1
|
Chakraborty C, Bhattacharya M, Lee SS. Current Status of Microneedle Array Technology for Therapeutic Delivery: From Bench to Clinic. Mol Biotechnol 2024; 66:3415-3437. [PMID: 37987985 DOI: 10.1007/s12033-023-00961-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/23/2023] [Indexed: 11/22/2023]
Abstract
In recent years, microneedle (MN) patches have emerged as an alternative technology for transdermal delivery of various drugs, therapeutics proteins, and vaccines. Therefore, there is an urgent need to understand the status of MN-based therapeutics. The article aims to illustrate the current status of microneedle array technology for therapeutic delivery through a comprehensive review. However, the PubMed search was performed to understand the MN's therapeutics delivery status. At the same time, the search shows the number no of publications on MN is increasing (63). The search was performed with the keywords "Coated microneedle," "Hollow microneedle," "Dissolvable microneedle," and "Hydrogel microneedle," which also shows increasing trend. Similarly, the article highlighted the application of different microneedle arrays for treating different diseases. The article also illustrated the current status of different phases of MN-based therapeutics clinical trials. It discusses the delivery of different therapeutic molecules, such as drug molecule delivery, using microneedle array technology. The approach mainly discusses the delivery of different therapeutic molecules. The leading pharmaceutical companies that produce the microneedle array for therapeutic purposes have also been discussed. Finally, we discussed the limitations and future prospects of this technology.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, 700126, India.
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, Odisha, 756020, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, Gangwon-do, 24252, Republic of Korea
| |
Collapse
|
2
|
Akash S, Abdelkrim G, Bayil I, Hosen ME, Mukerjee N, Shater AF, Saleh FM, Albadrani GM, Al‐Ghadi MQ, Abdel‐Daim MM, Tok TT. Antimalarial drug discovery against malaria parasites through haplopine modification: An advanced computational approach. J Cell Mol Med 2023; 27:3168-3188. [PMID: 37724615 PMCID: PMC10568677 DOI: 10.1111/jcmm.17940] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/20/2023] [Accepted: 08/24/2023] [Indexed: 09/21/2023] Open
Abstract
The widespread emergence of antimalarial drug resistance has created a major threat to public health. Malaria is a life-threatening infectious disease caused by Plasmodium spp., which includes Apicoplast DNA polymerase and Plasmodium falciparum cysteine protease falcipain-2. These components play a critical role in their life cycle and metabolic pathway, and are involved in the breakdown of erythrocyte hemoglobin in the host, making them promising targets for anti-malarial drug design. Our current study has been designed to explore the potential inhibitors from haplopine derivatives against these two targets using an in silico approach. A total of nine haplopine derivatives were used to perform molecular docking, and the results revealed that Ligands 03 and 05 showed strong binding affinity compared to the control compound atovaquone. Furthermore, these ligand-protein complexes underwent molecular dynamics simulations, and the results demonstrated that the complexes maintained strong stability in terms of RMSD (root mean square deviation), RMSF (root mean square fluctuation), and Rg (radius of gyration) over a 100 ns simulation period. Additionally, PCA (principal component analysis) analysis and the dynamic cross-correlation matrix showed positive outcomes for the protein-ligand complexes. Moreover, the compounds exhibited no violations of the Lipinski rule, and ADMET (absorption, distribution, metabolism, excretion, and toxicity) predictions yielded positive results without indicating any toxicity. Finally, density functional theory (DFT) and molecular electrostatic potential calculations were conducted, revealing that the mentioned derivatives exhibited better stability and outstanding performance. Overall, this computational approach suggests that these haplopine derivatives could serve as a potential source for developing new, effective antimalarial drugs to combat malaria. However, further in vitro or in vivo studies might be conducted to determine their actual effectiveness.
Collapse
Affiliation(s)
- Shopnil Akash
- Department of PharmacyFaculty of Allied Health Sciences, Daffodil International, UniversityDhakaBangladesh
| | - Guendouzi Abdelkrim
- Laboratory of Chemistry, Synthesis, Properties and Applications. (LCSPA)University of SaidaSaïdaAlgeria
| | - Imren Bayil
- Department of Bioinformatics and computational biologyGaziantep UniversityGaziantepTurkey
| | - Md. Eram Hosen
- Professor Joarder DNA and Chromosome Research Laboratory, Department of Genetic Engineering and BiotechnologyUniversity of RajshahiRajshahiBangladesh
| | - Nobendu Mukerjee
- Department of MicrobiologyWest Bengal State UniversityKolkataIndia
- Department of Health SciencesNovel Global Community Educational FoundationHebershamAustralia
| | - Abdullah F. Shater
- Department of Medical Laboratory Technology, Faculty of Applied Medical SciencesUniversity of TabukTabukSaudi Arabia
| | - Fayez M. Saleh
- Department of Medical Microbiology, Faculty of MedicineUniversity of TabukTabukSaudi Arabia
| | - Ghadeer M. Albadrani
- Department of Biology, College of SciencePrincess Nourah bint Abdulrahman UniversityRiyadhSaudi Arabia
| | - Muath Q. Al‐Ghadi
- Department of Zoology, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | - Mohamed M. Abdel‐Daim
- Department of Pharmaceutical Sciences, Pharmacy ProgramBatterjee Medical CollegeJeddahSaudi Arabia
- Pharmacology Department, Faculty of Veterinary MedicineSuez Canal UniversityIsmailiaEgypt
| | - Tuğba Taşkin Tok
- Department of Bioinformatics and computational biologyGaziantep UniversityGaziantepTurkey
| |
Collapse
|
3
|
O'Mahony C, Sebastian R, Tjulkins F, Whelan D, Bocchino A, Hu Y, O'Brien J, Scully J, Hegarty M, Blake A, Slimi I, Clover AJP, Lyness A, Kelleher AM. Hollow silicon microneedles, fabricated using combined wet and dry etching techniques, for transdermal delivery and diagnostics. Int J Pharm 2023; 637:122888. [PMID: 36977451 DOI: 10.1016/j.ijpharm.2023.122888] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 03/28/2023]
Abstract
Microneedle-based technologies are the subject of intense research and commercial interest for applications in transdermal delivery and diagnostics, primarily because of their minimally invasive and painless nature, which in turn could lead to increased patient compliance and self-administration. In this paper, a process for the fabrication of arrays of hollow silicon microneedles is described. This method uses just two bulk silicon etches - a front-side wet etch to define the 500 μm tall octagonal needle structure itself, and a rear-side dry etch to create a 50 μm diameter bore through the needle. This reduces the number of etches and process complexity over the approaches described elsewhere. Ex-vivo human skin and a customised applicator were used to demonstrate biomechanical reliability and the feasibility of using these microneedles for both transdermal delivery and diagnostics. Microneedle arrays show no damage even when applied to skin up to 40 times, are capable of delivering several mL of fluid at flowrates of 30 μL/min, and of withdrawing 1 μL of interstitial fluid using capillary action.
