1
|
Christen U, Hintermann E. Animal Models for Autoimmune Hepatitis: Are Current Models Good Enough? Front Immunol 2022; 13:898615. [PMID: 35903109 PMCID: PMC9315390 DOI: 10.3389/fimmu.2022.898615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Autoimmune liver diseases like autoimmune hepatitis, primary biliary cholangitis, primary sclerosing cholangitis, and IgG4-related cholangitis are chronic inflammatory diseases of the liver with an autoimmune background. The therapy of autoimmune hepatitis targets the autoreactive immune system and is largely dependent on the use of glucocorticoids and cytostatic drugs. In contrast, the treatment of cholestatic autoimmune liver diseases is restricted to the use of secondary or semi-synthetic bile acids, like ursodeoxycholic acid or obeticholic acid. Although the management of the disease using such drugs works well for the majority of patients, many individuals do not respond to standard therapy. In addition, chronic treatment with glucocorticoids results in well-known side effects. Further, the use of bile acids is a symptomatic therapy that has no direct immunomodulatory effect. Thus, there is still a lot of room for improvement. The use of animal models has facilitated to elucidate the pathogenesis of autoimmune liver diseases and many potential target structures for immunomodulatory therapies have been identified. In this review, we will focus on autoimmune hepatitis for which the first animal models have been established five decades ago, but still a precise treatment for autoimmune hepatitis, as obtainable for other autoimmune diseases such as rheumatoid arthritis or multiple sclerosis has yet to be introduced. Thus, the question arises if our animal models are too far from the patient reality and thus findings from the models cannot be reliably translated to the patient. Several factors might be involved in this discrepancy. There is first and foremost the genetic background and the inbred status of the animals that is different from human patients. Here the use of humanized animals, such as transgenic mice, might reduce some of the differences. However, there are other factors, such as housing conditions, nutrition, and the microbiome that might also play an important role. This review will predominantly focus on the current status of animal models for autoimmune hepatitis and the possible ways to overcome discrepancies between model and patient.
Collapse
|
2
|
Skartsis N, Peng Y, Ferreira LMR, Nguyen V, Ronin E, Muller YD, Vincenti F, Tang Q. IL-6 and TNFα Drive Extensive Proliferation of Human Tregs Without Compromising Their Lineage Stability or Function. Front Immunol 2022; 12:783282. [PMID: 35003100 PMCID: PMC8732758 DOI: 10.3389/fimmu.2021.783282] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/29/2021] [Indexed: 01/09/2023] Open
Abstract
Treg therapies are being tested in clinical trials in transplantation and autoimmune diseases, however, the impact of inflammation on Tregs remains controversial. We challenged human Tregs ex-vivo with pro-inflammatory cytokines IL-6 and TNFα and observed greatly enhanced proliferation stimulated by anti-CD3 and anti-CD28 (aCD3/28) beads or CD28 superagonist (CD28SA). The cytokine-exposed Tregs maintained high expression of FOXP3 and HELIOS, demethylated FOXP3 enhancer, and low IFNγ, IL-4, and IL-17 secretion. Blocking TNF receptor using etanercept or deletion of TNF receptor 2 using CRISPR/Cas9 blunted Treg proliferation and attenuated FOXP3 and HELIOS expression. These results prompted us to consider using CD28SA together with IL-6 and TNFα without aCD3/28 beads (beadless) as an alternative protocol for therapeutic Treg manufacturing. Metabolomics profiling revealed more active glycolysis and oxidative phosphorylation, increased energy production, and higher antioxidant potential during beadless Treg expansion. Finally, beadless expanded Tregs maintained suppressive functions in vitro and in vivo. These results demonstrate that human Tregs positively respond to proinflammatory cytokines with enhanced proliferation without compromising their lineage identity or function. This property can be harnessed for therapeutic Treg manufacturing.
Collapse
Affiliation(s)
- Nikolaos Skartsis
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States.,Division of Nephrology, Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Yani Peng
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Leonardo M R Ferreira
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Vinh Nguyen
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Emilie Ronin
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Yannick D Muller
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Flavio Vincenti
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States.,Division of Nephrology, Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Qizhi Tang
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States.,Diabetes Center, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
3
|
The Role of Fc Receptors on the Effectiveness of Therapeutic Monoclonal Antibodies. Int J Mol Sci 2021; 22:ijms22168947. [PMID: 34445651 PMCID: PMC8396266 DOI: 10.3390/ijms22168947] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
Since the approval of the first monoclonal antibody (mAb) in 1986, a huge effort has been made to guarantee safety and efficacy of therapeutic mAbs. As of July 2021, 118 mAbs are approved for the European market for a broad range of clinical indications. In order to ensure clinical efficacy and safety aspects, (pre-)clinical experimental approaches evaluate the respective modes of action (MoA). In addition to antigen-specificity including binding affinity and -avidity, MoA comprise Fc-mediated effector functions such as antibody dependent cellular cytotoxicity (ADCC) and the closely related antibody dependent cellular phagocytosis (ADCP). For this reason, a variety of cell-based assays have been established investigating effector functions of therapeutic mAbs with different effector/target-cell combinations and several readouts including Fcγ receptor (FcγR)-mediated lysis, fluorescence, or luminescence. Optimized FcγR-mediated effector functions regarding clinical safety and efficacy are addressed with modification strategies such as point mutations, altered glycosylation patterns, combination of different Fc subclasses (cross isotypes), and Fc-truncation of the mAb. These strategies opened the field for a next generation of therapeutic mAbs. In conclusion, it is of major importance to consider FcγR-mediated effector functions for the efficacy of therapeutic mAbs.
Collapse
|
4
|
Audia A, Bannish G, Bunting R, Riveley C. Flow cytometry and receptor occupancy in immune-oncology. Expert Opin Biol Ther 2021; 22:87-94. [PMID: 34139906 DOI: 10.1080/14712598.2021.1944098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Immunotherapies are focused on strategies that alter immune responses, using antibodies that binds to receptors on different immune cell subsets and either activate or suppress their functions depending on the immune response being targeted. Hence, the necessity of developing assays that assess the functional and biological effect of a therapeutic on its target. When incorporated into high-parameter flow cytometry panels, receptor occupancy assay can simultaneously evaluate receptor expression and drug occupancy on defined cell subsets, which can provide information related to functional effects, and safety.Areas covered: This review focuses on the importance of developing, optimizing, and validating a robust Receptor Occupancy Assay (ROA) to improve dose selection, pharmacology monitoring and safety mainly in clinical settings.Expert opinion: The designing of an ROA can be challenging and can lead to exaggerated pharmacology if not accurately developed, optimized, and validated. However, improvements in our understanding of epitopes, binding, affinities, and pharmacological effects may lead to improved antibody drug targeting and receptor evaluation.
Collapse
Affiliation(s)
- Alessandra Audia
- Champions Oncology, Biomarker Services Solution, Hackensack, New Jersey, USA
| | - Gregory Bannish
- Champions Oncology, Biomarker Services Solution, Hackensack, New Jersey, USA
| | - Rachel Bunting
- Champions Oncology, Biomarker Services Solution, Hackensack, New Jersey, USA
| | - Chelsea Riveley
- Champions Oncology, Biomarker Services Solution, Hackensack, New Jersey, USA
| |
Collapse
|
5
|
Thomas LJ, He LZ, Marsh H, Keler T. Targeting human CD27 with an agonist antibody stimulates T-cell activation and antitumor immunity. Oncoimmunology 2021; 3:e27255. [PMID: 24605266 PMCID: PMC3937191 DOI: 10.4161/onci.27255] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 11/18/2013] [Indexed: 12/16/2022] Open
Abstract
CD27 is an important co-stimulatory receptor of T cells that can potentially be exploited for immunotherapy. We developed a human IgG1 antibody that targets human CD27, and demonstrated its immunostimulatory and antineoplastic activity in various preclinical models. Currently, the antibody (1F5, CDX-1127) is being tested in patients affected by advanced malignancies.
Collapse
Affiliation(s)
| | - Li-Zhen He
- Celldex Therapeutics, Inc.; Phillipsburg, NJ USA
| | | | - Tibor Keler
- Celldex Therapeutics, Inc.; Phillipsburg, NJ USA
| |
Collapse
|
6
|
Hanson A, Elpek K, Duong E, Shallberg L, Fan M, Johnson C, Wallace M, Mabry GR, Sazinsky S, Pepper L, Shu CJ, Sathyanarayanan S, Zuerndorfer S, Simpson T, Gostissa M, Briskin M, Law D, Michaelson J, Harvey CJ. ICOS agonism by JTX-2011 (vopratelimab) requires initial T cell priming and Fc cross-linking for optimal T cell activation and anti-tumor immunity in preclinical models. PLoS One 2020; 15:e0239595. [PMID: 32970735 PMCID: PMC7514066 DOI: 10.1371/journal.pone.0239595] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023] Open
Abstract
Immunotherapy checkpoint inhibitors, such as antibodies targeting PD-1 and CTLA-4, have demonstrated the potential of harnessing the immune system to treat cancer. However, despite encouraging results particularly with respect to survival, only a minority of patients benefit from these therapies. In clinical studies aimed at understanding changes in the immune system following immunotherapy treatment, ICOS (Inducible T cell CO-Stimulator) was shown to be significantly up-regulated on CD4+ T cells and this was associated with clinical activity, indicating that ICOS stimulatory activity may be beneficial in the treatment of solid tumors. In this report, we describe the generation of specific, species cross-reactive, agonist antibodies to ICOS, including the humanized clinical candidate, JTX-2011 (vopratelimab). Preclinical studies suggest that the ICOS stimulating antibodies require Fc receptor cross-linking for optimal agonistic activity. Notably, the ICOS antibodies do not exhibit superagonist properties but rather require T cell receptor (TCR)-mediated upregulation of ICOS for agonist activity. Treatment with the ICOS antibodies results in robust anti-tumor benefit and long-term protection in preclinical syngeneic mouse tumor models. Additional benefit is observed when the ICOS antibodies are administered in combination with anti-PD-1 and anti-CTLA-4 therapies. Based on the preclinical data, JTX-2011 is currently being developed in the clinical setting for the treatment of solid tumors.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal, Humanized/immunology
- Antibodies, Monoclonal, Humanized/therapeutic use
- CHO Cells
- Cells, Cultured
- Cricetinae
- Cricetulus
- Cross-Priming
- Female
- Humans
- Immunotherapy/methods
- Inducible T-Cell Co-Stimulator Protein/immunology
- Jurkat Cells
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/therapy
- Receptors, Fc/immunology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Amanda Hanson
- Preclinical Sciences, Jounce Therapeutics, Inc., Cambridge, Massachusetts, United States of America
| | - Kutlu Elpek
- Preclinical Sciences, Jounce Therapeutics, Inc., Cambridge, Massachusetts, United States of America
| | - Ellen Duong
- Preclinical Sciences, Jounce Therapeutics, Inc., Cambridge, Massachusetts, United States of America
| | - Lindsey Shallberg
- Preclinical Sciences, Jounce Therapeutics, Inc., Cambridge, Massachusetts, United States of America
| | - Martin Fan
- Preclinical Sciences, Jounce Therapeutics, Inc., Cambridge, Massachusetts, United States of America
| | - Calvin Johnson
- Preclinical Sciences, Jounce Therapeutics, Inc., Cambridge, Massachusetts, United States of America
| | - Matthew Wallace
- Protein Sciences, Jounce Therapeutics, Inc., Cambridge, Massachusetts, United States of America
| | - George R. Mabry
- Protein Sciences, Jounce Therapeutics, Inc., Cambridge, Massachusetts, United States of America
| | - Stephen Sazinsky
- Protein Sciences, Jounce Therapeutics, Inc., Cambridge, Massachusetts, United States of America
| | - Lauren Pepper
- Protein Sciences, Jounce Therapeutics, Inc., Cambridge, Massachusetts, United States of America
| | - Chengyi J. Shu
- Translational Sciences, Jounce Therapeutics, Inc., Cambridge, Massachusetts, United States of America
| | - Sriram Sathyanarayanan
- Translational Sciences, Jounce Therapeutics, Inc., Cambridge, Massachusetts, United States of America
| | - Sarah Zuerndorfer
- Protein Sciences, Jounce Therapeutics, Inc., Cambridge, Massachusetts, United States of America
| | - Tyler Simpson
- Preclinical Sciences, Jounce Therapeutics, Inc., Cambridge, Massachusetts, United States of America
| | - Monica Gostissa
- Pharmacology, Jounce Therapeutics, Inc., Cambridge, Massachusetts, United States of America
| | - Michael Briskin
- Research, Jounce Therapeutics, Inc., Cambridge, Massachusetts, United States of America
| | - Deborah Law
- Research, Jounce Therapeutics, Inc., Cambridge, Massachusetts, United States of America
| | - Jennifer Michaelson
- Preclinical Sciences, Jounce Therapeutics, Inc., Cambridge, Massachusetts, United States of America
| | - Christopher J. Harvey
- Preclinical Sciences, Jounce Therapeutics, Inc., Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
7
|
Garliss CC, Kwaa AK, Blankson JN. A Comparison of Different Immune Activation Strategies to Reverse HIV-1 Latency. Open Forum Infect Dis 2020; 7:ofaa082. [PMID: 32284948 PMCID: PMC7139987 DOI: 10.1093/ofid/ofaa082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/27/2020] [Indexed: 11/24/2022] Open
Abstract
Resting CD4+ T cells are the best characterized component of the latent reservoir. Activation of these CD4+ T cells is needed to optimize transcription and viral replication, and this strategy has been used to measure the inducible reservoir. There are several methods that can be used to activate CD4+ T cells, and in this study, we compared 3 different strategies: the combination of the lectin phytohaemagglutinin (PHA) and irradiated allogeneic feeders, a combination of PHA and a superagonistic anti-CD28 antibody, and the combination of the protein kinase C agonist phorbol 12-myristate 13-acetate and the calcium ionophore ionomycin. We show that each strategy induces a different pattern of expression of activation markers on CD4+ T cells. However, the different activation strategies induced similar frequencies of latently infected CD4+ T cells from people living with HIV on suppressive antiretroviral therapy regimens to produce replication-competent virus. Furthermore, the frequency of infectious units per million induced by each regimen was positively correlated with the copies of intact proviral DNA per million CD4+ T cells. Our results suggest that no single pattern of activation marker expression is most associated with latency reversal and demonstrate that different immune activation strategies reverse latency in a low frequency of CD4+ T cells that harbor intact proviral DNA.
