1
|
Abdi H, Safargar M, Găman MA, Akhgarjand C, Prabahar K, Zarezadeh H, Chan XY, Jamilian P, Kord-Varkaneh H. Association of Higher Intakes of Dietary Zinc with Higher Ferritin or Hemoglobin: a Cross-sectional Study from NHANES (2017-2020). Biol Trace Elem Res 2025:10.1007/s12011-025-04589-y. [PMID: 40158044 DOI: 10.1007/s12011-025-04589-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 03/18/2025] [Indexed: 04/01/2025]
Abstract
Zinc is an essential trace element that plays a critical role in numerous physiological processes, including immune function, cell growth, and particularly iron metabolism. This study aimed to explore the association between dietary zinc intake and key biomarkers of iron status, specifically serum ferritin and hemoglobin levels, in a representative sample of the US population. A cross-sectional analysis was conducted using data from the 2017-2020 National Health and Nutrition Examination Survey (NHANES), which included 15,560 participants. Dietary zinc intake was assessed through 24-h dietary recall, and serum ferritin and hemoglobin levels were measured through laboratory tests. Participants were grouped into quartiles based on their zinc intake. Multivariable linear regression models were applied to evaluate the relationship between dietary zinc intake and ferritin and hemoglobin levels, adjusting for potential confounders such as age, sex, body mass index (BMI), waist circumference, energy intake, macronutrients, and micronutrients. These adjustments ensured a more accurate analysis of the associations between zinc intake and iron markers. Our findings demonstrate that higher dietary zinc intake is significantly associated with elevated serum ferritin (B = 6.17, p = 0.027) and hemoglobin (B = 0.048, p = 0.019) levels, independent of other factors. Participants in the highest zinc intake quartile also showed higher hematocrit and mean corpuscular volume (MCV) levels compared to those in the lowest quartile. These results suggest that adequate dietary zinc intake may play a crucial role in improving iron status and reducing the risk of iron-deficiency anemia, particularly in populations at risk. Future research is necessary to further elucidate the mechanisms behind this relationship and to inform public health nutritional guidelines.
Collapse
Affiliation(s)
- Hanieh Abdi
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Safargar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mihnea-Alexandru Găman
- Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
- Department of Hematology, Centre of Hematology and Bone Marrow Transplantation, Fundeni Clinical Institute, Bucharest, Romania
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, Romanian Academy, Bucharest, Romania
| | - Camellia Akhgarjand
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Kousalya Prabahar
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Haniye Zarezadeh
- Department of Psychology, Faculty of Education and Psychology, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Xin Ying Chan
- Department of Acute Medical Unit, Aintree University Hospital NHS Trust, Liverpool, UK
| | - Parsa Jamilian
- School of Medicine, Keele University, Staffordshire, UK.
| | - Hamed Kord-Varkaneh
- Urology and Nephrology Research Center, Shahid Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Yang S, Liu H, Liu Y. Advances in intestinal epithelium and gut microbiota interaction. Front Microbiol 2025; 16:1499202. [PMID: 40104591 PMCID: PMC11914147 DOI: 10.3389/fmicb.2025.1499202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/17/2025] [Indexed: 03/20/2025] Open
Abstract
The intestinal epithelium represents a critical interface between the host and external environment, serving as the second largest surface area in the human body after the lungs. This dynamic barrier is sustained by specialized epithelial cell types and their complex interactions with the gut microbiota. This review comprehensively examines the recent advances in understanding the bidirectional communication between intestinal epithelial cells and the microbiome. We briefly highlight the role of various intestinal epithelial cell types, such as Paneth cells, goblet cells, and enteroendocrine cells, in maintaining intestinal homeostasis and barrier function. Gut microbiota-derived metabolites, particularly short-chain fatty acids and bile acids, influence epithelial cell function and intestinal barrier integrity. Additionally, we highlight emerging evidence of the sophisticated cooperation between different epithelial cell types, with special emphasis on the interaction between tuft cells and Paneth cells in maintaining microbial balance. Understanding these complex interactions has important implications for developing targeted therapeutic strategies for various gastrointestinal disorders, including inflammatory bowel disease, metabolic disorders, and colorectal cancer.
Collapse
Affiliation(s)
- Sen Yang
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Pediatrics, The Fifth Peoples Hospital of Chengdu, Chengdu, China
| | - Hanmin Liu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yang Liu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Guo H, Wang S, Zhang H, Li J, Wang C, Liu Z, Chen J, Wang K, Wei X, Wei Q, Xu X. Research progress on the molecular structure, function, and application in tumor therapy of zinc transporter ZIP4. Int J Biol Sci 2024; 20:5910-5924. [PMID: 39664563 PMCID: PMC11628325 DOI: 10.7150/ijbs.102460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/22/2024] [Indexed: 12/13/2024] Open
Abstract
ZIP4, a pivotal member of the ZIP family, is the causative gene for the hereditary disorder AE (acrodermatitis enteropathica) in humans, and plays an essential role in regulating zinc ion balance within cells. While research on the molecular structure of ZIP4 continues, there remains a lack of full understanding regarding the stereo-structural conformation of ZIP4 molecules. Currently, there are two hypotheses concerning the transport of zinc ions into the cytoplasm by ZIP4, with some contradictions between experimental studies. Recent investigations have revealed that ZIP4 is involved in tumor growth, metastasis, drug tolerance, and various other processes. Most studies suggest that ZIP4 regulates the malignant biological behavior of tumors through zinc ions as a second messenger: however, latest research has identified that ZIP4 itself binds to Ephrin-B1 to regulate tumor metastasis. This review provides a comprehensive summary of the molecular structure of ZIP4 and its mechanism for transporting zinc ions while also exploring mutual regulation between zinc ions and ZIP4. Furthermore, it summarizes recent research progress on the role of ZIP4 in tumors and discusses its potential as a target for anticancer therapy based on an extensive analysis of research findings. These insights can guide future investigations into the role of ZIP4 in tumors.
Collapse
Affiliation(s)
- Haijun Guo
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Shaohua Wang
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Shaoxing city Keqiao District TCM hospital Medical Alliance General Hospital, Shaoxing, 312000, China
| | - Hui Zhang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medicine University, Hangzhou, 310053, China
| | - Jie Li
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Chao Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Zhikun Liu
- Department of Hepatobiliary and Pancreatic Surgery, People's Hospital Affiliated to Hangzhou Medical College (Zhejiang Provincial People's Hospital), Hangzhou, 310024, China
| | - Jun Chen
- Department of Hepatobiliary and Pancreatic Surgery, People's Hospital Affiliated to Hangzhou Medical College (Zhejiang Provincial People's Hospital), Hangzhou, 310024, China
| | - Kai Wang
- Department of Hepatobiliary and Pancreatic Surgery, People's Hospital Affiliated to Hangzhou Medical College (Zhejiang Provincial People's Hospital), Hangzhou, 310024, China
| | - Xuyong Wei
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Qiang Wei
- Department of Hepatobiliary and Pancreatic Surgery, People's Hospital Affiliated to Hangzhou Medical College (Zhejiang Provincial People's Hospital), Hangzhou, 310024, China
| | - Xiao Xu
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Department of Hepatobiliary and Pancreatic Surgery, People's Hospital Affiliated to Hangzhou Medical College (Zhejiang Provincial People's Hospital), Hangzhou, 310024, China
- Institute of Translational Medical, Zhejiang University, Hangzhou, 310006, China
| |
Collapse
|
4
|
Timmermans S, Wallaeys C, Garcia-Gonzalez N, Pollaris L, Saeys Y, Libert C. Identification and Characterization of Multiple Paneth Cell Types in the Mouse Small Intestine. Cells 2024; 13:1435. [PMID: 39273007 PMCID: PMC11394207 DOI: 10.3390/cells13171435] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/09/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
The small intestinal crypts harbor secretory Paneth cells (PCs) which express bactericidal peptides that are crucial for maintaining intestinal homeostasis. Considering the diverse environmental conditions throughout the course of the small intestine, multiple subtypes of PCs are expected to exist. We applied single-cell RNA-sequencing of PCs combined with deep bulk RNA-sequencing on PC populations of different small intestinal locations and discovered several expression-based PC clusters. Some of these are discrete and resemble tuft cell-like PCs, goblet cell (GC)-like PCs, PCs expressing stem cell markers, and atypical PCs. Other clusters are less discrete but appear to be derived from different locations along the intestinal tract and have environment-dictated functions such as food digestion and antimicrobial peptide production. A comprehensive spatial analysis using Resolve Bioscience was conducted, leading to the identification of different PC's transcriptomic identities along the different compartments of the intestine, but not between PCs in the crypts themselves.
Collapse
Affiliation(s)
- Steven Timmermans
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; (S.T.); (C.W.); (N.G.-G.); (L.P.); (Y.S.)
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Charlotte Wallaeys
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; (S.T.); (C.W.); (N.G.-G.); (L.P.); (Y.S.)
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Natalia Garcia-Gonzalez
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; (S.T.); (C.W.); (N.G.-G.); (L.P.); (Y.S.)
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Lotte Pollaris
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; (S.T.); (C.W.); (N.G.-G.); (L.P.); (Y.S.)
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, 9000 Ghent, Belgium
| | - Yvan Saeys
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; (S.T.); (C.W.); (N.G.-G.); (L.P.); (Y.S.)
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, 9000 Ghent, Belgium
| | - Claude Libert
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; (S.T.); (C.W.); (N.G.-G.); (L.P.); (Y.S.)
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
5
|
Zutshi N, Mohapatra BC, Mondal P, An W, Goetz BT, Wang S, Li S, Storck MD, Mercer DF, Black AR, Thayer SP, Black JD, Lin C, Band V, Band H. Cbl and Cbl-b ubiquitin ligases are essential for intestinal epithelial stem cell maintenance. iScience 2024; 27:109912. [PMID: 38974465 PMCID: PMC11225835 DOI: 10.1016/j.isci.2024.109912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 02/29/2024] [Accepted: 05/03/2024] [Indexed: 07/09/2024] Open
Abstract
Receptor tyrosine kinases (RTKs) control stem cell maintenance vs. differentiation decisions. Casitas B-lineage lymphoma (CBL) family ubiquitin ligases are negative regulators of RTKs, but their stem cell regulatory roles remain unclear. Here, we show that Lgr5+ intestinal stem cell (ISC)-specific inducible Cbl-knockout (KO) on a Cblb null mouse background (iDKO) induced rapid loss of the Lgr5 Hi ISCs with transient expansion of the Lgr5 Lo transit-amplifying population. LacZ-based lineage tracing revealed increased ISC commitment toward enterocyte and goblet cell fate at the expense of Paneth cells. Functionally, Cbl/Cblb iDKO impaired the recovery from radiation-induced intestinal epithelial injury. In vitro, Cbl/Cblb iDKO led to inability to maintain intestinal organoids. Single-cell RNA sequencing in organoids identified Akt-mTOR (mammalian target of rapamycin) pathway hyperactivation upon iDKO, and pharmacological Akt-mTOR axis inhibition rescued the iDKO defects. Our results demonstrate a requirement for Cbl/Cblb in the maintenance of ISCs by fine-tuning the Akt-mTOR axis to balance stem cell maintenance vs. commitment to differentiation.
Collapse
Affiliation(s)
- Neha Zutshi
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pathology & Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Bhopal C. Mohapatra
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Pinaki Mondal
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Wei An
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Benjamin T. Goetz
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Shuo Wang
- Department of Radiation Oncology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sicong Li
- Department of Radiation Oncology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Matthew D. Storck
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - David F. Mercer
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Adrian R. Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sarah P. Thayer
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jennifer D. Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Chi Lin
- Department of Radiation Oncology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Vimla Band
- Department of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Hamid Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pathology & Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
6
|
Qadri QR, Lai X, Zhao W, Zhang Z, Zhao Q, Ma P, Pan Y, Wang Q. Exploring the Interplay between the Hologenome and Complex Traits in Bovine and Porcine Animals Using Genome-Wide Association Analysis. Int J Mol Sci 2024; 25:6234. [PMID: 38892420 PMCID: PMC11172659 DOI: 10.3390/ijms25116234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Genome-wide association studies (GWAS) significantly enhance our ability to identify trait-associated genomic variants by considering the host genome. Moreover, the hologenome refers to the host organism's collective genetic material and its associated microbiome. In this study, we utilized the hologenome framework, called Hologenome-wide association studies (HWAS), to dissect the architecture of complex traits, including milk yield, methane emissions, rumen physiology in cattle, and gut microbial composition in pigs. We employed four statistical models: (1) GWAS, (2) Microbial GWAS (M-GWAS), (3) HWAS-CG (hologenome interaction estimated using COvariance between Random Effects Genome-based restricted maximum likelihood (CORE-GREML)), and (4) HWAS-H (hologenome interaction estimated using the Hadamard product method). We applied Bonferroni correction to interpret the significant associations in the complex traits. The GWAS and M-GWAS detected one and sixteen significant SNPs for milk yield traits, respectively, whereas the HWAS-CG and HWAS-H each identified eight SNPs. Moreover, HWAS-CG revealed four, and the remaining models identified three SNPs each for methane emissions traits. The GWAS and HWAS-CG detected one and three SNPs for rumen physiology traits, respectively. For the pigs' gut microbial composition traits, the GWAS, M-GWAS, HWAS-CG, and HWAS-H identified 14, 16, 13, and 12 SNPs, respectively. We further explored these associations through SNP annotation and by analyzing biological processes and functional pathways. Additionally, we integrated our GWA results with expression quantitative trait locus (eQTL) data using transcriptome-wide association studies (TWAS) and summary-based Mendelian randomization (SMR) methods for a more comprehensive understanding of SNP-trait associations. Our study revealed hologenomic variability in agriculturally important traits, enhancing our understanding of host-microbiome interactions.
