CLO, from 0.036 to 0.83 ng/mL for DIN, from 0.069 to 3.2 ng/mL for IMI, and from 0.062 to 0.45 ng/mL for THM. Sex-related differences in IMI, ACE and ΣNEOs concentrations were observed with males presenting significantly higher urinary levels than did females. All six NEOs were significantly positively correlated (r = 0.135 to 0.661, p < 0.05) with each other, suggesting that the exposure sources of NEOs are common or related. On the basis of urinary IMI levels, we calculated the median daily intake (DI; mean and range) of IMI to be 1.6 (4.1, <0.02-55) μg/day, or 0.034 (0.11, <0.0003-2.1) μg/kg bw/day. To our knowledge, this is the first study to document the ubiquitous occurrence of and human exposure to NEOs in China.
Collapse
Affiliation(s)
- Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Shiming Song
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xueyuan Bai
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yuan He
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Bo Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Mingwei Gui
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, NY 12201, USA
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-Sen University, Guangzhou 510006, China.
| | - Yanying Huang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
42
|
Hirano T, Minagawa S, Furusawa Y, Yunoki T, Ikenaka Y, Yokoyama T, Hoshi N, Tabuchi Y. Growth and neurite stimulating effects of the neonicotinoid pesticide clothianidin on human neuroblastoma SH-SY5Y cells. Toxicol Appl Pharmacol 2019; 383:114777. [PMID: 31626844 DOI: 10.1016/j.taap.2019.114777] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/03/2019] [Accepted: 10/05/2019] [Indexed: 10/25/2022]
Abstract
Neonicotinoids are one of most widely used pesticides targeting nicotinic acetylcholine receptors (nAChRs) of insects. Recent epidemiological evidence revealed increasing amounts of neonicotinoids detected in human samples, raising the critical question of whether neonicotinoids affect human health. We investigated the effects of a neonicotinoid pesticide clothianidin (CTD) on human neuroblastoma SH-SY5Y cells as in vitro models of human neuronal cells. Cellular and functional effects of micromolar doses of CTD were evaluated by changes in cell growth, intracellular signaling activities and gene expression profiles. We examined further the effects of CTD on neuronal differentiation by measuring neurite outgrowth. Exposure to CTD (1-100 μM) significantly increased the number of cells within 24 h of culture. The nAChRs antagonists, mecamylamine and SR16584, inhibited this effect, suggesting human α3β4 nAChRs could be targets of neonicotinoids. We observed a transient intracellular calcium influx and increased phosphorylation of extracellular signal-regulated kinase 1/2 shortly after exposure to CTD. Transcriptome analysis revealed that CTD down-regulated genes involved in neuronal function (e.g., formation of filopodia and calcium ion influx) and morphology (e.g., axon guidance signaling and cytoskeleton signaling); these changes were reflected by a finding of increased neurite length during neuronal differentiation. These findings provide novel insight into the potential risks of neonicotinoids to the human nervous system.
Collapse
Affiliation(s)
- Tetsushi Hirano
- Life Science Research Center, University of Toyama, Toyama, Japan.
