1
|
Ameline C, Seixas E, Barreto HC, Frazão N, Rodrigues MV, Ventura MR, Lourenço M, Gordo I. Evolution of Escherichia coli strains under competent or compromised adaptive immunity. PLoS Pathog 2025; 21:e1012442. [PMID: 40273038 PMCID: PMC12021133 DOI: 10.1371/journal.ppat.1012442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 03/13/2025] [Indexed: 04/26/2025] Open
Abstract
Escherichia coli is a commensal of the intestine of most mammals, but also an important human pathogen. Within a healthy human its population structure is highly dynamic, where typically a dominant E. coli strain is accompanied by several low abundance satellite strains. However, the factors underlying E. coli strain dynamics and evolution within hosts are still poorly understood. Here, we colonised germ-free immune-competent (wild-type) or immune-compromised (Rag2KO) mice, with two phylogenetically distinct strains of E. coli, to determine if strain co-existence and within-strain evolution are shaped by the adaptive immune system. Irrespectively of the immune status of the mice one strain reaches a 100-fold larger abundance than the other. However, the abundance of the dominant strain is significantly higher in Rag2KO mice. Strains co-exist for thousands of generations and accumulate beneficial mutations in genes coding for different resource preferences. A higher rate of mutation accumulation in immune-compromised vs. immune-competent mice is observed and adaptative mutations specific to immune-competent mice are identified. Importantly, the presence of the adaptive immune system selects for mutations that increase stress resistance and the dynamics of such evolutionary events associates with the onset of an antibody response.
Collapse
Affiliation(s)
- Camille Ameline
- GIMM - Gulbenkian Institute for Molecular Medicine, Evolutionary Biology, Lisboa, Portugal
| | - Elsa Seixas
- GIMM - Gulbenkian Institute for Molecular Medicine, Evolutionary Biology, Lisboa, Portugal
| | - Hugo C. Barreto
- GIMM - Gulbenkian Institute for Molecular Medicine, Evolutionary Biology, Lisboa, Portugal
- Université Paris Cité, CNRS, Inserm U1016, Institut Cochin, Paris, France
| | - Nelson Frazão
- GIMM - Gulbenkian Institute for Molecular Medicine, Evolutionary Biology, Lisboa, Portugal
- Universidade Católica Portuguesa, Faculdade de Medicina, Centro de Investigação Interdisciplinar em Saúde, Lisboa, Portugal
| | - Miguel V. Rodrigues
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - M. Rita Ventura
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Marta Lourenço
- GIMM - Gulbenkian Institute for Molecular Medicine, Evolutionary Biology, Lisboa, Portugal
| | - Isabel Gordo
- GIMM - Gulbenkian Institute for Molecular Medicine, Evolutionary Biology, Lisboa, Portugal
| |
Collapse
|
2
|
Cherry JL. A Short-Term View of Protein Sequence Evolution from Salmonella. Genome Biol Evol 2025; 17:evaf040. [PMID: 40048608 PMCID: PMC11925014 DOI: 10.1093/gbe/evaf040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2025] [Indexed: 03/21/2025] Open
Abstract
Much of the study of protein sequence evolution is based on sequence changes inferred to have occurred in nature. The sequences compared for this purpose are usually sufficiently distant that purifying selection has had nearly its full effect and most of the changes inferred have been exposed to a variety of conditions. Here, I make use of large numbers of Salmonella genome sequences to study changes known to be of very recent origin because they are inferred from comparison of very closely related sequences. The effects of purifying selection are weak yet discernible on this short timescale: the ratio of nonsynonymous to synonymous changes is smaller than expected under selective neutrality, but only slightly so. Essential genes have lower rates of nonsynonymous change, as they do on a longer timescale, but much more of this association remains after controlling for expression level. Positive selection for nonsynonymous change is inferred for 151 genes. For nearly half of these, this is attributable to selection for loss of function. Other forms of positive selection inferred include selection for amino acid changes that make enzymes less sensitive to antibiotics and selection for activating changes to proteins involved in transcriptional regulation. Positively selected variants of many genes are likely favored only under unusual conditions and disfavored in the long term, making detection of the positive selection with more distant comparisons difficult or impossible. The short-term view provided by close comparisons complements the long-term view obtained from more distant comparisons such as those between species.
Collapse
Affiliation(s)
- Joshua L Cherry
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
3
|
Doranga S, Krogfelt KA, Cohen PS, Conway T. Nutrition of Escherichia coli within the intestinal microbiome. EcoSal Plus 2024; 12:eesp00062023. [PMID: 38417452 PMCID: PMC11636361 DOI: 10.1128/ecosalplus.esp-0006-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/03/2023] [Indexed: 03/01/2024]
Abstract
In this chapter, we update our 2004 review of "The Life of Commensal Escherichia coli in the Mammalian Intestine" (https://doi.org/10.1128/ecosalplus.8.3.1.2), with a change of title that reflects the current focus on "Nutrition of E. coli within the Intestinal Microbiome." The earlier part of the previous two decades saw incremental improvements in understanding the carbon and energy sources that E. coli and Salmonella use to support intestinal colonization. Along with these investigations of electron donors came a better understanding of the electron acceptors that support the respiration of these facultative anaerobes in the gastrointestinal tract. Hundreds of recent papers add to what was known about the nutrition of commensal and pathogenic enteric bacteria. The fact that each biotype or pathotype grows on a different subset of the available nutrients suggested a mechanism for succession of commensal colonizers and invasion by enteric pathogens. Competition for nutrients in the intestine has also come to be recognized as one basis for colonization resistance, in which colonized strain(s) prevent colonization by a challenger. In the past decade, detailed investigations of fiber- and mucin-degrading anaerobes added greatly to our understanding of how complex polysaccharides support the hundreds of intestinal microbiome species. It is now clear that facultative anaerobes, which usually cannot degrade complex polysaccharides, live in symbiosis with the anaerobic degraders. This concept led to the "restaurant hypothesis," which emphasizes that facultative bacteria, such as E. coli, colonize the intestine as members of mixed biofilms and obtain the sugars they need for growth locally through cross-feeding from polysaccharide-degrading anaerobes. Each restaurant represents an intestinal niche. Competition for those niches determines whether or not invaders are able to overcome colonization resistance and become established. Topics centered on the nutritional basis of intestinal colonization and gastrointestinal health are explored here in detail.
Collapse
Affiliation(s)
- Sudhir Doranga
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Karen A. Krogfelt
- Department of Science and Environment, Pandemix Center Roskilde University, Roskilde, Denmark
| | - Paul S. Cohen
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, Rhode Island, USA
| | - Tyrrell Conway
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
4
|
Scanlan PD, Baquero F, Levin BR. Short-sighted evolution of virulence for invasive gut microbes: From hypothesis to tests. Proc Natl Acad Sci U S A 2024; 121:e2409905121. [PMID: 39570365 PMCID: PMC11626195 DOI: 10.1073/pnas.2409905121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024] Open
Abstract
Why microbes harm their hosts is a fundamental question in evolutionary biology with broad relevance to our understanding of infectious diseases. Several hypotheses have been proposed to explain this "evolution of virulence." In this perspective, we reexamine one of these hypotheses in the specific context of the human gut microbiome, namely short-sighted evolution. According to the short-sighted evolution hypothesis, virulence is a product of niche expansion within a colonized host, whereby variants of commensal microbes establish populations in tissues and sites where the infection causes morbidity or mortality. This evolution is short-sighted in that the evolved variants that infect those tissues and sites are not transmitted to other hosts. The specific hypothesis that we propose is that some bacteria responsible for invasive infections and disease are the products of the short-sighted evolution of commensal bacteria residing in the gut microbiota. We present observations in support of this hypothesis and discuss the challenges inherent in assessing its general application to infections and diseases associated with specific members of the gut microbiota. We then describe how this hypothesis can be tested using genomic data and animal model experiments and outline how such studies will serve to provide fundamental information about both the evolution and genetic basis of virulence, and the bacteria of intensively studied yet poorly understood habitats including the gut microbiomes of humans and other mammals.
Collapse
Affiliation(s)
- Pauline D. Scanlan
- APC Microbiome Ireland, University College Cork, CorkT12 YT20, Ireland
- School of Microbiology, University College Cork, CorkT12 Y337, Ireland
| | - Fernando Baquero
- Servicio de Microbiología, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid28034, Spain
- Centro de Investigación Médica en Red, Epidemiología y Salud Pública, Madrid28007, Spain
| | - Bruce R. Levin
- Department of Biology, Emory University, Atlanta, GA30322
| |
Collapse
|
5
|
Thiriet-Rupert S, Josse J, Perez-Pascual D, Tasse J, Andre C, Abad L, Lebeaux D, Ghigo JM, Laurent F, Beloin C. Analysis of In-Patient Evolution of Escherichia coli Reveals Potential Links to Relapse of Bone and Joint Infections. J Infect Dis 2024; 229:1546-1556. [PMID: 38041851 DOI: 10.1093/infdis/jiad528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/03/2023] [Accepted: 11/29/2023] [Indexed: 12/04/2023] Open
Abstract
Bone and joint infections (BJIs) are difficult to treat and affect a growing number of patients, in which relapses are observed in 10-20% of case. These relapses, which call for prolonged antibiotic treatment and increase resistance emergence risk, may originate from ill-understood adaptation of the pathogen to the host. Here, we investigated 3 pairs of Escherichia coli strains from BJI cases and their relapses to unravel adaptations within patients. Whole-genome comparison presented evidence for positive selection and phenotypic characterization showed that biofilm formation remained unchanged, contrary to what is usually described in such cases. Although virulence was not modified, we identified the loss of 2 virulence factors contributing to immune system evasion in one of the studied strains. Other strategies, including global growth optimization and colicin production, likely allowed the strains to outcompete competitors. This work highlights the variety of strategies allowing in-patient adaptation in BJIs.
Collapse
Affiliation(s)
| | - Jérôme Josse
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Lyon, France
| | - David Perez-Pascual
- Genetics of Biofilms Laboratory, Institut Pasteur, Université de Paris-Cité, Paris, France
| | - Jason Tasse
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Lyon, France
| | - Camille Andre
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Lyon, France
| | - Lélia Abad
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Lyon, France
| | - David Lebeaux
- Genetics of Biofilms Laboratory, Institut Pasteur, Université de Paris-Cité, Paris, France
- Département de Maladies Infectieuses et Tropicales, AP-HP, Hôpital Saint-Louis, Lariboisière, Paris, France
- FHU PROTHEE (Prosthetic joint infections: innovative strategies to overcome a medico-surgical challenge) Group
| | - Jean-Marc Ghigo
- Genetics of Biofilms Laboratory, Institut Pasteur, Université de Paris-Cité, Paris, France
| | - Frédéric Laurent
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Lyon, France
| | - Christophe Beloin
- Genetics of Biofilms Laboratory, Institut Pasteur, Université de Paris-Cité, Paris, France
| |
Collapse
|
6
|
Dapa T, Xavier KB. Effect of diet on the evolution of gut commensal bacteria. Gut Microbes 2024; 16:2369337. [PMID: 38904092 PMCID: PMC11195494 DOI: 10.1080/19490976.2024.2369337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/12/2024] [Indexed: 06/22/2024] Open
Abstract
The gut microbiota, comprising trillions of diverse microorganisms inhabiting the intestines of animals, forms a complex and indispensable ecosystem with profound implications for the host's well-being. Its functions include contributing to developing the host's immune response, aiding in nutrient digestion, synthesizing essential compounds, acting as a barrier against pathogen invasion, and influencing the development or regression of various pathologies. The dietary habits of the host directly impact this intricate community of gut microbes. Diet influences the composition and function of the gut microbiota through alterations in gene expression, enzymatic activity, and metabolome. While the impact of diet on gut ecology is well-established, the investigation into the relationship between dietary consumption and microbial genotypic diversity has been limited. This review provides an overview of the relationship between diet and gut microbiota, emphasizing the impact of host nutrition on both short- and long-term evolution in the mammalian gut. It is evident that the evolution of the gut microbiota occurs even on short timescales through the acquisition of novel mutations, within the gut bacteria of individual hosts. Consequently, we discuss the importance of considering alterations in bacterial genomic diversity when analyzing microbiota-dependent effects on host physiology. Future investigations into the various microbiota-related traits shall greatly benefit from a deeper understanding of commensal bacterial evolutionary adaptation.
