1
|
Chen N, He W, Chen X, Li Y, Cheng X, Liu L, Qian H, Qiao F, Cheng F, Deng Y, Wu W, Feng B, Wang Y. Distribution and characteristics of bacteria on the hand during oropharyngeal swab collection: Which handwashing points are affected? J Clin Nurs 2024; 33:4708-4716. [PMID: 38519848 PMCID: PMC11579574 DOI: 10.1111/jocn.17134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 03/01/2024] [Accepted: 03/13/2024] [Indexed: 03/25/2024]
Abstract
AIMS To identify the contaminated areas of the hand collection and analyse the distribution characteristics of bacteria in the hand after swab collection. DESIGN This study used a cross-sectional design. METHODS A cross-sectional study sampling 50 pairs of hands (sampling hand and auxiliary hand) of healthcare workers was performed. Ten samples were collected from each participant. The optimal hand hygiene rates and bacterial colony counts of the whole hand and different hand sections without hand hygiene were identified as the primary outcomes. RESULTS The optimal hand hygiene rates of the sampling hand and auxiliary hand were 88.8% (222/250) and 91.6% (229/250), respectively. The lowest optimal hand hygiene rates for the sampling hand and the auxiliary hand were both on the dorsal side of the finger and the dorsum of the hand (86.0%, 86.0% vs. 90.0%, 86.0%); the optimal hand hygiene rates for both sites of the sampling hand were 86.0% (43/50), and the optimal hand hygiene rates for the auxiliary hand were 90.0% (45/50) and 86.0% (43/50). The bacteria colony counts did not differ between the sampling hands and auxiliary hand. CONCLUSIONS The dorsal side of the finger and dorsum of the hand were the most likely to be contaminated during oropharyngeal swab collection. Therefore, it is essential to pay extra attention to hand hygiene care of these two sites during the collection process to minimize the risk of cross-contamination. REPORTING METHOD The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) guidelines were adopted in this study.
Collapse
Affiliation(s)
- Nuo Chen
- School of Public Health and ManagementHubei University of MedicineShiyanChina
- Department of Infection Prevention and Control ManagementZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Wenbin He
- Department of Colorectal and Anal SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Xiaoyan Chen
- Department of NursingZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Yan Li
- Department of Infection Prevention and Control ManagementZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Xiaolin Cheng
- Department of NursingZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Li Liu
- Department of Building ScienceTsinghua UniversityBeijingChina
- Hubei Engineering Center for Infectious Disease Prevention, Control and TreatmentWuhanChina
| | - Hua Qian
- Hubei Engineering Center for Infectious Disease Prevention, Control and TreatmentWuhanChina
- School of Energy and EnvironmentSoutheast UniversityNanjingChina
| | - Fu Qiao
- Infection Prevention and Control Department, West China HospitalSichuan UniversityChengduChina
| | - Fan Cheng
- Department of Infection Prevention and Control ManagementZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Yi Deng
- Department of Building ScienceTsinghua UniversityBeijingChina
| | - Wenwen Wu
- School of Public Health and ManagementHubei University of MedicineShiyanChina
- Hubei Provincial Clinical Medical Research Center for HypertensionShiyanChina
| | - Bilong Feng
- Department of NursingZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Engineering Center for Infectious Disease Prevention, Control and TreatmentWuhanChina
| | - Ying Wang
- Department of Infection Prevention and Control ManagementZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Engineering Center for Infectious Disease Prevention, Control and TreatmentWuhanChina
| |
Collapse
|
2
|
Zhang L, Fang Z, Li J, Huang Z, Tie X, Li H, Li J, Zhang Y, Zhang Y, Chen K. Research progress on environmental stability of SARS-CoV-2 and influenza viruses. Front Microbiol 2024; 15:1463056. [PMID: 39545235 PMCID: PMC11560908 DOI: 10.3389/fmicb.2024.1463056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/18/2024] [Indexed: 11/17/2024] Open
Abstract
We reviewed research on SARS-CoV-2 and influenza virus detection on surfaces, their persistence under various conditions, and response to disinfectants. Viral contamination in community and healthcare settings was analyzed, emphasizing survival on surfaces influenced by temperature, pH, and material. Findings showed higher concentrations enhance survivability at room temperature, whereas stability increases at 4°C. Both viruses decline in low pH and high heat, with influenza affected by salinity. On various material surfaces, SARS-CoV-2 and influenza viruses demonstrate considerable variations in survival durations, and SARS-CoV-2 is more stable than influenza virus. On the skin, both virus types can persist for ≥2 h. Next, we delineated the virucidal efficacy of disinfectants against SARS-CoV-2 and influenza viruses. In daily life, exposure to ethanol (70%), isopropanol (70%), bleach (10%), or hydrogen peroxide (1-3%) for 15-30 min can effectively inactive various SARS-CoV-2 variants. Povidone-iodine (1 mg/mL, 1 min) or cetylpyridinium chloride (0.1 mg/mL, 2 min) may be used to inactive different SARS-CoV-2 variants in the mouth. Chlorine disinfectants (500 mg/L) or ultraviolet light (222 nm) can effectively inhibit different SARS-CoV-2 variants in public spaces. In conclusion, our study provides a scientific basis and practical guidance for reduction of viral persistence (retention of infectivity) on surfaces and environmental cleanliness.
Collapse
Affiliation(s)
- Ling Zhang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Zhongbiao Fang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jiaxuan Li
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Zhiwei Huang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaotian Tie
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongyu Li
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jianhua Li
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yanjun Zhang
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yuanyuan Zhang
- Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Keda Chen
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| |
Collapse
|
3
|
Shipley R, Seekings AH, Byrne AMP, Shukla S, James J, Goharriz H, Lean FZX, Núñez A, Fooks AR, McElhinney LM, Brookes SM. SARS-CoV-2 infection and transmission via the skin to oro-nasal route with the production of bioaerosols in the ferret model. J Gen Virol 2024; 105. [PMID: 39292223 PMCID: PMC11410047 DOI: 10.1099/jgv.0.002022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Direct and indirect transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been attributed to virus survival in droplets, bioaerosols and on fomites including skin and surfaces. Survival of SARS-CoV-2 variants of concern (Alpha, Beta, Gamma, and Delta) on the skin and virus transference following rounds of skin-to-skin contact were assessed on porcine skin as a surrogate for human skin. SARS-CoV-2 variants were detectable on skin by RT-qPCR after 72 h at biologically relevant temperatures (35.2 °C) with viral RNA (vRNA) detected after ten successive skin-to-skin contacts. Skin-to-skin virus transmission to establish infection in ferrets as a model for mild/asymptomatic SARS-CoV-2 infection in mustelids and humans was also investigated and compared to intranasal ferret inoculation. Naïve ferrets exposed to Delta variant SARS-CoV-2 in a 'wet' or 'dry' form on porcine skin resulted in robust infection with shedding detectable for up to 14 days post-exposure, at comparable viral loads to ferrets inoculated intranasally. Transmission of SARS-CoV-2 to naïve ferrets in direct contact with infected ferrets was achieved, with environmental contamination detected from ferret fur swabs and air samples. Genetic substitutions were identified in bioaerosol samples acquired following single contact passage in ferrets, including Spike, ORF1ab, and ORF3a protein sequences, suggesting a utility for monitoring host adaptation and virus evolution via air sampling. The longevity of SARS-CoV-2 variants survival directly on the skin and skin-to-skin transference, enabling subsequent infection via the skin to oro-nasal contact route, could represent a pathway for SARS-CoV-2 infection with implications to public and veterinary health.
Collapse
Affiliation(s)
- Rebecca Shipley
- Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey, KT15 3NB, UK
| | - Amanda H Seekings
- Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey, KT15 3NB, UK
| | - Alexander M P Byrne
- Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey, KT15 3NB, UK
- Present address: Worldwide Influenza Centre, The Francis Crick Institute, Midland Road, London, NW1 1AT, UK
| | - Shweta Shukla
- Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey, KT15 3NB, UK
| | - Joe James
- Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey, KT15 3NB, UK
| | - Hooman Goharriz
- Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey, KT15 3NB, UK
| | - Fabian Z X Lean
- Pathology and Animal Sciences Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey, KT15 3NB, UK
- Department of Pathobiology and Population Sciences, Royal Veterinary College, North Mymms, Hertfordshire, UK
| | - Alejandro Núñez
- Pathology and Animal Sciences Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey, KT15 3NB, UK
| | - Anthony R Fooks
- Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey, KT15 3NB, UK
| | - Lorraine M McElhinney
- Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey, KT15 3NB, UK
| | - Sharon M Brookes
- Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey, KT15 3NB, UK
| |
Collapse
|
4
|
Xu Y, Jin T, Bai Y, Zhou X, Lv H, Dai C, Wu Z, Xu Q. Plasma-activated water: Candidate hand disinfectant for SARS-CoV-2 transmission disruption. Heliyon 2024; 10:e34337. [PMID: 39144986 PMCID: PMC11320155 DOI: 10.1016/j.heliyon.2024.e34337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/19/2024] [Accepted: 07/08/2024] [Indexed: 08/16/2024] Open
Abstract
The global epidemic caused by SARS-CoV-2 has brought about worldwide burden and a sense of danger for more than two years, leading to a wide range of social, public health, economic and environmental issues. Self-inoculation through hands has been the primary way for environmental transmission of SARS-CoV-2. Plasma-activated water (PAW) has been reported as an effective, safe and environmentally friendly disinfectant against SARS-CoV-2. However, the inactivating effect of PAW on SARS-CoV-2 located on skin surface and its underlying mechanism of action have not been elucidated. In this study, PAW was prepared using an air-pressure plasma jet device. The antiviral efficiency of PAW1, PAW3, and PAW5 on the SARS-CoV-2 pseudovirus was 8.20 % (±2.88 %), 46.24 % (±1.79 %), and 91.71 % (±0.47 %), respectively. Additionally, determination of PAW's physicochemical properties, identification of major sterile effector in PAW, transmission electron microscopy analysis, malondialdehyde (MDA) assessment, SDS-PAGE, ELISA, and qPCR were conducted to reveal the virucidal mechanism of PAW. Our experimental results suggested that peroxynitrite, which was generated by the synergism of acidic environment and reactive species, was the major sterile effector of PAW. Furthermore, we found that PAW treatment significantly inactivated SARS-CoV-2 pseudovirus through the destruction of its structure of and the degradation of the viral RNA. Therefore, the possible mechanism for the structural destruction of SARS-COV-2 by PAW is through the action of peroxynitrite generated by the synergism of acidic environment and reactive species, which might react with and destroy the lipid envelope of SARS-CoV-2 pseudovirus. Nevertheless, further studies are required to shed light on the interaction mechanism of PAW-inherent RONS and viral components, and to confirm the determinant factors for virus inactivation of SARS-COV-2 by PAW. Therefore, PAW may be a candidate hand disinfectant used to disrupt the transmission of SARS-CoV-2.
Collapse
Affiliation(s)
- Yong Xu
- Anhui Academy of Medical Sciences, Anhui Medical College, Hefei, China
| | - Tao Jin
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, China
| | - Yu Bai
- Anhui Academy of Medical Sciences, Anhui Medical College, Hefei, China
| | - Xiuhong Zhou
- Anhui Academy of Medical Sciences, Anhui Medical College, Hefei, China
| | - Han Lv
- Anhui Academy of Medical Sciences, Anhui Medical College, Hefei, China
| | - Chenwei Dai
- Anhui Academy of Medical Sciences, Anhui Medical College, Hefei, China
| | - Zhengwei Wu
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, China
| | - Qinghua Xu
- Anhui Academy of Medical Sciences, Anhui Medical College, Hefei, China
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| |
Collapse
|
5
|
Cui Y, Wu H, Zhang S, Zhang Z, Cheng G, Sun R, Shi Y, Hu Y. Nanoscale hyperthermia mesostructures for sustainable antimicrobial design. CELL REPORTS. PHYSICAL SCIENCE 2024; 5:102081. [PMID: 39092206 PMCID: PMC11293369 DOI: 10.1016/j.xcrp.2024.102081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Sustainability is critical in addressing global challenges posed by prolonged pandemics that impact health, economies, and the environment. Here, we introduce a molecular engineering approach for thermoregulated antimicrobial management inspired by firewalking rituals. The study uses in situ spectroscopy and multi-scale modeling to validate a hierarchical design. Efficient light-to-thermal energy conversion is achieved by engineering the molecular band structure. Rapid nanoscale hyperthermia is facilitated through thermal engineering. This approach significantly reduces the half-life of pathogens such as Escherichia coli, influenza A, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to 1.4 min while maintaining a low perceived temperature on human skin. Standard disease infection and epidemic models show this technology's potential to flatten outbreak curves and delay peak infection rates, which is crucial during the early stages of pandemics when developing vaccines and antiviral drugs takes time. The scalable manufacturing and broad antimicrobial applicability hold great promise for controlling emerging infectious diseases and diverse bioprotective applications.
Collapse
Affiliation(s)
- Ying Cui
- Department of Mechanical and Aerospace Engineering, School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Huan Wu
- Department of Mechanical and Aerospace Engineering, School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shilei Zhang
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zhihan Zhang
- Department of Mechanical and Aerospace Engineering, School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Genhong Cheng
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ren Sun
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yuan Shi
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yongjie Hu
- Department of Mechanical and Aerospace Engineering, School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Lead contact
| |
Collapse
|
6
|
de Sá Leitão CS, dos Santos CHDA, Valente J, Maia B, Pereira RS, Batista LM, Amorim FG, Fé-Gonçalves LM, Lacerda M, Almeida-Val F, Val AL. Amazon tropical fishes of commercial interest show human-cell contamination but no SARS-CoV-2 in a real-life scenario. PLoS One 2024; 19:e0306985. [PMID: 39008462 PMCID: PMC11249228 DOI: 10.1371/journal.pone.0306985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Amazonas was one of the most impacted Brazilian states by the COVID-19 pandemic. Mortality rates were high, and the health systems collapsed. It is important to identify possible intermediate reservoirs to avoid animal-to-human contamination. Several tropical fish are of commercial interest and are sold in large open-air markets in the region, representing a large economic and dietary importance. OBJECTIVES This study aimed to verify if fish species of commercial importance, aerosols, and fish wastewater in local open-air markets, at a major capital city in the western Brazilian Amazon, are contaminated by SARS-CoV-2. METHODS 488 fish, 50 aerosol, and 45 wastewater samples were analyzed for the presence of SARS-CoV-2. The samples were subjected to extraction using the BIOGENE Viral DNA/RNA Extraction kit, and the molecular diagnosis was tested for SARS-CoV-2 using the Bio-Manguinhos SARS-CoV-2 (EDx) Molecular Kit. RESULTS It was not possible to detect the virus (Ct≤40, for Gene E) in these samples, however, in 181 samples of fish it was possible to detect the human RP gene (Ct≤35, for the RP Gene), indicating human contact. There was a high number of COVID-19 diagnoses in all city districts in which the samples were collected, showing that SARS-CoV-2 was circulating. CONCLUSION This study indicates that fish of local commercial importance do not carry SARS-CoV-2 viral particles, despite circulation of SARS-CoV-2, and are not an important source of animal-to-human contamination. Despite these results, the human RP gene was found detectable in fish, air, and fish wastewater, showing that such places may carry human pathogens.