Collapse
Affiliation(s)
- Qamar Raza Qadri
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Q.R.Q.); (P.M.)
| | - Xueshuang Lai
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Science, Zhejiang University, Hangzhou 310030, China; (X.L.); (W.Z.); (Z.Z.); (Y.P.)
| | - Wei Zhao
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Science, Zhejiang University, Hangzhou 310030, China; (X.L.); (W.Z.); (Z.Z.); (Y.P.)
| | - Zhenyang Zhang
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Science, Zhejiang University, Hangzhou 310030, China; (X.L.); (W.Z.); (Z.Z.); (Y.P.)
| | - Qingbo Zhao
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China;
| | - Peipei Ma
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Q.R.Q.); (P.M.)
| | - Yuchun Pan
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Science, Zhejiang University, Hangzhou 310030, China; (X.L.); (W.Z.); (Z.Z.); (Y.P.)
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572000, China
| | - Qishan Wang
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Science, Zhejiang University, Hangzhou 310030, China; (X.L.); (W.Z.); (Z.Z.); (Y.P.)
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572000, China
| |
Collapse
|
7
|
Cheng J, Kolba N, Tako E. The effect of dietary zinc and zinc physiological status on the composition of the gut microbiome in vivo. Crit Rev Food Sci Nutr 2024; 64:6432-6451. [PMID: 36688291 DOI: 10.1080/10408398.2023.2169857] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Zinc serves critical catalytic, regulatory, and structural roles. Hosts and their resident gut microbiota both require zinc, leading to competition, where a balance must be maintained. This systematic review examined evidence on dietary zinc and physiological status (zinc deficiency or high zinc/zinc overload) effects on gut microbiota. This review was conducted according to PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) guidelines and registered in PROSPERO (CRD42021250566). PubMed, Web of Science, and Scopus databases were searched for in vivo (animal) studies, resulting in eight selected studies. Study quality limitations were evaluated using the SYRCLE risk of bias tool and according to ARRIVE guidelines. The results demonstrated that zinc deficiency led to inconsistent changes in α-diversity and short-chain fatty acid production but led to alterations in bacterial taxa with functions in carbohydrate metabolism, glycan metabolism, and intestinal mucin degradation. High dietary zinc/zinc overload generally resulted in either unchanged or decreased α-diversity, decreased short-chain fatty acid production, and increased bacterial metal resistance and antibiotic resistance genes. Additional studies in human and animal models are needed to further understand zinc physiological status effects on the intestinal microbiome and clarify the applicability of utilizing the gut microbiome as a potential zinc status biomarker.
Collapse
Affiliation(s)
- Jacquelyn Cheng
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Nikolai Kolba
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Elad Tako
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
8
|
González R, Ceacero-Heras D, Tena-Garitaonaindia M, Álvarez-Mercado A, Gámez-Belmonte R, Chazin WJ, Sánchez de Medina F, Martínez-Augustin O. Intestinal inflammation marker calprotectin regulates epithelial intestinal zinc metabolism and proliferation in mouse jejunal organoids. Biomed Pharmacother 2024; 174:116555. [PMID: 38593708 PMCID: PMC11913417 DOI: 10.1016/j.biopha.2024.116555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024] Open
Abstract
Calprotectin (CP), a heterodimer of S100A8 and S100A9, is expressed by neutrophils and a number of innate immune cells and is used widely as a marker of inflammation, particularly intestinal inflammation. CP is a ligand for toll-like receptor 4 (TLR4) and the receptor for advanced glycation end products (RAGE). In addition, CP can act as a microbial modulatory agent via a mechanism termed nutritional immunity, depending on metal binding, most notably Zn2+. The effects on the intestinal epithelium are largely unknown. In this study we aimed to characterize the effect of calprotectin on mouse jejunal organoids as a model epithelium, focusing on Zn2+ metabolism and cell proliferation. CP addition upregulated the expression of the Zn2+ absorptive transporter Slc39a4 and of methallothionein Mt1 in a Zn2+-sensitive manner, while downregulating the expression of the Zn2+ exporter Slc30a2 and of methallothionein 2 (Mt2). These effects were greatly attenuated with a CP variant lacking the metal binding capacity. Globally, these observations indicate adaptation to low Zn2+ levels. CP had antiproliferative effects and reduced the expression of proliferative and stemness genes in jejunal organoids, effects that were largely independent of Zn2+ chelation. In addition, CP induced apoptosis modestly and modulated antimicrobial gene expression. CP had no effect on epithelial differentiation. Overall, CP exerts modulatory effects in murine jejunal organoids that are in part related to Zn2+ sequestration and partially reproduced in vivo, supporting the validity of mouse jejunal organoids as a model for mouse epithelium.
Collapse
Affiliation(s)
- R González
- Department of Pharmacology, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA. University of Granada, Granada, Spain
| | - D Ceacero-Heras
- Department of Biochemistry and Molecular Biology II, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA. University of Granada, Granada, Spain
| | - M Tena-Garitaonaindia
- Department of Biochemistry and Molecular Biology II, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA. University of Granada, Granada, Spain
| | - A Álvarez-Mercado
- Department of Biochemistry and Molecular Biology II, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA. University of Granada, Granada, Spain
| | - R Gámez-Belmonte
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
| | - W J Chazin
- Departments of Biochemistry and Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN 37240-7917, USA
| | - F Sánchez de Medina
- Department of Pharmacology, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA. University of Granada, Granada, Spain.
| | - O Martínez-Augustin
- Department of Biochemistry and Molecular Biology II, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA. University of Granada, Granada, Spain
| |
Collapse
|
9
|
Nishiyama K, Kato Y, Nishimura A, Mi X, Nagata R, Mori Y, Azuma YT, Nishida M. Pharmacological Activation of TRPC6 Channel Prevents Colitis Progression. Int J Mol Sci 2024; 25:2401. [PMID: 38397074 PMCID: PMC10889536 DOI: 10.3390/ijms25042401] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
We recently reported that transient receptor potential canonical (TRPC) 6 channel activity contributes to intracellular Zn2+ homeostasis in the heart. Zn2+ has also been implicated in the regulation of intestinal redox and microbial homeostasis. This study aims to investigate the role of TRPC6-mediated Zn2+ influx in the stress resistance of the intestine. The expression profile of TRPC1-C7 mRNAs in the actively inflamed mucosa from inflammatory bowel disease (IBD) patients was analyzed using the GEO database. Systemic TRPC3 knockout (KO) and TRPC6 KO mice were treated with dextran sulfate sodium (DSS) to induce colitis. The Zn2+ concentration and the mRNA expression levels of oxidative/inflammatory markers in colon tissues were quantitatively analyzed, and gut microbiota profiles were compared. TRPC6 mRNA expression level was increased in IBD patients and DSS-treated mouse colon tissues. DSS-treated TRPC6 KO mice, but not TRPC3 KO mice, showed severe weight loss and increased disease activity index compared with DSS-treated WT mice. The mRNA abundances of antioxidant proteins were basically increased in the TRPC6 KO colon, with changes in gut microbiota profiles. Treatment with TRPC6 activator prevented the DSS-induced colitis progression accompanied by increasing Zn2+ concentration. We suggest that TRPC6-mediated Zn2+ influx activity plays a key role in stress resistance against IBD, providing a new strategy for treating colitis.
Collapse
Affiliation(s)
- Kazuhiro Nishiyama
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.N.); (Y.K.); (X.M.)
- Laboratory of Prophylactic Pharmacology, Osaka Metropolitan University Graduate School of Veterinary Science, Osaka 598-8531, Japan;
| | - Yuri Kato
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.N.); (Y.K.); (X.M.)
| | - Akiyuki Nishimura
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan;
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- SOKENDAI (Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies), Okazaki 444-8787, Japan
| | - Xinya Mi
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.N.); (Y.K.); (X.M.)
| | - Ryu Nagata
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan;
| | - Yasuo Mori
- Graduate School of Engineering, Kyoto University, Kyoto 615-8530, Japan;
| | - Yasu-Taka Azuma
- Laboratory of Prophylactic Pharmacology, Osaka Metropolitan University Graduate School of Veterinary Science, Osaka 598-8531, Japan;
| | - Motohiro Nishida
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.N.); (Y.K.); (X.M.)
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan;
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- SOKENDAI (Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies), Okazaki 444-8787, Japan
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
10
|
Chen B, Yu P, Chan WN, Xie F, Zhang Y, Liang L, Leung KT, Lo KW, Yu J, Tse GMK, Kang W, To KF. Cellular zinc metabolism and zinc signaling: from biological functions to diseases and therapeutic targets. Signal Transduct Target Ther 2024; 9:6. [PMID: 38169461 PMCID: PMC10761908 DOI: 10.1038/s41392-023-01679-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 01/05/2024] Open
Abstract
Zinc metabolism at the cellular level is critical for many biological processes in the body. A key observation is the disruption of cellular homeostasis, often coinciding with disease progression. As an essential factor in maintaining cellular equilibrium, cellular zinc has been increasingly spotlighted in the context of disease development. Extensive research suggests zinc's involvement in promoting malignancy and invasion in cancer cells, despite its low tissue concentration. This has led to a growing body of literature investigating zinc's cellular metabolism, particularly the functions of zinc transporters and storage mechanisms during cancer progression. Zinc transportation is under the control of two major transporter families: SLC30 (ZnT) for the excretion of zinc and SLC39 (ZIP) for the zinc intake. Additionally, the storage of this essential element is predominantly mediated by metallothioneins (MTs). This review consolidates knowledge on the critical functions of cellular zinc signaling and underscores potential molecular pathways linking zinc metabolism to disease progression, with a special focus on cancer. We also compile a summary of clinical trials involving zinc ions. Given the main localization of zinc transporters at the cell membrane, the potential for targeted therapies, including small molecules and monoclonal antibodies, offers promising avenues for future exploration.
Collapse
Affiliation(s)
- Bonan Chen
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Peiyao Yu
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Wai Nok Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Fuda Xie
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Yigan Zhang
- Institute of Biomedical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Li Liang
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Kam Tong Leung
- Department of Pediatrics, The Chinese University of Hong Kong, Hong Kong, China
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Yu
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Gary M K Tse
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
11
|
Ross MM, Hernandez-Espinosa DR, Aizenman E. Neurodevelopmental Consequences of Dietary Zinc Deficiency: A Status Report. Biol Trace Elem Res 2023; 201:5616-5639. [PMID: 36964812 DOI: 10.1007/s12011-023-03630-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/11/2023] [Indexed: 03/26/2023]
Abstract
Zinc is a tightly regulated trace mineral element playing critical roles in growth, immunity, neurodevelopment, and synaptic and hormonal signaling. Although severe dietary zinc deficiency is relatively uncommon in the United States, dietary zinc deficiency is a substantial public health concern in low- and middle-income countries. Zinc status may be a key determinant of neurodevelopmental processes. Indeed, limited cohort studies have shown that serum zinc is lower in people diagnosed with autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), and depression. These observations have sparked multiple studies investigating the mechanisms underlying zinc status and neurodevelopmental outcomes. Animal models of perinatal and adult dietary zinc restriction yield distinct behavioral phenotypes reminiscent of features of ASD, ADHD, and depression, including increased anxiety and immobility, repetitive behaviors, and altered social behaviors. At the cellular and molecular level, zinc has demonstrated roles in neurogenesis, regulation of cellular redox status, transcription factor trafficking, synaptogenesis, and the regulation of synaptic architecture via the Shank family of scaffolding proteins. Although mechanistic questions remain, the current evidence suggests that zinc status is important for adequate neuronal development and may be a yet overlooked factor in the pathogenesis of several psychiatric conditions. This review aims to summarize current knowledge of the role of zinc in the neurophysiology of the perinatal period, the many cellular targets of zinc in the developing brain, and the potential consequences of alterations in zinc homeostasis in early life.
