1
|
Morita K, Hatano A, Kokaji T, Sugimoto H, Tsuchiya T, Ozaki H, Egami R, Li D, Terakawa A, Ohno S, Inoue H, Inaba Y, Suzuki Y, Matsumoto M, Takahashi M, Izumi Y, Bamba T, Hirayama A, Soga T, Kuroda S. Structural robustness and temporal vulnerability of the starvation-responsive metabolic network in healthy and obese mouse liver. Sci Signal 2025; 18:eads2547. [PMID: 40261956 DOI: 10.1126/scisignal.ads2547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/13/2024] [Accepted: 04/02/2025] [Indexed: 04/24/2025]
Abstract
Adaptation to starvation is a multimolecular and temporally ordered process. We sought to elucidate how the healthy liver regulates various molecules in a temporally ordered manner during starvation and how obesity disrupts this process. We used multiomic data collected from the plasma and livers of wild-type and leptin-deficient obese (ob/ob) mice at multiple time points during starvation to construct a starvation-responsive metabolic network that included responsive molecules and their regulatory relationships. Analysis of the network structure showed that in wild-type mice, the key molecules for energy homeostasis, ATP and AMP, acted as hub molecules to regulate various metabolic reactions in the network. Although neither ATP nor AMP was responsive to starvation in ob/ob mice, the structural properties of the network were maintained. In wild-type mice, the molecules in the network were temporally ordered through metabolic processes coordinated by hub molecules, including ATP and AMP, and were positively or negatively coregulated. By contrast, both temporal order and coregulation were disrupted in ob/ob mice. These results suggest that the metabolic network that responds to starvation was structurally robust but temporally disrupted by the obesity-associated loss of responsiveness of the hub molecules. In addition, we propose how obesity alters the response to intermittent fasting.
Collapse
Affiliation(s)
- Keigo Morita
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
- Molecular Genetics Research Laboratory, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Atsushi Hatano
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
- Department of Omics and Systems Biology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
- Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045 Japan
| | - Toshiya Kokaji
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
- Data Science Center, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Hikaru Sugimoto
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | - Takaho Tsuchiya
- Bioinformatics Laboratory, Institute of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
- Center for Artificial Intelligence Research, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Haruka Ozaki
- Bioinformatics Laboratory, Institute of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
- Center for Artificial Intelligence Research, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Riku Egami
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba 277-8562, Japan
| | - Dongzi Li
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Akira Terakawa
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Satoshi Ohno
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
- Molecular Genetics Research Laboratory, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
- Department of AI Systems Medicine, M&D Data Science Center, Institute of Integrated Research, Institute of Science Tokyo, Tokyo 113-8510, Japan
| | - Hiroshi Inoue
- Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Ishikawa 920-8641, Japan
| | - Yuka Inaba
- Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Ishikawa 920-8641, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba 277-8562, Japan
| | - Masaki Matsumoto
- Department of Omics and Systems Biology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Masatomo Takahashi
- Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Takeshi Bamba
- Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, Yamagata 997-0052, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Yamagata 997-0052, Japan
- Human Biology-Microbiome-Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo 108-8345, Japan
| | - Shinya Kuroda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
- Molecular Genetics Research Laboratory, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba 277-8562, Japan
| |
Collapse
|
2
|
McCall CP, Mancini MC, Staszkiewicz J, Mashek DG, Heden TD. Heterozygous GAA knockout is nonconsequential on metabolism and the spatial liver transcriptome in high-fat diet-induced obese and prediabetic mice. Physiol Rep 2025; 13:e70276. [PMID: 40108792 PMCID: PMC11922812 DOI: 10.14814/phy2.70276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/06/2025] [Accepted: 03/06/2025] [Indexed: 03/22/2025] Open
Abstract
Glycophagy is the autophagic degradation of glycogen by the enzyme acid alpha-glucosidase (GAA). Although GAA inhibitors improve metabolic health by inhibiting GAA in the intestine, it is not clear if GAA inhibition in peripheral tissues such as the liver is metabolically beneficial. This study tested if the heterozygous knockout of GAA (HetKO-GAA) alters liver metabolism and metabolic health in mice fed a low-fat diet or a high-fat diet to induce obesity. HetKO-GAA mice fed either diet did not have altered body weight, glucose tolerance, insulin action, energy expenditure, substrate metabolism, liver glucose output, or liver triglycerides compared to control wildtype mice. A liver spatial transcriptomics analysis revealed that high-fat diet feeding reduced the gene abundance of predominantly metabolic pathways in both periportal and perivenous hepatocytes, and uniquely reduced ribosome gene abundance in perivenous hepatocytes. HetKO-GAA mice did not have significantly altered transcriptomes in periportal or perivenous hepatocytes compared to wildtype mice. In conclusion, heterozygous GAA knockout is nonconsequential on metabolism and metabolic health in high-fat diet induced obesity. Spatial transcriptomics revealed alterations in the transcriptome of periportal and perivenous hepatocytes from high-fat diet induced obese mice, highlighting novel targets that could be exploited to improve metabolic health in obesity.
Collapse
Affiliation(s)
| | | | | | - Douglas G. Mashek
- Department of Biochemistry, Molecular Biology, and BiophysicsUniversity of MinnesotaSaint PaulMinnesotaUSA
- Department of Medicine, Division of Diabetes, Endocrinology, and MetabolismUniversity of MinnesotaSaint PaulMinnesotaUSA
| | | |
Collapse
|
3
|
Yadav AK, MacNeill JJ, Krylov A, Ashrafi N, Mimi RA, Saxena R, Liu S, Graham SF, Wan J, Morral N. Sex- and age-associated factors drive the pathophysiology of MASLD. Hepatol Commun 2024; 8:e0523. [PMID: 39185904 PMCID: PMC11357696 DOI: 10.1097/hc9.0000000000000523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/08/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is strongly associated with obesity. Sex and age affect MASLD prevalence and pathophysiology. The use of animal models fed Western-style diets is vital for investigating the molecular mechanisms contributing to metabolic dysregulation and for facilitating novel drug target identification. However, the sex-associated and age-associated mechanisms underlying the pathophysiology remain poorly understood. This knowledge gap limits the development of personalized sex-specific and age-specific drug treatments. METHODS Young (7 wk) and aged (52 wk) male and female mice were fed a high-fat diet (HFD) or low-fat diet. Liver metabolome (>600 molecules) and transcriptome profiles were analyzed. RESULTS Male and female mice fed an HFD developed obesity, glucose intolerance, and hepatic steatosis. However, fasting blood glucose, insulin, and serum alanine aminotransferase levels were higher in males fed an HFD, indicating a more severe metabolic disease. In addition, males showed significant increases in liver diacylglycerides and glycosylceramides (known mediators of insulin resistance and fibrosis), and more changes in the transcriptome: extracellular matrix organization and proinflammatory genes were elevated only in males. In contrast, no major increase in damaging lipid classes was observed in females fed an HFD. However, aging affected the liver to a greater extent in females. Acylcarnitine levels were significantly reduced, suggestive of changes in fatty acid oxidation, and broad changes in the transcriptome were observed, including reduced oxidative stress response gene expression and alterations in lipid partitioning genes. CONCLUSIONS Here, we show distinct responses to an HFD between males and females. Our study underscores the need for using both sexes in drug target identification studies, and characterizing the molecular mechanisms contributing to the MASLD pathophysiology in aging animals.
Collapse
Affiliation(s)
- Ajay K. Yadav
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Justin J. MacNeill
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Aleksei Krylov
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nadia Ashrafi
- Metabolomics Department, Corewell Health Research Institute, Royal Oak, Michigan, USA
- Corewell Health William Beaumont University Hospital, Royal Oak, Michigan, USA
| | - Romana Ashrafi Mimi
- Metabolomics Department, Corewell Health Research Institute, Royal Oak, Michigan, USA
- Corewell Health William Beaumont University Hospital, Royal Oak, Michigan, USA
| | - Romil Saxena
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Stewart F. Graham
- Metabolomics Department, Corewell Health Research Institute, Royal Oak, Michigan, USA
- Corewell Health William Beaumont University Hospital, Royal Oak, Michigan, USA
- Oakland University-William Beaumont School of Medicine, Rochester, Michigan USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Núria Morral
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
4
|
Bai Y, Morita K, Kokaji T, Hatano A, Ohno S, Egami R, Pan Y, Li D, Yugi K, Uematsu S, Inoue H, Inaba Y, Suzuki Y, Matsumoto M, Takahashi M, Izumi Y, Bamba T, Hirayama A, Soga T, Kuroda S. Trans-omic analysis reveals opposite metabolic dysregulation between feeding and fasting in liver associated with obesity. iScience 2024; 27:109121. [PMID: 38524370 PMCID: PMC10960062 DOI: 10.1016/j.isci.2024.109121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/03/2023] [Accepted: 01/31/2024] [Indexed: 03/26/2024] Open
Abstract
Dysregulation of liver metabolism associated with obesity during feeding and fasting leads to the breakdown of metabolic homeostasis. However, the underlying mechanism remains unknown. Here, we measured multi-omics data in the liver of wild-type and leptin-deficient obese (ob/ob) mice at ad libitum feeding and constructed a differential regulatory trans-omic network of metabolic reactions. We compared the trans-omic network at feeding with that at 16 h fasting constructed in our previous study. Intermediate metabolites in glycolytic and nucleotide metabolism decreased in ob/ob mice at feeding but increased at fasting. Allosteric regulation reversely shifted between feeding and fasting, generally showing activation at feeding while inhibition at fasting in ob/ob mice. Transcriptional regulation was similar between feeding and fasting, generally showing inhibiting transcription factor regulations and activating enzyme protein regulations in ob/ob mice. The opposite metabolic dysregulation between feeding and fasting characterizes breakdown of metabolic homeostasis associated with obesity.
Collapse
Affiliation(s)
- Yunfan Bai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keigo Morita
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toshiya Kokaji
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Data Science Center, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, Japan
| | - Atsushi Hatano
- Department of Omics and Systems Biology, Graduate School of Medical and Dental Sciences, Niigata University, 757 Ichibancho, Asahimachi-dori, Chuo-ku, Niigata City, Niigata 951-8510, Japan
| | - Satoshi Ohno
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Molecular Genetics Research Laboratory, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
- Department of AI Systems Medicine, M&D Data Science Center, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Riku Egami
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Yifei Pan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Dongzi Li
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Katsuyuki Yugi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Institute for Advanced Biosciences, Keio University, Fujisawa 252-8520, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Saori Uematsu
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Hiroshi Inoue
- Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8641, Japan
| | - Yuka Inaba
- Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8641, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Masaki Matsumoto
- Department of Omics and Systems Biology, Graduate School of Medical and Dental Sciences, Niigata University, 757 Ichibancho, Asahimachi-dori, Chuo-ku, Niigata City, Niigata 951-8510, Japan
| | - Masatomo Takahashi
- Division of Metabolomics/Mass Spectrometry Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics/Mass Spectrometry Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Takeshi Bamba
- Division of Metabolomics/Mass Spectrometry Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Shinya Kuroda
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
5
|
Masson HO, Samoudi M, Robinson CM, Kuo CC, Weiss L, Shams Ud Doha K, Campos A, Tejwani V, Dahodwala H, Menard P, Voldborg BG, Robasky B, Sharfstein ST, Lewis NE. Inferring secretory and metabolic pathway activity from omic data with secCellFie. Metab Eng 2024; 81:273-285. [PMID: 38145748 PMCID: PMC11177574 DOI: 10.1016/j.ymben.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 11/29/2023] [Accepted: 12/14/2023] [Indexed: 12/27/2023]
Abstract
Understanding protein secretion has considerable importance in biotechnology and important implications in a broad range of normal and pathological conditions including development, immunology, and tissue function. While great progress has been made in studying individual proteins in the secretory pathway, measuring and quantifying mechanistic changes in the pathway's activity remains challenging due to the complexity of the biomolecular systems involved. Systems biology has begun to address this issue with the development of algorithmic tools for analyzing biological pathways; however most of these tools remain accessible only to experts in systems biology with extensive computational experience. Here, we expand upon the user-friendly CellFie tool which quantifies metabolic activity from omic data to include secretory pathway functions, allowing any scientist to infer properties of protein secretion from omic data. We demonstrate how the secretory expansion of CellFie (secCellFie) can help predict metabolic and secretory functions across diverse immune cells, hepatokine secretion in a cell model of NAFLD, and antibody production in Chinese Hamster Ovary cells.