Collapse
Affiliation(s)
- Carolina Sousa de Sá Leitão
- Laboratório de Ecofisiologia e Evolução Molecular, Instituto Nacional de Pesquisas da Amazônia, Laboratório de Ecofisiologia e Evolução Molecular, Manaus, Amazonas (AM), Brasil
| | - Carlos Henrique dos Anjos dos Santos
- Laboratório de Ecofisiologia e Evolução Molecular, Instituto Nacional de Pesquisas da Amazônia, Laboratório de Ecofisiologia e Evolução Molecular, Manaus, Amazonas (AM), Brasil
- Unidade Acadêmica de Serra Talhada, Universidade Federal Rural de Pernambuco, Serra Talhada, Pernambuco (PE), Brasil
| | | | - Bernardo Maia
- Universidade do Estado do Amazonas, Manaus, AM, Brasil
| | - Rogério Santos Pereira
- Laboratório de Ecofisiologia e Evolução Molecular, Instituto Nacional de Pesquisas da Amazônia, Laboratório de Ecofisiologia e Evolução Molecular, Manaus, Amazonas (AM), Brasil
| | - Larissa Matos Batista
- Laboratório de Ecofisiologia e Evolução Molecular, Instituto Nacional de Pesquisas da Amazônia, Laboratório de Ecofisiologia e Evolução Molecular, Manaus, Amazonas (AM), Brasil
| | - Felipe Guedes Amorim
- Laboratório de Ecofisiologia e Evolução Molecular, Instituto Nacional de Pesquisas da Amazônia, Laboratório de Ecofisiologia e Evolução Molecular, Manaus, Amazonas (AM), Brasil
| | | | - Marcus Lacerda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brasil
- Instituto Leonidas e Maria Deane, FIOCRUZ-AM, Manaus, AM, Brasil
| | - Fernando Almeida-Val
- Universidade do Estado do Amazonas, Manaus, AM, Brasil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brasil
| | - Adalberto Luis Val
- Laboratório de Ecofisiologia e Evolução Molecular, Instituto Nacional de Pesquisas da Amazônia, Laboratório de Ecofisiologia e Evolução Molecular, Manaus, Amazonas (AM), Brasil
| |
Collapse
|
7
|
Hiep NT, Nguyen MK, Nhut HT, Hung NTQ, Manh NC, Lin C, Chang SW, Um MJ, Nguyen DD. A review on sterilization methods of environmental decontamination to prevent the coronavirus SARS-CoV-2 (COVID-19 virus): A new challenge towards eco-friendly solutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166021. [PMID: 37543323 DOI: 10.1016/j.scitotenv.2023.166021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/13/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
In recent years, the COVID-19 pandemic is currently wreaking havoc on the planet. SARS-CoV-2, the Severe Acute Respiratory Syndrome Coronavirus, is the current term for this outbreak. Reports about this novel coronavirus have been presented since the pandemic's breakout, and they have demonstrated that it transmits rapidly from person to person, primarily by droplets in the air. Findings have illustrated that SARS-CoV-2 can survive on surfaces from hours to days. Therefore, it is essential to find practical solutions to reduce the virus's impact on human health and the environment. This work evaluated common sterilization methods that can decontaminate the environment and items. The goal is that healthcare facilities, disease prevention organizations, and local communities can overcome the new challenge of finding eco-friendly solutions. Further, a foundation of information encompassing various sterilization procedures and highlighting their limits to choose the most appropriate method to stop disease-causing viruses in the new context has been presented. The findings of this crucial investigation contribute to gaining insight into the comprehensive sterilization approaches against the coronavirus for human health protection and sustainable environmental development.
Collapse
Affiliation(s)
- Nguyen Trung Hiep
- Research Institute for Sustainable Development, Ho Chi Minh University of Natural Resources and Environment, 236B Le Van Sy, Ward 1, Tan Binh District, Ho Chi Minh City 700000, Viet Nam
| | - Minh-Ky Nguyen
- Faculty of Environment and Natural Resources, Nong Lam University, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Viet Nam; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Huynh Tan Nhut
- Faculty of Environment and Natural Resources, Nong Lam University, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Viet Nam
| | - Nguyen Tri Quang Hung
- Faculty of Environment and Natural Resources, Nong Lam University, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Viet Nam.
| | - Nguyen Cong Manh
- Department of Aquatic and Atmospheric Environment Research, Research Institute of Biotechnology and Environment, Nong Lam University, Ho Chi Minh City 700000, Viet Nam
| | - Chitsan Lin
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - S Woong Chang
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea
| | - Myoung Jin Um
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea
| | - D Duc Nguyen
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea; Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam.
| |
Collapse
|
8
|
Xie T, Yang J, Fang C, Zhang J, Lin H, Zhu Y, Tang T, Wang C. The survival of murine hepatitis virus (a surrogate of SARS-CoV-2) on conventional packaging materials under cold chain conditions. Front Public Health 2023; 11:1319828. [PMID: 38115844 PMCID: PMC10728718 DOI: 10.3389/fpubh.2023.1319828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023] Open
Abstract
Introduction The cold chain conditions have been suggested to facilitate long-distance transmission of SARS-CoV-2, but it is unclear how viable the virus is on cold chain packaging materials. Methods This study used the MHV-JHM strain of murine hepatitis virus as a model organism to investigate the viability of SARS-CoV-2 on foam, plastic, cardboard, and wood sheets at different temperatures (-40°C, -20°C, and 4°C). In addition, the ability of peracetic acid and sodium hypochlorite to eliminate the MHV-JHM on plastic and cardboard sheets were also evaluated. Results The results indicate that MHV-JHM can survive on foam, plastic, or cardboard sheets for up to 28 days at -40°C and -20°C, and up to 14 days on foam and plastic surfaces at 4°C. Although viral nucleic acids were still detectable after storing at 4°C for 28 days, the corresponding virus titer was below the limit of quantification (LOQ). Discussion The study highlights that a positive nucleic acid test result may not indicate that the virus is still viable, and confirms that peracetic acid and sodium hypochlorite can effectively eliminate MHV-JHM on packaging materials under cold chain conditions.
Collapse
Affiliation(s)
- Tiancheng Xie
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, China
| | - Jiaxue Yang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, China
| | - Chubin Fang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, China
| | - Jing Zhang
- Technology Center of Chengdu Customs, Chengdu, China
| | - Hua Lin
- Technology Center of Chengdu Customs, Chengdu, China
| | - Yalan Zhu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, China
| | - Tian Tang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, China
| | - Chuan Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Meister TL, Kirchhoff L, Brüggemann Y, Todt D, Steinmann J, Steinmann E. Stability of pathogens on banknotes and coins: A narrative review. J Med Virol 2023; 95:e29312. [PMID: 38100621 DOI: 10.1002/jmv.29312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/28/2023] [Accepted: 11/25/2023] [Indexed: 12/17/2023]
Abstract
For the prevention of infectious diseases, knowledge about potential transmission routes is essential. Pathogens can be transmitted directly (i.e. respiratory droplets, hand-to-hand contact) or indirectly via contaminated surfaces (fomites). In particular, frequently touched objects/surfaces may serve as transmission vehicles for different clinically relevant bacterial, fungal, and viral pathogens. Banknotes and coins offer ample surface area and are frequently exchanged between individuals. Consequently, many concerns have been raised in the recent past, that banknotes and coins could serve as vectors for the transmission of disease-causing microorganisms. This review summarizes the latest research on the potential of paper currency and coins to serve as sources of pathogenic viral, bacterial, and fungal agents. In contrast to the current perception of banknotes and coins as important transmission vehicles, current evidence suggests, that banknotes and coins do not pose a particular risk of pathogen infection for the public.
Collapse
Affiliation(s)
- Toni Luise Meister
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Lisa Kirchhoff
- Institute of Medical Microbiology, University Hospital of Essen, Essen, Germany
| | - Yannick Brüggemann
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Daniel Todt
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- European Virus Bioinformatics Center (EVBC), Jena, Germany
| | - Joerg Steinmann
- Institute of Medical Microbiology, University Hospital of Essen, Essen, Germany
- Institute of Clinical Hygiene, Medical Microbiology and Infectiology, General Hospital Nürnberg, Paracelsus Medical University, Nuremberg, Germany
| | - Eike Steinmann
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
10
|
Arienzo A, Gallo V, Tomassetti F, Pitaro N, Pitaro M, Antonini G. A narrative review of alternative transmission routes of COVID 19: what we know so far. Pathog Glob Health 2023; 117:681-695. [PMID: 37350182 PMCID: PMC10614718 DOI: 10.1080/20477724.2023.2228048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023] Open
Abstract
The Coronavirus disease 19 (COVID-19) pandemics, caused by severe acute respiratory syndrome coronaviruses, SARS-CoV-2, represent an unprecedented public health challenge. Beside person-to-person contagion via airborne droplets and aerosol, which is the main SARS-CoV-2's route of transmission, alternative modes, including transmission via fomites, food and food packaging, have been investigated for their potential impact on SARS-CoV-2 diffusion. In this context, several studies have demonstrated the persistence of SARS-CoV-2 RNA and, in some cases, of infectious particles on exposed fomites, food and water samples, confirming their possible role as sources of contamination and transmission. Indeed, fomite-to-human transmission has been demonstrated in a few cases where person-to-person transmission had been excluded. In addition, recent studies supported the possibility of acquiring COVID-19 through the fecal-oro route; the occurrence of COVID-19 gastrointestinal infections, in the absence of respiratory symptoms, also opens the intriguing possibility that these cases could be directly related to the ingestion of contaminated food and water. Overall, most of the studies considered these alternative routes of transmission of low epidemiological relevance; however, it should be considered that they could play an important role, or even be prevalent, in settings characterized by different environmental and socio-economic conditions. In this review, we discuss the most recent findings regarding SARS-CoV-2 alternative transmission routes, with the aim to disclose what is known about their impact on COVID-19 spread and to stimulate research in this field, which could potentially have a great impact, especially in low-resource contexts.
Collapse
Affiliation(s)
| | | | | | | | - Michele Pitaro
- National Institute of Biostructures and Biosystems (INBB), Rome, Italy
| | - Giovanni Antonini
- National Institute of Biostructures and Biosystems (INBB), Rome, Italy
- Department of Science, Roma Tre University, Rome, Italy
| |
Collapse
|
11
|
Pitol AK, Venkatesan S, Hoptroff M, Hughes GL. Persistence of SARS-CoV-2 and its surrogate, bacteriophage Phi6, on surfaces and in water. Appl Environ Microbiol 2023; 89:e0121923. [PMID: 37902315 PMCID: PMC10686083 DOI: 10.1128/aem.01219-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/13/2023] [Indexed: 10/31/2023] Open
Abstract
IMPORTANCE The COVID-19 pandemic spurred research on the persistence of SARS-CoV-2 and its surrogates. Here we highlight the importance of evaluating viral surrogates and experimental methodologies when studying pathogen survival in the environment.
Collapse
Affiliation(s)
- Ana K. Pitol
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Samiksha Venkatesan
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Michael Hoptroff
- Unilever Research and Development, Port Sunlight, United Kingdom
| | - Grant L. Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
12
|
Ijaz MK, Sattar SA, Nims RW, Boone SA, McKinney J, Gerba CP. Environmental dissemination of respiratory viruses: dynamic interdependencies of respiratory droplets, aerosols, aerial particulates, environmental surfaces, and contribution of viral re-aerosolization. PeerJ 2023; 11:e16420. [PMID: 38025703 PMCID: PMC10680453 DOI: 10.7717/peerj.16420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
During the recent pandemic of COVID-19 (SARS-CoV-2), influential public health agencies such as the World Health Organization (WHO) and the U.S. Centers for Disease Control and Prevention (CDC) have favored the view that SARS CoV-2 spreads predominantly via droplets. Many experts in aerobiology have openly opposed that stance, forcing a vigorous debate on the topic. In this review, we discuss the various proposed modes of viral transmission, stressing the interdependencies between droplet, aerosol, and fomite spread. Relative humidity and temperature prevailing determine the rates at which respiratory aerosols and droplets emitted from an expiratory event (sneezing, coughing, etc.) evaporate to form smaller droplets or aerosols, or experience hygroscopic growth. Gravitational settling of droplets may result in contamination of environmental surfaces (fomites). Depending upon human, animal and mechanical activities in the occupied space indoors, viruses deposited on environmental surfaces may be re-aerosolized (re-suspended) to contribute to aerosols, and can be conveyed on aerial particulate matter such as dust and allergens. The transmission of respiratory viruses may then best be viewed as resulting from dynamic virus spread from infected individuals to susceptible individuals by various physical states of active respiratory emissions, instead of the current paradigm that emphasizes separate dissemination by respiratory droplets, aerosols or by contaminated fomites. To achieve the optimum outcome in terms of risk mitigation and infection prevention and control (IPAC) during seasonal infection peaks, outbreaks, and pandemics, this holistic view emphasizes the importance of dealing with all interdependent transmission modalities, rather than focusing on one modality.
