1
|
Hashim GM, Shahgolzari M, Hefferon K, Yavari A, Venkataraman S. Plant-Derived Anti-Cancer Therapeutics and Biopharmaceuticals. Bioengineering (Basel) 2024; 12:7. [PMID: 39851281 PMCID: PMC11759177 DOI: 10.3390/bioengineering12010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/26/2025] Open
Abstract
In spite of significant advancements in diagnosis and treatment, cancer remains one of the major threats to human health due to its ability to cause disease with high morbidity and mortality. A multifactorial and multitargeted approach is required towards intervention of the multitude of signaling pathways associated with carcinogenesis inclusive of angiogenesis and metastasis. In this context, plants provide an immense source of phytotherapeutics that show great promise as anticancer drugs. There is increasing epidemiological data indicating that diets rich in vegetables and fruits could decrease the risks of certain cancers. Several studies have proved that natural plant polyphenols, such as flavonoids, lignans, phenolic acids, alkaloids, phenylpropanoids, isoprenoids, terpenes, and stilbenes, could be used in anticancer prophylaxis and therapeutics by recruitment of mechanisms inclusive of antioxidant and anti-inflammatory activities and modulation of several molecular events associated with carcinogenesis. The current review discusses the anticancer activities of principal phytochemicals with focus on signaling circuits towards targeted cancer prophylaxis and therapy. Also addressed are plant-derived anti-cancer vaccines, nanoparticles, monoclonal antibodies, and immunotherapies. This review article brings to light the importance of plants and plant-based platforms as invaluable, low-cost sources of anti-cancer molecules of particular applicability in resource-poor developing countries.
Collapse
Affiliation(s)
- Ghyda Murad Hashim
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Mehdi Shahgolzari
- Dental Research Center, Hamadan University of Medical Sciences, Hamadan 65175-4171, Iran
| | - Kathleen Hefferon
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Afagh Yavari
- Department of Biology, Payame Noor University, Tehran P.O. Box 19395-3697, Iran
| | - Srividhya Venkataraman
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| |
Collapse
|
2
|
Kuburich NA, Kiselka JM, den Hollander P, Karam AA, Mani SA. The Cancer Chimera: Impact of Vimentin and Cytokeratin Co-Expression in Hybrid Epithelial/Mesenchymal Cancer Cells on Tumor Plasticity and Metastasis. Cancers (Basel) 2024; 16:4158. [PMID: 39766058 PMCID: PMC11674825 DOI: 10.3390/cancers16244158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
The epithelial-mesenchymal transition (EMT) program is critical to metastatic cancer progression. EMT results in the expression of mesenchymal proteins and enhances migratory and invasive capabilities. In a small percentage of cells, EMT results in the expression of stemness-associated genes that provide a metastatic advantage. Although EMT had been viewed as a binary event, it has recently become clear that the program leads to a spectrum of phenotypes, including hybrid epithelial/mesenchymal (E/M) cells that have significantly greater metastatic capability than cells on the epithelial or mesenchymal ends of the spectrum. As hybrid E/M cells are rarely observed in physiological, non-diseased states in the adult human body, these cells are potential biomarkers and drug targets. Hybrid E/M cells are distinguished by the co-expression of epithelial and mesenchymal proteins, such as the intermediate filament proteins cytokeratin (CK; epithelial) and vimentin (VIM; mesenchymal). Although these intermediate filaments have been extensively used for pathological characterization and detection of aggressive carcinomas, little is known regarding the interactions between CK and VIM when co-expressed in hybrid E/M cells. This review describes the characteristics of hybrid E/M cells with a focus on the unique co-expression of VIM and CK. We will discuss the structures and functions of these two intermediate filament proteins and how they may interact when co-expressed in hybrid E/M cells. Additionally, we review what is known about cell-surface expression of these intermediate filament proteins and discuss their potential as predictive biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Nick A. Kuburich
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; (N.A.K.); (J.M.K.); (P.d.H.); (A.A.K.)
- Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Julia M. Kiselka
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; (N.A.K.); (J.M.K.); (P.d.H.); (A.A.K.)
- Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Petra den Hollander
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; (N.A.K.); (J.M.K.); (P.d.H.); (A.A.K.)
- Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Andrew A. Karam
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; (N.A.K.); (J.M.K.); (P.d.H.); (A.A.K.)
- Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Sendurai A. Mani
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; (N.A.K.); (J.M.K.); (P.d.H.); (A.A.K.)
- Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| |
Collapse
|
3
|
Omole AO, Affonso de Oliveira JF, Sutorus L, Karan S, Zhao Z, Neun BW, Cedrone E, Clogston JD, Xu J, Sierk M, Chen Q, Meerzaman D, Dobrovolskaia MA, Steinmetz NF. Cellular fate of a plant virus immunotherapy candidate. Commun Biol 2024; 7:1382. [PMID: 39443610 PMCID: PMC11499861 DOI: 10.1038/s42003-024-06982-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 09/28/2024] [Indexed: 10/25/2024] Open
Abstract
Cowpea mosaic virus (CPMV) is a plant virus that is currently being developed for intratumoral immunotherapy. CPMV relieves the immune system from tumor-induced immunosuppression; reprograms the tumor microenvironment to an activated state whereby the treated and distant tumors are recognized and eradicated. Toward translational studies, we investigated the safety of CPMV, specifically addressing whether pathogenicity would be induced in mammalian cells. We show that murine macrophage immune cells recognize CPMV; however, there is no indication of de novo viral protein synthesis or RNA replication. Furthermore, we show that CPMV does not induce hemolysis, platelet aggregation and plasma coagulation amongst other assays in human blood and immune cells. Taken together, we anticipate that these results will reinforce the development of CPMV as an immunotherapeutic platform.
Collapse
Affiliation(s)
- Anthony O Omole
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, CA, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Jessica Fernanda Affonso de Oliveira
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, CA, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Lucas Sutorus
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, CA, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Sweta Karan
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, CA, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Zhongchao Zhao
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, CA, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Barry W Neun
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Edward Cedrone
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Jeffrey D Clogston
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Jie Xu
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Michael Sierk
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Qingrong Chen
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Daoud Meerzaman
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Nicole F Steinmetz
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA.
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, CA, USA.
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA.
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, CA, USA.
- Center for Engineering in Cancer, Institute of Engineering Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
4
|
Karan S, Jung E, Boone C, Steinmetz NF. Synergistic combination therapy using cowpea mosaic virus intratumoral immunotherapy and Lag-3 checkpoint blockade. Cancer Immunol Immunother 2024; 73:51. [PMID: 38349406 PMCID: PMC10864561 DOI: 10.1007/s00262-024-03636-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/15/2024] [Indexed: 02/15/2024]
Abstract
Immune checkpoint therapy (ICT) for cancer can yield dramatic clinical responses; however, these may only be observed in a minority of patients. These responses can be further limited by subsequent disease recurrence and resistance. Combination immunotherapy strategies are being developed to overcome these limitations. We have previously reported enhanced efficacy of combined intratumoral cowpea mosaic virus immunotherapy (CPMV IIT) and ICT approaches. Lymphocyte-activation gene-3 (LAG-3) is a next-generation inhibitory immune checkpoint with broad expression across multiple immune cell subsets. Its expression increases on activated T cells and contributes to T cell exhaustion. We observed heightened efficacy of a combined CPMV IIT and anti-LAG-3 treatment in a mouse model of melanoma. Further, LAG-3 expression was found to be increased within the TME following intratumoral CPMV administration. The integration of CPMV IIT with LAG-3 inhibition holds significant potential to improve treatment outcomes by concurrently inducing a comprehensive anti-tumor immune response, enhancing local immune activation, and mitigating T cell exhaustion.
Collapse
Affiliation(s)
- Sweta Karan
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, USA
| | - Eunkyeong Jung
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, USA
| | - Christine Boone
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA.
| | - Nicole F Steinmetz
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, USA.
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA.
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, CA, USA.
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, CA, USA.
- Center for Engineering in Cancer, Institute of Engineering Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
5
|
Shahgolzari M, Dianat-Moghadam H, Fiering S. Multifunctional plant virus nanoparticles in the next generation of cancer immunotherapies. Semin Cancer Biol 2022; 86:1076-1085. [PMID: 34375725 PMCID: PMC8821734 DOI: 10.1016/j.semcancer.2021.07.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/27/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023]
Abstract
Plant virus nanoparticles (PVNPs) have inherent immune stimulatory ability, and have been investigated as immune adjuvants to stimulate an anti-tumor immune response. The combination of immune stimulation, nanoparticle structure and the ability to deliver other therapeutic molecules provides a flexible platform for cancer immunotherapy. Researching multifunctional PVNPs and their modification will generate novel reagents for cancer immunotherapy. Here we review the properties of PVNPs, and their potential for clinical utilization to activate anti-tumor innate and lymphoid immune responses. PVNPs have potential utility for cancer immunotherapy as vaccine adjuvant, and delivery systems for other reagents as mono immunotherapy or combined with other immunotherapies. This review outlines the potential and challenges in developing PVNPs as cancer immunotherapy reagents.
Collapse
Affiliation(s)
- Mehdi Shahgolzari
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Dianat-Moghadam
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Steven Fiering
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States; Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth and Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States.
| |
Collapse
|
6
|
Shahgolzari M, Fiering S. Emerging Potential of Plant Virus Nanoparticles (PVNPs) in Anticancer Immunotherapies. JOURNAL OF CANCER IMMUNOLOGY 2022; 4:22-29. [PMID: 35600219 PMCID: PMC9121906 DOI: 10.33696/cancerimmunol.4.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cancer immunotherapies using plant virus nanoparticles (PVNPs) have achieved considerable success in preclinical studies. PVNP based nanoplatforms can be endogenous immune adjuvants and act as nanocarriers that stabilize and deliver cancer antigens and exogenous immune adjuvants. Although they do not infect mammalian cells, PVNPs are viruses and they are variably recognized by pathogen pattern recognition receptors (PRR), activate innate immune cells including antigen-presenting cells (APCs), and increase the expression of costimulatory molecules. Novel immunotherapy strategies use them as in situ vaccines (ISV) that can effectively inhibit tumor growth after intratumoral administration and generate expanded systemic antitumor immunity. PVNPs combined with other tumor immunotherapeutic options and other modalities of oncotherapy can improve both local and systemic anti-tumor immune responses. While not yet in clinical trials in humans, there is accelerating interest and research of the potential of PVNPs for ISV immune therapy for cancer. Thus, antitumor efficacy of PVNPs by themselves, or loaded with soluble toll-like receptor (TLR) agonists and/or cancer antigens, will likely enter human trials over the next few years and potentially contribute to next-generation antitumor immune-based therapies.