Collapse
Affiliation(s)
- Madeline M Ross
- Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Diego R Hernandez-Espinosa
- Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Elias Aizenman
- Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
12
|
Mitchell SB, Thorn TL, Lee MT, Kim Y, Comrie JMC, Bai ZS, Johnson EL, Aydemir TB. Metal transporter SLC39A14/ZIP14 modulates regulation between the gut microbiome and host metabolism. Am J Physiol Gastrointest Liver Physiol 2023; 325:G593-G607. [PMID: 37873588 PMCID: PMC10887856 DOI: 10.1152/ajpgi.00091.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
Metal transporter SLC39A14/ZIP14 is localized on the basolateral side of the intestine, functioning to transport metals from blood to intestine epithelial cells. Deletion of Slc39a14/Zip14 causes spontaneous intestinal permeability with low-grade chronic inflammation, mild hyperinsulinemia, and greater body fat with insulin resistance in adipose. Importantly, antibiotic treatment reverses the adipocyte phenotype of Slc39a14/Zip14 knockout (KO), suggesting a potential gut microbial role in the metabolic alterations in the Slc39a14/Zip14 KO mice. Here, we investigated the hypothesis that increased intestinal permeability and subsequent metabolic alterations in the absence of Zip14 could be in part due to alterations in gut microbial composition. Dietary metals have been shown to be involved in the regulation of gut microbial diversity and composition. However, studies linking the action of intestinal metal transporters to gut microbial regulation are lacking. We showed the influence of deletion of metal transporter Slc39a14/Zip14 on gut microbiome composition and how ZIP14-linked changes to gut microbiome community composition are correlated with changes in host metabolism. Deletion of Slc39a14/Zip14 generated Zn-deficient epithelial cells and luminal content in the entire intestinal tract, a shift in gut microbial composition that partially overlapped with changes previously associated with obesity and inflammatory bowel disease (IBD), increased the fungi/bacteria ratio in the gut microbiome, altered the host metabolome, and shifted host energy metabolism toward glucose utilization. Collectively, our data suggest a potential predisease microbial susceptibility state dependent on host gene Slc39a14/Zip14 that contributes to intestinal permeability, a common trait of IBD, and metabolic disorders such as obesity and type 2 diabetes.NEW & NOTEWORTHY Metal dyshomeostasis, intestinal permeability, and gut dysbiosis are emerging signatures of chronic disorders, including inflammatory bowel diseases, type-2 diabetes, and obesity. Studies in reciprocal regulations between host intestinal metal transporters genes and gut microbiome are scarce. Our research revealed a potential predisease microbial susceptibility state dependent on the host metal transporter gene, Slc39a14/Zip14, that contributes to intestinal permeability providing new insight into understanding host metal transporter gene-microbiome interactions in developing chronic disease.
Collapse
Affiliation(s)
- Samuel B Mitchell
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States
| | - Trista L Thorn
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States
| | - Min-Ting Lee
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States
| | - Yongeun Kim
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States
| | - Janine M C Comrie
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States
| | - Zi Shang Bai
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States
| | - Elizabeth L Johnson
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States
| | - Tolunay B Aydemir
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States
| |
Collapse
|
13
|
Thrane K, Winge MCG, Wang H, Chen L, Guo MG, Andersson A, Abalo XM, Yang X, Kim DS, Longo SK, Soong BY, Meyers JM, Reynolds DL, McGeever A, Demircioglu D, Hasson D, Mirzazadeh R, Rubin AJ, Bae GH, Karkanias J, Rieger K, Lundeberg J, Ji AL. Single-Cell and Spatial Transcriptomic Analysis of Human Skin Delineates Intercellular Communication and Pathogenic Cells. J Invest Dermatol 2023; 143:2177-2192.e13. [PMID: 37142187 PMCID: PMC10592679 DOI: 10.1016/j.jid.2023.02.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 01/26/2023] [Accepted: 02/16/2023] [Indexed: 05/06/2023]
Abstract
Epidermal homeostasis is governed by a balance between keratinocyte proliferation and differentiation with contributions from cell-cell interactions, but conserved or divergent mechanisms governing this equilibrium across species and how an imbalance contributes to skin disease are largely undefined. To address these questions, human skin single-cell RNA sequencing and spatial transcriptomics data were integrated and compared with mouse skin data. Human skin cell-type annotation was improved using matched spatial transcriptomics data, highlighting the importance of spatial context in cell-type identity, and spatial transcriptomics refined cellular communication inference. In cross-species analyses, we identified a human spinous keratinocyte subpopulation that exhibited proliferative capacity and a heavy metal processing signature, which was absent in mouse and may account for species differences in epidermal thickness. This human subpopulation was expanded in psoriasis and zinc-deficiency dermatitis, attesting to disease relevance and suggesting a paradigm of subpopulation dysfunction as a hallmark of the disease. To assess additional potential subpopulation drivers of skin diseases, we performed cell-of-origin enrichment analysis within genodermatoses, nominating pathogenic cell subpopulations and their communication pathways, which highlighted multiple potential therapeutic targets. This integrated dataset is encompassed in a publicly available web resource to aid mechanistic and translational studies of normal and diseased skin.
Collapse
Affiliation(s)
- Kim Thrane
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Solna, Sweden
| | - Mårten C G Winge
- Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - Hongyu Wang
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Black Family Stem Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; School of Computer Science and Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Larry Chen
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Black Family Stem Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Margaret G Guo
- Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA; Biomedical Informatics Program, Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, California, USA
| | - Alma Andersson
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Solna, Sweden
| | - Xesús M Abalo
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Solna, Sweden
| | - Xue Yang
- Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - Daniel S Kim
- Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA; Biomedical Informatics Program, Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, California, USA
| | - Sophia K Longo
- Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - Brian Y Soong
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Black Family Stem Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jordan M Meyers
- Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - David L Reynolds
- Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - Aaron McGeever
- Chan Zuckerberg Biohub San Francisco, San Francisco, California, USA
| | - Deniz Demircioglu
- Bioinformatics for Next Generation Sequencing Core, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Dan Hasson
- Bioinformatics for Next Generation Sequencing Core, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Reza Mirzazadeh
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Solna, Sweden
| | - Adam J Rubin
- Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - Gordon H Bae
- Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - Jim Karkanias
- Chan Zuckerberg Biohub San Francisco, San Francisco, California, USA
| | - Kerri Rieger
- Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - Joakim Lundeberg
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Solna, Sweden
| | - Andrew L Ji
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Black Family Stem Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
14
|
Hu XL, Xiao W, Lei Y, Green A, Lee X, Maradana MR, Gao Y, Xie X, Wang R, Chennell G, Basson MA, Kille P, Maret W, Bewick GA, Zhou Y, Hogstrand C. Aryl hydrocarbon receptor utilises cellular zinc signals to maintain the gut epithelial barrier. Nat Commun 2023; 14:5431. [PMID: 37669965 PMCID: PMC10480478 DOI: 10.1038/s41467-023-41168-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 08/21/2023] [Indexed: 09/07/2023] Open
Abstract
Zinc and plant-derived ligands of the aryl hydrocarbon receptor (AHR) are dietary components affecting intestinal epithelial barrier function. Here, we explore whether zinc and the AHR pathway are linked. We show that dietary supplementation with an AHR pre-ligand offers protection against inflammatory bowel disease in a mouse model while protection fails in mice lacking AHR in the intestinal epithelium. AHR agonist treatment is also ineffective in mice fed zinc depleted diet. In human ileum organoids and Caco-2 cells, AHR activation increases total cellular zinc and cytosolic free Zn2+ concentrations through transcription of genes for zinc importers. Tight junction proteins are upregulated through zinc inhibition of nuclear factor kappa-light-chain-enhancer and calpain activity. Our data show that AHR activation by plant-derived dietary ligands improves gut barrier function at least partly via zinc-dependent cellular pathways, suggesting that combined dietary supplementation with AHR ligands and zinc might be effective in preventing inflammatory gut disorders.
Collapse
Affiliation(s)
- Xiuchuan Lucas Hu
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Department of Nutritional Sciences, King's College London, London, UK
| | - Wenfeng Xiao
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
| | - Yuxian Lei
- Department of Diabetes, Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Adam Green
- Department of Nutritional Sciences, King's College London, London, UK
| | - Xinyi Lee
- Department of Nutritional Sciences, King's College London, London, UK
| | | | - Yajing Gao
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
| | - Xueru Xie
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
| | - Rui Wang
- Department of Nutritional Sciences, King's College London, London, UK
| | - George Chennell
- Clinical Neuroscience Department, King's College London, London, UK
| | - M Albert Basson
- Centre for Craniofacial and Regenerative Biology and MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
- Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter, UK
| | - Pete Kille
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Wolfgang Maret
- Department of Nutritional Sciences, King's College London, London, UK
| | - Gavin A Bewick
- Department of Diabetes, Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Yufeng Zhou
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China.
| | | |
Collapse
|
15
|
Ma Y, Fei Y, Ding S, Jiang H, Fang J, Liu G. Trace metal elements: a bridge between host and intestinal microorganisms. SCIENCE CHINA. LIFE SCIENCES 2023; 66:1976-1993. [PMID: 37528296 DOI: 10.1007/s11427-022-2359-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/23/2023] [Indexed: 08/03/2023]
Abstract
Trace metal elements, such as iron, copper, manganese, and zinc, are essential nutrients for biological processes. Although their intake demand is low, they play a crucial role in cell homeostasis as the cofactors of various enzymes. Symbiotic intestinal microorganisms compete with their host for the use of trace metal elements. Moreover, the metabolic processes of trace metal elements in the host and microorganisms affect the organism's health. Supplementation or the lack of trace metal elements in the host can change the intestinal microbial community structure and function. Functional changes in symbiotic microorganisms can affect the host's metabolism of trace metal elements. In this review, we discuss the absorption and transport processes of trace metal elements in the host and symbiotic microorganisms and the effects of dynamic changes in the levels of trace metal elements on the intestinal microbial community structure. We also highlight the participation of trace metal elements as enzyme cofactors in the host immune process. Our findings indicate that the host uses metal nutrition immunity or metal poisoning to resist pathogens and improve immunity.
Collapse
Affiliation(s)
- Yong Ma
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Yanquan Fei
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Sujuan Ding
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Hongmei Jiang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China.
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| |
Collapse
|
16
|
Zhang C. Internalization and trafficking of zinc transporters. Methods Enzymol 2023; 687:241-262. [PMID: 37666634 DOI: 10.1016/bs.mie.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
In huma, two transporter families, the zinc transporters (ZNT/solute carrier 30 family [SLC30A]) and the Zrt- and Irt-like proteins (ZIP/solute carrier 39 family [SLC39A]), play vital roles in maintaining zinc homeostasis. ZIPs could increase the concentration of cytosolic Zn2+ by importing zinc from the extracellular environment or organelles into the cytosol, while ZnTs work in the opposite direction as they mediate the export of zinc from the cytosol into organelles or out of the cells. Mammalian cells express 10 ZnT exporters and 14 ZIP importers, and zinc or other transition metal ions may modulate their gene expression. The localization and post-translational trafficking of zinc transporters within the cells are often controlled in response to varying zinc concentrations, which likely impact the regulation of cellular zinc homeostasis. This chapter briefly summarizes the progress made on the intracellular trafficking of ZIPs and outlines the protocols used to study the endocytosis and trafficking of a representative human zinc transporter, ZIP4.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, P.R. China.
| |
Collapse
|
17
|
Zutshi N, Mohapatra BC, Mondal P, An W, Goetz BT, Wang S, Li S, Storck MD, Mercer DF, Black AR, Thayer SP, Black JD, Lin C, Band V, Band H. Cbl and Cbl-b Ubiquitin Ligases are Essential for Intestinal Epithelial Stem Cell Maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.17.541154. [PMID: 37292716 PMCID: PMC10245689 DOI: 10.1101/2023.05.17.541154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Among the signaling pathways that control the stem cell self-renewal and maintenance vs. acquisition of differentiated cell fates, those mediated by receptor tyrosine kinase (RTK) activation are well established as key players. CBL family ubiquitin ligases are negative regulators of RTKs but their physiological roles in regulating stem cell behaviors are unclear. While hematopoietic Cbl/Cblb knockout (KO) leads to a myeloproliferative disease due to expansion and reduced quiescence of hematopoietic stem cells, mammary epithelial KO led to stunted mammary gland development due to mammary stem cell depletion. Here, we examined the impact of inducible Cbl/Cblb double-KO (iDKO) selectively in the Lgr5-defined intestinal stem cell (ISC) compartment. Cbl/Cblb iDKO led to rapid loss of the Lgr5 Hi ISC pool with a concomitant transient expansion of the Lgr5 Lo transit amplifying population. LacZ reporter-based lineage tracing showed increased ISC commitment to differentiation, with propensity towards enterocyte and goblet cell fate at the expense of Paneth cells. Functionally, Cbl/Cblb iDKO impaired the recovery from radiation-induced intestinal epithelial injury. In vitro , Cbl/Cblb iDKO led to inability to maintain intestinal organoids. Single cell RNAseq analysis of organoids revealed Akt-mTOR pathway hyperactivation in iDKO ISCs and progeny cells, and pharmacological inhibition of the Akt-mTOR axis rescued the organoid maintenance and propagation defects. Our results demonstrate a requirement for Cbl/Cblb in the maintenance of ISCs by fine tuning the Akt-mTOR axis to balance stem cell maintenance vs. commitment to differentiation.
Collapse
|
18
|
Mohamad NS, Tan LL, Ali NIM, Mazlan NF, Sage EE, Hassan NI, Goh CT. Zinc status in public health: exploring emerging research trends through bibliometric analysis of the historical context from 1978 to 2022. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:28422-28445. [PMID: 36680719 PMCID: PMC9864505 DOI: 10.1007/s11356-023-25257-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/07/2023] [Indexed: 04/16/2023]
Abstract
The current study aims to provide a roadmap for future research by analyzing the research structures and trends in scholarly publications related to the status of zinc in public health. Only journal articles published between 1978 and 2022 are included in the refined bibliographical outputs retrieved from the Web of Science (WoS) database. The first section announces findings based on WoS categories, such as discipline heterogeneity, times cited and publications over time, and citation reports. The second section then employs VoSViewer software for bibliometric analysis, which includes a thorough examination of co-authorship among researchers, organizations, and countries and a count of all bibliographic databases among documents. The final section discusses the research's weaknesses and strengths in zinc status, public health, and potential future directions; 7158 authors contributed to 1730 papers (including 339 with publications, more than three times). "Keen, C.L." is a researcher with the most publications and a better understanding of zinc status in public health. Meanwhile, the USA has been the epicenter of research on the status of zinc in public health due to the highest percentage of publications with the most citations and collaboration with the rest of the world, with the top institution being the University of California, Davis. Future research can be organized collaboratively based on hot topics from co-occurrence network mapping and bibliographic couplings to improve zinc status and protect public health.