Collapse
Affiliation(s)
- Conor O'Mahony
- Tyndall National Institute, University College Cork, Cork, Ireland; Insight Centre for Data Analytics, Tyndall National Institute, University College Cork, Cork, Ireland.
| | - Ryan Sebastian
- Tyndall National Institute, University College Cork, Cork, Ireland; Insight Centre for Data Analytics, Tyndall National Institute, University College Cork, Cork, Ireland
| | - Fjodors Tjulkins
- Tyndall National Institute, University College Cork, Cork, Ireland
| | - Derek Whelan
- Department of Biomedical, Mechanical and Manufacturing Engineering, Munster Technological University, Cork, Ireland
| | - Andrea Bocchino
- Tyndall National Institute, University College Cork, Cork, Ireland
| | - Yuan Hu
- Tyndall National Institute, University College Cork, Cork, Ireland
| | - Joe O'Brien
- Tyndall National Institute, University College Cork, Cork, Ireland
| | - Jim Scully
- Tyndall National Institute, University College Cork, Cork, Ireland
| | - Margaret Hegarty
- Tyndall National Institute, University College Cork, Cork, Ireland
| | - Alan Blake
- Tyndall National Institute, University College Cork, Cork, Ireland
| | - Inès Slimi
- Tyndall National Institute, University College Cork, Cork, Ireland
| | - A James P Clover
- Department of Plastic and Reconstructive Surgery, Cork University Hospital, Cork, Ireland
| | | | | |
Collapse
|
4
|
Coffey JW, van der Burg NMD, Rananakomol T, Ng HI, Fernando GJP, Kendall MAF. An Ultrahigh‐Density Microneedle Array for Skin Vaccination: Inducing Epidermal Cell Death by Increasing Microneedle Density Enhances Total IgG and IgG1 Immune Responses. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202100151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Jacob W. Coffey
- The Delivery of Drugs and Genes Group (D2G) Australian Institute for Bioengineering and Nanotechnology University of Queensland St. Lucia QLD 4072 Australia
- Department of Chemical Engineering David H. Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge MA 02139 USA
- Division of Gastroenterology Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
- Department of Microbiology and Immunology Peter Doherty Institute for Infection and Immunology University of Melbourne Melbourne VIC 3000 Australia
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology The University of Queensland St Lucia QLD 4072 Australia
| | - Nicole M. D. van der Burg
- The Delivery of Drugs and Genes Group (D2G) Australian Institute for Bioengineering and Nanotechnology University of Queensland St. Lucia QLD 4072 Australia
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology The University of Queensland St Lucia QLD 4072 Australia
| | - Thippayawan Rananakomol
- The Delivery of Drugs and Genes Group (D2G) Australian Institute for Bioengineering and Nanotechnology University of Queensland St. Lucia QLD 4072 Australia
| | - Hwee-Ing Ng
- The Delivery of Drugs and Genes Group (D2G) Australian Institute for Bioengineering and Nanotechnology University of Queensland St. Lucia QLD 4072 Australia
| | - Germain J. P. Fernando
- The Delivery of Drugs and Genes Group (D2G) Australian Institute for Bioengineering and Nanotechnology University of Queensland St. Lucia QLD 4072 Australia
- The University of Queensland School of Chemistry and Molecular Biosciences Brisbane QLD 4072 Australia
- Vaxxas Pty Translational Research Institute Woolloongabba QLD 4102 Australia
| | - Mark A. F. Kendall
- The Delivery of Drugs and Genes Group (D2G) Australian Institute for Bioengineering and Nanotechnology University of Queensland St. Lucia QLD 4072 Australia
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology The University of Queensland St Lucia QLD 4072 Australia
- The University of Queensland School of Chemistry and Molecular Biosciences Brisbane QLD 4072 Australia
| |
Collapse
|
5
|
Trends in Drug- and Vaccine-based Dissolvable Microneedle Materials and Methods of Fabrication. Eur J Pharm Biopharm 2022; 173:54-72. [DOI: 10.1016/j.ejpb.2022.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/24/2022] [Accepted: 02/19/2022] [Indexed: 12/18/2022]
|
6
|
Cai B, Gong Y, Wang Z, Wang L, Chen W. Microneedle arrays integrated with living organisms for smart biomedical applications. Theranostics 2021; 11:10012-10029. [PMID: 34815801 PMCID: PMC8581439 DOI: 10.7150/thno.66478] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/02/2021] [Indexed: 02/06/2023] Open
Abstract
Various living organisms have proven to influence human health significantly, either in a commensal or pathogenic manner. Harnessing the creatures may remarkably improve human healthcare and cure the intractable illness that is challenged using traditional drugs or surgical approaches. However, issues including limited biocompatibility, poor biosafety, inconvenience for personal handling, and low patient compliance greatly hinder the biomedical and clinical applications of living organisms when adopting them for disease treatment. Microneedle arrays (MNAs), emerging as a promising candidate of biomedical devices with the functional diversity and minimal invasion, have exhibited great potential in the treatment of a broad spectrum of diseases, which is expected to improve organism-based therapies. In this review, we systemically summarize the technologies employed for the integration of MNAs with specific living organisms including diverse viruses, bacteria, mammal cells and so on. Moreover, their applications such as vaccination, anti-infection, tumor therapy and tissue repairing are well illustrated. Challenges faced by current strategies, and the perspectives of integrating more living organisms, adopting smarter materials, and developing more advanced technologies in MNAs for future personalized and point-of-care medicine, are also discussed. It is believed that the combination of living organisms with functional MNAs would hold great promise in the near future due to the advantages of both biological and artificial species.