Collapse
Affiliation(s)
- Tanja Dapa
- Andalusian Center for Developmental Biology (CABD), Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University/CSIC/Junta de Andalucía, Seville, Spain
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | |
Collapse
|
7
|
Doranga S, Conway T. OmpC-Dependent Bile Tolerance Contributes to E. coli Colonization of the Mammalian Intestine. Microbiol Spectr 2023; 11:e0524122. [PMID: 37014216 PMCID: PMC10269588 DOI: 10.1128/spectrum.05241-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/09/2023] [Indexed: 04/05/2023] Open
Abstract
Escherichia coli persistently colonizes the mammalian intestine by mechanisms that are not fully understood. Previously, we found when streptomycin-treated mice were fed E. coli MG1655, the intestine selected for envZ missense mutants that outcompeted the wild type. The better-colonizing envZ mutants had a higher level of OmpC and reduced OmpF. This suggested the EnvZ/OmpR two-component system and outer membrane proteins play a role in colonization. In this study, we show that wild-type E. coli MG1655 outcompetes an envZ-ompR knockout mutant. Moreover, ompA and ompC knockout mutants are outcompeted by the wild type, while an ompF knockout mutant colonizes better than the wild type. Outer membrane protein gels show the ompF mutant overproduces OmpC. An ompC mutant is more sensitive to bile salts than the wild type and ompF mutant. The ompC mutant initiates colonization slowly because it is sensitive to physiological concentrations of bile salts in the intestine. Overexpression of ompC under the control of a constitutive promoter confers a colonization advantage only when ompF is deleted. These results indicate that fine-tuning of OmpC and OmpF levels is needed to maximize competitive fitness in the intestine. RNA sequencing reveals the EnvZ/OmpR two-component system is active in the intestine: ompC is upregulated and ompF is downregulated. While other factors could also contribute to the advantage provided by OmpC, we provide evidence that OmpC is important for E. coli to colonize the intestine because its smaller pore size excludes bile salts or other unknown toxic substances, while OmpF is deleterious because its larger pore size allows bile salts or other unknown toxic substances to enter the periplasm. IMPORTANCE Every mammalian intestine is colonized with Escherichia coli. Although E. coli is one of the most studied model organisms, how it colonizes the intestine is not fully understood. Here, we investigated the role of the EnvZ/OmpR two-component system and outer membrane proteins in colonization of the mouse intestine by E. coli. We report that an ompC mutant is a poor colonizer, while an ompF mutant, which overproduces OmpC, outcompetes the wild type. OmpF has a larger pore size that allows toxic bile salts or other toxic compounds into the cell and is deleterious for colonization of the intestine. OmpC has a smaller pore size and excludes bile salts. Our findings provide insights into why E. coli fine-tunes the levels of OmpC and OmpF during colonization via the EnvZ/OmpR two-component system.
Collapse
Affiliation(s)
- Sudhir Doranga
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Tyrrell Conway
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
8
|
Dapa T, Wong DP, Vasquez KS, Xavier KB, Huang KC, Good BH. Within-host evolution of the gut microbiome. Curr Opin Microbiol 2023; 71:102258. [PMID: 36608574 PMCID: PMC9993085 DOI: 10.1016/j.mib.2022.102258] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023]
Abstract
Gut bacteria inhabit a complex environment that is shaped by interactions with their host and the other members of the community. While these ecological interactions have evolved over millions of years, mounting evidence suggests that gut commensals can evolve on much shorter timescales as well, by acquiring new mutations within individual hosts. In this review, we highlight recent progress in understanding the causes and consequences of short-term evolution in the mammalian gut, from experimental evolution in murine hosts to longitudinal tracking of human cohorts. We also discuss new opportunities for future progress by expanding the repertoire of focal species, hosts, and surrounding communities, and by combining deep-sequencing technologies with quantitative frameworks from population genetics.
Collapse
Affiliation(s)
- Tanja Dapa
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Daniel Pgh Wong
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Kimberly S Vasquez
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Kerwyn Casey Huang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| | - Benjamin H Good
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
9
|
Maritan E, Gallo M, Srutkova D, Jelinkova A, Benada O, Kofronova O, Silva-Soares NF, Hudcovic T, Gifford I, Barrick JE, Schwarzer M, Martino ME. Gut microbe Lactiplantibacillus plantarum undergoes different evolutionary trajectories between insects and mammals. BMC Biol 2022; 20:290. [PMID: 36575413 PMCID: PMC9795633 DOI: 10.1186/s12915-022-01477-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/23/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Animals form complex symbiotic associations with their gut microbes, whose evolution is determined by an intricate network of host and environmental factors. In many insects, such as Drosophila melanogaster, the microbiome is flexible, environmentally determined, and less diverse than in mammals. In contrast, mammals maintain complex multispecies consortia that are able to colonize and persist in the gastrointestinal tract. Understanding the evolutionary and ecological dynamics of gut microbes in different hosts is challenging. This requires disentangling the ecological factors of selection, determining the timescales over which evolution occurs, and elucidating the architecture of such evolutionary patterns. RESULTS We employ experimental evolution to track the pace of the evolution of a common gut commensal, Lactiplantibacillus plantarum, within invertebrate (Drosophila melanogaster) and vertebrate (Mus musculus) hosts and their respective diets. We show that in Drosophila, the nutritional environment dictates microbial evolution, while the host benefits L. plantarum growth only over short ecological timescales. By contrast, in a mammalian animal model, L. plantarum evolution results to be divergent between the host intestine and its diet, both phenotypically (i.e., host-evolved populations show higher adaptation to the host intestinal environment) and genomically. Here, both the emergence of hypermutators and the high persistence of mutated genes within the host's environment strongly differed from the low variation observed in the host's nutritional environment alone. CONCLUSIONS Our results demonstrate that L. plantarum evolution diverges between insects and mammals. While the symbiosis between Drosophila and L. plantarum is mainly determined by the host diet, in mammals, the host and its intrinsic factors play a critical role in selection and influence both the phenotypic and genomic evolution of its gut microbes, as well as the outcome of their symbiosis.
Collapse
Affiliation(s)
- Elisa Maritan
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Marialaura Gallo
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Dagmar Srutkova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Anna Jelinkova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Oldrich Benada
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Olga Kofronova
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Nuno F Silva-Soares
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Tomas Hudcovic
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Isaac Gifford
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Jeffrey E Barrick
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Martin Schwarzer
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic.
| | - Maria Elena Martino
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy.
| |
Collapse
|
10
|
Koga R, Moriyama M, Onodera-Tanifuji N, Ishii Y, Takai H, Mizutani M, Oguchi K, Okura R, Suzuki S, Gotoh Y, Hayashi T, Seki M, Suzuki Y, Nishide Y, Hosokawa T, Wakamoto Y, Furusawa C, Fukatsu T. Single mutation makes Escherichia coli an insect mutualist. Nat Microbiol 2022; 7:1141-1150. [PMID: 35927448 PMCID: PMC9352592 DOI: 10.1038/s41564-022-01179-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/21/2022] [Indexed: 02/07/2023]
Abstract
Microorganisms often live in symbiosis with their hosts, and some are considered mutualists, where all species involved benefit from the interaction. How free-living microorganisms have evolved to become mutualists is unclear. Here we report an experimental system in which non-symbiotic Escherichia coli evolves into an insect mutualist. The stinkbug Plautia stali is typically associated with its essential gut symbiont, Pantoea sp., which colonizes a specialized symbiotic organ. When sterilized newborn nymphs were infected with E. coli rather than Pantoea sp., only a few insects survived, in which E. coli exhibited specific localization to the symbiotic organ and vertical transmission to the offspring. Through transgenerational maintenance with P. stali, several hypermutating E. coli lines independently evolved to support the host's high adult emergence and improved body colour; these were called 'mutualistic' E. coli. These mutants exhibited slower bacterial growth, smaller size, loss of flagellar motility and lack of an extracellular matrix. Transcriptomic and genomic analyses of 'mutualistic' E. coli lines revealed independent mutations that disrupted the carbon catabolite repression global transcriptional regulator system. Each mutation reproduced the mutualistic phenotypes when introduced into wild-type E. coli, confirming that single carbon catabolite repression mutations can make E. coli an insect mutualist. These findings provide an experimental system for future work on host-microbe symbioses and may explain why microbial mutualisms are omnipresent in nature.
Collapse
Affiliation(s)
- Ryuichi Koga
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan.
| | - Minoru Moriyama
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Naoko Onodera-Tanifuji
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Yoshiko Ishii
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Hiroki Takai
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Masaki Mizutani
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Kohei Oguchi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Reiko Okura
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Shingo Suzuki
- Center for Biosystem Dynamics Research, RIKEN, Osaka, Japan
| | - Yasuhiro Gotoh
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahide Seki
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Yutaka Suzuki
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Yudai Nishide
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan.,National Agriculture and Food Research Organization, Institute of Agrobiological Sciences, Tsukuba, Japan
| | - Takahiro Hosokawa
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Yuichi Wakamoto
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.,Universal Biology Institute, The University of Tokyo, Tokyo, Japan
| | - Chikara Furusawa
- Center for Biosystem Dynamics Research, RIKEN, Osaka, Japan.,Universal Biology Institute, The University of Tokyo, Tokyo, Japan
| | - Takema Fukatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan. .,Department of Biological Sciences, The University of Tokyo, Tokyo, Japan. .,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
11
|
Rare transmission of commensal and pathogenic bacteria in the gut microbiome of hospitalized adults. Nat Commun 2022; 13:586. [PMID: 35102136 PMCID: PMC8803835 DOI: 10.1038/s41467-022-28048-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 01/05/2022] [Indexed: 12/16/2022] Open
Abstract
Bacterial bloodstream infections are a major cause of morbidity and mortality among patients undergoing hematopoietic cell transplantation (HCT). Although previous research has demonstrated that pathogens may translocate from the gut microbiome into the bloodstream to cause infections, the mechanisms by which HCT patients acquire pathogens in their microbiome have not yet been described. Here, we use linked-read and short-read metagenomic sequencing to analyze 401 stool samples collected from 149 adults undergoing HCT and hospitalized in the same unit over three years, many of whom were roommates. We use metagenomic assembly and strain-specific comparison methods to search for high-identity bacterial strains, which may indicate transmission between the gut microbiomes of patients. Overall, the microbiomes of patients who share time and space in the hospital do not converge in taxonomic composition. However, we do observe six pairs of patients who harbor identical or nearly identical strains of the pathogen Enterococcus faecium, or the gut commensals Akkermansia muciniphila and Hungatella hathewayi. These shared strains may result from direct transmission between patients who shared a room and bathroom, acquisition from a common hospital source, or transmission from an unsampled intermediate. We also identify multiple patients with identical strains of species commonly found in commercial probiotics, including Lactobacillus rhamnosus and Streptococcus thermophilus. In summary, our findings indicate that sharing of identical pathogens between the gut microbiomes of multiple patients is a rare phenomenon. Furthermore, the observed potential transmission of commensal, immunomodulatory microbes suggests that exposure to other humans may contribute to microbiome reassembly post-HCT. Here, Siranosian et al. provide evidence for rare transmission of commensal and pathogenic bacteria between the microbiomes of hospitalized adults, with important factors being roommate overlap and exposure to broad-spectrum antibiotics.
Collapse
|
12
|
CRISPR Interference (CRISPRi) Mediated Suppression of OmpR Gene in E. coli: An Alternative Approach to Inhibit Biofilm. Curr Microbiol 2022; 79:78. [DOI: 10.1007/s00284-021-02760-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 12/30/2021] [Indexed: 11/03/2022]
|
13
|
Diet leaves a genetic signature in a keystone member of the gut microbiota. Cell Host Microbe 2022; 30:183-199.e10. [PMID: 35085504 DOI: 10.1016/j.chom.2022.01.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/08/2021] [Accepted: 12/17/2021] [Indexed: 12/22/2022]
Abstract
Switching from a low-fat and high-fiber diet to a Western-style high-fat and high-sugar diet causes microbiota imbalances that underlay many pathological conditions (i.e., dysbiosis). Although the effects of dietary changes on microbiota composition and functions are well documented, their impact in gut bacterial evolution remains unexplored. We followed the emergence of mutations in Bacteroides thetaiotaomicron, a prevalent fiber-degrading microbiota member, upon colonization of the murine gut under different dietary regimens. B. thetaiotaomicron evolved rapidly in the gut and Western-style diet selected for mutations that promote degradation of mucin-derived glycans. Periodic dietary changes caused fluctuations in the frequency of such mutations and were associated with metabolic shifts, resulting in the maintenance of higher intraspecies genetic diversity compared to constant dietary regimens. These results show that dietary changes leave a genetic signature in microbiome members and suggest that B. thetaiotaomicron genetic diversity could be a biomarker for dietary differences among individuals.