Collapse
Affiliation(s)
- M. Khalid Ijaz
- Global Research & Development for Lysol and Dettol, Reckitt Benckiser LLC, Montvale, NJ, United States of America
| | - Syed A. Sattar
- Department of Biochemistry, Microbiology & Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Stephanie A. Boone
- Water & Energy Sustainable Technology Center, University of Arizona, Tucson, AZ, United States of America
| | - Julie McKinney
- Global Research & Development for Lysol and Dettol, Reckitt Benckiser LLC, Montvale, NJ, United States of America
| | - Charles P. Gerba
- Water & Energy Sustainable Technology Center, University of Arizona, Tucson, AZ, United States of America
| |
Collapse
|
13
|
Saulnier A, Wendling JM, Hermant B, Lepelletier D. SARS-CoV-2 transmission modes: Why and how contamination occurs around shared meals and drinks? Food Microbiol 2023; 114:104297. [PMID: 37290873 DOI: 10.1016/j.fm.2023.104297] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 06/10/2023]
Abstract
In spite of prevention measures enacted all over the world to control the COVID-19 pandemic outbreak, including mask wearing, social distancing, hand hygiene, vaccination, and other precautions, the SARS-CoV-2 virus continues to spread globally at an unabated rate of about 1 million cases per day. The specificities of superspreading events as well as evidence of human-to-human, human-to-animal and animal-to-human transmission, indoors or outdoors, raise questions about a possibly neglected viral transmission route. In addition to inhaled aerosols, which are already recognized as key contributors to transmission, the oral route represents a strong candidate, in particular when meals and drinks are shared. In this review, we intend to discuss that significant quantities of virus dispersed by large droplets during discussions at festive gatherings could explain group contamination either directly or indirectly after deposition on surfaces, food, drinks, cutlery, and several other soiled vectors. We suggest that hand hygiene and sanitary practices around objects brought to the mouth and food also need to be taken into account in order to curb transmission.
Collapse
Affiliation(s)
| | | | - Benoit Hermant
- Risk and Capability Assessment Unit, Public Health Agency of Canada, Ottawa, ON, Canada
| | - Didier Lepelletier
- Hospital Hygiene Department, Nantes University Hospital, F-44000, Nantes, France; Nantes University, IICiMEd 1155 Lab, IRS 2 Institute, F-44093, Nantes, France.
| |
Collapse
|
14
|
Yao Y, Cui Y, Gao X, Qian Y, Hu B. Contamination of personal protective equipment and environmental surfaces in Fangcang shelter hospitals. Am J Infect Control 2023; 51:926-930. [PMID: 36435405 PMCID: PMC9683851 DOI: 10.1016/j.ajic.2022.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Fangcang shelter hospitals emerged as a new public health concept after COVID-19. Data regarding contamination of Fangcang shelter environments remains scarce. This study aims to investigate the extent of SARS-CoV-2 contamination on personal protective equipment and surfaces in Fangcang hospitals. METHODS Between March and May 2022, during wave of omicron variant, a prospective study was conducted in 2 Fangcang hospitals in Shanghai, China. Swabs of personal protective equipment worn and environmental surfaces of contaminated areas, doffing rooms, and potentially contaminated areas were collected. SARS-CoV-2 RNA was detected by reverse transcription quantitative polymerase chain reaction. If viral RNA was detected, sampling was repeated after cleaning and disinfection. RESULTS A total of 602 samples were collected. 13.3% of the personal protective equipment were contaminated. Positive rate was higher in the contaminated areas (48.4%) than in the doffing rooms (11.7%) and the potentially contaminated areas (0; P<.05). Contamination was highest in patient occupied areas (67.5%). After cleaning, samples taken at previously contaminated surfaces are all negative. CONCLUSIONS SARS-CoV-2 RNA contamination is prevalent in Fangcang hospitals and healthcare workers are under risk of infection. Potentially contaminated areas and surfaces after cleaning and disinfection are negative, underlying the importance of infection control policy.
Collapse
Affiliation(s)
- Yumeng Yao
- Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yangwen Cui
- Department of Infection Control and Management, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaodong Gao
- Department of Infection Control and Management, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiyi Qian
- Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bijie Hu
- Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Infection Control and Management, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
15
|
Pan J, Gmati S, Roper BA, Prussin AJ, Hawks SA, Whittington AR, Duggal NK, Marr LC. Stability of Aerosolized SARS-CoV-2 on Masks and Transfer to Skin. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:10193-10200. [PMID: 37399494 PMCID: PMC10358342 DOI: 10.1021/acs.est.3c01581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 07/05/2023]
Abstract
The potential for masks to act as fomites in the transmission of SARS-CoV-2 has been suggested but not demonstrated experimentally or observationally. In this study, we aerosolized a suspension of SARS-CoV-2 in saliva and used a vacuum pump to pull the aerosol through six different types of masks. After 1 h at 28 °C and 80% RH, SARS-CoV-2 infectivity was not detectable on an N95 and surgical mask, was reduced by 0.7 log10 on a nylon/spandex mask, and was unchanged on a polyester mask and two different cotton masks when recovered by elution in a buffer. SARS-CoV-2 RNA remained stable for 1 h on all masks. We pressed artificial skin against the contaminated masks and detected the transfer of viral RNA but no infectious virus to the skin. The potential for masks contaminated with SARS-CoV-2 in aerosols to act as fomites appears to be less than indicated by studies involving SARS-CoV-2 in very large droplets.
Collapse
Affiliation(s)
- Jin Pan
- Civil
and Environmental Engineering, Virginia
Tech, Blacksburg, Virginia 24061, United States
| | - Selma Gmati
- Department
of Materials Science and Engineering, Virginia
Tech, Blacksburg, Virginia 24061, United States
| | - Bryce A. Roper
- Department
of Materials Science and Engineering, Virginia
Tech, Blacksburg, Virginia 24061, United States
| | - Aaron J. Prussin
- Civil
and Environmental Engineering, Virginia
Tech, Blacksburg, Virginia 24061, United States
| | - Seth A. Hawks
- Department
of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia 24061, United States
| | - Abby R. Whittington
- Department
of Materials Science and Engineering, Virginia
Tech, Blacksburg, Virginia 24061, United States
- Departments
of Chemical Engineering and Macromolecular Science and Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Nisha K. Duggal
- Department
of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia 24061, United States
| | - Linsey C. Marr
- Civil
and Environmental Engineering, Virginia
Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
16
|
Kwiatkowska R, Yaxley N, Moore G, Bennett A, Donati M, Love N, Vivancos R, Hickman M, Ready DR. Environmental sampling for SARS-CoV-2 in long term care facilities: lessons from a pilot study. Wellcome Open Res 2023; 6:235. [PMID: 38406228 PMCID: PMC10891430 DOI: 10.12688/wellcomeopenres.17047.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2023] [Indexed: 02/27/2024] Open
Abstract
Background: The SARS-CoV-2 pandemic has highlighted the risk of infection in long-term care facilities (LTCF) and the vulnerability of residents to severe outcomes. Environmental surveillance may help detect pathogens early and inform Infection Prevention and Control (IPC) measures in these settings. Methods: Upon notification of SARS-CoV-2 outbreaks, LTCF within a local authority in South West England were approached to take part in this pilot study. Investigators visited to swab common touch-points and elevated 'non-touch' surfaces (>1.5m above ground level) and samples were analysed for presence of SARS-CoV-2 genetic material (RNA). Data were collected regarding LTCF infrastructure, staff behaviours, clinical and epidemiological risk factors for infection (staff and residents), and IPC measures. Criteria for success were: recruitment of three LTCF; detection of SARS-COV-2 RNA; variation in proportion of SARS-CoV-2 positive surfaces by sampling zone; and collection of clinical and epidemiological data for context. Results: Three LTCFs were recruited, ranging in size and resident demographics. Outbreaks lasted 63, 50 and 30 days with resident attack rates of 53%, 40% and 8%, respectively. The proportion of sample sites on which SARS-CoV-2 was detected was highest in rooms occupied by infected residents and varied elsewhere in the LTCF, with low levels in a facility implementing enhanced IPC measures. The heterogeneity of settings and difficulty obtaining data made it unfeasible to assess association between environmental contamination and infection. A greater proportion of elevated surfaces tested positive for SARS-CoV-2 RNA than common touch-points. Conclusions: SARS-CoV-2 RNA can be detected in a variety of LTCF outbreak settings, both on common-touch items and in elevated sites out of reach. This suggests that further work is justified, to assess feasibility and utility of environmental sampling for infection surveillance in LTCF.
Collapse
Affiliation(s)
- Rachel Kwiatkowska
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Health Protection Research Unit in Behavioural Science and Evaluation, University of Bristol, Bristol, UK
- Field Service, Health Protection Operations, UKHSA, Bristol, UK
| | - Nicola Yaxley
- Biosafety, Air and Water Microbiology Group, UKHSA, Porton Down, Salisbury, UK
| | - Ginny Moore
- Biosafety, Air and Water Microbiology Group, UKHSA, Porton Down, Salisbury, UK
| | - Allan Bennett
- Biosafety, Air and Water Microbiology Group, UKHSA, Porton Down, Salisbury, UK
| | - Matthew Donati
- Severn Infection Sciences, North Bristol NHS Trust, Bristol, UK
- UKHSA Specialised Microbiology and Laboratories,, South West Regional Laboratory, Bristol, UK
| | - Nicola Love
- Field Service, Health Protection Operations, UKHSA, Newcastle, UK
| | - Roberto Vivancos
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK
- Field Service, Health Protection Operations, UKHSA, Liverpool, UK
| | - Matthew Hickman
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Health Protection Research Unit in Behavioural Science and Evaluation, University of Bristol, Bristol, UK
| | - Derren R Ready
- NIHR Health Protection Research Unit in Behavioural Science and Evaluation, University of Bristol, Bristol, UK
- Field Service, Health Protection Operations, UKHSA, Bristol, UK
- Eastman Dental Institute, University College London, London, UK
| |
Collapse
|
17
|
Zhang X, Ma Y, Kong L, Li Y, Wang J, Li N, Xia Y, Wang P, Zhang M, Liu L, Zhang D, Wen L, Wang S, Liu Z, Yue X, Wang J, Zhang T, Meng X. The impact of COVID-19 pandemic on hand hygiene compliance of healthcare workers in a tertiary hospital in East China. Front Med (Lausanne) 2023; 10:1160828. [PMID: 37425301 PMCID: PMC10324029 DOI: 10.3389/fmed.2023.1160828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/01/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Hand hygiene is a cost-effective measure to reduce healthcare-associated infections (HAIs) in healthcare facilities. The impact of the coronavirus disease 2019 (COVID-19) pandemic on hand hygiene performance (HHP) provided evidence for targeted hand hygiene intervention measures. Methods This study evaluated the HHP rate in a tertiary hospital before and after the COVID-19 outbreak. HHP was checked by infection control doctors or nurses every day, and they inputted the HHP rate to the full-time infection control staff every week. A random examination of HHP was conducted by a confidential worker every month. The HHP of healthcare workers (HCWs) was monitored in the outpatient department, inpatient ward, and operating room from January 2017 to October 2022. The influence of COVID-19 prevention and control strategies on HHP was elucidated by analyzing the results of HHP during the study period. Results The average HHP rate of HCWs was 86.11% from January 2017 to October 2022. The HHP rate of HCWs after the COVID-19 pandemic was statistically significantly higher than that before the pandemic (P < 0.001). The HHP rate was the highest (93.01%) in September 2022 when the local epidemic occurred. Among the different occupation categories, medical technicians showed the highest HHP rate (89.10%). The HHP rate was the highest after contact with body fluids or blood of patients (94.47%). Conclusion The HHP rate of HCWs in our hospital showed an increasing trend in the recent 6 years, especially during the COVID-19 pandemic, and the increase was most obvious during the local epidemic.
Collapse
|
18
|
Li F, Xu K, Pan Y, Liu P, Zhang J, Yang M, Lei W, Feng Z, Liang Z, Zhang D, Wu G, Wang Q. Stability of SARS-CoV-2 and persistence of viral nucleic acids on common foods and widely used packaging material surfaces. J Med Virol 2023; 95:e28871. [PMID: 37314009 DOI: 10.1002/jmv.28871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/15/2023]
Abstract
SARS-CoV-2 is still spreading globally. Studies have reported the stability of SARS-CoV-2 in aerosols and on surfaces under different conditions. However, studies on the stability of SARS-CoV-2 and viral nucleic acids on common food and packaging material surfaces are insufficient. The study evaluated the stability of SARS-CoV-2 using TCID50 assays and the persistence of SARS-CoV-2 nucleic acids using droplet digital polymerase chain reaction on various food and packaging material surfaces. Viral nucleic acids were stable on food and material surfaces under different conditions. The viability of SARS-CoV-2 varied among different surfaces. SARS-CoV-2 was inactivated on most food and packaging material surfaces within 1 day at room temperature but was more stable at lower temperatures. Viruses survived for at least 1 week on pork and plastic at 4°C, while no viable viruses were detected on hairtail, orange, or carton after 3 days. There were viable viruses and a slight titer decrease after 8 weeks on pork and plastic, but titers decreased rapidly on hairtail and carton at -20°C. These results highlight the need for targeted preventive and disinfection measures based on different types of foods, packaging materials, and environmental conditions, particularly in the cold-chain food trade, to combat the ongoing pandemic.
Collapse
Affiliation(s)
- Fu Li
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Ke Xu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yang Pan
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Peipei Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jing Zhang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Mengjie Yang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wenwen Lei
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhaomin Feng
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Zhichao Liang
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Daitao Zhang
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Guizhen Wu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Quanyi Wang
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control, Beijing, China
| |
Collapse
|
19
|
Guang Y, Hui L. Determining half-life of SARS-CoV-2 antigen in respiratory secretion. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:69697-69702. [PMID: 37129805 PMCID: PMC10151215 DOI: 10.1007/s11356-023-27326-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/26/2023] [Indexed: 05/03/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is primarily transmitted from person to person through respiratory droplets and aerosols. It is also possible for the virus to be transmitted indirectly through environmental contamination. The likelihood of environmental transmission depends on several factors, including the survival time of the virus in respiratory secretions. However, the stability of SARS-CoV-2 in respiratory secretions has not been investigated. In this study, we compared the half-life of the SARS-CoV-2 antigen in respiratory secretion under different conditions. We applied respiratory secretion (5 µL) to glass slides, air-dried the slides for 1 h, and kept them at 24 °C or 4 °C for 10 days. Respiratory secretions were also placed in test tubes (sealed to preserve moisture) and in normal saline for 10 days. The concentration of SARS-CoV-2 antigen in all samples was simultaneously measured using colloidal gold immunochromatography, and the half-life of the antigen was calculated. The half-life of the antigen in the wet (sealed tube) and saline samples at room temperature was 5.0 and 2.92 days, respectively. The half-life of the antigen in the air-dried sample at room temperature and at 4 °C was 2.93 and 11.4 days, respectively. The half-life was longer in respiratory secretions than that in normal saline. The half-life was also longer in respiratory secretions, at a lower temperature, and under wet conditions. Therefore, environmental transmission can also play a significant role in the spread of the virus. Robust prevention and control strategies could be developed based on the half-life of the antigen in respiratory secretions.