Collapse
Affiliation(s)
- Mehdi Shahgolzari
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Steven Fiering
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, NH, United States
- Norris Cotton Cancer Center, Dartmouth Geisel School of Medicine and Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| |
Collapse
|
7
|
Chan SK, Steinmetz NF. Isolation of Cowpea Mosaic Virus-Binding Peptides. Biomacromolecules 2021; 22:3613-3623. [PMID: 34314166 DOI: 10.1021/acs.biomac.1c00712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The plant virus cowpea mosaic virus (CPMV) is a natural nanocarrier that has been developed as a platform technology for the delivery of various payloads including peptide epitopes for vaccines, contrast agents for imaging, and drugs for therapy. Genetic fusion and chemical conjugations are the mainstay approaches to load the active ingredient to the exterior and/or interior of CPMV. However, these methods have limitations; genetic engineering is limited to biologics, and chemical alteration often requires multistep reactions with modification of both CPMV and the active ingredient. Either method can also result in particle instability. Therefore, to provide an alternate path toward CPMV functionalization, we report the isolation of peptides that specifically bind to CPMV, termed CPMV-binding peptides (CBP). We used a commercial M13 phage display 7-mer peptide library to pan for and select peptides that selectively bind to CPMV. Biopanning and characterization of lead candidates resulted in isolation of the motif "GWRVSEF/L" as the CPMV-specific motif with phenylalanine (F) at the seventh position being stronger than leucine (L). Specificity to CPMV was demonstrated, and cross-reactivity toward other plant viruses was not observed. To demonstrate cargo loading, GWRVSEF was tagged with biotin, fluorescein isothiocyanate (FITC), and a human epidermal growth factor receptor 2 (HER2)-specific targeting peptide ligand. Display of the active ingredient was confirmed, and utility of tagged and targeted CPMV in cell binding assays was demonstrated. The CBP functionalization strategy offers a new avenue for CPMV nanoparticle functionalization and should offer a versatile tool to add active ingredients that otherwise may be difficult to conjugate or display.
Collapse
|
8
|
Mao C, Beiss V, Fields J, Steinmetz NF, Fiering S. Cowpea mosaic virus stimulates antitumor immunity through recognition by multiple MYD88-dependent toll-like receptors. Biomaterials 2021; 275:120914. [PMID: 34126409 DOI: 10.1016/j.biomaterials.2021.120914] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/10/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
Cowpea mosaic virus (CPMV), a non-enveloped plant virus, and empty CPMV (eCPMV), a virus-like particle (VLP) composed of CPMV capsid without nucleic acids, are potent in situ cancer vaccines when administered intratumorally (I.T.). However, it is unclear how immune cells recognize these nanoparticles and why they are immunogenic, which was investigated in this study. CPMV generated stronger selective induction of cytokines and chemokines in naïve mouse splenocytes and exhibited more potent anti-tumor efficacy than eCPMV. MyD88 is required for both CPMV- and eCPMV-elicited immune responses. Screening with human embryonic kidney (HEK)-293 cell toll-like receptor (TLR) reporter assays along with experiments in corresponding TLR-/- mice indicated CPMV and eCPMV capsids are recognized by MyD88-dependent TLR2 and TLR4. CPMV, but not eCPMV, is additionally recognized by TLR7. Secretion of type I interferons (IFNs), which requires the interaction between TLR7 and encapsulated single-stranded RNAs (ssRNAs), is critical to CPMV's better efficacy. The same recognition mechanisms are also functional in human peripheral blood mononuclear cells (PBMCs). Overall, these findings link CPMV immunotherapy efficacy with molecular recognition, provide rationale for how to develop more potent viral particles, accentuate the value of multi-TLR agonists as in situ cancer vaccines, and highlight the functional importance of type I IFNs for in situ vaccination.
Collapse
Affiliation(s)
- Chenkai Mao
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, United States
| | - Veronique Beiss
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Jennifer Fields
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, United States; Norris Cotton Cancer Center, Geisel School of Medicine, Dartmouth Hitchcock Medical System, Lebanon, NH, 03756, United States
| | - Nicole F Steinmetz
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093, United States; Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, United States; Department of Radiology, University of California, San Diego, La Jolla, CA, 92093, United States; Moores Cancer Center, University of California, San Diego, La Jolla, CA, 92093, United States; Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, 92093, United States; Institute for Materials Design and Discovery, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Steven Fiering
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, United States; Norris Cotton Cancer Center, Geisel School of Medicine, Dartmouth Hitchcock Medical System, Lebanon, NH, 03756, United States.
| |
Collapse
|
9
|
Nkanga CI, Steinmetz NF. The pharmacology of plant virus nanoparticles. Virology 2021; 556:39-61. [PMID: 33545555 PMCID: PMC7974633 DOI: 10.1016/j.virol.2021.01.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022]
Abstract
The application of nanoparticles for medical purposes has made enormous strides in providing new solutions to health problems. The observation that plant virus-based nanoparticles (VNPs) can be repurposed and engineered as smart bio-vehicles for targeted drug delivery and imaging has launched extensive research for improving the therapeutic and diagnostic management of various diseases. There is evidence that VNPs are promising high value nanocarriers with potential for translational development. This is mainly due to their unique features, encompassing structural uniformity, ease of manufacture and functionalization by means of expression, chemical biology and self-assembly. While the development pipeline is moving rapidly, with many reports focusing on engineering and manufacturing aspects to tailor the properties and efficacy of VNPs, fewer studies have focused on gaining insights into the nanotoxicity of this novel platform nanotechnology. Herein, we discuss the pharmacology of VNPs as a function of formulation and route of administration. VNPs are reviewed in the context of their application as therapeutic adjuvants or nanocarrier excipients to initiate, enhance, attenuate or impede the formulation's toxicity. The summary of the data however also underlines the need for meticulous VNP structure-nanotoxicity studies to improve our understanding of their in vivo fates and pharmacological profiles to pave the way for translation of VNP-based formulations into the clinical setting.
Collapse
Affiliation(s)
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California-San Diego, La Jolla, CA, 92039, United States; Department of Bioengineering, Department of Radiology, Center for NanoImmunoEngineering, Moores Cancer Center, Institute for Materials Discovery and Design, University of California-San Diego, La Jolla, CA, 92039, United States.
| |
Collapse
|
10
|
Shukla S, Wang C, Beiss V, Cai H, Washington T, Murray AA, Gong X, Zhao Z, Masarapu H, Zlotnick A, Fiering S, Steinmetz NF. The unique potency of Cowpea mosaic virus (CPMV) in situ cancer vaccine. Biomater Sci 2020; 8:5489-5503. [PMID: 32914796 PMCID: PMC8086234 DOI: 10.1039/d0bm01219j] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The immunosuppressive tumor microenvironment enables cancer to resist immunotherapies. We have established that intratumoral administration of plant-derived Cowpea mosaic virus (CPMV) nanoparticles as an in situ vaccine overcomes the local immunosuppression and stimulates a potent anti-tumor response in several mouse cancer models and canine patients. CPMV does not infect mammalian cells but acts as a danger signal that leads to the recruitment and activation of innate and subsequently, adaptive immune cells. In the present study we addressed whether other icosahedral viruses or virus-like particles (VLPs) of plant, bacteriophage and mammalian origin can be similarly employed as intratumoral immunotherapy. Our results indicate that CPMV in situ vaccine outperforms Cowpea chlorotic mottle virus (CCMV), Physalis mosaic virus (PhMV), Sesbania mosaic virus (SeMV), bacteriophage Qβ VLPs, or Hepatitis B virus capsids (HBVc). Furthermore, ex vivo and in vitro assays reveal unique features of CPMV that makes it an inherently stronger immune stimulant.
Collapse
Affiliation(s)
- Sourabh Shukla
- Department of NanoEngineering, University of California-San Diego, La Jolla, CA 92039, USA.
| | - Chao Wang
- Department of NanoEngineering, University of California-San Diego, La Jolla, CA 92039, USA.
| | - Veronique Beiss
- Department of NanoEngineering, University of California-San Diego, La Jolla, CA 92039, USA.
| | - Hui Cai
- Department of NanoEngineering, University of California-San Diego, La Jolla, CA 92039, USA.
| | - Torus Washington
- Department of NanoEngineering, University of California-San Diego, La Jolla, CA 92039, USA.
| | - Abner A Murray
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Xingjian Gong
- Department of Bioengineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Zhongchao Zhao
- Molecular and Cellular Biochemistry Department, Indiana University Bloomington, IN 47405, USA
| | - Hema Masarapu
- Department of Virology, Sri Venkateswara University, Tirupati 517502, India
| | - Adam Zlotnick
- Molecular and Cellular Biochemistry Department, Indiana University Bloomington, IN 47405, USA
| | - Steven Fiering
- Geisel School of Medicine, Dartmouth College, Lebanon, NH 03756, USA
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California-San Diego, La Jolla, CA 92039, USA. and Department of Bioengineering, University of California-San Diego, La Jolla, CA 92039, USA and Department of Radiology, University of California-San Diego, La Jolla, CA 92039, USA and Moores Cancer Center, University of California-San Diego, La Jolla, CA 92039, USA and Center for Nano-ImmunoEngineering, University of California-San Diego, La Jolla, CA 92039, USA
| |
Collapse
|
11
|
Patel BK, Wang C, Lorens B, Levine AD, Steinmetz NF, Shukla S. Cowpea Mosaic Virus (CPMV)-Based Cancer Testis Antigen NY-ESO-1 Vaccine Elicits an Antigen-Specific Cytotoxic T Cell Response. ACS APPLIED BIO MATERIALS 2020; 3:4179-4187. [PMID: 34368641 PMCID: PMC8340627 DOI: 10.1021/acsabm.0c00259] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer vaccines are promising adjuvant immunotherapies that can stimulate the immune system to recognize tumor-associated antigens and eliminate the residual or recurring disease. The aberrant and restricted expression of highly immunogenic cancer testis antigen NY-ESO-1 in several malignancies, including triple-negative breast cancer, melanoma, myelomas, and ovarian cancer, makes NY-ESO-1 an attractive antigenic target for cancer vaccines. This study describes a NY-ESO-1 vaccine based on a bio-inspired nanomaterial platform technology, specifically a plant virus nanoparticle. The 30 nm icosahedral plant virus cowpea mosaic virus (CPMV) displaying multiple copies of human HLA-A2 restricted peptide antigen NY-ESO-1157-165 exhibited enhanced uptake and activation of antigen-presenting cells and stimulated a potent CD8+ T cell response in transgenic human HLA-A2 expressing mice. CD8+ T cells from immunized mice exhibited antigen-specific proliferation and cancer cell cytotoxicity, highlighting the potential application of a CPMV-NY-ESO-1 vaccine against NY-ESO-1+ malignancies.