Collapse
Affiliation(s)
- Bo Cai
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yusheng Gong
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zheng Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
7
|
Depelsenaire ACI, Witham K, Veitch M, Wells JW, Anderson CD, Lickliter JD, Rockman S, Bodle J, Treasure P, Hickling J, Fernando GJP, Forster AH. Cellular responses at the application site of a high-density microarray patch delivering an influenza vaccine in a randomized, controlled phase I clinical trial. PLoS One 2021; 16:e0255282. [PMID: 34329337 PMCID: PMC8323919 DOI: 10.1371/journal.pone.0255282] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 06/09/2021] [Indexed: 12/23/2022] Open
Abstract
Microarray patches (MAPs) have the potential to be a safer, more acceptable, easier to use and more cost-effective method for administration of vaccines when compared to the needle and syringe. Since MAPs deliver vaccine to the dermis and epidermis, a degree of local immune response at the site of application is expected. In a phase 1 clinical trial (ACTRN 12618000112268), the Vaxxas high-density MAP (HD-MAP) was used to deliver a monovalent, split inactivated influenza virus vaccine into the skin. HD-MAP immunisation led to significantly enhanced humoral responses on day 8, 22 and 61 compared with IM injection of a quadrivalent commercial seasonal influenza vaccine (Afluria Quadrivalent®). Here, the aim was to analyse cellular responses to HD-MAPs in the skin of trial subjects, using flow cytometry and immunohistochemistry. HD-MAPs were coated with a split inactivated influenza virus vaccine (A/Singapore/GP1908/2015 [H1N1]), to deliver 5 μg haemagglutinin (HA) per HD-MAP. Three HD-MAPs were applied to the volar forearm (FA) of five healthy volunteers (to achieve the required 15 μg HA dose), whilst five control subjects received three uncoated HD-MAPs (placebo). Local skin response was recorded for over 61 days and haemagglutination inhibition antibody titres (HAI) were assessed on days 1, 4, 8, 22, and 61. Skin biopsies were taken before (day 1), and three days after HD-MAP application (day 4) and analysed by flow-cytometry and immunohistochemistry to compare local immune subset infiltration. HD-MAP vaccination with 15 μg HA resulted in significant HAI antibody titres compared to the placebo group. Application of uncoated placebo HD-MAPs resulted in mild erythema and oedema in most subjects, that resolved by day 4 in 80% of subjects. Active, HA-coated HD-MAP application resulted in stronger erythema responses on day 4, which resolved between days 22-61. Overall, these erythema responses were accompanied by an influx of immune cells in all subjects. Increased cell infiltration of CD3+, CD4+, CD8+ T cells as well as myeloid CD11b+ CD11c+ and non-myeloid CD11b- dendritic cells were observed in all subjects, but more pronounced in active HD-MAP groups. In contrast, CD19+/CD20+ B cell counts remained unchanged. Key limitations include the use of an influenza vaccine, to which the subjects may have had previous exposure. Different results might have been obtained with HD-MAPs inducing a primary immune response. In conclusion, influenza vaccine administered to the forearm (FA) using the HD-MAP was well-tolerated and induced a mild to moderate skin response with lymphocytic infiltrate at the site of application.
Collapse
Affiliation(s)
| | | | - Margaret Veitch
- The University of Queensland Diamantina Institute, Woolloongabba, Queensland, Australia
| | - James W. Wells
- The University of Queensland Diamantina Institute, Woolloongabba, Queensland, Australia
| | | | | | - Steve Rockman
- Seqirus Pty Ltd, Parkville, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jesse Bodle
- Seqirus Pty Ltd, Parkville, Victoria, Australia
| | - Peter Treasure
- Peter Treasure Statistical Services Ltd, Kings Lynn, United Kingdom
| | | | - Germain J. P. Fernando
- Vaxxas Pty Ltd, Brisbane, Queensland, Australia
- The University of Queensland, School of Chemistry & Molecular Biosciences, Faculty of Science, Brisbane, Queensland, Australia
| | | |
Collapse
|
8
|
Ameri M, Ao Y, Lewis H. Formulation Approach that Enables the Coating of a Stable Influenza Vaccine on a Transdermal Microneedle Patch. AAPS PharmSciTech 2021; 22:175. [PMID: 34114100 DOI: 10.1208/s12249-021-02044-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/10/2021] [Indexed: 11/30/2022] Open
Abstract
A trivalent influenza split vaccine was formulated at high concentration for coating on the transdermal microneedle system. Monovalent vaccine bulks of three influenza strains, two influenza A strains, and one B strain were diafiltrated, concentrated, and lyophilized. The lyophilized powder of each vaccine strain was separately reconstituted and subsequently combined into a coating formulation of high concentration trivalent vaccine. The formulation process converted the monovalent vaccine bulks with low hemagglutinin (HA) concentrations 0.1 mg/mL into a viscous, emulsion containing HA at ~50 mg/mL. This physically stable emulsion demonstrated viscosity 1 poise and 30° contact angle for effective, homogeneous coating on each microneedle. Evaluation of the vaccine antigen HA by SRID and SDS-PAGE/Western blot showed that HA remained stable throughout the vaccine transdermal microneedle system manufacturing process and 1-year ambient storage (25°C). Anti-influenza antibody responses were evaluated by ELISA and hemagglutination inhibition (HAI) assay after primary and booster immunization with the vaccine-coated transdermal microneedle systems at either 25-μg or 40-μg total HA. The results showed the induction of serum anti-influenza IgG and anti-HA neutralizing antibodies after primary immunization and significant titer rises after booster immunization for both doses, indicating the dry-coated trivalent vaccine delivered by transdermal microneedle system elicited both primary and recall antibody responses against all three antigen strains. The study demonstrates that the transdermal microneedle system provides an attractive alternative for influenza vaccine delivery with key advantages such as preservative-free and room-temperature storage.