Collapse
Affiliation(s)
- Helen O Masson
- Department of Bioengineering, UC San Diego, La Jolla, CA, USA
| | | | | | - Chih-Chung Kuo
- Department of Bioengineering, UC San Diego, La Jolla, CA, USA
| | - Linus Weiss
- Department of Biochemistry, Eberhard Karls University of Tübingen, Germany
| | - Km Shams Ud Doha
- Proteomics Core, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Alex Campos
- Proteomics Core, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Vijay Tejwani
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY, USA
| | - Hussain Dahodwala
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY, USA
| | - Patrice Menard
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Bjorn G Voldborg
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark; National Biologics Facility, Technical University of Denmark, Lyngby, Denmark
| | | | - Susan T Sharfstein
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY, USA
| | - Nathan E Lewis
- Department of Bioengineering, UC San Diego, La Jolla, CA, USA; Department of Pediatrics, UC San Diego, La Jolla, CA, USA.
| |
Collapse
|
6
|
Kakiyama G, Rodriguez-Agudo D, Pandak WM. Mitochondrial Cholesterol Metabolites in a Bile Acid Synthetic Pathway Drive Nonalcoholic Fatty Liver Disease: A Revised "Two-Hit" Hypothesis. Cells 2023; 12:1434. [PMID: 37408268 PMCID: PMC10217489 DOI: 10.3390/cells12101434] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 07/07/2023] Open
Abstract
The rising prevalence of nonalcoholic fatty liver disease (NAFLD)-related cirrhosis highlights the need for a better understanding of the molecular mechanisms responsible for driving the transition of hepatic steatosis (fatty liver; NAFL) to steatohepatitis (NASH) and fibrosis/cirrhosis. Obesity-related insulin resistance (IR) is a well-known hallmark of early NAFLD progression, yet the mechanism linking aberrant insulin signaling to hepatocyte inflammation has remained unclear. Recently, as a function of more distinctly defining the regulation of mechanistic pathways, hepatocyte toxicity as mediated by hepatic free cholesterol and its metabolites has emerged as fundamental to the subsequent necroinflammation/fibrosis characteristics of NASH. More specifically, aberrant hepatocyte insulin signaling, as found with IR, leads to dysregulation in bile acid biosynthetic pathways with the subsequent intracellular accumulation of mitochondrial CYP27A1-derived cholesterol metabolites, (25R)26-hydroxycholesterol and 3β-Hydroxy-5-cholesten-(25R)26-oic acid, which appear to be responsible for driving hepatocyte toxicity. These findings bring forth a "two-hit" interpretation as to how NAFL progresses to NAFLD: abnormal hepatocyte insulin signaling, as occurs with IR, develops as a "first hit" that sequentially drives the accumulation of toxic CYP27A1-driven cholesterol metabolites as the "second hit". In the following review, we examine the mechanistic pathway by which mitochondria-derived cholesterol metabolites drive the development of NASH. Insights into mechanistic approaches for effective NASH intervention are provided.
Collapse
Affiliation(s)
- Genta Kakiyama
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA; (D.R.-A.); (W.M.P.)
- Research Services, Central Virginia Veterans Affairs Healthcare System, Richmond, VA 23249, USA
| | - Daniel Rodriguez-Agudo
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA; (D.R.-A.); (W.M.P.)
- Research Services, Central Virginia Veterans Affairs Healthcare System, Richmond, VA 23249, USA
| | - William M. Pandak
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA; (D.R.-A.); (W.M.P.)
- Research Services, Central Virginia Veterans Affairs Healthcare System, Richmond, VA 23249, USA
| |
Collapse
|
7
|
Masson HO, Samoudi M, Robinson CM, Kuo CC, Weiss L, Doha KSU, Campos A, Tejwani V, Dahodwala H, Menard P, Voldborg BG, Sharfstein ST, Lewis NE. Inferring secretory and metabolic pathway activity from omic data with secCellFie. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.04.539316. [PMID: 37205389 PMCID: PMC10187314 DOI: 10.1101/2023.05.04.539316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Understanding protein secretion has considerable importance in the biotechnology industry and important implications in a broad range of normal and pathological conditions including development, immunology, and tissue function. While great progress has been made in studying individual proteins in the secretory pathway, measuring and quantifying mechanistic changes in the pathway's activity remains challenging due to the complexity of the biomolecular systems involved. Systems biology has begun to address this issue with the development of algorithmic tools for analyzing biological pathways; however most of these tools remain accessible only to experts in systems biology with extensive computational experience. Here, we expand upon the user-friendly CellFie tool which quantifies metabolic activity from omic data to include secretory pathway functions, allowing any scientist to infer protein secretion capabilities from omic data. We demonstrate how the secretory expansion of CellFie (secCellFie) can be used to predict metabolic and secretory functions across diverse immune cells, hepatokine secretion in a cell model of NAFLD, and antibody production in Chinese Hamster Ovary cells.
Collapse
Affiliation(s)
- Helen O. Masson
- Department of Bioengineering, UC San Diego, La Jolla, CA, USA
| | | | | | - Chih-Chung Kuo
- Department of Bioengineering, UC San Diego, La Jolla, CA, USA
| | - Linus Weiss
- Department of Biochemistry, Eberhard Karls University of Tübingen, Germany
| | - Km Shams Ud Doha
- Proteomics Core, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Alex Campos
- Proteomics Core, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Vijay Tejwani
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY, USA
| | - Hussain Dahodwala
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY, USA
- Present address: National Institute for Innovation in Manufacturing Biopharmaceuticals, Newark, Delaware, USA
| | - Patrice Menard
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Bjorn G. Voldborg
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- National Biologics Facility, Technical University of Denmark, Lyngby, Denmark
| | - Susan T. Sharfstein
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY, USA
| | - Nathan E. Lewis
- Department of Bioengineering, UC San Diego, La Jolla, CA, USA
- Department of Pediatrics, UC San Diego, La Jolla, CA, USA
| |
Collapse
|
8
|
Minowa K, Rodriguez-Agudo D, Suzuki M, Muto Y, Hirai S, Wang Y, Su L, Zhou H, Chen Q, Lesnefsky EJ, Mitamura K, Ikegawa S, Takei H, Nittono H, Fuchs M, Pandak WM, Kakiyama G. Insulin dysregulation drives mitochondrial cholesterol metabolite accumulation: initiating hepatic toxicity in nonalcoholic fatty liver disease. J Lipid Res 2023; 64:100363. [PMID: 36966904 PMCID: PMC10182330 DOI: 10.1016/j.jlr.2023.100363] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/09/2023] [Accepted: 03/21/2023] [Indexed: 04/07/2023] Open
Abstract
CYP7B1 catalyzes mitochondria-derived cholesterol metabolites such as (25R)26-hydroxycholesterol (26HC) and 3β-hydroxy-5-cholesten-(25R)26-oic acid (3βHCA) and facilitates their conversion to bile acids. Disruption of 26HC/3βHCA metabolism in the absence of CYP7B1 leads to neonatal liver failure. Disrupted 26HC/3βHCA metabolism with reduced hepatic CYP7B1 expression is also found in nonalcoholic steatohepatitis (NASH). The current study aimed to understand the regulatory mechanism of mitochondrial cholesterol metabolites and their contribution to onset of NASH. We used Cyp7b1-/- mice fed a normal diet (ND), Western diet (WD), or high-cholesterol diet (HCD). Serum and liver cholesterol metabolites as well as hepatic gene expressions were comprehensively analyzed. Interestingly, 26HC/3βHCA levels were maintained at basal levels in ND-fed Cyp7b1-/- mice livers by the reduced cholesterol transport to mitochondria, and the upregulated glucuronidation and sulfation. However, WD-fed Cyp7b1-/- mice developed insulin resistance (IR) with subsequent 26HC/3βHCA accumulation due to overwhelmed glucuronidation/sulfation with facilitated mitochondrial cholesterol transport. Meanwhile, Cyp7b1-/- mice fed an HCD did not develop IR or subsequent evidence of liver toxicity. HCD-fed mice livers revealed marked cholesterol accumulation but no 26HC/3βHCA accumulation. The results suggest 26HC/3βHCA-induced cytotoxicity occurs when increased cholesterol transport into mitochondria is coupled to decreased 26HC/3βHCA metabolism driven with IR. Supportive evidence for cholesterol metabolite-driven hepatotoxicity is provided in a diet-induced nonalcoholic fatty liver mouse model and by human specimen analyses. This study uncovers an insulin-mediated regulatory pathway that drives the formation and accumulation of toxic cholesterol metabolites within the hepatocyte mitochondria, mechanistically connecting IR to cholesterol metabolite-induced hepatocyte toxicity which drives nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Kei Minowa
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Department of Pediatrics, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Daniel Rodriguez-Agudo
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Research Services, Central Virginia Veterans Affairs Healthcare System, Richmond, VA, USA
| | - Mitsuyoshi Suzuki
- Department of Pediatrics, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Yamato Muto
- Department of Pediatrics, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Saeko Hirai
- Department of Pediatrics, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Yaping Wang
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Research Services, Central Virginia Veterans Affairs Healthcare System, Richmond, VA, USA
| | - Lianyong Su
- Research Services, Central Virginia Veterans Affairs Healthcare System, Richmond, VA, USA; Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Huiping Zhou
- Research Services, Central Virginia Veterans Affairs Healthcare System, Richmond, VA, USA; Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Qun Chen
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Research Services, Central Virginia Veterans Affairs Healthcare System, Richmond, VA, USA
| | - Edward J Lesnefsky
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Research Services, Central Virginia Veterans Affairs Healthcare System, Richmond, VA, USA
| | - Kuniko Mitamura
- Department of Pharmaceutical Sciences, Kindai University, Osaka, Japan
| | - Shigeo Ikegawa
- Division of Research and Development, Genmaikoso Co. Ltd., Sapporo, Hokkaido, Japan
| | - Hajime Takei
- Junshin Clinic Bile Acid Institute, Tokyo, Japan
| | | | - Michael Fuchs
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Research Services, Central Virginia Veterans Affairs Healthcare System, Richmond, VA, USA
| | - William M Pandak
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Research Services, Central Virginia Veterans Affairs Healthcare System, Richmond, VA, USA; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Genta Kakiyama
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Research Services, Central Virginia Veterans Affairs Healthcare System, Richmond, VA, USA.
| |
Collapse
|
9
|
Translational Control of Metabolism and Cell Cycle Progression in Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:ijms24054885. [PMID: 36902316 PMCID: PMC10002961 DOI: 10.3390/ijms24054885] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The liver is a metabolic hub characterized by high levels of protein synthesis. Eukaryotic initiation factors, eIFs, control the first phase of translation, initiation. Initiation factors are essential for tumor progression and, since they regulate the translation of specific mRNAs downstream of oncogenic signaling cascades, may be druggable. In this review, we address the issue of whether the massive translational machinery of liver cells contributes to liver pathology and to the progression of hepatocellular carcinoma (HCC); it represents a valuable biomarker and druggable target. First, we observe that the common markers of HCC cells, such as phosphorylated ribosomal protein S6, belong to the ribosomal and translational apparatus. This fact is in agreement with observations that demonstrate a huge amplification of the ribosomal machinery during the progression to HCC. Some translation factors, such as eIF4E and eIF6, are then harnessed by oncogenic signaling. In particular, the action of eIF4E and eIF6 is particularly important in HCC when driven by fatty liver pathologies. Indeed, both eIF4E and eIF6 amplify at the translational level the production and accumulation of fatty acids. As it is evident that abnormal levels of these factors drive cancer, we discuss their therapeutic value.
Collapse
|
10
|
Arruda AP, Parlakgül G. Endoplasmic Reticulum Architecture and Inter-Organelle Communication in Metabolic Health and Disease. Cold Spring Harb Perspect Biol 2023; 15:a041261. [PMID: 35940911 PMCID: PMC9899651 DOI: 10.1101/cshperspect.a041261] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The endoplasmic reticulum (ER) is a key organelle involved in the regulation of lipid and glucose metabolism, proteostasis, Ca2+ signaling, and detoxification. The structural organization of the ER is very dynamic and complex, with distinct subdomains such as the nuclear envelope and the peripheral ER organized into ER sheets and tubules. ER also forms physical contact sites with all other cellular organelles and with the plasma membrane. Both form and function of the ER are highly adaptive, with a potent capacity to respond to transient changes in environmental cues such as nutritional fluctuations. However, under obesity-induced chronic stress, the ER fails to adapt, leading to ER dysfunction and the development of metabolic pathologies such as insulin resistance and fatty liver disease. Here, we discuss how the remodeling of ER structure and contact sites with other organelles results in diversification of metabolic function and how perturbations to this structural flexibility by chronic overnutrition contribute to ER dysfunction and metabolic pathologies in obesity.