Collapse
Affiliation(s)
- Yang Guang
- Department of Laboratory and Quarantine, Dalian Medical University, Dalian, 116044, China
| | - Liu Hui
- Department of Laboratory and Quarantine, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
20
|
Xu J, Xu C, Chen R, Yin Y, Wang Z, Li K, Shi J, Chen X, Huang J, Hong J, Yuan R, Liu Y, Liu R, Wang Y, Liu X, Zhang Z. Stability of SARS-CoV-2 on inanimate surfaces: A review. Microbiol Res 2023; 272:127388. [PMID: 37141851 PMCID: PMC10116155 DOI: 10.1016/j.micres.2023.127388] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 04/09/2023] [Accepted: 04/18/2023] [Indexed: 05/06/2023]
Abstract
The stability of SARS-CoV-2 for varying periods on a wide range of inanimate surfaces has raised concerns about surface transmission; however, there is still no evidence to confirm this route. In the present review, three variables affecting virus stability, namely temperature, relative humidity (RH), and initial virus titer, were considered from different experimental studies. The stability of SARS-CoV-2 on the surfaces of six different contact materials, namely plastic, metal, glass, protective equipment, paper, and fabric, and the factors affecting half-life period was systematically reviewed. The results showed that the half-life of SARS-CoV-2 on different contact materials was generally 2-10 h, up to 5 d, and as short as 30 min at 22 °C, whereas the half-life of SARS-CoV-2 on non-porous surfaces was generally 5-9 h d, up to 3 d, and as short as 4 min at 22 ℃. The half-life on porous surfaces was generally 1-5 h, up to 2 d, and as short as 13 min at 22 °C. Therefore, the half-life period of SARS-CoV-2 on non-porous surfaces is longer than that on porous surfaces, and thehalf-life of the virus decreases with increasing temperature, whereas RH produces a stable negative inhibitory effect only in a specific humidity range. Various disinfection precautions can be implemented in daily life depending on the stability of SARS-CoV-2 on different surfaces to interrupt virus transmission, prevent COVID-19 infections, and avoid over-disinfection. Owing to the more stringent control of conditions in laboratory studies and the lack of evidence of transmission through surfaces in the real world, it is difficult to provide strong evidence for the efficiency of transmission of the contaminant from the surface to the human body. Therefore, we suggest that future research should focus on exploring the systematic study of the entire transmission process of the virus, which will provide a theoretical basis for optimizing global outbreak prevention and control measures.
Collapse
Affiliation(s)
- Jiayao Xu
- Department of Epidemiology and Health statistics, School of Public Health, Fudan University, Shanghai, China; Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Chengyin Xu
- Department of Epidemiology and Health statistics, School of Public Health, Fudan University, Shanghai, China
| | - Ruilin Chen
- Department of Epidemiology and Health statistics, School of Public Health, Fudan University, Shanghai, China
| | - Yun Yin
- Department of Epidemiology and Health statistics, School of Public Health, Fudan University, Shanghai, China; Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Zengliang Wang
- Department of Epidemiology, School of Public Health, Shandong University, Jinan, Shandong 250011, China
| | - Ke Li
- Department of Epidemiology and Health statistics, School of Public Health, Fudan University, Shanghai, China; Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Jin Shi
- Department of Epidemiology and Health statistics, School of Public Health, Fudan University, Shanghai, China; Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Xi Chen
- Department of Epidemiology and Health statistics, School of Public Health, Fudan University, Shanghai, China; Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Jiaqi Huang
- Department of Epidemiology and Health statistics, School of Public Health, Fudan University, Shanghai, China; Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Jie Hong
- Department of Epidemiology and Health statistics, School of Public Health, Fudan University, Shanghai, China; Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Rui Yuan
- Department of Epidemiology and Health statistics, School of Public Health, Fudan University, Shanghai, China; Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Yuanhua Liu
- Department of Epidemiology and Health statistics, School of Public Health, Fudan University, Shanghai, China; Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Rui Liu
- Department of Geomatics and Spatial Information, Shandong University of Science and Technology, Qingdao, Shandong 266510, China
| | - Yizhen Wang
- Department of Geomatics and Spatial Information, Shandong University of Science and Technology, Qingdao, Shandong 266510, China
| | - Xin Liu
- Department of Geomatics and Spatial Information, Shandong University of Science and Technology, Qingdao, Shandong 266510, China
| | - Zhijie Zhang
- Department of Epidemiology and Health statistics, School of Public Health, Fudan University, Shanghai, China; Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China.
| |
Collapse
|
21
|
Dai H, Tang H, Sun W, Deng S, Han J. It is time to acknowledge coronavirus transmission via frozen and chilled foods: Undeniable evidence from China and lessons for the world. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161388. [PMID: 36621479 PMCID: PMC9814272 DOI: 10.1016/j.scitotenv.2023.161388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/16/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Since the broke out of the novel coronavirus disease at the end of 2019, nearly 650 million people have been infected around the globe, and >6.6 million have died from this disease. The first wave of infections in mainland China had been effectively controlled within a short period, with no domestic cases of infection for 56 consecutive days from April 16, 2020. Nonetheless, the re-emergence of several outbreaks in multiple Chinese cities posed a new challenge for public health authorities after new cases of infections were found in Xinfadi Market in Beijing on June 11, 2020. In the following series of re-emergent outbreaks, findings from epidemiological investigations suggested that more than twenty re-emergent outbreaks were caused by fomite transmission, predominantly via imported frozen and chilled foods contaminated by the SARS-CoV-2 virus. Seven of the eleven incidents involving frozen and chilled foods were identified by screening individuals with occupational exposure to imported cold-chain foods and associated individuals. Evidence showed that low temperatures and poor ventilation typically maintained through cold-chain logistics create amenable environments for the survival of SARS-CoV-2, making transnational cold chain logistics a congenial vehicle to spread the virus through global transport of consumer goods. To address this gap, here we present a scrutiny of the findings from epidemiological investigations in recent re-emergent outbreaks in China caused by fomite transmission via imported foods and goods. A national regime of traceable cold-chain foods and reinforced customs inspection protocols were established by public health authorities in mainland China as emergency responses to recurring outbreaks from fomite transmission via imported goods. We urge that more attention needs to be given to this specific route of pathogenic transmission to ensure biosecurity and to increase the preparedness for epidemic or pandemic scenarios by the global food industry and logistics carriers.
Collapse
Affiliation(s)
- Han Dai
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China; School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Hao Tang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Wen Sun
- University of Toronto Scarborough, Department of Biological Sciences, Toronto, Ontario M1C 1A4, Canada
| | - Shihai Deng
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Jie Han
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China; School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China.
| |
Collapse
|
22
|
Sammartino JC, Colaneri M, Bassoli C, Ceresini M, Piralla A, Ferrari A, Percivalle E, Baldanti F, Bruno R, Mondelli MU. Real-life lack of evidence of viable SARS-CoV-2 transmission via inanimate surfaces: The SURFACE study. J Infect Public Health 2023; 16:736-740. [PMID: 36958168 PMCID: PMC10027289 DOI: 10.1016/j.jiph.2023.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
INTRODUCTION Although the potential role of inanimate surfaces in SARS-CoV-2 transmission has yet to be adequately assessed, it is still routine practice to apply deep and expensive environmental disinfection protocols. The aim of this study was to verify the presence of viable virus on different surfaces exposed to droplets released by coughing in SARS-CoV-2 RNA positive patients. METHODS Patients admitted to hospital with a positive SARS-CoV-2 real-time (RT)-PCR swab were asked to cough on steel, cardboard, plastic and their hands. Surfaces were tested at baseline (T0) and at different timepoints thereafter using swabs dipped in medium, and quickly seeded on VERO E6 cells that were checked every other day for cytopathic effect (CPE). Laboratory-propagated SARS-CoV-2 strains were examined at the same time points and on identical materials. RESULTS Ten RNA-positive patients were enrolled into the study. The median cycle threshold value was 20.7 (range 13-28.3). Nasopharyngeal swabs from 3 of the patients yielded viable virus 2-10 days post-inoculation. However, in none of the patients was it possible to isolate viable SARS-CoV-2 from sputum under identical experimental conditions. A CPE was instead already visible using laboratory-propagated SARS-CoV-2 strains at 20', 60', 180' while an effect at 24 h required a 6-day incubation. CONCLUSION The evidence emerging from this real-life study suggests that droplets delivered by SARS-CoV-2 infected patients on common inanimate surfaces did not contain viable virus. In contrast, and in line with several laboratory-based experiments, in vitro adapted viruses could survive and grow on the same fomites.
Collapse
Affiliation(s)
- José Camilla Sammartino
- Division of Microbiology and Virology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Marta Colaneri
- Division of Infectious Diseases I, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Cecilia Bassoli
- Division of Infectious Diseases I, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Mariaelena Ceresini
- Division of Infectious Diseases I, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Antonio Piralla
- Division of Microbiology and Virology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Alessandro Ferrari
- Division of Microbiology and Virology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elena Percivalle
- Division of Microbiology and Virology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Fausto Baldanti
- Division of Microbiology and Virology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Department of Clinical Surgical Diagnostic & Pediatric Sciences, University of Pavia, Italy
| | - Raffaele Bruno
- Division of Infectious Diseases I, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Department of Clinical Surgical Diagnostic & Pediatric Sciences, University of Pavia, Italy
| | - Mario U Mondelli
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy; Division of Clinical Immunology and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| |
Collapse
|
23
|
Mardiko AA, Bludau A, Heinemann S, Kaba HEJ, Fenz D, Leha A, von Maltzahn N, Mutters NT, Leistner R, Mattner F, Scheithauer S. Infection control strategies for healthcare workers during COVID-19 pandemic in German hospitals: A cross-sectional study in march-april 2021. Heliyon 2023; 9:e14658. [PMID: 36945349 PMCID: PMC10022461 DOI: 10.1016/j.heliyon.2023.e14658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Background Healthcare workers (HCW) are at risk of getting infected with COVID-19 at work. To prevent such incidents and provide a safe environment in hospitals, comprehensive infection control strategies are necessary. We aimed to collect information on COVID-19 infection control strategies regarding personal protective equipment (PPE), regulations during breaks for HCW and dissemination of pandemic-related information. Methods We invited infection control practitioners from 987 randomly selected German hospitals in March-April 2021 to participate in our cross-sectional online survey. We categorized the hospital based on bed capacity (≤499 beds = small; ≥500 beds = large). Fisher's exact test was performed and p < 0.05 defined as statistically significant. Findings 100 participants completed the questionnaire. Small hospitals were more directive about requiring FFP2 respirators (63%), whereas larger hospitals more often gave their HCW a choice between these and medical masks (67%). For the care of COVID-19 and suspected COVID-19 cases, >90% of the participants recommended the use of gloves. Notably, gloves were recommended beyond COVID-19 in 30% of the hospitals. During meal breaks various strategies were followed. Conclusion Recommendations for PPE varied across hospital sizes, which could be due to different assessments of necessity and safety. Regulations during breaks varied strongly which illustrates the need for clear official guidelines.
Collapse
Affiliation(s)
- Amelia A Mardiko
- Department of Infection Control and Infectious Diseases, University Medical Center Göttingen (UMG), Georg-August University, Göttingen, Germany
| | - Anna Bludau
- Department of Infection Control and Infectious Diseases, University Medical Center Göttingen (UMG), Georg-August University, Göttingen, Germany
| | - Stephanie Heinemann
- Local Task Force of the Network University Medicine (NUM), University Medical Center Göttingen (UMG), Göttingen, Germany
- Department of General Practice, University Medical Center Göttingen (UMG), Göttingen, Germany
- Department of Geriatrics, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Hani E J Kaba
- Department of Infection Control and Infectious Diseases, University Medical Center Göttingen (UMG), Georg-August University, Göttingen, Germany
| | - Diana Fenz
- Department of Infection Control and Infectious Diseases, University Medical Center Göttingen (UMG), Georg-August University, Göttingen, Germany
| | - Andreas Leha
- Department of Medical Statistic, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Nicole von Maltzahn
- Institute for Medical Microbiology and Hospital Epidemiology, Medical School Hannover, Hannover, Germany
| | - Nico T Mutters
- Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| | - Rasmus Leistner
- Institute for Hygiene and Environmental Medicine, Charité University Hospital Berlin, Berlin, Germany
- Division of Gastroenterology, Infectiology and Rheumatology, Medical Department, Charité University Hospital Berlin, Berlin, Germany
| | - Frauke Mattner
- Institute for Hygiene, Cologne Merheim Medical Centre, University Witten-Herdecke, Cologne, Germany
| | - Simone Scheithauer
- Department of Infection Control and Infectious Diseases, University Medical Center Göttingen (UMG), Georg-August University, Göttingen, Germany
| |
Collapse
|
24
|
Cox J, Christensen B, Burton N, Dunn KH, Finnegan M, Ruess A, Estill C. Transmission of SARS-CoV-2 in the workplace: Key findings from a rapid review of the literature. AEROSOL SCIENCE AND TECHNOLOGY : THE JOURNAL OF THE AMERICAN ASSOCIATION FOR AEROSOL RESEARCH 2023; 57:233-254. [PMID: 37213938 PMCID: PMC10193509 DOI: 10.1080/02786826.2023.2166394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/27/2022] [Indexed: 05/23/2023]
Abstract
At the beginning of the COVID-19 pandemic, the primary route of transmission of the SARS-CoV-2 virus was not well understood. Research gathered from other respiratory infectious diseases, including other coronaviruses, was the basis for the initial perceptions for transmission of SARS-CoV-2. To better understand transmission of SARS-CoV-2, a rapid literature review was conducted from literature generated March 19, 2020, through September 23, 2021. 18,616 unique results were identified from literature databases and screened. Of these, 279 key articles were reviewed and abstracted covering critical topics such as environmental/workplace monitoring, sampling and analytical method evaluation, and the ability of the virus to remain intact and infectious during sampling. This paper describes the results of the rapid literature review, which evaluated pathways that contribute to transmission as well as the strengths and limitations of current sampling approaches. This review also evaluates how different factors, including environmental conditions and surface characteristics, could impact the transmission potential of SARS-CoV-2. A continual rapid review in the midst of a pandemic proved particularly useful for quickly understanding the transmission parameters of the virus and enabled us to comprehensively assess literature, respond to workplace questions, and evaluate our understanding as the science evolved. Air and surface sampling with the accompanying analytical methods were not generally effective in recovering SARS-CoV-2 viable virus or RNA in many likely contaminated environments. In light of these findings, the development of validated sampling and analysis methods is critical for determining worker exposure to SARS-CoV-2 and to assess the impact of mitigation efforts.