| | - Satsuki Minagawa
- Life Science Research Center, University of Toyama, Toyama, Japan
| | - Yukihiro Furusawa
- Department of Liberal Arts and Sciences, Toyama Prefectural University, Toyama, Japan
| | - Tatsuya Yunoki
- Department of Ophthalmology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Toshifumi Yokoyama
- Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan
| | - Nobuhiko Hoshi
- Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan
| | - Yoshiaki Tabuchi
- Life Science Research Center, University of Toyama, Toyama, Japan
| |
Collapse
|
43
|
Humann-Guilleminot S, Tassin de Montaigu C, Sire J, Grünig S, Gning O, Glauser G, Vallat A, Helfenstein F. A sublethal dose of the neonicotinoid insecticide acetamiprid reduces sperm density in a songbird. ENVIRONMENTAL RESEARCH 2019; 177:108589. [PMID: 31330492 DOI: 10.1016/j.envres.2019.108589] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/20/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
Farmland bird species are particularly exposed to pesticides through various pathways. Among pesticides, neonicotinoids insecticides are commonly used in agriculture, but their influence on bird reproductive capacities is poorly understood. In this study, we experimentally tested the effects of the neonicotinoid acetamiprid on House sparrows' sperm quality and oxidative status following ingestion of a low and field-realistic dose of the compound. To do so, 56 males were captured, held and orally dosed seven times over 19 days of experiment with either a saline solution (control) or an acetamiprid-saline solution, and sperm samples were retrieved before and after the experiment. The overall dose given to the birds corresponded to 0.5% of the LD50 for the Zebra finch (5.7 mg/kg BW) spread into 7 separate doses and administered every three days over the entire duration of the study (ca. 0.07% LD50 per oral dose). Sperm mobility and sperm oxidative status were unaffected by the treatment, but sperm density was. Birds that received oral doses of acetamiprid suffered a significant decline in their sperm density compared to control birds. This result was confirmed by a significant decrease in the activity of the antioxidant enzyme SOD in the sperm of acetamiprid-dosed birds. These results provide the first evidence of sublethal toxicity of acetamiprid in a songbird and suggest that passerine birds' fertility may be negatively affected by very small doses of neonicotinoids in the wild.
Collapse
Affiliation(s)
- S Humann-Guilleminot
- Laboratory of Evolutionary Ecophysiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland; Swiss Ornithological Institute, Sempach, Switzerland.
| | - C Tassin de Montaigu
- Laboratory of Evolutionary Ecophysiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - J Sire
- Laboratory of Evolutionary Ecophysiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - S Grünig
- Laboratory of Evolutionary Ecophysiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - O Gning
- Laboratory of Evolutionary Ecophysiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - G Glauser
- Neuchâtel Platform of Analytical Chemistry, Faculty of Sciences, University of Neuchâtel, Neuchâtel, Switzerland
| | - A Vallat
- Neuchâtel Platform of Analytical Chemistry, Faculty of Sciences, University of Neuchâtel, Neuchâtel, Switzerland
| | - F Helfenstein
- Laboratory of Evolutionary Ecophysiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
44
|
Non-target toxicity of novel insecticides. Arh Hig Rada Toksikol 2018; 69:86-102. [PMID: 29990301 DOI: 10.2478/aiht-2018-69-3111] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/01/2018] [Indexed: 01/04/2023] Open
Abstract
Humans have used insecticides since ancient times. The spectrum and potency of available insecticidal substances has greatly expanded since the industrial revolution, resulting in widespread use and unforeseen levels of synthetic chemicals in the environment. Concerns about the toxic effects of these new chemicals on non-target species became public soon after their appearance, which eventually led to the restrictions of use. At the same time, new, more environmentally-friendly insecticides have been developed, based on naturally occurring chemicals, such as pyrethroids (derivatives of pyrethrin), neonicotinoids (derivatives of nicotine), and insecticides based on the neem tree vegetable oil (Azadirachta indica), predominantly azadirachtin. Although these new substances are more selective toward pest insects, they can still target other organisms. Neonicotinoids, for example, have been implicated in the decline of the bee population worldwide. This review summarises recent literature published on non-target toxicity of neonicotinoids, pyrethroids, and neem-based insecticidal substances, with a special emphasis on neonicotinoid toxicity in honeybees. We also touch upon the effects of pesticide combinations and documented human exposure to these substances.