Collapse
Affiliation(s)
- Ana Paula Arruda
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, California 94720, USA
- Chan Zuckerberg Biohub, San Francisco, California 94158, USA
| | - Güneş Parlakgül
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, California 94720, USA
- Sabri Ülker Center for Metabolic Research and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| |
Collapse
|
11
|
Ngo MD, Bartlett S, Bielefeldt-Ohmann H, Foo CX, Sinha R, Arachige BJ, Reed S, Mandrup-Poulsen T, Rosenkilde MM, Ronacher K. A blunted GPR183/oxysterol axis during dysglycemia results in delayed recruitment of macrophages to the lung during M. tuberculosis infection. J Infect Dis 2022; 225:2219-2228. [PMID: 35303091 PMCID: PMC9200159 DOI: 10.1093/infdis/jiac102] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/29/2022] [Indexed: 11/16/2022] Open
Abstract
Background We previously reported that reduced GPR183 expression in blood from tuberculosis (TB) patients with diabetes is associated with more severe TB. Methods To further elucidate the role of GPR183 and its oxysterol ligands in the lung, we studied dysglycemic mice infected with Mycobacterium tuberculosis (Mtb). Results We found upregulation of the oxysterol-producing enzymes CH25H and CYP7B1 and increased concentrations of 25-hydroxycholesterol upon Mtb infection in the lungs of mice. This was associated with increased expression of GPR183 indicative of oxysterol-mediated recruitment of GPR183-expressing immune cells to the lung. CYP7B1 was predominantly expressed by macrophages in TB granulomas. CYP7B1 expression was significantly blunted in lungs from dysglycemic animals, which coincided with delayed macrophage infiltration. GPR183-deficient mice similarly had reduced macrophage recruitment during early infection. Conclusions Taken together, we demonstrate a requirement of the GPR183/oxysterol axis for positioning of macrophages to the site of infection and add an explanation to more severe TB in diabetes patients.
Collapse
Affiliation(s)
- Minh Dao Ngo
- Translational Research Institute, Mater Research Institute, The University of Queensland, Brisbane, Australia
| | - Stacey Bartlett
- Translational Research Institute, Mater Research Institute, The University of Queensland, Brisbane, Australia
| | - Helle Bielefeldt-Ohmann
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.,Australian Infectious Diseases Research Centre - The University of Queensland, Brisbane, Australia
| | - Cheng Xiang Foo
- Translational Research Institute, Mater Research Institute, The University of Queensland, Brisbane, Australia
| | - Roma Sinha
- Translational Research Institute, Mater Research Institute, The University of Queensland, Brisbane, Australia
| | | | - Sarah Reed
- Centre for Clinical Research, The Univeristy of Queensland, Brisbane, Australia
| | | | | | - Katharina Ronacher
- Translational Research Institute, Mater Research Institute, The University of Queensland, Brisbane, Australia.,Australian Infectious Diseases Research Centre - The University of Queensland, Brisbane, Australia
| |
Collapse
|
12
|
Kim TH, Hong DG, Yang YM. Hepatokines and Non-Alcoholic Fatty Liver Disease: Linking Liver Pathophysiology to Metabolism. Biomedicines 2021; 9:biomedicines9121903. [PMID: 34944728 PMCID: PMC8698516 DOI: 10.3390/biomedicines9121903] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/12/2021] [Accepted: 12/12/2021] [Indexed: 12/16/2022] Open
Abstract
The liver plays a key role in maintaining energy homeostasis by sensing and responding to changes in nutrient status under various metabolic conditions. Recently highlighted as a major endocrine organ, the contribution of the liver to systemic glucose and lipid metabolism is primarily attributed to signaling crosstalk between multiple organs via hepatic hormones, cytokines, and hepatokines. Hepatokines are hormone-like proteins secreted by hepatocytes, and a number of these have been associated with extra-hepatic metabolic regulation. Mounting evidence has revealed that the secretory profiles of hepatokines are significantly altered in non-alcoholic fatty liver disease (NAFLD), the most common hepatic manifestation, which frequently precedes other metabolic disorders, including insulin resistance and type 2 diabetes. Therefore, deciphering the mechanism of hepatokine-mediated inter-organ communication is essential for understanding the complex metabolic network between tissues, as well as for the identification of novel diagnostic and/or therapeutic targets in metabolic disease. In this review, we describe the hepatokine-driven inter-organ crosstalk in the context of liver pathophysiology, with a particular focus on NAFLD progression. Moreover, we summarize key hepatokines and their molecular mechanisms of metabolic control in non-hepatic tissues, discussing their potential as novel biomarkers and therapeutic targets in the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Tae Hyun Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Korea;
| | - Dong-Gyun Hong
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Korea;
- KNU Researcher Training Program for Developing Anti-Viral Innovative Drugs, Kangwon National University, Chuncheon 24341, Korea
| | - Yoon Mee Yang
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Korea;
- KNU Researcher Training Program for Developing Anti-Viral Innovative Drugs, Kangwon National University, Chuncheon 24341, Korea
- Correspondence: ; Tel.: +82-33-250-6909
| |
Collapse
|
13
|
Tsai YT, Li Y, Ryu J, Su PY, Cheng CH, Wu WH, Li YS, Quinn PMJ, Leong KW, Tsang SH. Impaired cholesterol efflux in retinal pigment epithelium of individuals with juvenile macular degeneration. Am J Hum Genet 2021; 108:903-918. [PMID: 33909993 PMCID: PMC8206198 DOI: 10.1016/j.ajhg.2021.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Macular degeneration (MD) is characterized by the progressive deterioration of the macula and represents one of the most prevalent causes of blindness worldwide. Abnormal intracellular accumulation of lipid droplets and pericellular deposits of lipid-rich material in the retinal pigment epithelium (RPE) called drusen are clinical hallmarks of different forms of MD including Doyne honeycomb retinal dystrophy (DHRD) and age-related MD (AMD). However, the appropriate molecular therapeutic target underlying these disorder phenotypes remains elusive. Here, we address this knowledge gap by comparing the proteomic profiles of induced pluripotent stem cell (iPSC)-derived RPEs (iRPE) from individuals with DHRD and their isogenic controls. Our analysis and follow-up studies elucidated the mechanism of lipid accumulation in DHRD iRPE cells. Specifically, we detected significant downregulation of carboxylesterase 1 (CES1), an enzyme that converts cholesteryl ester to free cholesterol, an indispensable process in cholesterol export. CES1 knockdown or overexpression of EFEMP1R345W, a variant of EGF-containing fibulin extracellular matrix protein 1 that is associated with DHRD and attenuated cholesterol efflux and led to lipid droplet accumulation. In iRPE cells, we also found that EFEMP1R345W has a hyper-inhibitory effect on epidermal growth factor receptor (EGFR) signaling when compared to EFEMP1WT and may suppress CES1 expression via the downregulation of transcription factor SP1. Taken together, these results highlight the homeostatic role of cholesterol efflux in iRPE cells and identify CES1 as a mediator of cholesterol efflux in MD.
Collapse
Key Words
- age-related macular degeneration, Doyne honeycomb destrophy, DHRD, cholesterol efflux, drusen, RPE, CRISPR, isogenic, EGFR signaling, unfolded protein response, lipid accumulation
Collapse
Affiliation(s)
- Yi-Ting Tsai
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Yao Li
- Jonas Children's Vision Care and the Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA; Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY 10032, USA
| | - Joseph Ryu
- Jonas Children's Vision Care and the Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA; Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY 10032, USA
| | - Pei-Yin Su
- Jonas Children's Vision Care and the Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA; Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY 10032, USA
| | - Chia-Hua Cheng
- Jonas Children's Vision Care and the Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA; Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY 10032, USA
| | - Wen-Hsuan Wu
- Jonas Children's Vision Care and the Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA; Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY 10032, USA
| | - Yong-Shi Li
- Jonas Children's Vision Care and the Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA; Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY 10032, USA
| | - Peter M J Quinn
- Jonas Children's Vision Care and the Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA; Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY 10032, USA
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Stephen H Tsang
- Jonas Children's Vision Care and the Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA; Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY 10032, USA; Department of Pathology & Cell Biology, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
14
|
Hepatic DNAJB9 Drives Anabolic Biasing to Reduce Steatosis and Obesity. Cell Rep 2021; 30:1835-1847.e9. [PMID: 32049014 DOI: 10.1016/j.celrep.2020.01.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/23/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022] Open
Abstract
Nutrients stimulate the anabolic synthesis of proteins and lipids, but selective insulin resistance in obesity biases the anabolic program toward lipogenesis. Here, we report the identification of a DNAJB9-driven program that favors protein synthesis and energy production over lipid accumulation. We show there are two pools of DNAJB9 cochaperone. DNAJB9 in the ER lumen promotes the degradation of the lipogenic transcription factor SREBP1c through ERAD, whereas its counterpart on the ER membrane promotes the assembly of mTORC2 in the cytosol and stimulates the synthesis of proteins and ATP. The expression of Dnajb9 is induced by nutrients and downregulated in the obese mouse liver. Restoration of hepatic DNAJB9 expression effectively improves insulin sensitivity, restores protein synthesis, and suppresses food intake, accompanied by reduced hepatic steatosis and adiposity in multiple mouse models of obesity. Therefore, targeting the anabolic balance may provide a unique opportunity to tackle obesity and diabetes.
Collapse
|
15
|
Triose Kinase Controls the Lipogenic Potential of Fructose and Dietary Tolerance. Cell Metab 2020; 32:605-618.e7. [PMID: 32818435 DOI: 10.1016/j.cmet.2020.07.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 04/16/2020] [Accepted: 07/28/2020] [Indexed: 01/01/2023]
Abstract
The surge in fructose consumption is a major factor behind the rapid rise of nonalcoholic fatty liver disease in modern society. Through flux and genetic analyses, we demonstrate that fructose is catabolized at a much higher rate than glucose, and triose kinase (TK) couples fructolysis with lipogenesis metabolically and transcriptionally. In the absence of TK, fructose oxidation is accelerated through the activation of aldehyde dehydrogenase (ALDH) and serine biosynthesis, accompanied by increased oxidative stress and fructose aversion. TK is also required by the endogenous fructolysis pathway to drive lipogenesis and hepatic triglyceride accumulation under high-fat diet and leptin-deficient conditions. Intriguingly, a nonsynonymous TK allele (rs2260655_A) segregated during human migration out of Africa behaves as TK null for its inability to rescue fructose toxicity and increase hepatic triglyceride accumulation. Therefore, we posit TK as a metabolic switch controlling the lipogenic potential of fructose and its dietary tolerance.
Collapse
|
16
|
Todoric J, Di Caro G, Reibe S, Henstridge DC, Green CR, Vrbanac A, Ceteci F, Conche C, McNulty R, Shalapour S, Taniguchi K, Meikle PJ, Watrous JD, Moranchel R, Najhawan M, Jain M, Liu X, Kisseleva T, Diaz-Meco MT, Moscat J, Knight R, Greten FR, Lau LF, Metallo CM, Febbraio MA, Karin M. Fructose stimulated de novo lipogenesis is promoted by inflammation. Nat Metab 2020; 2:1034-1045. [PMID: 32839596 PMCID: PMC8018782 DOI: 10.1038/s42255-020-0261-2] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 07/13/2020] [Indexed: 12/11/2022]
Abstract
Benign hepatosteatosis, affected by lipid uptake, de novo lipogenesis and fatty acid (FA) oxidation, progresses to non-alcoholic steatohepatitis (NASH) on stress and inflammation. A key macronutrient proposed to increase hepatosteatosis and NASH risk is fructose. Excessive intake of fructose causes intestinal-barrier deterioration and endotoxaemia. However, how fructose triggers these alterations and their roles in hepatosteatosis and NASH pathogenesis remain unknown. Here we show, using mice, that microbiota-derived Toll-like receptor (TLR) agonists promote hepatosteatosis without affecting fructose-1-phosphate (F1P) and cytosolic acetyl-CoA. Activation of mucosal-regenerative gp130 signalling, administration of the YAP-induced matricellular protein CCN1 or expression of the antimicrobial peptide Reg3b (beta) peptide counteract fructose-induced barrier deterioration, which depends on endoplasmic-reticulum stress and subsequent endotoxaemia. Endotoxin engages TLR4 to trigger TNF production by liver macrophages, thereby inducing lipogenic enzymes that convert F1P and acetyl-CoA to FA in both mouse and human hepatocytes.