Collapse
Affiliation(s)
- Jennie Cox
- National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - Brian Christensen
- National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - Nancy Burton
- National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - Kevin H. Dunn
- National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | | | - Ana Ruess
- Gryphon Scientific, Takoma Park, MD, USA
| | - Cherie Estill
- National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| |
Collapse
|
25
|
Geng Y, Wang Y. Stability and transmissibility of SARS-CoV-2 in the environment. J Med Virol 2023; 95:e28103. [PMID: 36039831 PMCID: PMC9537778 DOI: 10.1002/jmv.28103] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 01/11/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus causing the ongoing global coronavirus disease 2019 (COVID-19) pandemic, is believed to be transmitted primarily through respiratory droplets and aerosols. However, reports are increasing regarding the contamination of environmental surfaces, shared objects, and cold-chain foods with SARS-CoV-2 RNA and the possibility of environmental fomite transmission of the virus raises much concern and debate. This study summarizes the current knowledge regarding potential mechanisms of environmental transmission of SARS-CoV-2, including the prevalence of surface contamination in various settings, the viability and stability of the virus on surfaces or fomites, as well as environmental factors affecting virus viability and survival such as temperature and relative humidity. Instances of fomite transmission, including cold-chain food transmission, and the importance of fomite transmission in epidemics, are discussed. The knowledge gaps regarding fomite transmission of SARS-CoV-2 are also briefly analyzed.
Collapse
Affiliation(s)
- Yansheng Geng
- Key Laboratory of Public Health Safety of Hebei Province, School of Public HealthHebei UniversityBaodingChina
| | - Youchun Wang
- Division of HIV/AIDS and Sex‐Transmitted Virus VaccinesNational Institutes for Food and Drug ControlBeijingChina
| |
Collapse
|
26
|
Mihajlovski K, Buttner MP, Cruz P, Labus B, St. Pierre Schneider B, Detrick E. SARS-CoV-2 surveillance with environmental surface sampling in public areas. PLoS One 2022; 17:e0278061. [PMID: 36417446 PMCID: PMC9683569 DOI: 10.1371/journal.pone.0278061] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
Contaminated surfaces are one of the ways that coronavirus disease 2019 (COVID-19) may be transmitted. SARS-CoV-2 can be detected on environmental surfaces; however, few environmental sampling studies have been conducted in nonclinical settings. The objective of this study was to detect SARS-CoV-2 RNA on environmental surfaces in public areas in Las Vegas, Nevada. In total, 300 surface samples were collected from high-touch surfaces from high-congregate public locations and from a public health facility (PHF) that was visited by COVID-19 patients. Environmental samples were analyzed with quantitative reverse-transcriptase polymerase chain reaction (RT-qPCR) using SARS-CoV-2 specific primers and probes for three target genes. Results showed that 31 out of 300 (10.3%) surface samples tested positive for SARS-CoV-2, 24 at the PHF and 7 in high-congregate public locations. Concentrations ranged from 102 to 106 viral particles per 3 ml sample on a wide variety of materials. The data also showed that the N gene assay had greater sensitivity compared to the S and ORF gene assays. Besides frequently touched surfaces, SARS-CoV-2 was detected in restrooms, on floors and surfaces in contact with floors, as well as in a mop water sample. The results of this study describe the extent and distribution of environmental SARS-CoV-2 contamination in public areas in Las Vegas, Nevada. A method using the N gene PCR assay was developed for SARS-CoV-2 environmental monitoring in public areas. Environmental monitoring with this method can determine the specific sites of surface contamination in the community and may be beneficial for prevention of COVID-19 indirect transmission, and evaluation and improvement of infection control practices in public areas, public health facilities, universities, and businesses.
Collapse
Affiliation(s)
- Kristina Mihajlovski
- Department of Environmental and Occupational Health, School of Public Health, University of Nevada, Las Vegas, NV, United States of America
- * E-mail:
| | - Mark P. Buttner
- Department of Environmental and Occupational Health, School of Public Health, University of Nevada, Las Vegas, NV, United States of America
| | - Patricia Cruz
- Department of Environmental and Occupational Health, School of Public Health, University of Nevada, Las Vegas, NV, United States of America
| | - Brian Labus
- Department of Environmental and Occupational Health, School of Public Health, University of Nevada, Las Vegas, NV, United States of America
| | - Barbara St. Pierre Schneider
- Graduate Nursing Department, College of Nursing and Health Innovation, The University of Texas at Arlington, TX, United States of America
| | - Elizabeth Detrick
- Department of Environmental and Occupational Health, School of Public Health, University of Nevada, Las Vegas, NV, United States of America
| |
Collapse
|
27
|
Gokool VA, Crespo-Cajigas J, Mallikarjun A, Collins A, Kane SA, Plymouth V, Nguyen E, Abella BS, Holness HK, Furton KG, Johnson ATC, Otto CM. The Use of Biological Sensors and Instrumental Analysis to Discriminate COVID-19 Odor Signatures. BIOSENSORS 2022; 12:1003. [PMID: 36421122 PMCID: PMC9688190 DOI: 10.3390/bios12111003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 05/27/2023]
Abstract
The spread of SARS-CoV-2, which causes the disease COVID-19, is difficult to control as some positive individuals, capable of transmitting the disease, can be asymptomatic. Thus, it remains critical to generate noninvasive, inexpensive COVID-19 screening systems. Two such methods include detection canines and analytical instrumentation, both of which detect volatile organic compounds associated with SARS-CoV-2. In this study, the performance of trained detection dogs is compared to a noninvasive headspace-solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) approach to identifying COVID-19 positive individuals. Five dogs were trained to detect the odor signature associated with COVID-19. They varied in performance, with the two highest-performing dogs averaging 88% sensitivity and 95% specificity over five double-blind tests. The three lowest-performing dogs averaged 46% sensitivity and 87% specificity. The optimized linear discriminant analysis (LDA) model, developed using HS-SPME-GC-MS, displayed a 100% true positive rate and a 100% true negative rate using leave-one-out cross-validation. However, the non-optimized LDA model displayed difficulty in categorizing animal hair-contaminated samples, while animal hair did not impact the dogs' performance. In conclusion, the HS-SPME-GC-MS approach for noninvasive COVID-19 detection more accurately discriminated between COVID-19 positive and COVID-19 negative samples; however, dogs performed better than the computational model when non-ideal samples were presented.
Collapse
Affiliation(s)
- Vidia A. Gokool
- Global Forensic and Justice Center, Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Janet Crespo-Cajigas
- Global Forensic and Justice Center, Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Amritha Mallikarjun
- Penn Vet Working Dog Center, Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amanda Collins
- Penn Vet Working Dog Center, Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarah A. Kane
- Penn Vet Working Dog Center, Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Victoria Plymouth
- Penn Vet Working Dog Center, Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elizabeth Nguyen
- Penn Vet Working Dog Center, Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Benjamin S. Abella
- Department of Emergency Medicine and Penn Acute Research Collaboration, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Howard K. Holness
- Global Forensic and Justice Center, Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Kenneth G. Furton
- Global Forensic and Justice Center, Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Alan T. Charlie Johnson
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cynthia M. Otto
- Penn Vet Working Dog Center, Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
28
|
Luong NDM, Guillier L, Martin-Latil S, Batejat C, Leclercq I, Druesne C, Sanaa M, Chaix E. Database of SARS-CoV-2 and coronaviruses kinetics relevant for assessing persistence in food processing plants. Sci Data 2022; 9:654. [PMID: 36289246 PMCID: PMC9606249 DOI: 10.1038/s41597-022-01763-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/10/2022] [Indexed: 12/12/2022] Open
Abstract
SARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2), a virus causing severe acute respiratory disease in humans, emerged in late 2019. This respiratory virus can spread via aerosols, fomites, contaminated hands or surfaces as for other coronaviruses. Studying their persistence under different environmental conditions represents a key step for better understanding the virus transmission. This work aimed to present a reproducible procedure for collecting data of stability and inactivation kinetics from the scientific literature. The aim was to identify data useful for characterizing the persistence of viruses in the food production plants. As a result, a large dataset related to persistence on matrices or in liquid media under different environmental conditions is presented. This procedure, combining bibliographic survey, data digitalization techniques and predictive microbiological modelling, identified 65 research articles providing 455 coronaviruses kinetics. A ranking step as well as a technical validation with a Gage Repeatability & Reproducibility process were performed to check the quality of the kinetics. All data were deposited in public repositories for future uses by other researchers.
Collapse
Affiliation(s)
| | | | - Sandra Martin-Latil
- Laboratory for Food Safety, ANSES, University of Paris-EST, Maisons-Alfort, France
| | - Christophe Batejat
- Institut Pasteur, Université Paris Cité, Environment and Infectious Risks Unit, Laboratory for Urgent Response to Biological Threats (CIBU), Paris, France
| | - India Leclercq
- Institut Pasteur, Université Paris Cité, Environment and Infectious Risks Unit, Laboratory for Urgent Response to Biological Threats (CIBU), Paris, France
| | - Christine Druesne
- Research fundings & scientific watch department, ANSES, Maisons-Alfort, France
| | - Moez Sanaa
- Risk Assessment Department, ANSES, Maisons-Alfort, France
| | - Estelle Chaix
- Risk Assessment Department, ANSES, Maisons-Alfort, France
| |
Collapse
|
29
|
Zhang X, Yang Y, Cao J, Qi Z, Li G. Point-of-care CRISPR/Cas biosensing technology: A promising tool for preventing the possible COVID-19 resurgence caused by contaminated cold-chain food and packaging. FOOD FRONTIERS 2022; 4:FFT2176. [PMID: 36712576 PMCID: PMC9874772 DOI: 10.1002/fft2.176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/1912] [Revised: 12/12/1912] [Accepted: 12/12/1912] [Indexed: 02/01/2023] Open
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused great public health concern and has been a global threat due to its high transmissibility and morbidity. Although the SARS-CoV-2 transmission mainly relies on the person-to-person route through the respiratory droplets, the possible transmission through the contaminated cold-chain food and packaging to humans has raised widespread concerns. This review discussed the possibility of SARS-CoV-2 transmission via the contaminated cold-chain food and packaging by tracing the occurrence, the survival of SARS-CoV-2 in the contaminated cold-chain food and packaging, as well as the transmission and outbreaks related to the contaminated cold-chain food and packaging. Rapid, accurate, and reliable diagnostics of SARS-CoV-2 is of great importance for preventing and controlling the COVID-19 resurgence. Therefore, we summarized the recent advances on the emerging clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system-based biosensing technology that is promising and powerful for preventing the possible COVID-19 resurgence caused by the contaminated cold-chain food and packaging during the COVID-19 pandemic, including CRISPR/Cas system-based biosensors and their integration with portable devices (e.g., smartphone, lateral flow assays, microfluidic chips, and nanopores). Impressively, this review not only provided an insight on the possibility of SARS-CoV-2 transmission through the food supply chain, but also proposed the future opportunities and challenges on the development of CRISPR/Cas system-based detection methods for the diagnosis of SARS-CoV-2.
Collapse
Affiliation(s)
- Xianlong Zhang
- Food safety and Quality Control Innovation team, Department of Food Science and EngineeringSchool of Food and Biological Engineering, Shaanxi University of Science and TechnologyXi'an710021China
| | - Yan Yang
- Food safety and Quality Control Innovation team, Department of Food Science and EngineeringSchool of Food and Biological Engineering, Shaanxi University of Science and TechnologyXi'an710021China
| | - Juanjuan Cao
- Food safety and Quality Control Innovation team, Department of Food Science and EngineeringSchool of Food and Biological Engineering, Shaanxi University of Science and TechnologyXi'an710021China
| | - Zihe Qi
- Food safety and Quality Control Innovation team, Department of Food Science and EngineeringSchool of Food and Biological Engineering, Shaanxi University of Science and TechnologyXi'an710021China
| | - Guoliang Li
- Food safety and Quality Control Innovation team, Department of Food Science and EngineeringSchool of Food and Biological Engineering, Shaanxi University of Science and TechnologyXi'an710021China
| |
Collapse
|
30
|
Jonker N, van der Cruijsen C, Bijlsma M, Bolt W. Pandemic payment patterns. JOURNAL OF BANKING & FINANCE 2022; 143:106593. [PMID: 35789770 PMCID: PMC9242695 DOI: 10.1016/j.jbankfin.2022.106593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 06/24/2022] [Indexed: 06/13/2023]
Abstract
COVID-19 has temporarily changed the relative costs and benefits of different payment methods: cash has become more costly in terms of health risks, ease of use and likelihood of acceptance, whereas debit card usage has become less costly. As a result, consumers have shifted away from cash. Based on unique daily payment diary survey data collected between January 2018 and December 2021 amongst a representative panel of Dutch consumers, we study the shift in payment behaviour and payment preferences during two lockdown periods in the Netherlands in 2020 and 2021. Since the start of the first lockdown the likelihood of debit card usage at the expense of cash has increased by 12 percentage points compared to its trend level. About 60 percent of this shift on top of the autonomous trend persisted several months after the end of the first lockdown and part of it has persisted several months after the end of the second lockdown. The results indicate that the pandemic accelerated the increased usage of debit card at the POS, especially during the first pandemic year. Also, the pandemic has resulted in a shift in payment preferences towards more contactless payments. Both effects are largest for elderly people.
