1
|
Kurilovich E, Geva-Zatorsky N. Effects of bacteriophages on gut microbiome functionality. Gut Microbes 2025; 17:2481178. [PMID: 40160174 PMCID: PMC11959909 DOI: 10.1080/19490976.2025.2481178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/28/2025] [Accepted: 03/13/2025] [Indexed: 04/02/2025] Open
Abstract
The gut microbiome, composed of bacteria, fungi, and viruses, plays a crucial role in maintaining the delicate balance of human health. Emerging evidence suggests that microbiome disruptions can have far-reaching implications, ranging from the development of inflammatory diseases and cancer to metabolic disorders. Bacteriophages, or "phages", are viruses that specifically infect bacterial cells, and their interactions with the gut microbiome are receiving increased attention. Despite the recently revived interest in the gut phageome, it is still considered the "dark matter" of the gut, with more than 80% of viral genomes remaining uncharacterized. Today, research is focused on understanding the mechanisms by which phages influence the gut microbiota and their potential applications. Bacteriophages may regulate the relative abundance of bacterial communities, affect bacterial functions in various ways, and modulate mammalian host immunity. This review explores how phages can regulate bacterial functionality, particularly in gut commensals and pathogens, emphasizing their role in gut health and disease.
Collapse
Affiliation(s)
- Elena Kurilovich
- Department of Cell Biology and Cancer Science, Rappaport Technion Integrated Cancer Center (RTICC), Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
| | - Naama Geva-Zatorsky
- Department of Cell Biology and Cancer Science, Rappaport Technion Integrated Cancer Center (RTICC), Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
- Humans and the Microbiome program, CIFAR, Toronto, ON, Canada
| |
Collapse
|
2
|
Hetta HF, Ahmed R, Ramadan YN, Fathy H, Khorshid M, Mabrouk MM, Hashem M. Gut virome: New key players in the pathogenesis of inflammatory bowel disease. World J Methodol 2025; 15:92592. [DOI: 10.5662/wjm.v15.i2.92592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/28/2024] [Accepted: 07/23/2024] [Indexed: 11/27/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory illness of the intestine. While the mechanism underlying the pathogenesis of IBD is not fully understood, it is believed that a complex combination of host immunological response, environmental exposure, particularly the gut microbiota, and genetic susceptibility represents the major determinants. The gut virome is a group of viruses found in great frequency in the gastrointestinal tract of humans. The gut virome varies greatly among individuals and is influenced by factors including lifestyle, diet, health and disease conditions, geography, and urbanization. The majority of research has focused on the significance of gut bacteria in the progression of IBD, although viral populations represent an important component of the microbiome. We conducted this review to highlight the viral communities in the gut and their expected roles in the etiopathogenesis of IBD regarding published research to date.
Collapse
Affiliation(s)
- Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
- Division of Microbiology, Immunology and Biotechnology, Faculty of pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Rehab Ahmed
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Yasmin N Ramadan
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Hayam Fathy
- Department of Internal Medicine, Division Hepatogastroenterology, Assiut University, Assiut 71515, Egypt
| | - Mohammed Khorshid
- Department of Clinical Research, Egyptian Developers of Gastroenterology and Endoscopy Foundation, Cairo 11936, Egypt
| | - Mohamed M Mabrouk
- Department of Internal Medicine, Faculty of Medicine. Tanta University, Tanta 31527, Egypt
| | - Mai Hashem
- Department of Tropical Medicine, Gastroenterology and Hepatology, Assiut University Hospital, Assiut 71515, Egypt
| |
Collapse
|
3
|
Núñez-Muñoz LA, Calderón-Pérez B, Ruiz-Medrano R, Xoconostle-Cázares B, de la Torre-Almaraz R. Viral tropism in plants, reproductive tissues, and seeds. Arch Microbiol 2025; 207:152. [PMID: 40404962 PMCID: PMC12098505 DOI: 10.1007/s00203-025-04353-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 05/02/2025] [Accepted: 05/03/2025] [Indexed: 05/24/2025]
Abstract
Plant viral tropism refers to virus ability for infecting and replicating within specific cell types, tissues or hosts. Plant viral tropism is shaped by the absence of specific membrane-associated viral receptors and the supracellular nature of viral transport through plasmodesmata and vascular tissues. This review focuses on the molecular and cellular determinants of plant viral tropism, including modifications in plasmodesmal permeability, host-mediated RNA silencing, and tissue-specific viral protein localization. We discuss how certain viruses target reproductive organs, meristems, and seeds, overcoming antiviral barriers to establish persistent infections. Additionally, we explore the role of host factors in shaping viral distribution. Advances in super-resolution microscopy, single-cell transcriptomics, and proteomics have significantly expanded our ability to dissect virus-host interactions at the nanoscale, uncovering new mechanisms of viral accumulation. Understanding these processes is essential not only for improving crop resistance and designing integrated disease management strategies, but also for repurposing plant viruses as tools for targeted delivery and biotechnological applications.
Collapse
Affiliation(s)
- Leandro Alberto Núñez-Muñoz
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Unidad de Biotecnología y Prototipos, Avenida de los Barrios #1, Los Reyes Iztacala, 54090, Tlalnepantla, State of Mexico, Mexico
- Circuito de los Posgrados S/N, Universidad Nacional Autónoma de México, Posgrado en Ciencias Biológicas, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
| | - Berenice Calderón-Pérez
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Departamento de Biotecnología y Bioingeniería, Av. Instituto Politécnico Nacional 2508, 07360, Mexico City, Mexico
| | - Roberto Ruiz-Medrano
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Departamento de Biotecnología y Bioingeniería, Av. Instituto Politécnico Nacional 2508, 07360, Mexico City, Mexico
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Programa de Doctorado Transdisciplinario en Desarrollo Científico y Tecnológico Para la Sociedad, Av. Instituto Politécnico Nacional 2508, 07360, Mexico City, Mexico
| | - Beatriz Xoconostle-Cázares
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Departamento de Biotecnología y Bioingeniería, Av. Instituto Politécnico Nacional 2508, 07360, Mexico City, Mexico
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Programa de Doctorado Transdisciplinario en Desarrollo Científico y Tecnológico Para la Sociedad, Av. Instituto Politécnico Nacional 2508, 07360, Mexico City, Mexico
| | - Rodolfo de la Torre-Almaraz
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Unidad de Biotecnología y Prototipos, Avenida de los Barrios #1, Los Reyes Iztacala, 54090, Tlalnepantla, State of Mexico, Mexico.
- Circuito de los Posgrados S/N, Universidad Nacional Autónoma de México, Posgrado en Ciencias Biológicas, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico.
| |
Collapse
|
4
|
Franklin HC, Makhlouf R, Ha AD, Bataglioli RA, Baker ZR, Murphy SA, Jirsa H, Heuler J, Southard T, Aylward FO, Hsu BB. A bacteriophage-conditional mouse model reveals the impact of phages within a conventionally colonized gut microbiota. Cell Host Microbe 2025; 33:745-758.e6. [PMID: 40300596 DOI: 10.1016/j.chom.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 02/14/2025] [Accepted: 04/03/2025] [Indexed: 05/01/2025]
Abstract
The significance of bacteriophages in the gut microbiota remains poorly understood due, in part, to an absence of an animal model that allows for comparative study of conditions with or without phages while retaining the microbial diversity attained by conventional colonization. We describe a mouse model that uses a broadly available chemical compound, acriflavine, to preferentially deplete virulent phages from the gut without significantly impacting gut bacteria. We then show that gut phage density can be reconstituted by oral gavage. Using this bacteriophage-conditional (BaCon) mouse model, we reveal that while phages have comparatively minimal impact during equilibrium conditions, they increase the potency of ampicillin against commensal gut bacteria. Collectively, our work presents an animal model that can be leveraged to conditionally study the role of phages in complex, physiologically relevant systems and further identifies virulent gut phages as potential sources of bacterial variability during major perturbations.
Collapse
Affiliation(s)
- Hollyn C Franklin
- Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| | - Rita Makhlouf
- Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| | - Anh D Ha
- Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| | - Rogerio A Bataglioli
- Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| | - Zachary R Baker
- Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| | - Sydney A Murphy
- Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| | - Hannah Jirsa
- Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| | - Joshua Heuler
- Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| | - Teresa Southard
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Frank O Aylward
- Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| | - Bryan B Hsu
- Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
5
|
Park JW, Yun YE, Cho JA, Yoon SI, In SA, Park EJ, Kim MS. Characterization of the phyllosphere virome of fresh vegetables and potential transfer to the human gut. Nat Commun 2025; 16:3427. [PMID: 40210629 PMCID: PMC11986028 DOI: 10.1038/s41467-025-58856-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 03/31/2025] [Indexed: 04/12/2025] Open
Abstract
Fresh vegetables harbor diverse microorganisms on leaf surfaces, yet their viral communities remain unexplored. We investigate the diversity and ecology of phyllosphere viromes of six leafy green vegetables using virus-like particle (VLP) enrichment and shotgun metagenome sequencing. On average, 9.2 × 107 viruses are present per gram of leaf tissue. The majority (93.1 ± 6.2%) of these viruses are taxonomically unclassified. Virome compositions are distinct among vegetable types and exhibit temporal variations. Virulent phages with replication-enhancing auxiliary metabolic genes (AMGs) are more dominant than temperate phages with host fitness-benefiting AMGs. Analysis of 1498 human fecal VLP metagenomes reveals that approximately 10% of vegetable viruses are present in the human gut virome, including viruses commonly observed in multiple studies. These gut-associated vegetable viruses are enriched with short-term vegetable intake, and depleted in individuals with metabolic and immunologic disorders. Overall, this study elucidates the ecological contribution of the fresh vegetable virome to human gut virome diversity.
Collapse
Affiliation(s)
- Ji-Woo Park
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Yeo-Eun Yun
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Jin Ah Cho
- Department of Food and Nutrition, Chungnam National University, Daejeon, Republic of Korea
| | - Su-In Yoon
- Department of Food and Nutrition, Chungnam National University, Daejeon, Republic of Korea
| | - Su-A In
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Eun-Jin Park
- Department of Food Bioengineering, Jeju National University, Jeju, Republic of Korea.
| | - Min-Soo Kim
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
6
|
Nguyen Thanh L, Hachad M, McQuaid N, Krylova K, Thanh LNH, Visentin F, Burnet JB, Quete FS, Maere T, Tsitouras A, Vanrolleghem P, Frigon D, Loeb S, Dorner S, Goitom E. Hydrological and physicochemical parameters associated with SARS-CoV-2 and pepper mild mottle virus wastewater concentrations for a large-combined sewer system. JOURNAL OF WATER AND HEALTH 2025; 23:413-427. [PMID: 40156218 DOI: 10.2166/wh.2025.352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/13/2025] [Indexed: 04/01/2025]
Abstract
During COVID-19, surveillance of SARS-CoV-2 in wastewater has been a promising tool for tracking viral infection at the community level. However, in addition to the shedding rates within the community, SARS-CoV-2 concentrations in raw wastewater are influenced by several environmental factors. This study investigated the effects of wastewater characteristics on the viral quantification of SARS-CoV-2 and pepper mild mottle virus (PMMoV) for a large wastewater system with combined sewers. Principal component analysis illustrated that water temperature negatively correlates with SARS-CoV-2 and PMMoV in wastewater, but flow rate and EC are highly correlated with SARS-CoV-2 in spring and winter. The normalization using EC enhanced the correlation with clinical data compared to normalization using pH, flow rate, and raw SARS-CoV-2. The normalization using PMMoV reduced the correlation with clinical data. Multiple linear and random forest (RF) applied to predict the concentrations of SARS-CoV-2 in wastewater, given the confirmed cases and physicochemical parameters. RF regression was the best model to predict SARS-CoV-2 in wastewater (R2=0.8), with the most important variables being the confirmed cases followed by water temperature. RF model is a potent predictor of the presence of SARS-CoV-2 in wastewater. This enhances the degree of reliability between community outbreaks and SARS-CoV-2 monitoring.
Collapse
Affiliation(s)
- Luan Nguyen Thanh
- Département des génies civil, géologique et des mines, Polytechnique Montréal, Montréal, Canada E-mail:
| | - Mounia Hachad
- Département des génies civil, géologique et des mines, Polytechnique Montréal, Montréal, Canada
| | - Natasha McQuaid
- Département des génies civil, géologique et des mines, Polytechnique Montréal, Montréal, Canada
| | - Kateryna Krylova
- Département des génies civil, géologique et des mines, Polytechnique Montréal, Montréal, Canada
| | - Loan Nguyen Ha Thanh
- Département des génies civil, géologique et des mines, Polytechnique Montréal, Montréal, Canada
| | - Flavia Visentin
- Département des génies civil, géologique et des mines, Polytechnique Montréal, Montréal, Canada
| | - Jean-Baptiste Burnet
- Département des génies civil, géologique et des mines, Polytechnique Montréal, Montréal, Canada
| | | | - Thomas Maere
- Department of Civil and Water Engineering, Université Laval, Quebec City, QC, Canada
| | | | - Peter Vanrolleghem
- Department of Civil and Water Engineering, Université Laval, Quebec City, QC, Canada
| | - Dominic Frigon
- Department of Civil Engineering, McGill University, Montreal, QC, Canada
| | - Stephanie Loeb
- Department of Civil Engineering, McGill University, Montreal, QC, Canada
| | - Sarah Dorner
- Département des génies civil, géologique et des mines, Polytechnique Montréal, Montréal, Canada
| | - Eyerusalem Goitom
- Département des génies civil, géologique et des mines, Polytechnique Montréal, Montréal, Canada
| |
Collapse
|
7
|
Kagami K, Kitajima M, Watanabe H, Hamada T, Kobayashi Y, Kubo H, Oono S, Takai H, Ota S, Nagakura T, Onda T, Nagahori K, Sasaki N, Fujimoto I, Sato A, Sumikawa S, Matsui D, Ito Y, Baba M, Takeuchi T, Iwasaki S, Okubo T, Suzuki S, Kataoka S, Matsui Y, Inomata Y, Okada M, Sanmi H, Fukuda S, Wada N, Okada K, Niinuma Y, Ishiguro N. Association between confirmed COVID-19 cases at hospitals and SARS-CoV-2 levels in municipal wastewater during the pandemic and endemic phases. ENVIRONMENT INTERNATIONAL 2025; 197:109342. [PMID: 39986003 DOI: 10.1016/j.envint.2025.109342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
COVID-19 is now considered endemic in many countries. On May 8, 2023, Japan reclassified COVID-19 from a pandemic to an endemic status, shifting surveillance from universal to sentinel reporting and transitioning the testing and treatment cost of COVID-19 from public funding to individual health insurance coverage. Restrictions on movement, events, and business hours were lifted, potentially increasing cases and complicating tracking. Monitoring hospital cases remains essential to protect high-risk inpatients from nosocomial infections. In this study, 13,812 COVID-19 cases in 12 hospitals were analyzed and the results revealed a strong correlation between SARS-CoV-2 levels in municipal wastewater and weekly new cases during both the pandemic period (February 15, 2021 - February 26, 2023; Pearson's r = 0.8321) and the endemic period (May 8, 2023 - October 1, 2023; Pearson's r = 0.7501). SARS-CoV-2 RNA levels in wastewater from municipal catchment areas showed a stronger correlation with the number of COVID-19 cases at hospitals than did RNA levels in wastewater from the catchment area where the hospitals are located. The difference in correlations was more pronounced during the endemic period. During the endemic period, measurements of SARS-CoV-2 RNA levels in samples obtained from larger sewersheds may be more effective in capturing the overall trends of COVID-19 cases in a region. In other words, during the endemic period, municipal wastewater surveillance may reflect the number of COVID-19 cases in hospitals. Even for facilities that do not monitor SARS-CoV-2 in their own hospital wastewater, publicly available municipal wastewater data can be used to estimate the number of COVID-19 cases in hospitals. Furthermore, COVID-19 infection control measures within hospitals can be evaluated by comparing the number of nosocomial infection patients based on the concentration of SARS-CoV-2 in municipal wastewater.