Collapse
Affiliation(s)
- Bindi K Patel
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Chao Wang
- Department of NanoEngineering, University of California-San Diego, La Jolla, California 92093, United States
| | - Braulio Lorens
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Alan D Levine
- Department of Molecular Biology and Microbiology and Medicine, Pediatrics Pathology, and Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Nicole F Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Sourabh Shukla
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
12
|
Shukla S, Wang C, Beiss V, Steinmetz NF. Antibody Response against Cowpea Mosaic Viral Nanoparticles Improves In Situ Vaccine Efficacy in Ovarian Cancer. ACS NANO 2020; 14:2994-3003. [PMID: 32133838 PMCID: PMC8085886 DOI: 10.1021/acsnano.9b07865] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Cancer immunotherapies are designed to facilitate recognition and elimination of transformed cells by the immune system. We have established the immunotherapeutic efficacy of the plant virus cowpea mosaic virus (CPMV) as an in situ vaccine in several syngeneic tumor mouse models as well as in companion dogs with metastatic melanoma. Intratumoral injection of CPMV modulates the local tumor microenvironment to relieve immunosuppression and potentiate antitumor immunity. The viral nucleocapsid that drives this antitumor immunity, however, also is a potent immunogen itself, and thus immune response in the form of anti-CPMV antibodies is expected during the treatment based on repeat administrations. Moreover, being part of the food chain, pre-existing antibodies to plant viruses may be prevalent. The presence of such pre-existing anti-CPMV immunity could potentially impact immunotherapeutic efficacy of the in situ vaccine and could have translational implications. To address such concerns, this study evaluated the efficacy of CPMV in situ vaccine in the presence of pre-existing antibodies in a syngeneic mouse model of ovarian cancer. Our results indicate that prior exposure to CPMV had no negative impact on the efficacy of CPMV in situ vaccine. Strikingly, an improved efficacy of CPMV in situ vaccine was observed. This study therefore presents an important milestone in the translational development of plant viral-based in situ vaccines and alleviates concerns about the presence of anti-CPMV antibodies, which are developed during the course of treatment but have no impact on immunotherapeutic efficacy.
Collapse
|
13
|
Venkataraman S, Reddy VS, Khurana SMP. Biomedical Applications of Viral Nanoparticles in Vaccine Therapy. Nanobiomedicine (Rij) 2020. [DOI: 10.1007/978-981-32-9898-9_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
14
|
Bamogo PKA, Brugidou C, Sérémé D, Tiendrébéogo F, Djigma FW, Simpore J, Lacombe S. Virus-based pharmaceutical production in plants: an opportunity to reduce health problems in Africa. Virol J 2019; 16:167. [PMID: 31888686 PMCID: PMC6937724 DOI: 10.1186/s12985-019-1263-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/02/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Developing African countries face health problems that they struggle to solve. The major causes of this situation are high therapeutic and logistical costs. Plant-made therapeutics are easy to produce due to the lack of the safety considerations associated with traditional fermenter-based expression platforms, such as mammalian cells. Plant biosystems are easy to scale up and inexpensive, and they do not require refrigeration or a sophisticated medical infrastructure. These advantages provide an opportunity for plant-made pharmaceuticals to counteract diseases for which medicines were previously inaccessible to people in countries with few resources. MAIN BODY The techniques needed for plant-based therapeutic production are currently available. Viral expression vectors based on plant viruses have greatly enhanced plant-made therapeutic production and have been exploited to produce a variety of proteins of industrial, pharmaceutical and agribusiness interest. Some neglected tropical diseases occurring exclusively in the developing world have found solutions through plant bioreactor technology. Plant viral expression vectors have been reported in the production of therapeutics against these diseases occurring exclusively in the third world, and some virus-derived antigens produced in plants exhibit appropriate antigenicity and immunogenicity. However, all advances in the use of plants as bioreactors have been made by companies in Europe and America. The developing world is still far from acquiring this technology, although plant viral expression vectors may provide crucial help to overcome neglected diseases. CONCLUSION Today, interest in these tools is rising, and viral amplicons made in and for Africa are in progress. This review describes the biotechnological advances in the field of plant bioreactors, highlights factors restricting access to this technology by those who need it most and proposes a solution to overcome these limitations.
Collapse
Affiliation(s)
- Pingdwende Kader Aziz Bamogo
- Interactions Plantes Microorganismes et Environnement (IPME), IRD, CIRAD, Université Montpellier, 911 Avenue Agropolis BP64501, 34394, Montpellier Cedex 5, France
- Laboratoire de Virologie et de Biotechnologies Végétales, Institut de L'Environnement et de Recherches Agricoles (INERA)/LMI Patho-Bios, 01BP476, Ouagadougou 01, Burkina Faso
- Laboratoire de Biologie Moléculaire et de Génétique (LABIOGENE), Ecole Doctorale Sciences et Technologie, Université Joseph Ki-Zerbo; Centre de Recherche Biomoléculaire Piétro Annigoni (CERBA), Ouagadougou 01, BP, 364, Burkina Faso
| | - Christophe Brugidou
- Interactions Plantes Microorganismes et Environnement (IPME), IRD, CIRAD, Université Montpellier, 911 Avenue Agropolis BP64501, 34394, Montpellier Cedex 5, France
- Laboratoire de Virologie et de Biotechnologies Végétales, Institut de L'Environnement et de Recherches Agricoles (INERA)/LMI Patho-Bios, 01BP476, Ouagadougou 01, Burkina Faso
| | - Drissa Sérémé
- Laboratoire de Virologie et de Biotechnologies Végétales, Institut de L'Environnement et de Recherches Agricoles (INERA)/LMI Patho-Bios, 01BP476, Ouagadougou 01, Burkina Faso
| | - Fidèle Tiendrébéogo
- Laboratoire de Virologie et de Biotechnologies Végétales, Institut de L'Environnement et de Recherches Agricoles (INERA)/LMI Patho-Bios, 01BP476, Ouagadougou 01, Burkina Faso
| | - Florencia Wendkuuni Djigma
- Laboratoire de Biologie Moléculaire et de Génétique (LABIOGENE), Ecole Doctorale Sciences et Technologie, Université Joseph Ki-Zerbo; Centre de Recherche Biomoléculaire Piétro Annigoni (CERBA), Ouagadougou 01, BP, 364, Burkina Faso
| | - Jacques Simpore
- Laboratoire de Biologie Moléculaire et de Génétique (LABIOGENE), Ecole Doctorale Sciences et Technologie, Université Joseph Ki-Zerbo; Centre de Recherche Biomoléculaire Piétro Annigoni (CERBA), Ouagadougou 01, BP, 364, Burkina Faso
| | - Séverine Lacombe
- Interactions Plantes Microorganismes et Environnement (IPME), IRD, CIRAD, Université Montpellier, 911 Avenue Agropolis BP64501, 34394, Montpellier Cedex 5, France.
- Laboratoire de Virologie et de Biotechnologies Végétales, Institut de L'Environnement et de Recherches Agricoles (INERA)/LMI Patho-Bios, 01BP476, Ouagadougou 01, Burkina Faso.
| |
Collapse
|
15
|
Villagrana-Escareño MV, Reynaga-Hernández E, Galicia-Cruz OG, Durán-Meza AL, De la Cruz-González V, Hernández-Carballo CY, Ruíz-García J. VLPs Derived from the CCMV Plant Virus Can Directly Transfect and Deliver Heterologous Genes for Translation into Mammalian Cells. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4630891. [PMID: 31781617 PMCID: PMC6855080 DOI: 10.1155/2019/4630891] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/01/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022]
Abstract
Virus-like particles (VLPs) are being used for therapeutic developments such as vaccines and drug nanocarriers. Among these, plant virus capsids are gaining interest for the formation of VLPs because they can be safely handled and are noncytotoxic. A paradigm in virology, however, is that plant viruses cannot transfect and deliver directly their genetic material or other cargos into mammalian cells. In this work, we prepared VLPs with the CCMV capsid and the mRNA-EGFP as a cargo and reporter gene. We show, for the first time, that these plant virus-based VLPs are capable of directly transfecting different eukaryotic cell lines, without the aid of any transfecting adjuvant, and delivering their nucleic acid for translation as observed by the presence of fluorescent protein. Our results show that the CCMV capsid is a good noncytotoxic container for genome delivery into mammalian cells.
Collapse
Affiliation(s)
- María V. Villagrana-Escareño
- Physical Biology Laboratory, Institute of Physics, Autonomous University of San Luis Potosí, San Luis Potosí, Mexico
| | - Elizabeth Reynaga-Hernández
- Physical Biology Laboratory, Institute of Physics, Autonomous University of San Luis Potosí, San Luis Potosí, Mexico
| | - Othir G. Galicia-Cruz
- Analytical Pharmacology Laboratory, Faculty of Medicine, Autonomous University of San Luis Potosí, San Luis Potosí, Mexico
| | - Ana L. Durán-Meza
- Physical Biology Laboratory, Institute of Physics, Autonomous University of San Luis Potosí, San Luis Potosí, Mexico
| | - Viridiana De la Cruz-González
- Physical Biology Laboratory, Institute of Physics, Autonomous University of San Luis Potosí, San Luis Potosí, Mexico
| | | | - Jaime Ruíz-García
- Physical Biology Laboratory, Institute of Physics, Autonomous University of San Luis Potosí, San Luis Potosí, Mexico
| |
Collapse
|
16
|
Zhuang J, Holay M, Park JH, Fang RH, Zhang J, Zhang L. Nanoparticle Delivery of Immunostimulatory Agents for Cancer Immunotherapy. Theranostics 2019; 9:7826-7848. [PMID: 31695803 PMCID: PMC6831474 DOI: 10.7150/thno.37216] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 06/26/2019] [Indexed: 02/07/2023] Open
Abstract
Immunostimulatory agents, including adjuvants, cytokines, and monoclonal antibodies, hold great potential for the treatment of cancer. However, their direct administration often results in suboptimal pharmacokinetics, vulnerability to biodegradation, and compromised targeting. More recently, encapsulation into biocompatible nanoparticulate carriers has become an emerging strategy for improving the delivery of these immunotherapeutic agents. Such approaches can address many of the challenges facing current treatment modalities by endowing additional protection and significantly elevating the bioavailability of the encapsulated payloads. To further improve the delivery efficiency and subsequent immune responses associated with current nanoscale approaches, biomimetic modifications and materials have been employed to create delivery platforms with enhanced functionalities. By leveraging nature-inspired design principles, these biomimetic nanodelivery vehicles have the potential to alter the current clinical landscape of cancer immunotherapy.