Collapse
|
9
|
Yenkoidiok-Douti L, Barillas-Mury C, Jewell CM. Design of Dissolvable Microneedles for Delivery of a Pfs47-Based Malaria Transmission-Blocking Vaccine. ACS Biomater Sci Eng 2021; 7:1854-1862. [PMID: 33616392 PMCID: PMC8113916 DOI: 10.1021/acsbiomaterials.0c01363] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The development of effective malaria vaccines remains a global health priority. In addition to an effective vaccine, there is urgent demand for effective delivery technologies that can be easily deployed. The need for effective vaccine delivery tools is particularly pertinent in resource-poor settings where access to healthcare is limited. Microneedles are micron-scale structures that offer distinct advantages for vaccine delivery by efficiently targeting skin-resident immune cells, eliminating injection-associated pain, and improving patient compliance. Here, we developed and characterized a candidate malaria vaccine loaded and deployed using dissolvable microneedle arrays. Of note, a newly indicated human-relevant antigen was employed, Plasmodium falciparum surface protein P47. P47 and a potent toll-like receptor (TLR9) agonist vaccine adjuvant, CpG, were fabricated into microneedles using a gelatin polymer. Protein binding, ELISA, and fluorescence analysis confirmed the molecular structure, and the function of the P47 antigen and CpG was maintained after fabrication, storage, and release from microneedles. In cell culture, the cargo released from the microneedle arrays triggered TLR9 signaling and activated primary dendritic cells at levels similar to native, unincorporated vaccine components. Together, these studies demonstrate the potential of microneedles as an easily deployable strategy for a P47-based malaria vaccine.
Collapse
Affiliation(s)
- Lampouguin Yenkoidiok-Douti
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD, 20742, United States
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institute of Health, Rockville, MD, 20852, United States
| | - Carolina Barillas-Mury
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institute of Health, Rockville, MD, 20852, United States
| | - Christopher M. Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD, 20742, United States
- Department of Veterans Affairs, VA Maryland Health Care System 10. N Green Street, Baltimore, MD 21201, USA
- Robert E. Fischell Institute for Biomedical Devices, 8278 Paint Branch Drive, College Park, MD 20742, United States
- Department of Microbiology and Immunology, University of Maryland Medical School, 685 West Baltimore Street, HSF-I Suite 380, Baltimore, MD, 21201, United States
- Marlene and Stewart Greenebaum Cancer Center, 22 S. Greene Street, Suite N9E17, Baltimore, MD 21201, United States
| |
Collapse
|
10
|
Bilal M, Mehmood S, Raza A, Hayat U, Rasheed T, Iqbal HM. Microneedles in Smart Drug Delivery. Adv Wound Care (New Rochelle) 2021; 10:204-219. [PMID: 32320365 PMCID: PMC7906867 DOI: 10.1089/wound.2019.1122] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/29/2020] [Indexed: 02/05/2023] Open
Abstract
Significance: In biomedical setup, at large, and drug delivery, in particular, transdermal patches, hypodermal needles, and/or dermatological creams with the topical appliance are among the most widely practiced routes for transdermal drug delivery. Owing to the stratum corneum layer of the skin, traditional drug delivery methods are inefficient, and the effect of the administered therapeutic cues is limited. Recent Advances: The current advancement at the microlevel and nanolevel has revolutionized the drug delivery sector. Particularly, various types of microneedles (MNs) are becoming popular for drug delivery applications because of safety, patient compliance, and smart action. Critical Issues: Herein, we reviewed state-of-the-art MNs as a smart and sophisticated drug delivery approach. Following a brief introduction, the drug delivery mechanism of MNs is discussed. Different types of MNs, that is, solid, hollow, coated, dissolving, and hydrogel forming, are discussed with suitable examples. The latter half of the work is focused on the applied perspective and clinical translation of MNs. Furthermore, a detailed overview of clinical applications and future perspectives is also included in this review. Future Directions: Regardless of ongoing technological and clinical advancement, the focus should be diverted to enhance the efficacy and strength of MNs. Besides, the possible immune response or interference should also be avoided for successful clinical translation of MNs as an efficient drug delivery system.
Collapse
Affiliation(s)
- Muhammad Bilal
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Shahid Mehmood
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ali Raza
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Uzma Hayat
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Tahir Rasheed
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hafiz M.N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| |
Collapse
|
11
|
Flynn O, Dillane K, Lanza JS, Marshall JM, Jin J, Silk SE, Draper SJ, Moore AC. Low Adenovirus Vaccine Doses Administered to Skin Using Microneedle Patches Induce Better Functional Antibody Immunogenicity as Compared to Systemic Injection. Vaccines (Basel) 2021; 9:vaccines9030299. [PMID: 33810085 PMCID: PMC8005075 DOI: 10.3390/vaccines9030299] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/23/2021] [Accepted: 02/27/2021] [Indexed: 01/02/2023] Open
Abstract
Adenovirus-based vaccines are demonstrating promising clinical potential for multiple infectious diseases, including COVID-19. However, the immunogenicity of the vector itself decreases its effectiveness as a boosting vaccine due to the induction of strong anti-vector neutralizing immunity. Here we determined how dissolvable microneedle patches (DMN) for skin immunization can overcome this issue, using a clinically-relevant adenovirus-based Plasmodium falciparum malaria vaccine, AdHu5–PfRH5, in mice. Incorporation of vaccine into patches significantly enhanced its thermostability compared to the liquid form. Conventional high dose repeated immunization by the intramuscular (IM) route induced low antigen-specific IgG titres and high anti-vector immunity. A low priming dose of vaccine, by the IM route, but more so using DMN patches, induced the most efficacious immune responses, assessed by parasite growth inhibitory activity (GIA) assays. Administration of low dose AdHu5–PfRH5 using patches to the skin, boosted by high dose IM, induced the highest antigen-specific serum IgG response after boosting, the greatest skewing of the antibody response towards the antigen and away from the vector, and the highest efficacy. This study therefore demonstrates that repeated use of the same adenovirus vaccine can be highly immunogenic towards the transgene if a low dose is used to prime the response. It also provides a method of stabilizing adenovirus vaccine, in easy-to-administer dissolvable microneedle patches, permitting storage and distribution out of cold chain.