Collapse
|
14
|
Li E, Zhang H, Jiang H, Pieterse CMJ, Jousset A, Bakker PAHM, de Jonge R. Experimental-Evolution-Driven Identification of Arabidopsis Rhizosphere Competence Genes in Pseudomonas protegens. mBio 2021; 12:e0092721. [PMID: 34101491 PMCID: PMC8262913 DOI: 10.1128/mbio.00927-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/30/2021] [Indexed: 11/20/2022] Open
Abstract
Beneficial plant root-associated microorganisms carry out a range of functions that are essential for plant performance. Establishment of a bacterium on plant roots, however, requires overcoming several challenges, including competition with neighboring microorganisms and host immunity. Forward and reverse genetics have led to the identification of mechanisms that are used by beneficial microorganisms to overcome these challenges, such as the production of iron-chelating compounds, the formation of strong biofilms, or the concealment of characteristic microbial molecular patterns that trigger the host immune system. However, how such mechanisms arose from an evolutionary perspective is much less understood. To study bacterial adaptation in the rhizosphere, we employed experimental evolution to track the physiological and genetic dynamics of root-dwelling Pseudomonas protegens in the Arabidopsis thaliana rhizosphere under axenic conditions. This simplified binary one plant/one bacterium system allows for the amplification of key adaptive mechanisms for bacterial rhizosphere colonization. We identified 35 mutations, including single-nucleotide polymorphisms, insertions, and deletions, distributed over 28 genes. We found that mutations in genes encoding global regulators and in genes for siderophore production, cell surface decoration, attachment, and motility accumulated in parallel, underlining the finding that bacterial adaptation to the rhizosphere follows multiple strategies. Notably, we observed that motility increased in parallel across multiple independent evolutionary lines. All together, these results underscore the strength of experimental evolution in identifying key genes, pathways, and processes for bacterial rhizosphere colonization and a methodology for the development of elite beneficial microorganisms with enhanced root-colonizing capacities that can support sustainable agriculture in the future. IMPORTANCE Beneficial root-associated microorganisms carry out many functions that are essential for plant performance. Establishment of a bacterium on plant roots, however, requires overcoming many challenges. Previously, diverse mechanisms that are used by beneficial microorganisms to overcome these challenges were identified. However, how such mechanisms have developed from an evolutionary perspective is much less understood. Here, we employed experimental evolution to track the evolutionary dynamics of a root-dwelling pseudomonad on the root of Arabidopsis. We found that mutations in global regulators, as well as in genes for siderophore production, cell surface decoration, attachment, and motility, accumulate in parallel, emphasizing these strategies for bacterial adaptation to the rhizosphere. We identified 35 mutations distributed over 28 genes. All together, our results demonstrate the power of experimental evolution in identifying key pathways for rhizosphere colonization and a methodology for the development of elite beneficial microorganisms that can support sustainable agriculture.
Collapse
Affiliation(s)
- Erqin Li
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands
| | - Hao Zhang
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands
| | - Henan Jiang
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands
| | - Corné M. J. Pieterse
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands
| | - Alexandre Jousset
- Ecology and Biodiversity, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands
| | - Peter A. H. M. Bakker
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands
| | - Ronnie de Jonge
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
15
|
Janssen AB, van Hout D, Bonten MJM, Willems RJL, van Schaik W. Microevolution of acquired colistin resistance in Enterobacteriaceae from ICU patients receiving selective decontamination of the digestive tract. J Antimicrob Chemother 2021; 75:3135-3143. [PMID: 32712659 DOI: 10.1093/jac/dkaa305] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 06/11/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Colistin is an antibiotic that targets the LPS molecules present in the membranes of Gram-negative bacteria. It is used as a last-resort drug to treat infections with MDR strains. Colistin is also used in selective decontamination of the digestive tract (SDD), a prophylactic therapy used in patients hospitalized in ICUs to selectively eradicate opportunistic pathogens in the oropharyngeal and gut microbiota. OBJECTIVES To unravel the mechanisms of acquired colistin resistance in Gram-negative opportunistic pathogens obtained from SDD-treated patients. RESULTS Routine surveillance of 428 SDD-treated patients resulted in 13 strains with acquired colistin resistance (Escherichia coli, n = 9; Klebsiella aerogenes, n = 3; Enterobacter asburiae, n = 1) from 5 patients. Genome sequence analysis showed that these isolates represented multiple distinct colistin-resistant clones but that colistin-resistant strains within the same patient were clonally related. We identified previously described mechanisms that lead to colistin resistance, i.e. a G53 substitution in the response regulator PmrA/BasR and the acquisition of the mobile colistin resistance gene mcr-1.1, but we also observed novel variants of basR with an 18 bp deletion and a G19E substitution in the sensor histidine kinase BasS. We experimentally confirmed that these variants contribute to reduced colistin susceptibility. In a single patient, we observed that colistin resistance in a single E. coli clone evolved through two unique variants in basRS. CONCLUSIONS We show that prophylactic use of colistin during SDD can select for colistin resistance in species that are not intrinsically colistin resistant. This highlights the importance of continued surveillance for strains with acquired colistin resistance in patients treated with SDD.
Collapse
Affiliation(s)
- Axel B Janssen
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Denise van Hout
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Marc J M Bonten
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584CX Utrecht, The Netherlands.,Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Rob J L Willems
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Willem van Schaik
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584CX Utrecht, The Netherlands.,Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
16
|
Zlatkov N, Nadeem A, Uhlin BE, Wai SN. Eco-evolutionary feedbacks mediated by bacterial membrane vesicles. FEMS Microbiol Rev 2021; 45:fuaa047. [PMID: 32926132 PMCID: PMC7968517 DOI: 10.1093/femsre/fuaa047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 09/11/2020] [Indexed: 12/27/2022] Open
Abstract
Bacterial membrane vesicles (BMVs) are spherical extracellular organelles whose cargo is enclosed by a biological membrane. The cargo can be delivered to distant parts of a given habitat in a protected and concentrated manner. This review presents current knowledge about BMVs in the context of bacterial eco-evolutionary dynamics among different environments and hosts. BMVs may play an important role in establishing and stabilizing bacterial communities in such environments; for example, bacterial populations may benefit from BMVs to delay the negative effect of certain evolutionary trade-offs that can result in deleterious phenotypes. BMVs can also perform ecosystem engineering by serving as detergents, mediators in biochemical cycles, components of different biofilms, substrates for cross-feeding, defense systems against different dangers and enzyme-delivery mechanisms that can change substrate availability. BMVs further contribute to bacteria as mediators in different interactions, with either other bacterial species or their hosts. In short, BMVs extend and deliver phenotypic traits that can have ecological and evolutionary value to both their producers and the ecosystem as a whole.
Collapse
Affiliation(s)
- Nikola Zlatkov
- Department of Molecular Biology and The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, SE-90187 Umeå, Sweden
| | - Aftab Nadeem
- Department of Molecular Biology and The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, SE-90187 Umeå, Sweden
| | - Bernt Eric Uhlin
- Department of Molecular Biology and The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, SE-90187 Umeå, Sweden
| | - Sun Nyunt Wai
- Department of Molecular Biology and The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, SE-90187 Umeå, Sweden
| |
Collapse
|
17
|
Sevrin G, Massier S, Chassaing B, Agus A, Delmas J, Denizot J, Billard E, Barnich N. Adaptation of adherent-invasive E. coli to gut environment: Impact on flagellum expression and bacterial colonization ability. Gut Microbes 2020; 11:364-380. [PMID: 29494278 PMCID: PMC7524368 DOI: 10.1080/19490976.2017.1421886] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The pathogenesis of Crohn's disease (CD) is multifactorial and involves genetic susceptibility, environmental triggers and intestinal microbiota. Adherent-invasive Escherichia coli (AIEC) are flagellated bacteria more prevalent in CD patients than in healthy subjects and promote chronic intestinal inflammation. We aim at deciphering the role of flagella and flagellin modulation by intestinal conditions. AIEC flagellum expression is required for optimal adhesion to and invasion of intestinal epithelial cells. Interestingly, differential flagellin regulation was observed between commensal E. coli (HS) and AIEC (LF82) strains: flagellum expression by AIEC bacteria, in contrast to that of commensal E. coli, is enhanced under intestinal conditions (the presence of bile acids and mucins). Flagella are involved in the ability of the AIEC LF82 strain to cross a mucus layer in vitro and in vivo, conferring a selective advantage in penetrating the mucus layer and reaching the epithelial surface. In a CEABAC10 mouse model, a non-motile mutant (LF82-ΔfliC) exhibits reduced colonization that is restored by a dextran sodium sulfate treatment that alters mucus layer integrity. Moreover, a mutant that continuously secretes flagellin (LF82-ΔflgM) triggers a stronger inflammatory response than the wild-type strain, and the mutant's ability to colonize the CEABAC10 mouse model is decreased. Overexpression of flagellin in bacteria in contact with epithelial cells can be detrimental to their virulence by inducing acute inflammation that enhances AIEC clearance. AIEC pathobionts must finely modulate flagellum expression during the infection process, taking advantage of their specific virulence gene regulation to improve their adaptability and flexibility within the gut environment.
Collapse
Affiliation(s)
- Gwladys Sevrin
- Université Clermont Auvergne, Inserm U1071, USC-INRA 2018, M2iSH, CRNH Auvergne, F-63000Clermont-Ferrand, France
| | - Sébastien Massier
- Université Clermont Auvergne, Inserm U1071, USC-INRA 2018, M2iSH, CRNH Auvergne, F-63000Clermont-Ferrand, France
| | - Benoit Chassaing
- Neuroscience Institute & Institute for Biomedical Sciences, Georgia State University, Atlanta, USA
| | - Allison Agus
- Université Clermont Auvergne, Inserm U1071, USC-INRA 2018, M2iSH, CRNH Auvergne, F-63000Clermont-Ferrand, France
| | - Julien Delmas
- Université Clermont Auvergne, Inserm U1071, USC-INRA 2018, M2iSH, CRNH Auvergne, F-63000Clermont-Ferrand, France,Service de Bactériologie, Parasitologie Mycologie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Jérémy Denizot
- Université Clermont Auvergne, Inserm U1071, USC-INRA 2018, M2iSH, CRNH Auvergne, F-63000Clermont-Ferrand, France,Université Clermont Auvergne, Institut Universitaire de Technologie de Clermont-Ferrand, Clermont-Ferrand, France
| | - Elisabeth Billard
- Université Clermont Auvergne, Inserm U1071, USC-INRA 2018, M2iSH, CRNH Auvergne, F-63000Clermont-Ferrand, France,Université Clermont Auvergne, Institut Universitaire de Technologie de Clermont-Ferrand, Clermont-Ferrand, France
| | - Nicolas Barnich
- Université Clermont Auvergne, Inserm U1071, USC-INRA 2018, M2iSH, CRNH Auvergne, F-63000Clermont-Ferrand, France,Université Clermont Auvergne, Institut Universitaire de Technologie de Clermont-Ferrand, Clermont-Ferrand, France,CONTACT Nicolas Barnich M2iSH, Inserm, Université Clermont Auvergne, USC-INRA 2018, 28 place Henri Dunant, 63001Clermont-Ferrand, France
| |
Collapse
|
18
|
Hypermutator Pseudomonas aeruginosa Exploits Multiple Genetic Pathways To Develop Multidrug Resistance during Long-Term Infections in the Airways of Cystic Fibrosis Patients. Antimicrob Agents Chemother 2020; 64:AAC.02142-19. [PMID: 32071060 DOI: 10.1128/aac.02142-19] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/20/2019] [Indexed: 12/30/2022] Open
Abstract
Pseudomonas aeruginosa exploits intrinsic and acquired resistance mechanisms to resist almost every antibiotic used in chemotherapy. Antimicrobial resistance in P. aeruginosa isolates recovered from cystic fibrosis (CF) patients is further enhanced by the occurrence of hypermutator strains, a hallmark of chronic infections in CF patients. However, the within-patient genetic diversity of P. aeruginosa populations related to antibiotic resistance remains unexplored. Here, we show the evolution of the mutational resistome profile of a P. aeruginosa hypermutator lineage by performing longitudinal and transversal analyses of isolates collected from a CF patient throughout 20 years of chronic infection. Our results show the accumulation of thousands of mutations, with an overall evolutionary history characterized by purifying selection. However, mutations in antibiotic resistance genes appear to have been positively selected, driven by antibiotic treatment. Antibiotic resistance increased as infection progressed toward the establishment of a population constituted by genotypically diversified coexisting sublineages, all of which converged to multidrug resistance. These sublineages emerged by parallel evolution through distinct evolutionary pathways, which affected genes of the same functional categories. Interestingly, ampC and ftsI, encoding the β-lactamase and penicillin-binding protein 3, respectively, were found to be among the most frequently mutated genes. In fact, both genes were targeted by multiple independent mutational events, which led to a wide diversity of coexisting alleles underlying β-lactam resistance. Our findings indicate that hypermutators, apart from boosting antibiotic resistance evolution by simultaneously targeting several genes, favor the emergence of adaptive innovative alleles by clustering beneficial/compensatory mutations in the same gene, hence expanding P. aeruginosa strategies for persistence.