Collapse
Affiliation(s)
- Nur Syamimi Mohamad
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI-UKM), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia
| | - Ling Ling Tan
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI-UKM), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia
| | - Nurul Izzati Mohd Ali
- Environment Management Program, Center for Research in Development, Social and Environment, Faculty of Social Sciences and Humanities, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia
| | - Nur-Fadhilah Mazlan
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI-UKM), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia
| | - Edison Eukun Sage
- Department of Chemical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia
| | - Nurul Izzaty Hassan
- Department of Chemical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia
| | - Choo Ta Goh
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI-UKM), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia
| |
Collapse
|
19
|
Wallaeys C, Garcia‐Gonzalez N, Libert C. Paneth cells as the cornerstones of intestinal and organismal health: a primer. EMBO Mol Med 2022; 15:e16427. [PMID: 36573340 PMCID: PMC9906427 DOI: 10.15252/emmm.202216427] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 12/28/2022] Open
Abstract
Paneth cells are versatile secretory cells located in the crypts of Lieberkühn of the small intestine. In normal conditions, they function as the cornerstones of intestinal health by preserving homeostasis. They perform this function by providing niche factors to the intestinal stem cell compartment, regulating the composition of the microbiome through the production and secretion of antimicrobial peptides, performing phagocytosis and efferocytosis, taking up heavy metals, and preserving barrier integrity. Disturbances in one or more of these functions can lead to intestinal as well as systemic inflammatory and infectious diseases. This review discusses the multiple functions of Paneth cells, and the mechanisms and consequences of Paneth cell dysfunction. It also provides an overview of the tools available for studying Paneth cells.
Collapse
Affiliation(s)
- Charlotte Wallaeys
- Center for Inflammation Research‐VIBGhentBelgium,Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| | - Natalia Garcia‐Gonzalez
- Center for Inflammation Research‐VIBGhentBelgium,Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| | - Claude Libert
- Center for Inflammation Research‐VIBGhentBelgium,Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| |
Collapse
|
20
|
Lee JK, Ha JH, Kim DK, Kwon J, Cho YE, Kwun IS. Depletion of Zinc Causes Osteoblast Apoptosis with Elevation of Leptin Secretion and Phosphorylation of JAK2/STAT3. Nutrients 2022; 15:nu15010077. [PMID: 36615735 PMCID: PMC9824754 DOI: 10.3390/nu15010077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Zinc (Zn) has been reported to mediate leptin secretion, and thus leptin can be an important candidate molecule linking Zn with bone formation. The present study investigated whether zinc deficiency induces leptin secretion by activating a JAK2/STAT3 signaling pathway and leads to osteoblastic apoptosis. MC3T3-E1 cells were incubated for 24 h in normal osteogenic differentiation medium (OSM) or OSM treated with either 1 μM (Low Zn) or 15 μM (High Zn) of ZnCl2 containing 5 μM TPEN (Zn chelator). Our results demonstrated that low Zn stimulated extracellular leptin secretion and increased mRNA and protein expression of leptin in osteoblastic MC3T3-E1 cells. The OB-Rb (long isoform of leptin receptor) expressions were also elevated in osteoblasts under depletion of Zn. Leptin-signaling proteins, JAK2 and p-JAK2 in the cytosol of low Zn osteoblast conveyed leptin signaling, which ultimately induced higher p-STAT3 expression in the nucleus. Apoptotic effects of JAK2/STAT3 pathway were shown by increased caspase-3 in low Zn osteoblasts as well as apoptotic morphological features observed by TEM. Together, these data suggest that low Zn modulates leptin secretion by activating JAK2/STAT3 signaling pathway and induces apoptosis of osteoblastic MC3T3-E1 cells.
Collapse
Affiliation(s)
- Jennifer K. Lee
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611, USA
| | - Jung-Heun Ha
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Republic of Korea
| | - Do-Kyun Kim
- Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea
| | - JaeHee Kwon
- Department of Food and Nutrition, Andong National University, 388 Songchundong, Andong 36729, Republic of Korea
| | - Young-Eun Cho
- Department of Food and Nutrition, Andong National University, 388 Songchundong, Andong 36729, Republic of Korea
- Correspondence: (Y.-E.C.); (I.-S.K.); Tel.: +82-54-820-5484 (Y.-E.C.)
| | - In-Sook Kwun
- Department of Food and Nutrition, Andong National University, 388 Songchundong, Andong 36729, Republic of Korea
- Correspondence: (Y.-E.C.); (I.-S.K.); Tel.: +82-54-820-5484 (Y.-E.C.)
| |
Collapse
|
21
|
Sangeetha VJ, Dutta S, Moses JA, Anandharamakrishnan C. Zinc nutrition and human health: Overview and implications. EFOOD 2022. [DOI: 10.1002/efd2.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- V. J. Sangeetha
- Computational Modeling and Nanoscale Processing Unit National Institute of Food Technology, Entrepreneurship and Management – Thanjavur, Ministry of Food Processing Industries, Government of India Thanjavur India
| | - Sayantani Dutta
- Computational Modeling and Nanoscale Processing Unit National Institute of Food Technology, Entrepreneurship and Management – Thanjavur, Ministry of Food Processing Industries, Government of India Thanjavur India
| | - J. A. Moses
- Computational Modeling and Nanoscale Processing Unit National Institute of Food Technology, Entrepreneurship and Management – Thanjavur, Ministry of Food Processing Industries, Government of India Thanjavur India
| | - C. Anandharamakrishnan
- Computational Modeling and Nanoscale Processing Unit National Institute of Food Technology, Entrepreneurship and Management – Thanjavur, Ministry of Food Processing Industries, Government of India Thanjavur India
| |
Collapse
|
22
|
Wan Y, Zhang B. The Impact of Zinc and Zinc Homeostasis on the Intestinal Mucosal Barrier and Intestinal Diseases. Biomolecules 2022; 12:biom12070900. [PMID: 35883455 PMCID: PMC9313088 DOI: 10.3390/biom12070900] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/06/2022] [Accepted: 06/11/2022] [Indexed: 02/04/2023] Open
Abstract
Zinc is an essential trace element for living organisms, and zinc homeostasis is essential for the maintenance of the normal physiological functions of cells and organisms. The intestine is the main location for zinc absorption and excretion, while zinc and zinc homeostasis is also of great significance to the structure and function of the intestinal mucosal barrier. Zinc excess or deficiency and zinc homeostatic imbalance are all associated with many intestinal diseases, such as IBD (inflammatory bowel disease), IBS (irritable bowel syndrome), and CRC (colorectal cancer). In this review, we describe the role of zinc and zinc homeostasis in the intestinal mucosal barrier and the relevance of zinc homeostasis to gastrointestinal diseases.
Collapse
|
23
|
Willekens J, Runnels LW. Impact of Zinc Transport Mechanisms on Embryonic and Brain Development. Nutrients 2022; 14:2526. [PMID: 35745255 PMCID: PMC9231024 DOI: 10.3390/nu14122526] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 12/04/2022] Open
Abstract
The trace element zinc (Zn) binds to over ten percent of proteins in eukaryotic cells. Zn flexible chemistry allows it to regulate the activity of hundreds of enzymes and influence scores of metabolic processes in cells throughout the body. Deficiency of Zn in humans has a profound effect on development and in adults later in life, particularly in the brain, where Zn deficiency is linked to several neurological disorders. In this review, we will summarize the importance of Zn during development through a description of the outcomes of both genetic and early dietary Zn deficiency, focusing on the pathological consequences on the whole body and brain. The epidemiology and the symptomology of Zn deficiency in humans will be described, including the most studied inherited Zn deficiency disease, Acrodermatitis enteropathica. In addition, we will give an overview of the different forms and animal models of Zn deficiency, as well as the 24 Zn transporters, distributed into two families: the ZIPs and the ZnTs, which control the balance of Zn throughout the body. Lastly, we will describe the TRPM7 ion channel, which was recently shown to contribute to intestinal Zn absorption and has its own significant impact on early embryonic development.
Collapse
Affiliation(s)
| | - Loren W. Runnels
- Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA;
| |
Collapse
|
24
|
Ma N, Chen X, Liu C, Sun Y, Johnston LJ, Ma X. Dietary nutrition regulates intestinal stem cell homeostasis. Crit Rev Food Sci Nutr 2022; 63:11263-11274. [PMID: 35694795 DOI: 10.1080/10408398.2022.2087052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Intestinal stem cells (ISCs), which locate at the base of intestinal crypts, are key determinants of governing proliferation and differentiation of the intestinal epithelium. The surrounding cells of ISCs and their related growth factors form ISC niche, supporting ISC function and self-renewal. ISC has an underappreciated but emerging role as a sensor of dietary nutrients, which fate decisions is adjusted in response to nutritional states to regulate gut homeostasis. Here, we review endogenous and exogenous factors, such as caloric restriction, fasting, fat, glucose and trace element. They instruct ISCs via mTORC1, PPAR/CPT1α, PPARγ/β-catenin, Wnt/GSK-3β pathway, respectively, jointly affect intestinal homeostasis. These dietary responses regulate ISC regenerative capacity and may be a potential target for cancer prevention. However, without precise definitions of nutrition intervene, it will be difficult to generate sufficient data to extending our knowledge of the biological response of ISC on nutrients. More accurately modeling organoids or high-throughput automated organoid culture in microcavity arrays have provided unprecedented opportunities for modeling diet-host interactions. These major advances collectively provide new insights into nutritional regulation of ISC proliferation and differentiation and drive us ever closer to breakthroughs for regenerative medicine and disease treatment by nutrition intervention in the clinic.
Collapse
Affiliation(s)
- Ning Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiyue Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chunchen Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yiwei Sun
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lee J Johnston
- West Central Research & Outreach Center, University of Minnesota, Morris, Minnesota, USA
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
25
|
Kelleher SL, Alam S, Rivera OC, Barber-Zucker S, Zarivach R, Wagatsuma T, Kambe T, Soybel DI, Wright J, Lamendella R. Loss-of-function SLC30A2 mutants are associated with gut dysbiosis and alterations in intestinal gene expression in preterm infants. Gut Microbes 2022; 14:2014739. [PMID: 34965180 PMCID: PMC8726655 DOI: 10.1080/19490976.2021.2014739] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/17/2021] [Indexed: 02/04/2023] Open
Abstract
Loss of Paneth cell (PC) function is implicated in intestinal dysbiosis, mucosal inflammation, and numerous intestinal disorders, including necrotizing enterocolitis (NEC). Studies in mouse models show that zinc transporter ZnT2 (SLC30A2) is critical for PC function, playing a role in granule formation, secretion, and antimicrobial activity; however, no studies have investigated whether loss of ZnT2 function is associated with dysbiosis, mucosal inflammation, or intestinal dysfunction in humans. SLC30A2 was sequenced in healthy preterm infants (26-37 wks; n = 75), and structural analysis and functional assays determined the impact of mutations. In human stool samples, 16S rRNA sequencing and RNAseq of bacterial and human transcripts were performed. Three ZnT2 variants were common (>5%) in this population: H346Q, f = 19%; L293R, f = 7%; and a previously identified compound substitution in Exon7, f = 16%). H346Q had no effect on ZnT2 function or beta-diversity. Exon7 impaired zinc transport and was associated with a fractured gut microbiome. Analysis of microbial pathways suggested diverse effects on nutrient metabolism, glycan biosynthesis and metabolism, and drug resistance, which were associated with increased expression of host genes involved in tissue remodeling. L293R caused profound ZnT2 dysfunction and was associated with overt gut dysbiosis. Microbial pathway analysis suggested effects on nucleotide, amino acid and vitamin metabolism, which were associated with the increased expression of host genes involved in inflammation and immune response. In addition, L293R was associated with reduced weight gain in the early postnatal period. This implicates ZnT2 as a novel modulator of mucosal homeostasis in humans and suggests that genetic variants in ZnT2 may affect the risk of mucosal inflammation and intestinal disease.