Collapse
Affiliation(s)
- Jelena Todoric
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Giuseppe Di Caro
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Saskia Reibe
- Garvan Institute of Medical Research, Sydney, Australia
| | | | - Courtney R Green
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Alison Vrbanac
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Fatih Ceteci
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt/Main, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Claire Conche
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt/Main, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Reginald McNulty
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| | - Shabnam Shalapour
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Koji Taniguchi
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Jeramie D Watrous
- Departments of Medicine and Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Rafael Moranchel
- Departments of Medicine and Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Mahan Najhawan
- Departments of Medicine and Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Mohit Jain
- Departments of Medicine and Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Xiao Liu
- Departments of Medicine and Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Tatiana Kisseleva
- Departments of Medicine and Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Maria T Diaz-Meco
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Jorge Moscat
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Rob Knight
- Department of Pediatrics, Department of Computer Science and Engineering, Department of Bioengineering, and The Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
| | - Florian R Greten
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt/Main, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lester F Lau
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago College of Medicine, Chicago, IL, USA
| | - Christian M Metallo
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Mark A Febbraio
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
17
|
Willis SA, Sargeant JA, Yates T, Takamura T, Takayama H, Gupta V, Brittain E, Crawford J, Parry SA, Thackray AE, Varela-Mato V, Stensel DJ, Woods RM, Hulston CJ, Aithal GP, King JA. Acute Hyperenergetic, High-Fat Feeding Increases Circulating FGF21, LECT2, and Fetuin-A in Healthy Men. J Nutr 2020; 150:1076-1085. [PMID: 31919514 DOI: 10.1093/jn/nxz333] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/08/2019] [Accepted: 12/12/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Hepatokines such as fibroblast growth factor 21 (FGF21), leukocyte cell-derived chemotaxin 2 (LECT2), fetuin-A, fetuin-B, and selenoprotein P (SeP) are liver-derived proteins that are modulated by chronic energy status and metabolic disease. Emerging data from rodent and cell models indicate that hepatokines may be sensitive to acute nutritional manipulation; however, data in humans are lacking. OBJECTIVE The aim was to investigate the influence of hyperenergetic, high-fat feeding on circulating hepatokine concentrations, including the time course of responses. METHODS In a randomized, crossover design, 12 healthy men [mean ± SD: age, 24 ± 4 y; BMI (kg/m2), 24.1 ± 1.5] consumed a 7-d hyperenergetic, high-fat diet [HE-HFD; +50% energy, 65% total energy as fat (32% saturated, 26% monounsaturated, 8% polyunsaturated)] and control diet (36% total energy as fat), separated by 3 wk. Whole-body insulin sensitivity was assessed before and after each diet using oral-glucose-tolerance tests. Fasting plasma concentrations of FGF21 (primary outcome), LECT2, fetuin-A, fetuin-B, SeP, and related metabolites were measured after 1, 3, and 7 d of each diet. Hepatokine responses were analyzed using 2-factor repeated-measures ANOVA and subsequent pairwise comparisons. RESULTS Compared with the control, the HE-HFD increased circulating FGF21 at 1 d (105%) and 3 d (121%; P ≤ 0.040), LECT2 at 3 d (17%) and 7 d (32%; P ≤ 0.004), and fetuin-A at 7 d (7%; P = 0.028). Plasma fetuin-B and SeP did not respond to the HE-HFD. Whole-body insulin sensitivity was reduced after the HE-HFD by 31% (P = 0.021). CONCLUSIONS Acute high-fat overfeeding augments circulating concentrations of FGF21, LECT2, and fetuin-A in healthy men. Notably, the time course of response varies between proteins and is transient for FGF21. These findings provide further insight into the nutritional regulation of hepatokines in humans and their interaction with metabolic homeostasis. This study was registered at clinicaltrials.gov as NCT03369145.
Collapse
Affiliation(s)
- Scott A Willis
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
- National Institute for Health Research(NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester National Health Service (NHS) Trust and the University of Leicester, Leicester, United Kingdom
| | - Jack A Sargeant
- National Institute for Health Research(NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester National Health Service (NHS) Trust and the University of Leicester, Leicester, United Kingdom
- Diabetes Research Centre, University of Leicester, Leicester, United Kingdom
| | - Thomas Yates
- National Institute for Health Research(NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester National Health Service (NHS) Trust and the University of Leicester, Leicester, United Kingdom
- Diabetes Research Centre, University of Leicester, Leicester, United Kingdom
| | - Toshinari Takamura
- Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Hiroaki Takayama
- Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Vinay Gupta
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Emily Brittain
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Joe Crawford
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Siôn A Parry
- Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Alice E Thackray
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
- National Institute for Health Research(NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester National Health Service (NHS) Trust and the University of Leicester, Leicester, United Kingdom
| | - Veronica Varela-Mato
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - David J Stensel
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
- National Institute for Health Research(NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester National Health Service (NHS) Trust and the University of Leicester, Leicester, United Kingdom
| | - Rachel M Woods
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
- National Institute for Health Research(NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester National Health Service (NHS) Trust and the University of Leicester, Leicester, United Kingdom
| | - Carl J Hulston
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
- National Institute for Health Research(NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester National Health Service (NHS) Trust and the University of Leicester, Leicester, United Kingdom
| | - Guruprasad P Aithal
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, United Kingdom
| | - James A King
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
- National Institute for Health Research(NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester National Health Service (NHS) Trust and the University of Leicester, Leicester, United Kingdom
| |
Collapse
|
18
|
Willis SA, Sargeant JA, Thackray AE, Yates T, Stensel DJ, Aithal GP, King JA. Effect of exercise intensity on circulating hepatokine concentrations in healthy men. Appl Physiol Nutr Metab 2019; 44:1065-1072. [DOI: 10.1139/apnm-2018-0818] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Fibroblast growth factor 21 (FGF21), follistatin and leukocyte cell-derived chemotaxin 2 (LECT2) are novel hepatokines that are modulated by metabolic stresses. This study investigated whether exercise intensity modulates the hepatokine response to acute exercise. Ten young, healthy men undertook three 8-h experimental trials: moderate-intensity exercise (MOD; 55% peak oxygen uptake), high-intensity exercise (HIGH; 75% peak oxygen uptake), and control (CON; rest), in a randomised, counterbalanced order. Exercise trials commenced with a treadmill run of varied duration to match gross exercise energy expenditure between trials (MOD vs HIGH; 2475 ± 70 vs 2488 ± 58 kJ). Circulating FGF21, follistatin, LECT2, glucagon, insulin, glucose and nonesterified fatty acids (NEFA) were measured before exercise and at 0, 1, 2, 4, and 7 h postexercise. Plasma FGF21 concentrations were increased up to 4 h postexercise compared with CON (P ≤ 0.022) with greater increases observed at 1, 2, and 4 h postexercise during HIGH versus MOD (P ≤ 0.025). Irrespective of intensity (P ≥ 0.606), plasma follistatin concentrations were elevated at 4 and 7 h postexercise (P ≤ 0.053). Plasma LECT2 concentrations were increased immediately postexercise (P ≤ 0.046) but were not significant after correcting for plasma volume shifts. Plasma glucagon (1 h; P = 0.032) and NEFA (4 and 7 h; P ≤ 0.029) responses to exercise were accentuated in HIGH versus MOD. These findings demonstrate that acute exercise augments circulating FGF21 and follistatin. Exercise-induced changes in FGF21 are intensity-dependent and may support the greater metabolic benefit of high-intensity exercise.
Collapse
Affiliation(s)
- Scott A. Willis
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
- NIHR Leicester Biomedical Research Centre, Leicester LE3 9QD, UK
| | - Jack A. Sargeant
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
- NIHR Leicester Biomedical Research Centre, Leicester LE3 9QD, UK
| | - Alice E. Thackray
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
- NIHR Leicester Biomedical Research Centre, Leicester LE3 9QD, UK
| | - Thomas Yates
- NIHR Leicester Biomedical Research Centre, Leicester LE3 9QD, UK
- Diabetes Research Centre, University of Leicester, Leicester LE5 4PW, UK
| | - David J. Stensel
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
- NIHR Leicester Biomedical Research Centre, Leicester LE3 9QD, UK
| | - Guruprasad P. Aithal
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2QL, UK
| | - James A. King
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
- NIHR Leicester Biomedical Research Centre, Leicester LE3 9QD, UK
| |
Collapse
|
19
|
Raselli T, Hearn T, Wyss A, Atrott K, Peter A, Frey-Wagner I, Spalinger MR, Maggio EM, Sailer AW, Schmitt J, Schreiner P, Moncsek A, Mertens J, Scharl M, Griffiths WJ, Bueter M, Geier A, Rogler G, Wang Y, Misselwitz B. Elevated oxysterol levels in human and mouse livers reflect nonalcoholic steatohepatitis. J Lipid Res 2019; 60:1270-1283. [PMID: 31113816 PMCID: PMC6602130 DOI: 10.1194/jlr.m093229] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/19/2019] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH), a primary cause of liver disease, leads to complications such as fibrosis, cirrhosis, and carcinoma, but the pathophysiology of NASH is incompletely understood. Epstein-Barr virus-induced G protein-coupled receptor 2 (EBI2) and its oxysterol ligand 7α,25-dihydroxycholesterol (7α,25-diHC) are recently discovered immune regulators. Several lines of evidence suggest a role of oxysterols in NASH pathogenesis, but rigorous testing has not been performed. We measured oxysterol levels in the livers of NASH patients by LC-MS and tested the role of the EBI2-7α,25-diHC system in a murine feeding model of NASH. Free oxysterol profiling in livers from NASH patients revealed a pronounced increase in 24- and 7-hydroxylated oxysterols in NASH compared with controls. Levels of 24- and 7-hydroxylated oxysterols correlated with histological NASH activity. Histological analysis of murine liver samples demonstrated ballooning and liver inflammation. No significant genotype-related differences were observed in Ebi2−/− mice and mice with defects in the 7α,25-diHC synthesizing enzymes CH25H and CYP7B1 compared with wild-type littermate controls, arguing against an essential role of these genes in NASH pathogenesis. Elevated 24- and 7-hydroxylated oxysterol levels were confirmed in murine NASH liver samples. Our results suggest increased bile acid synthesis in NASH samples, as judged by the enhanced level of 7α-hydroxycholest-4-en-3-one and impaired 24S-hydroxycholesterol metabolism as characteristic biochemical changes in livers affected by NASH.
Collapse
Affiliation(s)
- Tina Raselli
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Tom Hearn
- Swansea University Medical School Singleton Park, Swansea, United Kingdom
| | - Annika Wyss
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Kirstin Atrott
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Alain Peter
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Isabelle Frey-Wagner
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Marianne R Spalinger
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Ewerton M Maggio
- Institute for Surgical Pathology University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Andreas W Sailer
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Johannes Schmitt
- Division of Hepatology Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Philipp Schreiner
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Anja Moncsek
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Joachim Mertens
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | | | - Marco Bueter
- Department of Visceral Surgery University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Andreas Geier
- Division of Hepatology Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Yuqin Wang
- Swansea University Medical School Singleton Park, Swansea, United Kingdom
| | - Benjamin Misselwitz
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland .,Department of Visceral Surgery and Medicine, Inselspital Bern and Bern University, Bern, Switzerland
| |
Collapse
|
20
|
Montgomery MK, De Nardo W, Watt MJ. Impact of Lipotoxicity on Tissue "Cross Talk" and Metabolic Regulation. Physiology (Bethesda) 2019; 34:134-149. [PMID: 30724128 DOI: 10.1152/physiol.00037.2018] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Obesity-associated comorbidities include non-alcoholic fatty liver disease, Type 2 diabetes, and cardiovascular disease. These diseases are associated with accumulation of lipids in non-adipose tissues, which can impact many intracellular cellular signaling pathways and functions that have been broadly defined as "lipotoxic." This review moves beyond understanding intracellular lipotoxic outcomes and outlines the consequences of lipotoxicity on protein secretion and inter-tissue "cross talk," and the impact this exerts on systemic metabolism.
Collapse
Affiliation(s)
| | - William De Nardo
- Department of Physiology, The University of Melbourne , Melbourne, Victoria , Australia
| | - Matthew J Watt
- Department of Physiology, The University of Melbourne , Melbourne, Victoria , Australia
| |
Collapse
|
21
|
Zhang C, Seo J, Murakami K, Salem ESB, Bernhard E, Borra VJ, Choi K, Yuan CL, Chan CC, Chen X, Huang T, Weirauch MT, Divanovic S, Qi NR, Thomas HE, Mercer CA, Siomi H, Nakamura T. Hepatic Ago2-mediated RNA silencing controls energy metabolism linked to AMPK activation and obesity-associated pathophysiology. Nat Commun 2018; 9:3658. [PMID: 30201950 PMCID: PMC6131149 DOI: 10.1038/s41467-018-05870-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 07/26/2018] [Indexed: 12/21/2022] Open
Abstract
RNA silencing inhibits mRNA translation. While mRNA translation accounts for the majority of cellular energy expenditure, it is unclear if RNA silencing regulates energy homeostasis. Here, we report that hepatic Argonaute 2 (Ago2)-mediated RNA silencing regulates both intrinsic energy production and consumption and disturbs energy metabolism in the pathogenesis of obesity. Ago2 regulates expression of specific miRNAs including miR-802, miR-103/107, and miR-148a/152, causing metabolic disruption, while simultaneously suppressing the expression of genes regulating glucose and lipid metabolism, including Hnf1β, Cav1, and Ampka1. Liver-specific Ago2-deletion enhances mitochondrial oxidation and ATP consumption associated with mRNA translation, which results in AMPK activation, and improves obesity-associated pathophysiology. Notably, hepatic Ago2-deficiency improves glucose metabolism in conditions of insulin receptor antagonist treatment, high-fat diet challenge, and hepatic AMPKα1-deletion. The regulation of energy metabolism by Ago2 provides a novel paradigm in which RNA silencing plays an integral role in determining basal metabolic activity in obesity-associated sequelae.