Collapse
Affiliation(s)
- Olivia Flynn
- School of Pharmacy, University College Cork, T12 XF62 Cork, Ireland; (O.F.); (K.D.); (J.S.L.)
| | - Kate Dillane
- School of Pharmacy, University College Cork, T12 XF62 Cork, Ireland; (O.F.); (K.D.); (J.S.L.)
| | - Juliane Sousa Lanza
- School of Pharmacy, University College Cork, T12 XF62 Cork, Ireland; (O.F.); (K.D.); (J.S.L.)
| | - Jennifer M. Marshall
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; (J.M.M.); (J.J.); (S.E.S.); (S.J.D.)
| | - Jing Jin
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; (J.M.M.); (J.J.); (S.E.S.); (S.J.D.)
| | - Sarah E. Silk
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; (J.M.M.); (J.J.); (S.E.S.); (S.J.D.)
| | - Simon J. Draper
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; (J.M.M.); (J.J.); (S.E.S.); (S.J.D.)
| | - Anne C. Moore
- School of Pharmacy, University College Cork, T12 XF62 Cork, Ireland; (O.F.); (K.D.); (J.S.L.)
- School of Biochemistry and Cell Biology, University College Cork, T12 XF62 Cork, Ireland
- Correspondence:
| |
Collapse
|
12
|
Korkmaz E, Balmert SC, Carey CD, Erdos G, Falo LD. Emerging skin-targeted drug delivery strategies to engineer immunity: A focus on infectious diseases. Expert Opin Drug Deliv 2021; 18:151-167. [PMID: 32924651 PMCID: PMC9355143 DOI: 10.1080/17425247.2021.1823964] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Infectious pathogens are global disrupters. Progress in biomedical science and technology has expanded the public health arsenal against infectious diseases. Specifically, vaccination has reduced the burden of infectious pathogens. Engineering systemic immunity by harnessing the cutaneous immune network has been particularly attractive since the skin is an easily accessible immune-responsive organ. Recent advances in skin-targeted drug delivery strategies have enabled safe, patient-friendly, and controlled deployment of vaccines to cutaneous microenvironments for inducing long-lived pathogen-specific immunity to mitigate infectious diseases, including COVID-19. AREAS COVERED This review briefly discusses the basics of cutaneous immunomodulation and provides a concise overview of emerging skin-targeted drug delivery systems that enable safe, minimally invasive, and effective intracutaneous administration of vaccines for engineering systemic immune responses to combat infectious diseases. EXPERT OPINION In-situ engineering of the cutaneous microenvironment using emerging skin-targeted vaccine delivery systems offers remarkable potential to develop diverse immunization strategies against pathogens. Mechanistic studies with standard correlates of vaccine efficacy will be important to compare innovative intracutaneous drug delivery strategies to each other and to existing clinical approaches. Cost-benefit analyses will be necessary for developing effective commercialization strategies. Significant involvement of industry and/or government will be imperative for successfully bringing novel skin-targeted vaccine delivery methods to market for their widespread use.
Collapse
Affiliation(s)
- Emrullah Korkmaz
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephen C. Balmert
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Cara Donahue Carey
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Geza Erdos
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Louis D. Falo
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA,UPMC Hillman Cancer Center, Pittsburgh, PA, USA,Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, USA,The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
13
|
Amani H, Shahbazi MA, D'Amico C, Fontana F, Abbaszadeh S, Santos HA. Microneedles for painless transdermal immunotherapeutic applications. J Control Release 2020; 330:185-217. [PMID: 33340568 DOI: 10.1016/j.jconrel.2020.12.019] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022]
Abstract
Immunotherapy has recently garnered plenty of attention to improve the clinical outcomes in the treatment of various diseases. However, owing to the dynamic nature of the immune system, this approach has often been challenged by concerns regarding the lack of adequate long-term responses in patients. The development of microneedles (MNs) has resulted in the improvement and expansion of immuno-reprogramming strategies due to the housing of high accumulation of dendritic cells, macrophages, lymphocytes, and mast cells in the dermis layer of the skin. In addition, MNs possess many outstanding properties, such as the ability for the painless traverse of the stratum corneum, minimal invasiveness, facile fabrication, excellent biocompatibility, convenient administration, and bypassing the first pass metabolism that allows direct translocation of therapeutics into the systematic circulation. These advantages make MNs excellent candidates for the delivery of immunological biomolecules to the dermal antigen-presenting cells in the skin with the aim of vaccinating or treating different diseases, such as cancer and autoimmune disorders, with minimal invasiveness and side effects. This review discusses the recent advances in engineered MNs and tackles limitations relevant to traditional immunotherapy of various hard-to-treat diseases.