Collapse
MESH Headings
- Animals
- Bacteria/classification
- Bacteria/genetics
- Bacteria/isolation & purification
- Cation Transport Proteins/deficiency
- Cation Transport Proteins/genetics
- Dysbiosis/genetics
- Dysbiosis/metabolism
- Dysbiosis/microbiology
- Exons
- Female
- Gastrointestinal Microbiome
- Humans
- Infant, Newborn
- Infant, Newborn, Diseases/genetics
- Infant, Newborn, Diseases/metabolism
- Infant, Newborn, Diseases/microbiology
- Infant, Premature/metabolism
- Intestines/metabolism
- Intestines/microbiology
- Loss of Function Mutation
- Male
- Mice, Knockout
- Mutation
- Mutation, Missense
- Polysaccharides/metabolism
- Mice
Collapse
Affiliation(s)
- Shannon L Kelleher
- Department of Cellular and Molecular Physiology, Penn State Hershey College of Medicine, Hershey, Pennsylvania, USA
- Department of Pharmacology, Penn State Hershey College of Medicine, Hershey, Pennsylvania, USA
- Department of Surgery, Penn State Hershey College of Medicine, Hershey, Pennsylvania, USA
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Samina Alam
- Department of Cellular and Molecular Physiology, Penn State Hershey College of Medicine, Hershey, Pennsylvania, USA
- Department of Surgery, Penn State Hershey College of Medicine, Hershey, Pennsylvania, USA
| | - Olivia C Rivera
- Department of Cellular and Molecular Physiology, Penn State Hershey College of Medicine, Hershey, Pennsylvania, USA
- Department of Surgery, Penn State Hershey College of Medicine, Hershey, Pennsylvania, USA
| | - Shiran Barber-Zucker
- Department of Life Sciences, The National Institute for Biotechnology in the Negev and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Raz Zarivach
- Department of Life Sciences, The National Institute for Biotechnology in the Negev and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Takumi Wagatsuma
- The Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Taiho Kambe
- The Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - David I Soybel
- Department of Surgery, Penn State Hershey College of Medicine, Hershey, Pennsylvania, USA
| | - Justin Wright
- Department of Biology, Juniata College, Huntingdon, Pennsylvania, USA
| | - Regina Lamendella
- Department of Biology, Juniata College, Huntingdon, Pennsylvania, USA
| |
Collapse
|
26
|
Hennigar SR, Olson CI, Kelley AM, McClung JP. Slc39a4 in the small intestine predicts zinc absorption and utilization: a comprehensive analysis of zinc transporter expression in response to diets of varied zinc content in young mice. J Nutr Biochem 2021; 101:108927. [PMID: 34843931 DOI: 10.1016/j.jnutbio.2021.108927] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/28/2021] [Accepted: 11/18/2021] [Indexed: 12/20/2022]
Abstract
Zinc homeostasis is primarily maintained by zinc transporters that regulate zinc uptake and efflux in the small intestine; however, the relative contribution of the many zinc transporters identified (Slc39a1-14, Slc30a1-10) to dietary zinc absorption and utilization remains unknown. The objective of this study was to determine the expression of Slc39a1-14 and Slc30a1-10 in the small intestine and their relative contribution to dietary zinc absorption in mice. Five-week-old male C57BL/6J mice were fed modified AIN-93G diets containing <1, 30, or 100ppm zinc (n=15 mice/diet). Following 1 week of feeding, mice were given an oral gavage containing 67Zn and liver and plasma isotope appearance was determined 6-h later by ICP-MS. Expression of Slc39a1-14 and Slc30a1-10 was determined in mucosa from duodenum, jejunum, and ileum. Plasma and liver total zinc concentrations were not different after one week of feeding (P>.05). Liver and plasma appearance of 67Zn was greater in mice fed <1ppm compared to the 30ppm (P<.0001) and 100ppm (P<.0001) zinc diets. With the exception of Slc39a2, Slc39a12, Slc30a3, and Slc30a8, the remaining zinc transporters were expressed across all diets and intestinal segments. Expression of Slc39a4, Slc39a11, and Slc30a6 changed with diet (Pdiet<.05 for all); expression of Slc39a5, Slc39a7, Slc39a11, Slc39a14, Slc30a1, Slc30a2, Slc30a4, Slc30a5, Slc30a7, and Slc30a10 changed by intestinal segment (Psegment<.05 for all). Slc39a4 was the only transporter positively associated with liver (r2=0.316, P<.001) and plasma (r2=0.189, P<.01) 67Zn appearance. Although most zinc transporters are expressed in the small intestine, intestinal Slc39a4 predicts fractional zinc absorption and utilization in young mice.
Collapse
Affiliation(s)
- Stephen R Hennigar
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA; U.S. Army Research Institute of Environmental Medicine, Military Nutrition Division, Natick, Massachusetts, USA; Oak Ridge Institute for Science and Education, Belcamp, Maryland, USA.
| | - Cassandra I Olson
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Alyssa M Kelley
- U.S. Army Research Institute of Environmental Medicine, Military Nutrition Division, Natick, Massachusetts, USA; Oak Ridge Institute for Science and Education, Belcamp, Maryland, USA
| | - James P McClung
- U.S. Army Research Institute of Environmental Medicine, Military Nutrition Division, Natick, Massachusetts, USA
| |
Collapse
|
27
|
Xie Y, Wen M, Zhao H, Liu G, Chen X, Tian G, Cai J, Jia G. Effect of zinc supplementation on growth performance, intestinal development, and intestinal barrier function in Pekin ducks with lipopolysaccharide challenge. Poult Sci 2021; 100:101462. [PMID: 34731734 PMCID: PMC8567444 DOI: 10.1016/j.psj.2021.101462] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/18/2021] [Accepted: 08/26/2021] [Indexed: 12/29/2022] Open
Abstract
This study was conducted to investigate the influence of zinc (Zn) supplementation on growth performance, intestinal development and intestinal barrier function in Pekin ducks. A total of 480, one-day-old male Pekin ducks were divided into 6 groups with 8 replicates: 0 mg/kg Zn, 0 mg/kg Zn +0.5 mg/kg lipopolysaccharide (LPS), 30 mg/kg Zn, 30 mg/kg Zn +0.5 mg/kg LPS, 120 mg/kg Zn, 120 mg/kg Zn +0.5 mg/kg LPS. The duck primary intestinal epithelial cells (DIECs) were divided into 6 groups: D-Zn (Zinc deficiency, treated with 2 µmol/L zinc Chelator TPEN), A-Zn (Adequate Zinc, basal medium), H-Zn (High level of Zn, supplemented with 20 µmol/L Zn), D-Zn + 20 µg/mL LPS, A-Zn + 20 µg/mL LPS, H-Zn + 20 µg/mL LPS. The results were as follows: in vivo, with Zn supplementation of 120 mg/kg reduced LPS-induced decrease of growth performance and intestine damage (P < 0.05), and increased intestinal digestive enzyme activity of Pekin ducks (P < 0.05). In addition, Zn supplementation also attenuated LPS-induced intestinal epithelium permeability (P < 0.05), inhibited LPS-induced the expression of proinflammatory cytokines and apoptosis-related genes (P < 0.05), as well as reduced LPS-induced the intestinal stem cells mobilization of Pekin ducks (P < 0.05). In vitro, 20 µmol/L Zn inhibited LPS-induced expression of inflammatory factors and apoptosis-related genes (P < 0.05), promoted the expression of cytoprotection-related genes, and attenuated LPS-induced intestinal epithelium permeability in DIECs (P < 0.05). Mechanistically, 20 µmol/L Zn enhanced tight junction protein markers including CLDN-1, OCLD, and ZO-1 both at protein and mRNA levels (P < 0.05), and also increased the level of phosphorylation of TOR protein (P < 0.05) and activated the TOR signaling pathway. In conclusion, Zn improves growth performance, digestive enzyme activity, and intestinal barrier function of Pekin ducks. Importantly, Zn also reverses LPS-induced intestinal barrier damage via enhancing the expression of tight junction proteins and activating the TOR signaling pathway.
Collapse
Affiliation(s)
- Yueqin Xie
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Min Wen
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, 644000, China
| | - Hua Zhao
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Guangmang Liu
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xiaoling Chen
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Gang Tian
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jingyi Cai
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Gang Jia
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
28
|
Kondaiah P, Palika R, Mashurabad P, Singh Yaduvanshi P, Sharp P, Pullakhandam R. Effect of zinc depletion/repletion on intestinal iron absorption and iron status in rats. J Nutr Biochem 2021; 97:108800. [PMID: 34118433 DOI: 10.1016/j.jnutbio.2021.108800] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/31/2021] [Accepted: 05/31/2021] [Indexed: 01/01/2023]
Abstract
Iron and zinc deficiencies likely coexist in general population. We have previously demonstrated that zinc treatment induces while zinc deficiency inhibits iron absorption in intestinal cell culture models, but this needs to be tested in vivo. In the present study we assessed intestinal iron absorption, iron status (haemoglobin), red blood cell number, plasma ferritin, transferrin receptor, hepcidin) and tissue iron levels in zinc depleted, replete and pair fed control rats. Zinc depletion led to reduction in body weight, tissue zinc levels, intestinal iron absorption, protein and mRNA expression of iron transporters, the divalent metal ion transporter-1, hephaestin and ferroportin, but elevated the intestinal and liver tissue iron levels compared with the pair fed control rats. Zinc repletion led to a significant weight gain compared to zinc deficient rats and normalized the iron absorption, iron transporter expression, tissue iron levels to that of pair fed control rats. Surprisingly, haemoglobin levels and red blood cell number reduced significantly in zinc repleted rats, which could be due to rapid weight gain. Together, these results indicate that whole body zinc status has profound influence on growth, intestinal absorption and systemic utilization of iron, mediated via modulation of iron transporter expression.
Collapse
Affiliation(s)
- Palsa Kondaiah
- ICMR-National Institute of Nutrition, Hyderabad, Telangana, India
| | | | | | | | - Paul Sharp
- Department of Nutritional Sciences, Kings College London, London, UK
| | | |
Collapse
|
29
|
Bohmwald K, Gálvez NMS, Andrade CA, Mora VP, Muñoz JT, González PA, Riedel CA, Kalergis AM. Modulation of Adaptive Immunity and Viral Infections by Ion Channels. Front Physiol 2021; 12:736681. [PMID: 34690811 PMCID: PMC8531258 DOI: 10.3389/fphys.2021.736681] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/10/2021] [Indexed: 12/15/2022] Open
Abstract
Most cellular functions require of ion homeostasis and ion movement. Among others, ion channels play a crucial role in controlling the homeostasis of anions and cations concentration between the extracellular and intracellular compartments. Calcium (Ca2+) is one of the most relevant ions involved in regulating critical functions of immune cells, allowing the appropriate development of immune cell responses against pathogens and tumor cells. Due to the importance of Ca2+ in inducing the immune response, some viruses have evolved mechanisms to modulate intracellular Ca2+ concentrations and the mobilization of this cation through Ca2+ channels to increase their infectivity and to evade the immune system using different mechanisms. For instance, some viral infections require the influx of Ca2+ through ionic channels as a first step to enter the cell, as well as their replication and budding. Moreover, through the expression of viral proteins on the surface of infected cells, Ca2+ channels function can be altered, enhancing the pathogen evasion of the adaptive immune response. In this article, we review those ion channels and ion transporters that are essential for the function of immune cells. Specifically, cation channels and Ca2+ channels in the context of viral infections and their contribution to the modulation of adaptive immune responses.
Collapse
Affiliation(s)
- Karen Bohmwald
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás M. S. Gálvez
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina A. Andrade
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Valentina P. Mora
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José T. Muñoz
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A. González
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Millennium Institute on Immunology and Immunotherapy, Universidad Andres Bello, Santiago, Chile
| | - Alexis M. Kalergis
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
30
|
|
31
|
Cheng J, Bar H, Tako E. Zinc Status Index (ZSI) for Quantification of Zinc Physiological Status. Nutrients 2021; 13:nu13103399. [PMID: 34684398 PMCID: PMC8541600 DOI: 10.3390/nu13103399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 12/22/2022] Open
Abstract
Zinc (Zn) deficiency is estimated to affect over one billion (17%) of the world’s population. Zn plays a key role in various cellular processes such as differentiation, apoptosis, and proliferation, and is used for vital biochemical and structural processes in the body. Widely used biomarkers of Zn status include plasma, whole blood, and urine Zn, which decrease in severe Zn deficiency; however, accurate assessment of Zn status, especially in mild to moderate deficiency, is difficult, as studies with these biomarkers are often contradictory and inconsistent. Thus, sensitive and specific biological markers of Zn physiological status are still needed. In this communication, we provide the Zn status index (ZSI) concept, which consists of a three-pillar formula: (1) the LA:DGLA ratio, (2) mRNA gene expression of Zn-related proteins, and (3) gut microbiome profiling to provide a clear assessment of Zn physiological status and degree of Zn deficiency with respect to assessing dietary Zn manipulation. Analysis of five selected studies found that with lower dietary Zn intake, erythrocyte LA:DGLA ratio increased, mRNA gene expression of Zn-related proteins in duodenal and liver tissues was altered, and gut microbiota populations differed, where the ZSI, a statistical model trained on data from these studies, was built to give an accurate estimation of Zn physiological status. However, the ZSI needs to be tested and refined further to determine its full potential.