Collapse
|
19
|
Specific Eco-evolutionary Contexts in the Mouse Gut Reveal Escherichia coli Metabolic Versatility. Curr Biol 2020; 30:1049-1062.e7. [PMID: 32142697 DOI: 10.1016/j.cub.2020.01.050] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/21/2019] [Accepted: 01/15/2020] [Indexed: 02/08/2023]
Abstract
Members of the gut microbiota are thought to experience strong competition for nutrients. However, how such competition shapes their evolutionary dynamics and depends on intra- and interspecies interactions is poorly understood. Here, we test the hypothesis that Escherichia coli evolution in the mouse gut is more predictable across hosts in the absence of interspecies competition than in the presence of other microbial species. In support, we observed that lrp, a gene encoding a global regulator of amino acid metabolism, was repeatedly selected in germ-free mice 2 weeks after mono-colonization by this bacterium. We established that this specific genetic adaptation increased E. coli's ability to compete for amino acids, and analysis of gut metabolites identified serine and threonine as the metabolites preferentially consumed by E. coli in the mono-colonized mouse gut. Preference for serine consumption was further supported by testing a set of mutants that showed loss of advantage of an lrp mutant impaired in serine metabolism in vitro and in vivo. Remarkably, the presence of a single additional member of the microbiota, Blautia coccoides, was sufficient to alter the gut metabolome and, consequently, the evolutionary path of E. coli. In this environment, the fitness advantage of the lrp mutant bacteria is lost, and mutations in genes involved in anaerobic respiration were selected instead, recapitulating the eco-evolutionary context from mice with a complex microbiota. Together, these results highlight the metabolic plasticity and evolutionary versatility of E. coli, tailored to the specific ecology it experiences in the gut.
Collapse
|
20
|
Xi D, Li Y, Yan J, Li Y, Wang X, Cao B. Small RNA coaR contributes to intestinal colonization in Vibrio cholerae via the two-component system EnvZ/OmpR. Environ Microbiol 2020; 22:4231-4243. [PMID: 31868254 DOI: 10.1111/1462-2920.14906] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/20/2019] [Indexed: 11/30/2022]
Abstract
Vibrio cholerae is a waterborne bacterium responsible for worldwide outbreaks of acute and fatal cholera. Recently, small regulatory RNAs (sRNAs) have become increasingly recognized as important regulators of virulence gene expression in response to environmental signals. In this study, we determined that two-component system EnvZ/OmpR was required for intestinal colonization in V. cholerae O1 EI Tor strain E12382. Analysis of the characteristics of OmpR revealed a potential binding site in the intergenic region between vc1470 and vc1471, and qRT-PCR showed that expression of the intergenic region increased 5.3-fold in the small intestine compared to LB medium. Race and northern blot assays were performed and demonstrated a new sRNA, coaR (cholerae osmolarity and acidity related regulatory RNA). A ΔcoaR mutant showed a deficient colonization ability in small intestine with CI of 0.15. We identified a target of coaR, tcpI, a negative regulator of the major pilin subunit of TcpA. The ΔtcpI mutant has an increased colonization with CI of 3.16. The expression of coaR increased 2.8-fold and 3.3-fold under relative acidic and hypertonic condition. In summary, coaR was induced under the condition of high osmolarity and acid stress via EnvZ/OmpR and explained that tcpI relieves pH-mediated repression of toxin co-regulated pilus synthesis.
Collapse
Affiliation(s)
- Daoyi Xi
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China.,Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, 300457, China.,Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Yujia Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China.,Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, 300457, China.,Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Junxiang Yan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China.,Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, 300457, China.,Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Yuehua Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China.,Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, 300457, China.,Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Xiaochen Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China.,Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, 300457, China.,Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Boyang Cao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China.,Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, 300457, China.,Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| |
Collapse
|
21
|
Abstract
Recent genomic and metagenomic studies have highlighted the presence of rapidly evolving microbial populations in the human gut. However, despite the fundamental implications of this intuitive finding for both basic and applied gut microbiome research, very little is known about the mode, tempo and potential functional consequences of microbial evolution in the guts of individual human hosts over a lifetime. Here I assess the potential relevance of ecological opportunity to bacterial adaptation, colonization and persistence in the neonate and germ-free mammalian gut environment as well as over the course of an individual lifetime using data emerging from mouse models as well as human studies to provide examples where possible. I then briefly outline how the continued development and application of experimental evolution approaches coupled to genomic and metagenomic analysis is essential to disentangling drift from selection and identifying specific drivers of evolution in the gut microbiome within and between individual human hosts and populations.
Collapse
Affiliation(s)
- Pauline D Scanlan
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, Biosciences Building, University College Cork, Cork, Ireland
| |
Collapse
|
22
|
Ghalayini M, Magnan M, Dion S, Zatout O, Bourguignon L, Tenaillon O, Lescat M. Long-term evolution of the natural isolate of Escherichia coli 536 in the mouse gut colonized after maternal transmission reveals convergence in the constitutive expression of the lactose operon. Mol Ecol 2019; 28:4470-4485. [PMID: 31482587 DOI: 10.1111/mec.15232] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/24/2019] [Indexed: 02/02/2023]
Abstract
In vitro experimental evolution has taught us many lessons on the molecular bases of adaptation. To move towards more natural settings, evolution in the mice gut has been successfully performed. Yet, these experiments suffered from the use of laboratory strains as well as the use of axenic or streptomycin-treated mice to maintain the inoculated strains. To circumvent these limitations, we conducted a one-year experimental evolution in vivo using a natural isolate of E. coli, strain 536, in conditions mimicking as much as possible natural environment with mother-to-offspring microbiota transmission. Mice were then distributed in 24 independent cages and separated into two different diets: a regular one (chow diet, CD) and high-fat and high-sugar one (Western Diet, WD). Genome sequences revealed an early and rapid selection during the breastfeeding period that selected the constitutive expression of the well-characterized lactose operon. E. coli was lost significantly more in CD than WD; however, we could not detect any genomic signature of selection, nor any diet specificities during the later part of the experiments. The apparently neutral evolution presumably due to low population size maintained nevertheless at high frequency the early selected mutations affecting lactose regulation. The rapid loss of lactose operon regulation challenges the idea that plastic gene expression is both optimal and stable in the wild.
Collapse
Affiliation(s)
- Mohamed Ghalayini
- IAME, INSERM, Université Paris 13, Bobigny, France.,Service de Réanimation Médico-Chirurgicale, Hôpital Avicenne, AP - HP, Bobigny, France.,IAME, INSERM, Université de Paris, Paris, France
| | - Melanie Magnan
- IAME, INSERM, Université Paris 13, Bobigny, France.,IAME, INSERM, Université de Paris, Paris, France
| | - Sara Dion
- IAME, INSERM, Université Paris 13, Bobigny, France.,IAME, INSERM, Université de Paris, Paris, France
| | | | - Lucie Bourguignon
- IAME, INSERM, Université de Paris, Paris, France.,École de l'Inserm Liliane Bettencourt, Paris, France
| | - Olivier Tenaillon
- IAME, INSERM, Université Paris 13, Bobigny, France.,IAME, INSERM, Université de Paris, Paris, France
| | - Mathilde Lescat
- IAME, INSERM, Université Paris 13, Bobigny, France.,IAME, INSERM, Université de Paris, Paris, France.,Service de Microbiologie, Hôpital Avicenne, AP - HP, Bobigny, France
| |
Collapse
|
23
|
Cerf-Bensussan N. Microbiology and immunology: An ideal partnership for a tango at the gut surface-A tribute to Philippe Sansonetti. Cell Microbiol 2019; 21:e13097. [PMID: 31414516 PMCID: PMC7027583 DOI: 10.1111/cmi.13097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/02/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022]
Abstract
Over the past 20 years, the highly dynamic interactions that take place between hosts and the gut microbiota have emerged as a major determinant in health and disease. The complexity of the gut microbiota represents, however, a considerable challenge, and reductionist approaches are indispensable to define the contribution of individual bacteria to host responses and to dissect molecular mechanisms. In this tribute to Philippe Sansonetti, I would like to show how rewarding collaborations with microbiologists have guided our team of immunologists in the study of host–microbiota interactions and, thanks to the use of controlled colonisation experiments in gnotobiotic mice, toward the demonstration that segmented filamentous bacteria (SFB) are indispensable to drive the post‐natal maturation of the gut immune barrier in mice. The work led with Philippe Sansonetti to set up in vitro culture conditions has been one important milestone that laid the ground for in‐depth characterization of the molecular attributes of this unusual symbiont. Recent suggestions that SFB may be present in the human microbiota encourage further cross‐fertilising interactions between microbiologists and immunologists to define whether results from mice can be translated to humans and, if so, how SFB may be used to promote human intestinal defences against enteropathogens. Nurturing the competences to pursue this inspiring project is one legacy of Philippe Sansonetti.
Collapse
Affiliation(s)
- Nadine Cerf-Bensussan
- Laboratory of Intestinal Immunity, INSERM UMR 1163, Institut Imagine, Paris, France.,Université de Paris, Paris, France
| |
Collapse
|
24
|
Fajardo-Lubián A, Ben Zakour NL, Agyekum A, Qi Q, Iredell JR. Host adaptation and convergent evolution increases antibiotic resistance without loss of virulence in a major human pathogen. PLoS Pathog 2019; 15:e1007218. [PMID: 30875398 PMCID: PMC6436753 DOI: 10.1371/journal.ppat.1007218] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 03/27/2019] [Accepted: 01/16/2019] [Indexed: 12/19/2022] Open
Abstract
As human population density and antibiotic exposure increase, specialised bacterial subtypes have begun to emerge. Arising among species that are common commensals and infrequent pathogens, antibiotic-resistant 'high-risk clones' have evolved to better survive in the modern human. Here, we show that the major matrix porin (OmpK35) of Klebsiella pneumoniae is not required in the mammalian host for colonisation, pathogenesis, nor for antibiotic resistance, and that it is commonly absent in pathogenic isolates. This is found in association with, but apparently independent of, a highly specific change in the co-regulated partner porin, the osmoporin (OmpK36), which provides enhanced antibiotic resistance without significant loss of fitness in the mammalian host. These features are common in well-described 'high-risk clones' of K. pneumoniae, as well as in unrelated members of this species and similar adaptations are found in other members of the Enterobacteriaceae that share this lifestyle. Available sequence data indicate evolutionary convergence, with implications for the spread of lethal antibiotic-resistant pathogens in humans.
Collapse
Affiliation(s)
- Alicia Fajardo-Lubián
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Sydney, New South Wales, Australia
- * E-mail: (AFL); (JRI)
| | - Nouri L. Ben Zakour
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Sydney, New South Wales, Australia
| | - Alex Agyekum
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Sydney, New South Wales, Australia
| | - Qin Qi
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Sydney, New South Wales, Australia
| | - Jonathan R. Iredell
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Sydney, New South Wales, Australia
- * E-mail: (AFL); (JRI)
| |
Collapse
|
25
|
Robinson CD, Klein HS, Murphy KD, Parthasarathy R, Guillemin K, Bohannan BJM. Experimental bacterial adaptation to the zebrafish gut reveals a primary role for immigration. PLoS Biol 2018; 16:e2006893. [PMID: 30532251 PMCID: PMC6301714 DOI: 10.1371/journal.pbio.2006893] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 12/20/2018] [Accepted: 11/21/2018] [Indexed: 02/07/2023] Open
Abstract
All animals live in intimate association with microorganisms that profoundly influence their health and development, yet the traits that allow microorganisms to establish and maintain host associations are not well understood. To date, most investigations aimed at identifying traits required for host association have focused on intrahost niches. Consequently, little is known about the relative contribution of extrahost factors such as environmental growth and survival and immigration into hosts from the external environment, as promoters of host association. To address this, we developed a tractable experimental evolution system that investigates both intra- and extrahost factors contributing to bacterial adaptation to the vertebrate gut. We passaged replicate lines of a zebrafish bacterial isolate, Aeromonas veronii, through populations of germ-free larval zebrafish (Danio rerio), each time using gut-associated Aeromonas populations to inoculate the aquatic environment of the next zebrafish population. We observed rapid increased adaptation to the host in all replicate lines. The initial adaptations present in early-evolved isolates did not increase intrahost fitness but rather enhanced both immigration from the environment and interhost transmission. Only in later-evolved isolates did we find evidence for intrahost-specific adaptations, as demonstrated by comparing their competitive fitness in the host genotype to which they evolved to that in a different genotype. Our results show how selection for bacterial transmission between hosts and their environment can shape bacterial-host association. This work illuminates the nature of selective forces present in host-microbe systems and reveals specific mechanisms of increased host association. Furthermore, our findings demonstrate that the entire host-microbe-environment system must be considered when identifying microbial traits that contribute to host adaptation.