Collapse
Affiliation(s)
- Jia Zhuang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Maya Holay
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Joon Ho Park
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Ronnie H. Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Jie Zhang
- Cello Therapeutics, Inc., San Diego, CA 92121, USA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
17
|
Beatty PH, Lewis JD. Cowpea mosaic virus nanoparticles for cancer imaging and therapy. Adv Drug Deliv Rev 2019; 145:130-144. [PMID: 31004625 DOI: 10.1016/j.addr.2019.04.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 12/07/2018] [Accepted: 04/15/2019] [Indexed: 12/12/2022]
Abstract
Nanoparticle platforms are particularly attractive for theranostic applications due to their capacity for multifunctionality and multivalency. Some of the most promising nano-scale scaffold systems have been co-opted from nature including plant viruses such as cowpea mosaic virus (CPMV). The use of plant viruses like CPMV as viral nanoparticles is advantageous for many reasons; they are non-infectious and nontoxic to humans and safe for use in intravital imaging and drug delivery. The CPMV capsid icosahedral shape allows for enhanced multifunctional group display and the ability to carry specific cargoes. The native tropism of CPMV for cell-surface displayed vimentin and the enhanced permeability and retention effect allow them to preferentially extravasate from tumor neovasculature and efficiently penetrate tumors. Furthermore, CPMVs can be engineered via several straightforward chemistries to display targeting and imaging moieties on external, addressable residues and they can be loaded internally with therapeutic drug cargoes. These qualities make them highly effective as biocompatible platforms for tumor targeting, intravital imaging and cancer therapy.
Collapse
|
18
|
Berardi A, Baldelli Bombelli F, Thuenemann EC, Lomonossoff GP. Viral nanoparticles can elude protein barriers: exploiting rather than imitating nature. NANOSCALE 2019; 11:2306-2316. [PMID: 30662985 DOI: 10.1039/c8nr09067j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Protein-corona formation in body fluids and/or entrapment of nanoparticles in protein matrices (e.g. food and mucus) can hinder the delivery of nanoparticles, irrespective of the route of administration. Here we demonstrate that certain viral nanoparticles (VNPs) can evade the adhesion of a broad panel of macromolecules from several biological milieus. We also show that the permeability of VNPs through mucin gels is far superior to that of synthetic nanoparticles. The non-sticky nature of VNPs implies that they will be able to readily cross most non-specific protein and glycoprotein barriers encountered, ubiquitously, upon administration through mucosal, and non-mucosal routes.
Collapse
Affiliation(s)
- Alberto Berardi
- Department of Pharmaceutical Sciences and Pharmaceutics, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan.
| | | | | | | |
Collapse
|
19
|
Iscaro A, Howard NF, Muthana M. Nanoparticles: Properties and Applications in Cancer Immunotherapy. Curr Pharm Des 2019; 25:1962-1979. [PMID: 31566122 DOI: 10.2174/1381612825666190708214240] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/19/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Tumours are no longer regarded as isolated masses of aberrantly proliferating epithelial cells. Rather, their properties depend on complex interactions between epithelial cancer cells and the surrounding stromal compartment within the tumour microenvironment. In particular, leukocyte infiltration plays a role in controlling tumour development and is now considered one of the hallmarks of cancer. Thus, in the last few years, immunotherapy has become a promising strategy to fight cancer, as its goal is to reprogram or activate antitumour immunity to kill tumour cells, without damaging the normal cells and provide long-lasting results where other therapies fail. However, the immune-related adverse events due to the low specificity in tumour cell targeting, strongly limit immunotherapy efficacy. In this regard, nanomedicine offers a platform for the delivery of different immunotherapeutic agents specifically to the tumour site, thus increasing efficacy and reducing toxicity. Indeed, playing with different material types, several nanoparticles can be formulated with different shape, charge, size and surface chemical modifications making them the most promising platform for biomedical applications. AIM In this review, we will summarize the different types of cancer immunotherapy currently in clinical trials or already approved for cancer treatment. Then, we will focus on the most recent promising strategies to deliver immunotherapies directly to the tumour site using nanoparticles. CONCLUSION Nanomedicine seems to be a promising approach to improve the efficacy of cancer immunotherapy. However, additional investigations are needed to minimize the variables in the production processes in order to make nanoparticles suitable for clinical use.
Collapse
Affiliation(s)
- Alessandra Iscaro
- Department of Oncology & Metabolism, University of Sheffield, Medical School, Beech Hill Road, Sheffield, United Kingdom
| | - Nutter F Howard
- Department of Oncology & Metabolism, University of Sheffield, Medical School, Beech Hill Road, Sheffield, United Kingdom
| | - Munitta Muthana
- Department of Oncology & Metabolism, University of Sheffield, Medical School, Beech Hill Road, Sheffield, United Kingdom
| |
Collapse
|
20
|
Neek M, Kim TI, Wang SW. Protein-based nanoparticles in cancer vaccine development. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2019; 15:164-174. [PMID: 30291897 PMCID: PMC6289732 DOI: 10.1016/j.nano.2018.09.004] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 09/17/2018] [Accepted: 09/24/2018] [Indexed: 01/09/2023]
Abstract
Peptide and protein-based cancer vaccines usually fail to elicit efficient immune responses against tumors. However, delivery of these peptides and proteins as components within caged protein nanoparticles has shown promising improvements in vaccine efficacy. Advantages of protein nanoparticles over other vaccine platforms include their highly organized structures and symmetry, biodegradability, ability to be specifically functionalized at three different interfaces (inside and outside the protein cage, and between subunits in macromolecular assembly), and ideal size for vaccine delivery. In this review, we discuss different classes of virus-like particles and caged protein nanoparticles that have been used as vehicles to transport and increase the interaction of cancer vaccine components with the immune system. We review the effectiveness of these protein nanoparticles towards inducing and elevating specific immune responses, which are needed to overcome the low immunogenicity of the tumor microenvironment.
Collapse
Affiliation(s)
- Medea Neek
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, USA
| | - Tae Il Kim
- Department of Biomedical Engineering, University of California, Irvine, CA, USA
| | - Szu-Wen Wang
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, USA; Department of Biomedical Engineering, University of California, Irvine, CA, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, CA, USA.
| |
Collapse
|
21
|
Lam P, Lin R, Steinmetz NF. Delivery of mitoxantrone using a plant virus-based nanoparticle for the treatment of glioblastomas. J Mater Chem B 2018; 6:5888-5895. [PMID: 30923616 PMCID: PMC6433411 DOI: 10.1039/c8tb01191e] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mitoxatrone (MTO), an antineoplastic chemotherapeutic, has potent activity against the most common and agressive type of primary brain tumor, glioblastoma multiforme (GBM). However, its poor penetration through the blood brain barrier, and cardiotoxic side effects from systemic delivery limit its effectiveness for clinical treatment. To address these limitations, we utilize a plant virus-based nanoparticle, cowpea mosaic virus (CPMV), to deliver MTO to treat GBM. In this work, we loaded MTO into the interior cavity of CPMV (CPMV-MTO) through diffusion through its pores. We report the uptake of CPMV-MTO in glioma cells and demonstrate its cytotoxic effects in vitro as a solo therapy, and in combination with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). These results reveal the potential for this plant virus-based nanoparticle platform for the treatment of GBM.
Collapse
Affiliation(s)
- Patricia Lam
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Richard Lin
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Nicole F. Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
22
|
Hefferon KL. Repurposing Plant Virus Nanoparticles. Vaccines (Basel) 2018; 6:vaccines6010011. [PMID: 29443902 PMCID: PMC5874652 DOI: 10.3390/vaccines6010011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 01/26/2018] [Accepted: 02/02/2018] [Indexed: 12/21/2022] Open
Abstract
Plants have been explored for many years as inexpensive and versatile platforms for the generation of vaccines and other biopharmaceuticals. Plant viruses have also been engineered to either express subunit vaccines or act as epitope presentation systems. Both icosahedral and helical, filamentous-shaped plant viruses have been used for these purposes. More recently, plant viruses have been utilized as nanoparticles to transport drugs and active molecules into cancer cells. The following review describes the use of both icosahedral and helical plant viruses in a variety of new functions against cancer. The review illustrates the breadth of variation among different plant virus nanoparticles and how this impacts the immune response.
Collapse
|
23
|
Berardi A, Evans DJ, Baldelli Bombelli F, Lomonossoff GP. Stability of plant virus-based nanocarriers in gastrointestinal fluids. NANOSCALE 2018; 10:1667-1679. [PMID: 29231944 PMCID: PMC5804478 DOI: 10.1039/c7nr07182e] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/04/2017] [Indexed: 05/17/2023]
Abstract
Cowpea mosaic virus (CPMV) is a plant virus which is being extensively investigated as a drug delivery and vaccine nanocarrier for parenteral administration. However, to date little is known about the suitability of plant-based nanocarriers for oral delivery. In this study, the colloidal (i.e. aggregation), physical (i.e. denaturation) and chemical (i.e. digestion of the polypeptides) stability of CPMV and its empty virus-like particles (eVLPs) in conditions resembling the gastrointestinal fluids were evaluated. The nanoparticles were incubated in various simulated gastric and intestinal fluids and in pig gastric and intestinal fluids. CPMV and eVLPs had similar stabilities. In simulated gastric media, they were stable at pH ≥ 2.5. At lower pH destabilisation of the particle structure occurred, which, in turn, rendered the polypeptides extremely sensitive to pepsin digestion. However, both CPMV and eVLPs were stable in simulated intestinal fluids, in pig gastric fluids and in pig intestinal fluids. Thus CPMV, despite being a protein-based nanoparticle, was much more resistant to the harsh GI conditions than soluble proteins. Remarkably, both CPMV and eVLPs incubated in pig gastric and intestinal fluids were not subject to protein adsorption, with no formation of a detectable protein corona. The lack of a protein corona on CPMV and eVLP surfaces in GI fluids would imply that, if orally administered, these nanoparticles could maintain their native surface characteristics; thus, their biological interactions would remain predictable and unchanged. In summary, CPMV and eVLPs can be considered promising nanocarriers for applications requiring oral delivery, given their chemical, physical and colloidal stability and lack of protein adsorption from the environment in most of the tested conditions.