Collapse
Affiliation(s)
| | | | - Michiel Bijlsma
- SEO Amsterdam Economics, The Netherlands
- Tilburg University, The Netherlands
| | - Wilko Bolt
- De Nederlandsche Bank (DNB), The Netherlands
- Vrije Universiteit Amsterdam, The Netherlands
| |
Collapse
|
31
|
Baker CA, Gibson KE. Persistence of SARS-CoV-2 on surfaces and relevance to the food industry. Curr Opin Food Sci 2022; 47:100875. [PMID: 35784376 PMCID: PMC9238272 DOI: 10.1016/j.cofs.2022.100875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Determining the prevalence and persistence of viruses outside the human host aids our ability to characterize exposure risk across multiple transmission pathways. Since 2020, the Coronavirus Disease 2019 pandemic has resulted in a surge of research regarding severe acute respiratory syndrome-coronavirus-type 2 (SARS-CoV-2) and its potential to spread via direct and indirect contact transmission routes. Here, the authors discuss the current state of the science concerning SARS-CoV-2 transmission via contaminated surfaces and its persistence on environmental surfaces. This review aims to provide the reader with an overview of the currently published SARS-CoV-2 persistence studies, factors impacting persistence, guidelines for performing persistence studies, limitation of current data, and future directions for assessing SARS-CoV-2 persistence on fomites.
Collapse
Affiliation(s)
- Christopher A Baker
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, AR 72704, USA
| | - Kristen E Gibson
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, AR 72704, USA
| |
Collapse
|
32
|
Zhen Q, Zhang A, Huang Q, Li J, Du Y, Zhang Q. Overview of the Role of Spatial Factors in Indoor SARS-CoV-2 Transmission: A Space-Based Framework for Assessing the Multi-Route Infection Risk. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11007. [PMID: 36078723 PMCID: PMC9518419 DOI: 10.3390/ijerph191711007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
The COVID-19 pandemic has lasted from 2019 to 2022, severely disrupting human health and daily life. The combined effects of spatial, environmental, and behavioral factors on indoor COVID-19 spread and their interactions are usually ignored. Especially, there is a lack of discussion on the role of spatial factors in reducing the risk of virus transmission in complex and diverse indoor environments. This paper endeavours to summarize the spatial factors and their effects involved in indoor virus transmission. The process of release, transport, and intake of SARS-CoV-2 was reviewed, and six transmission routes according to spatial distance and exposure way were classified. The triangular relationship between spatial, environmental and occupant behavioral parameters during virus transmission was discussed. The detailed effects of spatial parameters on droplet-based, surface-based and air-based transmission processes and virus viability were summarized. We found that spatial layout, public-facility design and openings have a significant indirect impact on the indoor virus distribution and transmission by affecting occupant behavior, indoor airflow field and virus stability. We proposed a space-based indoor multi-route infection risk assessment framework, in which the 3D building model containing detailed spatial information, occupant behavior model, virus-spread model and infection-risk calculation model are linked together. It is also applicable to other, similar, respiratory infectious diseases such as SARS, influenza, etc. This study contributes to developing building-level, infection-risk assessment models, which could help building practitioners make better decisions to improve the building's epidemic-resistance performance.
Collapse
Affiliation(s)
- Qi Zhen
- School of Architecture, Tianjin University, Tianjin 300072, China
| | - Anxiao Zhang
- School of Architecture, Tianjin University, Tianjin 300072, China
| | - Qiong Huang
- School of Architecture, Tianjin University, Tianjin 300072, China
| | - Jing Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin 300072, China
| | - Yiming Du
- School of Architecture, Tianjin University, Tianjin 300072, China
| | - Qi Zhang
- School of Architecture, Tianjin University, Tianjin 300072, China
| |
Collapse
|
33
|
Mahyari KF, Sun Q, Klemeš JJ, Aghbashlo M, Tabatabaei M, Khoshnevisan B, Birkved M. To what extent do waste management strategies need adaptation to post-COVID-19? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155829. [PMID: 35561899 PMCID: PMC9087148 DOI: 10.1016/j.scitotenv.2022.155829] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 05/02/2023]
Abstract
The world has been grappling with the crisis of the COVID-19 pandemic for more than a year. Various sectors have been affected by COVID-19 and its consequences. The waste management system is one of the sectors affected by such unpredictable pandemics. The experience of COVID-19 proved that adaptability to such pandemics and the post-pandemic era had become a necessity in waste management systems and this requires an accurate understanding of the challenges that have been arising. The accurate information and data from most countries severely affected by the pandemic are not still available to identify the key challenges during and post-COVID-19. The documented evidence from literature has been collected, and the attempt has been made to summarize the rising challenges and the lessons learned. This review covers all raised challenges concerning the various aspects of the waste management system from generation to final disposal (i.e., generation, storage, collection, transportation, processing, and burial of waste). The necessities and opportunities are recognized for increasing flexibility and adaptability in waste management systems. The four basic pillars are enumerated to adapt the waste management system to the COVID-19 pandemic and post-COVID-19 conditions. Striving to support and implement a circular economy is one of its basic strategies.
Collapse
Affiliation(s)
- Khadijeh Faraji Mahyari
- Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Iran
| | - Qiaoyu Sun
- Center for Science and Technology Personnel Exchange and Development Service, Ministry of Science and Technology of the People's Republic of China, No.54 Sanlihe Road, Xicheng District, Beijing, PR China
| | - Jiří Jaromír Klemeš
- Sustainable Process Integration Laboratory - SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology - VUT Brno, Technická 2896/2, 616 69 Brno, Czech Republic
| | - Mortaza Aghbashlo
- Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Iran
| | - Meisam Tabatabaei
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Benyamin Khoshnevisan
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Denmark.
| | - Morten Birkved
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Denmark.
| |
Collapse
|
34
|
Al Huraimel K, Alhosani M, Gopalani H, Kunhabdulla S, Stietiya MH. Elucidating the role of environmental management of forests, air quality, solid waste and wastewater on the dissemination of SARS-CoV-2. HYGIENE AND ENVIRONMENTAL HEALTH ADVANCES 2022; 3:100006. [PMID: 37519421 PMCID: PMC9095661 DOI: 10.1016/j.heha.2022.100006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/13/2022] [Accepted: 04/30/2022] [Indexed: 11/29/2022]
Abstract
The increasing frequency of zoonotic diseases is amongst several catastrophic repercussions of inadequate environmental management. Emergence, prevalence, and lethality of zoonotic diseases is intrinsically linked to environmental management which are currently at a destructive level globally. The effects of these links are complicated and interdependent, creating an urgent need of elucidating the role of environmental mismanagement to improve our resilience to future pandemics. This review focused on the pertinent role of forests, outdoor air, indoor air, solid waste and wastewater management in COVID-19 dissemination to analyze the opportunities prevailing to control infectious diseases considering relevant data from previous disease outbreaks. Global forest management is currently detrimental and hotspots of forest fragmentation have demonstrated to result in zoonotic disease emergences. Deforestation is reported to increase susceptibility to COVID-19 due to wildfire induced pollution and loss of forest ecosystem services. Detection of SARS-CoV-2 like viruses in multiple animal species also point to the impacts of biodiversity loss and forest fragmentation in relation to COVID-19. Available literature on air quality and COVID-19 have provided insights into the potential of air pollutants acting as plausible virus carrier and aggravating immune responses and expression of ACE2 receptors. SARS-CoV-2 is detected in outdoor air, indoor air, solid waste, wastewater and shown to prevail on solid surfaces and aerosols for prolonged hours. Furthermore, lack of protection measures and safe disposal options in waste management are evoking concerns especially in underdeveloped countries due to high infectivity of SARS-CoV-2. Inadequate legal framework and non-adherence to environmental regulations were observed to aggravate the postulated risks and vulnerability to future waves of pandemics. Our understanding underlines the urgent need to reinforce the fragile status of global environmental management systems through the development of strict legislative frameworks and enforcement by providing institutional, financial and technical supports.
Collapse
Affiliation(s)
- Khaled Al Huraimel
- Division of Consultancy, Research & Innovation (CRI), Sharjah Environment Company - Bee'ah, Sharjah, United Arab Emirates
| | - Mohamed Alhosani
- Division of Consultancy, Research & Innovation (CRI), Sharjah Environment Company - Bee'ah, Sharjah, United Arab Emirates
| | - Hetasha Gopalani
- Division of Consultancy, Research & Innovation (CRI), Sharjah Environment Company - Bee'ah, Sharjah, United Arab Emirates
| | - Shabana Kunhabdulla
- Division of Consultancy, Research & Innovation (CRI), Sharjah Environment Company - Bee'ah, Sharjah, United Arab Emirates
| | - Mohammed Hashem Stietiya
- Division of Consultancy, Research & Innovation (CRI), Sharjah Environment Company - Bee'ah, Sharjah, United Arab Emirates
| |
Collapse
|
35
|
Wilson AM, Jones RM. Exploring spatial averaging of contamination in fomite microbial transfer models and implications for dose. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2022; 32:759-766. [PMID: 34743183 PMCID: PMC8571976 DOI: 10.1038/s41370-021-00398-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND When modeling exposures from contact with fomites, there are many choices in defining the sizes of compartments representing environmental surfaces and hands, and the portions of compartments involved in contacts. These choices impact dose estimates, yet there is limited guidance for selection of these model parameters. OBJECTIVE The study objective was to explore methods for representing environmental surface and hand contact areas in exposure models and implications for estimated doses. METHODS A simple scenario was used: an individual using their hands to contact their face and two microbially contaminated environmental surfaces. Four models were developed to explore different compartmentalization strategies: (1) hands and environmental surfaces each represented by one compartment, (2) hands represented by two compartments (fingertips vs. non-fingertip areas) while environmental surfaces were represented by one compartment, (3) hands represented by a single compartment and environmental surfaces represented by two compartments, and (4) hands and environmental surfaces each represented by two compartments. Sensitivity analyses were conducted to evaluate the influence of heterogeneous surface contact frequency, hand contact type, and hand dominance on dose. RESULTS Estimated doses were greatest when hand areas and environmental surfaces were each represented by two compartments, indicating that surface area "dilutes" contaminant concentration and decreases estimated dose. SIGNIFICANCE Model compartment designations for hands and environmental surfaces affect dose estimation, but more human behavior data are needed. IMPACT STATEMENT A common problem for exposure models describing exposures via hand-to-surface contacts occurs in the way that estimated contamination across human skin (usually hands) or across environmental surfaces is spatially averaged, as opposed to accounting for concentration changes across specific parts of the hand or individual surfaces. This can lead to the dilution of estimated contaminants and biases in estimated doses in risk assessments. The magnitude of these biases and implications for the accuracy in risk assessments are unknown. We quantify differences in dose for various strategies of compartmentalizing environmental surfaces and hands to inform guidance on future exposure model development.
Collapse
Affiliation(s)
- Amanda M Wilson
- Rocky Mountain Center for Occupational and Environmental Health, University of Utah, Salt Lake City, UT, USA.
- Department of Family and Preventive Medicine, School of Medicine, University of Utah, Salt Lake City, UT, USA.
- Department of Community, Environment & Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, 85721, USA.
| | - Rachael M Jones
- Rocky Mountain Center for Occupational and Environmental Health, University of Utah, Salt Lake City, UT, USA
- Department of Family and Preventive Medicine, School of Medicine, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
36
|
Henriques TM, Rito B, Proença DN, Morais PV. Application of an Ultrasonic Nebulizer Closet in the Disinfection of Textiles and Footwear. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10472. [PMID: 36078188 PMCID: PMC9518335 DOI: 10.3390/ijerph191710472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
The emergence of the coronavirus disease 2019 (COVID-19) pandemic highlighted the importance of disinfection processes in health safety. Textiles and footwear have been identified as vectors for spreading infections. Therefore, their disinfection can be crucial to controlling pathogens' dissemination. The present work aimed to evaluate the effectiveness of a commercial disinfectant aerosolized by an ultrasonic nebulizer closet as an effective method for disinfecting textiles and footwear. The disinfection was evaluated in three steps: suspension tests; nebulization in a 0.08 m3 closet; nebulization in the upscaled 0.58 m3 closet. The disinfection process of textiles and footwear was followed by the use of bacteriophages, bacterial spores, and bacterial cells. The disinfection in the 0.58 m3 closet was efficient for textiles (4 log reduction) when bacteriophage Lambda, Pseudomonas aeruginosa, and Bacillus subtilis were used. The footwear disinfection was achieved (4 log reduction) in the 0.08 m3 closet for Escherichia coli and Staphylococcus aureus. Disinfection in an ultrasonic nebulization closet has advantages such as being quick, not wetting, being efficient on porous surfaces, and is performed at room temperature. Ultrasonic nebulization disinfection in a closet proves to be useful in clothing and footwear stores to prevent pathogen transmission by the items' widespread handling.
Collapse
Affiliation(s)
- Tiago M. Henriques
- UCCCB—University of Coimbra Bacteria Culture Collection, Department of Life Science, University of Coimbra, 3000-456 Coimbra, Portugal
- IATV—Instituto do Ambiente Tecnologia e Vida, 3030-790 Coimbra, Portugal
| | - Beatriz Rito
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, Department of Life Sciences, 3000-456 Coimbra, Portugal
| | - Diogo N. Proença
- UCCCB—University of Coimbra Bacteria Culture Collection, Department of Life Science, University of Coimbra, 3000-456 Coimbra, Portugal
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, Department of Life Sciences, 3000-456 Coimbra, Portugal
| | - Paula V. Morais
- UCCCB—University of Coimbra Bacteria Culture Collection, Department of Life Science, University of Coimbra, 3000-456 Coimbra, Portugal
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, Department of Life Sciences, 3000-456 Coimbra, Portugal
| |
Collapse
|
37
|
Alvis-Chirinos K, Angulo-Bazán Y, Escalante-Maldonado O, Fuentes D, Palomino-Rodriguez MG, Gonzales-Achuy E, Mormontoy H, Hinojosa-Mamani P, Huamán-Espino L, Aparco JP. Presence of SARS-CoV-2 on food surfaces and public space surfaces in three districts of Lima, Peru. Braz J Med Biol Res 2022; 55:e12003. [PMID: 35857998 PMCID: PMC9296125 DOI: 10.1590/1414-431x2022e12003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/25/2022] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to determine the presence of SARS-CoV-2 on food surfaces and surfaces in public spaces in 3 districts of Lima, Peru. A cross-sectional descriptive study was carried out in three districts of the Lima metropolitan area. Surfaces that were most exposed to users were selected. Samples were swabbed for 4 weeks and transported to the laboratory to determine the presence of the virus. One thousand ninety-five inert surface samples and 960 food surface samples were evaluated for the identification of SARS-CoV-2 by the real time-PCR molecular test, whereby only one sample from an automated teller machine was positive. Most of the inert and food surfaces evaluated did not show the presence of SARS-CoV-2 during the time of sample collection. Despite the negative results, the frequency of disinfection and hygiene measures on high-contact surfaces should be maintained and increased to prevent other highly contagious infectious diseases.