Collapse
Affiliation(s)
- Catherine D. Robinson
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Helena S. Klein
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Kyleah D. Murphy
- Department of Physics and Materials Science Institute, University of Oregon, Eugene, Oregon, United States of America
| | - Raghuveer Parthasarathy
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
- Department of Physics and Materials Science Institute, University of Oregon, Eugene, Oregon, United States of America
| | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Brendan J. M. Bohannan
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| |
Collapse
|
26
|
Evolution of a Dominant Natural Isolate of Escherichia coli in the Human Gut over the Course of a Year Suggests a Neutral Evolution with Reduced Effective Population Size. Appl Environ Microbiol 2018; 84:AEM.02377-17. [PMID: 29305507 DOI: 10.1128/aem.02377-17] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 12/22/2017] [Indexed: 11/20/2022] Open
Abstract
In vitro and in vivo evolution experiments on Escherichia coli revealed several principles of bacterial adaptation. However, few data are available in the literature describing the behavior of E. coli in its natural environment. We attempted here to study the evolution in the human gut of a commensal dominant E. coli clone, ED1a belonging to the B2 phylogroup, through a longitudinal genomic study. We sequenced 24 isolates sampled at three different time points within a healthy individual over almost a year. We computed a mutation rate of 6.90 × 10-7 mutations per base per year of the chromosome for E. coli ED1a in healthy human gut. We observed very limited genomic diversity and could not detect any evidence of selection, in contrast to what is observed in experimental evolution over a similar length of time. We therefore suggest that ED1a, being well adapted to the healthy human gut, evolves mostly neutrally with a low effective population size (Ne of ≈500 to 1,700).IMPORTANCE In this study, we follow the genomic fate of a dominant clone of Escherichia coli in the human gut of a healthy individual over about a year. We could compute a low annual mutation rate that supports low diversity, and we could not retrieve any clear signature of selection. These observations support a neutral evolution of E. coli in the human gut, compatible with a very limited effective population size that deviates drastically with the observations made previously in experimental evolution.
Collapse
|
27
|
Russell CW, Fleming BA, Jost CA, Tran A, Stenquist AT, Wambaugh MA, Bronner MP, Mulvey MA. Context-Dependent Requirements for FimH and Other Canonical Virulence Factors in Gut Colonization by Extraintestinal Pathogenic Escherichia coli. Infect Immun 2018; 86:e00746-17. [PMID: 29311232 PMCID: PMC5820936 DOI: 10.1128/iai.00746-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/17/2017] [Indexed: 12/19/2022] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) acts as a commensal within the mammalian gut but can induce pathology upon dissemination to other host environments such as the urinary tract and bloodstream. ExPEC genomes are likely shaped by evolutionary forces encountered within the gut, where the bacteria spend much of their time, provoking the question of how their extraintestinal virulence traits arose. The principle of coincidental evolution, in which a gene that evolved in one niche happens to be advantageous in another, has been used to argue that ExPEC virulence factors originated in response to selective pressures within the gut ecosystem. As a test of this hypothesis, the fitness of ExPEC mutants lacking canonical virulence factors was assessed within the intact murine gut in the absence of antibiotic treatment. We found that most of the tested factors, including cytotoxic necrotizing factor type 1 (CNF1), Usp, colibactin, flagella, and plasmid pUTI89, were dispensable for gut colonization. The deletion of genes encoding the adhesin PapG or the toxin HlyA had transient effects but did not interfere with longer-term persistence. In contrast, a mutant missing the type 1 pilus-associated adhesin FimH displayed somewhat reduced persistence within the gut. However, this phenotype varied dependent on the presence of specific competing strains and was partially attributable to aberrant flagellin expression in the absence of fimH These data indicate that FimH and other key ExPEC-associated factors are not strictly required for gut colonization, suggesting that the development of extraintestinal virulence traits is not driven solely by selective pressures within the gut.
Collapse
Affiliation(s)
- Colin W Russell
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, Utah, USA
| | - Brittany A Fleming
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, Utah, USA
| | - Courtney A Jost
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, Utah, USA
| | - Alexander Tran
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, Utah, USA
| | - Alan T Stenquist
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, Utah, USA
| | - Morgan A Wambaugh
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, Utah, USA
| | - Mary P Bronner
- Department of Pathology, ARUP Laboratories, University of Utah, Salt Lake City, Utah, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Matthew A Mulvey
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, Utah, USA
| |
Collapse
|
28
|
Selber-Hnatiw S, Rukundo B, Ahmadi M, Akoubi H, Al-Bizri H, Aliu AF, Ambeaghen TU, Avetisyan L, Bahar I, Baird A, Begum F, Ben Soussan H, Blondeau-Éthier V, Bordaries R, Bramwell H, Briggs A, Bui R, Carnevale M, Chancharoen M, Chevassus T, Choi JH, Coulombe K, Couvrette F, D'Abreau S, Davies M, Desbiens MP, Di Maulo T, Di Paolo SA, Do Ponte S, Dos Santos Ribeiro P, Dubuc-Kanary LA, Duncan PK, Dupuis F, El-Nounou S, Eyangos CN, Ferguson NK, Flores-Chinchilla NR, Fotakis T, Gado Oumarou H D M, Georgiev M, Ghiassy S, Glibetic N, Grégoire Bouchard J, Hassan T, Huseen I, Ibuna Quilatan MF, Iozzo T, Islam S, Jaunky DB, Jeyasegaram A, Johnston MA, Kahler MR, Kaler K, Kamani C, Karimian Rad H, Konidis E, Konieczny F, Kurianowicz S, Lamothe P, Legros K, Leroux S, Li J, Lozano Rodriguez ME, Luponio-Yoffe S, Maalouf Y, Mantha J, McCormick M, Mondragon P, Narayana T, Neretin E, Nguyen TTT, Niu I, Nkemazem RB, O'Donovan M, Oueis M, Paquette S, Patel N, Pecsi E, Peters J, Pettorelli A, Poirier C, Pompa VR, Rajen H, Ralph RO, Rosales-Vasquez J, Rubinshtein D, Sakr S, Sebai MS, Serravalle L, Sidibe F, Sinnathurai A, Soho D, Sundarakrishnan A, Svistkova V, Ugbeye TE, Vasconcelos MS, Vincelli M, Voitovich O, Vrabel P, Wang L, et alSelber-Hnatiw S, Rukundo B, Ahmadi M, Akoubi H, Al-Bizri H, Aliu AF, Ambeaghen TU, Avetisyan L, Bahar I, Baird A, Begum F, Ben Soussan H, Blondeau-Éthier V, Bordaries R, Bramwell H, Briggs A, Bui R, Carnevale M, Chancharoen M, Chevassus T, Choi JH, Coulombe K, Couvrette F, D'Abreau S, Davies M, Desbiens MP, Di Maulo T, Di Paolo SA, Do Ponte S, Dos Santos Ribeiro P, Dubuc-Kanary LA, Duncan PK, Dupuis F, El-Nounou S, Eyangos CN, Ferguson NK, Flores-Chinchilla NR, Fotakis T, Gado Oumarou H D M, Georgiev M, Ghiassy S, Glibetic N, Grégoire Bouchard J, Hassan T, Huseen I, Ibuna Quilatan MF, Iozzo T, Islam S, Jaunky DB, Jeyasegaram A, Johnston MA, Kahler MR, Kaler K, Kamani C, Karimian Rad H, Konidis E, Konieczny F, Kurianowicz S, Lamothe P, Legros K, Leroux S, Li J, Lozano Rodriguez ME, Luponio-Yoffe S, Maalouf Y, Mantha J, McCormick M, Mondragon P, Narayana T, Neretin E, Nguyen TTT, Niu I, Nkemazem RB, O'Donovan M, Oueis M, Paquette S, Patel N, Pecsi E, Peters J, Pettorelli A, Poirier C, Pompa VR, Rajen H, Ralph RO, Rosales-Vasquez J, Rubinshtein D, Sakr S, Sebai MS, Serravalle L, Sidibe F, Sinnathurai A, Soho D, Sundarakrishnan A, Svistkova V, Ugbeye TE, Vasconcelos MS, Vincelli M, Voitovich O, Vrabel P, Wang L, Wasfi M, Zha CY, Gamberi C. Human Gut Microbiota: Toward an Ecology of Disease. Front Microbiol 2017; 8:1265. [PMID: 28769880 PMCID: PMC5511848 DOI: 10.3389/fmicb.2017.01265] [Show More Authors] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 06/23/2017] [Indexed: 12/17/2022] Open
Abstract
Composed of trillions of individual microbes, the human gut microbiota has adapted to the uniquely diverse environments found in the human intestine. Quickly responding to the variances in the ingested food, the microbiota interacts with the host via reciprocal biochemical signaling to coordinate the exchange of nutrients and proper immune function. Host and microbiota function as a unit which guards its balance against invasion by potential pathogens and which undergoes natural selection. Disturbance of the microbiota composition, or dysbiosis, is often associated with human disease, indicating that, while there seems to be no unique optimal composition of the gut microbiota, a balanced community is crucial for human health. Emerging knowledge of the ecology of the microbiota-host synergy will have an impact on how we implement antibiotic treatment in therapeutics and prophylaxis and how we will consider alternative strategies of global remodeling of the microbiota such as fecal transplants. Here we examine the microbiota-human host relationship from the perspective of the microbial community dynamics.