Collapse
|
45
|
Lee-Jenkins SSY, Robinson SA. Effects of neonicotinoids on putative escape behavior of juvenile wood frogs (Lithobates sylvaticus) chronically exposed as tadpoles. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:3115-3123. [PMID: 30358909 DOI: 10.1002/etc.4284] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/09/2018] [Accepted: 09/21/2018] [Indexed: 06/08/2023]
Abstract
Neonicotinoids are water-soluble neurotoxic insecticides widely used in agriculture that are being detected in nontarget aquatic environments. Nontarget aquatic wildlife, such as amphibians, may be at risk of exposure. Studies using larval stages suggest neonicotinoids are a minor concern to amphibians; however, behavioral effects manifesting later in life are not often considered. Behavioral endpoints could further our understanding of potential sublethal neurotoxic effects after exposure has ended. Using juvenile wood frogs (Lithobates sylvaticus), we investigated the effects of chronic larval exposure to 3 concentrations (1, 10, and 100 μg/L) of formulations containing imidacloprid or thiamethoxam on the putative escape response to a simulated heron attack. We found that control frogs actively responded (i.e., moved or jumped) to the simulated predator attack but frogs exposed to imidacloprid at 10 and 100 μg/L were less likely to respond. The exposed frogs, specifically from the imidacloprid treatment at 10 μg/L (tendency at 100 μg/L) were less likely to leave the attack area compared with controls. However, frogs used refuge similarly among all treatments. Finally, there were no differences in locomotor performance, as measured by total number of jumps and distance traveled during a trial among treatments. In conclusion, our study suggests that exposure to neonicotinoids during amphibian larval development may affect a juvenile frog's ability to perceive or respond to a predator, potentially increasing their vulnerability to predation. Future studies should validate and explore this potential effect further. Environ Toxicol Chem 2018;37:3115-3123. © 2018 Crown in the right of Canada. Published by Wiley Periodicals Inc. on behalf of SETAC.
Collapse
Affiliation(s)
- Stacey S Y Lee-Jenkins
- National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - Stacey A Robinson
- National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| |
Collapse
|
46
|
Terayama H, Qu N, Endo H, Ito M, Tsukamoto H, Umemoto K, Kawakami S, Fujino Y, Tatemichi M, Sakabe K. Effect of acetamiprid on the immature murine testes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2018; 28:683-696. [PMID: 30103633 DOI: 10.1080/09603123.2018.1504897] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 07/23/2018] [Indexed: 06/08/2023]
Abstract
Neonicotinoids, such as acetamiprid (ACE), a pesticide used worldwide, are believed to be safe for human use. These molecules are structurally similar to nicotine, act as nicotinic acetylcholine receptor (nAChR) agonists, and were shown to be associated with neuromuscular and reproductive disorders, but these experiments were primarily performed in mature animals. In this study, the effects of ACE on the testes of immature mice were examined. The exposure of 3-week-old mice to ACE-containing water for 180 days led to a decrease in body weight and mildly affected spermatogenesis. Additionally, the expression of testosterone-metabolism genes, nAChR subunit genes, and proliferation-associated genes decreased in the testes of ACE-treated mice. Our results show that immature rodents may be less sensitive to ACE than mature ones, that mice may be more likely to accumulate ACE than rats, and that the development of disorders may be affected by the accumulation of ACE in the testes.