Collapse
Affiliation(s)
- Keisuke Kagami
- Department of Infection Control and Prevention, Hokkaido University Hospital, Kita-ku, Sapporo, Hokkaido, Japan
| | - Masaaki Kitajima
- Research Center for Water Environment Technology, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiromoto Watanabe
- Sewerage & Rivers Bureau, City of Sapporo, Toyohira-ku, Sapporo, Hokkaido, Japan
| | - Toshihiro Hamada
- Sewerage & Rivers Bureau, City of Sapporo, Toyohira-ku, Sapporo, Hokkaido, Japan
| | - Yasunobu Kobayashi
- Sewerage & Rivers Bureau, City of Sapporo, Toyohira-ku, Sapporo, Hokkaido, Japan
| | - Haruka Kubo
- Hokkaido Cardiovascular Hospital, Chuo-ku, Sapporo, Hokkaido, Japan
| | - Seiko Oono
- Hokkaido Cardiovascular Hospital, Chuo-ku, Sapporo, Hokkaido, Japan
| | - Hiromi Takai
- Hokkaido Cardiovascular Hospital, Chuo-ku, Sapporo, Hokkaido, Japan
| | - Shuichi Ota
- Sapporo Hokuyu Hospital, Shiroishi-ku, Sapporo, Hokkaido, Japan
| | | | - Toshiyuki Onda
- Sapporo Shiroishi Memorial Hospital, Shiroishi-ku, Sapporo, Hokkaido, Japan
| | - Kanako Nagahori
- Sapporo Shiroishi Memorial Hospital, Shiroishi-ku, Sapporo, Hokkaido, Japan
| | - Noriaki Sasaki
- Sapporo Shiroishi Memorial Hospital, Shiroishi-ku, Sapporo, Hokkaido, Japan
| | - Ikuya Fujimoto
- Kita Sapporo Hospital, Kita-ku, Sapporo, Hokkaido, Japan
| | - Akiko Sato
- Kita Sapporo Hospital, Kita-ku, Sapporo, Hokkaido, Japan
| | - Sosuke Sumikawa
- Keiyukai Sapporo Hospital, Shiroishi-ku, Sapporo, Hokkaido, Japan
| | - Daisuke Matsui
- Keiyukai Sapporo Hospital, Shiroishi-ku, Sapporo, Hokkaido, Japan
| | - Yuka Ito
- Keiyukai Sapporo Hospital, Shiroishi-ku, Sapporo, Hokkaido, Japan
| | - Megumi Baba
- Keiyukai Dai 2 Hospital, Shiroisi-ku, Sapporo, Hokkaido, Japan
| | - Tsuyoshi Takeuchi
- Sapporo Heart Center Sapporo Cardiovascular Clinic, Higashi-ku, Sapporo, Hokkaido, Japan
| | - Sumie Iwasaki
- Sapporo Heart Center Sapporo Cardiovascular Clinic, Higashi-ku, Sapporo, Hokkaido, Japan
| | - Toshinari Okubo
- IMS Sapporo Digestive Disease Center General Hospital, Nishi-ku, Sapporo, Hokkaido, Japan
| | - Satsuki Suzuki
- IMS Sapporo Digestive Disease Center General Hospital, Nishi-ku, Sapporo, Hokkaido, Japan
| | - Seiji Kataoka
- IMS Sapporo Digestive Disease Center General Hospital, Nishi-ku, Sapporo, Hokkaido, Japan
| | - Yoshiro Matsui
- Hanaoka Seishu Memorial Hospital, Toyohira-ku, Sapporo, Hokkaido, Japan
| | - Yohei Inomata
- Hanaoka Seishu Memorial Hospital, Toyohira-ku, Sapporo, Hokkaido, Japan
| | - Masaki Okada
- Aizen Hospital, Minami-ku, Sapporo, Hokkaido, Japan
| | - Hisami Sanmi
- Aizen Hospital, Minami-ku, Sapporo, Hokkaido, Japan
| | | | - Naoki Wada
- Sapporo Tokushukai Hospital, Atsubetsu-ku, Sapporo, Hokkaido, Japan
| | - Kazufumi Okada
- Data Science Center, Promotion Unit, Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Yusuke Niinuma
- Department of Infection Control and Prevention, Hokkaido University Hospital, Kita-ku, Sapporo, Hokkaido, Japan
| | - Nobuhisa Ishiguro
- Department of Infection Control and Prevention, Hokkaido University Hospital, Kita-ku, Sapporo, Hokkaido, Japan.
| |
Collapse
|
8
|
Gudde A, Krogsgaard LW, Benedetti G, Schierbech SK, Brokhattingen N, Petrovic K, Rasmussen LD, Franck KT, Ethelberg S, Larsen NB, Christiansen LE. Predicting hospital admissions due to COVID-19 in Denmark using wastewater-based surveillance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 966:178674. [PMID: 39904216 DOI: 10.1016/j.scitotenv.2025.178674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/19/2024] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Abstract
Wastewater surveillance has become a fundamental tool to monitor the circulation of SARS-CoV-2 in order to prepare timely public health responses. In this study we integrate available clinical data on hospital admissions with wastewater surveillance data and investigate if predictions of the number of hospital admissions due to COVID-19 in Danish hospitals are improved by including wastewater concentrations of SARS-CoV-2. We implement state space models to describe the relationship between the number of hospital admissions due to COVID-19, available with a three-week classification delay, and more recent numbers of total hospital admissions with COVID-19. Including wastewater concentrations of SARS-CoV-2, we consider five-week predictions of the number of hospital admissions due to COVID-19. As a result of the three-week classification delay, the predictions translate into two hindcasts, one nowcast and two forecasts. The predicted values for all time frames follow the observed numbers well. We find that log likelihood values are higher when including wastewater concentrations (across all horizons) and that lagging the wastewater observations to investigate whether changes in wastewater concentrations occur before changes in hospital admissions does not result in further improvements. Our study shows that including wastewater concentrations improve estimates of the number of hospital admissions due to COVID-19, implying that wastewater concentrations add valuable information about the underlying transmission and that the imminent development of the near-future disease burden from COVID-19 is better informed when carefully including wastewater concentrations.
Collapse
Affiliation(s)
- Aina Gudde
- Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark.
| | - Lene Wulff Krogsgaard
- Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark
| | - Guido Benedetti
- Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark
| | - Signe Kjærsgaard Schierbech
- Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark
| | - Nanna Brokhattingen
- Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark
| | - Katarina Petrovic
- Department of High-Capacity Diagnostics, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark
| | - Lasse Dam Rasmussen
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark
| | - Kristina Træholt Franck
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark
| | - Steen Ethelberg
- Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark; Department of Public Health, Global Health Section, University of Copenhagen, Øster Farimagsgade 5, 1014 Copenhagen, Denmark
| | - Nicolai Balle Larsen
- Department of High-Capacity Diagnostics, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark
| | - Lasse Engbo Christiansen
- Department of Epidemiology Research, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark
| |
Collapse
|
9
|
Brooks C, Brooks S, Beasley J, Valley J, Opata M, Karatan E, Bleich R. The influence of environmental factors on the detection and quantification of SARS-CoV-2 variants in dormitory wastewater at a primarily undergraduate institution. Microbiol Spectr 2025; 13:e0200324. [PMID: 39792012 PMCID: PMC11792549 DOI: 10.1128/spectrum.02003-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/12/2024] [Indexed: 01/12/2025] Open
Abstract
Testing for the causative agent of coronavirus disease 2019 (COVID-19), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been crucial in tracking disease spread and informing public health decisions. Wastewater-based epidemiology has helped to alleviate some of the strain of testing through broader, population-level surveillance, and has been applied widely on college campuses. However, questions remain about the impact of various sampling methods, target types, environmental factors, and infrastructure variables on SARS-CoV-2 detection. Here, we present a data set of over 800 wastewater samples that sheds light on the influence of a variety of these factors on SARS-CoV-2 quantification using droplet digital PCR (ddPCR) from building-specific sewage infrastructure. We consistently quantified a significantly higher number of copies of virus per liter for the target nucleocapsid 2 (N2) compared to nucleocapsid 1 (N1), regardless of the sampling method (grab vs composite). We further show some dormitory-specific differences in SARS-CoV-2 abundance, including correlations to dormitory population size. Environmental variables like precipitation and temperature show little to no impact on virus load, with the exception of higher temperatures for grab sample data. We observed significantly higher gene copy numbers of the Omicron variant than the Delta variant within ductile iron pipes but no difference in nucleocapsid abundance (N1 or N2) across the three different sewage pipe types in our data set. Our results indicate that contextual variables should be considered when interpreting wastewater-based epidemiological data. IMPORTANCE Testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has been crucial in tracking the spread of the virus and informing public health decisions. SARS-CoV-2 viral RNA is shed by symptomatic and asymptomatic infected individuals, allowing its genetic material to be detected and quantified in wastewater. Here, we used wastewater-based epidemiology to measure SARS-CoV-2 viral RNA from several dormitories on the Appalachian State University campus and examined the impact of sampling methods, target types, environmental factors, and infrastructure variables on quantification. Changes in the quantification of SARS-CoV-2 were observed based on target type, as well as trends for the quantification of the Delta and Omicron variants by sampling method. These results highlight the value of applying the data-inquiry practices used in this study to better contextualize wastewater sampling results.
Collapse
Affiliation(s)
- Chequita Brooks
- Department of Biology, Appalachian State University, Boone, North Carolina, USA
- Louisiana Universities Marine Consortium, Chauvin, Louisiana, USA
| | - Sebrina Brooks
- Department of Biology, University of North Carolina at Wilmington, Wilmington, North Carolina, USA
| | - Josie Beasley
- Department of Biology, Appalachian State University, Boone, North Carolina, USA
| | - Jenna Valley
- Department of Biology, Appalachian State University, Boone, North Carolina, USA
| | - Michael Opata
- Department of Biology, Appalachian State University, Boone, North Carolina, USA
| | - Ece Karatan
- Department of Biology, Appalachian State University, Boone, North Carolina, USA
| | - Rachel Bleich
- Department of Biology, Appalachian State University, Boone, North Carolina, USA
| |
Collapse
|
10
|
Khan MS, Wurzbacher C, Uchaikina A, Pleshkov B, Mirshina O, Drewes JE. A Perspective on Wastewater and Environmental Surveillance as a Public Health Tool for Low- and Middle-Income Countries. Microorganisms 2025; 13:238. [PMID: 40005606 PMCID: PMC11857276 DOI: 10.3390/microorganisms13020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/12/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Geographical variations in infectious diseases create differences in public health priorities between high- and low-income countries. Low- and middle-income countries (LMICs) face resource constraints that limit adherence to international monitoring standards for wastewater-based epidemiology (WBE). The development of low-cost WBE programs, such as those to detect SARS-CoV-2, offers LMICs a promising tool for monitoring pathogens of local concern. In this work, we summarize important wastewater biomarkers for LMICs and their associated public health challenges, ranging from pathogens causing gastroenteritis to putative markers for plant diseases linked to food safety, as well as antimicrobial resistance. We raise awareness of the great potential of WBE for LMICs and highlight the critical health markers, research needs, and strategies necessary to establish tailored wastewater surveillance programs.
Collapse
Affiliation(s)
- Mohammad Shehryaar Khan
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748 Garching, Germany; (M.S.K.); (A.U.); (J.E.D.)
| | - Christian Wurzbacher
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748 Garching, Germany; (M.S.K.); (A.U.); (J.E.D.)
| | - Anna Uchaikina
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748 Garching, Germany; (M.S.K.); (A.U.); (J.E.D.)
| | - Boris Pleshkov
- Sanitary-Epidemiological Welfare and Public Health Committee of the Republic of Uzbekistan (SANEPIDCOM), Bunyodkor Street 46, Tashkent 100097, Uzbekistan
| | - Olga Mirshina
- Sanitary-Epidemiological Welfare and Public Health Committee of the Republic of Uzbekistan (SANEPIDCOM), Bunyodkor Street 46, Tashkent 100097, Uzbekistan
| | - Jörg E. Drewes
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748 Garching, Germany; (M.S.K.); (A.U.); (J.E.D.)
| |
Collapse
|
11
|
Rosengart AL, Bidwell AL, Wolfe MK, Boehm AB, Townes FW. Spatiotemporal Variability of the Pepper Mild Mottle Virus Biomarker in Wastewater. ACS ES&T WATER 2025; 5:341-350. [PMID: 39816978 PMCID: PMC11731321 DOI: 10.1021/acsestwater.4c00866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 01/18/2025]
Abstract
Since the start of the coronavirus-19 pandemic, the use of wastewater-based epidemiology (WBE) for disease surveillance has increased throughout the world. Because wastewater measurements are affected by external factors, processing WBE data typically includes a normalization step in order to adjust wastewater measurements (e.g., viral ribonucleic acid (RNA) concentrations) to account for variation due to dynamic population changes, sewer travel effects, or laboratory methods. Pepper mild mottle virus (PMMoV), a plant RNA virus abundant in human feces and wastewater, has been used as a fecal contamination indicator and has been used to normalize wastewater measurements extensively. However, there has been little work to characterize the spatiotemporal variability of PMMoV in wastewater, which may influence the effectiveness of PMMoV for adjusting or normalizing WBE measurements. Here, we investigate its variability across space and time using data collected over a two-year period from sewage treatment plants across the United States. We find that most variation in PMMoV measurements can be attributed to longitude and latitude followed by site-specific variables. Further research into cross-geographical and -temporal comparability of PMMoV-normalized pathogen concentrations would strengthen the utility of PMMoV in WBE.
Collapse
Affiliation(s)
- AnnaElaine L. Rosengart
- Department
of Statistics & Data Science, Dietrich College of Humanities and
Social Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Amanda L. Bidwell
- Department
of Civil & Environmental Engineering, School of Engineering and
Doerr School of Sustainability, Stanford
University, Stanford, California 94305, United States
| | - Marlene K. Wolfe
- Gangarosa
Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Alexandria B. Boehm
- Department
of Civil & Environmental Engineering, School of Engineering and
Doerr School of Sustainability, Stanford
University, Stanford, California 94305, United States
| | - F. William Townes
- Department
of Statistics & Data Science, Dietrich College of Humanities and
Social Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
12
|
Malan-Müller S, Martín-Hernández D, Caso JR, Matthijnssens J, Rodríguez-Urrutia A, Lowry CA, Leza JC. Metagenomic symphony of the intestinal ecosystem: How the composition affects the mind. Brain Behav Immun 2025; 123:510-523. [PMID: 39368785 DOI: 10.1016/j.bbi.2024.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/04/2024] [Accepted: 09/27/2024] [Indexed: 10/07/2024] Open
Abstract
Mental health disorders and neurodegenerative diseases place a heavy burden on patients and societies, and, although great strides have been made to understand the pathophysiology of these conditions, advancement in drug development is lagging. The importance of gastrointestinal health in maintaining overall health and preventing disease is not a new concept. Hundreds of years ago, healers from various cultures and civilizations recognized the crucial role of the gut in sustaining health. More than a century ago, scientists began exploring the restorative effects of probiotics, marking the early recognition of the importance of gut microbes. The omics era brought more enlightenment and enabled researchers to identify the complexity of the microbial ecosystems we harbour, encompassing bacteria, eukaryotes (including fungi), archaea, viruses, and other microorganisms. The extensive genetic capacity of the microbiota is dynamic and influenced by the environment. The microbiota therefore serves as a significant entity within us, with evolutionarily preserved functions in host metabolism, immunity, development, and behavior. The significant role of the bacterial gut microbiome in mental health and neurodegenerative disorders has been realized and described within the framework of the microbiota-gut-brain axis. However, the bacterial members do not function unaccompanied, but rather in concert, and there is a substantial knowledge gap regarding the involvement of non-bacterial microbiome members in these disorders. In this review, we will explore the current literature that implicates a role for the entire metagenomic ensemble, and how their complex interkingdom relationships could influence CNS functioning in mental health disorders and neurodegenerative diseases.
Collapse
Affiliation(s)
- Stefanie Malan-Müller
- Department of Pharmacology and Toxicology, Faculty of Medicine, University Complutense of Madrid (UCM), Research Institute of Hospital 12 de Octubre (Imas12), Instituto Universitario de Investigación Neuroquímica (IUIN-UCM), Madrid, Spain; Biomedical Research Network Centre in Mental Health, Institute of Health Carlos III (CIBERSAM, ISCIII), Madrid, Spain.
| | - David Martín-Hernández
- Department of Pharmacology and Toxicology, Faculty of Medicine, University Complutense of Madrid (UCM), Research Institute of Hospital 12 de Octubre (Imas12), Instituto Universitario de Investigación Neuroquímica (IUIN-UCM), Madrid, Spain; Biomedical Research Network Centre in Mental Health, Institute of Health Carlos III (CIBERSAM, ISCIII), Madrid, Spain
| | - Javier R Caso
- Department of Pharmacology and Toxicology, Faculty of Medicine, University Complutense of Madrid (UCM), Research Institute of Hospital 12 de Octubre (Imas12), Instituto Universitario de Investigación Neuroquímica (IUIN-UCM), Madrid, Spain; Biomedical Research Network Centre in Mental Health, Institute of Health Carlos III (CIBERSAM, ISCIII), Madrid, Spain
| | - Jelle Matthijnssens
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Division of Clinical and Epidemiological Virology, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Amanda Rodríguez-Urrutia
- Biomedical Research Network Centre in Mental Health, Institute of Health Carlos III (CIBERSAM, ISCIII), Madrid, Spain; Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain; Group of Psychiatry, Mental Health and Addictions, Vall d'Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain; Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Christopher A Lowry
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Juan C Leza
- Department of Pharmacology and Toxicology, Faculty of Medicine, University Complutense of Madrid (UCM), Research Institute of Hospital 12 de Octubre (Imas12), Instituto Universitario de Investigación Neuroquímica (IUIN-UCM), Madrid, Spain; Biomedical Research Network Centre in Mental Health, Institute of Health Carlos III (CIBERSAM, ISCIII), Madrid, Spain
| |
Collapse
|
13
|
Angga MS, Raya S, Hirai S, Haramoto E. Magnetic Carbon Bead-Based Concentration Method for SARS-CoV-2 Detection in Wastewater. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 17:8. [PMID: 39741220 DOI: 10.1007/s12560-024-09623-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 12/02/2024] [Indexed: 01/02/2025]
Abstract
Wastewater surveillance for pathogens is important to monitor disease trends within communities and maintain public health; thus, a quick and reliable protocol is needed to quantify pathogens present in wastewater. In this study, a method using a commercially available magnetic carbon bead-based kit, i.e., the Carbon Prep (C.prep) method (Life Magnetics), was employed to detect and quantify severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as well as bacteriophage Phi6 and pepper mild mottle virus (PMMoV) in wastewater samples. The performance of this method was evaluated by modifying several steps and comparing it with the polyethylene glycol (PEG) precipitation method to demonstrate its applicability to virus detection in wastewater. The protocol of the C.prep method, based on the manufacturer's instructions, could not detect SARS-CoV-2 RNA, while the optimized protocol could detect it in the tested samples at concentrations that were not significantly different from those obtained using the PEG precipitation method. However, the optimized C.prep method performed more poorly in recovering Phi6 and detecting PMMoV than the PEG precipitation method. The results of this study indicated that the full workflow of the C.prep method was not sufficient to detect the target viruses in wastewater and that an additional RNA extraction step was needed to increase its detection sensitivity.