Collapse
Affiliation(s)
| | - Belise Rukundo
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Masoumeh Ahmadi
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Hayfa Akoubi
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Hend Al-Bizri
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Adelekan F Aliu
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | - Lilit Avetisyan
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Irmak Bahar
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Alexandra Baird
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Fatema Begum
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | | | - Helene Bramwell
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Alicia Briggs
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Richard Bui
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | - Talia Chevassus
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Jin H Choi
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Karyne Coulombe
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | - Meghan Davies
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | - Tamara Di Maulo
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | | | | | - Paola K Duncan
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | - Sara El-Nounou
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | | | - Tanya Fotakis
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | - Metodi Georgiev
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | | | - Tazkia Hassan
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Iman Huseen
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | - Tania Iozzo
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Safina Islam
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Dilan B Jaunky
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | | | | | - Cedric Kamani
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | - Filip Konieczny
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | - Karina Legros
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | - Jun Li
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | - Yara Maalouf
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Jessica Mantha
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | | | | | - Thi T T Nguyen
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Ian Niu
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | - Matthew Oueis
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | - Nehal Patel
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Emily Pecsi
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Jackie Peters
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | | | | | | | | | | | - Surya Sakr
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | - Lisa Serravalle
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Fily Sidibe
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | - Dominique Soho
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | | | | | | | - Olga Voitovich
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Pamela Vrabel
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Lu Wang
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Maryse Wasfi
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Cong Y Zha
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Chiara Gamberi
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| |
Collapse
|
29
|
Hwang E, Cheong HK, Kim SY, Kwon O, Blain KY, Choe S, Yeo KJ, Jung YW, Jeon YH, Cheong C. Crystal structure of the EnvZ periplasmic domain with CHAPS. FEBS Lett 2017; 591:1419-1428. [DOI: 10.1002/1873-3468.12658] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/11/2017] [Accepted: 04/13/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Eunha Hwang
- Division of Bioconvergence Analysis; Korea Basic Science Institute (KBSI); Chungbuk Korea
| | - Hae-Kap Cheong
- Division of Bioconvergence Analysis; Korea Basic Science Institute (KBSI); Chungbuk Korea
| | - Sang-Yoon Kim
- Synthetic Biology and Bioengineering Research Center; Korea Research Institute of Bioscience & Biotechnology (KRIBB); Daejeon Korea
| | - Ohsuk Kwon
- Synthetic Biology and Bioengineering Research Center; Korea Research Institute of Bioscience & Biotechnology (KRIBB); Daejeon Korea
| | - Katherine Y. Blain
- Qualcomm Institute; University of California San Diego; San Diego CA USA
| | - Senyon Choe
- Qualcomm Institute; University of California San Diego; San Diego CA USA
| | - Kwon Joo Yeo
- College of Pharmacy; Korea University; Sejong Korea
| | | | | | - Chaejoon Cheong
- Division of Bioconvergence Analysis; Korea Basic Science Institute (KBSI); Chungbuk Korea
| |
Collapse
|
30
|
Mechanisms of envelope permeability and antibiotic influx and efflux in Gram-negative bacteria. Nat Microbiol 2017; 2:17001. [PMID: 28224989 DOI: 10.1038/nmicrobiol.2017.1] [Citation(s) in RCA: 218] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 12/23/2016] [Indexed: 01/26/2023]
|
31
|
Tomberlin JK, Crippen TL, Tarone AM, Chaudhury MFB, Singh B, Cammack JA, Meisel RP. A Review of Bacterial Interactions With Blow Flies (Diptera: Calliphoridae) of Medical, Veterinary, and Forensic Importance. ANNALS OF THE ENTOMOLOGICAL SOCIETY OF AMERICA 2017; 110:19-36. [DOI: 10.1093/aesa/saw086] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
32
|
Lescat M, Launay A, Ghalayini M, Magnan M, Glodt J, Pintard C, Dion S, Denamur E, Tenaillon O. Using long-term experimental evolution to uncover the patterns and determinants of molecular evolution of an Escherichia coli natural isolate in the streptomycin-treated mouse gut. Mol Ecol 2016; 26:1802-1817. [PMID: 27661780 DOI: 10.1111/mec.13851] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/31/2016] [Accepted: 09/01/2016] [Indexed: 01/10/2023]
Abstract
Although microbial ecology of the gut is now a major focus of interest, little is known about the molecular determinants of microbial adaptation in the gut. Experimental evolution coupled with whole-genome sequencing can provide insights of the adaptive process. In vitro experiments have revealed some conserved patterns: intermediate convergence, and epistatic interactions between beneficial mutations and mutations in global regulators. To test the relevance of these patterns and to identify the selective pressures acting in vivo, we have performed a long-term adaptation of an E. coli natural isolate, the streptomycin-resistant strain 536, in the digestive tract of streptomycin-treated mice. After a year of evolution, a clone from 15 replicates was sequenced. Consistently with in vitro observations, the identified mutations revealed a strong pattern of convergence at the mutation, gene, operon and functional levels. Yet, the rate of molecular evolution was lower than in in vitro, and no mutations in global regulators were recovered. More specific targets were observed: the dgo operon, involved in the galactonate pathway that improved growth on D-galactonate, and rluD and gidB, implicated in the maturation of the ribosomes, which mutations improved growth only in the presence of streptomycin. As in vitro, the nonrandom associations of mutations within the same pathways suggested a role of epistasis in shaping the adaptive landscape. Overall, we show that 'evolve and sequence' approach coupled with an analysis of convergence, when applied to a natural isolate, can be used to study adaptation in vivo and uncover the specific selective pressures of that environment.
Collapse
Affiliation(s)
- Mathilde Lescat
- INSERM, IAME, UMR 1137, Paris, France.,Université Paris Nord, Sorbonne Paris Cité, Paris, France.,APHP, Hôpitaux Universitaires Paris Seine Saint-Denis, Paris, France
| | - Adrien Launay
- INSERM, IAME, UMR 1137, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Mohamed Ghalayini
- INSERM, IAME, UMR 1137, Paris, France.,Université Paris Nord, Sorbonne Paris Cité, Paris, France
| | - Mélanie Magnan
- INSERM, IAME, UMR 1137, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Jérémy Glodt
- INSERM, IAME, UMR 1137, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Coralie Pintard
- INSERM, IAME, UMR 1137, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Sara Dion
- INSERM, IAME, UMR 1137, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Erick Denamur
- INSERM, IAME, UMR 1137, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,APHP, Hôpitaux Universitaires Paris Nord Val de Seine, Paris, France
| | - Olivier Tenaillon
- INSERM, IAME, UMR 1137, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
33
|
Scanlan PD, Bischofberger AM, Hall AR. Modification of Escherichia coli-bacteriophage interactions by surfactants and antibiotics in vitro. FEMS Microbiol Ecol 2016; 93:fiw211. [PMID: 27737900 PMCID: PMC5091284 DOI: 10.1093/femsec/fiw211] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2016] [Indexed: 01/21/2023] Open
Abstract
Although experiments indicate that the abiotic environment plays an important role in bacterial interactions with their parasitic viruses (bacteriophages or phages), it is not yet clear how exposure to compounds present in nature alters the impact of phages on bacterial growth and evolution. To address this question, we exposed Escherichia coli K12 MG1655, in combination with three lytic phages, to various substances that natural and clinical microbial populations are likely to encounter: bile salts (present in mammalian gastrointestinal tracts), sodium dodecyl sulfate (SDS, a common surfactant in cleaning and hygiene products) and four antibiotics (present at variable concentrations in natural and clinical environments). Our results show that bile salts and SDS can reduce the detrimental effect of phages on bacterial growth. In some cases these compounds completely mitigated any negative effects of phages on bacterial growth and consequently bacteria did not evolve resistance to phages in these conditions. The proportional effects of phages were unaffected by antibiotics in most combinations, excepting three cases of phage-drug synergy. These results suggest that accounting for interactions between phages and environmental factors such as surfactants and antibiotics will improve understanding of both bacterial growth and resistance evolution to phages in vivo and in nature.
Collapse
Affiliation(s)
- Pauline D Scanlan
- APC Microbiome Institute, Bioscience Building, University College Cork, Ireland
| | | | - Alex R Hall
- Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
34
|
De Paepe M, Tournier L, Moncaut E, Son O, Langella P, Petit MA. Carriage of λ Latent Virus Is Costly for Its Bacterial Host due to Frequent Reactivation in Monoxenic Mouse Intestine. PLoS Genet 2016; 12:e1005861. [PMID: 26871586 PMCID: PMC4752277 DOI: 10.1371/journal.pgen.1005861] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 01/22/2016] [Indexed: 01/21/2023] Open
Abstract
Temperate phages, the bacterial viruses able to enter in a dormant prophage state in bacterial genomes, are present in the majority of bacterial strains for which the genome sequence is available. Although these prophages are generally considered to increase their hosts’ fitness by bringing beneficial genes, studies demonstrating such effects in ecologically relevant environments are relatively limited to few bacterial species. Here, we investigated the impact of prophage carriage in the gastrointestinal tract of monoxenic mice. Combined with mathematical modelling, these experimental results provided a quantitative estimation of key parameters governing phage-bacteria interactions within this model ecosystem. We used wild-type and mutant strains of the best known host/phage pair, Escherichia coli and phage λ. Unexpectedly, λ prophage caused a significant fitness cost for its carrier, due to an induction rate 50-fold higher than in vitro, with 1 to 2% of the prophage being induced. However, when prophage carriers were in competition with isogenic phage susceptible bacteria, the prophage indirectly benefited its carrier by killing competitors: infection of susceptible bacteria led to phage lytic development in about 80% of cases. The remaining infected bacteria were lysogenized, resulting overall in the rapid lysogenization of the susceptible lineage. Moreover, our setup enabled to demonstrate that rare events of phage gene capture by homologous recombination occurred in the intestine of monoxenic mice. To our knowledge, this study constitutes the first quantitative characterization of temperate phage-bacteria interactions in a simplified gut environment. The high prophage induction rate detected reveals DNA damage-mediated SOS response in monoxenic mouse intestine. We propose that the mammalian gut, the most densely populated bacterial ecosystem on earth, might foster bacterial evolution through high temperate phage activity. Dormant bacterial viruses, or prophages, are found in the genomes of almost all bacteria, but their impact on bacterial host fitness is largely unknown. Through experiments in mice, supported by a mathematical model, we quantified the activity of Escherichia coli prophage λ in monoxenic mouse gut, as well as its impact on its carrier bacteria. λ carriage negatively impacted its hosts due to frequent reactivation, but indirectly benefited its host by killing susceptible bacterial competitors. The high prophage activity unraveled in this study reflects a constant rate of SOS response, resulting from DNA damage in monoxenic mouse intestine. Our results should motivate researchers to take the presence of prophages into account when studying the action of specific bacteria in the gastrointestinal tract of mammals.
Collapse
Affiliation(s)
- Marianne De Paepe
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
- * E-mail:
| | | | - Elisabeth Moncaut
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Olivier Son
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Philippe Langella
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Marie-Agnès Petit
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
35
|
Brommer JE, Class B. The importance of genotype-by-age interactions for the development of repeatable behavior and correlated behaviors over lifetime. Front Zool 2015; 12 Suppl 1:S2. [PMID: 26816518 PMCID: PMC4722339 DOI: 10.1186/1742-9994-12-s1-s2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Behaviors are highly plastic and one aspect of this plasticity is behavioral changes over age. The presence of age-related plasticity in behavior opens up the possibility of between-individual variation in age-related plasticity (Individual-Age interaction, IxA) and genotype-age interaction (GxA). We outline the available approaches for quantifying GxA. We underline that knowledge of GxA for behaviors is an important step in reaching and understanding of the evolution of plasticity in behavior over lifetime. In particular, the heritability (repeatability) and/or the rank order of behavior across individuals are predicted to change across ages in presence of GxA. We draw on the theory of reaction norms to illustrate that GxA, when present, is likely to lead to developmental changes in the magnitude and possibly sign of the genetic correlation between behaviors (behavioral syndrome). We present an overview of the literature on changes in the ranking of individuals’ behavior across ages, and in the correlation between behaviors. Although all studies were carried out on the phenotypic level, they overall suggest clear scope for increased study of GxA as a process explaining age-related plasticity in behaviors. Lastly, we throughout emphasize that many of the approaches and underlying theory of GxA is applicable to the study of IxA, which is informative as it presents the upper limit of GxA, but is also a more attainable target of study in many systems. Empirical work aimed at understanding IxA and GxA in behavior is needed in order to understand whether patterns predicted by theory on plasticity indeed occur for age-related plasticity of behavior.
Collapse
Affiliation(s)
- Jon E Brommer
- Department of Biology, University Hill, 20014 University of Turku, Turku, Finland
| | - Barbara Class
- Department of Biology, University Hill, 20014 University of Turku, Turku, Finland
| |
Collapse
|
36
|
Gordo I, Demengeot J, Xavier K. Escherichia coli adaptation to the gut environment: a constant fight for survival. Future Microbiol 2015; 9:1235-8. [PMID: 25437184 DOI: 10.2217/fmb.14.86] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Isabel Gordo
- Instituto Gulbenkian de Ciência, 2780-156, Oeiras, Portugal
| | | | | |
Collapse
|
37
|
Conway T, Cohen PS. Commensal and Pathogenic Escherichia coli Metabolism in the Gut. Microbiol Spectr 2015; 3:10.1128/microbiolspec.MBP-0006-2014. [PMID: 26185077 PMCID: PMC4510460 DOI: 10.1128/microbiolspec.mbp-0006-2014] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Indexed: 12/22/2022] Open
Abstract
E. coli is a ubiquitous member of the intestinal microbiome. This organism resides in a biofilm comprised of a complex microbial community within the mucus layer where it must compete for the limiting nutrients that it needs to grow fast enough to stably colonize. In this article we discuss the nutritional basis of intestinal colonization. Beginning with basic ecological principles we describe what is known about the metabolism that makes E. coli such a remarkably successful member of the intestinal microbiota. To obtain the simple sugars and amino acids that it requires, E. coli depends on degradation of complex glycoproteins by strict anaerobes. Despite having essentially the same core genome and hence the same metabolism when grown in the laboratory, different E. coli strains display considerable catabolic diversity when colonized in mice. To explain why some E. coli mutants do not grow as well on mucus in vitro as their wild type parents yet are better colonizers, we postulate that each one resides in a distinct "Restaurant" where it is served different nutrients because it interacts physically and metabolically with different species of anaerobes. Since enteric pathogens that fail to compete successfully for nutrients cannot colonize, a basic understanding of the nutritional basis of intestinal colonization will inform efforts to develop prebiotics and probiotics to combat infection.