Collapse
Affiliation(s)
- Cai Zhang
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Joonbae Seo
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kazutoshi Murakami
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Esam S B Salem
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Elise Bernhard
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Vishnupriya J Borra
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Celvie L Yuan
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Calvin C Chan
- Medical Scientist Training Program, Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Xiaoting Chen
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Taosheng Huang
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Matthew T Weirauch
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Senad Divanovic
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Nathan R Qi
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Hala Einakat Thomas
- Division of Hematology-Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Carol A Mercer
- Division of Hematology-Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Haruhiko Siomi
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | - Takahisa Nakamura
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
22
|
Estrada AL, Hudson WM, Kim PY, Stewart CM, Peelor FF, Wei Y, Wang D, Hamilton KL, Miller BF, Pagliassotti MJ. Short-term changes in diet composition do not affect in vivo hepatic protein synthesis in rats. Am J Physiol Endocrinol Metab 2018; 314:E241-E250. [PMID: 28851736 PMCID: PMC5899216 DOI: 10.1152/ajpendo.00209.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 11/22/2022]
Abstract
Protein synthesis is critical to protein homeostasis (proteostasis), and modifications in protein synthesis influence lifespan and the development of comorbidities associated with obesity. In the present study, we examined the acute response of liver protein synthesis to either high-fat or high-sucrose diets in order to elucidate nutrient-mediated regulation of hepatic protein synthesis in the absence of body fat accumulation. Total and endoplasmic reticulum-associated protein syntheses were assessed by use of the stable isotope, deuterium oxide (2H2O), in rats provided a control diet or diets enriched in polyunsaturated fat, saturated fat, or sucrose for 2, 4, or 7 days. The three experimental diets increased hepatic triglycerides 46-91% on day 7 and fasting insulin levels 83-117% on day 7, but did not result in differences in body weight when compared with control ( n = 6/diet/time). The fraction of newly synthesized proteins in total liver lysates and microsomes was not significantly different among dietary groups ( n = 3/diet/time). To determine whether the experimental diets provoked a transcriptional response to enhance the capacity for protein synthesis, we also measured a panel of genes linked to amino acid transport, synthesis, and processing. There were no significant differences in any of the genes measured among groups. Therefore, dietary treatments that have been linked to impaired proteostasis and that promote hepatic steatosis and insulin resistance, did not result in significant changes in total or ER-associated protein synthesis in the liver over a 7-day period.
Collapse
Affiliation(s)
- Andrea Lee Estrada
- Department of Food Science and Human Nutrition, Colorado State University , Fort Collins, Colorado
| | - William Max Hudson
- Department of Food Science and Human Nutrition, Colorado State University , Fort Collins, Colorado
| | - Paul Y Kim
- Department of Biology, Grambling State University, Grambling, Louisiana
| | - Claire Marie Stewart
- Department of Food Science and Human Nutrition, Colorado State University , Fort Collins, Colorado
| | - Frederick F Peelor
- Department of Health and Exercise Science, Colorado State University , Fort Collins, Colorado
| | - Yuren Wei
- Department of Food Science and Human Nutrition, Colorado State University , Fort Collins, Colorado
| | - Dong Wang
- Department of Food Science and Human Nutrition, Colorado State University , Fort Collins, Colorado
| | - Karyn L Hamilton
- Department of Health and Exercise Science, Colorado State University , Fort Collins, Colorado
| | - Benjamin F Miller
- Department of Health and Exercise Science, Colorado State University , Fort Collins, Colorado
| | - Michael J Pagliassotti
- Department of Food Science and Human Nutrition, Colorado State University , Fort Collins, Colorado
| |
Collapse
|
23
|
Abstract
Hepatic steatosis is an underlying feature of nonalcoholic fatty liver disease (NAFLD), which is the most common form of liver disease and is present in up to ∼70% of individuals who are overweight. NAFLD is also associated with hypertriglyceridaemia and low levels of HDL, glucose intolerance, insulin resistance and type 2 diabetes mellitus. Hepatic steatosis is a strong predictor of the development of insulin resistance and often precedes the onset of other known mediators of insulin resistance. This sequence of events suggests that hepatic steatosis has a causal role in the development of insulin resistance in other tissues, such as skeletal muscle. Hepatokines are proteins that are secreted by hepatocytes, and many hepatokines have been linked to the induction of metabolic dysfunction, including fetuin A, fetuin B, retinol-binding protein 4 (RBP4) and selenoprotein P. In this Review, we describe the factors that influence the development of hepatic steatosis, provide evidence of strong links between hepatic steatosis and insulin resistance in non-hepatic tissues, and discuss recent advances in our understanding of how steatosis alters hepatokine secretion to influence metabolic phenotypes through inter-organ communication.
Collapse
Affiliation(s)
- Ruth C R Meex
- Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity Program and the Department of Physiology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Matthew J Watt
- Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity Program and the Department of Physiology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| |
Collapse
|
24
|
Ma H, Sales VM, Wolf AR, Subramanian S, Matthews TJ, Chen M, Sharma A, Gall W, Kulik W, Cohen DE, Adachi Y, Griffin NW, Gordon JI, Patti ME, Isganaitis E. Attenuated Effects of Bile Acids on Glucose Metabolism and Insulin Sensitivity in a Male Mouse Model of Prenatal Undernutrition. Endocrinology 2017; 158. [PMID: 28637315 PMCID: PMC5551557 DOI: 10.1210/en.2017-00288] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Prenatal undernutrition and low birth weight are associated with risk of type 2 diabetes and obesity. Prenatal caloric restriction results in low birth weight, glucose intolerance, obesity, and reduced plasma bile acids (BAs) in offspring mice. Because BAs can regulate systemic metabolism and glucose homeostasis, we hypothesized that BA supplementation could prevent diet-induced obesity and glucose intolerance in this model of developmental programming. Pregnant dams were food restricted by 50% from gestational days 12.5 to 18.5. Offspring of both undernourished (UN) and control (C) dams given unrestricted diets were weaned to high-fat diets with or without supplementation with 0.25% w/w ursodeoxycholic acid (UDCA), yielding four experimental groups: C, UN, C + UDCA, and UN + UDCA. Glucose homeostasis, BA composition, liver and intestinal gene expression, and microbiota composition were analyzed in the four groups. Although UDCA supplementation ameliorated diet-induced obesity in C mice, there was no effect in UN mice. UDCA similarly lowered fasting insulin, and improved glucose tolerance, pyruvate tolerance, and liver steatosis in C, but not UN, animals. BA composition differed significantly, and liver and ileal expression of genes involved in BA metabolism (Cyp7b1, Shp) were differentially induced by UDCA in C vs UN animals. Bacterial taxa in fecal microbiota correlated with treatment groups and metabolic parameters. In conclusion, prenatal undernutrition alters responsiveness to the metabolic benefits of BA supplementation, with resistance to the weight-lowering and insulin-sensitizing effects of UDCA supplementation. Our findings suggest that BA metabolism may be a previously unrecognized contributor to developmentally programmed diabetes risk.
Collapse
Affiliation(s)
- Huijuan Ma
- Research Division, Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts 02115
- Department of Endocrinology and Metabolism, Hebei General Hospital, Shijiazhuang, Hebei, 050051, China
| | - Vicencia M Sales
- Research Division, Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts 02115
| | - Ashley R Wolf
- Center for Genome Sciences and Systems Biology, and Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Sathish Subramanian
- Center for Genome Sciences and Systems Biology, and Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Tucker J Matthews
- Research Division, Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts 02115
| | - Michael Chen
- Research Division, Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts 02115
| | - Aparna Sharma
- Research Division, Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts 02115
| | - Walt Gall
- Metabolon, Durham, North Carolina 27713
| | - Wim Kulik
- Laboratory of Genetic Metabolic Diseases, Departments of Pediatrics and Clinical Chemistry, University of Amsterdam, 1105 AZ Amsterdam-Zuidoost, The Netherlands
| | - David E Cohen
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York 10021
| | - Yusuke Adachi
- Research Division, Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts 02115
| | - Nicholas W Griffin
- Center for Genome Sciences and Systems Biology, and Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Jeffrey I Gordon
- Center for Genome Sciences and Systems Biology, and Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Mary-Elizabeth Patti
- Research Division, Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts 02115
| | - Elvira Isganaitis
- Research Division, Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
25
|
Pagliassotti MJ, Estrada AL, Hudson WM, Wei Y, Wang D, Seals DR, Zigler ML, LaRocca TJ. Trehalose supplementation reduces hepatic endoplasmic reticulum stress and inflammatory signaling in old mice. J Nutr Biochem 2017; 45:15-23. [PMID: 28431320 DOI: 10.1016/j.jnutbio.2017.02.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/12/2017] [Accepted: 02/17/2017] [Indexed: 10/19/2022]
Abstract
The accumulation of damaged proteins can perturb cellular homeostasis and provoke aging and cellular damage. Quality control systems, such as the unfolded protein response (UPR), inflammatory signaling and protein degradation, mitigate the residence time of damaged proteins. In the present study, we have examined the UPR and inflammatory signaling in the liver of young (~6 months) and old (~28 months) mice (n=8/group), and the ability of trehalose, a compound linked to increased protein stability and autophagy, to counteract age-induced effects on these systems. When used, trehalose was provided for 4 weeks in the drinking water immediately prior to sacrifice (n=7/group). Livers from old mice were characterized by activation of the UPR, increased inflammatory signaling and indices of liver injury. Trehalose treatment reduced the activation of the UPR and inflammatory signaling, and reduced liver injury. Reductions in proteins involved in autophagy and proteasome activity observed in old mice were restored following trehalose treatment. The autophagy marker, LC3B-II, was increased in old mice treated with trehalose. Metabolomics analyses demonstrated that reductions in hexosamine biosynthetic pathway metabolites and nicotinamide in old mice were restored following trehalose treatment. Trehalose appears to be an effective intervention to reduce age-associated liver injury and mitigate the need for activation of quality control systems that respond to disruption of proteostasis.
Collapse
Affiliation(s)
- Michael J Pagliassotti
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523-1571, USA.
| | - Andrea L Estrada
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523-1571, USA
| | - William M Hudson
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523-1571, USA
| | - Yuren Wei
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523-1571, USA
| | - Dong Wang
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523-1571, USA
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado, Boulder, CO 80309, USA
| | - Melanie L Zigler
- Department of Integrative Physiology, University of Colorado, Boulder, CO 80309, USA
| | - Thomas J LaRocca
- Department of Integrative Physiology, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
26
|
Severe Atherosclerosis and Hypercholesterolemia in Mice Lacking Both the Melanocortin Type 4 Receptor and Low Density Lipoprotein Receptor. PLoS One 2016; 11:e0167888. [PMID: 28030540 PMCID: PMC5193345 DOI: 10.1371/journal.pone.0167888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 11/22/2016] [Indexed: 11/19/2022] Open
Abstract
Dysfunction of the melanocortin system can result in severe obesity accompanied with dyslipidemia and symptoms of the metabolic syndrome but the effect on vascular atherogenesis is not known. To study the impact of obesity and dyslipidemia on the cardiovascular system, we generated mice double-deficient for the melanocortin type 4 receptor (Mc4rmut mice) and the LDL receptor (Ldlr-/- mice). Mc4rmut mice develop obesity due to hyperphagia. Double-mutant mice (Mc4rmut;Ldlr-/-) exhibited massive increases in body weight, plasma cholesterol and triacylglycerol levels and developed atherosclerosis. Atherosclerotic lesion size was affected throughout the aortic root and brachiocephalic artery not only under semisynthetic, cholesterol-containing diet but also under cholesterol-free standard chow. The Mc4rmut mice developed a hepatic steatosis which contributes to increased plasma cholesterol levels even under cholesterol-free standard chow. Transcripts of cholesterol biosynthesis components and liver cholesterol levels did not significantly differ between wild-type and all mutant mouse strains but RNA sequencing data and biochemical measurements point to an altered bile acid elimination in Mc4rmut;Ldlr-/-. Therefore, the unchanged endogenous cholesterol biosynthesis together with a reduced hepatic VLDL and LDL-cholesterol clearance most likely led to increased plasma lipid levels and consequently to atherosclerosis in this animal model. Our data indicate that dysfunction of the melanocortin-regulated food intake and the resulting obesity significantly add to the proatherogenic lipoprotein profile caused by LDL receptor deficiency and, therefore, can be regarded as relevant risk factor for atherosclerosis.