Collapse
Affiliation(s)
- Jacquelyn Cheng
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY 14853, USA;
| | - Haim Bar
- Department of Statistics, University of Connecticut, Philip E. Austin Building, Storrs, CT 06269, USA;
| | - Elad Tako
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY 14853, USA;
- Correspondence: ; Tel.: +1-607-255-0884
| |
Collapse
|
32
|
Zhang C, Sui D, Zhang T, Hu J. Molecular Basis of Zinc-Dependent Endocytosis of Human ZIP4 Transceptor. Cell Rep 2021; 31:107582. [PMID: 32348750 PMCID: PMC7661102 DOI: 10.1016/j.celrep.2020.107582] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/03/2020] [Accepted: 04/07/2020] [Indexed: 12/05/2022] Open
Abstract
Nutrient transporters can be rapidly removed from the cell surface via substrate-stimulated endocytosis as a way to control nutrient influx, but the molecular underpinnings are not well understood. In this work, we focus on zinc-dependent endocytosis of human ZIP4 (hZIP4), a zinc transporter that is essential for dietary zinc uptake. Structure-guided mutagenesis and internalization assay reveal that hZIP4 per se acts as the exclusive zinc sensor, with the transport site’s being responsible for zinc sensing. In an effort of seeking sorting signal, a scan of the longest cytosolic loop (L2) leads to identification of a conserved Leu-Gln-Leu motif that is essential for endocytosis. Partial proteolysis of purified hZIP4 demonstrates a structural coupling between the transport site and the L2 upon zinc binding, which supports a working model of how zinc ions at physiological concentration trigger a conformation-dependent endocytosis of the zinc transporter. This work provides a paradigm on post-translational regulation of nutrient transporters. Cell surface expression of ZIP4, a transporter for intestinal zinc uptake, is regulated by zinc availability. Zhang et al. report that human ZIP4 acts as the exclusive zinc sensor in initiating the zinc-dependent endocytosis, and a cytosolic motif is essential for sorting signal formation, indicating that ZIP4 is a transceptor.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Dexin Sui
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Tuo Zhang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Jian Hu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
33
|
Xia P, Lian S, Wu Y, Yan L, Quan G, Zhu G. Zinc is an important inter-kingdom signal between the host and microbe. Vet Res 2021; 52:39. [PMID: 33663613 PMCID: PMC7931793 DOI: 10.1186/s13567-021-00913-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/08/2021] [Indexed: 12/15/2022] Open
Abstract
Zinc (Zn) is an essential trace element in living organisms and plays a vital role in the regulation of both microbial virulence and host immune responses. A growing number of studies have shown that zinc deficiency or the internal Zn concentration does not meet the needs of animals and microbes, leading to an imbalance in zinc homeostasis and intracellular signalling pathway dysregulation. Competition for zinc ions (Zn2+) between microbes and the host exists in the use of Zn2+ to maintain cell structure and physiological functions. It also affects the interplay between microbial virulence factors and their specific receptors in the host. This review will focus on the role of Zn in the crosstalk between the host and microbe, especially for changes in microbial pathogenesis and nociceptive neuron-immune interactions, as it may lead to new ways to prevent or treat microbial infections.
Collapse
Affiliation(s)
- Pengpeng Xia
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou, 225009, China. .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China. .,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| | - Siqi Lian
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Yunping Wu
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Li Yan
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Guomei Quan
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Guoqiang Zhu
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou, 225009, China. .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China. .,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
34
|
Hildebrand S, Löwa N, Paysen H, Fratila RM, Reverte-Salisa L, Trakoolwilaiwan T, Niu Z, Kasparis G, Preuss SF, Kosch O, M de la Fuente J, Thanh NTK, Wiekhorst F, Pfeifer A. Quantification of Lipoprotein Uptake in Vivo Using Magnetic Particle Imaging and Spectroscopy. ACS NANO 2021; 15:434-446. [PMID: 33306343 DOI: 10.1021/acsnano.0c03229] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Lipids are a major source of energy for most tissues, and lipid uptake and storage is therefore crucial for energy homeostasis. So far, quantification of lipid uptake in vivo has primarily relied on radioactive isotope labeling, exposing human subjects or experimental animals to ionizing radiation. Here, we describe the quantification of in vivo uptake of chylomicrons, the primary carriers of dietary lipids, in metabolically active tissues using magnetic particle imaging (MPI) and magnetic particle spectroscopy (MPS). We show that loading artificial chylomicrons (ACM) with iron oxide nanoparticles (IONPs) enables rapid and highly sensitive post hoc detection of lipid uptake in situ using MPS. Importantly, by utilizing highly magnetic Zn-doped iron oxide nanoparticles (ZnMNPs), we generated ACM with MPI tracer properties superseding the current gold-standard, Resovist, enabling quantification of lipid uptake from whole-animal scans. We focused on brown adipose tissue (BAT), which dissipates heat and can consume a large part of nutrient lipids, as a model for tightly regulated and inducible lipid uptake. High BAT activity in humans correlates with leanness and improved cardiometabolic health. However, the lack of nonradioactive imaging techniques is an important hurdle for the development of BAT-centered therapies for metabolic diseases such as obesity and type 2 diabetes. Comparison of MPI measurements with iron quantification by inductively coupled plasma mass spectrometry revealed that MPI rivals the performance of this highly sensitive technique. Our results represent radioactivity-free quantification of lipid uptake in metabolically active tissues such as BAT.
Collapse
Affiliation(s)
- Staffan Hildebrand
- Institut für Pharmakologie und Toxikologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Norbert Löwa
- 8.23 Metrology for Magnetic Nanoparticles, Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany
| | - Hendrik Paysen
- 8.23 Metrology for Magnetic Nanoparticles, Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany
| | - Raluca M Fratila
- INMA - Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Laia Reverte-Salisa
- Institut für Pharmakologie und Toxikologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Thithawat Trakoolwilaiwan
- Biophysics Group, Department of Physics and Astronomy, University College London, London WC1E 6BT, U.K
- UCL Healthcare Biomagnetics Laboratories, 21 Albemarle Street, London W1S 4BS, U.K
| | - Zheming Niu
- Institut für Pharmakologie und Toxikologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Georgios Kasparis
- Biophysics Group, Department of Physics and Astronomy, University College London, London WC1E 6BT, U.K
- UCL Healthcare Biomagnetics Laboratories, 21 Albemarle Street, London W1S 4BS, U.K
| | - Stephanie Franziska Preuss
- Institut für Pharmakologie und Toxikologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Olaf Kosch
- 8.23 Metrology for Magnetic Nanoparticles, Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany
| | - Jesus M de la Fuente
- INMA - Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Nguyen Thi Kim Thanh
- Biophysics Group, Department of Physics and Astronomy, University College London, London WC1E 6BT, U.K
- UCL Healthcare Biomagnetics Laboratories, 21 Albemarle Street, London W1S 4BS, U.K
| | - Frank Wiekhorst
- 8.23 Metrology for Magnetic Nanoparticles, Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany
| | - Alexander Pfeifer
- Institut für Pharmakologie und Toxikologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| |
Collapse
|
35
|
Kuliyev E, Zhang C, Sui D, Hu J. Zinc transporter mutations linked to acrodermatitis enteropathica disrupt function and cause mistrafficking. J Biol Chem 2021; 296:100269. [PMID: 33837739 PMCID: PMC7949036 DOI: 10.1016/j.jbc.2021.100269] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/28/2020] [Accepted: 01/06/2021] [Indexed: 01/14/2023] Open
Abstract
ZIP4 is a representative member of the Zrt-/Irt-like protein (ZIP) transporter family and responsible for zinc uptake from diet. Loss-of-function mutations of human ZIP4 (hZIP4) drastically reduce zinc absorption, causing a life-threatening autosomal recessive disorder, acrodermatitis enteropathica (AE). These mutations occur not only in the conserved transmembrane zinc transport machinery, but also in the extracellular domain (ECD) of hZIP4, which is only present in a fraction of mammalian ZIPs. How these AE-causing ECD mutations lead to ZIP4 malfunction has not be fully clarified. In this work, we characterized all seven confirmed AE-causing missense mutations in hZIP4-ECD and found that the variants exhibited completely abolished zinc transport activity in a cell-based transport assay. Although the variants were able to be expressed in HEK293T cells, they failed to traffic to the cell surface and were largely retained in the ER with immature glycosylation. When the corresponding mutations were introduced in the ECD of ZIP4 from Pteropus Alecto, a close homolog of hZIP4, the variants exhibited structural defects or reduced thermal stability, which likely accounts for intracellular mistrafficking of the AE-associated variants and as such a total loss of zinc uptake activity. This work provides a molecular pathogenic mechanism for AE.
Collapse
Affiliation(s)
- Eziz Kuliyev
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - Chi Zhang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Dexin Sui
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Jian Hu
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA.
| |
Collapse
|
36
|
Kable ME, Riazati N, Kirschke CP, Zhao J, Tepaamorndech S, Huang L. The Znt7-null mutation has sex dependent effects on the gut microbiota and goblet cell population in the mouse colon. PLoS One 2020; 15:e0239681. [PMID: 32991615 PMCID: PMC7523961 DOI: 10.1371/journal.pone.0239681] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/11/2020] [Indexed: 01/01/2023] Open
Abstract
Cellular homeostasis of zinc, an essential element for living organisms, is tightly regulated by a family of zinc transporters. The zinc transporter 7, ZnT7, is highly expressed on the membrane of the Golgi complex of intestinal epithelial cells and goblet cells. It has previously been shown that Znt7 knockout leads to zinc deficiency and decreased weight gain in C57BL/6 mice on a defined diet. However, effects within the colon are unknown. Given the expression profile of Znt7, we set out to analyze the changes in mucin density and gut microbial composition in the mouse large intestine induced by Znt7 knockout. We fed a semi-purified diet containing 30 mg Zn/kg to Znt7-/- mice with their heterozygous and wild type littermates and found a sex specific effect on colonic mucin density, goblet cell number, and microbiome composition. In male mice Znt7 knockout led to increased goblet cell number and mucin density but had little effect on gut microbiome composition. However, in female mice Znt7 knockout was associated with decreased goblet cell number and mucin density, with increased proportions of the microbial taxa, Allobaculum, relative to wild type. The gut microbial composition was correlated with mucin density in both sexes. These findings suggest that a sex-specific relationship exists between zinc homeostasis, mucin production and the microbial community composition within the colon.
Collapse
Affiliation(s)
- Mary E. Kable
- Immunity and Disease Prevention Research Unit, USDA-ARS, Western Human Nutrition Research Center, Davis, California, United States of America
- Department of Nutrition, University of California Davis, Davis, California, United States of America
- * E-mail: (MEK); (LH)
| | - Niknaz Riazati
- Department of Nutrition, University of California Davis, Davis, California, United States of America
| | - Catherine P. Kirschke
- Obesity and Metabolism Research Unit, USDA-ARS, Western Human Nutrition Research Center, Davis, California, United States of America
| | - Junli Zhao
- School of Food Science, Nanjing Xiaozhuang University, Nanjing, Jiangsu, China
| | - Surapun Tepaamorndech
- Food Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), Khlong Luang, Pathum Thani, Thailand
| | - Liping Huang
- Department of Nutrition, University of California Davis, Davis, California, United States of America
- Obesity and Metabolism Research Unit, USDA-ARS, Western Human Nutrition Research Center, Davis, California, United States of America
- * E-mail: (MEK); (LH)
| |
Collapse
|
37
|
Nimmanon T, Ziliotto S, Ogle O, Burt A, Gee JMW, Andrews GK, Kille P, Hogstrand C, Maret W, Taylor KM. The ZIP6/ZIP10 heteromer is essential for the zinc-mediated trigger of mitosis. Cell Mol Life Sci 2020; 78:1781-1798. [PMID: 32797246 PMCID: PMC7904737 DOI: 10.1007/s00018-020-03616-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/22/2020] [Accepted: 08/07/2020] [Indexed: 02/08/2023]
Abstract
Zinc has been known to be essential for cell division for over 40 years but the molecular pathways involved remain elusive. Cellular zinc import across biological membranes necessitates the help of zinc transporters such as the SLC39A family of ZIP transporters. We have discovered a molecular process that explains why zinc is required for cell division, involving two highly regulated zinc transporters, as a heteromer of ZIP6 and ZIP10, providing the means of cellular zinc entry at a specific time of the cell cycle that initiates a pathway resulting in the onset of mitosis. Crucially, when the zinc influx across this heteromer is blocked by ZIP6 or ZIP10 specific antibodies, there is no evidence of mitosis, confirming the requirement for zinc influx as a trigger of mitosis. The zinc that influxes into cells to trigger mitosis additionally changes the phosphorylation state of STAT3 converting it from a transcription factor to a protein that complexes with this heteromer and pS38Stathmin, the form allowing microtubule rearrangement as required in mitosis. This discovery now explains the specific cellular role of ZIP6 and ZIP10 and how they have special importance in the mitosis process compared to other ZIP transporter family members. This finding offers new therapeutic opportunities for inhibition of cell division in the many proliferative diseases that exist, such as cancer.