Collapse
Affiliation(s)
- Tyrrell Conway
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, Phone: 405-820-7329,
| | - Paul S. Cohen
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, Phone: 401-874-5920,
| |
Collapse
|
38
|
Abstract
Although the composition of the gut microbiota and its symbiotic contribution to key host physiological functions are well established, little is known as yet about the bacterial factors that account for this symbiosis. We selected Lactobacillus casei as a model microorganism to proceed to genomewide identification of the functions required for a symbiont to establish colonization in the gut. As a result of our recent development of a transposon-mutagenesis tool that overcomes the barrier that had prevented L. casei random mutagenesis, we developed a signature-tagged mutagenesis approach combining whole-genome reverse genetics using a set of tagged transposons and in vivo screening using the rabbit ligated ileal loop model. After sequencing transposon insertion sites in 9,250 random mutants, we assembled a library of 1,110 independent mutants, all disrupted in a different gene, that provides a representative view of the L. casei genome. By determining the relative quantity of each of the 1,110 mutants before and after the in vivo challenge, we identified a core of 47 L. casei genes necessary for its establishment in the gut. They are involved in housekeeping functions, metabolism (sugar, amino acids), cell wall biogenesis, and adaptation to environment. Hence we provide what is, to our knowledge, the first global functional genomics analysis of L. casei symbiosis.
Collapse
|
39
|
Cullender TC, Chassaing B, Janzon A, Kumar K, Muller CE, Werner JJ, Angenent LT, Bell ME, Hay AG, Peterson DA, Walter J, Vijay-Kumar M, Gewirtz AT, Ley RE. Innate and adaptive immunity interact to quench microbiome flagellar motility in the gut. Cell Host Microbe 2014; 14:571-81. [PMID: 24237702 DOI: 10.1016/j.chom.2013.10.009] [Citation(s) in RCA: 276] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 08/23/2013] [Accepted: 09/26/2013] [Indexed: 12/12/2022]
Abstract
Gut mucosal barrier breakdown and inflammation have been associated with high levels of flagellin, the principal bacterial flagellar protein. Although several gut commensals can produce flagella, flagellin levels are low in the healthy gut, suggesting the existence of control mechanisms. We find that mice lacking the flagellin receptor Toll-like receptor 5 (TLR5) exhibit a profound loss of flagellin-specific immunoglobulins (Igs) despite higher total Ig levels in the gut. Ribotyping of IgA-coated cecal microbiota showed Proteobacteria evading antibody coating in the TLR5(-/-) gut. A diversity of microbiome members overexpressed flagellar genes in the TLR5(-/-) host. Proteobacteria and Firmicutes penetrated small intestinal villi, and flagellated bacteria breached the colonic mucosal barrier. In vitro, flagellin-specific Ig inhibited bacterial motility and downregulated flagellar gene expression. Thus, innate-immunity-directed development of flagellin-specific adaptive immune responses can modulate the microbiome's production of flagella in a three-way interaction that helps to maintain mucosal barrier integrity and homeostasis.
Collapse
Affiliation(s)
- Tyler C Cullender
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Barroso-Batista J, Sousa A, Lourenço M, Bergman ML, Sobral D, Demengeot J, Xavier KB, Gordo I. The first steps of adaptation of Escherichia coli to the gut are dominated by soft sweeps. PLoS Genet 2014; 10:e1004182. [PMID: 24603313 PMCID: PMC3945185 DOI: 10.1371/journal.pgen.1004182] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 01/04/2014] [Indexed: 11/28/2022] Open
Abstract
The accumulation of adaptive mutations is essential for survival in novel environments. However, in clonal populations with a high mutational supply, the power of natural selection is expected to be limited. This is due to clonal interference - the competition of clones carrying different beneficial mutations - which leads to the loss of many small effect mutations and fixation of large effect ones. If interference is abundant, then mechanisms for horizontal transfer of genes, which allow the immediate combination of beneficial alleles in a single background, are expected to evolve. However, the relevance of interference in natural complex environments, such as the gut, is poorly known. To address this issue, we have developed an experimental system which allows to uncover the nature of the adaptive process as Escherichia coli adapts to the mouse gut. This system shows the invasion of beneficial mutations in the bacterial populations and demonstrates the pervasiveness of clonal interference. The observed dynamics of change in frequency of beneficial mutations are consistent with soft sweeps, where different adaptive mutations with similar phenotypes, arise repeatedly on different haplotypes without reaching fixation. Despite the complexity of this ecosystem, the genetic basis of the adaptive mutations revealed a striking parallelism in independently evolving populations. This was mainly characterized by the insertion of transposable elements in both coding and regulatory regions of a few genes. Interestingly, in most populations we observed a complete phenotypic sweep without loss of genetic variation. The intense clonal interference during adaptation to the gut environment, here demonstrated, may be important for our understanding of the levels of strain diversity of E. coli inhabiting the human gut microbiota and of its recombination rate. Adaptation to novel environments involves the accumulation of beneficial mutations. If these are rare the process will proceed slowly with each one sweeping to fixation on its own. On the contrary if they are common in clonal populations, individuals carrying different beneficial alleles will experience intense competition and only those clones carrying the stronger effect mutations will leave a future line of descent. This phenomenon is known as clonal interference and the extent to which it occurs in natural environments is unknown. One of the most complex natural environments for E. coli is the mammalian intestine, where it evolves in the presence of many species comprising the gut microbiota. We have studied the dynamics of adaptation of E. coli populations evolving in this relevant ecosystem. We show that clonal interference is pervasive in the mouse gut and that the targets of natural selection are similar in independently E. coli evolving populations. These results illustrate how experimental evolution in natural environments allows us to dissect the mechanisms underlying adaptation and its complex dynamics and further reveal the importance of mobile genetic elements in contributing to the adaptive diversification of bacterial populations in the gut.
Collapse
Affiliation(s)
| | - Ana Sousa
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | | | | | | | - Karina B. Xavier
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Isabel Gordo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- * E-mail:
| |
Collapse
|
41
|
Escherichia coli isolate for studying colonization of the mouse intestine and its application to two-component signaling knockouts. J Bacteriol 2014; 196:1723-32. [PMID: 24563035 DOI: 10.1128/jb.01296-13] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The biology of Escherichia coli in its primary niche, the animal intestinal tract, is remarkably unexplored. Studies with the streptomycin-treated mouse model have produced important insights into the metabolic requirements for Escherichia coli to colonize mice. However, we still know relatively little about the physiology of this bacterium growing in the complex environment of an intestine that is permissive for the growth of competing flora. We have developed a system for studying colonization using an E. coli strain, MP1, isolated from a mouse. MP1 is genetically tractable and does not require continuous antibiotic treatment for stable colonization. As an application of this system, we separately knocked out each two-component system response regulator in MP1 and performed competitions against the wild-type strain. We found that only three response regulators, ArcA, CpxR, and RcsB, produce strong colonization defects, suggesting that in addition to anaerobiosis, adaptation to cell envelope stress is a critical requirement for E. coli colonization of the mouse intestine. We also show that the response regulator OmpR, which had previously been hypothesized to be important for adaptation between in vivo and ex vivo environments, is not required for MP1 colonization due to the presence of a third major porin.
Collapse
|
42
|
Abstract
Recent progress in molecular biology and genetics opens up the possibility of engineering a variety of biological systems, from single-cellular to multicellular organisms. The consortia of microbes that reside on the human body, the human-associated microbiota, are particularly interesting as targets for forward engineering and manipulation due to their relevance in health and disease. New technologies in analysis and perturbation of the human microbiota will lead to better diagnostic and therapeutic strategies against diseases of microbial origin or pathogenesis. Here, we discuss recent advances that are bringing us closer to realizing the true potential of an engineered human-associated microbial community.
Collapse
Affiliation(s)
- Stephanie J Yaung
- Program in Medical Engineering Medical Physics, Harvard-MIT Health Sciences and Technology, Cambridge, MA, USA
| | | | | |
Collapse
|
43
|
D'Auria G, Peris-Bondia F, Džunková M, Mira A, Collado MC, Latorre A, Moya A. Active and secreted IgA-coated bacterial fractions from the human gut reveal an under-represented microbiota core. Sci Rep 2013; 3:3515. [PMID: 24343271 PMCID: PMC3865468 DOI: 10.1038/srep03515] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 11/27/2013] [Indexed: 02/07/2023] Open
Abstract
Host-associated microbiota varies in distribution depending on the body area inhabited. Gut microbes are known to interact with the human immune system, maintaining gut homoeostasis. Thus, we studied whether secreted-IgA (S-IgA) coat specific microbial taxa without inducing strong immune responses. To do so, we fractionated gut microbiota by flow cytometry. We found that active and S-IgA-coated bacterial fractions were characterized by a higher diversity than those observed in raw faecal suspensions. A long-tail effect was observed in family distribution, revealing that rare bacteria represent up to 20% of total diversity. While Firmicutes was the most abundant phylum, the majority of its sequences were not assigned at the genus level. Finally, the single-cell-based approach enabled us to focus on active and S-IgA-coated bacteria. Thus, we revealed a microbiota core common to the healthy volunteers participating in the study. Interestingly, this core was composed mainly of low frequency taxa (e.g. Sphingomonadaceae).
Collapse
Affiliation(s)
- Giuseppe D'Auria
- Joint Unit of Research in Genomics and Health, Centre for Public Health Research (CSISP) - Cavanilles Institute for Biodiversity and Evolutionary Biology (University of Valencia), Valencia, 46020; Spain
- CIBER Epidemiología y Salud Pública (CIBERESP); Spain
- These authors contributed equally to this work
| | - Francesc Peris-Bondia
- Joint Unit of Research in Genomics and Health, Centre for Public Health Research (CSISP) - Cavanilles Institute for Biodiversity and Evolutionary Biology (University of Valencia), Valencia, 46020; Spain
- CIBER Epidemiología y Salud Pública (CIBERESP); Spain
- These authors contributed equally to this work
| | - Mária Džunková
- Joint Unit of Research in Genomics and Health, Centre for Public Health Research (CSISP) - Cavanilles Institute for Biodiversity and Evolutionary Biology (University of Valencia), Valencia, 46020; Spain
- CIBER Epidemiología y Salud Pública (CIBERESP); Spain
| | - Alex Mira
- Joint Unit of Research in Genomics and Health, Centre for Public Health Research (CSISP) - Cavanilles Institute for Biodiversity and Evolutionary Biology (University of Valencia), Valencia, 46020; Spain
| | - Maria Carmen Collado
- The Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, 46100; Spain
| | - Amparo Latorre
- Joint Unit of Research in Genomics and Health, Centre for Public Health Research (CSISP) - Cavanilles Institute for Biodiversity and Evolutionary Biology (University of Valencia), Valencia, 46020; Spain
- CIBER Epidemiología y Salud Pública (CIBERESP); Spain
| | - Andrés Moya
- Joint Unit of Research in Genomics and Health, Centre for Public Health Research (CSISP) - Cavanilles Institute for Biodiversity and Evolutionary Biology (University of Valencia), Valencia, 46020; Spain
- CIBER Epidemiología y Salud Pública (CIBERESP); Spain
| |
Collapse
|
44
|
Stecher B, Berry D, Loy A. Colonization resistance and microbial ecophysiology: using gnotobiotic mouse models and single-cell technology to explore the intestinal jungle. FEMS Microbiol Rev 2013; 37:793-829. [PMID: 23662775 DOI: 10.1111/1574-6976.12024] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 04/11/2013] [Accepted: 04/18/2013] [Indexed: 12/14/2022] Open
Abstract
The highly diverse intestinal microbiota forms a structured community engaged in constant communication with itself and its host and is characterized by extensive ecological interactions. A key benefit that the microbiota affords its host is its ability to protect against infections in a process termed colonization resistance (CR), which remains insufficiently understood. In this review, we connect basic concepts of CR with new insights from recent years and highlight key technological advances in the field of microbial ecology. We present a selection of statistical and bioinformatics tools used to generate hypotheses about synergistic and antagonistic interactions in microbial ecosystems from metagenomic datasets. We emphasize the importance of experimentally testing these hypotheses and discuss the value of gnotobiotic mouse models for investigating specific aspects related to microbiota-host-pathogen interactions in a well-defined experimental system. We further introduce new developments in the area of single-cell analysis using fluorescence in situ hybridization in combination with metabolic stable isotope labeling technologies for studying the in vivo activities of complex community members. These approaches promise to yield novel insights into the mechanisms of CR and intestinal ecophysiology in general, and give researchers the means to experimentally test hypotheses in vivo at varying levels of biological and ecological complexity.