Collapse
Affiliation(s)
- Made Sandhyana Angga
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi, 400-8511, Japan
- Research Center for Water Environment Technology, School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-Ku, Tokyo, 113-0032, Japan
| | - Sunayana Raya
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi, 400-8511, Japan
| | - Soichiro Hirai
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi, 400-8511, Japan
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi, 400-8511, Japan.
| |
Collapse
|
14
|
Debnath S, Seth D, Pramanik S, Adhikari S, Mondal P, Sherpa D, Sen D, Mukherjee D, Mukerjee N. A comprehensive review and meta-analysis of recent advances in biotechnology for plant virus research and significant accomplishments in human health and the pharmaceutical industry. Biotechnol Genet Eng Rev 2024; 40:3193-3225. [PMID: 36063068 DOI: 10.1080/02648725.2022.2116309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/29/2022] [Indexed: 02/03/2023]
Abstract
Secondary metabolites made by plants and used through their metabolic routes are today's most reliable and cost-effective way to make pharmaceuticals and improve health. The concept of genetic engineering is used for molecular pharming. As more people use plants as sources of nanotechnology systems, they are adding to this. These systems are made up of viruses-like particles (VLPs) and virus nanoparticles (VNPs). Due to their superior ability to be used as plant virus expression vectors, plant viruses are becoming more popular in pharmaceuticals. This has opened the door for them to be used in research, such as the production of medicinal peptides, antibodies, and other heterologous protein complexes. This is because biotechnological approaches have been linked with new bioinformatics tools. Because of the rise of high-throughput sequencing (HTS) and next-generation sequencing (NGS) techniques, it has become easier to use metagenomic studies to look for plant virus genomes that could be used in pharmaceutical research. A look at how bioinformatics can be used in pharmaceutical research is also covered in this article. It also talks about plant viruses and how new biotechnological tools and procedures have made progress in the field.
Collapse
Affiliation(s)
- Sandip Debnath
- Department of Genetics and Plant Breeding, Palli Siksha Bhavana (Institute of Agriculture), Visva-Bharati University, Sriniketan, West Bengal, India
| | - Dibyendu Seth
- Department of Genetics and Plant Breeding, Palli Siksha Bhavana (Institute of Agriculture), Visva-Bharati University, Sriniketan, West Bengal, India
| | - Sourish Pramanik
- Department of Genetics and Plant Breeding, Palli Siksha Bhavana (Institute of Agriculture), Visva-Bharati University, Sriniketan, West Bengal, India
| | - Sanchari Adhikari
- Department of Genetics and Plant Breeding, Palli Siksha Bhavana (Institute of Agriculture), Visva-Bharati University, Sriniketan, West Bengal, India
| | - Parimita Mondal
- Department of Genetics and Plant Breeding, Palli Siksha Bhavana (Institute of Agriculture), Visva-Bharati University, Sriniketan, West Bengal, India
| | - Dechen Sherpa
- Department of Genetics and Plant Breeding, Palli Siksha Bhavana (Institute of Agriculture), Visva-Bharati University, Sriniketan, West Bengal, India
| | - Deepjyoti Sen
- Department of Genetics and Plant Breeding, Palli Siksha Bhavana (Institute of Agriculture), Visva-Bharati University, Sriniketan, West Bengal, India
| | | | - Nobendu Mukerjee
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Kolkata, India
- Department of Health Sciences, Novel Global Community Educational Foundation, Hebarsham, Australia
| |
Collapse
|
15
|
Siri Y, Sthapit N, Malla B, Raya S, Haramoto E. Comparative performance of electronegative membrane filtration and automated concentrating pipette for detection of antibiotic resistance genes and microbial markers in river water samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176109. [PMID: 39255938 DOI: 10.1016/j.scitotenv.2024.176109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/12/2024]
Abstract
The target viral and bacterial concentrations in river water are essential for environmental monitoring and public health studies. Filtration-based methods are commonly employed, yet challenges arise due to recoverability and filter pore size. This study aimed to compare the performance of electronegative membrane filtration (EMF) and automated Concentrating Pipette (CP) Select (InnovaPrep) methods for quantifying antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and bacterial and viral markers in river water samples. Fifty-four river water samples were collected from upstream and downstream locations in a river in Japan. The CP Select method was modified by adding MgCl2 and using different tips. The recovery efficiencies for total coliforms and Escherichia coli were assessed, and class 1 integron-integrase gene (intI1), 16S rRNA, gene encoding sulfonamide resistance (sul1), cross-assembly phage (crAssphage), pepper mild mottle virus (PMMoV), and Escherichia coli gene (sfmD) were detected. CP Select showed recovery efficiencies of 45 %-63 % for total coliforms and 17 %-35 % for E. coli. The intI1, 16S rRNA, sul1, crAssphage, PMMoV, and sfmD concentrations using the modified CP Select method were 10.1 ± 0.5, 8.7 ± 0.2, 7.7 ± 0.2, 6.7 ± 0.2, 5.4 ± 0.2, and 3.5 ± 0.5 log10 copies/L, respectively. Higher intI1 and sul1 concentrations were observed downstream, with the highest contribution percentage (22 % and 21 %) using CP Select or EMF. The modified CP Select method with 0.05 μm tips yielded more quantifiable results for all target genes and greater PMMoV concentrations (p < 0.05). Positive correlations were found among bacterial, ARG/MGE, and viral markers (Spearman's ρ = 0.71 for 16S rRNA and sfmD, 0.88 for intI1 and sul1, and 0.64 for PMMoV and crAssphage). The modified CP Select method demonstrated effective recovery of bacteria and quantification of ARGs, MGEs, and microbial markers in river water. Further studies are required to validate these methods and confirm their applicability in diverse environmental contexts.
Collapse
Affiliation(s)
- Yadpiroon Siri
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Niva Sthapit
- Department of Civil and Environmental Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Bikash Malla
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Sunayana Raya
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan.
| |
Collapse
|
16
|
de Oliveira Neto NF, Caixeta RAV, Zerbinati RM, Zarpellon AC, Caetano MW, Pallos D, Junges R, Costa ALF, Aitken-Saavedra J, Giannecchini S, Braz-Silva PH. The Emergence of Saliva as a Diagnostic and Prognostic Tool for Viral Infections. Viruses 2024; 16:1759. [PMID: 39599873 PMCID: PMC11599014 DOI: 10.3390/v16111759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Saliva has emerged as a promising diagnostic fluid for viral infections, enabling the direct analysis of viral genetic material and the detection of infection markers such as proteins, metabolites, microRNAs, and immunoglobulins. This comprehensive review aimed to explore the use of saliva as a diagnostic tool for viral infections, emphasizing its advantages and limitations. Saliva stands out due to its simplicity and safety in collection, along with the convenience of self-collection without the need for healthcare supervision, while potentially being comparable to urine and blood in terms of effectiveness. Herein, we highlighted the significant potential of saliva in assessing viral loads and diagnosing viral infections, such as herpesviruses, HPV, PyV, TTV, SARS-CoV-2, and MPXV. The detection of viral shedding in saliva underscores its utility in early diagnosis, the monitoring of infection progression, and evaluating treatment responses. The non-invasive nature of saliva collection makes it an appealing alternative to more invasive methods, promoting better patient compliance and facilitating large-scale screening and surveillance. As such, we further highlight current evidence on the use of saliva as a prognostic tool. Although a significant amount of data is already available, further investigations are warranted to more comprehensively assess the added benefit from the utilization of salivary biomarkers in the clinics. Salivary biomarkers show great promise for the early detection and prevention of viral infection complications, potentially improving disease management and control at the population level. Integrating these non-invasive tools into routine clinical practice could enhance personalized healthcare strategies and patient outcomes. Future studies should focus on establishing standardization protocols, validating the accuracy of salivary diagnostics, and expanding clinical research to enhance the diagnostic and monitoring capabilities of salivary biomarkers.
Collapse
Affiliation(s)
- Nilson Ferreira de Oliveira Neto
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil; (N.F.d.O.N.); (R.A.V.C.); (A.C.Z.); (M.W.C.)
| | - Rafael Antônio Velôso Caixeta
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil; (N.F.d.O.N.); (R.A.V.C.); (A.C.Z.); (M.W.C.)
| | - Rodrigo Melim Zerbinati
- Laboratory of Virology (LIM-52-HCFMUSP), Institute of Tropical Medicine, University of São Paulo School of Medicine, São Paulo 05403-000, Brazil;
| | - Amanda Caroline Zarpellon
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil; (N.F.d.O.N.); (R.A.V.C.); (A.C.Z.); (M.W.C.)
| | - Matheus Willian Caetano
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil; (N.F.d.O.N.); (R.A.V.C.); (A.C.Z.); (M.W.C.)
| | - Debora Pallos
- School of Dentistry, University of Santo Amaro, São Paulo 04743-030, Brazil;
| | - Roger Junges
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, 0316 Oslo, Norway;
| | - André Luiz Ferreira Costa
- Postgraduate Program in Dentistry, Cruzeiro do Sul University (UNICSUL), São Paulo 1506-000, Brazil;
| | - Juan Aitken-Saavedra
- Department of Oral Pathology and Medicine, Faculty of Dentistry, University of Chile, Santiago 3311, Chile;
| | - Simone Giannecchini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Paulo Henrique Braz-Silva
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil; (N.F.d.O.N.); (R.A.V.C.); (A.C.Z.); (M.W.C.)
- Laboratory of Virology (LIM-52-HCFMUSP), Institute of Tropical Medicine, University of São Paulo School of Medicine, São Paulo 05403-000, Brazil;
| |
Collapse
|
17
|
Cejudo E, Acosta-González G, Alvarado-Flores J, Peniche-Pérez JC, Bautista-García JE, Leal-Bautista RM, Ortega-Camacho D, Rosiles-González G, Caballero-Vázquez JA, Hernández-Zepeda C. The condition status index for doline lakes in urban areas. Sci Rep 2024; 14:26815. [PMID: 39500951 PMCID: PMC11538539 DOI: 10.1038/s41598-024-75444-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
Karst represents approximately 15% of the planet's surface, hundreds of millions of people live on and rely on these aquifers for water supply and agricultural irrigation. In karstic landscapes, groundwater is exposed in sinkholes, inundated caves, and artesian wells, which are two-way communication spots. When the phreatic level is exposed, the groundwater can change substantially as a result of anthropogenic impacts, modifying the water quality and the environmental integrity by incoming excess nutrients, contaminants, pathogens, and other hazardous substances such as metals and microplastics. In this paper, we develop and test a multimetric index to evaluate the condition status of dolines located within urban areas, including seven indicators: trophic index, fecal bacteria, fecal viruses, microplastics, heavy metals, zooplankton biodiversity, and fish biodiversity. Lastly, we made a proof of concept for the index in the dolines on the island of Cozumel (Mexico), resulting in evaluations from fair to good. The index is powerful due to its sensitivity to pathogens and exotic invasive species. This additive weighted index allows to assess the condition status of dolines in urban areas anywhere in the world; if required, modifications are possible.
Collapse
Affiliation(s)
- Eduardo Cejudo
- Centro de Investigación Científica de Yucatán A.C., Unidad de Ciencias del Agua, Calle 8, No. 39, Mz 29, SM 64, 77524, Cancún, Quintana Roo, Mexico
| | - Gilberto Acosta-González
- Centro de Investigación Científica de Yucatán A.C., Unidad de Ciencias del Agua, Calle 8, No. 39, Mz 29, SM 64, 77524, Cancún, Quintana Roo, Mexico.
| | - Jesús Alvarado-Flores
- Centro de Investigación Científica de Yucatán A.C., Unidad de Ciencias del Agua, Calle 8, No. 39, Mz 29, SM 64, 77524, Cancún, Quintana Roo, Mexico
| | - Jorge Carlos Peniche-Pérez
- Centro de Investigación Científica de Yucatán A.C., Unidad de Ciencias del Agua, Calle 8, No. 39, Mz 29, SM 64, 77524, Cancún, Quintana Roo, Mexico
| | - José Epigmenio Bautista-García
- Centro de Investigación Científica de Yucatán A.C., Unidad de Ciencias del Agua, Calle 8, No. 39, Mz 29, SM 64, 77524, Cancún, Quintana Roo, Mexico
| | - Rosa María Leal-Bautista
- Centro de Investigación Científica de Yucatán A.C., Unidad de Ciencias del Agua, Calle 8, No. 39, Mz 29, SM 64, 77524, Cancún, Quintana Roo, Mexico
| | - Daniela Ortega-Camacho
- Centro de Investigación Científica de Yucatán A.C., Unidad de Ciencias del Agua, Calle 8, No. 39, Mz 29, SM 64, 77524, Cancún, Quintana Roo, Mexico
| | - Gabriela Rosiles-González
- Centro de Investigación Científica de Yucatán A.C., Unidad de Ciencias del Agua, Calle 8, No. 39, Mz 29, SM 64, 77524, Cancún, Quintana Roo, Mexico
| | - José Adán Caballero-Vázquez
- Centro de Investigación Científica de Yucatán A.C., Unidad de Ciencias del Agua, Calle 8, No. 39, Mz 29, SM 64, 77524, Cancún, Quintana Roo, Mexico
| | - Cecilia Hernández-Zepeda
- Centro de Investigación Científica de Yucatán A.C., Unidad de Ciencias del Agua, Calle 8, No. 39, Mz 29, SM 64, 77524, Cancún, Quintana Roo, Mexico
| |
Collapse
|
18
|
Düker U, Nogueira R, Carpio-Vallejo E, Joost I, Hüppe K, Suchenwirth R, Saathoff Y, Wallner M. Sewer system sampling for wastewater-based disease surveillance: Is the work worth it? JOURNAL OF WATER AND HEALTH 2024; 22:2218-2232. [PMID: 39611680 DOI: 10.2166/wh.2024.301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/11/2024] [Indexed: 11/30/2024]
Abstract
Wastewater treatment plant (WWTP) influent sampling is commonly used in wastewater-based disease surveillance to assess the circulation of pathogens in the population aggregated in a catchment area. However, the signal can be lost within the sewer network due to adsorption, degradation, and dilution processes. The present work aimed to investigate the dynamics of SARS-CoV-2 concentration in three sub-catchments of the sewer system in the city of Hildesheim, Germany, characterised by different levels of urbanisation and presence/absence of industry, and to evaluate the benefit of sub-catchment sampling compared to WWTP influent sampling. Our study shows that sampling and analysis of virus concentrations in sub-catchments with particular settlement structures allows the identification of high concentrations of the virus at a local level in the wastewater, which are lower in samples collected at the inlet of the treatment plant covering the whole catchment. Higher virus concentrations per inhabitant were found in the sub-catchments in comparison to the inlet of the WWTP. Additionally, sewer sampling provides spatially resolved concentrations of SARS-CoV-2 in the catchment area, which is important for detecting local high incidences of COVID-19.