Collapse
Affiliation(s)
- Hamed Amani
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Science, Tehran, Iran
| | - Mohammad-Ali Shahbazi
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland; Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran.
| | - Carmine D'Amico
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland
| | - Flavia Fontana
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland
| | - Samin Abbaszadeh
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran; Department of Pharmacology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland; Helsinki Institute of Life Science (HiLIFE), University of Helsinki, FI-00014 Helsinki, Finland.
| |
Collapse
|
14
|
Nguyen TT, Oh Y, Kim Y, Shin Y, Baek SK, Park JH. Progress in microneedle array patch (MAP) for vaccine delivery. Hum Vaccin Immunother 2020; 17:316-327. [PMID: 32667239 PMCID: PMC7872046 DOI: 10.1080/21645515.2020.1767997] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A microneedle array patch (MAP) has been developed as a new delivery system for vaccines. Preclinical and clinical trials with a vaccine MAP showed improved stability, safety, and immunological efficacy compared to conventional vaccine administration. Various vaccines can be delivered with a MAP. Currently, microneedle manufacturers can mass-produce pharmaceutical MAP and cosmetic MAP and this mass-production system can be adapted to produce a vaccine MAP. Clinical trials with a vaccine MAP have shown comparable efficacy with conventional administration, and discussions about regulations for a vaccine MAP are underway. However, there are concerns of reasonable cost, mass production, efficacy, and safety standards that meet FDA approval, as well as the need for feedback regarding the best method of administration. Currently, microneedles have been studied for the delivery of many kinds of vaccines, and preclinical and clinical studies of vaccine microneedles are in progress. For the foreseeable future, some vaccines will continue to be administered with syringes and needles while the use of a vaccine MAP continues to be improved because of the advantages of less pain, self-administration, improved stability, convenience, and safety.
Collapse
Affiliation(s)
- Thuy Trang Nguyen
- Faculty of Pharmacy, Ho Chi Minh City University of Technology-HUTECH , Ho Chi Minh, Vietnam
| | - Yujeong Oh
- Department of BioNano Technology, Gachon BioNano Research Institute, Gachon University , Seongnam, Republic of Korea
| | - Yunseo Kim
- Department of BioNano Technology, Gachon BioNano Research Institute, Gachon University , Seongnam, Republic of Korea
| | - Yura Shin
- Department of BioNano Technology, Gachon BioNano Research Institute, Gachon University , Seongnam, Republic of Korea
| | - Seung-Ki Baek
- QuadMedicine R&D Centre, QuadMedicine Inc , Seongnam, Republic of Korea
| | - Jung-Hwan Park
- Department of BioNano Technology, Gachon BioNano Research Institute, Gachon University , Seongnam, Republic of Korea
| |
Collapse
|
15
|
Donadei A, Kraan H, Ophorst O, Flynn O, O'Mahony C, Soema PC, Moore AC. Skin delivery of trivalent Sabin inactivated poliovirus vaccine using dissolvable microneedle patches induces neutralizing antibodies. J Control Release 2019; 311-312:96-103. [PMID: 31484041 DOI: 10.1016/j.jconrel.2019.08.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/27/2019] [Accepted: 08/31/2019] [Indexed: 12/30/2022]
Abstract
The cessation of the oral poliovirus vaccine (OPV) and the inclusion of inactivated poliovirus (IPV) into all routine immunization programmes, strengthens the need for new IPV options. Several novel delivery technologies are being assessed that permit simple yet efficacious and potentially dose-sparing administration of IPV. Current disadvantages of conventional liquid IPV include the dependence on cold chain and the need for injection, resulting in high costs, production of hazardous sharps waste and requiring sufficiently trained personnel. In the current study, a dissolvable microneedle (DMN) patch for skin administration that incorporates trivalent inactivated Sabin poliovirus vaccine (sIPV) was developed. Microneedles were physically stable in the ambient environment for at least 30 min and efficiently penetrated skin. Polio-specific IgG antibodies that were able to neutralize the virus were induced in rats upon administration using trivalent sIPV-containing microneedle patches. These sIPV-patch-induced neutralizing antibody responses were comparable to higher vaccine doses delivered intramuscularly for type 1 and type 3 poliovirus serotypes. Moreover, applying the patches to the flank elicited a significantly higher antibody response compared to their administration to the ear. This study progresses the development of a skin patch-based technology that would simplify vaccine administration of Sabin IPV and thereby overcome logistic issues currently constraining poliovirus eradication campaigns.
Collapse
Affiliation(s)
- Agnese Donadei
- School of Pharmacy, School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.
| | - Heleen Kraan
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands.
| | - Olga Ophorst
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands
| | - Olivia Flynn
- School of Pharmacy, School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Conor O'Mahony
- Tyndall National Institute, University College Cork, Cork, Ireland
| | - Peter C Soema
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands
| | - Anne C Moore
- School of Pharmacy, School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
16
|
Enhanced anti-tumor immunotherapy by dissolving microneedle patch loaded ovalbumin. PLoS One 2019; 14:e0220382. [PMID: 31386690 PMCID: PMC6684091 DOI: 10.1371/journal.pone.0220382] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 07/15/2019] [Indexed: 01/04/2023] Open
Abstract
The skin is a very suitable organ for the induction of immune responses to vaccine antigens. Antigen delivery systems to the skin by needle and syringe directly deposit the antigen into the epidermal-dermal compartment, one of the most immunocompetent sites due to the presence of professional antigen-presenting cells aimed at the induction of antigen-specific T cells. In this study, we analyzed the amount of ovalbumin as an antigen delivered to the skin by a microneedle. When ovalbumin protein as an antigen was delivered to the skin of mice using a dissolving microneedle, it induced an immune response through the enhanced proliferation and cytokines production by the splenocytes and lymph nodes. Also, it effectively increased the ovalbumin-specific CD8+ T cell and CD4+ T cell population and induced an ovalbumin-specific CTL response against the graft of ovalbumin-expressing EG7 tumor cells in the immunized mice. Also, we identified the inhibition of tumor growth and prevention of tumor formation in the context of the therapeutic and prophylactic vaccine, respectively through EG-7 tumor mouse model. Finally, these data show the potential of patches as attractive antigen delivery vehicles.