Collapse
Affiliation(s)
- Bärbel Stecher
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Ludwig-Maximilians-University of Munich, Munich, Germany.
| | | | | |
Collapse
|
45
|
Beaume M, Monina N, Schrenzel J, François P. Bacterial genome evolution within a clonal population: from in vitro investigations to in vivo observations. Future Microbiol 2013; 8:661-74. [PMID: 23642119 DOI: 10.2217/fmb.13.28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bacteria are faced with a diversity of environmental stresses that include high salt concentrations, heavy metals and pH fluctuations. Adaptation to resist such stresses is a complex phenomenon that involves global pathways and simultaneous acquisition of multiple unrelated properties. During the last 3 years, the development of new technologies in the field of molecular biology has led to numerous fundamental and quantitative in vitro and in vivo evolutionary studies that have improved our understanding of the principles underlying bacterial adaptations, and helped us develop strategies to cope with the health burden of bacterial virulence. In this review, the authors discuss the evolution of bacteria in the laboratory and in human patients.
Collapse
Affiliation(s)
- Marie Beaume
- Genomic Research Laboratory, Infectious Diseases Service, University of Geneva Hospitals, Rue Gabrielle-Perret-Gentil 4, CH-1211 Geneva 14, Switzerland
| | | | | | | |
Collapse
|
46
|
Mutational activation of the AmgRS two-component system in aminoglycoside-resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother 2013; 57:2243-51. [PMID: 23459488 DOI: 10.1128/aac.00170-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The amgRS operon encodes a presumed membrane stress-responsive two-component system linked to intrinsic aminoglycoside resistance in Pseudomonas aeruginosa. Genome sequencing of a lab isolate showing modest pan-aminoglycoside resistance, strain K2979, revealed a number of mutations, including a substitution in amgS that produced an R182C change in the AmgS sensor kinase product of this gene. Introduction of this mutation into an otherwise wild-type strain recapitulated the resistance phenotype, while correcting the mutation in the resistant mutant abrogated the resistant phenotype, confirming that the amgS mutation is responsible for the aminoglycoside resistance of strain K2979. The amgSR182 mutation promoted an AmgR-dependent, 2- to 3-fold increase in expression of the AmgRS target genes htpX and PA5528, mirroring the impact of aminoglycoside exposure of wild-type cells on htpX and PA5528 expression. This suggests that amgSR182 is a gain-of-function mutation that activates AmgS and the AmgRS two-component system in promoting modest resistance to aminoglycosides. Screening of several pan-aminoglycoside-resistant clinical isolates of P. aeruginosa revealed three that showed elevated htpX and PA5528 expression and harbored single amino acid-altering mutations in amgS (V121G or D106N) and no mutations in amgR. Introduction of the amgSV121G mutation into wild-type P. aeruginosa generated a resistance phenotype reminiscent of the amgSR182 mutant and produced a 2- to 3-fold increase in htpX and PA5528 expression, confirming that it, too, is a gain-of-function aminoglycoside resistance-promoting mutation. These results highlight the contribution of amgS mutations and activation of the AmgRS two-component system to acquired aminoglycoside resistance in lab and clinical isolates of P. aeruginosa.
Collapse
|
47
|
Perkins TT, Davies MR, Klemm EJ, Rowley G, Wileman T, James K, Keane T, Maskell D, Hinton JCD, Dougan G, Kingsley RA. ChIP-seq and transcriptome analysis of the OmpR regulon of Salmonella enterica serovars Typhi and Typhimurium reveals accessory genes implicated in host colonization. Mol Microbiol 2013; 87:526-38. [PMID: 23190111 PMCID: PMC3586657 DOI: 10.1111/mmi.12111] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2012] [Indexed: 12/25/2022]
Abstract
OmpR is a multifunctional DNA binding regulator with orthologues in many enteric bacteria that exhibits classical regulator activity as well as nucleoid-associated protein-like characteristics. In the enteric pathogen Salmonella enterica, using chromatin immunoprecipitation of OmpR:FLAG and nucleotide sequencing, 43 putative OmpR binding sites were identified in S. enterica serovar Typhi, 22 of which were associated with OmpR-regulated genes. Mutation of a sequence motif (TGTWACAW) that was associated with the putative OmpR binding sites abrogated binding of OmpR:6×His to the tviA upstream region. A core set of 31 orthologous genes were found to exhibit OmpR-dependent expression in both S. Typhi and S. Typhimurium. S. Typhimurium-encoded orthologues of two divergently transcribed OmpR-regulated operons (SL1068-71 and SL1066-67) had a putative OmpR binding site in the inter-operon region in S. Typhi, and were characterized using in vitro and in vivo assays. These operons are widely distributed within S. enterica but absent from the closely related Escherichia coli. SL1066 and SL1067 were required for growth on N-acetylmuramic acid as a sole carbon source. SL1068-71 exhibited sequence similarity to sialic acid uptake systems and contributed to colonization of the ileum and caecum in the streptomycin-pretreated mouse model of colitis.
Collapse
Affiliation(s)
- Timothy T Perkins
- The Wellcome Trust Sanger Institute The Wellcome Trust Genome Campus, Hinxton CambridgeCB10 1SA UK
| | - Mark R Davies
- The Wellcome Trust Sanger Institute The Wellcome Trust Genome Campus, Hinxton CambridgeCB10 1SA UK
| | - Elizabeth J Klemm
- The Wellcome Trust Sanger Institute The Wellcome Trust Genome Campus, Hinxton CambridgeCB10 1SA UK
| | - Gary Rowley
- School of Biological Sciences University of East Anglia NorwichNR4 7TJ UK
| | - Thomas Wileman
- The Wellcome Trust Sanger Institute The Wellcome Trust Genome Campus, Hinxton CambridgeCB10 1SA UK
| | - Keith James
- The Wellcome Trust Sanger Institute The Wellcome Trust Genome Campus, Hinxton CambridgeCB10 1SA UK
| | - Thomas Keane
- The Wellcome Trust Sanger Institute The Wellcome Trust Genome Campus, Hinxton CambridgeCB10 1SA UK
| | - Duncan Maskell
- Department of Veterinary Medicine University of Cambridge Madingley Road CambridgeCB3 0ES UK
| | - Jay C D Hinton
- Institute of Integrative Biology University of Liverpool Crown Street LiverpoolL69 7ZB UK
| | - Gordon Dougan
- The Wellcome Trust Sanger Institute The Wellcome Trust Genome Campus, Hinxton CambridgeCB10 1SA UK
| | - Robert A Kingsley
- The Wellcome Trust Sanger Institute The Wellcome Trust Genome Campus, Hinxton CambridgeCB10 1SA UK
| |
Collapse
|
48
|
Ni M, Decrulle AL, Fontaine F, Demarez A, Taddei F, Lindner AB. Pre-disposition and epigenetics govern variation in bacterial survival upon stress. PLoS Genet 2012; 8:e1003148. [PMID: 23284305 PMCID: PMC3527273 DOI: 10.1371/journal.pgen.1003148] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 10/22/2012] [Indexed: 11/18/2022] Open
Abstract
Bacteria suffer various stresses in their unpredictable environment. In response, clonal populations may exhibit cell-to-cell variation, hypothetically to maximize their survival. The origins, propagation, and consequences of this variability remain poorly understood. Variability persists through cell division events, yet detailed lineage information for individual stress-response phenotypes is scarce. This work combines time-lapse microscopy and microfluidics to uniformly manipulate the environmental changes experienced by clonal bacteria. We quantify the growth rates and RpoH-driven heat-shock responses of individual Escherichia coli within their lineage context, stressed by low streptomycin concentrations. We observe an increased variation in phenotypes, as different as survival from death, that can be traced to asymmetric division events occurring prior to stress induction. Epigenetic inheritance contributes to the propagation of the observed phenotypic variation, resulting in three-fold increase of the RpoH-driven expression autocorrelation time following stress induction. We propose that the increased permeability of streptomycin-stressed cells serves as a positive feedback loop underlying this epigenetic effect. Our results suggest that stochasticity, pre-disposition, and epigenetic effects are at the source of stress-induced variability. Unlike in a bet-hedging strategy, we observe that cells with a higher investment in maintenance, measured as the basal RpoH transcriptional activity prior to antibiotic treatment, are more likely to give rise to stressed, frail progeny.
Collapse
Affiliation(s)
- Ming Ni
- Institut National de la Santé et de la Recherche Médicale, Paris, France
- Faculty of Medicine, Paris Descartes University, Paris, France
| | - Antoine L. Decrulle
- Institut National de la Santé et de la Recherche Médicale, Paris, France
- Faculty of Medicine, Paris Descartes University, Paris, France
| | - Fanette Fontaine
- Institut National de la Santé et de la Recherche Médicale, Paris, France
- Faculty of Medicine, Paris Descartes University, Paris, France
| | - Alice Demarez
- Institut National de la Santé et de la Recherche Médicale, Paris, France
- Faculty of Medicine, Paris Descartes University, Paris, France
| | - Francois Taddei
- Institut National de la Santé et de la Recherche Médicale, Paris, France
- Faculty of Medicine, Paris Descartes University, Paris, France
| | - Ariel B. Lindner
- Institut National de la Santé et de la Recherche Médicale, Paris, France
- Faculty of Medicine, Paris Descartes University, Paris, France
| |
Collapse
|
49
|
Folkesson A, Jelsbak L, Yang L, Johansen HK, Ciofu O, Høiby N, Molin S. Adaptation of Pseudomonas aeruginosa to the cystic fibrosis airway: an evolutionary perspective. Nat Rev Microbiol 2012; 10:841-51. [DOI: 10.1038/nrmicro2907] [Citation(s) in RCA: 513] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
50
|
Leatham-Jensen MP, Frimodt-Møller J, Adediran J, Mokszycki ME, Banner ME, Caughron JE, Krogfelt KA, Conway T, Cohen PS. The streptomycin-treated mouse intestine selects Escherichia coli envZ missense mutants that interact with dense and diverse intestinal microbiota. Infect Immun 2012; 80:1716-27. [PMID: 22392928 PMCID: PMC3347456 DOI: 10.1128/iai.06193-11] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 02/16/2012] [Indexed: 01/07/2023] Open
Abstract
Previously, we reported that the streptomycin-treated mouse intestine selected nonmotile Escherichia coli MG1655 flhDC deletion mutants of E. coli MG1655 with improved colonizing ability that grow 15% faster in vitro in mouse cecal mucus and 15 to 30% faster on sugars present in mucus (M. P. Leatham et al., Infect. Immun. 73:8039-8049, 2005). Here, we report that the 10 to 20% remaining motile E. coli MG1655 are envZ missense mutants that are also better colonizers of the mouse intestine than E. coli MG1655. One of the flhDC mutants, E. coli MG1655 ΔflhD, and one of the envZ missense mutants, E. coli MG1655 mot-1, were studied further. E. coli MG1655 mot-1 is more resistant to bile salts and colicin V than E. coli MG1655 ΔflhD and grows ca. 15% slower in vitro in mouse cecal mucus and on several sugars present in mucus compared to E. coli MG1655 ΔflhD but grows 30% faster on galactose. Moreover, E. coli MG1655 mot-1 and E. coli MG1655 ΔflhD appear to colonize equally well in one intestinal niche, but E. coli MG1655 mot-1 appears to use galactose to colonize a second, smaller intestinal niche either not colonized or colonized poorly by E. coli MG1655 ΔflhD. Evidence is also presented that E. coli MG1655 is a minority member of mixed bacterial biofilms in the mucus layer of the streptomycin-treated mouse intestine. We offer a hypothesis, which we call the "Restaurant" hypothesis, that explains how nutrient acquisition in different biofilms comprised of different anaerobes can account for our results.
Collapse
Affiliation(s)
- Mary P. Leatham-Jensen
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, Rhode Island, USA
| | - Jakob Frimodt-Møller
- Department of Microbiological Surveillance and Research, Statens Serum Institut, Copenhagen S, Denmark
| | - Jimmy Adediran
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, Rhode Island, USA
| | - Matthew E. Mokszycki
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, Rhode Island, USA
| | - Megan E. Banner
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, Rhode Island, USA
| | - Joyce E. Caughron
- Department of Botany and Microbiology, University of Oklahoma, Norman, Okloahoma, USA
| | - Karen A. Krogfelt
- Department of Microbiological Surveillance and Research, Statens Serum Institut, Copenhagen S, Denmark
| | - Tyrrell Conway
- Department of Botany and Microbiology, University of Oklahoma, Norman, Okloahoma, USA
| | - Paul S. Cohen
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, Rhode Island, USA
| |
Collapse
|