Collapse
Affiliation(s)
- Hayato Terayama
- a Department of Anatomy, Division of Basic Medicine , Tokai University School of Medicine , Kanagawa , Japan
- b Graduate School of Human Environmental Studies, Course of Human Environmental Studies , Tokai University , Kanagawa , Japan
| | - Ning Qu
- a Department of Anatomy, Division of Basic Medicine , Tokai University School of Medicine , Kanagawa , Japan
| | - Hitoshi Endo
- c Department of Preventive Medicine , Tokai University School of Medicine , Kanagawa , Japan
| | - Masatoshi Ito
- d Support Center for Medical Research and Education , Tokai University School of Medicine , Kanagawa , Japan
| | - Hideo Tsukamoto
- d Support Center for Medical Research and Education , Tokai University School of Medicine , Kanagawa , Japan
| | - Kanae Umemoto
- a Department of Anatomy, Division of Basic Medicine , Tokai University School of Medicine , Kanagawa , Japan
| | - Satoshi Kawakami
- a Department of Anatomy, Division of Basic Medicine , Tokai University School of Medicine , Kanagawa , Japan
| | - Yasuhiro Fujino
- b Graduate School of Human Environmental Studies, Course of Human Environmental Studies , Tokai University , Kanagawa , Japan
| | - Masayuki Tatemichi
- c Department of Preventive Medicine , Tokai University School of Medicine , Kanagawa , Japan
| | - Kou Sakabe
- a Department of Anatomy, Division of Basic Medicine , Tokai University School of Medicine , Kanagawa , Japan
| |
Collapse
|
47
|
Takada T, Yoneda N, Hirano T, Yanai S, Yamamoto A, Mantani Y, Yokoyama T, Kitagawa H, Tabuchi Y, Hoshi N. Verification of the causal relationship between subchronic exposures to dinotefuran and depression-related phenotype in juvenile mice. J Vet Med Sci 2018. [PMID: 29515062 PMCID: PMC5938206 DOI: 10.1292/jvms.18-0022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
It has been suggested that an increase in the use of pesticides affects neurodevelopment,
but there has been no animal experiment showing a causal relation between neonicotinoid
pesticides (NNs) and depression. We examined whether dinotefuran (DIN), the most widely
used NN in Japan, induces depression. Male mice were administered DIN between 3 and 8
weeks of age, referring to the no-observed-effect level (NOEL). The mice were then
subjected to a tail suspension test (TST) and a forced swimming test (FST). After these
tests, their brains were dissected for immunohistochemical analyses of serotonin (5-HT).
Antidepressant activity in TST and no decrease in 5-HT-positive cells were observed. The
subchronic exposure to DIN alone in juvenile male mice may not cause depression-like
indication.
Collapse
Affiliation(s)
- Tadashi Takada
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Naoki Yoneda
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Tetsushi Hirano
- Division of Drug and Structural Research, Life Science Research Center, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Shogo Yanai
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Anzu Yamamoto
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Youhei Mantani
- Laboratory of Histophysiology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Toshifumi Yokoyama
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Hiroshi Kitagawa
- Laboratory of Histophysiology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Nobuhiko Hoshi
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| |
Collapse
|
48
|
Yoneda N, Takada T, Hirano T, Yanai S, Yamamoto A, Mantani Y, Yokoyama T, Kitagawa H, Tabuchi Y, Hoshi N. Peripubertal exposure to the neonicotinoid pesticide dinotefuran affects dopaminergic neurons and causes hyperactivity in male mice. J Vet Med Sci 2018; 80:634-637. [PMID: 29434093 PMCID: PMC5938192 DOI: 10.1292/jvms.18-0014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Although neonicotinoid pesticides are expected to have harmful influence on mammals, there is little animal experimental data to support the effect and mechanisms. Since acetylcholine causes the release of dopamine, neonicotinoids may confer a risk of developmental disorders via a disturbance in the monoamine systems. Male mice were peripubertally administered dinotefuran (DIN) referring to no observed effect level (NOEL) and performed behavioral and immunohistological analyses. In an open field test, the total locomotor activity was increased in a dose-dependent manner. The immunoreactivity of tyrosine hydroxylase in the substantia nigra was increased in DIN-exposed mice. These results suggest that exposure to DIN in peripubertal male mice causes hyperactivity and a disturbance of dopaminergic signaling.