Collapse
Affiliation(s)
- Caroline C Garliss
- Center for AIDS Research, Department of Medicine, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Abena K Kwaa
- Center for AIDS Research, Department of Medicine, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Joel N Blankson
- Center for AIDS Research, Department of Medicine, Johns Hopkins Medicine, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Wu L, Seung E, Xu L, Rao E, Lord DM, Wei RR, Cortez-Retamozo V, Ospina B, Posternak V, Ulinski G, Piepenhagen P, Francesconi E, El-Murr N, Beil C, Kirby P, Li A, Fretland J, Vicente R, Deng G, Dabdoubi T, Cameron B, Bertrand T, Ferrari P, Pouzieux S, Lemoine C, Prades C, Park A, Qiu H, Song Z, Zhang B, Sun F, Chiron M, Rao S, Radošević K, Yang ZY, Nabel GJ. Trispecific antibodies enhance the therapeutic efficacy of tumor-directed T cells through T cell receptor co-stimulation. ACTA ACUST UNITED AC 2019; 1:86-98. [DOI: 10.1038/s43018-019-0004-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/23/2019] [Indexed: 12/26/2022]
|
9
|
Thaventhiran T, Wong W, Alghanem AF, Alhumeed N, Aljasir MA, Ramsey S, Sethu S, Yeang HXA, Chadwick AE, Cross M, Webb SD, Djouhri L, Ball C, Stebbings R, Sathish JG. CD28 Superagonistic Activation of T Cells Induces a Tumor Cell-Like Metabolic Program. Monoclon Antib Immunodiagn Immunother 2019; 38:60-69. [PMID: 31009338 PMCID: PMC6634261 DOI: 10.1089/mab.2018.0042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
CD28 superagonist (CD28SA), a therapeutic immunomodulatory monoclonal antibody triggered rapid and exaggerated activation of CD4+ effector memory T cells (TEMs) in humans with unwanted serious adverse effects. It is well known that distinct metabolic programs determine the fate and responses of immune cells. In this study, we show that human CD4+ TEMs stimulated with CD28SA adopt a metabolic program similar to those of tumor cells with enhanced glucose utilization, lipid biosynthesis, and proliferation in hypoxic conditions. Identification of metabolic profiles underlying hyperactive T cell activation would provide a platform to test safety of immunostimulatory antibodies.
Collapse
Affiliation(s)
- Thilipan Thaventhiran
- 1 Medical Research Council Centre for Drug Safety Science and Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Wai Wong
- 1 Medical Research Council Centre for Drug Safety Science and Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Ahmad F Alghanem
- 1 Medical Research Council Centre for Drug Safety Science and Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Naif Alhumeed
- 1 Medical Research Council Centre for Drug Safety Science and Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Mohammad A Aljasir
- 1 Medical Research Council Centre for Drug Safety Science and Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Simeon Ramsey
- 2 Inflammation and Remodeling, Pfizer Research Unit, Cambridge, Massachusetts
| | - Swaminathan Sethu
- 1 Medical Research Council Centre for Drug Safety Science and Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Han Xian Aw Yeang
- 1 Medical Research Council Centre for Drug Safety Science and Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Amy E Chadwick
- 1 Medical Research Council Centre for Drug Safety Science and Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Michael Cross
- 1 Medical Research Council Centre for Drug Safety Science and Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Steven D Webb
- 1 Medical Research Council Centre for Drug Safety Science and Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Laiche Djouhri
- 3 Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Christina Ball
- 4 National Institute for Biological Standards and Control, Hertfordshire, United Kingdom
| | - Richard Stebbings
- 4 National Institute for Biological Standards and Control, Hertfordshire, United Kingdom
| | - Jean G Sathish
- 1 Medical Research Council Centre for Drug Safety Science and Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
10
|
Dudek S, Weißmüller S, Anzaghe M, Miller L, Sterr S, Hoffmann K, Hengel H, Waibler Z. Human Fcγ receptors compete for TGN1412 binding that determines the antibody's effector function. Eur J Immunol 2019; 49:1117-1126. [PMID: 31002172 DOI: 10.1002/eji.201847924] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/21/2019] [Accepted: 04/09/2019] [Indexed: 11/07/2022]
Abstract
The first-in-human clinical trial of the CD28-specific monoclonal antibody (mAb) TGN1412 resulted in a life-threatening cytokine release syndrome. Although TGN1412 was designed as IgG4, known for weak Fc:Fcγ receptor (FcγR) interactions, these interactions contributed to TGN1412-induced T-cell activation. Using cell lines (TFs) expressing human FcγRI, -IIa, -IIb, or -III, we show that TGN1412 and TGN1412 as IgG1 and IgG2 are bound by FcγRs as it can be deduced from literature. However, upon coculture of TGN1412-decorated T cells with TFs or human primary blood cells, we observed that binding capacities by FcγRs do not correlate with the strength of the mediated effector function. FcγRIIa and FcγRIIb, showing no or very minor binding to TGN1412, mediated strongest T cell proliferation, while high-affinity FcγRI, exhibiting strong TGN1412 binding, mediated hardly any T-cell proliferation. These findings are of biological relevance because we show that FcγRI binds TGN1412, thus prevents binding to FcγRIIa or FcγRIIb, and consequently disables T-cell proliferation. In line with this, FcγRI- FcγRII+ but not FcγRI+ FcγRII+ monocytes mediate TGN1412-induced T-cell proliferation. Collectively, by using TGN1412 as example, our results indicate that binding of monomeric IgG subclasses does not predict the FcγR-mediated effector function, which has major implications for the design of therapeutic mAbs.
Collapse
Affiliation(s)
- Simone Dudek
- Product Testing of Immunological Biopharmaceuticals, Division of Immunology, Paul-Ehrlich-Institut, Langen, Germany
| | - Sabrina Weißmüller
- Product Testing of Immunological Biopharmaceuticals, Division of Immunology, Paul-Ehrlich-Institut, Langen, Germany
| | - Martina Anzaghe
- Product Testing of Immunological Biopharmaceuticals, Division of Immunology, Paul-Ehrlich-Institut, Langen, Germany
| | - Lilija Miller
- Product Testing of Immunological Biopharmaceuticals, Division of Immunology, Paul-Ehrlich-Institut, Langen, Germany
| | - Sarah Sterr
- Product Testing of Immunological Biopharmaceuticals, Division of Immunology, Paul-Ehrlich-Institut, Langen, Germany
| | - Katja Hoffmann
- Institute of Virology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hartmut Hengel
- Institute of Virology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Zoe Waibler
- Product Testing of Immunological Biopharmaceuticals, Division of Immunology, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
11
|
Abstract
CD28 superagonistic antibodies (CD28SAb) can preferentially activate and expand immunosuppressive regulatory T cells (Treg) in mice. However, pre-clinical trials assessing CD28SAbs for the therapy of autoimmune diseases reveal severe systemic inflammatory response syndrome in humans, thereby implying the existence of distinct signalling abilities between human and mouse CD28. Here, we show that a single amino acid variant within the C-terminal proline-rich motif of human and mouse CD28 (P212 in human vs. A210 in mouse) regulates CD28-induced NF-κB activation and pro-inflammatory cytokine gene expression. Moreover, this Y209APP212 sequence in humans is crucial for the association of CD28 with the Nck adaptor protein for actin cytoskeleton reorganisation events necessary for CD28 autonomous signalling. This study thus unveils different outcomes between human and mouse CD28 signalling to underscore the importance of species difference when transferring results from preclinical models to the bedside. CD28 transmits co-stimulatory signals for the activation of both mouse and human T cells, but in vivo hyperactivation of CD28 has opposite effects on system immunity. Here, the authors show that a single amino acid difference between mouse and human CD28 dictates this function distinction via differential recruitment of Nck.
Collapse
|
12
|
IL-2 Inducible Kinase ITK is Critical for HIV-1 Infection of Jurkat T-cells. Sci Rep 2018; 8:3217. [PMID: 29453458 PMCID: PMC5816632 DOI: 10.1038/s41598-018-21344-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/15/2018] [Indexed: 01/04/2023] Open
Abstract
Successful replication of Human immunodeficiency virus (HIV)-1 depends on the expression of various cellular host factors, such as the interleukin-2 inducible T-cell kinase (ITK), a member of the protein family of TEC-tyrosine kinases. ITK is selectively expressed in T-cells and coordinates signaling pathways downstream of the T-cell receptor and chemokine receptors, including PLC-1 activation, Ca2+-release, transcription factor mobilization, and actin rearrangements. The exact role of ITK during HIV-1 infection is still unknown. We analyzed the function of ITK during HIV-1 replication and showed that attachment, fusion of virions with the cell membrane and entry into Jurkat T-cells was inhibited when ITK was knocked down. In contrast, reverse transcription and provirus expression were not affected by ITK deficiency. Inhibited ITK expression did not affect the CXCR4 receptor on the cell surface, whereas CD4 and LFA-1 integrin levels were slightly enhanced in ITK knockdown cells and heparan sulfate (HS) expression was completely abolished in ITK depleted T-cells. However, neither HS expression nor other attachment factors could explain the impaired HIV-1 binding to ITK-deficient cells, which suggests that a more complex cellular process is influenced by ITK or that not yet discovered molecules contribute to restriction of HIV-1 binding and entry.
Collapse
|
13
|
Delivering safer immunotherapies for cancer. Adv Drug Deliv Rev 2017; 114:79-101. [PMID: 28545888 DOI: 10.1016/j.addr.2017.05.011] [Citation(s) in RCA: 223] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 05/05/2017] [Accepted: 05/17/2017] [Indexed: 12/14/2022]
Abstract
Cancer immunotherapy is now a powerful clinical reality, with a steady progression of new drug approvals and a massive pipeline of additional treatments in clinical and preclinical development. However, modulation of the immune system can be a double-edged sword: Drugs that activate immune effectors are prone to serious non-specific systemic inflammation and autoimmune side effects. Drug delivery technologies have an important role to play in harnessing the power of immune therapeutics while avoiding on-target/off-tumor toxicities. Here we review mechanisms of toxicity for clinically-relevant immunotherapeutics, and discuss approaches based in drug delivery technology to enhance the safety and potency of these treatments. These include strategies to merge drug delivery with adoptive cellular therapies, targeting immunotherapies to tumors or select immune cells, and localizing therapeutics intratumorally. Rational design employing lessons learned from the drug delivery and nanomedicine fields has the potential to facilitate immunotherapy reaching its full potential.