Collapse
Affiliation(s)
- Alberto Berardi
- Department of Pharmaceutical Sciences and Pharmaceutics, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan. and Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - David J Evans
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Francesca Baldelli Bombelli
- Laboratory of Supramolecular and BioNano Materials (SupraBioNanoLab), Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, Milano, Italy
| | - George P Lomonossoff
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
24
|
Plant Virus Expression Vectors: A Powerhouse for Global Health. Biomedicines 2017; 5:biomedicines5030044. [PMID: 28758953 PMCID: PMC5618302 DOI: 10.3390/biomedicines5030044] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 12/25/2022] Open
Abstract
Plant-made biopharmaceuticals have long been considered a promising technology for providing inexpensive and efficacious medicines for developing countries, as well as for combating pandemic infectious diseases and for use in personalized medicine. Plant virus expression vectors produce high levels of pharmaceutical proteins within a very short time period. Recently, plant viruses have been employed as nanoparticles for novel forms of cancer treatment. This review provides a glimpse into the development of plant virus expression systems both for pharmaceutical production as well as for immunotherapy.
Collapse
|
25
|
Reconceptualizing cancer immunotherapy based on plant production systems. Future Sci OA 2017; 3:FSO217. [PMID: 28884013 PMCID: PMC5583679 DOI: 10.4155/fsoa-2017-0018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/06/2017] [Indexed: 01/25/2023] Open
Abstract
Plants can be used as inexpensive and facile production platforms for vaccines and other biopharmaceuticals. More recently, plant-based biologics have expanded to include cancer immunotherapy agents. The following review describes the current state of the art for plant-derived strategies to prevent or reduce cancers. The review discusses avenues taken to prevent infection by oncogenic viruses, solid tumors and lymphomas. Strategies including cancer vaccines, monoclonal antibodies and virus nanoparticles are described, and examples are provided. The review ends with a discussion of the implications of plant-based cancer immunotherapy for developing countries. Cancer immunotherapy has made great strides over recent years. This review describes the use of plants as production systems to produce biopharmaceuticals such as vaccines and antibodies to treat a wide variety of cancers. The use of nanoparticle technology based on plant viruses as a novel strategy to target and combat cancers is also included. The review concludes with a discussion of plant production platforms and their relevance for the generation of cheap and effective cancer immunotherapies for developing countries.
Collapse
|
26
|
Steele JFC, Peyret H, Saunders K, Castells‐Graells R, Marsian J, Meshcheriakova Y, Lomonossoff GP. Synthetic plant virology for nanobiotechnology and nanomedicine. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 9:e1447. [PMID: 28078770 PMCID: PMC5484280 DOI: 10.1002/wnan.1447] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/12/2016] [Accepted: 11/23/2016] [Indexed: 12/12/2022]
Abstract
Nanotechnology is a rapidly expanding field seeking to utilize nano-scale structures for a wide range of applications. Biologically derived nanostructures, such as viruses and virus-like particles (VLPs), provide excellent platforms for functionalization due to their physical and chemical properties. Plant viruses, and VLPs derived from them, have been used extensively in biotechnology. They have been characterized in detail over several decades and have desirable properties including high yields, robustness, and ease of purification. Through modifications to viral surfaces, either interior or exterior, plant-virus-derived nanoparticles have been shown to support a range of functions of potential interest to medicine and nano-technology. In this review we highlight recent and influential achievements in the use of plant virus particles as vehicles for diverse functions: from delivery of anticancer compounds, to targeted bioimaging, vaccine production to nanowire formation. WIREs Nanomed Nanobiotechnol 2017, 9:e1447. doi: 10.1002/wnan.1447 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
| | - Hadrien Peyret
- Department of Biology ChemistryJohn Innes CentreNorwichUK
| | - Keith Saunders
- Department of Biology ChemistryJohn Innes CentreNorwichUK
| | | | | | | | | |
Collapse
|
27
|
Surface modulatable nanocapsids for targeting and tracking toward nanotheranostic delivery. Pharm Pat Anal 2017; 5:307-17. [PMID: 27610752 DOI: 10.4155/ppa-2016-0021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Nanoparticle diagnostics and therapeutics (nanotheranostics) have significantly advanced cancer detection and treatment. However, many nanotheranostics are ineffective due to defects in tumor localization and bioavailability. An engineered Hepatitis E Virus (HEV) nanocapsid is a proposed platform for targeted cancer-cell delivery. Self-assembling from HEV capsid subunits, nanocapsids retain the capacity to enter cells and resist proteolytic/acidic conditions, but lack infectious viral elements. The nanocapsid surface was modified for chemical activation to confer tumor-specific targeting and detection, immune-response manipulation and controlled theranostic delivery. Nanotheranostic molecules can be packaged in the hollow nanocapsid shell during in vitro assembly. Complementing the adapted stability and cell-entry characteristics of the HEV capsid, a modified nanocapsid serves as a tunable tumor-targeting platform for nanotheronostic delivery.
Collapse
|
28
|
Shukla S, Myers JT, Woods SE, Gong X, Czapar AE, Commandeur U, Huang AY, Levine AD, Steinmetz NF. Plant viral nanoparticles-based HER2 vaccine: Immune response influenced by differential transport, localization and cellular interactions of particulate carriers. Biomaterials 2017; 121:15-27. [PMID: 28063980 DOI: 10.1016/j.biomaterials.2016.12.030] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/18/2016] [Accepted: 12/27/2016] [Indexed: 12/13/2022]
Abstract
Cancer vaccines are designed to elicit an endogenous adaptive immune response that can successfully recognize and eliminate residual or recurring tumors. Such approaches can potentially overcome shortcomings of passive immunotherapies by generating long-lived therapeutic effects and immune memory while limiting systemic toxicities. A critical determinant of vaccine efficacy is efficient transport and delivery of tumor-associated antigens to professional antigen presenting cells (APCs). Plant viral nanoparticles (VNPs) with natural tropism for APCs and a high payload carrying capacity may be particularly effective vaccine carriers. The applicability of VNP platform technologies is governed by stringent structure-function relationships. We compare two distinct VNP platforms: icosahedral cowpea mosaic virus (CPMV) and filamentous potato virus X (PVX). Specifically, we evaluate in vivo capabilities of engineered VNPs delivering human epidermal growth factor receptor 2 (HER2) epitopes for therapy and prophylaxis of HER2+ malignancies. Our results corroborate the structure-function relationship where icosahedral CPMV particles showed significantly enhanced lymph node transport and retention, and greater uptake by/activation of APCs compared to filamentous PVX particles. These enhanced immune cell interactions and transport properties resulted in elevated HER2-specific antibody titers raised by CPMV- vs. PVX-based peptide vaccine. The 'synthetic virology' field is rapidly expanding with numerous platforms undergoing development and preclinical testing; our studies highlight the need for systematic studies to define rules guiding the design and rational choice of platform, in the context of peptide-vaccine display technologies.
Collapse
Affiliation(s)
- Sourabh Shukla
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Jay T Myers
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sarah E Woods
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Xingjian Gong
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Anna E Czapar
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ulrich Commandeur
- Department of Molecular Biotechnology, RWTH-Aachen University, 52064 Aachen, Germany
| | - Alex Y Huang
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Alan D Levine
- Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Nicole F Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Radiology, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA; Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
29
|
Karimi M, Zangabad PS, Mehdizadeh F, Malekzad H, Ghasemi A, Bahrami S, Zare H, Moghoofei M, Hekmatmanesh A, Hamblin MR. Nanocaged platforms: modification, drug delivery and nanotoxicity. Opening synthetic cages to release the tiger. NANOSCALE 2017; 9:1356-1392. [PMID: 28067384 PMCID: PMC5300024 DOI: 10.1039/c6nr07315h] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nanocages (NCs) have emerged as a new class of drug-carriers, with a wide range of possibilities in multi-modality medical treatments and theranostics. Nanocages can overcome such limitations as high toxicity caused by anti-cancer chemotherapy or by the nanocarrier itself, due to their unique characteristics. These properties consist of: (1) a high loading-capacity (spacious interior); (2) a porous structure (analogous to openings between the bars of the cage); (3) enabling smart release (a key to unlock the cage); and (4) a low likelihood of unfavorable immune responses (the outside of the cage is safe). In this review, we cover different classes of NC structures such as virus-like particles (VLPs), protein NCs, DNA NCs, supramolecular nanosystems, hybrid metal-organic NCs, gold NCs, carbon-based NCs and silica NCs. Moreover, NC-assisted drug delivery including modification methods, drug immobilization, active targeting, and stimulus-responsive release mechanisms are discussed, highlighting the advantages, disadvantages and challenges. Finally, translation of NCs into clinical applications, and an up-to-date assessment of the nanotoxicology considerations of NCs are presented.
Collapse
Affiliation(s)
- Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Parham Sahandi Zangabad
- Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science (TUOMS), Tabriz, Iran
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Hedieh Malekzad
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
- Faculty of Chemistry, Kharazmi University of Tehran, Tehran, Iran
| | - Alireza Ghasemi
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - Sajad Bahrami
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Zare
- Biomaterials Group, Materials Science & Engineering Department, Iran University of Science & Technology, P.O. Box 1684613114 Tehran, Iran
| | - Mohsen Moghoofei
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Hekmatmanesh
- Laboratory of Intelligent Machines, Lappeenranta University of Technology, 53810, Finland
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
30
|
Velpurisiva P, Gad A, Piel B, Jadia R, Rai P. Nanoparticle Design Strategies for Effective Cancer Immunotherapy. JOURNAL OF BIOMEDICINE (SYDNEY, NSW) 2017; 2:64-77. [PMID: 28503405 PMCID: PMC5426812 DOI: 10.7150/jbm.18877] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cancer immunotherapy is a rapidly evolving and paradigm shifting treatment modality that adds a strong tool to the collective cancer treatment arsenal. It can be effective even for late stage diagnoses and has already received clinical approval. Tumors are known to not only avoid immune surveillance but also exploit the immune system to continue local tumor growth and metastasis. Because of this, most immunotherapies, particularly those directed against solid cancers, have thus far only benefited a small minority of patients. Early clinical substantiation lends weight to the claim that cancer immunotherapies, which are adaptive and enduring treatment methods, generate much more sustained and robust anticancer effects when they are effectively formulated in nanoparticles or scaffolds than when they are administered as free drugs. Engineering cancer immunotherapies using nanomaterials is, therefore, a very promising area worthy of further consideration and investigation. This review focuses on the recent advances in cancer immunoengineering using nanoparticles for enhancing the therapeutic efficacy of a diverse range of immunotherapies. The delivery of immunostimulatory agents to antitumor immune cells, such as dendritic or antigen presenting cells, may be a far more efficient tactic to eradicate tumors than delivery of conventional chemotherapeutic and cytotoxic drugs to cancer cells. In addition to its immense therapeutic potential, immunoengineering using nanoparticles also provides a valuable tool for unearthing and understanding the basics of tumor biology. Recent research using nanoparticles for cancer immunotherapy has demonstrated the advantage of physicochemical manipulation in improving the delivery of immunostimulatory agents. In vivo studies have tested a range of particle sizes, mostly less than 300 nm, and particles with both positive and negative zeta potentials for various applications. Material composition and surface modifications have been shown to contribute significantly in selective targeting, efficient delivery and active stimulation of immune system targets. Thus, these investigations, including a wide array of nanoparticles for cancer immunotherapy, substantiate the employment of nanocarriers for efficacious cancer immunotherapies.