Collapse
|
17
|
Wang L, Liu X. Finite element simulation for the effect of loading rate on visco-hyperelastic characterisation of soft materials by spherical nanoindentation. IET Nanobiotechnol 2019; 13:578-583. [PMID: 31432789 PMCID: PMC8676085 DOI: 10.1049/iet-nbt.2019.0046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/22/2019] [Accepted: 04/23/2019] [Indexed: 11/20/2022] Open
Abstract
Nanoindentation test performed by atomic force microscopy is highly recommended for the characterisation of soft materials at nanoscale. The assumption proposed in the characterisation is that the material is pure elastic with no viscosity. However, this assumption does not represent the real characteristics of soft materials such as bio tissue or cell. Therefore, a parametric finite element simulation of nanoindentation by spherical tip was carried out to investigate the response of cells with different constitutive laws (elastic, hyperelastic and visco-hyperelastic). The investigation of the loading rate effect on the characterisation of cell mechanical properties was performed for different size of spherical tip. The selected dimensions of spherical tips cover commercially available products. The viscosity effects are insensitive to the varied dimensions of spherical tip in this study. A limit loading rate was found above which viscous effect has to be considered to correctly determine the mechanical properties. The method in this work can be implemented to propose a criterion for the threshold of loading rate when viscosity effect can be neglected for soft material characterisation.
Collapse
Affiliation(s)
- Lei Wang
- Centre of Ultra-precision Optoelectric Instrument Engineering, Harbin Institute of Technology, Harbin, People's Republic of China.
| | - Xianping Liu
- School of Engineering, University of Warwick, Coventry, UK
| |
Collapse
|
18
|
Bernelin-Cottet C, Urien C, McCaffrey J, Collins D, Donadei A, McDaid D, Jakob V, Barnier-Quer C, Collin N, Bouguyon E, Bordet E, Barc C, Boulesteix O, Leplat JJ, Blanc F, Contreras V, Bertho N, Moore AC, Schwartz-Cornil I. Electroporation of a nanoparticle-associated DNA vaccine induces higher inflammation and immunity compared to its delivery with microneedle patches in pigs. J Control Release 2019; 308:14-28. [PMID: 31265882 DOI: 10.1016/j.jconrel.2019.06.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 12/18/2022]
Abstract
DNA vaccination is an attractive technology, based on its well-established manufacturing process, safety profile, adaptability to rapidly combat pandemic pathogens, and stability at ambient temperature; however an optimal delivery method of DNA remains to be determined. As pigs are a relevant model for humans, we comparatively evaluated the efficiency of vaccine DNA delivery in vivo to pigs using dissolvable microneedle patches, intradermal inoculation with needle (ID), surface electroporation (EP), with DNA associated or not to cationic poly-lactic-co-glycolic acid nanoparticles (NPs). We used a luciferase encoding plasmid (pLuc) as a reporter and vaccine plasmids encoding antigens from the Porcine Reproductive and Respiratory Syndrome Virus (PRRSV), a clinically-significant swine arterivirus. Patches were successful at inducing luciferase expression in skin although at lower level than EP. EP induced the cutaneaous recruitment of granulocytes, of MHC2posCD172Apos myeloid cells and type 1 conventional dendritic cells, in association with local production of IL-1β, IL-8 and IL-17; these local responses were more limited with ID and undetectable with patches. The addition of NP to EP especially promoted the recruitment of the MHC2posCD172Apos CD163int and CD163neg myeloid subsets. Notably we obtained the strongest and broadest IFNγ T-cell response against a panel of PRRSV antigens with DNA + NPs delivered by EP, whereas patches and ID were ineffective. The anti-PRRSV IgG responses were the highest with EP administration independently of NPs, mild with ID, and undetectable with patches. These results contrast with the immunogenicity and efficacy previously induced in mice with patches. This study concludes that successful DNA vaccine administration in skin can be achieved in pigs with electroporation and patches, but only the former induces local inflammation, humoral and cellular immunity, with the highest potency when NPs were used. This finding shows the importance of evaluating the delivery and immunogenicity of DNA vaccines beyond the mouse model in a preclinical model relevant to human such as pig and reveals that EP with DNA combined to NP induces strong immunogenicity.
Collapse
Affiliation(s)
| | - Céline Urien
- VIM, INRA, Université Paris-Saclay, Domaine de Vilvert, 78350 Jouy-en-Josas, France
| | - Joanne McCaffrey
- School of Pharmacy, School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland; Xeolas Pharmaceuticals Ltd., Dublin, Ireland
| | - Damien Collins
- School of Pharmacy, School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland; Xeolas Pharmaceuticals Ltd., Dublin, Ireland
| | - Agnese Donadei
- School of Pharmacy, School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland; Xeolas Pharmaceuticals Ltd., Dublin, Ireland
| | | | - Virginie Jakob
- Vaccine Formulation Laboratory, University of Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland
| | - Christophe Barnier-Quer
- Vaccine Formulation Laboratory, University of Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland
| | - Nicolas Collin
- Vaccine Formulation Laboratory, University of Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland
| | - Edwige Bouguyon
- VIM, INRA, Université Paris-Saclay, Domaine de Vilvert, 78350 Jouy-en-Josas, France
| | - Elise Bordet
- VIM, INRA, Université Paris-Saclay, Domaine de Vilvert, 78350 Jouy-en-Josas, France
| | | | | | - Jean-Jacques Leplat
- GABI, INRA-AgroParisTech, Université Paris-Saclay, Domaine de Vilvert, 78350 Jouy-en-Josas, France
| | - Fany Blanc
- GABI, INRA-AgroParisTech, Université Paris-Saclay, Domaine de Vilvert, 78350 Jouy-en-Josas, France
| | - Vanessa Contreras
- Immunology of viral infections and autoimmune diseases, IDMIT Department, IBFJ, INSERM U1184-CEA - Université Paris Sud 11, Fontenay-Aux-Roses et Le Kremlin-Bicêtre, France
| | - Nicolas Bertho
- VIM, INRA, Université Paris-Saclay, Domaine de Vilvert, 78350 Jouy-en-Josas, France; BIOEPAR, Oniris, INRA, 44307 Nantes, France
| | - Anne C Moore
- School of Pharmacy, School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | | |
Collapse
|
19
|
Haridass IN, Wei JCJ, Mohammed YH, Crichton ML, Anderson CD, Henricson J, Sanchez WY, Meliga SC, Grice JE, Benson HAE, Kendall MAF, Roberts MS. Cellular metabolism and pore lifetime of human skin following microprojection array mediation. J Control Release 2019; 306:59-68. [PMID: 31121279 DOI: 10.1016/j.jconrel.2019.05.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 04/11/2019] [Accepted: 05/14/2019] [Indexed: 01/13/2023]
Abstract
Skin-targeting microscale medical devices are becoming popular for therapeutic delivery and diagnosis. We used cryo-SEM, fluorescence lifetime imaging microscopy (FLIM), autofluorescence imaging microscopy and inflammatory response to study the puncturing and recovery of human skin ex vivo and in vivo after discretised puncturing by a microneedle array (Nanopatch®). Pores induced by the microprojections were found to close by ~25% in diameter within the first 30 min, and almost completely close by ~6 h. FLIM images of ex vivo viable epidermis showed a stable fluorescence lifetime for unpatched areas of ~1000 ps up to 24 h. Only the cells in the immediate puncture zones (in direct contact with projections) showed a reduction in the observed fluorescence lifetimes to between ~518-583 ps. The ratio of free-bound NAD(P)H (α1/α2) in unaffected areas of the viable epidermis was ~2.5-3.0, whereas the ratio at puncture holes was almost double at ~4.2-4.6. An exploratory pilot in vivo study also suggested similar closure rate with histamine administration to the forearms of human volunteers after Nanopatch® treatment, although a prolonged inflammation was observed with Tissue Viability Imaging. Overall, this work shows that the pores created by the microneedle-type medical device, Nanopatch®, are transient, with the skin recovering rapidly within 1-2 days in the epidermis after application.