Collapse
|
14
|
Iwata Y, Harada A, Hara T, Kubo C, Inoue T, Tabo M, Ploix C, Manigold T, Hinton H, Mishima M. Is an in vitro whole blood cytokine assay useful to detect the potential risk of severe infusion reaction of monoclonal antibody pharmaceuticals? J Toxicol Sci 2017; 41:523-31. [PMID: 27432238 DOI: 10.2131/jts.41.523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
After the life-threatening cytokine release syndrome (CRS) occurred in the clinical study of the anti-CD28 monoclonal antibody (mAb) TGN1412, in vitro cytokine release assays using human blood cells have been proposed for non-clinical evaluation of the potential risk of CRS. Two basic assay formats are frequently used: human peripheral blood mononuclear cells (PBMC) with immobilized mAbs, and whole blood with aqueous mAbs. However, the suitability of the whole blood cytokine assay (WBCA) has been questioned, because an unrealistically large sample size would be required to detect the potential risk of CRS induced by TGN1412, which has low sensitivity. We performed a WBCA using peripheral blood obtained from 68 healthy volunteers to compare two high risk mAbs, the TGN1412 analogue anti-CD28 superagonistic mAb (CD28SA) and the FcγR-mediated alemutuzumab, with a low risk mAb, panitumumab. Based on the cytokine measurements in this study, the sample size required to detect a statistically significant increase in cytokines with 90% power and 5% significance was determined to be n = 9 for CD28SA and n = 5 for alemtuzumab. The most sensitive marker was IL-8. The results suggest that WBCA is a practical test design that can warn of the potential risk of FcγR-mediated alemtuzumab and T-cell activating CD28SA but, because there was apparently a lower response to CD28SA, it cannot be used as a risk-ranking tool. WBCA is suggested to be a helpful tool for identifying potential FcγR-mediated hazards, but further mechanistic understanding of the response to CD28SA is necessary before applying it to T cell-stimulating mAbs.
Collapse
|
15
|
Single CD28 stimulation induces stable and polyclonal expansion of human regulatory T cells. Sci Rep 2017; 7:43003. [PMID: 28223693 PMCID: PMC5320448 DOI: 10.1038/srep43003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 01/18/2017] [Indexed: 12/17/2022] Open
Abstract
CD4+FOXP3+ Treg are essential for immune tolerance. Phase-1 clinical trials of Treg-therapy to treat graft-versus-host-disease reported safety and potential therapeutic efficacy. Treg-based trials have started in organ-transplant patients. However, efficient ex vivo expansion of a stable Treg population remains a challenge and exploring novel ways for Treg expansion is a pre-requisite for successful immunotherapy. Based on the recent finding that CD28-signaling is crucial for survival and proliferation of mouse Treg, we studied single-CD28 stimulation of human Treg, without T cell receptor stimulation. Single-CD28 stimulation of human Treg in the presence of recombinant human IL-2(rhIL-2), as compared to CD3/CD28/rhIL-2 stimulation, led to higher expression levels of FOXP3. Although the single-CD28 expanded Treg population was equally suppressive to CD3/CD28 expanded Treg, pro-inflammatory cytokine (IL-17A/IFNγ) production was strongly inhibited, indicating that single-CD28 stimulation promotes Treg stability. As single-CD28 stimulation led to limited expansion rates, we examined a CD28-superagonist antibody and demonstrate a significant increased Treg expansion that was more efficient than standard anti-CD3/CD28-bead stimulation. CD28-superagonist stimulation drove both naïve and memory Treg proliferation. CD28-superagonist induction of stable Treg appeared both PI3K and mTOR dependent. Regarding efficient and stable expansion of Treg for adoptive Treg-based immunotherapy, application of CD28-superagonist stimulation is of interest.
Collapse
|
16
|
Lemoine M. Animal extrapolation in preclinical studies: An analysis of the tragic case of TGN1412. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2017; 61:35-45. [PMID: 28039775 DOI: 10.1016/j.shpsc.2016.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 12/19/2016] [Accepted: 12/22/2016] [Indexed: 06/06/2023]
Abstract
According to the received view, the transportation view, animal extrapolation consists in inductive prediction of the outcome of a mechanism in a target, based on an analogical mechanism in a model. Through an analysis of the failure of preclinical studies of TGN1412, an innovative drug, to predict the tragic consequences of its first-in-man trial in 2006, the received view is challenged by a proposed view of animal extrapolation, the chimera view. According to this view, animal extrapolation is based on a hypothesis about how human organisms work, supported by the amalgamation of results drawn from various experimental organisms, and only predicting the 'predictive grid', that is, a global framework of the effects to be expected.
Collapse
Affiliation(s)
- Maël Lemoine
- INSERM U930, France; Université de Tours - Faculté de Médecine - Département de SHS, 10 Bd Tonnellé 37032 Tours Cedex, France.
| |
Collapse
|
17
|
Aptamers for CD Antigens: From Cell Profiling to Activity Modulation. MOLECULAR THERAPY-NUCLEIC ACIDS 2016; 6:29-44. [PMID: 28325295 PMCID: PMC5363458 DOI: 10.1016/j.omtn.2016.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/02/2016] [Accepted: 12/02/2016] [Indexed: 01/01/2023]
Abstract
Nucleic acid-based aptamers are considered to be a promising alternative to antibodies because of their strong and specific binding to diverse targets, fast and inexpensive chemical synthesis, and easy labeling with a fluorescent dye or therapeutic agent. Cluster of differentiation (CD) proteins are among the most popular antigens for aptamers on the cell surface. These anti-CD aptamers could be used in cell biology and biomedicine, from simple cell phenotyping by flow cytometry or fluorescent microscopy to diagnosis and treatment of HIV/AIDS to cancer and immune therapies. The unique feature of aptamers is that they can act simultaneously as an agonist and antagonist of CD receptors depending on a degree of aptamer oligomerization. Aptamers can also deliver small interfering RNA to silence vital genes in CD-positive cells. In this review, we summarize nucleic acid sequences of anti-CD aptamers and their use, which have been validated in multiple studies.
Collapse
|
18
|
Schmiedeberg K, Krause H, Röhl FW, Hartig R, Jorch G, Brunner-Weinzierl MC. T Cells of Infants Are Mature, but Hyporeactive Due to Limited Ca2+ Influx. PLoS One 2016; 11:e0166633. [PMID: 27893767 PMCID: PMC5125607 DOI: 10.1371/journal.pone.0166633] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 11/01/2016] [Indexed: 12/12/2022] Open
Abstract
CD4 T cells in human infants and adults differ in the initiation and strength of their responses. The molecular basis for these differences is not yet understood. To address this the principle key molecular events of TCR- and CD28-induced signaling in naive CD4 T cells, such as Ca2+ influx, NFAT expression, phosphorylation and translocation into the nucleus, ERK activation and IL-2 response, were analyzed over at least the first 3 years of life. We report dramatically reduced IL-2 and TNFα responses in naive CD31+ T cells during infancy. Looking at the obligatory Ca2+ influx required to induce T cell activation and proliferation, we demonstrate characteristic patterns of impairment for each stage of infancy that are partly due to the differential usage of Ca2+ stores. Consistent with those findings, translocation of NFATc2 is limited, but still dependent on Ca2+ influx as demonstrated by sensitivity to cyclosporin A (CsA) treatment. Thus weak Ca2+ influx functions as a catalyst for the implementation of restricted IL-2 response in T cells during infancy. Our studies also define limited mobilization of Ca2+ ions as a characteristic property of T cells during infancy. This work adds to our understanding of infants’ poor T cell responsiveness against pathogens.
Collapse
Affiliation(s)
- Kristin Schmiedeberg
- Department of Experimental Pediatrics, University Hospital, Otto-von-Guericke University, Magdeburg, Germany
| | - Hardy Krause
- Clinic of Pediatric Surgery University Hospital, Otto-von-Guericke University, Magdeburg, Germany
| | - Friedrich-Wilhelm Röhl
- Institute of Biometry and Medical Informatics University Hospital, Otto-von-Guericke University, Magdeburg, Germany
| | - Roland Hartig
- Institute for Molecular and Clinical Immunology, University Hospital, Otto-von-Guericke University, Magdeburg, Germany
| | - Gerhard Jorch
- Department of Experimental Pediatrics, University Hospital, Otto-von-Guericke University, Magdeburg, Germany
| | - Monika C. Brunner-Weinzierl
- Department of Experimental Pediatrics, University Hospital, Otto-von-Guericke University, Magdeburg, Germany
- * E-mail:
| |
Collapse
|
19
|
Herr F, Brunel M, Roders N, Durrbach A. Co-stimulation Blockade Plus T-Cell Depletion in Transplant Patients: Towards a Steroid- and Calcineurin Inhibitor-Free Future? Drugs 2016; 76:1589-1600. [DOI: 10.1007/s40265-016-0656-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Hünig T. The rise and fall of the CD28 superagonist TGN1412 and its return as TAB08: a personal account. FEBS J 2016; 283:3325-34. [PMID: 27191544 DOI: 10.1111/febs.13754] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/04/2016] [Accepted: 05/13/2016] [Indexed: 12/20/2022]
Abstract
Two decades ago, we discovered 'superagonistic' monoclonal antibodies specific for the CD28 molecule which are able to polyclonally activate T cells, in particular regulatory T cells, and are therapeutically active in many rodent models of autoimmunity, inflammation, transplantation, and tissue repair. A phase I trial of the human CD28 superagonist TGN1412 failed in 2006 due to an unexpected cytokine release syndrome, but after it became clear that dose-reduction allows to preferentially address regulatory T cells also in humans, clinical development was resumed under the name TAB08. Here, I recount the story of CD28 superagonist development from a personal perspective with an emphasis on the dramatic events during and after the 2006 phase I trial, the reasons for the failure of preclinical research to warn of the impending cytokine storm, and on the research which allowed resumption of clinical development.
Collapse
Affiliation(s)
- Thomas Hünig
- Institute for Virology and Immunobiology, University of Würzburg, Germany.
| |
Collapse
|
21
|
Esensten JH, Helou YA, Chopra G, Weiss A, Bluestone JA. CD28 Costimulation: From Mechanism to Therapy. Immunity 2016; 44:973-88. [PMID: 27192564 PMCID: PMC4932896 DOI: 10.1016/j.immuni.2016.04.020] [Citation(s) in RCA: 632] [Impact Index Per Article: 70.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Indexed: 02/07/2023]
Abstract
Ligation of the CD28 receptor on T cells provides a critical second signal alongside T cell receptor (TCR) ligation for naive T cell activation. Here, we discuss the expression, structure, and biochemistry of CD28 and its ligands. CD28 signals play a key role in many T cell processes, including cytoskeletal remodeling, production of cytokines, survival, and differentiation. CD28 ligation leads to unique epigenetic, transcriptional, and post-translational changes in T cells that cannot be recapitulated by TCR ligation alone. We discuss the function of CD28 and its ligands in both effector and regulatory T cells. CD28 is critical for regulatory T cell survival and the maintenance of immune homeostasis. We outline the roles that CD28 and its family members play in human disease and we review the clinical efficacy of drugs that block CD28 ligands. Despite the centrality of CD28 and its family members and ligands to immune function, many aspects of CD28 biology remain unclear. Translation of a basic understanding of CD28 function into immunomodulatory therapeutics has been uneven, with both successes and failures. Such real-world results might stem from multiple factors, including complex receptor-ligand interactions among CD28 family members, differences between the mouse and human CD28 families, and cell-type specific roles of CD28 family members.