Collapse
Affiliation(s)
- Praveena Velpurisiva
- Department of Biomedical Engineering and Biotechnology, University of Massachusetts Lowell, USA
| | - Aniket Gad
- Department of Biomedical Engineering and Biotechnology, University of Massachusetts Lowell, USA
| | - Brandon Piel
- Department of Chemical Engineering, University of Massachusetts Lowell, USA
| | - Rahul Jadia
- Department of Biomedical Engineering and Biotechnology, University of Massachusetts Lowell, USA
| | - Prakash Rai
- Department of Chemical Engineering, University of Massachusetts Lowell, USA
| |
Collapse
|
31
|
Abstract
For over two decades now, plants have been explored for their potential to act as production platforms for biopharmaceuticals, such as vaccines and monoclonal antibodies. More recently, plant viruses have been designed as nontoxic nanoparticles that can target a variety of cancers and thus empower the immune system to slow or even reverse tumor progression. The following paper describes the employment of plant virus expression vectors for the treatment of some of the most challenging diseases known today. The paper concludes with a projection of the multiple avenues by which virus nanoparticles could impact developing countries.
Collapse
Affiliation(s)
- Kathleen Hefferon
- Department of Food Sciences, Cornell University, Ithaca, NY 14886, USA
| |
Collapse
|
32
|
Vishnu Vardhan GP, Savithri HS, Murthy MRN, Hema M. Biodistribution and toxicity evaluation of sesbania mosaic virus nanoparticles in mice. Arch Virol 2016; 161:2673-81. [DOI: 10.1007/s00705-016-2958-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 06/27/2016] [Indexed: 10/21/2022]
|
33
|
Lizotte PH, Wen AM, Sheen MR, Fields J, Rojanasopondist P, Steinmetz NF, Fiering S. In situ vaccination with cowpea mosaic virus nanoparticles suppresses metastatic cancer. NATURE NANOTECHNOLOGY 2016; 11:295-303. [PMID: 26689376 PMCID: PMC4777632 DOI: 10.1038/nnano.2015.292] [Citation(s) in RCA: 339] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 11/12/2015] [Indexed: 05/14/2023]
Abstract
Nanotechnology has tremendous potential to contribute to cancer immunotherapy. The 'in situ vaccination' immunotherapy strategy directly manipulates identified tumours to overcome local tumour-mediated immunosuppression and subsequently stimulates systemic antitumour immunity to treat metastases. We show that inhalation of self-assembling virus-like nanoparticles from cowpea mosaic virus (CPMV) reduces established B16F10 lung melanoma and simultaneously generates potent systemic antitumour immunity against poorly immunogenic B16F10 in the skin. Full efficacy required Il-12, Ifn-γ, adaptive immunity and neutrophils. Inhaled CPMV nanoparticles were rapidly taken up by and activated neutrophils in the tumour microenvironment as an important part of the antitumour immune response. CPMV also exhibited clear treatment efficacy and systemic antitumour immunity in ovarian, colon, and breast tumour models in multiple anatomic locations. CPMV nanoparticles are stable, nontoxic, modifiable with drugs and antigens, and their nanomanufacture is highly scalable. These properties, combined with their inherent immunogenicity and demonstrated efficacy against a poorly immunogenic tumour, make CPMV an attractive and novel immunotherapy against metastatic cancer.
Collapse
Affiliation(s)
- P. H. Lizotte
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - A. M. Wen
- Department of Biomedical Engineering, Case Western Reserve University Schools of Engineering and Medicine, Cleveland, OH 44106
| | - M. R. Sheen
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - J. Fields
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - P. Rojanasopondist
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - N. F. Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University Schools of Engineering and Medicine, Cleveland, OH 44106
- Department of Radiology, Case Western Reserve University Schools of Engineering and Medicine, Cleveland, OH 44106
- Department of Materials Science and Engineering, Case Western Reserve University Schools of Engineering and Medicine, Cleveland, OH 44106
- Department of Macromolecular Science and Engineering, Case Western Reserve University Schools of Engineering and Medicine, Cleveland, OH 44106
| | - S. Fiering
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
- Department of Genetics, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
- Norris Cotton Cancer Center, Lebanon, NH 03756
| |
Collapse
|
34
|
Abraham A, Natraj U, Karande AA, Gulati A, Murthy MRN, Murugesan S, Mukunda P, Savithri HS. Intracellular delivery of antibodies by chimeric Sesbania mosaic virus (SeMV) virus like particles. Sci Rep 2016; 6:21803. [PMID: 26905902 PMCID: PMC4764859 DOI: 10.1038/srep21803] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/01/2016] [Indexed: 01/30/2023] Open
Abstract
The therapeutic potential of antibodies has not been fully exploited as they fail to cross cell membrane. In this article, we have tested the possibility of using plant virus based nanoparticles for intracellular delivery of antibodies. For this purpose, Sesbania mosaic virus coat protein (CP) was genetically engineered with the B domain of Staphylococcus aureus protein A (SpA) at the βH-βI loop, to generate SeMV loop B (SLB), which self-assembled to virus like particles (VLPs) with 43 times higher affinity towards antibodies. CP and SLB could internalize into various types of mammalian cells and SLB could efficiently deliver three different monoclonal antibodies–D6F10 (targeting abrin), anti-α-tubulin (targeting intracellular tubulin) and Herclon (against HER2 receptor) inside the cells. Such a mode of delivery was much more effective than antibodies alone treatment. These results highlight the potential of SLB as a universal nanocarrier for intracellular delivery of antibodies.
Collapse
Affiliation(s)
- Ambily Abraham
- Department of Biochemistry, Indian Institute of Science, Karnataka, India
| | - Usha Natraj
- Department of Biochemistry, Indian Institute of Science, Karnataka, India
| | - Anjali A Karande
- Department of Biochemistry, Indian Institute of Science, Karnataka, India
| | - Ashutosh Gulati
- Molecular Biophysics Unit, Indian Institute of Science, Karnataka, India
| | - Mathur R N Murthy
- Molecular Biophysics Unit, Indian Institute of Science, Karnataka, India
| | | | | | | |
Collapse
|
35
|
Dickmeis C, Honickel MMA, Fischer R, Commandeur U. Production of Hybrid Chimeric PVX Particles Using a Combination of TMV and PVX-Based Expression Vectors. Front Bioeng Biotechnol 2015; 3:189. [PMID: 26636076 PMCID: PMC4653303 DOI: 10.3389/fbioe.2015.00189] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/04/2015] [Indexed: 12/30/2022] Open
Abstract
We have generated hybrid chimeric potato virus X (PVX) particles by coexpression of different PVX coat protein fusions utilizing tobacco mosaic virus (TMV) and PVX-based expression vectors. Coinfection was achieved with a modified PVX overcoat vector displaying a fluorescent protein and a TMV vector expressing another PVX fluorescent overcoat fusion protein. Coexpression of the PVX-CP fusions in the same cells was confirmed by epifluorescence microscopy. Labeling with specific antibodies and transmission electron microscopy revealed chimeric particles displaying green fluorescent protein and mCherry on the surface. These data were corroborated by bimolecular fluorescence complementation. We used split-mCherry fragments as PVX coat fusions and confirmed an interaction between the split-mCherry fragments in coinfected cells. The presence of assembled split-mCherry on the surface confirmed the hybrid character of the chimeric particles.
Collapse
Affiliation(s)
- Christina Dickmeis
- Institute for Molecular Biotechnology, RWTH Aachen University , Aachen , Germany
| | | | - Rainer Fischer
- Institute for Molecular Biotechnology, RWTH Aachen University , Aachen , Germany ; Fraunhofer Institute for Molecular Biology and Applied Ecology , Aachen , Germany
| | - Ulrich Commandeur
- Institute for Molecular Biotechnology, RWTH Aachen University , Aachen , Germany
| |
Collapse
|
36
|
Wen AM, Le N, Zhou X, Steinmetz NF, Popkin DL. Tropism of CPMV to Professional Antigen Presenting Cells Enables a Platform to Eliminate Chronic Infections. ACS Biomater Sci Eng 2015; 1:1050-1054. [PMID: 27280157 PMCID: PMC4894745 DOI: 10.1021/acsbiomaterials.5b00344] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Chronic viral infections (e.g., HIV, HBV, HCV) represent a significant source of morbidity and mortality with over 500 million people infected worldwide. Dendritic cells (DCs) and macrophages are key cell types for productive viral replication and persistent systemic infection. We demonstrate that the plant virus cowpea mosaic virus (CPMV) displays tropism for such antigen presenting cells in both mice and humans, thus making it an ideal candidate for targeted drug delivery toward viral infections. Furthermore, we show inhibition of a key host protein for viral infection, site-1 protease (S1P), using the small molecule PF-429242 in the model pathogen arenavirus lymphocytic choriomeningitis virus (LCMV) limits viral growth. By packaging PF-429242 in CPMV, we are able to control drug release and efficiently deliver the drug. This sets the groundwork for utilizing the natural tropism of CPMV for a therapeutic approach that specifically targets cell types most commonly subverted by chronic viruses.