Collapse
Affiliation(s)
- K Alvis-Chirinos
- Centro Nacional de Alimentación y Nutrición, Instituto Nacional de Salud, Lima, Perú
| | - Y Angulo-Bazán
- Oficina General de Investigación y Transferencia Tecnológica, Instituto Nacional de Salud, Lima, Perú
| | | | - D Fuentes
- Oficina General de Investigación y Transferencia Tecnológica, Instituto Nacional de Salud, Lima, Perú
| | | | - E Gonzales-Achuy
- Centro Nacional de Alimentación y Nutrición, Instituto Nacional de Salud, Lima, Perú
| | - H Mormontoy
- Oficina General de Investigación y Transferencia Tecnológica, Instituto Nacional de Salud, Lima, Perú
| | - P Hinojosa-Mamani
- Centro Nacional de Alimentación y Nutrición, Instituto Nacional de Salud, Lima, Perú
| | - L Huamán-Espino
- Oficina General de Investigación y Transferencia Tecnológica, Instituto Nacional de Salud, Lima, Perú
| | - J P Aparco
- Centro Nacional de Alimentación y Nutrición, Instituto Nacional de Salud, Lima, Perú.,Departamento Académico de Nutrición, Universidad Nacional Mayor de San Marcos, Lima, Perú
| |
Collapse
|
38
|
Wu CS, Chiang HM, Chen Y, Chen CY, Chen HF, Su WC, Wang WJ, Chou YC, Chang WC, Wang SC, Hung MC. Prospects of Coffee Leaf against SARS-CoV-2 Infection. Int J Biol Sci 2022; 18:4677-4689. [PMID: 35874948 PMCID: PMC9305275 DOI: 10.7150/ijbs.76058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022] Open
Abstract
In the current climate, many countries are in dire need of effective preventive methods to curb the Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2) pandemic. The purpose of this research is to screen and explore natural plant extracts that have the potential to against SARS-CoV-2 and provide alternative options for SARS-CoV-2 prevention and hand sanitizer or spray-like disinfectants. We first used Spike-ACE2 ELISA and TMPRSS2 fluorescence resonance energy transfer (FRET) assays to screen extracts from agricultural by-products from Taiwan with the potential to impede SARS-CoV-2 infection. Next, the SARS-CoV-2 pseudo-particles (Vpp) infection assay was tested to validate the effectiveness. We identified an extract from coffee leaf (Coffea Arabica), a natural plant that effectively inhibited wild-type SARS-CoV-2, and five Variants of Concern (Alpha, Beta, Gamma, Delta, and Omicron strain) from entering host cells. In an attempt to apply coffee leaf extract for hand sanitizer or spray-like disinfectants, we designed a skin-like gelatin membrane experiment. We showed that the high concentration of coffee leaf extract on the skin surface could block SARS-CoV-2 into cells more potently than 75% Ethanol, a standard disinfectant to inactivate SARS-CoV-2. Finally, LC-HRMS analysis was used to identify compounds such as caffeine, chlorogenic acid (CGA), quinic acid, and mangiferin that are associated with an anti-SARS-CoV-2 activity. Our results demonstrated that coffee leaf extract, an agricultural by-product effectively inhibits SARS-CoV-2 Vpp infection through an ACE2-dependent mechanism and may be utilized to develop products against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Chen-Shiou Wu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
| | - Hsiu-Mei Chiang
- Department of Cosmeceutics, China Medical University, Taichung 406040, Taiwan
| | - Yeh Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Institute of New Drug Development, China Medical University, Taichung 406040, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan
| | - Chung-Yu Chen
- Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan
| | - Hsiao-Fan Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
| | - Wen-Chi Su
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- International Master's Program of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 404332, Taiwan
| | - Wei-Jan Wang
- Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan
- Department of Biological Science and Technology, China Medical University, Taichung 406040, Taiwan
| | - Yu-Chi Chou
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei 115024, Taiwan
| | - Wei-Chao Chang
- Center for Molecular Medicine, China Medical University Hospital, China Medical University, Taichung 404332, Taiwan
| | - Shao-Chun Wang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, China Medical University, Taichung 404332, Taiwan
- Department of Biotechnology, Asia University, Taichung, 41354 Taiwan
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, China Medical University, Taichung 404332, Taiwan
- Department of Biotechnology, Asia University, Taichung, 41354 Taiwan
| |
Collapse
|
39
|
Sun C, Chao L, Li H, Hu Z, Zheng H, Li Q. Modeling and Preliminary Analysis of the Impact of Meteorological Conditions on the COVID-19 Epidemic. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:6125. [PMID: 35627661 PMCID: PMC9140896 DOI: 10.3390/ijerph19106125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 01/27/2023]
Abstract
Since the COVID-19 epidemic outbreak at the end of 2019, many studies regarding the impact of meteorological factors on the attack have been carried out, and inconsistent conclusions have been reached, indicating the issue's complexity. To more accurately identify the effects and patterns of meteorological factors on the epidemic, we used a combination of logistic regression (LgR) and partial least squares regression (PLSR) modeling to investigate the possible effects of common meteorological factors, including air temperature, relative humidity, wind speed, and surface pressure, on the transmission of the COVID-19 epidemic. Our analysis shows that: (1) Different countries and regions show spatial heterogeneity in the number of diagnosed patients of the epidemic, but this can be roughly classified into three types: "continuous growth", "staged shock", and "finished"; (2) Air temperature is the most significant meteorological factor influencing the transmission of the COVID-19 epidemic. Except for a few areas, regional air temperature changes and the transmission of the epidemic show a significant positive correlation, i.e., an increase in air temperature is conducive to the spread of the epidemic; (3) In different countries and regions studied, wind speed, relative humidity, and surface pressure show inconsistent correlation (and significance) with the number of diagnosed cases but show some regularity.
Collapse
Affiliation(s)
- Chenglong Sun
- School of Atmospheric Sciences and Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Sun Yat-Sen University, Zhuhai 519082, China; (C.S.); (L.C.); (H.L.)
| | - Liya Chao
- School of Atmospheric Sciences and Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Sun Yat-Sen University, Zhuhai 519082, China; (C.S.); (L.C.); (H.L.)
| | - Haiyan Li
- School of Atmospheric Sciences and Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Sun Yat-Sen University, Zhuhai 519082, China; (C.S.); (L.C.); (H.L.)
| | - Zengyun Hu
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
| | - Hehui Zheng
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Qingxiang Li
- School of Atmospheric Sciences and Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Sun Yat-Sen University, Zhuhai 519082, China; (C.S.); (L.C.); (H.L.)
| |
Collapse
|
40
|
Legeay C, Peron W, Le Bihan C, Pivert A, Lefeuvre C. SARS-CoV-2 detection on healthcare workers' hands caring for COVID-19 patients. J Hosp Infect 2022; 126:78-80. [PMID: 35594984 PMCID: PMC9112601 DOI: 10.1016/j.jhin.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Clément Legeay
- Infection Control and Prevention Unit, CHU Angers, F-49000 Angers, France
| | - William Peron
- Infection Control and Prevention Unit, CHU Angers, F-49000 Angers, France
| | - Clément Le Bihan
- Laboratoire de virologie, Département de Biologie des Agents Infectieux, CHU Angers, F-49000 Angers, France
| | - Adeline Pivert
- Laboratoire de virologie, Département de Biologie des Agents Infectieux, CHU Angers, F-49000 Angers, France; Univ Angers, HIFIH, SFR ICAT, F-49000 Angers, France
| | - Caroline Lefeuvre
- Laboratoire de virologie, Département de Biologie des Agents Infectieux, CHU Angers, F-49000 Angers, France; Univ Angers, HIFIH, SFR ICAT, F-49000 Angers, France.
| |
Collapse
|
41
|
Ijaz MK, Nims RW, McKinney J. Indirect transmission of severe acute respiratory syndrome coronavirus virus 2 (SARS-CoV-2): What do we know and what do we not know? Infect Control Hosp Epidemiol 2022; 43:676-678. [PMID: 33557961 PMCID: PMC7943946 DOI: 10.1017/ice.2021.57] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 11/06/2022]
Affiliation(s)
- M. Khalid Ijaz
- Global Research and Development for Lysol and Dettol, Reckitt Benckiser, LLC, Montvale, New Jersey
- Department of Biology, Medgar Evers College, City University of New York (CUNY), Brooklyn, New York
| | | | - Julie McKinney
- Global Research and Development for Lysol and Dettol, Reckitt Benckiser, LLC, Montvale, New Jersey
| |
Collapse
|
42
|
Wang Y, Yang J, Qiao F, Feng B, Hu F, Xi ZA, Wu W, Ni ZL, Liu L, Yuan Y. Compared hand hygiene compliance among healthcare providers before and after the COVID-19 pandemic: A rapid review and meta-analysis. Am J Infect Control 2022; 50:563-571. [PMID: 34883162 PMCID: PMC8648372 DOI: 10.1016/j.ajic.2021.11.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Hand hygiene (HH) is a cost-effective measure to reduce health care-associated infections. The overall characteristics and changes of hand hygiene compliance (HHC) among health care providers during the COVID-19 pandemic provided evidence for targeted HH intervention measures. AIM To systematically review the literature and conduct a meta-analysis of studies investigating the rate of HHC and the characteristics of HH during the COVID-19 pandemic. METHODS The PubMed, Embase, Cochrane Library, Web of Science, CNKI, WanFang Data, VIP, and CBM databases were searched. All the original articles with valid HHC data among health care providers during the COVID-19 pandemic (from January 1, 2020 to October 1, 2021) were included. Meta-analysis was performed using a DerSimonian and Laird model to yield a point estimate and a 95% CI for the HHC rate. The heterogeneity of the studies was evaluated using the Cochrane Q test and I2 statistics and a random-effects model was used to contrast between different occupations, the WHO 5-moments of HH and different observation methods. Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting guidelines were followed. FINDINGS Seven studies with 2,377 health care providers reporting HHC were identified. The estimated overall HHC was 74%, which was higher than that reported in previous studies (5%-89%). Fever clinic has become a new key place for HHC observation. Nurses had the highest HHC (80%; 95% CI:74%-87%) while auxiliary workers (70%; 95%CI:62%-77%) had the lowest. For the WHO 5-moments, the health care providers had the highest HHC after contact with the body fluids of the patients (91%; 95% CI:88%-94%), while before contact with patient's health care providers had the lowest HHC (68%; 95% CI:62%-74%) which was consistent with before the pandemic. There existed great HHC differences among different monitoring methods (automatic monitoring system:53%; 95% CI:44%-63% versus openly and secretly observation: 91%; 95% CI: 90%-91%). CONCLUSIONS During the COVID-19 pandemic, the compliance of health care providers' HH showed a great improvement. The fever clinics have become the focused departments for HH monitoring. The HHC of auxiliary workers and the HH opportunity for "before contact with patients" should be strengthened. In the future, it will be necessary to develop standardized HH monitoring tools for practical work.
Collapse
Affiliation(s)
- Ying Wang
- Department of Infection Management, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China; Institute of Hospital Management, Wuhan University, Wuhan, Hubei, P. R. China
| | - Jinru Yang
- Cancer Center of Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Fu Qiao
- Infection Prevention and Control Department, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Bilong Feng
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Fen Hu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China; Clinical Research Center of Hubei Critical Care Medicine, Wuhan, Hubei, P. R. China
| | - Zi-Ang Xi
- School of Architecture, Tsinghua University, Beijing, P. R. China
| | - Wenwen Wu
- School of Public Health and Management, Hubei University of Medicine, Shiyan, China
| | - Zi-Ling Ni
- School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Li Liu
- School of Architecture, Tsinghua University, Beijing, P. R. China.
| | - Yufeng Yuan
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China.
| |
Collapse
|
43
|
Khalid Ijaz M, Nims RW, McKinney J, Gerba CP. Virucidal efficacy of laundry sanitizers against SARS-CoV-2 and other coronaviruses and influenza viruses. Sci Rep 2022; 12:5247. [PMID: 35347149 PMCID: PMC8960219 DOI: 10.1038/s41598-022-08259-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/03/2022] [Indexed: 11/25/2022] Open
Abstract
The clothes laundering process affords numerous opportunities for dissemination of infectious virus from contaminated clothing to appliance surfaces and other household surfaces and eventually to launderer's hands. We have explored the efficacy of laundry sanitizers for inactivating coronaviruses and influenza viruses. Virucidal efficacy was tested using standardized suspension inactivation methods (EN 14476) or hard-surface inactivation methods (ASTM E1053-20) against SARS-CoV-2, human coronavirus 229E (HCoV 229E), influenza A virus (2009-H1N1 A/Mexico), or influenza B virus (B/Hong Kong). Efficacy was measured in terms of log10 reduction in infectious virus titer, after 15 min contact time (suspension studies) or 5 min contact time (hard surface studies) at 20 ± 1 °C. In liquid suspension studies, laundry sanitizers containing p-chloro-m-xylenol (PCMX) or quaternary ammonium compounds (QAC) caused complete inactivation (≥ 4 log10) of HCoV 229E and SARS-CoV-2 within 15 min contact time at 20 ± 1 °C. In hard surface studies, complete inactivation (≥ 4 log10) of each coronavirus or influenza virus, including SARS-CoV-2, was observed following a 5-min contact time at 20 ± 1 °C. Respiratory viruses may remain infectious on clothing/fabrics and environmental surfaces for hours to days. The use of a laundry sanitizer containing microbicidal actives may afford mitigation of the risk of contamination of surfaces during handling of the laundry and washing appliances (i.e., washer/dryer or basin), adjacent surfaces, the waste water stream, and the hands of individuals handling clothes contaminated with SARS-CoV-2, influenza viruses, or other emerging enveloped viruses.