Collapse
Affiliation(s)
- Urda Düker
- Leibniz University Hannover, Welfengarten 1, 30459 Hannover, Germany
| | - Regina Nogueira
- Leibniz University Hannover, Welfengarten 1, 30459 Hannover, Germany
| | | | - Ingeborg Joost
- Ostfalia University of Applied Sciences, Campus Suderburg, Herbert-Meyer-Str. 7, 29556 Suderburg, Germany
| | - Katharina Hüppe
- Local Health Authority Hildesheim, Ludolfingerstr. 2, 31137 Hildesheim, Germany
| | - Roland Suchenwirth
- Public Health Agency of Lower Saxony, Roesebeckstr. 4-6, 30449 Hannover, Germany
| | - Yvonne Saathoff
- Public Health Agency of Lower Saxony, Roesebeckstr. 4-6, 30449 Hannover, Germany
| | - Markus Wallner
- Ostfalia University of Applied Sciences, Campus Suderburg, Herbert-Meyer-Str. 7, 29556 Suderburg, Germany E-mail:
| |
Collapse
|
19
|
Omole AO, Affonso de Oliveira JF, Sutorus L, Karan S, Zhao Z, Neun BW, Cedrone E, Clogston JD, Xu J, Sierk M, Chen Q, Meerzaman D, Dobrovolskaia MA, Steinmetz NF. Cellular fate of a plant virus immunotherapy candidate. Commun Biol 2024; 7:1382. [PMID: 39443610 PMCID: PMC11499861 DOI: 10.1038/s42003-024-06982-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 09/28/2024] [Indexed: 10/25/2024] Open
Abstract
Cowpea mosaic virus (CPMV) is a plant virus that is currently being developed for intratumoral immunotherapy. CPMV relieves the immune system from tumor-induced immunosuppression; reprograms the tumor microenvironment to an activated state whereby the treated and distant tumors are recognized and eradicated. Toward translational studies, we investigated the safety of CPMV, specifically addressing whether pathogenicity would be induced in mammalian cells. We show that murine macrophage immune cells recognize CPMV; however, there is no indication of de novo viral protein synthesis or RNA replication. Furthermore, we show that CPMV does not induce hemolysis, platelet aggregation and plasma coagulation amongst other assays in human blood and immune cells. Taken together, we anticipate that these results will reinforce the development of CPMV as an immunotherapeutic platform.
Collapse
Affiliation(s)
- Anthony O Omole
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, CA, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Jessica Fernanda Affonso de Oliveira
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, CA, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Lucas Sutorus
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, CA, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Sweta Karan
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, CA, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Zhongchao Zhao
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, CA, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Barry W Neun
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Edward Cedrone
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Jeffrey D Clogston
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Jie Xu
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Michael Sierk
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Qingrong Chen
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Daoud Meerzaman
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Nicole F Steinmetz
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA.
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, CA, USA.
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA.
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, CA, USA.
- Center for Engineering in Cancer, Institute of Engineering Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
20
|
Boukadida C, Peralta-Prado A, Chávez-Torres M, Romero-Mora K, Rincon-Rubio A, Ávila-Ríos S, Garrido-Rodríguez D, Reyes-Terán G, Pinto-Cardoso S. Alterations of the gut microbiome in HIV infection highlight human anelloviruses as potential predictors of immune recovery. MICROBIOME 2024; 12:204. [PMID: 39420423 PMCID: PMC11483978 DOI: 10.1186/s40168-024-01925-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND HIV-1 infection is characterized by a massive depletion of mucosal CD4 T cells that triggers a cascade of events ultimately linking gut microbial dysbiosis to HIV-1 disease progression and pathogenesis. The association between HIV infection and the enteric virome composition is less characterized, although viruses are an essential component of the gut ecosystem. Here, we performed a cross-sectional analysis of the fecal viral (eukaryotic viruses and bacteriophages) and bacterial microbiome in people with HIV (PWH) and in HIV-negative individuals. To gain further insight into the association between the gut microbiome composition, HIV-associated immunodeficiency, and immune recovery, we carried out a longitudinal study including 14 PWH who initiated antiretroviral therapy (ART) and were followed for 24 months with samplings performed at baseline (before ART) and at 2, 6, 12, and 24 months post-ART initiation. RESULTS Our data revealed a striking expansion in the abundance and prevalence of several human virus genomic sequences (Anelloviridae, Adenoviridae, and Papillomaviridae) in stool samples of PWH with severe immunodeficiency (CD4 < 200). We also noted a decreased abundance of sequences belonging to two plant viruses from the Tobamovirus genus, a reduction in bacterial alpha diversity, and a decrease in Inoviridae bacteriophage sequences. Short-term ART (24 months) was linked to a significant decrease in human Anelloviridae sequences. Remarkably, the detection of Anellovirus sequences at baseline independently predicted poor immune recovery, as did low CD4 T cell counts. The bacterial and bacteriophage populations were unique to each PWH with individualized trajectories; we found no discernable pattern of clustering after 24 months on ART. CONCLUSION Advanced HIV-1 infection was associated with marked alterations in the virome composition, in particular a remarkable expansion of human anelloviruses, with a gradual restoration after ART initiation. In addition to CD4 T cell counts, anellovirus sequence detection might be useful to predict and monitor immune recovery. This study confirms data on the bacteriome and expands our knowledge on the viral component of the gut microbiome in HIV-1 infection. Video Abstract.
Collapse
Affiliation(s)
- Celia Boukadida
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Amy Peralta-Prado
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Monserrat Chávez-Torres
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Karla Romero-Mora
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Alma Rincon-Rubio
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Santiago Ávila-Ríos
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Daniela Garrido-Rodríguez
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Gustavo Reyes-Terán
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
- Comisión Coordinadora de Institutos Nacionales de Salud y Hospitales de Alta Especialidad, Ciudad de México, México
| | - Sandra Pinto-Cardoso
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México.
| |
Collapse
|
21
|
Dai Z, Wang H, Xu J, Lu X, Ni P, Yang S, Shen Q, Wang X, Li W, Wang X, Zhou C, Zhang W, Shan T. Unveiling the Virome of Wild Birds: Exploring CRESS-DNA Viral Dark Matter. Genome Biol Evol 2024; 16:evae206. [PMID: 39327897 PMCID: PMC11463337 DOI: 10.1093/gbe/evae206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024] Open
Abstract
Amid global health concerns and the constant threat of zoonotic diseases, this study delves into the diversity of circular replicase-encoding single-stranded DNA (CRESS-DNA) viruses within Chinese wild bird populations. Employing viral metagenomics to tackle the challenge of "viral dark matter," the research collected and analyzed 3,404 cloacal swab specimens across 26 bird families. Metagenomic analysis uncovered a rich viral landscape, with 67.48% of reads classified as viral dark matter, spanning multiple taxonomic levels. Notably, certain viral families exhibited host-specific abundance patterns, with Galliformes displaying the highest diversity. Diversity analysis categorized samples into distinct groups, revealing significant differences in viral community structure, particularly noting higher diversity in terrestrial birds compared to songbirds and unique diversity in migratory birds versus perching birds. The identification of ten novel Circoviridae viruses, seven Smacoviridae viruses, and 167 Genomoviridae viruses, along with 100 unclassified CRESS-DNA viruses, underscores the expansion of knowledge on avian-associated circular DNA viruses. Phylogenetic and structural analyses of Rep proteins offered insights into evolutionary relationships and potential functional variations among CRESS-DNA viruses. In conclusion, this study significantly enhances our understanding of the avian virome, shedding light on the intricate relationships between viral communities and host characteristics in Chinese wild bird populations. The diverse array of CRESS-DNA viruses discovered opens avenues for future research into viral evolution, spread factors, and potential ecosystem impacts.
Collapse
Affiliation(s)
- Ziyuan Dai
- Department of Clinical Laboratory, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, Jiangsu 224000, China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Haoning Wang
- Heilongjiang Cold Region Wetland Ecology and Environment Research Key Laboratory, School of Geography and Tourism, Harbin University, Harbin, Heilongjiang 150086, China
- School of Geography and Tourism, Harbin University, Harbin, Heilongjiang 150086, China
| | - Juan Xu
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
| | - Xiang Lu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ping Ni
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
| | - Shixing Yang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Quan Shen
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaochun Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wang Li
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
| | - Xiaolong Wang
- The Key Laboratory of Wildlife Diseases and Biosecurity Management of Heilongjiang Province, Northeast Forestry University, Harbin 150006, China
| | - Chenglin Zhou
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
| | - Wen Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| |
Collapse
|
22
|
Zhao F, Wang J. Another piece of puzzle for the human microbiome: the gut virome under dietary modulation. J Genet Genomics 2024; 51:983-996. [PMID: 38710286 DOI: 10.1016/j.jgg.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/08/2024]
Abstract
The virome is the most abundant and highly variable microbial consortium in the gut. Because of difficulties in isolating and culturing gut viruses and the lack of reference genomes, the virome has remained a relatively elusive aspect of the human microbiome. In recent years, studies on the virome have accumulated growing evidence showing that the virome is diet-modulated and widely involved in regulating health. Here, we review the responses of the gut virome to dietary intake and the potential health implications, presenting changes in the gut viral community and preferences of viral members to particular diets. We further discuss how viral-bacterial interactions and phage lifestyle shifts shape the gut microbiota. We also discuss the specific functions conferred by diet on the gut virome and bacterial community in the context of horizontal gene transfer, as well as the import of new viral members along with the diet. Collating these studies will expand our understanding of the dietary regulation of the gut virome and inspire dietary interventions and health maintenance strategies targeting the gut microbiota.
Collapse
Affiliation(s)
- Fengxiang Zhao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jinfeng Wang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
23
|
Wang S, Wei S, Ding Y, Zhang Y, Zhang Z, Sun S, Guo H, Yin S. Analysis of Coinfection Pathogens From Foot-and-Mouth Disease Virus Persistently Infected Cattle Using Oxford Nanopore Sequencing. Transbound Emerg Dis 2024; 2024:9703014. [PMID: 40303157 PMCID: PMC12016752 DOI: 10.1155/2024/9703014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/30/2024] [Indexed: 05/02/2025]
Abstract
The persistent infection caused by foot-and-mouth disease virus (FMDV) still lacks a reliable explanation, as its etiology and maintenance are intricate and potentially involve concurrent infections with multiple pathogens. In this study, we utilized the nanopore platform for direct sequencing of clinical samples obtained from cattle persistently infected with FMDV serotype O and investigated the distribution characteristics of coinfecting pathogens in their pharyngeal region. Briefly, we exploited Oxford Nanopore sequencing technology to generate high-quality and sufficient sequence data for the comprehensive characterization of microbial genomes. Furthermore, we performed sequence comparison, alignment, and phylogenetic tree construction. Our findings revealed a total of 23 viruses in FMDV carrier bovine, with FMDV, bovine orthopneumovirus, and Choristoneura fumiferana granulovirus emerging as the top three identified pathogens. The analysis unexpectedly revealed the presence of porcine circovirus type 2 and pepper mild mottle virus among the viral genes detected in the bovine FMDV carrier. Compared to noncarrier, carrier bovine of FMDV exhibited a greater diversity and abundance of mycoplasma types as well as reads counts. Therefore, we propose that the establishment and perpetuation of persistent FMDV infection may be attributed to the simultaneous presence of other viral agents and mycoplasmas. These findings highlight the significance of investigating multipathogen coinfection in elucidating the etiology of persistent FMD virus infection.
Collapse
Affiliation(s)
- Shuang Wang
- State Key Laboratory for Animal Disease Control and PreventionCollege of Veterinary MedicineLanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Sumin Wei
- State Key Laboratory for Animal Disease Control and PreventionCollege of Veterinary MedicineLanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Yaozhong Ding
- State Key Laboratory for Animal Disease Control and PreventionCollege of Veterinary MedicineLanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Yun Zhang
- State Key Laboratory for Animal Disease Control and PreventionCollege of Veterinary MedicineLanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Zhihui Zhang
- State Key Laboratory for Animal Disease Control and PreventionCollege of Veterinary MedicineLanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Shiqi Sun
- State Key Laboratory for Animal Disease Control and PreventionCollege of Veterinary MedicineLanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and PreventionCollege of Veterinary MedicineLanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Shuanghui Yin
- State Key Laboratory for Animal Disease Control and PreventionCollege of Veterinary MedicineLanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| |
Collapse
|
24
|
Liu P, Sablon O, Wang Y, Hilton SP, Khalil L, Ingersoll JM, Truell J, Edupuganti S, Alaaeddine G, Naji A, Monarrez E, Wolfe M, Rouphael N, Kraft C, Moe CL. Longitudinal fecal shedding of SARS-CoV-2, pepper mild mottle virus, and human mitochondrial DNA in COVID-19 patients. Front Med (Lausanne) 2024; 11:1417967. [PMID: 39323476 PMCID: PMC11423543 DOI: 10.3389/fmed.2024.1417967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/28/2024] [Indexed: 09/27/2024] Open
Abstract
Since the coronavirus disease 2019 (COVID-19) pandemic, wastewater-based epidemiology (WBE) has been widely applied in many countries and regions for monitoring COVID-19 transmission in the population through testing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in wastewater. However, the amount of virus shed by individuals over time based on the stage of infection and accurate number of infections in the community creates challenges in predicting COVID-19 prevalence in the population and interpreting WBE results. In this study, we measured SARS-CoV-2, pepper mild mottle virus (PMMoV), and human mitochondrial DNA (mtDNA) in longitudinal fecal samples collected from 42 COVID-19 patients for up to 42 days after diagnosis. SARS-CoV-2 RNA was detected in 73.1% (19/26) of inpatient study participants in at least one of the collected fecal specimens during the sampling period. Most participants shed the virus within 3 weeks after diagnosis, but five inpatient participants still shed the virus between 20 and 60 days after diagnosis. The median concentration of SARS-CoV-2 in positive fecal samples was 1.08 × 105 genome copies (GC)/gram dry fecal material. PMMoV and mtDNA were detected in 99.4% (154/155) and 100% (155/155) of all fecal samples, respectively. The median concentrations of PMMoV RNA and mtDNA in fecal samples were 1.73 × 107 and 2.49 × 108 GC/dry gram, respectively. These results provide important information about the dynamics of fecal shedding of SARS-CoV-2 and two human fecal indicators in COVID-19 patients. mtDNA showed higher positive rates, higher concentrations, and less variability between and within individuals than PMMoV, suggesting that mtDNA could be a better normalization factor for WBE results than PMMoV.
Collapse
Affiliation(s)
- Pengbo Liu
- Center for Global Safe Water, Sanitation, and Hygiene, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Orlando Sablon
- Center for Global Safe Water, Sanitation, and Hygiene, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Yuke Wang
- Center for Global Safe Water, Sanitation, and Hygiene, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Stephen Patrick Hilton
- Center for Global Safe Water, Sanitation, and Hygiene, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Lana Khalil
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Jessica Mae Ingersoll
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, United States
| | - Jennifer Truell
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, United States
| | - Sri Edupuganti
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Ghina Alaaeddine
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Amal Naji
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Eduardo Monarrez
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Marlene Wolfe
- Center for Global Safe Water, Sanitation, and Hygiene, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Nadine Rouphael
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Colleen Kraft
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, United States
| | - Christine L. Moe
- Center for Global Safe Water, Sanitation, and Hygiene, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| |
Collapse
|
25
|
Monleon AJC, Gill LW. Pepper mild mottle virus as an effective tool in microbial source tracking for deficient domestic on-site water treatment systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173229. [PMID: 38763202 DOI: 10.1016/j.scitotenv.2024.173229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/21/2024]
Abstract
Pollution from domestic on-site wastewater treatment systems (OWTS) is a significant contaminant pressure in many rural catchments. However, due to their design, and dispersed proliferation, it is difficult to assess their impact. Water testing methodologies employ bacterial culturing methods and chemical analysis which may lose resolution and/or specificity being confounded by diffuse agricultural sources within a rural environment. In this study, we successfully assessed the applicability of Pepper Mild Mottle Virus (PMMoV) as a human faecal source tracker for deficient on-site wastewater treatment systems. The transport of PMMoV was first studied in the effluent of a 30 cm deep soil column which was dosed for 510 days with primary influent from a conventional septic system. The removal of PMMoV through the 30 cm deep soil column was quantified with a 5-day seeding trial employing primary influent mixed with PMMoV sourced from Tabasco pepper product ®. The trial was then carried out at field scale with the seeding solution dosed into an operational percolation trench receiving septic tank effluent which had been instrumented for porewater sampling. Samples were taken at depths of 10 cm, 30 cm, and 50 cm across the length of the trench at distances of 1 m, 7.5 m, and 17.5 m from the inlet of the trench. PMMoV was detected on all days of the trial, with a peak concentration of 1 × 106 found at the rear of the trench on day 2 of the seeding trial. Finally, to assess the effectiveness of PPMoV as a microbial source tracking tool from a water receptor perspective, three rural catchments with high densities of OWTSs were sampled and analysed for hourly variations in biological parameters which included total coliforms, Escherichia coli, PMMoV, and chemical parameters total organic carbon, total nitrogen, and total carbon. PMMoV was detected in all river samples over a 24-hour period, thereby indicating its suitability as a tracer of human wastewater effluent in such environments with multiple diffuse sources.