Collapse
Affiliation(s)
- Naoki Yoneda
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Tadashi Takada
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Tetsushi Hirano
- Division of Drug and Structural Research, Life Science Research Center, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Shogo Yanai
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Anzu Yamamoto
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Youhei Mantani
- Laboratory of Histophysiology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Toshifumi Yokoyama
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Hiroshi Kitagawa
- Laboratory of Histophysiology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Nobuhiko Hoshi
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| |
Collapse
|
49
|
Han W, Tian Y, Shen X. Human exposure to neonicotinoid insecticides and the evaluation of their potential toxicity: An overview. CHEMOSPHERE 2018; 192:59-65. [PMID: 29100122 DOI: 10.1016/j.chemosphere.2017.10.149] [Citation(s) in RCA: 280] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 10/25/2017] [Accepted: 10/26/2017] [Indexed: 05/25/2023]
Abstract
Neonicotinoid insecticides have become the fastest growing class of insecticides over the past few decades. The insecticidal activity of neonicotinoids is attributed to their agonist action on nicotinic acetylcholine receptors (nAChRs). Because of the special selective action on nAChRs in central nervous system of insects, and versatility in application methods, neonicotinoids are used to protect crops and pets from insect attacks globally. Although neonicotinoids are considered low toxicity to mammals and humans in comparison with traditional insecticides, more and more studies show exposure to neonicotinoids pose potential risk to mammals and even humans. In recent years, neonicotinoids and their metabolites have been successfully detected in various human biological samples. Meanwhile, many studies have focused on the health effects of neonicotinoids on humans. Our aims here are to review studies on human neonicotinoid exposure levels, health effect, evaluation of potential toxicity and to suggest possible directions for future research.
Collapse
Affiliation(s)
- Wenchao Han
- MOE and Shanghai Key Laboratory of Children's Environment Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Tian
- MOE and Shanghai Key Laboratory of Children's Environment Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiaoming Shen
- MOE and Shanghai Key Laboratory of Children's Environment Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
50
|
Hirano T, Yanai S, Takada T, Yoneda N, Omotehara T, Kubota N, Minami K, Yamamoto A, Mantani Y, Yokoyama T, Kitagawa H, Hoshi N. NOAEL-dose of a neonicotinoid pesticide, clothianidin, acutely induce anxiety-related behavior with human-audible vocalizations in male mice in a novel environment. Toxicol Lett 2017; 282:57-63. [PMID: 29030271 DOI: 10.1016/j.toxlet.2017.10.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 09/29/2017] [Accepted: 10/10/2017] [Indexed: 01/22/2023]
Abstract
Neonicotinoids are novel systemic pesticides acting as agonists on the nicotinic acetylcholine receptors (nAChRs) of insects. Experimental studies have revealed that neonicotinoids pose potential risks for the nervous systems of non-target species, but the brain regions responsible for their behavioral effects remain incompletely understood. This study aimed to assess the neurobehavioral effects of clothianidin (CTD), a later neonicotinoid developed in 2001 and widely used worldwide, and to explore the target regions of neonicotinoids in the mammalian brain. A single-administration of 5 or 50mg/kg CTD to male C57BL/6N mice at or below the no-observed-adverse-effect level (NOAEL) induced an acute increase in anxiety during the elevated plus-maze test. In addition, mice in the CTD-administered group spontaneously emitted human-audible vocalizations (4-16kHz), which are behavioral signs of aversive emotions, and showed increased numbers of c-fos immunoreactive cells in the paraventricular thalamic nucleus and dentate gyrus of the hippocampus. In conclusion, mice exposed to NOAEL-dose CTD would be rendered vulnerable to a novel environment via the activation of thalamic and hippocampal regions related to stress responses. These findings should provide critical insight into the neurobehavioral effects of neonicotinoids on mammals.
Collapse
Affiliation(s)
- Tetsushi Hirano
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Shogo Yanai
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Tadashi Takada
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Naoki Yoneda
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Takuya Omotehara
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Naoto Kubota
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Kiichi Minami
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Anzu Yamamoto
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Youhei Mantani
- Laboratory of Histophysiology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Toshifumi Yokoyama
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Hiroshi Kitagawa
- Laboratory of Histophysiology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Nobuhiko Hoshi
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan.
| |
Collapse
|