Collapse
Affiliation(s)
- M Khalid Ijaz
- Global Research and Development for Lysol and Dettol, Reckitt Benckiser LLC, One Philips Parkway, Montvale, NJ, 07645, USA.
| | - Raymond W Nims
- RMC Pharmaceutical Solutions, Inc., 1851 Lefthand Circle, Suite A, Longmont, CO, 80501, USA
| | - Julie McKinney
- Global Research and Development for Lysol and Dettol, Reckitt Benckiser LLC, One Philips Parkway, Montvale, NJ, 07645, USA
| | - Charles P Gerba
- Department of Environmental Sciences, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
44
|
Sloan A, Kasloff SB, Cutts T. Mechanical Wiping Increases the Efficacy of Liquid Disinfectants on SARS-CoV-2. Front Microbiol 2022; 13:847313. [PMID: 35391722 PMCID: PMC8981239 DOI: 10.3389/fmicb.2022.847313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/03/2022] [Indexed: 12/24/2022] Open
Abstract
High-touch environmental surfaces are acknowledged as potential sources of pathogen transmission, particularly in health care settings where infectious agents may be readily abundant. Methods of disinfecting these surfaces often include direct application of a chemical disinfectant or simply wiping the surface with a disinfectant pre-soaked wipe (DPW). In this study, we examine the ability of four disinfectants, ethanol (EtOH), sodium hypochlorite (NaOCl), chlorine dioxide (ClO2), and potassium monopersulfate (KMPS), to inactivate SARS-CoV-2 on a hard, non-porous surface, assessing the effects of concentration and contact time. The efficacy of DPWs to decontaminate carriers spiked with SARS-CoV-2, as well as the transferability of the virus from used DPWs to clean surfaces, is also assessed. Stainless steel carriers inoculated with approximately 6 logs of SARS-CoV-2 prepared in a soil load were disinfected within 5 min through exposure to 66.5% EtOH, 0.5% NaOCl, and 1% KMPS. The addition of mechanical wiping using DPWs impregnated with these biocides rendered the virus inactive almost immediately, with no viral transfer from the used DPW to adjacent surfaces. Carriers treated with 100 ppm of ClO2 showed a significant amount of viable virus remaining after 10 min of biocide exposure, while the virus was only completely inactivated after 10 min of treatment with 500 ppm of ClO2. Wiping SARS-CoV-2-spiked carriers with DPWs containing either concentration of ClO2 for 5 s left significant amounts of viable virus on the carriers. Furthermore, higher titers of infectious virus retained on the ClO2-infused DPWs were transferred to uninoculated carriers immediately after wiping. Overall, 66.5% EtOH, 0.5% NaOCl, and 1% KMPS appear to be highly effective biocidal agents against SARS-CoV-2, while ClO2 formulations are much less efficacious.
Collapse
Affiliation(s)
| | | | - Todd Cutts
- National Microbiology Laboratory, Applied Biosafety Research Program, Safety and Environmental Services, Public Health Agency of Canada, Winnipeg, MB, Canada
| |
Collapse
|
45
|
Chen W, Chen CL, Cao Q, Chiu CH. Time course and epidemiological features of COVID-19 resurgence due to cold-chain food or packaging contamination. Biomed J 2022; 45:432-438. [PMID: 35276413 PMCID: PMC8904003 DOI: 10.1016/j.bj.2022.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 01/28/2022] [Accepted: 03/02/2022] [Indexed: 12/19/2022] Open
Abstract
Contaminations in frozen food imported from countries with ongoing COVID-19 epidemics have been reported in China. However, the epidemiological features of the outbreaks initiated by material-to-human transmission were less reported. The risk of this route of transmission remains unclear, and strategies to prevent resurgence could be flawed. We aimed to demonstrate the existence of cold-chain food or packaging contamination transmission and describe the time course and epidemiological features associated with the transmission in China. This review was based on the official reports or literature for resurging COVID-19 events that were related to cold-chain food or packaging contamination in China and other countries. Although SARS-CoV-2 on the material surface is not the main source of infection, the closed and humid environment for food packaging and transportation is a place favoring the material-to-human spread of SARS-CoV-2. In this transmission mode, patient zero is often hidden and difficult to detect, such that the outbreak usually can only be perceived after a period of a secret epidemic. Regular testing for high-risk populations and imported cold-chain products, proper disinfection of imported products, and protection of susceptible population while working remain an effective way to detect and prevent SARS-CoV-2 spread.
Collapse
Affiliation(s)
- Wenjuan Chen
- Department of Infectious Diseases, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chyi-Liang Chen
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Qing Cao
- Department of Infectious Diseases, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
46
|
Hosseini M, Chin AWH, Williams MD, Behzadinasab S, Falkinham JO, Poon LLM, Ducker WA. Transparent Anti-SARS-CoV-2 and Antibacterial Silver Oxide Coatings. ACS APPLIED MATERIALS & INTERFACES 2022; 14:8718-8727. [PMID: 35138100 PMCID: PMC8848512 DOI: 10.1021/acsami.1c20872] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/14/2022] [Indexed: 05/17/2023]
Abstract
Transparent antimicrobial coatings can maintain the aesthetic appeal of surfaces and the functionality of a touch-screen while adding the benefit of reducing disease transmission. We fabricated an antimicrobial coating of silver oxide particles in a silicate matrix on glass. The matrix was grown by a modified Stöber sol-gel process with vapor-phase water and ammonia. A coating on glass with 2.4 mg of Ag2O per mm2 caused a reduction of 99.3% of SARS-CoV-2 and >99.5% of Pseudomonas aeruginosa, Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus compared to the uncoated glass after 1 h. We envisage that screen protectors with transparent antimicrobial coatings will find particular application to communal touch-screens, such as in supermarkets and other check-out or check-in facilities where a number of individuals utilize the same touch-screen in a short interval.
Collapse
Affiliation(s)
- Mohsen Hosseini
- Dept. of Chemical Engineering and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia, 24061, USA
| | - Alex W. H. Chin
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
- Centre for Immunity and Infection, Hong Kong Science Park, Hong Kong, Hong Kong, China
| | - Myra D. Williams
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, 24061, USA
| | - Saeed Behzadinasab
- Dept. of Chemical Engineering and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia, 24061, USA
| | - Joseph O. Falkinham
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, 24061, USA
| | - Leo L. M. Poon
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
- Centre for Immunity and Infection, Hong Kong Science Park, Hong Kong, Hong Kong, China
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - William A. Ducker
- Dept. of Chemical Engineering and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia, 24061, USA
| |
Collapse
|
47
|
Airoldi C, Calcagno A, Di Perri G, Valinotto R, Gallo L, Locana E, Trunfio M, Patrucco F, Vineis P, Faggiano F. Seroprevalence of SARS-CoV-2 Among Workers in Northern Italy. Ann Work Expo Health 2022; 66:224-232. [PMID: 34365502 PMCID: PMC8385866 DOI: 10.1093/annweh/wxab062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The spread of severe acute respiratory coronavirus 2 (SARS-CoV-2) among active workers is poor known. The aim of our study was to evaluate the seroprevalence of immunoglobulin G (IgG) among a convenience sample of workers and to identify high-risk job sectors during the first pandemic way. METHODS We conducted a cross-sectional study among workers tested for SARS-CoV-2 between 28 March and 7 August 2020, recorded by a private healthcare center located in North-West Italy. Association among seroprevalence and demographic and occupational variables was evaluated using chi square test and the seroprevalence and 95% confidence intervals (CI) were calculated. RESULTS We collected the results for 23568 serological tests from a sample of 22708 workers from about 1000 companies. Median age was 45 years and about 60% of subjects were male. The overall seroprevalence was 4.97% [95%CI 4.69-5.25]. No statistical difference was found among gender while seroprevalence was associated with subjects' age, geographical location, and occupational sector. Significantly higher values of positivity were observed for the logistics sector (31.3%), weaving factory (12.6%), nursing homes (9.8%), and chemical industry (6.9%) workers. However, we observed some clusters of cases in single companies independently from the sector.Then, a detailed focus on 940 food workers shown a seroprevalence of 5.21% [95%CI 3.79-6.63] and subjects who self-reported COVID-19 symptoms and who worked during lockdown had a higher probability of being infected (p < 0.001). CONCLUSIONS Data obtained might be useful for future public health decision; more than occupation sector, it seems that failure on prevention system in single companies increase the SARS-CoV-2 transmission.
Collapse
Affiliation(s)
- Chiara Airoldi
- Department of Translation Medicine, Università del Piemonte Orientale, Via Solaroli 17 Novara, 20100, Italy
| | - Andrea Calcagno
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino at Ospedale Amedeo di Savoia, ASL TO2, C.so Svizzera 164 Torino 10149, Italy
| | - Giovanni Di Perri
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino at Ospedale Amedeo di Savoia, ASL TO2, C.so Svizzera 164 Torino 10149, Italy
| | | | - Lucia Gallo
- DC, Centro Diagnostico Cernaia (Gruppo C.D.C), Torino, Italy
| | | | - Mattia Trunfio
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino at Ospedale Amedeo di Savoia, ASL TO2, C.so Svizzera 164 Torino 10149, Italy
| | - Filippo Patrucco
- Department of Translation Medicine, Università del Piemonte Orientale, Via Solaroli 17 Novara, 20100, Italy
| | - Paolo Vineis
- MRC, Centre for Environment and Health, School of Public Health, Imperial College London, W2 1 PG, UK
| | - Fabrizio Faggiano
- Department of Translation Medicine, Università del Piemonte Orientale, Via Solaroli 17 Novara, 20100, Italy.,Osservatorio Epidemiologico, ASL Vercelli, Italy
| |
Collapse
|
48
|
Meiksin A. Using the SEIR model to constrain the role of contaminated fomites in spreading an epidemic: An application to COVID-19 in the UK. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:3564-3590. [PMID: 35341264 DOI: 10.3934/mbe.2022164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
The use of the SEIR model of compartmentalized population dynamics with an added fomite term is analysed as a means of statistically quantifying the contribution of contaminated fomites to the spread of a viral epidemic. It is shown that for normally expected lifetimes of a virus on fomites, the dynamics of the populations are nearly indistinguishable from the case without fomites. With additional information, such as the change in social contacts following a lockdown, however, it is shown that, under the assumption that the reproduction number for direct infection is proportional to the number of social contacts, the population dynamics may be used to place meaningful statistical constraints on the role of fomites that are not affected by the lockdown. The case of the Spring 2020 UK lockdown in response to COVID-19 is presented as an illustration. An upper limit is found on the transmission rate by contaminated fomites of fewer than 1 in 30 per day per infectious person (95% CL) when social contact information is taken into account. Applied to postal deliveries and food packaging, the upper limit on the contaminated fomite transmission rate corresponds to a probability below 1 in 70 (95% CL) that a contaminated fomite transmits the infection. The method presented here may be helpful for guiding health policy over the contribution of some fomites to the spread of infection in other epidemics until more complete risk assessments based on mechanistic modelling or epidemiological investigations may be completed.
Collapse
Affiliation(s)
- Avery Meiksin
- School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| |
Collapse
|
49
|
Owen L, Shivkumar M, Cross RBM, Laird K. Porous surfaces: stability and recovery of coronaviruses. Interface Focus 2022; 12:20210039. [PMID: 34956608 PMCID: PMC8662390 DOI: 10.1098/rsfs.2021.0039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022] Open
Abstract
The role of indirect contact in the transmission of SARS-CoV-2 is not clear. SARS-CoV-2 persists on dry surfaces for hours to days; published studies have largely focused on hard surfaces with less research being conducted on different porous surfaces, such as textiles. Understanding the potential risks of indirect transmission of COVID-19 is useful for settings where there is close contact with textiles, including healthcare, manufacturing and retail environments. This article aims to review current research on porous surfaces in relation to their potential as fomites of coronaviruses compared to non-porous surfaces. Current methodologies for assessing the stability and recovery of coronaviruses from surfaces are also explored. Coronaviruses are often less stable on porous surfaces than non-porous surfaces, for example, SARS-CoV-2 persists for 0.5 h-5 days on paper and 3-21 days on plastic; however, stability is dependent on the type of surface. In particular, the surface properties of textiles differ widely depending on their construction, leading to variation in the stability of coronaviruses, with longer persistence on more hydrophobic materials such as polyester (1-3 days) compared to highly absorbent cotton (2 h-4 days). These findings should be considered where there is close contact with potentially contaminated textiles.
Collapse
Affiliation(s)
- Lucy Owen
- Infectious Disease Research Group, The Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Maitreyi Shivkumar
- Infectious Disease Research Group, The Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Richard B. M. Cross
- Emerging Technologies Research Centre, School of Engineering and Sustainable Development, De Montfort University, Leicester LE1 9BH, UK
| | - Katie Laird
- Infectious Disease Research Group, The Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| |
Collapse
|
50
|
Reynolds KA, Verhougstraete MP, Mena KD, Sattar SA, Scott EA, Gerba CP. Quantifying pathogen infection risks from household laundry practices. J Appl Microbiol 2022; 132:1435-1448. [PMID: 34465009 PMCID: PMC9290578 DOI: 10.1111/jam.15273] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 12/23/2022]
Abstract
AIMS Contaminated laundry can spread infections. However, current directives for safe laundering are limited to healthcare settings and not reflective of domestic conditions. We aimed to use quantitative microbial risk assessment to evaluate household laundering practices (e.g., detergent selection, washing and drying temperatures, and sanitizer use) relative to log10 reductions in pathogens and infection risks during the clothes sorting, washer/dryer loading, folding and storing steps. METHODS AND RESULTS Using published data, we characterized laundry infection risks for respiratory and enteric pathogens relative to a single user contact scenario and a 1.0 × 10-6 acceptable risk threshold. For respiratory pathogens, risks following cold water wash temperatures (e.g. median 14.4℃) and standard detergents ranged from 2.2 × 10-5 to 2.2 × 10-7 . Use of advanced, enzymatic detergents reduced risks to 8.6 × 10-8 and 2.2 × 10-11 respectively. For enteric pathogens, however, hot water, advanced detergents, sanitizing agents and drying are needed to reach risk targets. SIGNIFICANCE AND IMPACT OF THE STUDY Conclusions provide guidance for household laundry practices to achieve targeted risk reductions, given a single user contact scenario. A key finding was that hand hygiene implemented at critical control points in the laundering process was the most significant driver of infection prevention, additionally reducing infection risks by up to 6 log10 .
Collapse
Affiliation(s)
- Kelly A. Reynolds
- The Mel and Enid Zuckerman College of Public HealthUniversity of ArizonaTucsonAZUSA
| | | | - Kristina D. Mena
- School of Public HealthThe University of Texas Health Science Center at HoustonEl PasoTXUSA
| | | | - Elizabeth A. Scott
- Center for Hygiene and Health, Department of BiologySimmons UniversityBostonMAUSA
| | - Charles P. Gerba
- Department of Environmental SciencesUniversity of ArizonaTucsonAZUSA
| |
Collapse
|