Collapse
Affiliation(s)
- Alejandro Javier Criado Monleon
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland.
| | - Laurence W Gill
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| |
Collapse
|
26
|
Huang L, Guo R, Li S, Wu X, Zhang Y, Guo S, Lv Y, Xiao Z, Kang J, Meng J, Zhou P, Ma J, You W, Zhang Y, Yu H, Zhao J, Huang G, Duan Z, Yan Q, Sun W. A multi-kingdom collection of 33,804 reference genomes for the human vaginal microbiome. Nat Microbiol 2024; 9:2185-2200. [PMID: 38907008 PMCID: PMC11306104 DOI: 10.1038/s41564-024-01751-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 05/01/2024] [Indexed: 06/23/2024]
Abstract
The human vagina harbours diverse microorganisms-bacteria, viruses and fungi-with profound implications for women's health. Genome-level analysis of the vaginal microbiome across multiple kingdoms remains limited. Here we utilize metagenomic sequencing data and fungal cultivation to establish the Vaginal Microbial Genome Collection (VMGC), comprising 33,804 microbial genomes spanning 786 prokaryotic species, 11 fungal species and 4,263 viral operational taxonomic units. Notably, over 25% of prokaryotic species and 85% of viral operational taxonomic units remain uncultured. This collection significantly enriches genomic diversity, especially for prevalent vaginal pathogens such as BVAB1 (an uncultured bacterial vaginosis-associated bacterium) and Amygdalobacter spp. (BVAB2 and related species). Leveraging VMGC, we characterize functional traits of prokaryotes, notably Saccharofermentanales (an underexplored yet prevalent order), along with prokaryotic and eukaryotic viruses, offering insights into their niche adaptation and potential roles in the vagina. VMGC serves as a valuable resource for studying vaginal microbiota and its impact on vaginal health.
Collapse
Affiliation(s)
- Liansha Huang
- Department of Reproductive Health, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | | | - Shenghui Li
- Puensum Genetech Institute, Wuhan, China.
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.
| | - Xiaoling Wu
- Department of Reproductive Health, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yue Zhang
- Puensum Genetech Institute, Wuhan, China
| | - Shumin Guo
- Department of Reproductive Health, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Ying Lv
- Department of Reproductive Health, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zhen Xiao
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jian Kang
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | | | - Peng Zhou
- Department of Acupuncture, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jie Ma
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wei You
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yan Zhang
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hailong Yu
- Puensum Genetech Institute, Wuhan, China
| | - Jixin Zhao
- Puensum Genetech Institute, Wuhan, China
| | - Guangrong Huang
- Department of Gynecology, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zuzhen Duan
- Department of Gynecology, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Qiulong Yan
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.
| | - Wen Sun
- Centre for Translational Medicine, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China.
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
27
|
Zambrana W, Huang C, Solis D, Sahoo MK, Pinsky BA, Boehm AB. Spatial and temporal variation in respiratory syncytial virus (RSV) subtype RNA in wastewater and relation to clinical specimens. mSphere 2024; 9:e0022424. [PMID: 38926903 PMCID: PMC11288019 DOI: 10.1128/msphere.00224-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Respiratory syncytial virus (RSV) causes a large burden of respiratory illness globally. It has two subtypes, RSV A and RSV B, but little is known regarding the predominance of these subtypes during different seasons and their impact on morbidity and mortality. Using molecular methods, we quantified RSV A and RSV B RNA in wastewater solids across multiple seasons and metropolitan areas to gain insight into the predominance of RSV subtypes. We determined the predominant subtype for each group using the proportion of RSV A to total RSV (RSV A + RSV B) in each wastewater sample (PA,WW) and conducted a comparative analysis temporally, spatially, and against clinical specimens. A median PA,WW of 0.00 in the first season and 0.58 in the second season indicated a temporal shift in the predominant subtype. Spatially, while we observed dominance of the same subtype, PA,WW was higher in some areas (PA,WW = 0.58-0.88). The same subtype predominated in wastewater and clinical samples, but clinical samples showed higher levels of RSV A (RSV A positivity in clinical samples = 0.79, median PA,WW = 0.58). These results suggest that wastewater, alongside clinical data, holds promise for enhanced subtype surveillance.IMPORTANCERespiratory syncytial virus (RSV) causes a large burden of respiratory illness globally. It has two subtypes, RSV A and RSV B, but little is known regarding the predominance of these subtypes during different seasons and their impact on morbidity and mortality. The study illustrates that information on subtype predominance can be gleaned from wastewater. As a biological composite sample from the entire contributing population, wastewater monitoring of RSV A and B can complement clinical surveillance of RSV.
Collapse
Affiliation(s)
- Winnie Zambrana
- Department of Civil & Environmental Engineering, Stanford University, Stanford, California, USA
| | - ChunHong Huang
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Daniel Solis
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Malaya K. Sahoo
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Benjamin A. Pinsky
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Alexandria B. Boehm
- Department of Civil & Environmental Engineering, Stanford University, Stanford, California, USA
| |
Collapse
|
28
|
Paietta EN, Kraberger S, Lund MC, Vargas KL, Custer JM, Ehmke E, Yoder AD, Varsani A. Diverse Circular DNA Viral Communities in Blood, Oral, and Fecal Samples of Captive Lemurs. Viruses 2024; 16:1099. [PMID: 39066262 PMCID: PMC11281440 DOI: 10.3390/v16071099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Few studies have addressed viral diversity in lemurs despite their unique evolutionary history on the island of Madagascar and high risk of extinction. Further, while a large number of studies on animal viromes focus on fecal samples, understanding viral diversity across multiple sample types and seasons can reveal complex viral community structures within and across species. Groups of captive lemurs at the Duke Lemur Center (Durham, NC, USA), a conservation and research center, provide an opportunity to build foundational knowledge on lemur-associated viromes. We sampled individuals from seven lemur species, i.e., collared lemur (Eulemur collaris), crowned lemur (Eulemur coronatus), blue-eyed black lemur (Eulemur flavifrons), ring-tailed lemur (Lemur catta), Coquerel's sifaka (Propithecus coquereli), black-and-white ruffed lemur (Varecia variegata variegata), and red ruffed lemur (Varecia rubra), across two lemur families (Lemuridae, Indriidae). Fecal, blood, and saliva samples were collected from Coquerel's sifaka and black-and-white ruffed lemur individuals across two sampling seasons to diversify virome biogeography and temporal sampling. Using viral metagenomic workflows, the complete genomes of anelloviruses (n = 4), cressdnaviruses (n = 47), caudoviruses (n = 15), inoviruses (n = 34), and microviruses (n = 537) were determined from lemur blood, feces, and saliva. Many virus genomes, especially bacteriophages, identified in this study were present across multiple lemur species. Overall, the work presented here uses a viral metagenomics approach to investigate viral communities inhabiting the blood, oral cavity, and feces of healthy captive lemurs.
Collapse
Affiliation(s)
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Michael C. Lund
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Karla L. Vargas
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Joy M. Custer
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Erin Ehmke
- Duke Lemur Center, Duke University, Durham, NC 27708, USA
| | - Anne D. Yoder
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
29
|
Goitom E, Ariano S, Gilbride K, Yang MI, Edwards EA, Peng H, Dannah N, Farahbakhsh F, Hataley E, Sarvi H, Sun J, Waseem H, Oswald C. Identification of environmental and methodological factors driving variability of Pepper Mild Mottle Virus (PMMoV) across three wastewater treatment plants in the City of Toronto. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172917. [PMID: 38701931 DOI: 10.1016/j.scitotenv.2024.172917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
PMMoV has been widely used to normalize the concentration of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA, influenza, and respiratory syncytial virus (RSV) to account for variations in the fecal content of wastewater. PMMoV is also used as an internal RNA recovery control for wastewater-based epidemiology (WBE) tests. While potentially useful for the interpretation of WBE data, previous studies have suggested that PMMoV concentration can be affected by various physico-chemical characteristics of wastewater. There is also the possibility that laboratory methods, particularly the variability in centrifugation steps to remove supernatant from pellets can cause PMMoV variability. The goal of this study is to improve our understanding of the main drivers of PMMoV variability by assessing the relationship between PMMoV concentration, the physico-chemical characteristics of wastewater, and the methodological approach for concentrating wastewater samples. We analyzed 24-hour composite wastewater samples collected from the influent stream of three wastewater treatment plants (WWTPs) located in the City of Toronto, Ontario, Canada. Samples were collected 3 to 5 times per week starting from the beginning of March 2021 to mid-July 2023. The influent flow rate was used to partition the data into wet and dry weather conditions. Physico-chemical characteristics (e.g., total suspended solids (TSS), biological oxygen demand (BOD), alkalinity, electrical conductivity (EC), and ammonia (NH3)) of the raw wastewater were measured, and PMMoV was quantified. Spatial and temporal variability of PMMoV was observed throughout the study period. PMMoV concentration was significantly higher during dry weather conditions. Multiple linear regression analysis demonstrates that the number and type of physico-chemical parameters that drive PMMoV variability are site-specific, but overall BOD and alkalinity were the most important predictors. Differences in PMMoV concentration for a single WWTP between two different laboratory methods, along with a weak correlation between pellet mass and TSS using one method may indicate that differences in sample concentration and subjective subsampling bias could alter viral recovery and introduce variability to the data.
Collapse
Affiliation(s)
- Eyerusalem Goitom
- Department of Geography & Environmental Studies, Toronto Metropolitan University, Canada
| | - Sarah Ariano
- Department of Geography & Environmental Studies, Toronto Metropolitan University, Canada; Department of Earth and Planetary Sciences, McGill University, Canada
| | - Kim Gilbride
- Department of Chemistry & Biology, Toronto Metropolitan University, Canada
| | - Minqing Ivy Yang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada
| | - Elizabeth A Edwards
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada
| | - Hui Peng
- Department of Chemistry, University of Toronto, Canada; School of the Environment, University of Toronto, Canada
| | - Nora Dannah
- Department of Chemistry & Biology, Toronto Metropolitan University, Canada
| | - Farnaz Farahbakhsh
- Department of Chemistry & Biology, Toronto Metropolitan University, Canada
| | - Eden Hataley
- Department of Geography & Environmental Studies, Toronto Metropolitan University, Canada
| | - Hooman Sarvi
- Department of Chemistry & Biology, Toronto Metropolitan University, Canada
| | - Jianxian Sun
- Department of Chemistry, University of Toronto, Canada
| | - Hassan Waseem
- Department of Chemistry & Biology, Toronto Metropolitan University, Canada
| | - Claire Oswald
- Department of Geography & Environmental Studies, Toronto Metropolitan University, Canada.
| |
Collapse
|
30
|
Miura T, Kadoya SS, Miura Y, Takino H, Akiba M, Sano D, Masuda T. Pepper mild mottle virus intended for use as a process indicator for drinking water treatment: Present forms and quantitative relations to norovirus and rotavirus in surface water. WATER RESEARCH 2024; 257:121713. [PMID: 38733963 DOI: 10.1016/j.watres.2024.121713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/19/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024]
Abstract
Pepper mild mottle virus (PMMoV) has been proposed as a potential indicator of human enteric viruses in environmental water and for viral removal during drinking water treatment. To investigate the occurrence and present forms of PMMoV and quantitative relations to norovirus GII and rotavirus A (RVA) in surface waters, 147 source water samples were collected from 21 drinking water treatment plants (DWTPs) in Japan between January 2018 and January 2021, and the concentrations of viruses in suspended and dissolved fractions were measured using real-time RT-PCR. PMMoV was detected in 81-100 % of samples in each sample month and observed concentrations ranged from 3.0 to 7.0 log10 copies/L. The concentrations of PMMoV were higher in dissolved fraction compared to suspended fractions, while different partitioning was observed for NoV GII depending on seasons. The concentrations of PMMoV were basically higher than those of norovirus GII (1.9-5.3 log10 copies/L) and RVA (1.9-6.6 log10 copies/L), while in 18 samples, RVA presented higher concentrations than PMMoV. Partial regions of VP7, VP4, and VP6 of the RVA in the 18 samples were amplified using nested PCR, and the genotypes were determined using an amplicon-based next-generation sequencing approach. We found that these source water samples included not only human RVA but also various animal RVA and high genetic diversity due to the existence of animal RVA was associated with a higher RVA concentration than PMMoV. Our findings suggest that PMMoV can be used as an indicator of norovirus GII and human RVA in drinking water sources and that the indicator performance should be evaluated by comparing to zoonotic viruses as well as human viruses.
Collapse
Affiliation(s)
- Takayuki Miura
- Department of Environmental Health, National Institute of Public Health, Wako, Japan.
| | - Syun-Suke Kadoya
- Department of Civil and Environmental Engineering, Tohoku University, Japan; Department of Urban Engineering, The University of Tokyo, Japan
| | - Yohei Miura
- Department of Civil and Environmental Engineering, Tohoku University, Japan
| | - Hiroyuki Takino
- Department of Environmental Health, National Institute of Public Health, Wako, Japan
| | - Michihiro Akiba
- Department of Environmental Health, National Institute of Public Health, Wako, Japan
| | - Daisuke Sano
- Department of Civil and Environmental Engineering, Tohoku University, Japan
| | | |
Collapse
|
31
|
Islam G, Gedge A, Ibrahim R, de Melo T, Lara-Jacobo L, Dlugosz T, Kirkwood AE, Simmons D, Desaulniers JP. The role of catchment population size, data normalization, and chronology of public health interventions on wastewater-based COVID-19 viral trends. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173272. [PMID: 38763190 DOI: 10.1016/j.scitotenv.2024.173272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/28/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic presented the most challenging global crisis in recent times. A pandemic caused by a novel pathogen such as SARS-CoV-2 necessitated the development of innovative techniques for the monitoring and surveillance of COVID-19 infections within communities. Wastewater surveillance (WWS) is recognized as a non-invasive, cost-effective, and valuable epidemiological tool to monitor the prevalence of COVID-19 infections in communities. Seven municipal wastewater sampling sites representing distinct sewershed communities were selected for the surveillance of the SARS-CoV-2 virus in Durham Region, Ontario, Canada over 8 months from March 2021 to October 2021. Viral RNA fragments of SARS-CoV-2 and the normalization target pepper mild mottle virus (PMMoV) were concentrated from wastewater influent using the PEG/NaCl superspeed centrifugation method and quantified using RT-qPCR. Strong significant correlations (Spearman's rs = 0.749 to 0.862, P < 0.001) were observed between SARS-CoV-2 gene copies/mL of wastewater and clinical cases reported in each delineated sewershed by onset date. Although raw wastewater offered higher correlation coefficients with clinical cases by onset date compared to PMMoV normalized data, only one site had a statistically significantly higher Spearman's correlation coefficient value for raw data than normalized data. Implementation of community stay-at-home orders and vaccinations over the course of the study period in 2021 were found to strongly correspond to decreasing SARS-CoV-2 wastewater trends in the wastewater treatment plants and upstream pumping stations.
Collapse
Affiliation(s)
- Golam Islam
- Faculty of Science, Ontario Tech University, 2000 Simcoe St N, Oshawa, ON L1G 0C5, Canada.
| | - Ashley Gedge
- Faculty of Science, Ontario Tech University, 2000 Simcoe St N, Oshawa, ON L1G 0C5, Canada
| | - Reeta Ibrahim
- Faculty of Science, Ontario Tech University, 2000 Simcoe St N, Oshawa, ON L1G 0C5, Canada
| | - Tomas de Melo
- Faculty of Science, Ontario Tech University, 2000 Simcoe St N, Oshawa, ON L1G 0C5, Canada
| | - Linda Lara-Jacobo
- Faculty of Science, Ontario Tech University, 2000 Simcoe St N, Oshawa, ON L1G 0C5, Canada
| | - Thomas Dlugosz
- Faculty of Science, Ontario Tech University, 2000 Simcoe St N, Oshawa, ON L1G 0C5, Canada
| | - Andrea E Kirkwood
- Faculty of Science, Ontario Tech University, 2000 Simcoe St N, Oshawa, ON L1G 0C5, Canada
| | - Denina Simmons
- Faculty of Science, Ontario Tech University, 2000 Simcoe St N, Oshawa, ON L1G 0C5, Canada
| | - Jean-Paul Desaulniers
- Faculty of Science, Ontario Tech University, 2000 Simcoe St N, Oshawa, ON L1G 0C5, Canada
| |
Collapse
|
32
|
Nash D, Ellmen I, Knapp JJ, Menon R, Overton AK, Cheng J, Lynch MDJ, Nissimov JI, Charles TC. A Novel Tiled Amplicon Sequencing Assay Targeting the Tomato Brown Rugose Fruit Virus (ToBRFV) Genome Reveals Widespread Distribution in Municipal Wastewater Treatment Systems in the Province of Ontario, Canada. Viruses 2024; 16:460. [PMID: 38543825 PMCID: PMC10974707 DOI: 10.3390/v16030460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 05/23/2024] Open
Abstract
Tomato Brown Rugose Fruit Virus (ToBRFV) is a plant pathogen that infects important Solanaceae crop species and can dramatically reduce tomato crop yields. The ToBRFV has rapidly spread around the globe due to its ability to escape detection by antiviral host genes which confer resistance to other tobamoviruses in tomato plants. The development of robust and reproducible methods for detecting viruses in the environment aids in the tracking and reduction of pathogen transmission. We detected ToBRFV in municipal wastewater influent (WWI) samples, likely due to its presence in human waste, demonstrating a widespread distribution of ToBRFV in WWI throughout Ontario, Canada. To aid in global ToBRFV surveillance efforts, we developed a tiled amplicon approach to sequence and track the evolution of ToBRFV genomes in municipal WWI. Our assay recovers 95.7% of the 6393 bp ToBRFV RefSeq genome, omitting the terminal 5' and 3' ends. We demonstrate that our sequencing assay is a robust, sensitive, and highly specific method for recovering ToBRFV genomes. Our ToBRFV assay was developed using existing ARTIC Network resources, including primer design, sequencing library prep, and read analysis. Additionally, we adapted our lineage abundance estimation tool, Alcov, to estimate the abundance of ToBRFV clades in samples.