Collapse
Affiliation(s)
- Amy M. Wen
- Department of Biomedical Engineering, Case Western Reserve University Schools of Medicine and Engineering, Cleveland, Ohio 44106, United States
| | - Nga Le
- Department of Dermatology, Case Western Reserve University Hospitals, Cleveland, Ohio 44106, United States
| | - Xin Zhou
- Department of Dermatology, Case Western Reserve University Hospitals, Cleveland, Ohio 44106, United States
| | - Nicole F. Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University Schools of Medicine and Engineering, Cleveland, Ohio 44106, United States
- Department of Radiology, Case Western Reserve University Schools of Medicine and Engineering, Cleveland, Ohio 44106, United States
- Department of Materials Science and Engineering, Case Western Reserve University Schools of Medicine and Engineering, Cleveland, Ohio 44106, United States
- Department of Macromolecular Science and Engineering, Case Western Reserve University Schools of Medicine and Engineering, Cleveland, Ohio 44106, United States
| | - Daniel L. Popkin
- Department of Dermatology, Case Western Reserve University Hospitals, Cleveland, Ohio 44106, United States
- Department of Pathology, Case Western Reserve University Hospitals, Cleveland, Ohio 44106, United States
- Department of Molecular Biology and Microbiology, Case Western Reserve University Hospitals, Cleveland, Ohio 44106, United States
| |
Collapse
|
37
|
Plant Viruses as Nanoparticle-Based Vaccines and Adjuvants. Vaccines (Basel) 2015; 3:620-37. [PMID: 26350598 PMCID: PMC4586470 DOI: 10.3390/vaccines3030620] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/22/2015] [Accepted: 07/29/2015] [Indexed: 12/11/2022] Open
Abstract
Vaccines are considered one of the greatest medical achievements in the battle against infectious diseases. However, the intractability of various diseases such as hepatitis C, HIV/AIDS, malaria, tuberculosis, and cancer poses persistent hurdles given that traditional vaccine-development methods have proven to be ineffective; as such, these challenges have driven the emergence of novel vaccine design approaches. In this regard, much effort has been put into the development of new safe adjuvants and vaccine platforms. Of particular interest, the utilization of plant virus-like nanoparticles and recombinant plant viruses has gained increasing significance as an effective tool in the development of novel vaccines against infectious diseases and cancer. The present review summarizes recent advances in the use of plant viruses as nanoparticle-based vaccines and adjuvants and their mechanism of action. Harnessing plant-virus immunogenic properties will enable the design of novel, safe, and efficacious prophylactic and therapeutic vaccines against disease.
Collapse
|
38
|
Natilla A, Murphy C, Hammond RW. Mutations in the alpha-helical region of the amino terminus of the Maize rayado fino virus capsid protein and CP:RNA ratios affect virus-like particle encapsidation of RNAs. Virus Res 2015; 196:70-8. [PMID: 25102332 DOI: 10.1016/j.virusres.2014.07.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/24/2014] [Accepted: 07/26/2014] [Indexed: 11/25/2022]
Abstract
Viral-based nanoplatforms rely on balancing the delicate array of virus properties to optimally achieve encapsidation of foreign materials with various potential objectives. We investigated the use of Maize rayado fino virus (MRFV)-virus-like particles (VLPs) as a multifunctional nanoplatform and their potential application as protein cages. MRFV-VLPs are composed of two serologically related, carboxy co-terminal coat proteins (CP1 and CP2) which are capable of self-assembling in Nicotiana benthamiana plants into 30nm particles with T=3 symmetry. The N-terminus of CP1 was targeted for genetic modification to exploit the driving forces for VLP assembly, packaging and retention of RNA in vivo and in vitro. The N-terminus of MRFV-CP1 contains a peptide sequence of 37 amino acids which has been predicted to have an alpha-helical structure, is rich in hydrophobic amino acids, facilitates CP-RNA interactions, and is not required for self-assembly. Amino acid substitutions were introduced in the 37 amino acid N-terminus by site-directed mutagenesis and the mutant VLPs produced in plants by a Potato virus X (PVX)-based vector were tested for particle stability and RNA encapsidation. All mutant CPs resulted in production of VLPs which encapsidated non-viral RNAs, including PVX genomic and subgenomic (sg) RNAs, 18S rRNA and cellular and viral mRNAs. In addition, MRFV-VLPs encapsidated GFP mRNA when was expressed in plant cells from the pGD vector. These results suggest that RNA packaging in MRFV-VLPs is predominantly driven by electrostatic interactions between the N-terminal 37 amino acid extension of CP1 and RNA, and that the overall species concentration of RNA in the cellular pool may determine the abundance and species of the RNAs packaged into the VLPs. Furthermore, RNA encapsidation is not required for VLPs stability, VLPs formed from MRFV-CP1 were stable at temperatures up to 70°C, and can be disassembled into CP monomers, which can then reassemble in vitro into complete VLPs either in the absence or presence of RNAs.
Collapse
Affiliation(s)
- Angela Natilla
- United States Department of Agriculture, Beltsville Agricultural Research Service, Molecular Plant Pathology Laboratory, Beltsville, MD 20705, United States.
| | - Charles Murphy
- United States Department of Agriculture, Beltsville Agricultural Research Service, Electron and Confocal Microscopy Unit, Beltsville, MD 20705, United States
| | - Rosemarie W Hammond
- United States Department of Agriculture, Beltsville Agricultural Research Service, Molecular Plant Pathology Laboratory, Beltsville, MD 20705, United States
| |
Collapse
|
39
|
Kemnade JO, Seethammagari M, Collinson-Pautz M, Kaur H, Spencer DM, McCormick AA. Tobacco mosaic virus efficiently targets DC uptake, activation and antigen-specific T cell responses in vivo. Vaccine 2014; 32:4228-33. [PMID: 24923637 DOI: 10.1016/j.vaccine.2014.04.051] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 03/07/2014] [Accepted: 04/17/2014] [Indexed: 11/28/2022]
Abstract
Over the past 20 years, dendritic cells (DCs) have been utilized to activate immune responses capable of eliminating cancer cells. Currently, ex vivo DC priming has been the mainstay of DC cancer immunotherapies. However, cell-based treatment modalities are inherently flawed due to a lack of standardization, specialized facilities and personnel, and cost. Therefore, direct modes of DC manipulation, circumventing the need for ex vivo culture, must be investigated. To facilitate the development of next-generation, in vivo targeted DC vaccines, we characterized the DC interaction and activation potential of the Tobacco Mosaic virus (TMV), a plant virus that enjoys a relative ease of production and the ability to deliver protein payloads via surface conjugation. In this study we show that TMV is readily taken up by mouse bone marrow-derived DCs, in vitro. Footpad injection of fluorophore-labeled TMV reveals preferential uptake by draining lymph node resident DCs in vivo. Uptake leads to activation, as measured by the upregulation of key DC surface markers. When peptide antigen-conjugated TMV is injected into the footpad of mice, DC-mediated uptake and activation leads to robust antigen-specific CD8(+) T cell responses, as measured by antigen-specific tetramer analysis. Remarkably, TMV priming induced a greater magnitude T cell response than Adenovirus (Ad) priming. Finally, TMV is capable of boosting either Ad-induced or TMV-induced antigen-specific T cell responses, demonstrating that TMV, uniquely, does not induce neutralizing self-immunity. Overall, this study elucidates the in vivo DC delivery and activation properties of TMV and indicates its potential as a vaccine vector in stand alone or prime-boost strategies.
Collapse
Affiliation(s)
| | | | | | - Hardeep Kaur
- Touro University California, Vallejo, CA, United States.
| | | | | |
Collapse
|
40
|
Paul M, Ma JKC. Plant-made immunogens and effective delivery strategies. Expert Rev Vaccines 2014; 9:821-33. [DOI: 10.1586/erv.10.88] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
41
|
Dedeo MT, Finley DT, Francis MB. Viral capsids as self-assembling templates for new materials. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 103:353-92. [PMID: 22000000 DOI: 10.1016/b978-0-12-415906-8.00002-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The self-assembling protein shells of viruses have provided convenient scaffolds for the construction of many new materials with well-defined nanoscale architectures. In some cases, the native amino acid functional groups have served as nucleation sites for the deposition of metals and semiconductors, leading to organic-inorganic composites with interesting electronic, magnetic, optical, and catalytic properties. Other approaches have involved the covalent modification of the protein monomers, typically with the goal of generating targeting delivery vehicles for drug and imaging cargo. Covalently modified capsid proteins have also been used to generate periodic arrays of chromophores for use in light harvesting and photocatalytic applications. All of these research areas have taken advantage of the low polydispersity, high chemical stability, and intrinsically multivalent properties that are uniquely offered by these biological building blocks.
Collapse
Affiliation(s)
- Michel T Dedeo
- Department of Chemistry, University of California, Berkeley, California, USA
| | | | | |
Collapse
|
42
|
Grasso S, Lico C, Imperatori F, Santi L. A plant derived multifunctional tool for nanobiotechnology based on Tomato bushy stunt virus. Transgenic Res 2013; 22:519-35. [PMID: 23108557 DOI: 10.1007/s11248-012-9663-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 09/24/2012] [Indexed: 10/27/2022]
Abstract
Structure, size, physicochemical properties and production strategies make many plant viruses ideal protein based nanoscaffolds, nanocontainers and nano-building blocks expected to deliver a multitude of applications in different fields such as biomedicine, pharmaceutical chemistry, separation science, catalytic chemistry, crop pest control and biomaterials science. Functionalization of viral nanoparticles through modification by design of their external and internal surfaces is essential to fully exploit the potentiality of these objects. In the present paper we describe the development of a plant derived multifunctional tool for nanobiotechnology based on Tomato bushy stunt virus. We demonstrate the ability of this system to remarkably sustain genetic modifications and in vitro chemical derivatizations of its outer surface, which resulted in the successful display of large chimeric peptides fusions and small chemical molecules, respectively. Moreover, we have defined physicochemical conditions for viral swelling and reversible viral pore gating that we have successfully employed for foreign molecules loading and retention in the inner cavity of this plant virus nanoparticles system. Finally, a production and purification strategy from Nicotiana benthamiana plants has been addressed and optimized.
Collapse
Affiliation(s)
- Simone Grasso
- University Campus Bio-Medico, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | | | | | | |
Collapse
|
43
|
Azizgolshani O, Garmann RF, Cadena-Nava R, Knobler CM, Gelbart WM. Reconstituted plant viral capsids can release genes to mammalian cells. Virology 2013; 441:12-7. [DOI: 10.1016/j.virol.2013.03.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/17/2013] [Accepted: 03/02/2013] [Indexed: 12/19/2022]
|
44
|
Abstract
Elevated understanding and respect for the relevance of the immune system in cancer development and therapy has led to increased development of immunotherapeutic regimens that target existing cancer cells and provide long-term immune surveillance and protection from cancer recurrence. This review discusses using particles as immune adjuvants to create vaccines and to augment the anticancer effects of conventional chemotherapeutics. Several particle prototypes are presented, including liposomes, polymer nanoparticles, and porous silicon microparticles, the latter existing as either single- or multiparticle platforms. The benefits of using particles include immune-cell targeting, codelivery of antigens and immunomodulatory agents, and sustained release of the therapeutic payload. Nanotherapeutic-based activation of the immune system is dependent on both intrinsic particle characteristics and on the immunomodulatory cargo, which may include danger signals known as pathogen-associated molecular patterns and cytokines for effector-cell activation.