Collapse
|
27
|
Pagliassotti MJ, Kim PY, Estrada AL, Stewart CM, Gentile CL. Endoplasmic reticulum stress in obesity and obesity-related disorders: An expanded view. Metabolism 2016; 65:1238-46. [PMID: 27506731 PMCID: PMC4980576 DOI: 10.1016/j.metabol.2016.05.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/01/2016] [Accepted: 05/06/2016] [Indexed: 02/07/2023]
Abstract
The endoplasmic reticulum (ER) is most notable for its central roles in calcium ion storage, lipid biosynthesis, and protein sorting and processing. By virtue of its extensive membrane contact sites that connect the ER to most other organelles and to the plasma membrane, the ER can also regulate diverse cellular processes including inflammatory and insulin signaling, nutrient metabolism, and cell proliferation and death via a signaling pathway called the unfolded protein response (UPR). Chronic UPR activation has been observed in liver and/or adipose tissue of dietary and genetic murine models of obesity, and in human obesity and non-alcoholic fatty liver disease (NAFLD). Activation of the UPR in obesity and obesity-related disorders likely has two origins. One linked to classic ER stress involving the ER lumen and one linked to alterations to the ER membrane environment. This review discusses both of these origins and also considers the role of post-translational protein modifications, such as acetylation and palmitoylation, and ER-mitochondrial interactions to obesity-mediated impairments in the ER and activation of the UPR.
Collapse
Affiliation(s)
| | - Paul Y Kim
- Department of Biological Sciences, Grambling State University
| | - Andrea L Estrada
- Department of Food Science and Human Nutrition, Colorado State University
| | - Claire M Stewart
- Department of Food Science and Human Nutrition, Colorado State University
| | | |
Collapse
|
28
|
Elias I, Ferré T, Vilà L, Muñoz S, Casellas A, Garcia M, Molas M, Agudo J, Roca C, Ruberte J, Bosch F, Franckhauser S. ALOX5AP Overexpression in Adipose Tissue Leads to LXA4 Production and Protection Against Diet-Induced Obesity and Insulin Resistance. Diabetes 2016; 65:2139-50. [PMID: 27207555 DOI: 10.2337/db16-0040] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/21/2016] [Indexed: 11/13/2022]
Abstract
Eicosanoids, such as leukotriene B4 (LTB4) and lipoxin A4 (LXA4), may play a key role during obesity. While LTB4 is involved in adipose tissue inflammation and insulin resistance, LXA4 may exert anti-inflammatory effects and alleviate hepatic steatosis. Both lipid mediators derive from the same pathway, in which arachidonate 5-lipoxygenase (ALOX5) and its partner, arachidonate 5-lipoxygenase-activating protein (ALOX5AP), are involved. ALOX5 and ALOX5AP expression is increased in humans and rodents with obesity and insulin resistance. We found that transgenic mice overexpressing ALOX5AP in adipose tissue had higher LXA4 rather than higher LTB4 levels, were leaner, and showed increased energy expenditure, partly due to browning of white adipose tissue (WAT). Upregulation of hepatic LXR and Cyp7a1 led to higher bile acid synthesis, which may have contributed to increased thermogenesis. In addition, transgenic mice were protected against diet-induced obesity, insulin resistance, and inflammation. Finally, treatment of C57BL/6J mice with LXA4, which showed browning of WAT, strongly suggests that LXA4 is responsible for the transgenic mice phenotype. Thus, our data support that LXA4 may hold great potential for the future development of therapeutic strategies for obesity and related diseases.
Collapse
Affiliation(s)
- Ivet Elias
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Barcelona, Spain Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Tura Ferré
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Barcelona, Spain CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Laia Vilà
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Barcelona, Spain Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Sergio Muñoz
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Barcelona, Spain Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Alba Casellas
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Barcelona, Spain CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Miquel Garcia
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Barcelona, Spain Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Maria Molas
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Barcelona, Spain Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Judith Agudo
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Barcelona, Spain Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Carles Roca
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Barcelona, Spain Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Jesús Ruberte
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Barcelona, Spain CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Fatima Bosch
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Barcelona, Spain Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Sylvie Franckhauser
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Barcelona, Spain CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| |
Collapse
|
29
|
Bukhari SIA, Truesdell SS, Lee S, Kollu S, Classon A, Boukhali M, Jain E, Mortensen RD, Yanagiya A, Sadreyev RI, Haas W, Vasudevan S. A Specialized Mechanism of Translation Mediated by FXR1a-Associated MicroRNP in Cellular Quiescence. Mol Cell 2016; 61:760-773. [PMID: 26942679 DOI: 10.1016/j.molcel.2016.02.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/28/2015] [Accepted: 02/09/2016] [Indexed: 12/18/2022]
Abstract
MicroRNAs predominantly decrease gene expression; however, specific mRNAs are translationally upregulated in quiescent (G0) mammalian cells and immature Xenopus laevis oocytes by an FXR1a-associated microRNA-protein complex (microRNP) that lacks the microRNP repressor, GW182. Their mechanism in these conditions of decreased mTOR signaling, and therefore reduced canonical (cap-and-poly(A)-tail-mediated) translation, remains undiscovered. Our data reveal that mTOR inhibition in human THP1 cells enables microRNA-mediated activation. Activation requires shortened/no poly(A)-tail targets; polyadenylated mRNAs are partially activated upon PAIP2 overexpression, which interferes with poly(A)-bound PABP, precluding PABP-enhanced microRNA-mediated inhibition and canonical translation. Consistently, inhibition of PARN deadenylase prevents activation. P97/DAP5, a homolog of canonical translation factor, eIF4G, which lacks PABP- and cap binding complex-interacting domains, is required for activation, and thereby for the oocyte immature state. P97 interacts with 3' UTR-binding FXR1a-associated microRNPs and with PARN, which binds mRNA 5' caps, forming a specialized complex to translate recruited mRNAs in these altered canonical translation conditions.
Collapse
Affiliation(s)
- Syed I A Bukhari
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Samuel S Truesdell
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sooncheol Lee
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Swapna Kollu
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Anthony Classon
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Myriam Boukhali
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Esha Jain
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Richard D Mortensen
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Akiko Yanagiya
- Department of Biochemistry, Goodman Cancer Research Center, McGill University, Montreal, QC H3A 1A3, Canada
| | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Wilhelm Haas
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Shobha Vasudevan
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
30
|
Ertunc ME, Hotamisligil GS. Lipid signaling and lipotoxicity in metaflammation: indications for metabolic disease pathogenesis and treatment. J Lipid Res 2016; 57:2099-2114. [PMID: 27330055 DOI: 10.1194/jlr.r066514] [Citation(s) in RCA: 339] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 06/20/2016] [Indexed: 12/19/2022] Open
Abstract
Lipids encompass a wide variety of molecules such as fatty acids, sterols, phospholipids, and triglycerides. These molecules represent a highly efficient energy resource and can act as structural elements of membranes or as signaling molecules that regulate metabolic homeostasis through many mechanisms. Cells possess an integrated set of response systems to adapt to stresses such as those imposed by nutrient fluctuations during feeding-fasting cycles. While lipids are pivotal for these homeostatic processes, they can also contribute to detrimental metabolic outcomes. When metabolic stress becomes chronic and adaptive mechanisms are overwhelmed, as occurs during prolonged nutrient excess or obesity, lipid influx can exceed the adipose tissue storage capacity and result in accumulation of harmful lipid species at ectopic sites such as liver and muscle. As lipid metabolism and immune responses are highly integrated, accumulation of harmful lipids or generation of signaling intermediates can interfere with immune regulation in multiple tissues, causing a vicious cycle of immune-metabolic dysregulation. In this review, we summarize the role of lipotoxicity in metaflammation at the molecular and tissue level, describe the significance of anti-inflammatory lipids in metabolic homeostasis, and discuss the potential of therapeutic approaches targeting pathways at the intersection of lipid metabolism and immune function.
Collapse
Affiliation(s)
- Meric Erikci Ertunc
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard T. H. Chan School of Public Health, Broad Institute of Harvard and Massachusetts Institute of Technology, Boston, MA 02115
| | - Gökhan S Hotamisligil
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard T. H. Chan School of Public Health, Broad Institute of Harvard and Massachusetts Institute of Technology, Boston, MA 02115
| |
Collapse
|
31
|
Meex RC, Hoy AJ, Morris A, Brown RD, Lo JCY, Burke M, Goode RJA, Kingwell BA, Kraakman MJ, Febbraio MA, Greve JW, Rensen SS, Molloy MP, Lancaster GI, Bruce CR, Watt MJ. Fetuin B Is a Secreted Hepatocyte Factor Linking Steatosis to Impaired Glucose Metabolism. Cell Metab 2015; 22:1078-89. [PMID: 26603189 DOI: 10.1016/j.cmet.2015.09.023] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 08/04/2015] [Accepted: 09/23/2015] [Indexed: 12/18/2022]
Abstract
Liver steatosis is associated with the development of insulin resistance and the pathogenesis of type 2 diabetes. We tested the hypothesis that protein signals originating from steatotic hepatocytes communicate with other cells to modulate metabolic phenotypes. We show that the secreted factors from steatotic hepatocytes induce pro-inflammatory signaling and insulin resistance in cultured cells. Next, we identified 168 hepatokines, of which 32 were differentially secreted in steatotic versus non-steatotic hepatocytes. Targeted analysis showed that fetuin B was increased in humans with liver steatosis and patients with type 2 diabetes. Fetuin B impaired insulin action in myotubes and hepatocytes and caused glucose intolerance in mice. Silencing of fetuin B in obese mice improved glucose tolerance. We conclude that the protein secretory profile of hepatocytes is altered with steatosis and is linked to inflammation and insulin resistance. Therefore, preventing steatosis may limit the development of dysregulated glucose metabolism in settings of overnutrition.
Collapse
Affiliation(s)
- Ruth C Meex
- Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity Program, and Biology of Lipid Metabolism Laboratory, Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Andrew J Hoy
- Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity Program, and Biology of Lipid Metabolism Laboratory, Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Alexander Morris
- Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity Program, and Biology of Lipid Metabolism Laboratory, Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Russell D Brown
- Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity Program, and Biology of Lipid Metabolism Laboratory, Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Jennifer C Y Lo
- Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity Program, and Biology of Lipid Metabolism Laboratory, Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Melissa Burke
- Biotechnology Research Laboratories, Department of Physiology, Monash University, Clayton, VIC 3800, Australia; Mill Hill Laboratory, The Francis Crick Institute, London NW7 1AA, UK
| | - Robert J A Goode
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | | | | | - Mark A Febbraio
- Baker IDI Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; The Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Jan Willem Greve
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Department of General Surgery, Maastricht, the Netherlands
| | - Sander S Rensen
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Department of General Surgery, Maastricht, the Netherlands
| | - Mark P Molloy
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW 2109, Australia
| | | | - Clinton R Bruce
- Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity Program, and Biology of Lipid Metabolism Laboratory, Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Matthew J Watt
- Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity Program, and Biology of Lipid Metabolism Laboratory, Department of Physiology, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
32
|
Shifting eating to the circadian rest phase misaligns the peripheral clocks with the master SCN clock and leads to a metabolic syndrome. Proc Natl Acad Sci U S A 2015; 112:E6691-8. [PMID: 26627260 DOI: 10.1073/pnas.1519807112] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The light-entrained master central circadian clock (CC) located in the suprachiasmatic nucleus (SCN) not only controls the diurnal alternance of the active phase (the light period of the human light-dark cycle, but the mouse dark period) and the rest phase (the human dark period, but the mouse light period), but also synchronizes the ubiquitous peripheral CCs (PCCs) with these phases to maintain homeostasis. We recently elucidated in mice the molecular signals through which metabolic alterations induced on an unusual feeding schedule, taking place during the rest phase [i.e., restricted feeding (RF)], creates a 12-h PCC shift. Importantly, a previous study showed that the SCN CC is unaltered during RF, which creates a misalignment between the RF-shifted PCCs and the SCN CC-controlled phases of activity and rest. However, the molecular basis of SCN CC insensitivity to RF and its possible pathological consequences are mostly unknown. Here we deciphered, at the molecular level, how RF creates this misalignment. We demonstrate that the PPARα and glucagon receptors, the two instrumental transducers in the RF-induced shift of PCCs, are not expressed in the SCN, thereby preventing on RF a shift of the master SCN CC and creating the misalignment. Most importantly, this RF-induced misalignment leads to a misexpression (with respect to their normal physiological phase of expression) of numerous CC-controlled homeostatic genes, which in the long term generates in RF mice a number of metabolic pathologies including diabetes, obesity, and metabolic syndrome, which have been reported in humans engaged in shift work schedules.