Collapse
Affiliation(s)
- Jonathan H Esensten
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143, USA.
| | - Ynes A Helou
- Division of Rheumatology, Department of Medicine, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, University of California, San Francisco, CA 94143, USA
| | - Gaurav Chopra
- Department of Chemistry, Purdue Center for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| | - Arthur Weiss
- Division of Rheumatology, Department of Medicine, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, University of California, San Francisco, CA 94143, USA; Howard Hughes Medical Institute, University of California, San Francisco, CA 94143, USA
| | - Jeffrey A Bluestone
- Diabetes Center and Department of Medicine, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
22
|
TGN1412 Induces Lymphopenia and Human Cytokine Release in a Humanized Mouse Model. PLoS One 2016; 11:e0149093. [PMID: 26959227 PMCID: PMC4784892 DOI: 10.1371/journal.pone.0149093] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 01/27/2016] [Indexed: 12/16/2022] Open
Abstract
Therapeutic monoclonal antibodies (mAbs) such as the superagonistic, CD28-specific antibody TGN1412, or OKT3, an anti-CD3 mAb, can cause severe adverse events including cytokine release syndrome. A predictive model for mAb-mediated adverse effects, for which no previous knowledge on severe adverse events to be expected or on molecular mechanisms underlying is prerequisite, is not available yet. We used a humanized mouse model of human peripheral blood mononuclear cell-reconstituted NOD-RAG1-/-Aβ-/-HLADQ(tg+ or tg-)IL-2Rγc-/- mice to evaluate its predictive value for preclinical testing of mAbs. 2–6 hours after TGN1412 treatment, mice showed a loss of human CD45+ cells from the peripheral blood and loss of only human T cells after OKT3 injection, reminiscent of effects observed in mAb-treated humans. Moreover, upon OKT3 injection we detected selective CD3 downmodulation on T cells, a typical effect of OKT3. Importantly, we detected release of human cytokines in humanized mice upon both OKT3 and TGN1412 application. Finally, humanized mice showed severe signs of illness, a rapid drop of body temperature, and succumbed to antibody application 2–6 hours after administration. Hence, the humanized mouse model used here reproduces several effects and adverse events induced in humans upon application of the therapeutic mAbs OKT3 and TGN1412.
Collapse
|
23
|
Porciello N, Tuosto L. CD28 costimulatory signals in T lymphocyte activation: Emerging functions beyond a qualitative and quantitative support to TCR signalling. Cytokine Growth Factor Rev 2016; 28:11-9. [PMID: 26970725 DOI: 10.1016/j.cytogfr.2016.02.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 02/22/2016] [Indexed: 01/22/2023]
Abstract
CD28 is one of the most important co-stimulatory receptors necessary for full T lymphocyte activation. By binding its cognate ligands, B7.1/CD80 or B7.2/CD86, expressed on the surface of professional antigen presenting cells (APC), CD28 initiates several signalling cascades, which qualitatively and quantitatively support T cell receptor (TCR) signalling. More recent data evidenced that human CD28 can also act as a TCR-independent signalling unit, by delivering specific signals, which regulate the expression of pro-inflammatory cytokine/chemokines. Despite the enormous progresses made in identifying the mechanisms and molecules involved in CD28 signalling properties, much remains to be elucidated, especially in the light of the functional differences observed between human and mouse CD28. In this review we provide an overview of the current mechanisms and molecules through which CD28 support TCR signalling and highlight recent findings on the specific signalling motifs that regulate the unique pro-inflammatory activity of human CD28.
Collapse
Affiliation(s)
- Nicla Porciello
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
| | - Loretta Tuosto
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy.
| |
Collapse
|
24
|
Jutz S, Leitner J, Schmetterer K, Doel-Perez I, Majdic O, Grabmeier-Pfistershammer K, Paster W, Huppa JB, Steinberger P. Assessment of costimulation and coinhibition in a triple parameter T cell reporter line: Simultaneous measurement of NF-κB, NFAT and AP-1. J Immunol Methods 2016; 430:10-20. [PMID: 26780292 DOI: 10.1016/j.jim.2016.01.007] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 12/21/2015] [Accepted: 01/13/2016] [Indexed: 12/29/2022]
Abstract
Engagement of the T cell receptor complex reprograms T cells for proliferation, cytokine production and differentiation towards effector cells. This process depends on activating costimulatory signals and is counteracted by coinhibitory molecules. Three transcription factors, namely NF-κB, NFAT and AP-1, have a major role in inducing the transcriptional program that is required for T cell activation and differentiation. Here we describe the generation of a triple parameter reporter based on the human Jurkat T cell line, where response elements for NF-κB, NFAT and AP-1 drive the expression of the fluorescent proteins CFP, eGFP and mCherry, respectively. The emission spectra of these proteins allow simultaneous assessment of NF-κB, NFAT and AP-1 activity in response to stimulation. Ligation of the TCR complex induced moderate reporter activity, which was strongly enhanced upon coengagement of the costimulatory receptors CD2 or CD28. Moreover, we have generated and tested triple parameter reporter cells that harbor costimulatory and inhibitory receptors not endogenously expressed in the Jurkat cells. In these experiments we could show that engagement of the costimulatory molecule 4-1BB enhances NF-κB and AP-1 activity, whereas coinhibition via PD-1 or BTLA strongly reduced the activation of NF-κB and NFAT. Engagement of BTLA significantly inhibited AP-1, whereas PD-1 had little effect on the activation of this transcription factor. Our triple parameter reporter T cell line is an excellent tool to assess the effect of costimulatory and coinhibitory receptors on NF-κB, NFAT and AP-1 activity and has a wide range of applications beyond the evaluation of costimulatory pathways.
Collapse
Affiliation(s)
- Sabrina Jutz
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Judith Leitner
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Klaus Schmetterer
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Iago Doel-Perez
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Otto Majdic
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Wolfgang Paster
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Johannes B Huppa
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter Steinberger
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
25
|
Vessillier S, Eastwood D, Fox B, Sathish J, Sethu S, Dougall T, Thorpe SJ, Thorpe R, Stebbings R. Cytokine release assays for the prediction of therapeutic mAb safety in first-in man trials--Whole blood cytokine release assays are poorly predictive for TGN1412 cytokine storm. J Immunol Methods 2015; 424:43-52. [PMID: 25960173 PMCID: PMC4768082 DOI: 10.1016/j.jim.2015.04.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 04/29/2015] [Accepted: 04/29/2015] [Indexed: 12/29/2022]
Abstract
The therapeutic monoclonal antibody (mAb) TGN1412 (anti-CD28 superagonist) caused near-fatal cytokine release syndrome (CRS) in all six volunteers during a phase-I clinical trial. Several cytokine release assays (CRAs) with reported predictivity for TGN1412-induced CRS have since been developed for the preclinical safety testing of new therapeutic mAbs. The whole blood (WB) CRA is the most widely used, but its sensitivity for TGN1412-like cytokine release was recently criticized. In a comparative study, using group size required for 90% power with 5% significance as a measure of sensitivity, we found that WB and 10% (v/v) WB CRAs were the least sensitive for TGN1412 as these required the largest group sizes (n = 52 and 79, respectively). In contrast, the peripheral blood mononuclear cell (PBMC) solid phase (SP) CRA was the most sensitive for TGN1412 as it required the smallest group size (n = 4). Similarly, the PBMC SP CRA was more sensitive than the WB CRA for muromonab-CD3 (anti-CD3) which stimulates TGN1412-like cytokine release (n = 4 and 4519, respectively). Conversely, the WB CRA was far more sensitive than the PBMC SP CRA for alemtuzumab (anti-CD52) which stimulates FcγRI-mediated cytokine release (n = 8 and 180, respectively). Investigation of potential factors contributing to the different sensitivities revealed that removal of red blood cells (RBCs) from WB permitted PBMC-like TGN1412 responses in a SP CRA, which in turn could be inhibited by the addition of the RBC membrane protein glycophorin A (GYPA); this observation likely underlies, at least in part, the poor sensitivity of WB CRA for TGN1412. The use of PBMC SP CRA for the detection of TGN1412-like cytokine release is recommended in conjunction with adequately powered group sizes for dependable preclinical safety testing of new therapeutic mAbs.
Collapse
Affiliation(s)
- S Vessillier
- National Institute for Biological Standards and Control, Biotherapeutics Group, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom.
| | - D Eastwood
- National Institute for Biological Standards and Control, Biotherapeutics Group, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom
| | - B Fox
- National Institute for Biological Standards and Control, Biotherapeutics Group, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom
| | - J Sathish
- MRC Centre for Drug Safety Science, Department of Molecular & Clinical Pharmacology, University of Liverpool, Sherrington Buildings, Ashton Street, Liverpool L69 3GE, United Kingdom
| | - S Sethu
- MRC Centre for Drug Safety Science, Department of Molecular & Clinical Pharmacology, University of Liverpool, Sherrington Buildings, Ashton Street, Liverpool L69 3GE, United Kingdom
| | - T Dougall
- National Institute for Biological Standards and Control, Biotherapeutics Group, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom
| | - S J Thorpe
- National Institute for Biological Standards and Control, Biotherapeutics Group, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom
| | - R Thorpe
- National Institute for Biological Standards and Control, Biotherapeutics Group, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom
| | - R Stebbings
- National Institute for Biological Standards and Control, Biotherapeutics Group, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom; MRC Centre for Drug Safety Science, Department of Molecular & Clinical Pharmacology, University of Liverpool, Sherrington Buildings, Ashton Street, Liverpool L69 3GE, United Kingdom; Medimmune, Aaron Klug Building, Granta Park, Cambridge CB21 6GH, United Kingdom.
| |
Collapse
|
26
|
Sternebring O, Alifrangis L, Christensen TF, Ji H, Hegelund AC, Högerkorp CM. A weighted method for estimation of receptor occupancy for pharmacodynamic measurements in drug development. CYTOMETRY PART B-CLINICAL CYTOMETRY 2015. [DOI: 10.1002/cyto.b.21277] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Ola Sternebring
- Department of Development DMPK; Novo Nordisk A/S; DK-2760 Maaloev Denmark
| | - Lene Alifrangis
- Department of Development DMPK; Novo Nordisk A/S; DK-2760 Maaloev Denmark
| | - Toke Folke Christensen
- Department of Quantitative Clinical Pharmacology; Novo Nordisk A/S; DK-2860 Soeborg Denmark
| | - Hong Ji
- Department of Pharmacodynamics; Novo Nordisk A/S; DK-2760 Maaloev Denmark
| | | | | |
Collapse
|
27
|
Reed DM, Paschalaki KE, Starke RD, Mohamed NA, Sharp G, Fox B, Eastwood D, Bristow A, Ball C, Vessillier S, Hansel TT, Thorpe SJ, Randi AM, Stebbings R, Mitchell JA. An autologous endothelial cell:peripheral blood mononuclear cell assay that detects cytokine storm responses to biologics. FASEB J 2015; 29:2595-602. [PMID: 25746794 DOI: 10.1096/fj.14-268144] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/13/2015] [Indexed: 11/11/2022]
Abstract
There is an urgent unmet need for human tissue bioassays to predict cytokine storm responses to biologics. Current bioassays that detect cytokine storm responses in vitro rely on endothelial cells, usually from umbilical veins or cell lines, cocultured with freshly isolated peripheral blood mononuclear cells (PBMCs) from healthy adult volunteers. These assays therefore comprise cells from 2 separate donors and carry the disadvantage of mismatched tissues and lack the advantage of personalized medicine. Current assays also do not fully delineate mild (such as Campath) and severe (such as TGN1412) cytokine storm-inducing drugs. Here, we report a novel bioassay where endothelial cells grown from stem cells in the peripheral blood (blood outgrowth endothelial cells) and PBMCs from the same donor can be used to create an autologous coculture bioassay that responds by releasing a plethora of cytokines to authentic TGN1412 but only modestly to Campath and not to control antibodies such as Herceptin, Avastin, and Arzerra. This assay performed better than the traditional mixed donor assay in terms of cytokine release to TGN1412 and, thus, we suggest provides significant advancement and a definitive system by which biologics can be tested and paves the way for personalized medicine.