Collapse
Affiliation(s)
- Delaney Nash
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (I.E.); (J.J.K.); (R.M.); (A.K.O.); (J.C.); (M.D.J.L.); (J.I.N.); (T.C.C.)
- Metagenom Bio Life Science Inc., Waterloo, ON N2L 5V4, Canada
| | - Isaac Ellmen
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (I.E.); (J.J.K.); (R.M.); (A.K.O.); (J.C.); (M.D.J.L.); (J.I.N.); (T.C.C.)
- Metagenom Bio Life Science Inc., Waterloo, ON N2L 5V4, Canada
| | - Jennifer J. Knapp
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (I.E.); (J.J.K.); (R.M.); (A.K.O.); (J.C.); (M.D.J.L.); (J.I.N.); (T.C.C.)
| | - Ria Menon
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (I.E.); (J.J.K.); (R.M.); (A.K.O.); (J.C.); (M.D.J.L.); (J.I.N.); (T.C.C.)
| | - Alyssa K. Overton
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (I.E.); (J.J.K.); (R.M.); (A.K.O.); (J.C.); (M.D.J.L.); (J.I.N.); (T.C.C.)
| | - Jiujun Cheng
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (I.E.); (J.J.K.); (R.M.); (A.K.O.); (J.C.); (M.D.J.L.); (J.I.N.); (T.C.C.)
- Metagenom Bio Life Science Inc., Waterloo, ON N2L 5V4, Canada
| | - Michael D. J. Lynch
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (I.E.); (J.J.K.); (R.M.); (A.K.O.); (J.C.); (M.D.J.L.); (J.I.N.); (T.C.C.)
- Metagenom Bio Life Science Inc., Waterloo, ON N2L 5V4, Canada
| | - Jozef I. Nissimov
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (I.E.); (J.J.K.); (R.M.); (A.K.O.); (J.C.); (M.D.J.L.); (J.I.N.); (T.C.C.)
| | - Trevor C. Charles
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (I.E.); (J.J.K.); (R.M.); (A.K.O.); (J.C.); (M.D.J.L.); (J.I.N.); (T.C.C.)
- Metagenom Bio Life Science Inc., Waterloo, ON N2L 5V4, Canada
| |
Collapse
|
33
|
Leisman KP, Owen C, Warns MM, Tiwari A, Bian GZ, Owens SM, Catlett C, Shrestha A, Poretsky R, Packman AI, Mangan NM. A modeling pipeline to relate municipal wastewater surveillance and regional public health data. WATER RESEARCH 2024; 252:121178. [PMID: 38309063 DOI: 10.1016/j.watres.2024.121178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/18/2023] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
As COVID-19 becomes endemic, public health departments benefit from improved passive indicators, which are independent of voluntary testing data, to estimate the prevalence of COVID-19 in local communities. Quantification of SARS-CoV-2 RNA from wastewater has the potential to be a powerful passive indicator. However, connecting measured SARS-CoV-2 RNA to community prevalence is challenging due to the high noise typical of environmental samples. We have developed a generalized pipeline using in- and out-of-sample model selection to test the ability of different correction models to reduce the variance in wastewater measurements and applied it to data collected from treatment plants in the Chicago area. We built and compared a set of multi-linear regression models, which incorporate pepper mild mottle virus (PMMoV) as a population biomarker, Bovine coronavirus (BCoV) as a recovery control, and wastewater system flow rate into a corrected estimate for SARS-CoV-2 RNA concentration. For our data, models with BCoV performed better than those with PMMoV, but the pipeline should be used to reevaluate any new data set as the sources of variance may change across locations, lab methods, and disease states. Using our best-fit model, we investigated the utility of RNA measurements in wastewater as a leading indicator of COVID-19 trends. We did this in a rolling manner for corrected wastewater data and for other prevalence indicators and statistically compared the temporal relationship between new increases in the wastewater data and those in other prevalence indicators. We found that wastewater trends often lead other COVID-19 indicators in predicting new surges.
Collapse
Affiliation(s)
- Katelyn Plaisier Leisman
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL, USA
| | - Christopher Owen
- Department of Biological Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Maria M Warns
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL, USA
| | - Anuj Tiwari
- Discovery Partners Institute, University of Illinois Chicago, Chicago, IL, USA
| | - George Zhixin Bian
- Department of Computer Science, Northwestern University, Evanston, IL, USA
| | - Sarah M Owens
- Biosciences, Argonne National Laboratory, Lemont, IL, USA
| | - Charlie Catlett
- Discovery Partners Institute, University of Illinois Chicago, Chicago, IL, USA; Computing, Environment, and Life Sciences, Argonne National Laboratory, Lemont, IL, USA
| | - Abhilasha Shrestha
- Division of Environmental and Occupational Health Sciences, School of Public Health, University of Illinois Chicago, Chicago, IL, USA
| | - Rachel Poretsky
- Department of Biological Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Aaron I Packman
- Center for Water Research, Northwestern University, Evanston, IL, USA; Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA
| | - Niall M Mangan
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL, USA; Center for Water Research, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
34
|
Wan Y, Zhang L, Xu Z, Su Q, Leung TF, Chan D, Wong OWH, Chan S, Chan FKL, Tun HM, Ng SC. Alterations in fecal virome and bacteriome virome interplay in children with autism spectrum disorder. Cell Rep Med 2024; 5:101409. [PMID: 38307030 PMCID: PMC10897546 DOI: 10.1016/j.xcrm.2024.101409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/10/2023] [Accepted: 01/11/2024] [Indexed: 02/04/2024]
Abstract
Emerging evidence suggests autism spectrum disorder (ASD) is associated with altered gut bacteria. However, less is known about the gut viral community and its role in shaping microbiota in neurodevelopmental disorders. Herein, we perform a metagenomic analysis of gut-DNA viruses in 60 children with ASD and 64 age- and gender-matched typically developing children to investigate the effect of the gut virome on host bacteria in children with ASD. ASD is associated with altered gut virome composition accompanied by the enrichment of Clostridium phage, Bacillus phage, and Enterobacteria phage. These ASD-enriched phages are largely associated with disrupted viral ecology in ASD. Importantly, changes in the interplay between the gut bacteriome and virome seen in ASD may influence the encoding capacity of microbial pathways for neuroactive metabolite biosynthesis. These findings suggest an impaired bacteriome-virome ecology in ASD, which sheds light on the importance of bacteriophages in pathogenesis and the development of microbial therapeutics in ASD.
Collapse
Affiliation(s)
- Yating Wan
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China; The D.H. Chen Foundation Hub of Advanced Technology for Child Health (HATCH), The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lin Zhang
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China; The D.H. Chen Foundation Hub of Advanced Technology for Child Health (HATCH), The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhilu Xu
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qi Su
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ting-Fan Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong SAR, China; The D.H. Chen Foundation Hub of Advanced Technology for Child Health (HATCH), The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Dorothy Chan
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Oscar W H Wong
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong SAR, China; The D.H. Chen Foundation Hub of Advanced Technology for Child Health (HATCH), The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Sandra Chan
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong SAR, China; The D.H. Chen Foundation Hub of Advanced Technology for Child Health (HATCH), The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Francis K L Chan
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong SAR, China; The D.H. Chen Foundation Hub of Advanced Technology for Child Health (HATCH), The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hein M Tun
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China; The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Siew C Ng
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China; The D.H. Chen Foundation Hub of Advanced Technology for Child Health (HATCH), The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
35
|
Thakali O, Mercier É, Eid W, Wellman M, Brasset-Gorny J, Overton AK, Knapp JJ, Manuel D, Charles TC, Goodridge L, Arts EJ, Poon AFY, Brown RS, Graber TE, Delatolla R, DeGroot CT. Real-time evaluation of signal accuracy in wastewater surveillance of pathogens with high rates of mutation. Sci Rep 2024; 14:3728. [PMID: 38355869 PMCID: PMC10866965 DOI: 10.1038/s41598-024-54319-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/11/2024] [Indexed: 02/16/2024] Open
Abstract
Wastewater surveillance of coronavirus disease 2019 (COVID-19) commonly applies reverse transcription-quantitative polymerase chain reaction (RT-qPCR) to quantify severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA concentrations in wastewater over time. In most applications worldwide, maximal sensitivity and specificity of RT-qPCR has been achieved, in part, by monitoring two or more genomic loci of SARS-CoV-2. In Ontario, Canada, the provincial Wastewater Surveillance Initiative reports the average copies of the CDC N1 and N2 loci normalized to the fecal biomarker pepper mild mottle virus. In November 2021, the emergence of the Omicron variant of concern, harboring a C28311T mutation within the CDC N1 probe region, challenged the accuracy of the consensus between the RT-qPCR measurements of the N1 and N2 loci of SARS-CoV-2. In this study, we developed and applied a novel real-time dual loci quality assurance and control framework based on the relative difference between the loci measurements to the City of Ottawa dataset to identify a loss of sensitivity of the N1 assay in the period from July 10, 2022 to January 31, 2023. Further analysis via sequencing and allele-specific RT-qPCR revealed a high proportion of mutations C28312T and A28330G during the study period, both in the City of Ottawa and across the province. It is hypothesized that nucleotide mutations in the probe region, especially A28330G, led to inefficient annealing, resulting in reduction in sensitivity and accuracy of the N1 assay. This study highlights the importance of implementing quality assurance and control criteria to continually evaluate, in near real-time, the accuracy of the signal produced in wastewater surveillance applications that rely on detection of pathogens whose genomes undergo high rates of mutation.
Collapse
Affiliation(s)
- Ocean Thakali
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Élisabeth Mercier
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Walaa Eid
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, K1H 8L1, Canada
| | - Martin Wellman
- The Ottawa Hospital Research Institute, 1053 Carling Ave, Ottawa, ON, K1Y 4E9, Canada
| | - Julia Brasset-Gorny
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, K1H 8L1, Canada
| | - Alyssa K Overton
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Jennifer J Knapp
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Douglas Manuel
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, K1H 8L1, Canada
- Department of Family Medicine, University of Ottawa, 75 Laurier Ave. E, Ottawa, ON, K1N 6N5, Canada
- School of Epidemiology and Public Health, University of Ottawa, 75 Laurier Ave. E, Ottawa, ON, K1N 6N5, Canada
| | - Trevor C Charles
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Lawrence Goodridge
- Department of Food Science, Canadian Research Institute for Food Safety, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Eric J Arts
- Department of Microbiology and Immunology, Western University, London, ON, N6A 3K7, Canada
| | - Art F Y Poon
- Department of Microbiology and Immunology, Western University, London, ON, N6A 3K7, Canada
| | - R Stephen Brown
- School of Environmental Studies and Department of Chemistry, Queen's University, Kingston, ON, Canada
| | - Tyson E Graber
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, K1H 8L1, Canada
| | - Robert Delatolla
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Christopher T DeGroot
- Department of Mechanical and Materials Engineering, Western University, London, ON, N6A 5B9, Canada.
| |
Collapse
|
36
|
Maksimović O, Bačnik K, Rivarez MPS, Vučurović A, Mehle N, Ravnikar M, Gutiérrez-Aguirre I, Kutnjak D. Virome analysis of irrigation water sources provides extensive insights into the diversity and distribution of plant viruses in agroecosystems. WATER RESEARCH 2024; 249:120712. [PMID: 38134622 DOI: 10.1016/j.watres.2023.120712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 12/24/2023]
Abstract
Plant viruses pose a significant threat to agriculture. Several are stable outside their hosts, can enter water bodies and remain infective for prolonged periods of time. Even though the quality of irrigation water is of increasing importance in the context of plant health, the presence of plant viruses in irrigation waters is understudied. In this study, we conducted a large-scale high-throughput sequencing (HTS)-based virome analysis of irrigation and surface water sources to obtain complete information about the abundance and diversity of plant viruses in such waters. We detected nucleic acids of plant viruses from 20 families, discovered several novel plant viruses from economically important taxa, like Tobamovirus and observed the influence of the water source on the present virome. By comparing viromes of water and surrounding plants, we observed presence of plant viruses in both compartments, especially in cases of large-scale outbreaks, such as that of tomato mosaic virus. Moreover, we demonstrated that water virome data can extensively inform us about the distribution and diversity of plant viruses for which only limited information is available from plants. Overall, the results of the study provided extensive insights into the virome of irrigation waters from the perspective of plant health. It also suggested that an HTS-based water virome surveillance system could be used to detect potential plant disease outbreaks and to survey the distribution and diversity of plant viruses in the ecosystem.
Collapse
Affiliation(s)
- Olivera Maksimović
- National Institute of Biology, Večna pot 111, Ljubljana 1000, Slovenia; Jožef Stefan International Postgraduate School, Slovenia
| | - Katarina Bačnik
- National Institute of Biology, Večna pot 111, Ljubljana 1000, Slovenia
| | - Mark Paul Selda Rivarez
- National Institute of Biology, Večna pot 111, Ljubljana 1000, Slovenia; Department of Entomology and Plant Pathology, North Carolina State University, USA; College of Agriculture and Agri-Industries, Caraga State University, Philippines
| | - Ana Vučurović
- National Institute of Biology, Večna pot 111, Ljubljana 1000, Slovenia
| | - Nataša Mehle
- National Institute of Biology, Večna pot 111, Ljubljana 1000, Slovenia; School for Viticulture and Enology, University of Nova Gorica, Slovenia
| | - Maja Ravnikar
- National Institute of Biology, Večna pot 111, Ljubljana 1000, Slovenia
| | | | - Denis Kutnjak
- National Institute of Biology, Večna pot 111, Ljubljana 1000, Slovenia.
| |
Collapse
|
37
|
Arehart CH, Sterrett JD, Garris RL, Quispe-Pilco RE, Gignoux CR, Evans LM, Stanislawski MA. Poly-omic risk scores predict inflammatory bowel disease diagnosis. mSystems 2024; 9:e0067723. [PMID: 38095449 PMCID: PMC10805030 DOI: 10.1128/msystems.00677-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/02/2023] [Indexed: 01/11/2024] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by complex etiology and a disrupted colonic ecosystem. We provide a framework for the analysis of multi-omic data, which we apply to study the gut ecosystem in IBD. Specifically, we train and validate models using data on the metagenome, metatranscriptome, virome, and metabolome from the Human Microbiome Project 2 IBD multi-omic database, with 1,785 repeated samples from 130 individuals (103 cases and 27 controls). After splitting the participants into training and testing groups, we used mixed-effects least absolute shrinkage and selection operator regression to select features for each omic. These features, with demographic covariates, were used to generate separate single-omic prediction scores. All four single-omic scores were then combined into a final regression to assess the relative importance of the individual omics and the predictive benefits when considered together. We identified several species, pathways, and metabolites known to be associated with IBD risk, and we explored the connections between data sets. Individually, metabolomic and viromic scores were more predictive than metagenomics or metatranscriptomics, and when all four scores were combined, we predicted disease diagnosis with a Nagelkerke's R2 of 0.46 and an area under the curve of 0.80 (95% confidence interval: 0.63, 0.98). Our work supports that some single-omic models for complex traits are more predictive than others, that incorporating multiple omic data sets may improve prediction, and that each omic data type provides a combination of unique and redundant information. This modeling framework can be extended to other complex traits and multi-omic data sets.IMPORTANCEComplex traits are characterized by many biological and environmental factors, such that multi-omic data sets are well-positioned to help us understand their underlying etiologies. We applied a prediction framework across multiple omics (metagenomics, metatranscriptomics, metabolomics, and viromics) from the gut ecosystem to predict inflammatory bowel disease (IBD) diagnosis. The predicted scores from our models highlighted key features and allowed us to compare the relative utility of each omic data set in single-omic versus multi-omic models. Our results emphasized the importance of metabolomics and viromics over metagenomics and metatranscriptomics for predicting IBD status. The greater predictive capability of metabolomics and viromics is likely because these omics serve as markers of lifestyle factors such as diet. This study provides a modeling framework for multi-omic data, and our results show the utility of combining multiple omic data types to disentangle complex disease etiologies and biological signatures.