Collapse
|
33
|
Zhang Y, Wang H, Zhou D, Moody L, Lezmi S, Chen H, Pan YX. High-fat diet caused widespread epigenomic differences on hepatic methylome in rat. Physiol Genomics 2015. [DOI: 10.1152/physiolgenomics.00110.2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A high-fat (HF) diet is associated with progression of liver diseases. To illustrate genome-wide landscape of DNA methylation in liver of rats fed either a control or HF diet, two enrichment-based methods, namely methyl-DNA immunoprecipitation assay with high-throughput sequencing (MeDIP-seq) and methylation-sensitive restriction enzyme sequencing (MRE-seq), were performed in our study. Rats fed with the HF diet exhibited an increased body weight and liver fat accumulation compared with that of the control group when they were 12 wk of age. Genome-wide analysis of differentially methylated regions (DMRs) showed that 12,494 DMRs induced by HF diet were hypomethylated and 6,404 were hypermethylated. DMRs with gene annotations [differentially methylated genes (DMGs)] were further analyzed to show gene-specific methylation profile. There were 88, 2,680, and 95 hypomethylated DMGs identified with changes in DNA methylation in the promoter, intragenic and downstream regions, respectively, compared with fewer hypermethylated DMGs (45, 1,623, and 50 in the respective regions). Some of these genes also contained an ACGT cis-acting motif whose DNA methylation status may affect gene expression. Pathway analysis showed that these DMGs were involved in critical hepatic signaling networks related to hepatic development. Therefore, HF diet had global impacts on DNA methylation profile in the liver of rats, leading to differential expression of genes in hepatic pathways that may involve in functional changes in liver development.
Collapse
Affiliation(s)
- Yukun Zhang
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Huan Wang
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Dan Zhou
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Laura Moody
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Stéphane Lezmi
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Hong Chen
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Yuan-Xiang Pan
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois; and
| |
Collapse
|
34
|
Khan SA, Wollaston-Hayden EE, Markowski TW, Higgins L, Mashek DG. Quantitative analysis of the murine lipid droplet-associated proteome during diet-induced hepatic steatosis. J Lipid Res 2015; 56:2260-72. [PMID: 26416795 DOI: 10.1194/jlr.m056812] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Indexed: 01/17/2023] Open
Abstract
Hepatic steatosis is characterized by the accumulation of lipid droplets (LDs), which are composed of a neutral lipid core surrounded by a phospholipid monolayer embedded with many proteins. Although the LD-associated proteome has been investigated in multiple tissues and organisms, the dynamic changes in the murine LD-associated proteome in response to obesity and hepatic steatosis have not been studied. We characterized the hepatic LD-associated proteome of C57BL/6J male mouse livers following high-fat feeding using isobaric tagging for relative and absolute quantification. Of the 1,520 proteins identified with a 5% local false discovery rate, we report a total of 48 proteins that were increased and 52 proteins that were decreased on LDs in response to high-fat feeding. Most notably, ribosomal and endoplasmic reticulum proteins were increased and extracellular and cytosolic proteins were decreased in response to high-fat feeding. Additionally, many proteins involved in fatty acid catabolism or xenobiotic metabolism were enriched in the LD fraction following high-fat feeding. In contrast, proteins involved in glucose metabolism and liver X receptor or retinoid X receptor activation were decreased on LDs of high-fat-fed mice. This study provides insights into unique biological functions of hepatic LDs under normal and steatotic conditions.
Collapse
Affiliation(s)
- Salmaan Ahmed Khan
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108
| | | | - Todd W Markowski
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - LeeAnn Higgins
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - Douglas G Mashek
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108
| |
Collapse
|
35
|
Liu L, Jiang L, Ding XD, Liu JF, Zhang Q. The regulation of glucose on milk fat synthesis is mediated by the ubiquitin-proteasome system in bovine mammary epithelial cells. Biochem Biophys Res Commun 2015; 465:59-63. [DOI: 10.1016/j.bbrc.2015.07.129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 07/25/2015] [Indexed: 10/23/2022]
|
36
|
Abstract
A number of chronic metabolic pathologies, including obesity, diabetes, cardiovascular disease, asthma, and cancer, cluster together to present the greatest threat to human health. As research in this field has advanced, it has become clear that unresolved metabolic inflammation, organelle dysfunction, and other cellular and metabolic stresses underlie the development of these chronic metabolic diseases. However, the relationship between these systems and pathological mechanisms is poorly understood. Here we discuss the role of cellular Ca(2+) homeostasis as a critical mechanism integrating the myriad of cellular and subcellular dysfunctional networks found in metabolic tissues such as liver and adipose tissue in the context of metabolic disease, particularly in obesity and diabetes.
Collapse
|
37
|
Larsen MC, Bushkofsky JR, Gorman T, Adhami V, Mukhtar H, Wang S, Reeder SB, Sheibani N, Jefcoate CR. Cytochrome P450 1B1: An unexpected modulator of liver fatty acid homeostasis. Arch Biochem Biophys 2015; 571:21-39. [PMID: 25703193 DOI: 10.1016/j.abb.2015.02.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/23/2015] [Accepted: 02/10/2015] [Indexed: 12/12/2022]
Abstract
Cytochrome P450 1b1 (Cyp1b1) expression is absent in mouse hepatocytes, but present in liver endothelia and activated stellate cells. Increased expression during adipogenesis suggests a role of Cyp1b1 metabolism in fatty acid homeostasis. Wild-type C57BL/6j (WT) and Cyp1b1-null (Cyp1b1-ko) mice were provided low or high fat diets (LFD and HFD, respectively). Cyp1b1-deletion suppressed HFD-induced obesity, improved glucose tolerance and prevented liver steatosis. Suppression of lipid droplets in sinusoidal hepatocytes, concomitant with enhanced glycogen granules, was a consistent feature of Cyp1b1-ko mice. Cyp1b1 deletion altered the in vivo expression of 560 liver genes, including suppression of PPARγ, stearoyl CoA desaturase 1 (Scd1) and many genes stimulated by PPARα, each consistent with this switch in energy storage mechanism. Ligand activation of PPARα in Cyp1b1-ko mice by WY-14643 was, nevertheless, effective. Seventeen gene changes in Cyp1b1-ko mice correspond to mouse transgenic expression that attenuated diet-induced diabetes. The absence of Cyp1b1 in mouse hepatocytes indicates participation in energy homeostasis through extra-hepatocyte signaling. Extensive sexual dimorphism in hepatic gene expression suggests a developmental impact of estrogen metabolism by Cyp1b1. Suppression of Scd1 and increased leptin turnover support enhanced leptin participation from the hypothalamus. Cyp1b1-mediated effects on vascular cells may underlie these changes.
Collapse
Affiliation(s)
- Michele Campaigne Larsen
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI 53706, United States
| | - Justin R Bushkofsky
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI 53706, United States; Endocrinology and Reproductive Physiology Program, University of Wisconsin, Madison, WI 53706, United States
| | - Tyler Gorman
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI 53706, United States
| | - Vaqar Adhami
- Department of Dermatology, University of Wisconsin, Madison, WI 53706, United States
| | - Hasan Mukhtar
- Department of Dermatology, University of Wisconsin, Madison, WI 53706, United States
| | - Suqing Wang
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI 53706, United States
| | - Scott B Reeder
- Department of Radiology, University of Wisconsin, Madison, WI 53706, United States; Department of Medical Physics, University of Wisconsin, Madison, WI 53706, United States; Department of Biomedical Engineering, University of Wisconsin, Madison, WI 53706, United States; Department of Medicine, University of Wisconsin, Madison, WI 53706, United States; Department of Emergency Medicine, University of Wisconsin, Madison, WI 53706, United States
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI 53706, United States
| | - Colin R Jefcoate
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI 53706, United States; Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI 53706, United States; Endocrinology and Reproductive Physiology Program, University of Wisconsin, Madison, WI 53706, United States.
| |
Collapse
|
38
|
Ertunc ME, Sikkeland J, Fenaroli F, Griffiths G, Daniels MP, Cao H, Saatcioglu F, Hotamisligil GS. Secretion of fatty acid binding protein aP2 from adipocytes through a nonclassical pathway in response to adipocyte lipase activity. J Lipid Res 2014; 56:423-34. [PMID: 25535287 DOI: 10.1194/jlr.m055798] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Adipocyte fatty acid binding protein 4, aP2, contributes to the pathogenesis of several common diseases including type 2 diabetes, atherosclerosis, fatty liver disease, asthma, and cancer. Although the biological functions of aP2 have classically been attributed to its intracellular action, recent studies demonstrated that aP2 acts as an adipokine to regulate systemic metabolism. However, the mechanism and regulation of aP2 secretion remain unknown. Here, we demonstrate a specific role for lipase activity in aP2 secretion from adipocytes in vitro and ex vivo. Our results show that chemical inhibition of lipase activity, genetic deficiency of adipose triglyceride lipase and, to a lesser extent, hormone-sensitive lipase blocked aP2 secretion from adipocytes. Increased lipolysis and lipid availability also contributed to aP2 release as determined in perilipin1-deficient adipose tissue explants ex vivo and upon treatment with lipids in vivo and in vitro. In addition, we identify a nonclassical route for aP2 secretion in exosome-like vesicles and show that aP2 is recruited to this pathway upon stimulation of lipolysis. Given the effect of circulating aP2 on glucose metabolism, these data support that targeting aP2 or the lipolysis-dependent secretory pathway may present novel mechanistic and translational opportunities in metabolic disease.
Collapse
Affiliation(s)
- Meric Erikci Ertunc
- Department of Genetics and Complex Diseases Harvard School of Public Health, Boston, MA Sabri Ülker Center, Harvard School of Public Health, Boston, MA
| | - Jørgen Sikkeland
- Department of Biosciences, National Institutes of Health, Bethesda, MD
| | - Federico Fenaroli
- Department of Biosciences, National Institutes of Health, Bethesda, MD
| | - Gareth Griffiths
- Department of Biosciences, National Institutes of Health, Bethesda, MD
| | - Mathew P Daniels
- University of Oslo, Oslo, Norway; and National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Haiming Cao
- University of Oslo, Oslo, Norway; and National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Fahri Saatcioglu
- Department of Biosciences, National Institutes of Health, Bethesda, MD
| | - Gökhan S Hotamisligil
- Department of Genetics and Complex Diseases Harvard School of Public Health, Boston, MA Sabri Ülker Center, Harvard School of Public Health, Boston, MA
| |
Collapse
|
39
|
Moylan CA, Pang H, Michelotti G, Diehl AM. Reply: To PMID 23913408. Hepatology 2014; 60:1445-6. [PMID: 24493022 PMCID: PMC4119863 DOI: 10.1002/hep.27038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/28/2014] [Indexed: 12/07/2022]
Affiliation(s)
- Cynthia A. Moylan
- Department of Gastroenterology, Biostatistics and Bioinformatics; Duke University; Durham NC
| | - Herbert Pang
- Department of Gastroenterology, Biostatistics and Bioinformatics; Duke University; Durham NC
| | - Gregory Michelotti
- Department of Gastroenterology, Biostatistics and Bioinformatics; Duke University; Durham NC
| | - Anna Mae Diehl
- Department of Gastroenterology, Biostatistics and Bioinformatics; Duke University; Durham NC
| |
Collapse
|
40
|
Affiliation(s)
- Manlio Vinciguerra
- University College London (UCL) Institute for Liver and Digestive Health, UCL Medical School Royal Free Campus, London, UK
| |
Collapse
|
41
|
Dassi E, Quattrone A. Fingerprints of a message: integrating positional information on the transcriptome. Front Cell Dev Biol 2014; 2:39. [PMID: 25364746 PMCID: PMC4207014 DOI: 10.3389/fcell.2014.00039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 07/30/2014] [Indexed: 12/24/2022] Open
Abstract
The recent explosion of high-throughput sequencing methods applied to RNA molecules is allowing us to go beyond the description of sequence variants and their relative abundances, as measured by RNA-seq. We can now probe for RNA engagement in polysomes, for ribosomes, RNA binding proteins and microRNAs binding sites, for RNA secondary structure and for RNA methylation. These descriptors produce a steadily growing multidimensional array of positional information on RNA sequences, whose effective integration only would bring to decipher the regulatory interplay occurring between proteins, RNAs and their modifications on the transcriptome. This interplay ultimately dictates the degree of mRNA availability to translation, and thus the occurrence of cell phenotypes. However, several issues in data presentation are slowing down effective integration. A standardization effort for new dataset types produced should be urgently undertaken to solve these issues. Providing uniformed experimental details along with datasets processed to be directly usable and employing shared formats would greatly simplify integration efforts, strengthening hypotheses stemming from correlative observations and eventually bringing to mechanistic understanding.