Collapse
Affiliation(s)
- Daniel M Reed
- *Department of Cardiothoracic Pharmacology, Vascular Biology Section, National Heart and Lung Institute, and Vascular Sciences, National Heart and Lung Institute, Hammersmith Hospital, Imperial College London, London, United Kingdom; Qatar Foundation Research and Development Division, Doha, Qatar; National Institute for Biological Standards and Control, Potters Bar, United Kingdom; Imperial Clinical Respiratory Research Unit, St. Mary's Hospital, London, United Kingdom; and Medimmune, Cambridge, United Kingdom
| | - Koralia E Paschalaki
- *Department of Cardiothoracic Pharmacology, Vascular Biology Section, National Heart and Lung Institute, and Vascular Sciences, National Heart and Lung Institute, Hammersmith Hospital, Imperial College London, London, United Kingdom; Qatar Foundation Research and Development Division, Doha, Qatar; National Institute for Biological Standards and Control, Potters Bar, United Kingdom; Imperial Clinical Respiratory Research Unit, St. Mary's Hospital, London, United Kingdom; and Medimmune, Cambridge, United Kingdom
| | - Richard D Starke
- *Department of Cardiothoracic Pharmacology, Vascular Biology Section, National Heart and Lung Institute, and Vascular Sciences, National Heart and Lung Institute, Hammersmith Hospital, Imperial College London, London, United Kingdom; Qatar Foundation Research and Development Division, Doha, Qatar; National Institute for Biological Standards and Control, Potters Bar, United Kingdom; Imperial Clinical Respiratory Research Unit, St. Mary's Hospital, London, United Kingdom; and Medimmune, Cambridge, United Kingdom
| | - Nura A Mohamed
- *Department of Cardiothoracic Pharmacology, Vascular Biology Section, National Heart and Lung Institute, and Vascular Sciences, National Heart and Lung Institute, Hammersmith Hospital, Imperial College London, London, United Kingdom; Qatar Foundation Research and Development Division, Doha, Qatar; National Institute for Biological Standards and Control, Potters Bar, United Kingdom; Imperial Clinical Respiratory Research Unit, St. Mary's Hospital, London, United Kingdom; and Medimmune, Cambridge, United Kingdom
| | - Giles Sharp
- *Department of Cardiothoracic Pharmacology, Vascular Biology Section, National Heart and Lung Institute, and Vascular Sciences, National Heart and Lung Institute, Hammersmith Hospital, Imperial College London, London, United Kingdom; Qatar Foundation Research and Development Division, Doha, Qatar; National Institute for Biological Standards and Control, Potters Bar, United Kingdom; Imperial Clinical Respiratory Research Unit, St. Mary's Hospital, London, United Kingdom; and Medimmune, Cambridge, United Kingdom
| | - Bernard Fox
- *Department of Cardiothoracic Pharmacology, Vascular Biology Section, National Heart and Lung Institute, and Vascular Sciences, National Heart and Lung Institute, Hammersmith Hospital, Imperial College London, London, United Kingdom; Qatar Foundation Research and Development Division, Doha, Qatar; National Institute for Biological Standards and Control, Potters Bar, United Kingdom; Imperial Clinical Respiratory Research Unit, St. Mary's Hospital, London, United Kingdom; and Medimmune, Cambridge, United Kingdom
| | - David Eastwood
- *Department of Cardiothoracic Pharmacology, Vascular Biology Section, National Heart and Lung Institute, and Vascular Sciences, National Heart and Lung Institute, Hammersmith Hospital, Imperial College London, London, United Kingdom; Qatar Foundation Research and Development Division, Doha, Qatar; National Institute for Biological Standards and Control, Potters Bar, United Kingdom; Imperial Clinical Respiratory Research Unit, St. Mary's Hospital, London, United Kingdom; and Medimmune, Cambridge, United Kingdom
| | - Adrian Bristow
- *Department of Cardiothoracic Pharmacology, Vascular Biology Section, National Heart and Lung Institute, and Vascular Sciences, National Heart and Lung Institute, Hammersmith Hospital, Imperial College London, London, United Kingdom; Qatar Foundation Research and Development Division, Doha, Qatar; National Institute for Biological Standards and Control, Potters Bar, United Kingdom; Imperial Clinical Respiratory Research Unit, St. Mary's Hospital, London, United Kingdom; and Medimmune, Cambridge, United Kingdom
| | - Christina Ball
- *Department of Cardiothoracic Pharmacology, Vascular Biology Section, National Heart and Lung Institute, and Vascular Sciences, National Heart and Lung Institute, Hammersmith Hospital, Imperial College London, London, United Kingdom; Qatar Foundation Research and Development Division, Doha, Qatar; National Institute for Biological Standards and Control, Potters Bar, United Kingdom; Imperial Clinical Respiratory Research Unit, St. Mary's Hospital, London, United Kingdom; and Medimmune, Cambridge, United Kingdom
| | - Sandrine Vessillier
- *Department of Cardiothoracic Pharmacology, Vascular Biology Section, National Heart and Lung Institute, and Vascular Sciences, National Heart and Lung Institute, Hammersmith Hospital, Imperial College London, London, United Kingdom; Qatar Foundation Research and Development Division, Doha, Qatar; National Institute for Biological Standards and Control, Potters Bar, United Kingdom; Imperial Clinical Respiratory Research Unit, St. Mary's Hospital, London, United Kingdom; and Medimmune, Cambridge, United Kingdom
| | - Trevor T Hansel
- *Department of Cardiothoracic Pharmacology, Vascular Biology Section, National Heart and Lung Institute, and Vascular Sciences, National Heart and Lung Institute, Hammersmith Hospital, Imperial College London, London, United Kingdom; Qatar Foundation Research and Development Division, Doha, Qatar; National Institute for Biological Standards and Control, Potters Bar, United Kingdom; Imperial Clinical Respiratory Research Unit, St. Mary's Hospital, London, United Kingdom; and Medimmune, Cambridge, United Kingdom
| | - Susan J Thorpe
- *Department of Cardiothoracic Pharmacology, Vascular Biology Section, National Heart and Lung Institute, and Vascular Sciences, National Heart and Lung Institute, Hammersmith Hospital, Imperial College London, London, United Kingdom; Qatar Foundation Research and Development Division, Doha, Qatar; National Institute for Biological Standards and Control, Potters Bar, United Kingdom; Imperial Clinical Respiratory Research Unit, St. Mary's Hospital, London, United Kingdom; and Medimmune, Cambridge, United Kingdom
| | - Anna M Randi
- *Department of Cardiothoracic Pharmacology, Vascular Biology Section, National Heart and Lung Institute, and Vascular Sciences, National Heart and Lung Institute, Hammersmith Hospital, Imperial College London, London, United Kingdom; Qatar Foundation Research and Development Division, Doha, Qatar; National Institute for Biological Standards and Control, Potters Bar, United Kingdom; Imperial Clinical Respiratory Research Unit, St. Mary's Hospital, London, United Kingdom; and Medimmune, Cambridge, United Kingdom
| | - Richard Stebbings
- *Department of Cardiothoracic Pharmacology, Vascular Biology Section, National Heart and Lung Institute, and Vascular Sciences, National Heart and Lung Institute, Hammersmith Hospital, Imperial College London, London, United Kingdom; Qatar Foundation Research and Development Division, Doha, Qatar; National Institute for Biological Standards and Control, Potters Bar, United Kingdom; Imperial Clinical Respiratory Research Unit, St. Mary's Hospital, London, United Kingdom; and Medimmune, Cambridge, United Kingdom
| | - Jane A Mitchell
- *Department of Cardiothoracic Pharmacology, Vascular Biology Section, National Heart and Lung Institute, and Vascular Sciences, National Heart and Lung Institute, Hammersmith Hospital, Imperial College London, London, United Kingdom; Qatar Foundation Research and Development Division, Doha, Qatar; National Institute for Biological Standards and Control, Potters Bar, United Kingdom; Imperial Clinical Respiratory Research Unit, St. Mary's Hospital, London, United Kingdom; and Medimmune, Cambridge, United Kingdom
| |
Collapse
|
28
|
Czerwiński M, Kazmi F, Parkinson A, Buckley DB. Anti-CD28 monoclonal antibody-stimulated cytokines released from blood suppress CYP1A2, CYP2B6, and CYP3A4 in human hepatocytes in vitro. Drug Metab Dispos 2015; 43:42-52. [PMID: 25326287 DOI: 10.1124/dmd.114.060186] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Like most infections and certain inflammatory diseases, some therapeutic proteins cause a cytokine-mediated suppression of hepatic drug-metabolizing enzymes, which may lead to pharmacokinetic interactions with small-molecule drugs. We propose a new in vitro method to evaluate the whole blood-mediated effects of therapeutic proteins on drug-metabolizing enzymes in human hepatocytes cocultured with Kupffer cells. The traditional method involves treating hepatocyte cocultures with the therapeutic protein, which detects hepatocyte- and macrophage-mediated suppression of cytochrome P450 (P450). The new method involves treating whole human blood with a therapeutic protein to stimulate the release of cytokines from peripheral blood mononuclear cells (PBMCs), after which plasma is prepared and added to the hepatocyte coculture to evaluate P450 enzyme expression. In this study, human blood was treated for 24 hours at 37°C with bacterial lipopolysaccharide (LPS) or ANC28.1, an antibody against human T-cell receptor CD28. Cytokines were measured in plasma by sandwich immunoassay with electrochemiluminescense detection. Treatment of human hepatocyte cocultures with LPS or with plasma from LPS-treated blood markedly reduced the expression of CYP1A2, CYP2B6, and CYP3A4. However, treatment of hepatocyte cocultures with ANC28.1 did not suppress P450 expression, but treatment with plasma from ANC28.1-treated blood suppressed CYP1A2, CYP2B6, and CYP3A4 activity and mRNA levels. The results demonstrated that applying plasma from human blood treated with a therapeutic protein to hepatocytes cocultured with Kupffer cells is a suitable method to identify those therapeutic proteins that suppress P450 expression by an indirect mechanism-namely, the release of cytokines from PBMCs.
Collapse
Affiliation(s)
- Maciej Czerwiński
- XenoTech, LLC, Lenexa, Kansas (M.C., F.K., D.B.B.); and XPD Consulting, Shawnee, Kansas (A.P.)
| | - Faraz Kazmi
- XenoTech, LLC, Lenexa, Kansas (M.C., F.K., D.B.B.); and XPD Consulting, Shawnee, Kansas (A.P.)
| | - Andrew Parkinson
- XenoTech, LLC, Lenexa, Kansas (M.C., F.K., D.B.B.); and XPD Consulting, Shawnee, Kansas (A.P.)
| | - David B Buckley
- XenoTech, LLC, Lenexa, Kansas (M.C., F.K., D.B.B.); and XPD Consulting, Shawnee, Kansas (A.P.)
| |
Collapse
|
29
|
Thaventhiran T, Alhumeed N, Yeang HXA, Sethu S, Downey JS, Alghanem AF, Olayanju A, Smith EL, Cross MJ, Webb SD, Williams DP, Bristow A, Ball C, Stebbings R, Sathish JG. Failure to upregulate cell surface PD-1 is associated with dysregulated stimulation of T cells by TGN1412-like CD28 superagonist. MAbs 2014; 6:1290-9. [PMID: 25517314 PMCID: PMC4622985 DOI: 10.4161/mabs.29758] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The CD28 superagonist (CD28SA) TGN1412 was administered to humans as an agent that can selectively activate and expand regulatory T cells but resulted in uncontrolled T cell activation accompanied by cytokine storm. The molecular mechanisms that underlie this uncontrolled T cell activation are unclear. Physiological activation of T cells leads to upregulation of not only activation molecules but also inhibitory receptors such as PD-1. We hypothesized that the uncontrolled activation of CD28SA-stimulated T cells is due to both the enhanced expression of activation molecules and the lack of or reduced inhibitory signals. In this study, we show that anti-CD3 antibody-stimulated human T cells undergo time-limited controlled DNA synthesis, proliferation and interleukin-2 secretion, accompanied by PD-1 expression. In contrast, CD28SA-activated T cells demonstrate uncontrolled activation parameters including enhanced expression of LFA-1 and CCR5 but fail to express PD-1 on the cell surface. We demonstrate the functional relevance of the lack of PD-1 mediated regulatory mechanism in CD28SA-stimulated T cells. Our findings provide a molecular explanation for the dysregulated activation of CD28SA-stimulated T cells and also highlight the potential for the use of differential expression of PD-1 as a biomarker of safety for T cell immunostimulatory biologics.