Collapse
Affiliation(s)
- Christopher H. Arehart
- Interdisciplinary Quantitative Biology PhD Program, University of Colorado, Boulder, Colorado, USA
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
- Institute for Behavioral Genetics, University of Colorado, Boulder, Colorado, USA
| | - John D. Sterrett
- Interdisciplinary Quantitative Biology PhD Program, University of Colorado, Boulder, Colorado, USA
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado, USA
| | - Rosanna L. Garris
- Interdisciplinary Quantitative Biology PhD Program, University of Colorado, Boulder, Colorado, USA
- Department of Biochemistry, University of Colorado, Boulder, Colorado, USA
| | - Ruth E. Quispe-Pilco
- Interdisciplinary Quantitative Biology PhD Program, University of Colorado, Boulder, Colorado, USA
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
| | - Christopher R. Gignoux
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Luke M. Evans
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
- Institute for Behavioral Genetics, University of Colorado, Boulder, Colorado, USA
| | - Maggie A. Stanislawski
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
38
|
Soria-Villalba A, Pesantes N, Jiménez-Hernández N, Pons J, Moya A, Pérez-Brocal V. Comparison of Experimental Methodologies Based on Bulk-Metagenome and Virus-like Particle Enrichment: Pros and Cons for Representativeness and Reproducibility in the Study of the Fecal Human Virome. Microorganisms 2024; 12:162. [PMID: 38257988 PMCID: PMC10820677 DOI: 10.3390/microorganisms12010162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Studies on the human virome based on the application of metagenomic approaches involve overcoming a series of challenges and limitations inherent not only to the biological features of viruses, but also to methodological pitfalls which different approaches have tried to minimize. These approaches fall into two main categories: bulk-metagenomes and virus-like particle (VLP) enrichment. In order to address issues associated with commonly used experimental procedures to assess the degree of reliability, representativeness, and reproducibility, we designed a comparative analysis applied to three experimental protocols, one based on bulk-metagenomes and two based on VLP enrichment. These protocols were applied to stool samples from 10 adult participants, including two replicas per protocol and subject. We evaluated the performances of the three methods, not only through the analysis of the resulting composition, abundance, and diversity of the virome via taxonomical classification and type of molecule (DNA versus RNA, single stranded vs. double stranded), but also according to how the a priori identical replicas differed from each other according to the extraction methods used. Our results highlight the strengths and weaknesses of each approach, offering valuable insights and tailored recommendations for drawing reliable conclusions based on specific research goals.
Collapse
Affiliation(s)
| | - Nicole Pesantes
- Area of Genomics and Health, Foundation for the Promotion of Sanitary and Biomedical Research of Valencia Region (FISABIO-Public Health), 46020 Valencia, Spain; (N.P.); (N.J.-H.); (J.P.); (A.M.)
- Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Nuria Jiménez-Hernández
- Area of Genomics and Health, Foundation for the Promotion of Sanitary and Biomedical Research of Valencia Region (FISABIO-Public Health), 46020 Valencia, Spain; (N.P.); (N.J.-H.); (J.P.); (A.M.)
- Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Javier Pons
- Area of Genomics and Health, Foundation for the Promotion of Sanitary and Biomedical Research of Valencia Region (FISABIO-Public Health), 46020 Valencia, Spain; (N.P.); (N.J.-H.); (J.P.); (A.M.)
| | - Andrés Moya
- Area of Genomics and Health, Foundation for the Promotion of Sanitary and Biomedical Research of Valencia Region (FISABIO-Public Health), 46020 Valencia, Spain; (N.P.); (N.J.-H.); (J.P.); (A.M.)
- Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish National Research Council (CSIC), 46980 Valencia, Spain
| | - Vicente Pérez-Brocal
- Area of Genomics and Health, Foundation for the Promotion of Sanitary and Biomedical Research of Valencia Region (FISABIO-Public Health), 46020 Valencia, Spain; (N.P.); (N.J.-H.); (J.P.); (A.M.)
- Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| |
Collapse
|
39
|
Katayama YA, Hayase S, Iwamoto R, Kuroita T, Okuda T, Kitajima M, Masago Y. Simultaneous extraction and detection of DNA and RNA from viruses, prokaryotes, and eukaryotes in wastewater using a modified COPMAN. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167866. [PMID: 37863234 DOI: 10.1016/j.scitotenv.2023.167866] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
Wastewater surveillance can offer a comprehensive grasp of infectious disease prevalence and human health because wastewater contains various human-derived microbial pathogens, including viruses, bacteria, and fungi. However, methods capable of simultaneous detection of multiple groups of targets in the automated systems and large-scale surveillance are still under development. Here, we demonstrated the modification, involving the addition of bead-beating, to the existing COPMAN (COagulation and Proteolysis method using MAgnetic beads for detection of Nucleic acids in wastewater) enabled enhanced detection of various microorganisms, including SARS-CoV-2. The modified method, termed bead-beating COPMAN (BB-COPMAN), was evaluated through spike-and-recovery experiments and comparative analysis against three previously reported methods for simultaneous DNA/RNA detection. Our study targeted a range of microorganisms, including enveloped and non-enveloped RNA viruses (SARS-CoV-2, PMMoV), a DNA virus (crAssphage), archaea, gram-negative and gram-positive bacteria (E. coli, Lachnospiraceae), antibiotic resistance gene (ampC), and fungi (Candida albicans). The recovery rates of BB-COPMAN for gram-negative and gram-positive bacteria were 17 and 2.1-fold higher, respectively, compared to the method for DNA/RNA detection. Additionally, BB-COPMAN exhibited the highest extraction efficiency among the tested methods, achieving 1.2-5.7 times more DNA and 1.1-69 times more RNA yield on average. BB-COPMAN allowed the detection of SARS-CoV-2 from all nine samples and PMMoV at concentrations 39-97 times higher than other methods. Moreover, BB-COPMAN detected larger amounts of DNA for four out of six DNA targets than the previously reported DNA/RNA detection method. These results demonstrated that BB-COPMAN enables enhanced detection of multiple targets in a single flow of nucleic acid extraction, making the method well-suited for automated systems. In conclusion, BB-COPMAN is a promising method in wastewater surveillance for assessing the prevalence of wide range of pathogenic microorganisms.
Collapse
Affiliation(s)
- Yuka Adachi Katayama
- Shionogi & Co., Ltd., Pharmaceutical Research Center, 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Shin Hayase
- Shionogi & Co., Ltd., Pharmaceutical Research Center, 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Ryo Iwamoto
- Shionogi & Co., Ltd., Head Office, 3-1-8 Doshomachi, Chuo-ku, Osaka 541-0045, Japan; AdvanSentinel Inc., 3-1-8 Doshomachi, Chuo-ku, Osaka 541-0045, Japan
| | - Tomohiro Kuroita
- Shionogi & Co., Ltd., Head Office, 3-1-8 Doshomachi, Chuo-ku, Osaka 541-0045, Japan; AdvanSentinel Inc., 3-1-8 Doshomachi, Chuo-ku, Osaka 541-0045, Japan
| | - Tomohiko Okuda
- Shionogi & Co., Ltd., Pharmaceutical Research Center, 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Yusaku Masago
- Shionogi & Co., Ltd., Pharmaceutical Research Center, 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan.
| |
Collapse
|
40
|
Yang Z, Yang M, Deehan EC, Cai C, Madsen KL, Wine E, Li G, Li J, Liu J, Zhang Z. Dietary fiber for the prevention of childhood obesity: a focus on the involvement of the gut microbiota. Gut Microbes 2024; 16:2387796. [PMID: 39163556 PMCID: PMC11340751 DOI: 10.1080/19490976.2024.2387796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/22/2024] Open
Abstract
Given the worldwide epidemic of overweight and obesity among children, evidence-based dietary recommendations are fundamentally important for obesity prevention. Although the significance of the human gut microbiome in shaping the physiological effects of diet and obesity has been widely recognized, nutritional therapeutics for the mitigation of pediatric obesity globally are only just starting to leverage advancements in the nutritional microbiology field. In this review, we extracted data from PubMed, EMBASE, Scopus, Web of Science, Google Scholar, CNKI, Cochrane Library and Wiley online library that focuses on the characterization of gut microbiota (including bacteria, fungi, viruses, and archaea) in children with obesity. We further review host-microbe interactions as mechanisms mediating the physiological effects of dietary fibers and how fibers alter the gut microbiota in children with obesity. Contemporary nutritional recommendations for the prevention of pediatric obesity are also discussed from a gut microbiological perspective. Finally, we propose an experimental framework for integrating gut microbiota into nutritional interventions for children with obesity and provide recommendations for the design of future studies on precision nutrition for pediatric obesity.
Collapse
Affiliation(s)
- Zhongmin Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
| | - Mingyue Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
| | - Edward C. Deehan
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, USA
- Nebraska Food for Health Center, University of Nebraska, Lincoln, NE, USA
| | - Chenxi Cai
- School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Karen L. Madsen
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Eytan Wine
- Division of Pediatric Gastroenterology, Departments of Pediatrics and Physiology, University of Alberta, Edmonton, AB, Canada
| | - Guiling Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen, Fujian, China
| | - Jian Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen, Fujian, China
| | - Jingwen Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
| | - Zhengxiao Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen, Fujian, China
| |
Collapse
|
41
|
Liu T, Guo Y, Liao Y, Liu J. Mechanism-guided fine-tuned microbiome potentiates anti-tumor immunity in HCC. Front Immunol 2023; 14:1333864. [PMID: 38169837 PMCID: PMC10758498 DOI: 10.3389/fimmu.2023.1333864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Microbiome, including bacteria, fungi, and viruses, plays a crucial role in shaping distal and proximal anti-tumor immunity. Mounting evidence showed that commensal microbiome critically modulates immunophenotyping of hepatocellular carcinoma (HCC), a leading cause of cancer-related death. However, their role in anti-tumor surveillance of HCC is still poorly understood. Herein, we spotlighted growing interests in how the microbiome influences the progression and immunotherapeutic responses of HCC via changing local tumor microenvironment (TME) upon translocating to the sites of HCC through different "cell-type niches". Moreover, we summarized not only the associations but also the deep insight into the mechanisms of how the extrinsic microbiomes interplay with hosts to shape immune surveillance and regulate TME and immunotherapeutic responses. Collectively, we provided a rationale for a mechanism-guided fine-tuned microbiome to be neoadjuvant immunotherapy in the near future.
Collapse
Affiliation(s)
- Tao Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ya Guo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yanxia Liao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jinping Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
42
|
Zell R, Groth M, Selinka L, Selinka HC. Exploring the Diversity of Plant-Associated Viruses and Related Viruses in Riverine Freshwater Samples Collected in Berlin, Germany. Pathogens 2023; 12:1458. [PMID: 38133341 PMCID: PMC10745976 DOI: 10.3390/pathogens12121458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Plant-infecting RNA viruses from 30 families and floating genera, as well as a great number of uncultured as yet-unclassified plant-associated viruses have been described. Even so, the plant RNA virosphere is still underexplored. RNA extracted from enriched virus particles of 50 L water samples from the Teltow Canal and the Havel River in Berlin, Germany, was sequenced using Illumina next-generation sequencing. Sequences were searched for plant viruses with BLAST and DIAMOND. Phylogenetic analyses were conducted with IQ-TREE 2. Altogether, 647 virus sequences greater than 1 kb were detected and further analyzed. These data revealed the presence of accepted and novel viruses related to Albetovirus, Alphaflexiviridae, Aspiviridae, Bromoviridae, Endornaviridae, Partitiviridae, Potyviridae, Solemoviridae, Tombusviridae and Virgaviridae. The vast majority of the sequences were novel and could not be taxonomically assigned. Several tombus- and endorna-like viruses make use of alternative translation tables that suggest unicellular green algae, ciliates, or diplomonades as their hosts. The identification of 27 albeto-like satellite viruses increases available sequence data five-fold. Sixteen new poty-like viruses align with other poty-like viruses in a link that combines the Astroviridae and Potyviridae families. Further, the identification of viruses with peptidase A6-like and peptidase A21-like capsid proteins suggests horizontal gene transfer in the evolution of these viruses.
Collapse
Affiliation(s)
- Roland Zell
- Section of Experimental Virology, Institute for Medical Microbiology, Jena University Hospital, Friedrich Schiller University, 07745 Jena, Germany
| | - Marco Groth
- CF Next Generation Sequencing, Leibniz Institute on Aging-Fritz Lipmann Institute, 07745 Jena, Germany
| | - Lukas Selinka
- Section of Experimental Virology, Institute for Medical Microbiology, Jena University Hospital, Friedrich Schiller University, 07745 Jena, Germany
| | - Hans-Christoph Selinka
- Section II 1.4 Microbiological Risks, Department of Environmental Hygiene, German Environment Agency, 14195 Berlin, Germany
| |
Collapse
|
43
|
Hsieh SY, Savva GM, Telatin A, Tiwari SK, Tariq MA, Newberry F, Seton KA, Booth C, Bansal AS, Wileman T, Adriaenssens EM, Carding SR. Investigating the Human Intestinal DNA Virome and Predicting Disease-Associated Virus-Host Interactions in Severe Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Int J Mol Sci 2023; 24:17267. [PMID: 38139096 PMCID: PMC10744171 DOI: 10.3390/ijms242417267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Understanding how the human virome, and which of its constituents, contributes to health or disease states is reliant on obtaining comprehensive virome profiles. By combining DNA viromes from isolated virus-like particles (VLPs) and whole metagenomes from the same faecal sample of a small cohort of healthy individuals and patients with severe myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), we have obtained a more inclusive profile of the human intestinal DNA virome. Key features are the identification of a core virome comprising tailed phages of the class Caudoviricetes, and a greater diversity of DNA viruses including extracellular phages and integrated prophages. Using an in silico approach, we predicted interactions between members of the Anaerotruncus genus and unique viruses present in ME/CFS microbiomes. This study therefore provides a framework and rationale for studies of larger cohorts of patients to further investigate disease-associated interactions between the intestinal virome and the bacteriome.
Collapse
Affiliation(s)
- Shen-Yuan Hsieh
- Food, Microbiome, and Health Research Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (S.-Y.H.); (A.T.); (S.K.T.); (M.A.T.); (F.N.); (K.A.S.); (T.W.)
| | - George M. Savva
- Core Science Resources, Quadram Institute Bioscience, Norwich NR4 7UQ, UK; (G.M.S.); (C.B.)
| | - Andrea Telatin
- Food, Microbiome, and Health Research Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (S.-Y.H.); (A.T.); (S.K.T.); (M.A.T.); (F.N.); (K.A.S.); (T.W.)
| | - Sumeet K. Tiwari
- Food, Microbiome, and Health Research Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (S.-Y.H.); (A.T.); (S.K.T.); (M.A.T.); (F.N.); (K.A.S.); (T.W.)
| | - Mohammad A. Tariq
- Food, Microbiome, and Health Research Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (S.-Y.H.); (A.T.); (S.K.T.); (M.A.T.); (F.N.); (K.A.S.); (T.W.)
| | - Fiona Newberry
- Food, Microbiome, and Health Research Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (S.-Y.H.); (A.T.); (S.K.T.); (M.A.T.); (F.N.); (K.A.S.); (T.W.)
| | - Katharine A. Seton
- Food, Microbiome, and Health Research Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (S.-Y.H.); (A.T.); (S.K.T.); (M.A.T.); (F.N.); (K.A.S.); (T.W.)
| | - Catherine Booth
- Core Science Resources, Quadram Institute Bioscience, Norwich NR4 7UQ, UK; (G.M.S.); (C.B.)
| | | | - Thomas Wileman
- Food, Microbiome, and Health Research Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (S.-Y.H.); (A.T.); (S.K.T.); (M.A.T.); (F.N.); (K.A.S.); (T.W.)
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| | - Evelien M. Adriaenssens
- Food, Microbiome, and Health Research Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (S.-Y.H.); (A.T.); (S.K.T.); (M.A.T.); (F.N.); (K.A.S.); (T.W.)
| | - Simon R. Carding
- Food, Microbiome, and Health Research Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (S.-Y.H.); (A.T.); (S.K.T.); (M.A.T.); (F.N.); (K.A.S.); (T.W.)
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
44
|
Bhagchandani T, Nikita, Verma A, Tandon R. Exploring the Human Virome: Composition, Dynamics, and Implications for Health and Disease. Curr Microbiol 2023; 81:16. [PMID: 38006423 DOI: 10.1007/s00284-023-03537-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/24/2023] [Indexed: 11/27/2023]
Abstract
Humans are colonized by large number of microorganisms-bacteria, fungi, and viruses. The overall genome of entire viruses that either lives on or inside the human body makes up the human virome and is indeed an essential fraction of the human metagenome. Humans are constantly exposed to viruses as they are ubiquitously present on earth. The human virobiota encompasses eukaryotic viruses, bacteriophages, retroviruses, and even giant viruses. With the advent of Next-generation sequencing (NGS) and ongoing development of numerous bioinformatic softwares, identification and taxonomic characterization of viruses have become easier. The viruses are abundantly present in humans; these can be pathogenic or commensal. The viral communities occupy various niches in the human body. The viruses start colonizing the infant gut soon after birth in a stepwise fashion and the viral composition diversify according to their feeding habits. Various factors such as diet, age, medications, etc. influence and shape the human virome. The viruses interact with the host immune system and these interactions have beneficial or detrimental effects on their host. The virome composition and abundance change during the course of disease and these alterations impact the immune system. Hence, the virome population in healthy and disease conditions influences the human host in numerous ways. This review presents an overview of assembly and composition of the human virome in healthy asymptomatic individuals, changes in the virome profiles, and host-virome interactions in various disease states.