Collapse
Affiliation(s)
- Erik Dassi
- Laboratory of Translational Genomics, Centre for Integrative Biology, University of Trento Trento, Italy
| | - Alessandro Quattrone
- Laboratory of Translational Genomics, Centre for Integrative Biology, University of Trento Trento, Italy
| |
Collapse
|
42
|
Dong S, Jia C, Zhang S, Fan G, Li Y, Shan P, Sun L, Xiao W, Li L, Zheng Y, Liu J, Wei H, Hu C, Zhang W, Chin YE, Zhai Q, Li Q, Liu J, Jia F, Mo Q, Edwards DP, Huang S, Chan L, O'Malley BW, Li X, Wang C. The REGγ proteasome regulates hepatic lipid metabolism through inhibition of autophagy. Cell Metab 2013; 18:380-91. [PMID: 24011073 PMCID: PMC3813599 DOI: 10.1016/j.cmet.2013.08.012] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 06/22/2013] [Accepted: 08/09/2013] [Indexed: 12/17/2022]
Abstract
The ubiquitin-proteasome and autophagy-lysosome systems are major proteolytic pathways, whereas function of the Ub-independent proteasome pathway is yet to be clarified. Here, we investigated roles of the Ub-independent REGγ-proteasome proteolytic system in regulating metabolism. We demonstrate that mice deficient for the proteasome activator REGγ exhibit dramatic autophagy induction and are protected against high-fat diet (HFD)-induced liver steatosis through autophagy. Molecularly, prevention of steatosis in the absence of REGγ entails elevated SirT1, a deacetylase regulating autophagy and metabolism. REGγ physically binds to SirT1, promotes its Ub-independent degradation, and inhibits its activity to deacetylate autophagy-related proteins, thereby inhibiting autophagy under normal conditions. Moreover, REGγ and SirT1 dissociate from each other through a phosphorylation-dependent mechanism under energy-deprived conditions, unleashing SirT1 to stimulate autophagy. These observations provide a function of the REGγ proteasome in autophagy and hepatosteatosis, underscoring mechanistically a crosstalk between the proteasome and autophagy degradation system in the regulation of lipid homeostasis.
Collapse
Affiliation(s)
- Shuxian Dong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai, 200241, China; Department of Molecular and Cellular Biology, Department of Medicine, The Dan L. Duncan Cancer Center, The Diabetes Research Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Chung BKS, Yusufi FNK, Yang Y, Lee DY. Enhanced expression of codon optimized interferon gamma in CHO cells. J Biotechnol 2013; 167:326-33. [PMID: 23876479 DOI: 10.1016/j.jbiotec.2013.07.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/06/2013] [Accepted: 07/10/2013] [Indexed: 11/18/2022]
Abstract
The human interferon-gamma (IFN-γ) is a potential drug candidate for treating various diseases due to its immunomodulatory properties. The efficient production of this protein can be achieved through a popular industrial host, Chinese hamster ovary (CHO) cells. However, recombinant expression of foreign proteins is typically suboptimal possibly due to the usage of non-native codon patterns within the coding sequence. Therefore, we demonstrated the application of a recently developed codon optimization approach to design synthetic IFN-γ coding sequences for enhanced heterologous expression in CHO cells. For codon optimization, earlier studies suggested to establish the target usage distribution pattern in terms of selected design parameters such as individual codon usage (ICU) and codon context (CC), mainly based on the host's highly expressed genes. However, our RNA-Seq based transcriptome profiling indicated that the ICU and CC distribution patterns of different gene expression classes in CHO cell are relatively similar, unlike other microbial expression hosts, Escherichia coli and Saccharomyces cerevisiae. This finding was further corroborated through the in vivo expression of various ICU and CC optimized IFN-γ in CHO cells. Interestingly, the CC-optimized genes exhibited at least 13-fold increase in expression level compared to the wild-type IFN-γ while a maximum of 10-fold increase was observed for the ICU-optimized genes. Although design criteria based on individual codons, such as ICU, have been widely used for gene optimization, our experimental results suggested that codon context is relatively more effective parameter for improving recombinant IFN-γ expression in CHO cells.
Collapse
Affiliation(s)
- Bevan Kai-Sheng Chung
- Bioprocessing Technology Institute, Agency for Science, Technology and Research-A*STAR, 20 Biopolis Way #06-01, Singapore 138668, Singapore
| | | | | | | |
Collapse
|
44
|
Crunk AE, Monks J, Murakami A, Jackman M, MacLean PS, Ladinsky M, Bales ES, Cain S, Orlicky DJ, McManaman JL. Dynamic regulation of hepatic lipid droplet properties by diet. PLoS One 2013; 8:e67631. [PMID: 23874434 PMCID: PMC3708958 DOI: 10.1371/journal.pone.0067631] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 05/20/2013] [Indexed: 12/21/2022] Open
Abstract
Cytoplasmic lipid droplets (CLD) are organelle-like structures that function in neutral lipid storage, transport and metabolism through the actions of specific surface-associated proteins. Although diet and metabolism influence hepatic CLD levels, how they affect CLD protein composition is largely unknown. We used non-biased, shotgun, proteomics in combination with metabolic analysis, quantitative immunoblotting, electron microscopy and confocal imaging to define the effects of low- and high-fat diets on CLD properties in fasted-refed mice. We found that the hepatic CLD proteome is distinct from that of CLD from other mammalian tissues, containing enzymes from multiple metabolic pathways. The hepatic CLD proteome is also differentially affected by dietary fat content and hepatic metabolic status. High fat feeding markedly increased the CLD surface density of perilipin-2, a critical regulator of hepatic neutral lipid storage, whereas it reduced CLD levels of betaine-homocysteine S-methyltransferase, an enzyme regulator of homocysteine levels linked to fatty liver disease and hepatocellular carcinoma. Collectively our data demonstrate that the hepatic CLD proteome is enriched in metabolic enzymes, and that it is qualitatively and quantitatively regulated by diet and metabolism. These findings implicate CLD in the regulation of hepatic metabolic processes, and suggest that their properties undergo reorganization in response to hepatic metabolic demands.
Collapse
Affiliation(s)
- Amanda E. Crunk
- Graduate Program of Molecular Biology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- Division of Basic Reproductive Sciences, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Jenifer Monks
- Division of Basic Reproductive Sciences, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Aya Murakami
- Graduate Program of Molecular Biology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Matthew Jackman
- Division of Endocrinology and Metabolism, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- The Center for Human Nutrition, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- The Colorado Obesity Research Initiative, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Paul S. MacLean
- Division of Endocrinology and Metabolism, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- The Center for Human Nutrition, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- The Colorado Obesity Research Initiative, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Mark Ladinsky
- The Boulder Laboratory for 3D Electron Microscopy, University of Colorado Boulder, Boulder Colorado, United States of America
| | - Elise S. Bales
- Division of Basic Reproductive Sciences, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Shannon Cain
- The Colorado Obesity Research Initiative, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - David J. Orlicky
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - James L. McManaman
- Graduate Program of Molecular Biology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- Division of Basic Reproductive Sciences, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- The Center for Human Nutrition, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- The Colorado Obesity Research Initiative, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
45
|
Cao H, Sekiya M, Ertunc ME, Burak MF, Mayers JR, White A, Inouye K, Rickey LM, Ercal BC, Furuhashi M, Tuncman G, Hotamisligil GS. Adipocyte lipid chaperone AP2 is a secreted adipokine regulating hepatic glucose production. Cell Metab 2013; 17:768-78. [PMID: 23663740 PMCID: PMC3755450 DOI: 10.1016/j.cmet.2013.04.012] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/19/2013] [Accepted: 04/17/2013] [Indexed: 11/30/2022]
Abstract
Proper control of hepatic glucose production is central to whole-body glucose homeostasis, and its disruption plays a major role in diabetes. Here, we demonstrate that although established as an intracellular lipid chaperone, aP2 is in fact actively secreted from adipocytes to control liver glucose metabolism. Secretion of aP2 from adipocytes is regulated by fasting- and lipolysis-related signals, and circulating aP2 levels are markedly elevated in mouse and human obesity. Recombinant aP2 stimulates glucose production and gluconeogenic activity in primary hepatocytes in vitro and in lean mice in vivo. In contrast, neutralization of secreted aP2 reduces glucose production and corrects the diabetic phenotype of obese mice. Hyperinsulinemic-euglycemic and pancreatic clamp studies upon aP2 administration or neutralization demonstrated actions of aP2 in liver. We conclude that aP2 is an adipokine linking adipocytes to hepatic glucose production and that neutralizing secreted aP2 may represent an effective therapeutic strategy against diabetes.
Collapse
Affiliation(s)
- Haiming Cao
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Otoda T, Takamura T, Misu H, Ota T, Murata S, Hayashi H, Takayama H, Kikuchi A, Kanamori T, Shima KR, Lan F, Takeda T, Kurita S, Ishikura K, Kita Y, Iwayama K, Kato KI, Uno M, Takeshita Y, Yamamoto M, Tokuyama K, Iseki S, Tanaka K, Kaneko S. Proteasome dysfunction mediates obesity-induced endoplasmic reticulum stress and insulin resistance in the liver. Diabetes 2013; 62:811-24. [PMID: 23209186 PMCID: PMC3581221 DOI: 10.2337/db11-1652] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chronic endoplasmic reticulum (ER) stress is a major contributor to obesity-induced insulin resistance in the liver. However, the molecular link between obesity and ER stress remains to be identified. Proteasomes are important multicatalytic enzyme complexes that degrade misfolded and oxidized proteins. Here, we report that both mouse models of obesity and diabetes and proteasome activator (PA)28-null mice showed 30-40% reduction in proteasome activity and accumulation of polyubiquitinated proteins in the liver. PA28-null mice also showed hepatic steatosis, decreased hepatic insulin signaling, and increased hepatic glucose production. The link between proteasome dysfunction and hepatic insulin resistance involves ER stress leading to hyperactivation of c-Jun NH₂-terminal kinase in the liver. Administration of a chemical chaperone, phenylbutyric acid (PBA), partially rescued the phenotypes of PA28-null mice. To confirm part of the results obtained from in vivo experiments, we pretreated rat hepatoma-derived H4IIEC3 cells with bortezomib, a selective inhibitor of the 26S proteasome. Bortezomib causes ER stress and insulin resistance in vitro--responses that are partly blocked by PBA. Taken together, our data suggest that proteasome dysfunction mediates obesity-induced ER stress, leading to insulin resistance in the liver.
Collapse
Affiliation(s)
- Toshiki Otoda
- Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
| | - Toshinari Takamura
- Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
- Corresponding author: Toshinari Takamura,
| | - Hirofumi Misu
- Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
| | - Tsuguhito Ota
- Frontier Science Organization, Kanazawa University, Ishikawa, Japan
| | - Shigeo Murata
- Laboratory of Protein Metabolism, Department of Integrated Biology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Hiroto Hayashi
- Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
| | - Hiroaki Takayama
- Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
| | - Akihiro Kikuchi
- Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
| | - Takehiro Kanamori
- Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
| | - Kosuke R. Shima
- Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
| | - Fei Lan
- Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
| | - Takashi Takeda
- Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
| | - Seiichiro Kurita
- Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
| | - Kazuhide Ishikura
- Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
| | - Yuki Kita
- Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
| | - Kaito Iwayama
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Ken-ichiro Kato
- Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
| | - Masafumi Uno
- Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
| | - Yumie Takeshita
- Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
| | - Miyuki Yamamoto
- Department of Histology and Embryology, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
| | - Kunpei Tokuyama
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Shoichi Iseki
- Department of Histology and Embryology, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
| | - Keiji Tanaka
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Shuichi Kaneko
- Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
| |
Collapse
|
47
|
Carroll AJ. The Arabidopsis Cytosolic Ribosomal Proteome: From form to Function. FRONTIERS IN PLANT SCIENCE 2013; 4:32. [PMID: 23459595 PMCID: PMC3585428 DOI: 10.3389/fpls.2013.00032] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 02/10/2013] [Indexed: 05/20/2023]
Abstract
The cytosolic ribosomal proteome of Arabidopsis thaliana has been studied intensively by a range of proteomics approaches and is now one of the most well characterized eukaryotic ribosomal proteomes. Plant cytosolic ribosomes are distinguished from other eukaryotic ribosomes by unique proteins, unique post-translational modifications and an abundance of ribosomal proteins for which multiple divergent paralogs are expressed and incorporated. Study of the A. thaliana ribosome has now progressed well beyond a simple cataloging of protein parts and is focused strongly on elucidating the functions of specific ribosomal proteins, their paralogous isoforms and covalent modifications. This review summarises current knowledge concerning the Arabidopsis cytosolic ribosomal proteome and highlights potentially fruitful areas of future research in this fast moving and important area.
Collapse
Affiliation(s)
- Adam J. Carroll
- Australian Research Council Centre of Excellence in Plant Energy Biology, Australian National UniversityCanberra, ACT, Australia
- *Correspondence: Adam J. Carroll, Australian Research Council Centre of Excellence in Plant Energy Biology, Australian National University, ACT 0200, Canberra, Australia. e-mail:
| |
Collapse
|