Collapse
Key Words
- APC, antigen presenting cell
- CCR5, C-C chemokine receptor type 5
- CD28 superagonist
- CD28SA, CD28 superagonist
- CK2, casein kinase 2
- CTLA-4, cytotoxic T-Lymphocyte Antigen 4
- IFNγ, interferon gamma
- IL-2, interleukin 2
- LAG-3, Lymphocyte-activation gene 3
- LFA-1, lymphocyte function-associated antigen 1
- MFI, mean fluorescence intensity
- PBMC, peripheral blood mononuclear cells
- PD-1
- PD-1, programmed cell death protein 1
- PD-L1, programmed cell death-ligand 1
- PTEN, phosphatase and tensin homolog
- S-phase, synthesis phase
- T cells
- TCR, T cell receptor
- TEMs, effector memory T cells
- TGN1412
- TIM-3, T cell immunoglobulin mucin 3
- immunostimulatory biologics
Collapse
Affiliation(s)
- Thilipan Thaventhiran
- a Medical Research Council Centre for Drug Safety Science and Department of Molecular and Clinical Pharmacology ; University of Liverpool ; Liverpool , UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Poirier N, Mary C, Le Bas-Bernardet S, Daguin V, Belarif L, Chevalier M, Hervouet J, Minault D, Ville S, Charpy V, Blancho G, Vanhove B. Advantages of Papio anubis for preclinical testing of immunotoxicity of candidate therapeutic antagonist antibodies targeting CD28. MAbs 2014; 6:697-707. [PMID: 24598534 DOI: 10.4161/mabs.28375] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Antagonist anti-CD28 antibodies prevent T-cell costimulation and are functionally different from CTLA4Ig since they cannot block CTLA-4 and PDL-1 co-inhibitory signals. They demonstrated preclinical efficacy in suppressing effector T cells while enhancing immunoregulatory mechanisms. Because a severe cytokine release syndrome was observed during the Phase 1 study with the superagonist anti-CD28 TGN1412, development of other anti-CD28 antibodies requires careful preclinical evaluation to exclude any potential immunotoxicity side-effects. The failure to identify immunological toxicity of TGN1412 using macaques led us to investigate more relevant preclinical models. We report here that contrary to macaques, and like in man, all baboon CD4-positive T lymphocytes express CD28 in their effector memory cells compartment, a lymphocyte subtype that is the most prone to releasing cytokines after reactivation. Baboon lymphocytes are able to release pro-inflammatory cytokines in vitro in response to agonist or superagonist anti-CD28 antibodies. Furthermore, we compared the reactivity of human and baboon lymphocytes after transfer into non obese diabetic/severe combined immunodeficiency (NOD/SCID) interleukin-2rγ knockout mice and confirmed that both cell types could release inflammatory cytokines in situ after injection of agonistic anti-CD28 antibodies. In contrast, FR104, a monovalent antagonistic anti-CD28 antibody, did not elicit T cell activation in these assays, even in the presence of anti-drug antibodies. Infusion to baboons also resulted in an absence of cytokine release. In conclusion, the baboon represents a suitable species for preclinical immunotoxicity evaluation of anti-CD28 antibodies because their effector memory T cells do express CD28 and because cytokine release can be assessed in vitro and trans vivo.
Collapse
Affiliation(s)
- Nicolas Poirier
- Institut National de la Santé Et de la Recherche Médicale Unité Mixte de Recherche; Institut de Transplantation Urologie Néphrologie (ITUN) ; Université de Nantes; Nantes, France; Effimune SAS; Nantes, France
| | - Caroline Mary
- Institut National de la Santé Et de la Recherche Médicale Unité Mixte de Recherche; Institut de Transplantation Urologie Néphrologie (ITUN) ; Université de Nantes; Nantes, France; Effimune SAS; Nantes, France
| | - Stephanie Le Bas-Bernardet
- Institut National de la Santé Et de la Recherche Médicale Unité Mixte de Recherche; Institut de Transplantation Urologie Néphrologie (ITUN) ; Université de Nantes; Nantes, France; Centre Hospitalier Universitaire; Nantes, France
| | - Veronique Daguin
- Institut National de la Santé Et de la Recherche Médicale Unité Mixte de Recherche; Institut de Transplantation Urologie Néphrologie (ITUN) ; Université de Nantes; Nantes, France
| | - Lyssia Belarif
- Institut National de la Santé Et de la Recherche Médicale Unité Mixte de Recherche; Institut de Transplantation Urologie Néphrologie (ITUN) ; Université de Nantes; Nantes, France
| | - Melanie Chevalier
- Institut National de la Santé Et de la Recherche Médicale Unité Mixte de Recherche; Institut de Transplantation Urologie Néphrologie (ITUN) ; Université de Nantes; Nantes, France
| | - Jeremy Hervouet
- Institut National de la Santé Et de la Recherche Médicale Unité Mixte de Recherche; Institut de Transplantation Urologie Néphrologie (ITUN) ; Université de Nantes; Nantes, France
| | - David Minault
- Institut National de la Santé Et de la Recherche Médicale Unité Mixte de Recherche; Institut de Transplantation Urologie Néphrologie (ITUN) ; Université de Nantes; Nantes, France
| | - Simon Ville
- Institut National de la Santé Et de la Recherche Médicale Unité Mixte de Recherche; Institut de Transplantation Urologie Néphrologie (ITUN) ; Université de Nantes; Nantes, France
| | - Vianney Charpy
- Institut National de la Santé Et de la Recherche Médicale Unité Mixte de Recherche; Institut de Transplantation Urologie Néphrologie (ITUN) ; Université de Nantes; Nantes, France
| | - Gilles Blancho
- Institut National de la Santé Et de la Recherche Médicale Unité Mixte de Recherche; Institut de Transplantation Urologie Néphrologie (ITUN) ; Université de Nantes; Nantes, France; Centre Hospitalier Universitaire; Nantes, France
| | - Bernard Vanhove
- Institut National de la Santé Et de la Recherche Médicale Unité Mixte de Recherche; Institut de Transplantation Urologie Néphrologie (ITUN) ; Université de Nantes; Nantes, France; Effimune SAS; Nantes, France
| |
Collapse
|
31
|
Camperio C, Muscolini M, Volpe E, Di Mitri D, Mechelli R, Buscarinu MC, Ruggieri S, Piccolella E, Salvetti M, Gasperini C, Battistini L, Tuosto L. CD28 ligation in the absence of TCR stimulation up-regulates IL-17A and pro-inflammatory cytokines in relapsing-remitting multiple sclerosis T lymphocytes. Immunol Lett 2014; 158:134-42. [DOI: 10.1016/j.imlet.2013.12.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 12/17/2013] [Accepted: 12/30/2013] [Indexed: 01/08/2023]
|
32
|
Liu D, Krummey SM, Badell IR, Wagener M, Schneeweis LA, Stetsko DK, Suchard SJ, Nadler SG, Ford ML. 2B4 (CD244) induced by selective CD28 blockade functionally regulates allograft-specific CD8+ T cell responses. ACTA ACUST UNITED AC 2014; 211:297-311. [PMID: 24493803 PMCID: PMC3920565 DOI: 10.1084/jem.20130902] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Blockade of CD28 signals results in the up-regulation of 2B4 on primary CD8+ effectors and plays a critical role in controlling antigen-specific CD8+ T cell responses. Mounting evidence in models of both autoimmunity and chronic viral infection suggests that the outcome of T cell activation is critically impacted by the constellation of co-stimulatory and co-inhibitory receptors expressed on the cell surface. Here, we identified a critical role for the co-inhibitory SLAM family member 2B4 (CD244) in attenuating primary antigen-specific CD8+ T cell responses in the presence of immune modulation with selective CD28 blockade. Our results reveal a specific up-regulation of 2B4 on antigen-specific CD8+ T cells in animals in which CD28 signaling was blocked. However, 2B4 up-regulation was not observed in animals treated with CTLA-4 Ig (abatacept) or CD28 blockade in the presence of anti–CTLA-4 mAb. 2B4 up-regulation after CD28 blockade was functionally significant, as the inhibitory impact of CD28 blockade was diminished when antigen-specific CD8+ T cells were deficient in 2B4. In contrast, 2B4 deficiency had no effect on CD8+ T cell responses during unmodified rejection or in the presence of CTLA-4 Ig. We conclude that blockade of CD28 signals in the presence of preserved CTLA-4 signals results in the unique up-regulation of 2B4 on primary CD8+ effectors, and that this 2B4 expression plays a critical functional role in controlling antigen-specific CD8+ T cell responses.
Collapse
Affiliation(s)
- Danya Liu
- Emory Transplant Center and Department of Surgery, Emory University, Atlanta, GA 30322
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Bartholomaeus P, Semmler LY, Bukur T, Boisguerin V, Römer PS, Tabares P, Chuvpilo S, Tyrsin DY, Matskevich A, Hengel H, Castle J, Hünig T, Kalinke U. Cell Contact–Dependent Priming and Fc Interaction with CD32+ Immune Cells Contribute to the TGN1412-Triggered Cytokine Response. THE JOURNAL OF IMMUNOLOGY 2014; 192:2091-8. [DOI: 10.4049/jimmunol.1302461] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
34
|
Abstract
The myriad of co-stimulatory signals expressed, or induced, upon T-cell activation suggests that these signalling pathways shape the character and magnitude of the resulting autoreactive or alloreactive T-cell responses during autoimmunity or transplantation, respectively. Reducing pathological T-cell responses by targeting T-cell co-stimulatory pathways has met with therapeutic success in many instances, but challenges remain. In this Review, we discuss the T-cell co-stimulatory molecules that are known to have critical roles during T-cell activation, expansion, and differentiation. We also outline the functional importance of T-cell co-stimulatory molecules in transplantation, tolerance and autoimmunity, and we describe how therapeutic blockade of these pathways might be harnessed to manipulate the immune response to prevent or attenuate pathological immune responses. Ultimately, understanding the interplay between individual co-stimulatory and co-inhibitory pathways engaged during T-cell activation and differentiation will lead to rational and targeted therapeutic interventions to manipulate T-cell responses and improve clinical outcomes.
Collapse
Affiliation(s)
- Mandy L Ford
- The Emory Transplant Center, Emory University, 101 Woodruff Circle, Woodruff Memorial Research Building Suite 5105, Atlanta, GA 30322, USA
| | - Andrew B Adams
- The Emory Transplant Center, Emory University, 101 Woodruff Circle, Woodruff Memorial Research Building Suite 5105, Atlanta, GA 30322, USA
| | - Thomas C Pearson
- The Emory Transplant Center, Emory University, 101 Woodruff Circle, Woodruff Memorial Research Building Suite 5105, Atlanta, GA 30322, USA
| |
Collapse
|
35
|
Wolf B, Morgan H, Krieg J, Gani Z, Milicov A, Warncke M, Brennan F, Jones S, Sims J, Kiessling A. A whole blood in vitro cytokine release assay with aqueous monoclonal antibody presentation for the prediction of therapeutic protein induced cytokine release syndrome in humans. Cytokine 2012; 60:828-37. [PMID: 22986013 DOI: 10.1016/j.cyto.2012.08.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 08/16/2012] [Accepted: 08/18/2012] [Indexed: 01/13/2023]
Abstract
The administration of several monoclonal antibodies (mAbs) to humans has been associated with acute adverse events characterized by clinically significant release of cytokines in the blood. The limited predictive value of toxicology species in this field has triggered intensive research to establish human in vitro assays using peripheral blood mononuclear cells or blood to predict cytokine release in humans. A thorough characterization of these assays is required to understand their predictive value for hazard identification and risk assessment in an optimal manner, and to highlight potential limitations of individual assay formats. We have characterized a whole human blood cytokine release assay with only minimal dilution by the test antibodies (95% v/v blood) in aqueous presentation format, an assay which has so far received less attention in the scientific world with respect to the evaluation of its suitability to predict cytokine release in humans. This format was compared with a human PBMC assay with immobilized mAbs presentation already well-characterized by others. Cytokine secretion into plasma or cell culture supernatants after 24h incubation with the test mAbs (anti-CD28 superagonist TGN1412-like material (TGN1412L), another anti-CD28 superagonistic mAb (ANC28.1), a T-cell depleting mAb (Orthoclone™), and a TGN1412 isotype-matched control (Tysabri™) not associated with clinically-relevant cytokine release) was detected by a multiplex assay based on electrochemiluminescent excitation. We provide proof that this whole blood assay is a suitable new method for hazard identification of safety-relevant cytokine release in the clinic based on its ability to detect the typical cytokine signatures found in humans for the tested mAbs and on a markedly lower assay background and cytokine release with the isotype-matched control mAb Tysabri™ - a clear advantage over the PBMC assay. Importantly, quantitative and qualitative differences in the relative cytokine responses to the individual mAbs, in the concentration-response relationships and the prominent cytokine signatures for individual mAbs in the two formats reflect diverging mechanisms of cytokine release and different levels of dependency on high density coating even for two anti-CD28 super-agonistic antibodies. These results clearly show that one generic approach to assessment of cytokine release using in vitro assays is not sufficient, but rather the choice of the method, i.e. applying the whole blood assay or the PBMC assay needs to be well considered depending on the target characteristics and the mechanistic features of the therapeutic mAbs being evaluated.