Collapse
Affiliation(s)
- Tannu Bhagchandani
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Nikita
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Anjali Verma
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Ravi Tandon
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
45
|
Otálora-Otálora BA, López-Rivera JJ, Aristizábal-Guzmán C, Isaza-Ruget MA, Álvarez-Moreno CA. Host Transcriptional Regulatory Genes and Microbiome Networks Crosstalk through Immune Receptors Establishing Normal and Tumor Multiomics Metafirm of the Oral-Gut-Lung Axis. Int J Mol Sci 2023; 24:16638. [PMID: 38068961 PMCID: PMC10706695 DOI: 10.3390/ijms242316638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/13/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023] Open
Abstract
The microbiome has shown a correlation with the diet and lifestyle of each population in health and disease, the ability to communicate at the cellular level with the host through innate and adaptative immune receptors, and therefore an important role in modulating inflammatory process related to the establishment and progression of cancer. The oral cavity is one of the most important interaction windows between the human body and the environment, allowing the entry of an important number of microorganisms and their passage across the gastrointestinal tract and lungs. In this review, the contribution of the microbiome network to the establishment of systemic diseases like cancer is analyzed through their synergistic interactions and bidirectional crosstalk in the oral-gut-lung axis as well as its communication with the host cells. Moreover, the impact of the characteristic microbiota of each population in the formation of the multiomics molecular metafirm of the oral-gut-lung axis is also analyzed through state-of-the-art sequencing techniques, which allow a global study of the molecular processes involved of the flow of the microbiota environmental signals through cancer-related cells and its relationship with the establishment of the transcription factor network responsible for the control of regulatory processes involved with tumorigenesis.
Collapse
Affiliation(s)
| | - Juan Javier López-Rivera
- Grupo de Investigación INPAC, Specialized Laboratory, Clinica Universitaria Colombia, Clínica Colsanitas S.A., Bogotá 111321, Colombia;
| | - Claudia Aristizábal-Guzmán
- Grupo de Investigación INPAC, Unidad de Investigación, Fundación Universitaria Sanitas, Bogotá 110131, Colombia;
| | - Mario Arturo Isaza-Ruget
- Keralty, Sanitas International Organization, Grupo de Investigación INPAC, Fundación Universitaria Sanitas, Bogotá 110131, Colombia;
| | - Carlos Arturo Álvarez-Moreno
- Infectious Diseases Department, Clinica Universitaria Colombia, Clínica Colsanitas S.A., Bogotá 111321, Colombia;
| |
Collapse
|
46
|
Andrianjakarivony FH, Bettarel Y, Cecchi P, Bouchard S, Chase E, Desnues C. Decoding the DNA and RNA viromes of a tropical urban lagoon. Environ Microbiol 2023; 25:2368-2387. [PMID: 37431274 DOI: 10.1111/1462-2920.16463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/19/2023] [Indexed: 07/12/2023]
Abstract
Human and livestock sewage is one of the major causes of excess nutrients, leading to the eutrophication of aquatic ecosystems and potentially to the emergence or spread of pathogenic viruses. This study aimed to investigate the composition and diversity of aquatic viromes in a highly anthropized lagoon, to identify the presence of pathogenic taxa and to explore their use as possible viral indicators of faecal contamination. For this, water and sediment samples were collected in the Ebrié Lagoon (Ivory Coast) at seven stations with contrasting levels of eutrophication. The DNA viromes of the planktonic and the benthic compartments were highly divergent, but were not influenced by the level of eutrophication. Conversely, the RNA viromes in the water column were comparable to those found in sediment, but showed significant differences between the stations. We detected the presence of viral DNA and RNA sequences we had assigned as indicators of faecal contamination (smacovirus, pecovirus and pepper mild mottle virus) as well as human pathogens (human cyclovirus, coxsackie B virus and picobirnavirus), which were all enriched in the most eutrophicated sites. These findings suggest that the examination of viromes represents a promising tool for assessing the state of human-induced contamination of aquatic ecosystems.
Collapse
Affiliation(s)
- Felana Harilanto Andrianjakarivony
- Microbes, Evolution, Phylogeny, and Infection (MEФI), IHU - Méditerranée Infection, Marseille, France
- Microbiologie Environnementale Biotechnologie (MEB), Mediterranean Institute of Oceanography (MIO), Marseille, France
| | - Yvan Bettarel
- Marine Biodiversity, Exploitation & Conservation (MARBEC), University of Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Philippe Cecchi
- Marine Biodiversity, Exploitation & Conservation (MARBEC), University of Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Sonia Bouchard
- Microbes, Evolution, Phylogeny, and Infection (MEФI), IHU - Méditerranée Infection, Marseille, France
- Microbiologie Environnementale Biotechnologie (MEB), Mediterranean Institute of Oceanography (MIO), Marseille, France
| | - Emily Chase
- Microbiologie Environnementale Biotechnologie (MEB), Mediterranean Institute of Oceanography (MIO), Marseille, France
| | - Christelle Desnues
- Microbes, Evolution, Phylogeny, and Infection (MEФI), IHU - Méditerranée Infection, Marseille, France
- Microbiologie Environnementale Biotechnologie (MEB), Mediterranean Institute of Oceanography (MIO), Marseille, France
| |
Collapse
|
47
|
Panizzolo M, Gea M, Carraro E, Gilli G, Bonetta S, Pignata C. Occurrence of human pathogenic viruses in drinking water and in its sources: A review. J Environ Sci (China) 2023; 132:145-161. [PMID: 37336605 DOI: 10.1016/j.jes.2022.07.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 06/21/2023]
Abstract
Since many waterborne diseases are caused by human pathogenic viruses, virus monitoring of drinking water (DW) and DW sources is crucial for public health. Therefore, the aim of this review was to describe the occurrence of human pathogenic viruses in DW and DW sources; the occurrence of two viruses proposed as novel indicators of human faecal contamination (Pepper mild mottle virus and Tobacco mosaic virus) was also reported. This research was focused on articles that assessed viral occurrence using molecular methods in the surface water used for DW production (SW-D), groundwater used for DW production (GW-D), DW and bottled-DW (BW). A total of 1544 studies published in the last 10 years were analysed, and 79 were ultimately included. In considering the detection methods, filtration is the most common concentration technique, while quantitative polymerase chain reaction is the most common quantification technique. Regarding virus occurrence in SW-D, GW-D, and DW, high percentages of positive samples were reported for adenovirus, polyomavirus and Pepper mild mottle virus. Viral genomes were frequently detected in SW-D and rarely in GW-D, suggesting that GW-D may be a safe DW source. Viral genomes were also detected in DW, posing a possible threat to human health. The lowest percentages of positive samples were found in Europe, while the highest were found in Asia and South America. Only three articles assessed viral occurrence in BW. This review highlights the lack of method standardization and the need for legislation updates.
Collapse
Affiliation(s)
- Marco Panizzolo
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Torino, Italy
| | - Marta Gea
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Torino, Italy.
| | - Elisabetta Carraro
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Torino, Italy
| | - Giorgio Gilli
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Torino, Italy
| | - Silvia Bonetta
- Department of Life Sciences and Systems Biology, University of Torino, via Accademia Albertina 13, 10123, Torino, Italy
| | - Cristina Pignata
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Torino, Italy
| |
Collapse
|
48
|
Dhiyebi HA, Abu Farah J, Ikert H, Srikanthan N, Hayat S, Bragg LM, Qasim A, Payne M, Kaleis L, Paget C, Celmer-Repin D, Folkema A, Drew S, Delatolla R, Giesy JP, Servos MR. Assessment of seasonality and normalization techniques for wastewater-based surveillance in Ontario, Canada. Front Public Health 2023; 11:1186525. [PMID: 37711234 PMCID: PMC10499178 DOI: 10.3389/fpubh.2023.1186525] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/04/2023] [Indexed: 09/16/2023] Open
Abstract
Introduction Wastewater-based surveillance is at the forefront of monitoring for community prevalence of COVID-19, however, continued uncertainty exists regarding the use of fecal indicators for normalization of the SARS-CoV-2 virus in wastewater. Using three communities in Ontario, sampled from 2021-2023, the seasonality of a viral fecal indicator (pepper mild mottle virus, PMMoV) and the utility of normalization of data to improve correlations with clinical cases was examined. Methods Wastewater samples from Warden, the Humber Air Management Facility (AMF), and Kitchener were analyzed for SARS-CoV-2, PMMoV, and crAssphage. The seasonality of PMMoV and flow rates were examined and compared by Season-Trend-Loess decomposition analysis. The effects of normalization using PMMoV, crAssphage, and flow rates were analyzed by comparing the correlations to clinical cases by episode date (CBED) during 2021. Results Seasonal analysis demonstrated that PMMoV had similar trends at Humber AMF and Kitchener with peaks in January and April 2022 and low concentrations (troughs) in the summer months. Warden had similar trends but was more sporadic between the peaks and troughs for PMMoV concentrations. Flow demonstrated similar trends but was not correlated to PMMoV concentrations at Humber AMF and was very weak at Kitchener (r = 0.12). Despite the differences among the sewersheds, unnormalized SARS-CoV-2 (raw N1-N2) concentration in wastewater (n = 99-191) was strongly correlated to the CBED in the communities (r = 0.620-0.854) during 2021. Additionally, normalization with PMMoV did not improve the correlations at Warden and significantly reduced the correlations at Humber AMF and Kitchener. Flow normalization (n = 99-191) at Humber AMF and Kitchener and crAssphage normalization (n = 29-57) correlations at all three sites were not significantly different from raw N1-N2 correlations with CBED. Discussion Differences in seasonal trends in viral biomarkers caused by differences in sewershed characteristics (flow, input, etc.) may play a role in determining how effective normalization may be for improving correlations (or not). This study highlights the importance of assessing the influence of viral fecal indicators on normalized SARS-CoV-2 or other viruses of concern. Fecal indicators used to normalize the target of interest may help or hinder establishing trends with clinical outcomes of interest in wastewater-based surveillance and needs to be considered carefully across seasons and sites.
Collapse
Affiliation(s)
- Hadi A. Dhiyebi
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Joud Abu Farah
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Heather Ikert
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | | | - Samina Hayat
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Leslie M. Bragg
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Asim Qasim
- Regional Municipality of York, Newmarket, ON, Canada
| | - Mark Payne
- Regional Municipality of York, Newmarket, ON, Canada
| | - Linda Kaleis
- Regional Municipality of York, Newmarket, ON, Canada
| | - Caitlyn Paget
- Regional Municipality of York, Newmarket, ON, Canada
| | | | | | - Stephen Drew
- Regional Municipality of Waterloo, Waterloo, ON, Canada
| | - Robert Delatolla
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, Canada
| | - John P. Giesy
- Department of Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Environmental Science, Baylor University, Waco, TX, United States
| | - Mark R. Servos
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
49
|
Arts PJ, Kelly JD, Midgley CM, Anglin K, Lu S, Abedi GR, Andino R, Bakker KM, Banman B, Boehm AB, Briggs-Hagen M, Brouwer AF, Davidson MC, Eisenberg MC, Garcia-Knight M, Knight S, Peluso MJ, Pineda-Ramirez J, Diaz Sanchez R, Saydah S, Tassetto M, Martin JN, Wigginton KR. Longitudinal and quantitative fecal shedding dynamics of SARS-CoV-2, pepper mild mottle virus, and crAssphage. mSphere 2023; 8:e0013223. [PMID: 37338211 PMCID: PMC10506459 DOI: 10.1128/msphere.00132-23] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/03/2023] [Indexed: 06/21/2023] Open
Abstract
Wastewater-based epidemiology (WBE) emerged during the coronavirus disease 2019 (COVID-19) pandemic as a scalable and broadly applicable method for community-level monitoring of infectious disease burden. The lack of high-resolution fecal shedding data for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) limits our ability to link WBE measurements to disease burden. In this study, we present longitudinal, quantitative fecal shedding data for SARS-CoV-2 RNA, as well as for the commonly used fecal indicators pepper mild mottle virus (PMMoV) RNA and crAss-like phage (crAssphage) DNA. The shedding trajectories from 48 SARS-CoV-2-infected individuals suggest a highly individualized, dynamic course of SARS-CoV-2 RNA fecal shedding. Of the individuals that provided at least three stool samples spanning more than 14 days, 77% had one or more samples that tested positive for SARS-CoV-2 RNA. We detected PMMoV RNA in at least one sample from all individuals and in 96% (352/367) of samples overall. CrAssphage DNA was detected in at least one sample from 80% (38/48) of individuals and was detected in 48% (179/371) of all samples. The geometric mean concentrations of PMMoV and crAssphage in stool across all individuals were 8.7 × 104 and 1.4 × 104 gene copies/milligram-dry weight, respectively, and crAssphage shedding was more consistent for individuals than PMMoV shedding. These results provide us with a missing link needed to connect laboratory WBE results with mechanistic models, and this will aid in more accurate estimates of COVID-19 burden in sewersheds. Additionally, the PMMoV and crAssphage data are critical for evaluating their utility as fecal strength normalizing measures and for source-tracking applications. IMPORTANCE This research represents a critical step in the advancement of wastewater monitoring for public health. To date, mechanistic materials balance modeling of wastewater-based epidemiology has relied on SARS-CoV-2 fecal shedding estimates from small-scale clinical reports or meta-analyses of research using a wide range of analytical methodologies. Additionally, previous SARS-CoV-2 fecal shedding data have not contained sufficient methodological information for building accurate materials balance models. Like SARS-CoV-2, fecal shedding of PMMoV and crAssphage has been understudied to date. The data presented here provide externally valid and longitudinal fecal shedding data for SARS-CoV-2, PMMoV, and crAssphage which can be directly applied to WBE models and ultimately increase the utility of WBE.
Collapse
Affiliation(s)
- Peter J. Arts
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - J. Daniel Kelly
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
- Institute for Global Health Sciences, University of California, San Francisco, California, USA
- Division of Hospital Medicine, UCSF, San Francisco, California, USA
- F.I. Proctor Foundation, University of California, San Francisco, California, USA
| | - Claire M. Midgley
- National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Khamal Anglin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
- Institute for Global Health Sciences, University of California, San Francisco, California, USA
| | - Scott Lu
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
- Institute for Global Health Sciences, University of California, San Francisco, California, USA
| | - Glen R. Abedi
- National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Raul Andino
- Department of Microbiology and Immunology, UCSF, San Francisco, California, USA
| | - Kevin M. Bakker
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Bryon Banman
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Alexandria B. Boehm
- Department of Civil & Environmental Engineering, Stanford University, Stanford, California, USA
| | - Melissa Briggs-Hagen
- National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Andrew F. Brouwer
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Marisa C. Eisenberg
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Sterling Knight
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael J. Peluso
- Division of HIV, Infectious Disease, and Global Medicine, UCSF, San Francisco, California, USA
| | - Jesus Pineda-Ramirez
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
- Institute for Global Health Sciences, University of California, San Francisco, California, USA
| | - Ruth Diaz Sanchez
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
- Institute for Global Health Sciences, University of California, San Francisco, California, USA
| | - Sharon Saydah
- National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Michel Tassetto
- Department of Microbiology and Immunology, UCSF, San Francisco, California, USA
| | - Jeffrey N. Martin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
| | - Krista R. Wigginton
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
50
|
Cheng L, Dhiyebi HA, Varia M, Atanas K, Srikanthan N, Hayat S, Ikert H, Fuzzen M, Sing-Judge C, Badlani Y, Zeeb E, Bragg LM, Delatolla R, Giesy JP, Gilliland E, Servos MR. Omicron COVID-19 Case Estimates Based on Previous SARS-CoV-2 Wastewater Load, Regional Municipality of Peel, Ontario, Canada. Emerg Infect Dis 2023; 29:1580-1588. [PMID: 37379513 PMCID: PMC10370834 DOI: 10.3201/eid2908.221580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023] Open
Abstract
We determined correlations between SARS-CoV-2 load in untreated water and COVID-19 cases and patient hospitalizations before the Omicron variant (September 2020-November 2021) at 2 wastewater treatment plants in the Regional Municipality of Peel, Ontario, Canada. Using pre-Omicron correlations, we estimated incident COVID-19 cases during Omicron outbreaks (November 2021-June 2022). The strongest correlation between wastewater SARS-CoV-2 load and COVID-19 cases occurred 1 day after sampling (r = 0.911). The strongest correlation between wastewater load and COVID-19 patient hospitalizations occurred 4 days after sampling (r = 0.819). At the peak of the Omicron BA.2 outbreak in April 2022, reported COVID-19 cases were underestimated 19-fold because of changes in clinical testing. Wastewater data provided information for local decision-making and are a useful component of COVID-19 surveillance systems.
Collapse
|