Collapse
Affiliation(s)
- Rita Elena Serda
- Department of Nanomedicine, The Methodist Hospital Research Institute, Houston, TX 77030, USA.
| |
Collapse
|
45
|
Abstract
Cowpea mosaic virus (CPMV) has been used as a nanoparticle platform for biomedical applications including vaccine development, in vivo vascular imaging, and tissue-targeted delivery. A better understanding of the mechanisms of CPMV targeting and cell internalization would enable enhanced targeting and more effective delivery. Previous studies showed that, following binding and internalization by mammalian cells, CPMV localizes in a perinuclear late-endosome compartment where it remains for as long as several days. To further investigate endocytic trafficking of CPMV within the cell, we used multiple approaches including pharmacologic inhibition of pathways and colocalization with endocytic vesicle compartments. CPMV internalization was clathrin-independent and utilized a combination of caveolar endocytosis and macropinocytosis pathways for entry. CPMV particles colocalized with Rab5(+) early endosomes to traffic ultimately to a lysosomal compartment. These studies facilitate the further development of effective intracellular drug-delivery strategies using CPMV.
Collapse
Affiliation(s)
- Emily M Plummer
- Skaggs School of Pharmacy and Pharmaceutical Sciences University of California, San Diego, La Jolla, California 92093, United States
| | | |
Collapse
|
46
|
Ma Y, Nolte RJM, Cornelissen JJLM. Virus-based nanocarriers for drug delivery. Adv Drug Deliv Rev 2012; 64:811-25. [PMID: 22285585 DOI: 10.1016/j.addr.2012.01.005] [Citation(s) in RCA: 307] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 01/11/2012] [Accepted: 01/12/2012] [Indexed: 12/28/2022]
Abstract
New nanocarrier platforms based on natural biological building blocks offer great promises in revolutionalizing medicine. The usage of specific protein cage structures: virus-like particles (VLPs) for drug packaging and targetted delivery is summarized here. Versatile chemical and genetic modifications on the outer surfaces and inner cavities of VLPs facilitate the preparation of new materials that could meet the biocompatibility, solubility and high uptake efficiency requirements for drug delivery. A full evaluation on the toxicity, bio-distribution and immunology of these materials are envisaged to boost their application potentials.
Collapse
Affiliation(s)
- Yujie Ma
- Group of Biomolecular Nanotechnology, MESA(+) Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | | | | |
Collapse
|
47
|
Wu Z, Chen K, Yildiz I, Dirksen A, Fischer R, Dawson PE, Steinmetz NF. Development of viral nanoparticles for efficient intracellular delivery. NANOSCALE 2012; 4:3567-76. [PMID: 22508503 PMCID: PMC3563001 DOI: 10.1039/c2nr30366c] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Viral nanoparticles (VNPs) based on plant viruses such as Cowpea mosaic virus (CPMV) can be used for a broad range of biomedical applications because they present a robust scaffold that allows functionalization by chemical conjugation and genetic modification, thereby offering an efficient drug delivery platform that can target specific cells and tissues. VNPs such as CPMV show natural affinity to cells; however, cellular uptake is inefficient. Here we show that chemical modification of the CPMV surface with a highly reactive, specific and UV-traceable hydrazone linker allows bioconjugation of polyarginine (R5) cell penetrating peptides (CPPs), which can overcome these limitations. The resulting CPMV-R5 particles were taken up into a human cervical cancer cell line (HeLa) more efficiently than native particles. Uptake efficiency was dependent on the density of R5 peptides on the surface of the VNP; particles displaying 40 R5 peptides per CPMV (denoted as CPMV-R5H) interact strongly with the plasma membrane and are taken up into the cells via an energy-dependent mechanism whereas particles displaying 10 R5 peptides per CPMV (CPMV-R5L) are only slowly taken up. The fate of CPMV-R5 versus native CPMV particles within cells was evaluated in a co-localization time course study. It was indicated that the intracellular localization of CPMV-R5 and CPMV differs; CPMV remains trapped in Lamp-1 positive endolysosomes over long time frames; in contrast, 30-50% of the CPMV-R5 particles transitioned from the endosome into other cellular vesicles or compartments. Our data provide the groundwork for the development of efficient drug delivery formulations based on CPMV-R5.
Collapse
Affiliation(s)
- Zhuojun Wu
- Department of Cell Biology and Chemistry, Center for Integrative Molecular Biosciences, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
- Institute of Biology VII, Molecular Biotechnology, RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany
| | - Kevin Chen
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106-5056, USA
| | - Ibrahim Yildiz
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106-5056, USA
| | - Anouk Dirksen
- Department of Cell Biology and Chemistry, Center for Integrative Molecular Biosciences, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Rainer Fischer
- Institute of Biology VII, Molecular Biotechnology, RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany
| | - Philip E. Dawson
- Department of Cell Biology and Chemistry, Center for Integrative Molecular Biosciences, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Nicole F. Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106-5056, USA
- Department of Radiology, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106-5056, USA
- Department of Materials Science and Engineering, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106-5056, USA
| |
Collapse
|
48
|
Encapsidation of DNA, a protein and a fluorophore into virus-like particles by the capsid protein of cucumber mosaic virus. J Gen Virol 2012; 93:1120-1126. [DOI: 10.1099/vir.0.040170-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An important property of some spherical plant viruses is their ability to reassemble in vitro from native capsid protein (CP) and RNA into infectious virus-like particles (VLPs). Virions of cucumber mosaic virus (CMV) are stabilized by protein–RNA interactions and the nucleic acid is essential for assembly. This study demonstrated that VLPs will form in the presence of both ssDNA and dsDNA oligonucleotides, and with a lower size limit of 20 nt. Based on urea disruption assays, assembled VLPs from CMV CP and RNA (termed ReCMV) exhibited a level of stability similar to that of virions purified from plants, whilst VLPs from CMV CP and a 20mer exhibited comparable or greater stability. Fluorescent labelling of VLPs was achieved by the encapsidation of an Alexa Fluor 488-labelled 45mer oligonucleotide (ReCMV-Alexa488-45) and confirmed by transmission electron and confocal microscopy. Using ssDNA as a nucleating factor, encapsidation of fluorescently labelled streptavidin (53 kDa) conjugated to a biotinylated oligonucleotide was observed. The biological activity and stability of ReCMV and ReCMV-Alexa488-45 was confirmed in infectivity assays and insect vector feeding assays. This work demonstrates the utility of CMV CP as a protein cage for use in the growing repertoire of nanotechnological applications.
Collapse
|
49
|
Awaad A, Nakamura M, Ishimura K. Histochemical and biochemical analysis of the size-dependent nanoimmunoresponse in mouse Peyer's patches using fluorescent organosilica particles. Int J Nanomedicine 2012; 7:1423-39. [PMID: 22619503 PMCID: PMC3356209 DOI: 10.2147/ijn.s28675] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background/objective The size-dependent mucosal immunoresponse against nanomaterials (nanoimmunoresponse) is an important approach for mucosal vaccination. In the present work, the size-dependent nanoimmunoresponse of mouse Peyer’s patches (PPs) and immunoglobulin A (IgA) level was investigated using fluorescent thiol-organosilica particles. Methods Various sizes of fluorescent thiol-organosilica particles (100, 180, 365, 745, and 925 nm in diameter) were administered orally. PPs were analyzed histochemically, and IgA levels in PP homogenates, intestinal secretions around PPs, and bile were analyzed biochemically. Results When compared with the larger particles (745 and 925 nm), oral administration of smaller thiol-organosilica particles (100, 180, and 365 nm) increased the number of CD11b+ macrophages and IgA+ cells in the subepithelial domes of the PPs. Additionally, administration of larger particles induced the expression of alpha-L-fucose and mucosal IgA on the surface of M cells in the follicle-associated epithelia of PPs and increased the number of 33D1+ dendritic cells in the subepithelial domes of the PPs. IgA contents in the bile and PP homogenates were high after the administration of the 100 nm particles, but IgA levels in the intestinal secretions were high after the administration of the 925 nm particles. Two size-dependent routes of IgA secretions into the intestinal lumen, the enterohepatic route for smaller particles and the mucosal route for larger particles were proposed. Conclusion Thiol-organosilica particles demonstrated size-dependent nanoimmunoresponse after oral administration. The size of the particles may control the mucosal immunity in PPs and were useful in mucosal vaccination approaches.
Collapse
Affiliation(s)
- Aziz Awaad
- Department of Anatomy and Cell Biology, the University of Tokushima Graduate School, Kuramoto, Tokushima, Japan
| | | | | |
Collapse
|
50
|
Plummer EM, Thomas D, Destito G, Shriver LP, Manchester M. Interaction of cowpea mosaic virus nanoparticles with surface vimentin and inflammatory cells in atherosclerotic lesions. Nanomedicine (Lond) 2012; 7:877-88. [PMID: 22394183 DOI: 10.2217/nnm.11.185] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIMS Detection of atherosclerosis has generally been limited to the late stages of development, after cardiovascular symptoms present or a clinical event occurs. One possibility for early detection is the use of functionalized nanoparticles. The aim of this study was the early imaging of atherosclerosis using nanoparticles with a natural affinity for inflammatory cells in the lesion. MATERIALS & METHODS We investigated uptake of cowpea mosaic virus by macrophages and foam cells in vitro and correlated this with vimentin expression. We also examined the ability of cowpea mosaic virus to interact with atherosclerotic lesions in a murine model of atherosclerosis. RESULTS & CONCLUSION We found that uptake of cowpea mosaic virus is increased in areas of atherosclerotic lesion. This correlated with increased surface vimentin in the lesion compared with nonlesion vasculature. In conclusion, cowpea mosaic virus and its vimentin-binding region holds potential for use as a targeting ligand for early atherosclerotic lesions, and as a probe for detecting upregulation of surface vimentin during inflammation.
Collapse
Affiliation(s)
- Emily M Plummer
- University of California, San Diego, Skaggs School of Pharmacy, La Jolla, CA 92093-0749, USA
| | | | | | | | | |
Collapse
|