Collapse
Affiliation(s)
- Babette Wolf
- Biologics Safety and Disposition, Preclinical Safety, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Werk Klybeck, Basel, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Poirier N, Blancho G, Vanhove B. CD28-specific immunomodulating antibodies: what can be learned from experimental models? Am J Transplant 2012; 12:1682-90. [PMID: 22471377 DOI: 10.1111/j.1600-6143.2012.04032.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Tolerance induction to alloantigens remains a major challenge in transplant immunology. Progress in the last decade of our understanding of T-cell activation has led to the development of new immunotherapeutic strategies to replace conventional immunosuppression which inhibits the immune system in a nonspecific way. In particular, positive and negative costimulatory molecules of the CD28 family have been consistently demonstrated to be critical for the development of productive immune responses as well as the establishment and maintenance of peripheral tolerance. However, recent discoveries of novel costimulatory interactions confer a novel dimension to the immunoregulatory interactions within the B7:CD28 family and compels a revised view within a "quintet" of costimulatory molecules: CD28/B7/CTLA-4/PD-L1/ICOSL. Complexity introduced in this more detailed costimulatory pathway has important implications in therapeutic interventions against human immunological diseases and, especially, highlight the fundamental differences in selectively targeting CD28 molecules instead of B7 counterparts. In this review, we discuss these differences and emphasize different CD28-specific immunomodulating strategies evaluated in experimental models of transplantation and autoimmune diseases.
Collapse
Affiliation(s)
- N Poirier
- Institut National de la Santé Et de la Recherche Médicale, Unité Mixte de Recherche 1064, Nantes, France
| | | | | |
Collapse
|
37
|
Abstract
TGN1412, a superagonistic CD28-specific antibody, was shown to require Fc-cross-linking or immobilization as a prerequisite to mediate T-cell proliferation and cytokine release in vitro. We used primary human umbilical vein endothelial cells (HUVECs) to study their ability to induce activation of TGN1412-treated T cells. We confirmed that peripheral primary human T cells do not show activation upon stimulation with soluble TGN1412 alone. Nevertheless, cocultivation of TGN1412-treated T cells with HUVECs induced T-cell activation that was further enhanced using cytokine prestimulated HUVECs. Unexpectedly, Fc-FcγR interaction was dispensable for endothelial cell-mediated proliferation of TGN1412-treated T cells. Transwell-culture assays showed that TGN1412-treated T cells need direct cell-to-cell contact to HUVECs to induce proliferation. We found that costimulatory ICOS-LICOS interaction between T cells and endothelial cells is critically involved in TGN1412-mediated effects. Blocking LICOS reduced TGN1412-mediated T-cell proliferation significantly, whereas recombinant LICOS fully conferred TGN1412-mediated T-cell proliferation. Of note, cytokine stimulation enhanced LICOS expression on HUVECs and ICOS-LICOS interaction up-regulated ICOS expression on TGN1412-treated T cells. Hence, we provide a model of positive feedback conferred by ICOS-LICOS interaction between TGN1412-treated T cells and endothelial cells.
Collapse
|
38
|
Lichtenfels R, Rappl G, Hombach AA, Recktenwald CV, Dressler SP, Abken H, Seliger B. A proteomic view at T cell costimulation. PLoS One 2012; 7:e32994. [PMID: 22539942 PMCID: PMC3335147 DOI: 10.1371/journal.pone.0032994] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 02/07/2012] [Indexed: 12/31/2022] Open
Abstract
The "two-signal paradigm" in T cell activation predicts that the cooperation of "signal 1," provided by the T cell receptor (TCR) through engagement of major histocompatility complex (MHC)-presented peptide, with "signal 2″ provided by costimulatory molecules, the prototype of which is CD28, is required to induce T cell effector functions. While the individual signalling pathways are well understood, little is known about global changes in the proteome pattern during TCR/CD28-mediated activation. Therefore, comparative 2-DE-based proteome analyses of CD3(+) CD69(-) resting T cells versus cells incubated with (i) the agonistic anti-CD3 antibody OKT3 mimicking signal 1 in absence or presence of IL-2 and/or with (ii) the agonistic antibody 15E8 triggering CD28-mediated signaling were performed. Differentially regulated spots were defined leading to the identification of proteins involved in the regulation of the metabolism, shaping and maintenance of the cytoskeleton and signal transduction. Representative members of the differentially expressed protein families, such as calmodulin (CALM), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), L-lactate dehydrogenase (LDH), Rho GDP-dissociation inhibitor 2 (GDIR2), and platelet basic protein (CXCL7), were independently verified by flow cytometry. Data provide a detailed map of individual protein alterations at the global proteome level in response to TCR/CD28-mediated T cell activation.
Collapse
Affiliation(s)
- Rudolf Lichtenfels
- Institute of Medical Immunology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Gunter Rappl
- Center for Molecular Medicine Cologne (CMMC) and Tumor Genetics Section, Clinic I Internal Medicine, University Cologne, Cologne, Germany
| | - Andreas A. Hombach
- Center for Molecular Medicine Cologne (CMMC) and Tumor Genetics Section, Clinic I Internal Medicine, University Cologne, Cologne, Germany
| | | | - Sven P. Dressler
- Institute of Medical Immunology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Hinrich Abken
- Center for Molecular Medicine Cologne (CMMC) and Tumor Genetics Section, Clinic I Internal Medicine, University Cologne, Cologne, Germany
| | - Barbara Seliger
- Institute of Medical Immunology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
39
|
Warncke M, Calzascia T, Coulot M, Balke N, Touil R, Kolbinger F, Heusser C. Different adaptations of IgG effector function in human and nonhuman primates and implications for therapeutic antibody treatment. THE JOURNAL OF IMMUNOLOGY 2012; 188:4405-11. [PMID: 22461693 DOI: 10.4049/jimmunol.1200090] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Safety of human therapeutic Abs is generally assessed in nonhuman primates. Whereas IgG1 shows identical FcγR interaction and effector function profile in both species, fundamental differences in the IgG2 and IgG4 Ab subclasses were found between the two species. Granulocytes, the main effector cells against IgG2- and IgG4-opsonized bacteria and parasites, do not express FcγRIIIb, but show higher levels of FcγRII in cynomolgus monkey. In humans, IgG2 and IgG4 adapted a silent Fc region with weak binding to FcγR and effector functions, whereas, in contrast, cynomolgus monkey IgG2 and IgG4 display strong effector function as well as differences in IgG4 Fab arm exchange. To balance this shift toward activation, the cynomolgus inhibitory FcγRIIb shows strongly increased affinity for IgG2. In view of these findings, in vitro and in vivo results for human IgG2 and IgG4 obtained in the cynomolgus monkey have to be cautiously interpreted, whereas effector function-related effects of human IgG1 Abs are expected to be predictable for humans.
Collapse
Affiliation(s)
- Max Warncke
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, CH-4002 Basel, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
40
|
Medina MA, Couturier J, Feske ML, Mahne AE, Turner M, Yu X, Kozinetz CA, Orozco AF, Hutchison AT, Savidge TC, Rodgers JR, Lewis DE. Granzyme B- and Fas ligand-mediated cytotoxic function induced by mitogenic CD28 stimulation of human memory CD4+ T cells. J Leukoc Biol 2012; 91:759-71. [PMID: 22416257 DOI: 10.1189/jlb.0511264] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Some human memory CD4(+) T cells have cytotoxic functions best understood in the context of viral infections; however, their possible role in pathologic processes is understudied. The novel discovery that mitogenic CD28 antibodies induced proliferation and expansion of Tregs offered therapeutic promise for autoimmune disorders. However, the failed TGN1412 trial forced reassessment of this concept. As memory CD4(+) T cells are known to produce toxic molecules, including granzyme B (GrzB) and FasL, we wondered whether mitogenic CD28 was able to induce these cytotoxic molecules. A commercially available mitogenic human CD28 mAb (clone ANC28.1) was used to determine whether mitogenic CD28 induces cytotoxic function from human memory CD4(+) T cells. We found that stimulation of memory CD4(+) T cells by ANC28.1, as well as by conventional costimulation (CD3/CD28 mAb), robustly induced enzymatically active GrzB, along with increased surface expression of FasL. These functional phenotypes were induced in association with increased expression of T cell activation markers CD69 and CD25, and elimination of target cells by ANC28.1-activated memory CD4(+) T cells involved both GrzB and FasL. Additionally, ANC28.1-activated memory CD4(+) T cells caused disruption of epithelial cell monolayer integrity, which was partially mediated by GrzB. These findings reveal functions of memory CD4(+) T cells previously unknown to be induced by mitogenic CD28, and suggest that these pathogenic mechanisms may have been responsible for some of the widespread tissue destruction that occurred in the TGN1412 trial recipients.
Collapse
Affiliation(s)
- Miguel A Medina
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Loss-of-function mutations within the IL-2 inducible kinase ITK in patients with EBV-associated lymphoproliferative diseases. Leukemia 2012; 26:963-71. [PMID: 22289921 DOI: 10.1038/leu.2011.371] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The purpose of this study was the appraisal of the clinical and functional consequences of germline mutations within the gene for the IL-2 inducible T-cell kinase, ITK. Among patients with Epstein-Barr virus-driven lymphoproliferative disorders (EBV-LPD), negative for mutations in SH2D1A and XIAP (n=46), we identified two patients with R29H or D500T,F501L,M503X mutations, respectively. Human wild-type (wt) ITK, but none of the mutants, was able to rescue defective calcium flux in murine Itk(-/-) T cells. Pulse-chase experiments showed that ITK mutations lead to varying reductions of protein half-life from 25 to 69% as compared with wt ITK (107 min). The pleckstrin homology domain of wt ITK binds most prominently to phosphatidylinositol monophosphates (PI(3)P, PI(4)P, PI(5)P) and to lesser extend to its double or triple phosphorylated derivates (PIP2, PIP3), interactions which were dramatically reduced in the patient with the ITK(R29H) mutant. ITK mutations are distributed over the entire protein and include missense, nonsense and indel mutations, reminiscent of the situation in its sister kinase in B cells, Bruton's tyrosine kinase.
Collapse
|
42
|
Danilenko DM, Wang H. The yin and yang of immunomodulatory biologics: assessing the delicate balance between benefit and risk. Toxicol Pathol 2012; 40:272-87. [PMID: 22222884 DOI: 10.1177/0192623311430237] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A number of therapeutic immunomodulatory biologics, including antibodies, fusion proteins, and recombinant proteins, have been causally linked with serious adverse effects in humans. In nearly all cases, these serious adverse effects have been directly associated with the immunomodulatory biologic's intended pharmacologic activity or exaggerated pharmacology. Examples of immunomodulatory biologics known to cause serious adverse effects in the clinic ranging from immunostimulation and cytokine release syndrome (e.g., TGN1412) to immunosuppression with increased risk of opportunistic infections (e.g., TNF-α antagonists, anti-integrins) are presented. Specific examples of the nonclinical testing strategy used for the clinical risk assessment of these immunomodulatory biologics are discussed, with an emphasis on the clinical relevance and predictivity of the models. Infectious challenge animal models, in particular, were critically evaluated for their utility in evaluating clinical risk assessment versus understanding mechanism of action. The nonclinical safety testing strategy for an immunomodulatory biologic should be custom tailored to interrogate the biology of the immunologic target in order to best assess potential clinical risk. This nonclinical strategy should include mechanistic and efficacy models of pharmacologic activity and immunologic signaling pathways, in vitro immunologic assays such as cytokine release, and immunophenotypic assessment by flow cytometry, immunohistochemistry, and/or immunofluorescence, as appropriate.
Collapse
|
43
|
Walker MR, Makropoulos DA, Achuthanandam R, Van Arsdell S, Bugelski PJ. Development of a human whole blood assay for prediction of cytokine release similar to anti-CD28 superagonists using multiplex cytokine and hierarchical cluster analysis. Int Immunopharmacol 2011; 11:1697-705. [PMID: 21689786 DOI: 10.1016/j.intimp.2011.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 06/01/2011] [Accepted: 06/02/2011] [Indexed: 01/23/2023]
Abstract
Anti-CD28 superagonist (SA) mediated cytokine release syndrome (CRS), an adverse event resulting in systemic release of cytokines, is an emergent issue in drug development. CRS is of potential concern for all monoclonal antibodies (mAbs) particularly those directed against cell surface targets on lymphocytes. Concern regarding patient safety requires development of novel methods to predict these adverse reactions. Due to the inability of animal studies to predict CRS, we have developed a whole blood in vitro screen to support First in Human studies and assess the potential for mAbs to cause anti-CD28 SA-like CRS. For this purpose we have immobilized marketed mAbs, whose potential for causing CRS and milder infusion reactions is known, on Protein A beads and used these beads to stimulate cytokine release. After culture, supernatants are harvested and frozen for later multiplex analysis of cytokines using Searchlight™ technology. We have employed hierarchicalluster analysis (HCA) to allow comparison of 12 different cytokine levels across numerous donors, treatments, and experiments. Results conclusively distinguish test mAb responses from an anti-CD28 superagonist mAb response. As part of a global analysis of preclinical data, the results of this assay can facilitate entry into First in Human clinical trials, help with selection of starting doses and may allow more rapid dose escalation using smaller cohorts.