Collapse
Affiliation(s)
- Thirayost Nimmanon
- Department of Pathology, Phramongkutklao College of Medicine, 315 Ratchawithi Road, Thung Phayathai, Ratchathewi, Bangkok, 10400, Thailand
| | - Silvia Ziliotto
- Breast Cancer Molecular Pharmacology Group, School of Pharmacy and Pharmaceutical Sciences, Redwood Building, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Olivia Ogle
- Breast Cancer Molecular Pharmacology Group, School of Pharmacy and Pharmaceutical Sciences, Redwood Building, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Anna Burt
- Breast Cancer Molecular Pharmacology Group, School of Pharmacy and Pharmaceutical Sciences, Redwood Building, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Julia M W Gee
- Breast Cancer Molecular Pharmacology Group, School of Pharmacy and Pharmaceutical Sciences, Redwood Building, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Glen K Andrews
- Departments of Biochemistry and Molecular Biology, Kansas City, USA.,Anatomy and Cell Biology, Medical Center, University of Kansas, Kansas City, KS, 66106, USA
| | - Pete Kille
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AT, UK
| | - Christer Hogstrand
- Metal Metabolism Group, Diabetes and Nutritional Sciences Division, Faculty of Life Sciences and Medicine, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Wolfgang Maret
- Metal Metabolism Group, Diabetes and Nutritional Sciences Division, Faculty of Life Sciences and Medicine, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Kathryn M Taylor
- Breast Cancer Molecular Pharmacology Group, School of Pharmacy and Pharmaceutical Sciences, Redwood Building, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK.
| |
Collapse
|
38
|
O’Connor JP, Kanjilal D, Teitelbaum M, Lin SS, Cottrell JA. Zinc as a Therapeutic Agent in Bone Regeneration. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2211. [PMID: 32408474 PMCID: PMC7287917 DOI: 10.3390/ma13102211] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/03/2020] [Accepted: 05/08/2020] [Indexed: 11/28/2022]
Abstract
Zinc is an essential mineral that is required for normal skeletal growth and bone homeostasis. Furthermore, zinc appears to be able to promote bone regeneration. However, the cellular and molecular pathways through which zinc promotes bone growth, homeostasis, and regeneration are poorly understood. Zinc can positively affect chondrocyte and osteoblast functions, while inhibiting osteoclast activity, consistent with a beneficial role for zinc in bone homeostasis and regeneration. Based on the effects of zinc on skeletal cell populations and the role of zinc in skeletal growth, therapeutic approaches using zinc to improve bone regeneration are being developed. This review focuses on the role of zinc in bone growth, homeostasis, and regeneration while providing an overview of the existing studies that use zinc as a bone regeneration therapeutic.
Collapse
Affiliation(s)
- J. Patrick O’Connor
- Department of Orthopaedics, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA;
- School of Graduate Studies, Rutgers, the State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA; (D.K.); (M.T.)
| | - Deboleena Kanjilal
- School of Graduate Studies, Rutgers, the State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA; (D.K.); (M.T.)
| | - Marc Teitelbaum
- School of Graduate Studies, Rutgers, the State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA; (D.K.); (M.T.)
| | - Sheldon S. Lin
- Department of Orthopaedics, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA;
- School of Graduate Studies, Rutgers, the State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA; (D.K.); (M.T.)
| | - Jessica A. Cottrell
- Department of Biological Sciences, Seton Hall University, 400 South Orange Avenue, South Orange, NJ 07079, USA;
| |
Collapse
|
39
|
Schmitt M, Schewe M, Sacchetti A, Feijtel D, van de Geer WS, Teeuwssen M, Sleddens HF, Joosten R, van Royen ME, van de Werken HJG, van Es J, Clevers H, Fodde R. Paneth Cells Respond to Inflammation and Contribute to Tissue Regeneration by Acquiring Stem-like Features through SCF/c-Kit Signaling. Cell Rep 2020; 24:2312-2328.e7. [PMID: 30157426 DOI: 10.1016/j.celrep.2018.07.085] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/02/2018] [Accepted: 07/25/2018] [Indexed: 12/23/2022] Open
Abstract
IBD syndromes such as Crohn's disease and ulcerative colitis result from the inflammation of specific intestinal segments. Although many studies have reported on the regenerative response of intestinal progenitor and stem cells to tissue injury, very little is known about the response of differentiated lineages to inflammatory cues. Here, we show that acute inflammation of the mouse small intestine is followed by a dramatic loss of Lgr5+ stem cells. Instead, Paneth cells re-enter the cell cycle, lose their secretory expression signature, and acquire stem-like properties, thus contributing to the tissue regenerative response to inflammation. Stem cell factor secretion upon inflammation triggers signaling through the c-Kit receptor and a cascade of downstream events culminating in GSK3β inhibition and Wnt activation in Paneth cells. Hence, the plasticity of the intestinal epithelium in response to inflammation goes well beyond stem and progenitor cells and extends to the fully differentiated and post-mitotic Paneth cells.
Collapse
Affiliation(s)
- Mark Schmitt
- Department of Pathology, University Medical Center, Rotterdam, the Netherlands
| | - Matthias Schewe
- Department of Pathology, University Medical Center, Rotterdam, the Netherlands
| | - Andrea Sacchetti
- Department of Pathology, University Medical Center, Rotterdam, the Netherlands
| | - Danny Feijtel
- Department of Pathology, University Medical Center, Rotterdam, the Netherlands
| | - Wesley S van de Geer
- Cancer Computational Biology Center and Department of Urology, University Medical Center, Rotterdam, the Netherlands
| | - Miriam Teeuwssen
- Department of Pathology, University Medical Center, Rotterdam, the Netherlands
| | - Hein F Sleddens
- Department of Pathology, University Medical Center, Rotterdam, the Netherlands
| | - Rosalie Joosten
- Department of Pathology, University Medical Center, Rotterdam, the Netherlands
| | - Martin E van Royen
- Erasmus Optical Imaging Center, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, the Netherlands
| | - Harmen J G van de Werken
- Cancer Computational Biology Center and Department of Urology, University Medical Center, Rotterdam, the Netherlands
| | - Johan van Es
- Hubrecht Institute, University Medical Center Utrecht and Princess Maxima Center, Utrecht, the Netherlands
| | - Hans Clevers
- Hubrecht Institute, University Medical Center Utrecht and Princess Maxima Center, Utrecht, the Netherlands
| | - Riccardo Fodde
- Department of Pathology, University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
40
|
Abstract
Metals are essential components in all forms of life required for the function of nearly half of all enzymes and are critically involved in virtually all fundamental biological processes. Especially, the transition metals iron (Fe), zinc (Zn), manganese (Mn), nickel (Ni), copper (Cu) and cobalt (Co) are crucial micronutrients known to play vital roles in metabolism as well due to their unique redox properties. Metals carry out three major functions within metalloproteins: to provide structural support, to serve as enzymatic cofactors, and to mediate electron transportation. Metal ions are also involved in the immune system from metal allergies to nutritional immunity. Within the past decade, much attention has been drawn to the roles of metal ions in the immune system, since increasing evidence has mounted to suggest that metals are critically implicated in regulating both the innate immune sensing of and the host defense against invading pathogens. The importance of ions in immunity is also evidenced by the identification of various immunodeficiencies in patients with mutations in ion channels and transporters. In addition, cancer immunotherapy has recently been conclusively demonstrated to be effective and important for future tumor treatment, although only a small percentage of cancer patients respond to immunotherapy because of inadequate immune activation. Importantly, metal ion-activated immunotherapy is becoming an effective and potential way in tumor therapy for better clinical application. Nevertheless, we are still in a primary stage of discovering the diverse immunological functions of ions and mechanistically understanding the roles of these ions in immune regulation. This review summarizes recent advances in the understanding of metal-controlled immunity. Particular emphasis is put on the mechanisms of innate immune stimulation and T cell activation by the essential metal ions like calcium (Ca2+), zinc (Zn2+), manganese (Mn2+), iron (Fe2+/Fe3+), and potassium (K+), followed by a few unessential metals, in order to draw a general diagram of metalloimmunology.
Collapse
Affiliation(s)
- Chenguang Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Rui Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xiaoming Wei
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Mengze Lv
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Zhengfan Jiang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
41
|
Ohashi W, Hara T, Takagishi T, Hase K, Fukada T. Maintenance of Intestinal Epithelial Homeostasis by Zinc Transporters. Dig Dis Sci 2019; 64:2404-2415. [PMID: 30830525 DOI: 10.1007/s10620-019-05561-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/22/2019] [Indexed: 12/12/2022]
Abstract
Zinc is an essential micronutrient for normal organ function, and dysregulation of zinc metabolism has been implicated in a wide range of diseases. Emerging evidence has revealed that zinc transporters play diverse roles in cellular homeostasis and function by regulating zinc trafficking via organelles or the plasma membrane. In the gastrointestinal tract, zinc deficiency leads to diarrhea and dysfunction of intestinal epithelial cells. Studies also showed that zinc transporters are very important in intestinal epithelial homeostasis. In this review, we describe the physiological roles of zinc transporters in intestinal epithelial functions and relevance of zinc transporters in gastrointestinal diseases.
Collapse
Affiliation(s)
- Wakana Ohashi
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Takafumi Hara
- Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamabouji, Yamashiro, Tokushima, 770-8055, Japan
| | - Teruhisa Takagishi
- Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamabouji, Yamashiro, Tokushima, 770-8055, Japan
| | - Koji Hase
- Division of Biochemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Toshiyuki Fukada
- Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamabouji, Yamashiro, Tokushima, 770-8055, Japan.
- Division of Pathology, Department of Oral Diagnostic Sciences, School of dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.
- RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0042, Japan.
| |
Collapse
|
42
|
Nishito Y, Kambe T. Zinc transporter 1 (ZNT1) expression on the cell surface is elaborately controlled by cellular zinc levels. J Biol Chem 2019; 294:15686-15697. [PMID: 31471319 DOI: 10.1074/jbc.ra119.010227] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/20/2019] [Indexed: 12/11/2022] Open
Abstract
Zinc transporter 1 (ZNT1) is the only zinc transporter predominantly located on the plasma membrane, where it plays a pivotal role exporting cytosolic zinc to the extracellular space. Numerous studies have focused on the physiological and pathological functions of ZNT1. However, its biochemical features remain poorly understood. Here, we investigated the regulation of ZNT1 expression in human and vertebrate cells, and found that ZNT1 expression is posttranslationally regulated by cellular zinc status. We observed that under zinc-sufficient conditions, ZNT1 accumulates on the plasma membrane, consistent with its zinc efflux function. In contrast, under zinc-deficient conditions, ZNT1 molecules on the plasma membrane were endocytosed and degraded through both the proteasomal and lysosomal pathways. Zinc-responsive ZNT1 expression corresponded with that of metallothionein, supporting the idea that ZNT1 and metallothionein cooperatively regulate cellular zinc homeostasis. ZNT1 is N-glycosylated on Asn299 in the extracellular loop between transmembrane domains V and VI, and this appears to be involved in the regulation of ZNT1 stability, as nonglycosylated ZNT1 is more stable. However, this posttranslational modification had no effect on ZNT1's ability to confer cellular resistance against high zinc levels or its subcellular localization. Our results provide molecular insights into ZNT1-mediated regulation of cellular zinc homeostasis, and indicate that the control of cellular and systemic zinc homeostasis via dynamic regulation of ZNT1 expression is more sophisticated than previously thought.
Collapse
Affiliation(s)
- Yukina Nishito
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
43
|
Wu R, Mei X, Wang J, Sun W, Xue T, Lin C, Xu D. Zn(ii)-Curcumin supplementation alleviates gut dysbiosis and zinc dyshomeostasis during doxorubicin-induced cardiotoxicity in rats. Food Funct 2019; 10:5587-5604. [PMID: 31432062 DOI: 10.1039/c9fo01034c] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Doxorubicin is a powerful anticancer agent used to treat a variety of human neoplasms. However, the clinical use of doxorubicin is hampered by cardiotoxicity and effective cardioprotective adjuvants do not exist. Dietary zinc, an essential nutrient, is required to maintain steady-state tissue zinc levels and intestinal homeostasis and may yield therapeutic benefits in diseases associated with zinc dysregulation or gut dysbiosis. Here, we investigated the effects of dietary Zn(ii)-curcumin (ZnCM) solid dispersions on gut dysbiosis and zinc dyshomeostasis during doxorubicin-induced cardiotoxicity in rats. Rats were injected with multiple low doses of doxorubicin and orally administered ZnCM daily over four weeks. Daily administration of ZnCM not only alleviated Dox-induced gut dysbiosis-as indicated by the increased Firmicutes-to-Bacteroidetes ratio and the maintenance of the relative abundances of major beneficial bacteria including Clostridium_XIVa, Clostridium_IV, Roseburia, Butyricicoccus and Akkermansia-but also maintained intestinal barrier integrity and decreased the lipopolysaccharide (LPS) contents of feces and plasma. ZnCM also significantly attenuated doxorubicin-induced zinc dyshomeostasis, which was mirrored by preservation of zinc levels and expression of zinc-related transporters. Furthermore, ZnCM significantly improved heart function and reduced cardiomyocyte apoptosis and myocardial injury in doxorubicin-treated rats. Notably, the regulation of zinc homeostasis and cardioprotective and microbiota-modulating effects of ZnCM were transmissible through horizontal feces transfer from ZnCM-treated rats to normal rats. Thus, ZnCM supplementation has potential as an effective therapeutic strategy to alleviate gut dysbiosis and zinc dyshomeostasis during doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Rihui Wu
- Laboratory of Traditional Chinese Medicine and Marine Drugs, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, China.
| | - Xueting Mei
- Laboratory Animal Center of Sun Yat-sen University, Sun Yat-sen University, 510275 Guangzhou, China
| | - Jiasheng Wang
- Laboratory of Traditional Chinese Medicine and Marine Drugs, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, China.
| | - Wenjia Sun
- Laboratory of Traditional Chinese Medicine and Marine Drugs, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, China.
| | - Ting Xue
- Laboratory of Traditional Chinese Medicine and Marine Drugs, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, China.
| | - Caixia Lin
- Laboratory of Traditional Chinese Medicine and Marine Drugs, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, China.
| | - Donghui Xu
- Laboratory of Traditional Chinese Medicine and Marine Drugs, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, China.
| |
Collapse
|
44
|
Kondaiah P, Yaduvanshi PS, Sharp PA, Pullakhandam R. Iron and Zinc Homeostasis and Interactions: Does Enteric Zinc Excretion Cross-Talk with Intestinal Iron Absorption? Nutrients 2019; 11:nu11081885. [PMID: 31412634 PMCID: PMC6722515 DOI: 10.3390/nu11081885] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/06/2019] [Accepted: 08/08/2019] [Indexed: 01/01/2023] Open
Abstract
Iron and zinc are essential micronutrients required for growth and health. Deficiencies of these nutrients are highly prevalent among populations, but can be alleviated by supplementation and food fortification. Cross-sectional studies in humans showed positive association of serum zinc levels with hemoglobin and markers of iron status. Dietary restriction of zinc or intestinal specific conditional knock out of ZIP4 (SLC39A4), an intestinal zinc transporter, in experimental animals demonstrated iron deficiency anemia and tissue iron accumulation. Similarly, increased iron accumulation has been observed in cultured cells exposed to zinc deficient media. These results together suggest a potential role of zinc in modulating intestinal iron absorption and mobilization from tissues. Studies in intestinal cell culture models demonstrate that zinc induces iron uptake and transcellular transport via induction of divalent metal iron transporter-1 (DMT1) and ferroportin (FPN1) expression, respectively. It is interesting to note that intestinal cells are exposed to very high levels of zinc through pancreatic secretions, which is a major route of zinc excretion from the body. Therefore, zinc appears to be modulating the iron metabolism possibly via regulating the DMT1 and FPN1 levels. Herein we critically reviewed the available evidence to hypothesize novel mechanism of Zinc-DMT1/FPN1 axis in regulating intestinal iron absorption and tissue iron accumulation to facilitate future research aimed at understanding the yet elusive mechanisms of iron and zinc interactions.
Collapse
Affiliation(s)
- Palsa Kondaiah
- Biochemistry Division, National Institute of Nutrition, ICMR, Hyderabad 500 007, India
| | | | - Paul A Sharp
- Department of Nutritional Sciences, Kings College London, London SE1 9NH, UK.
| | - Raghu Pullakhandam
- Biochemistry Division, National Institute of Nutrition, ICMR, Hyderabad 500 007, India.
| |
Collapse
|
45
|
Melia JMP, Lin R, Xavier RJ, Thompson RB, Fu D, Wan F, Sears CL, Donowitz M. Induction of the metal transporter ZIP8 by interferon gamma in intestinal epithelial cells: Potential role of metal dyshomeostasis in Crohn's disease. Biochem Biophys Res Commun 2019; 515:325-331. [PMID: 31151823 DOI: 10.1016/j.bbrc.2019.05.137] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 05/22/2019] [Indexed: 01/14/2023]
Abstract
Transition metals are required for intestinal homeostasis and provide essential nutrients for the resident microbiota. Abnormalities in metal homeostasis are common in Crohn's disease (CD), but remain poorly defined and causes appear multifactorial. There has been renewed interest in understanding these mechanisms with the discovery of an association between a coding variant in SLC39A8 (rs13107325; ZIP8 A391T) and increased CD risk. SLC39A8 encodes the protein ZIP8, a metal transporter that is induced under inflammatory stimuli; however, studies of its gut-specific functions are lacking. Here, we show that SLC39A8 mRNA is differentially expressed in active CD with a high positive correlation with markers of disease severity, including CXCL8, TNFα, IFNγ, and calprotectin. SLC39A8 expression exhibits a negative correlation with SLC39A4 and SLC39A5, two key zinc importers in absorptive enterocytes, and a lack of correlation with two manganese transporters, SLC39A14 and SLC11A2. Immunohistochemistry demonstrates ZIP8 expression in intestinal epithelial cells and immune cells of the lamina propria. Patients with CD exhibit variable patterns of ZIP8 subcellular localization within IECs. In ileal enteroids, SLC39A8 was induced by IFNγ and IFNγ + TNFα, but not by TNFα alone, independent of NF-κB activation. IFNγ also down-regulated SLC39A5. To explore the functional implications of disease-associated genetic variation, in over-expression experiments in HEK293A cells, ZIP8 A391T was associated with increased TNFα-induced NF-κB activation, consistent with a loss of negative regulation. Taken together, these results suggest a potential role for ZIP8 in intestinal inflammation, induced by IFNγ in the intestinal epithelial compartment, and that perturbations in negative regulation of NF-κB by ZIP8 A391T may contribute to CD pathogenesis.
Collapse
Affiliation(s)
- Joanna M P Melia
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Ruxian Lin
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ramnik J Xavier
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Richard B Thompson
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Dax Fu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Fengyi Wan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA; Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Cynthia L Sears
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA; Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Mark Donowitz
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
46
|
Contribution of Zinc and Zinc Transporters in the Pathogenesis of Inflammatory Bowel Diseases. J Immunol Res 2019; 2019:8396878. [PMID: 30984791 PMCID: PMC6431494 DOI: 10.1155/2019/8396878] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/29/2019] [Indexed: 02/06/2023] Open
Abstract
Intestinal epithelial cells cover the surface of the intestinal tract. The cells are important for preserving the integrity of the mucosal barriers to protect the host from luminal antigens and pathogens. The mucosal barriers are maintained by the continuous and rapid self-renewal of intestinal epithelial cells. Defects in the self-renewal of these cells are associated with gastrointestinal diseases, including inflammatory bowel diseases and diarrhea. Zinc is an essential trace element for living organisms, and zinc deficiency is closely linked to the impaired mucosal integrity. Recent evidence has shown that zinc transporters contribute to the barrier function of intestinal epithelial cells. In this review, we describe the recent advances in understanding the role of zinc and zinc transporters in the barrier function and homeostasis of intestinal epithelial cells.
Collapse
|
47
|
TRPM7 is the central gatekeeper of intestinal mineral absorption essential for postnatal survival. Proc Natl Acad Sci U S A 2019; 116:4706-4715. [PMID: 30770447 PMCID: PMC6410795 DOI: 10.1073/pnas.1810633116] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Zn2+, Mg2+, and Ca2+ are the most abundant divalent metals in mammals. Different categories of cation-selective channels and transporters are thought to control the levels of individual metals in a cell-specific manner. However, the mechanisms responsible for the organismal balance of these minerals are poorly understood. Using genetic mouse models together with biophysical and biochemical analysis, we show that the channel-kinase TRPM7 is a master regulator of the organismal balance of divalent cations. TRPM7 activity is primarily required in the intestine, while TRPM7 function in the kidney—commonly thought to be essential—is expendable. Hence, against current thinking, organismal balance of multiple divalent cations predominantly relies on a common gatekeeper, TRPM7, rather than on individual specialized channels/transporters. Zn2+, Mg2+, and Ca2+ are essential minerals required for a plethora of metabolic processes and signaling pathways. Different categories of cation-selective channels and transporters are therefore required to tightly control the cellular levels of individual metals in a cell-specific manner. However, the mechanisms responsible for the organismal balance of these essential minerals are poorly understood. Herein, we identify a central and indispensable role of the channel-kinase TRPM7 for organismal mineral homeostasis. The function of TRPM7 was assessed by single-channel analysis of TRPM7, phenotyping of TRPM7-deficient cells in conjunction with metabolic profiling of mice carrying kidney- and intestine-restricted null mutations in Trpm7 and animals with a global “kinase-dead” point mutation in the gene. The TRPM7 channel reconstituted in lipid bilayers displayed a similar permeability to Zn2+ and Mg2+. Consistently, we found that endogenous TRPM7 regulates the total content of Zn2+ and Mg2+ in cultured cells. Unexpectedly, genetic inactivation of intestinal rather than kidney TRPM7 caused profound deficiencies specifically of Zn2+, Mg2+, and Ca2+ at the organismal level, a scenario incompatible with early postnatal growth and survival. In contrast, global ablation of TRPM7 kinase activity did not affect mineral homeostasis, reinforcing the importance of the channel activity of TRPM7. Finally, dietary Zn2+ and Mg2+ fortifications significantly extended the survival of offspring lacking intestinal TRPM7. Hence, the organismal balance of divalent cations critically relies on one common gatekeeper, the intestinal TRPM7 channel.
Collapse
|
48
|
Zn-DTSM, A Zinc Ionophore with Therapeutic Potential for Acrodermatitis Enteropathica? Nutrients 2019; 11:nu11010206. [PMID: 30669644 PMCID: PMC6356714 DOI: 10.3390/nu11010206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 11/17/2022] Open
Abstract
Acrodermatitis enteropathica (AE) is a rare disease characterised by a failure in intestinal zinc absorption, which results in a host of symptoms that can ultimately lead to death if left untreated. Current clinical treatment involves life-long high-dose zinc supplements, which can introduce complications for overall nutrient balance in the body. Previous studies have therefore explored the pharmacological treatment of AE utilising metal ionophore/transport compounds in an animal model of the disease (conditional knockout (KO) of the zinc transporter, Zip4), with the perspective of finding an alternative to zinc supplementation. In this study we have assessed the utility of a different class of zinc ionophore compound (zinc diethyl bis(N4-methylthiosemicarbazone), Zn-DTSM; Collaborative Medicinal Development, Sausalito, CA, USA) to the one we have previously described (clioquinol), to determine whether it is effective at preventing the stereotypical weight loss present in the animal model of disease. We first utilised an in vitro assay to assess the ionophore capacity of the compound, and then assessed the effect of the compound in three in vivo animal studies (in 1.5-month-old mice at 30 mg/kg/day, and in 5-month old mice at 3 mg/kg/day and 30 mg/kg/day). Our data demonstrate that Zn-DTSM has a pronounced effect on preventing weight loss when administered daily at 30 mg/kg/day; this was apparent in the absence of any added exogenous zinc. This compound had little overall effect on zinc content in various tissues that were assessed, although further characterisation is required to more fully explore the cellular changes underlying the physiological benefit of this compound. These data suggest that Zn-DTSM, or similar compounds, should be further explored as potential therapeutic options for the long-term treatment of AE.
Collapse
|
49
|
Chun H, Korolnek T, Lee CJ, Coyne HJ, Winge DR, Kim BE, Petris MJ. An extracellular histidine-containing motif in the zinc transporter ZIP4 plays a role in zinc sensing and zinc-induced endocytosis in mammalian cells. J Biol Chem 2018; 294:2815-2826. [PMID: 30593504 DOI: 10.1074/jbc.ra118.005203] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/21/2018] [Indexed: 01/27/2023] Open
Abstract
Zinc is an essential trace element that serves as a cofactor for enzymes in critical biochemical processes and also plays a structural role in numerous proteins. Zinc transporter ZIP4 (ZIP4) is a zinc importer required for dietary zinc uptake in the intestine and other cell types. Studies in cultured cells have reported that zinc stimulates the endocytosis of plasma membrane-localized ZIP4 protein, resulting in reduced cellular zinc uptake. Thus, zinc-regulated trafficking of ZIP4 is a key means for regulating cellular zinc homeostasis, but the underlying mechanisms are not well understood. In this study, we used mutational analysis, immunoblotting, HEK293 cells, and immunofluorescence microscopy to identify a histidine-containing motif (398HTH) in the first extracellular loop that is required for high sensitivity to low zinc concentrations in a zinc-induced endocytic response of mouse ZIP4 (mZIP4). Moreover, using synthetic peptides with selective substitutions and truncated mZIP4 variants, we provide evidence that histidine residues in this motif coordinate a zinc ion in mZIP4 homodimers at the plasma membrane. These findings suggest that 398HTH is an important zinc-sensing motif for eliciting high-affinity zinc-stimulated endocytosis of mZIP4 and provide insight into cellular mechanisms for regulating cellular zinc homeostasis in mammalian cells.
Collapse
Affiliation(s)
- Haarin Chun
- From the Department of Animal and Avian Sciences, and
| | | | - Chul-Jin Lee
- the Unit on Structural and Chemical Biology of Membrane Proteins, NICHD, National Institutes of Health, Bethesda, Maryland 20892
| | - H Jerome Coyne
- the Departments of Medicine and Biochemistry, University of Utah Health Sciences Center, Salt Lake City, Utah 84132, and
| | - Dennis R Winge
- the Departments of Medicine and Biochemistry, University of Utah Health Sciences Center, Salt Lake City, Utah 84132, and
| | - Byung-Eun Kim
- From the Department of Animal and Avian Sciences, and .,Biological Sciences Graduate Program, University of Maryland, College Park, Maryland 20742
| | - Michael J Petris
- the Departments of Biochemistry and .,Nutrition and Exercise Physiology, and.,Christopher S. Bond Life Science Center, University of Missouri, Columbia, Missouri 65211
| |
Collapse
|
50
|
The Role of Zinc and Zinc Homeostasis in Macrophage Function. J Immunol Res 2018; 2018:6872621. [PMID: 30622979 PMCID: PMC6304900 DOI: 10.1155/2018/6872621] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/31/2018] [Accepted: 11/06/2018] [Indexed: 01/12/2023] Open
Abstract
Zinc has long been recognized as an essential trace element, playing roles in the growth and development of all living organisms. In recent decades, zinc homeostasis was also found to be important for the innate immune system, especially for maintaining the function of macrophages. It is now generally accepted that dysregulated zinc homeostasis in macrophages causes impaired phagocytosis and an abnormal inflammatory response. However, many questions remain with respect to the mechanisms that underlie these processes, particularly at the cellular and molecular levels. Here, we review our current understanding of the roles that zinc and zinc transporters play in regulating macrophage function.
Collapse
|