Collapse
Affiliation(s)
- Mindi R Walker
- Biologics Toxicology, Center of Excellence in Biotechnology, Centocor R&D Inc., Radnor, PA 19087, United States.
| | | | | | | | | |
Collapse
|
44
|
Tuosto L. NF-κB family of transcription factors: Biochemical players of CD28 co-stimulation. Immunol Lett 2011; 135:1-9. [DOI: 10.1016/j.imlet.2010.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 09/09/2010] [Accepted: 09/14/2010] [Indexed: 12/31/2022]
|
45
|
Verdino P, Witherden DA, Ferguson MS, Corper AL, Schiefner A, Havran WL, Wilson IA. Molecular insights into γδ T cell costimulation by an anti-JAML antibody. Structure 2011; 19:80-9. [PMID: 21220118 PMCID: PMC3039130 DOI: 10.1016/j.str.2010.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 10/11/2010] [Accepted: 10/11/2010] [Indexed: 12/18/2022]
Abstract
γδ T cells bridge innate and adaptive immunity and function in immunosurveillance, immunoregulation, tumor cell recognition, and as first line of defense against microbial infection. Costimulation of epithelial γδ T cell activation by the JAML receptor can be induced by interaction with its endogenous ligand CAR or by binding of the stimulatory antibody HL4E10. We, therefore, determined the crystal structure of the JAML-HL4E10 Fab complex at 2.95 Å resolution. HL4E10 binds the membrane-proximal domain of JAML through hydrophobic interactions that account for nanomolar affinity and long half-life, contrasting with the fast kinetics and micromolar affinity of the hydrophilic CAR interaction with the membrane-distal JAML domain. Thus, despite different binding sites and mechanisms, JAML interaction with these two disparate ligands leads to the same functional outcome, namely JAML triggering and induction of cell signaling. Several characteristics of the HL4E10 antibody might then be harnessed in therapeutic applications, such as promoting healing of acute or chronic wounds.
Collapse
MESH Headings
- Animals
- Antibodies, Heterophile/chemistry
- Antibodies, Heterophile/pharmacology
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/pharmacology
- Binding Sites, Antibody
- Cell Adhesion Molecules/chemistry
- Cell Adhesion Molecules/immunology
- Cell Adhesion Molecules/metabolism
- Cell Line
- Cell Proliferation
- Coxsackie and Adenovirus Receptor-Like Membrane Protein
- Cricetinae
- Crystallography, X-Ray
- Hydrophobic and Hydrophilic Interactions
- Immunoglobulin Fab Fragments/chemistry
- Langerhans Cells/cytology
- Langerhans Cells/metabolism
- Mice
- Phosphatidylinositol 3-Kinases/physiology
- Protein Binding
- Protein Interaction Domains and Motifs
- Protein Structure, Quaternary
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Virus/chemistry
- Receptors, Virus/metabolism
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/metabolism
- Surface Properties
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Petra Verdino
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Deborah A. Witherden
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - M. Sharon Ferguson
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Adam L. Corper
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - André Schiefner
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Wendy L. Havran
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Ian A. Wilson
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| |
Collapse
|
46
|
Sandilands GP, Wilson M, Huser C, Jolly L, Sands WA, McSharry C. Were monocytes responsible for initiating the cytokine storm in the TGN1412 clinical trial tragedy? Clin Exp Immunol 2010; 162:516-27. [PMID: 20964641 DOI: 10.1111/j.1365-2249.2010.04264.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The precise biological mechanisms that caused the TGN1412 clinical trial tragedy (also known as 'The Elephant Man Clinical Trial') in March 2006 remain a mystery to this day. It is assumed widely that the drug used in this trial (TGN1412) bound to CD28 on T lymphocytes and following activation of these cells, a massive 'cytokine storm' ensued, leading ultimately to multi-organ failure in all recipients. The rapidity of this in vivo response (within 2 h), however, does not fit well with a classical T lymphocyte response, suggesting that other 'faster-acting' cell types may have been involved. In this study we have activated purified human peripheral blood leucocyte populations using various clones of mouse monoclonal anti-CD28 presented to cells in the form of a multimeric array. Cytokines were measured in cell-free supernatants at 2 h, and specific mRNA for tumour necrosis factor (TNF)-α, thought to be the initiator of the cytokine storm, was also measured in cell lysates by reverse transcription-polymerase chain reaction (RT-PCR). Monocytes were the only cell type found to show significant (P < 0·05) up-regulation of TNF-α at 2 h. Eleven other monocyte cytokines were also up-regulated by anti-CD28 within this time-frame. It therefore seems likely that monocytes and not T cells, as widely believed, were probably responsible, at least in part, for initiating the cytokine storm. Furthermore, we propose that a multimeric antibody array may have formed in vivo on the vascular endothelium via an interaction between TGN1412 and CD64 (FcγRI), and we provide some evidence in support of this hypothesis.
Collapse
Affiliation(s)
- G P Sandilands
- University Department of Pathology, Western Infirmary, Glasgow, UK.
| | | | | | | | | | | |
Collapse
|
47
|
Poirier N, Blancho G, Vanhove B. A more selective costimulatory blockade of the CD28-B7 pathway. Transpl Int 2010; 24:2-11. [DOI: 10.1111/j.1432-2277.2010.01176.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
48
|
Eastwood D, Findlay L, Poole S, Bird C, Wadhwa M, Moore M, Burns C, Thorpe R, Stebbings R. Monoclonal antibody TGN1412 trial failure explained by species differences in CD28 expression on CD4+ effector memory T-cells. Br J Pharmacol 2010; 161:512-26. [PMID: 20880392 PMCID: PMC2990151 DOI: 10.1111/j.1476-5381.2010.00922.x] [Citation(s) in RCA: 206] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 03/26/2010] [Accepted: 03/30/2010] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE In 2006, a life-threatening 'cytokine storm', not predicted by pre-clinical safety testing, rapidly occurred in all six healthy volunteers during the phase I clinical trial of the CD28 superagonist monoclonal antibody (mAb) TGN1412. To date, no unequivocal explanation for the failure of TGN1412 to stimulate profound cytokine release in vitro or in vivo in species used for pre-clinical safety testing has been established. Here, we have identified a species difference almost certainly responsible for this disparate immunopharmacology. EXPERIMENTAL APPROACH Polychromatic flow cytometry and intracellular cytokine staining were employed to dissect the in vitro immunopharmacology of TGN1412 and other therapeutic mAbs at the cellular level to identify differences between humans and species used for pre-clinical safety testing. KEY RESULTS In vitro IL-2 and IFN-γ release from CD4+ effector memory T-cells were key indicators of a TGN1412-type response. This mechanism of cytokine release differed from that of other therapeutic mAbs, which can cause adverse reactions, because these other mAbs stimulate cytokine release primarily from natural killer cells. In contrast to humans, CD28 is not expressed on the CD4+ effector memory T-cells of all species used for pre-clinical safety testing, so cannot be stimulated by TGN1412. CONCLUSIONS AND IMPLICATIONS It is likely that activation of CD4+ effector memory T-cells by TGN1412 was responsible for the cytokine storm. Lack of CD28 expression on the CD4+ effector memory T-cells of species used for pre-clinical safety testing of TGN1412 offers an explanation for the failure to predict a 'cytokine storm' in humans.
Collapse
Affiliation(s)
- D Eastwood
- Biotherapeutics Group, NIBSC, Potters Bar, Hertfordshire, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Bugelski PJ, Achuthanandam R, Capocasale RJ, Treacy G, Bouman-Thio E. Monoclonal antibody-induced cytokine-release syndrome. Expert Rev Clin Immunol 2010; 5:499-521. [PMID: 20477639 DOI: 10.1586/eci.09.31] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Monoclonal antibodies (mAbs) are widely used in anti-inflammatory and tumor therapy. Although effective, mAbs can cause a variety of adverse effects. An important toxicity seen with a few mAbs is cytokine-release syndrome (CRS). These mAbs include: alemtuzumab, muromonab-CD3, rituximab, tosituzumab, CP-870,893, LO-CD2a/BTI-322 and TGN1412. By contrast, over 30 mAbs used clinically are not associated with CRS. In this review, the clinical aspects of CRS, the mAbs associated with CRS, the cytokines involved and putative mechanisms mediating cytokine release will be discussed. This will be followed by a discussion of the poor predictive value of studies in animals and the prospects for creating in vitro screens. Finally, approaches to decreasing the probability of CRS, decreasing the severity or treating CRS, should it occur, will be described.
Collapse
Affiliation(s)
- Peter J Bugelski
- Toxicology and Investigational Pharmacology, Centocor R&D, R-4-2, 145 King of Prussia Road, Radnor, PA 19087, USA.
| | | | | | | | | |
Collapse
|
50
|
Magalhaes I, Vudattu NK, Ahmed RK, Kühlmann-Berenzon S, Ngo Y, Sizemore DR, Wehlin L, Weichold F, Andersson J, Skeiky YAW, Sadoff J, Gaines H, Thorstensson R, Spångberg M, Maeurer MJ. High content cellular immune profiling reveals differences between rhesus monkeys and men. Immunology 2010; 131:128-40. [PMID: 20465573 DOI: 10.1111/j.1365-2567.2010.03284.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A better understanding of similarities and differences in the composition of the cellular immune system in non-human primates (NHPs) compared with human subjects will improve the interpretation of preclinical studies. It will also aid in addressing the usefulness of NHPs as subjects for studying chronic diseases, vaccine development and immune reconstitution. We employed high content colour flow cytometry and analysed simultaneously the expression of CD3, CD4, CD8alpha, CD8beta, CD16/CD56, CD45RA, CCR7, CD27, CD28, CD107a and the interleukin-7 receptor alpha-chain (IL-7Ralpha) in peripheral blood mononuclear cells (PBMCs) of 27 rhesus macaques and 16 healthy human subjects. Regulatory T cells (Tregs) were identified using anti-CD3, -CD4, -CD25, -FoxP3, and -IL-7Ralpha monoclonal antibodies. Responsiveness to IL-7 was gauged in a signal transducer and activation of transcription 5 (STAT-5) phosphorylation assay. Human and NHP PBMCs showed a similar T-cell composition pattern with some remarkable differences. Similarities: human and NHP CD4(+) and CD8(+) cells showed a similar STAT-5 phosphorylation pattern in response to IL-7. Multicolour flow cytometric analysis identified a CD4(+) CD8alphaalpha(+) CD8alphabeta(+) T-cell population in NHPs as well as in human subjects that expressed the degranulation marker CD107a and may represent a unique CD4(+) T-cell subset endowed with cytotoxic capacity. Differences: we identified in PBMCs from NHPs a higher proportion (5.16% in CD3(+) T cells) of CD8alphaalpha(+) T cells when compared with human donors (1.22% in CD3(+) T cells). NHP CD8alphaalpha(+) T cells produced tumour necrosis factor-alpha / interferon-gamma (TNF-alpha/IFN-gamma) or TNF-alpha, whereas human CD8alphaalpha(+) T cells produced simultaneously TNF-alpha/IFN-gamma and IL-2. A minor percentage of human CD8(+) T cells expressed CD25(bright) and FoxP3 (0.01%). In contrast, 0.07% of NHP CD8(+) T cells exhibited the CD25(bright) FoxP3(+) phenotype. PBMCs from NHPs showed less IL-7Ralpha-positive events in all T-cell subsets including CD4(+) Tregs (median 5%) as compared with human (median 12%). The data visualize commonalities and differences in immune cell subsets in humans and NHPs, most of them in long-lived memory cells and cells with suppressive functions. This provides a matrix to assess future efforts to study diseases and vaccines in NHPs.
Collapse
Affiliation(s)
- Isabelle Magalhaes
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|