Collapse
Affiliation(s)
- Isha N Haridass
- Curtin Health Innovation Research Institute, School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, WA 6102, Australia; Therapeutics Research Centre, Faculty of Medicine, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Jonathan C J Wei
- Therapeutics Research Centre, Faculty of Medicine, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia; Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, 2628, CD, Delft, the Netherlands
| | - Yousuf H Mohammed
- Therapeutics Research Centre, Faculty of Medicine, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Michael L Crichton
- Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Christopher D Anderson
- Department of Clinical and Experimental Medicine, Linköping University, 581 83 Linköping, Sweden
| | - Joakim Henricson
- Division of Drug Research, Department of Medical and Health Sciences, Faculty of Health Sciences Linköping University, Department of Emergency Medicine Local Health Care Services in Central Östergötland, Region Östergötland, Sweden
| | - Washington Y Sanchez
- Therapeutics Research Centre, Faculty of Medicine, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Stefano C Meliga
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jeffrey E Grice
- Therapeutics Research Centre, Faculty of Medicine, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Heather A E Benson
- Curtin Health Innovation Research Institute, School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Mark A F Kendall
- Australian National University, Canberra, ACT 0200, Australia; Faculty of Medicine, The University of Queensland, Royal Brisbane and Women's Hospital, Herston, QLD 4006, Australia
| | - Michael S Roberts
- Therapeutics Research Centre, Faculty of Medicine, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia; School of Pharmacy and Medical Sciences, University of South Australia, Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5011, Australia.
| |
Collapse
|
20
|
Cheng H, Liu M, Du X, Xu J, Zhai Y, Ji J, He S, Zhai G. Recent progress of micro-needle formulations: Fabrication strategies and delivery applications. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
van der Burg NMD, Depelsenaire ACI, Crichton ML, Kuo P, Phipps S, Kendall MAF. A low inflammatory, Langerhans cell-targeted microprojection patch to deliver ovalbumin to the epidermis of mouse skin. J Control Release 2019; 302:190-200. [PMID: 30940498 DOI: 10.1016/j.jconrel.2019.03.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/20/2019] [Accepted: 03/29/2019] [Indexed: 12/21/2022]
Abstract
In a low inflammatory skin environment, Langerhans cells (LCs) - but not dermal dendritic cells (dDCs) - contribute to the pivotal process of tolerance induction. Thus LCs are a target for specific-tolerance therapies. LCs reside just below the stratum corneum, within the skin's viable epidermis. One way to precisely deliver immunotherapies to LCs while remaining minimally invasive is with a skin delivery device such as a microprojection arrays (MPA). Today's MPAs currently achieve rapid delivery (e.g. within minutes of application), but are focussed primarily at delivery of therapeutics to the dermis, deeper within the skin. Indeed, no MPA currently delivers specifically to the epidermal LCs of mouse skin. Without any convenient, pre-clinical device available, advancement of LC-targeted therapies has been limited. In this study, we designed and tested a novel MPA that delivers ovalbumin to the mouse epidermis (eMPA) while maintaining a low, local inflammatory response (as defined by low erythema after 24 h). In comparison to available dermal-targeted MPAs (dMPA), only eMPAs with larger projection tip surface areas achieved shallow epidermal penetration at a low application energy. The eMPA characterised here induced significantly less erythema after 24 h (p = 0.0004), less epidermal swelling after 72 h (p < 0.0001) and 52% less epidermal cell death than the dMPA. Despite these differences in skin inflammation, the eMPA and dMPA promoted similar levels of LC migration out of the skin. However, only the eMPA promoted LCs to migrate with a low MHC II expression and in the absence of dDC migration. Implementing this more mouse-appropriate and low-inflammatory eMPA device to deliver potential immunotherapeutics could improve the practicality and cell-specific targeting of such therapeutics in the pre-clinical stage. Leading to more opportunities for LC-targeted therapeutics such as for allergy immunotherapy and asthma.
Collapse
Affiliation(s)
- Nicole M D van der Burg
- The Delivery of Drugs and Genes Group (D(2)G(2)), Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, QL 4072, Australia
| | - Alexandra C I Depelsenaire
- The Delivery of Drugs and Genes Group (D(2)G(2)), Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, QL 4072, Australia
| | - Michael L Crichton
- The Delivery of Drugs and Genes Group (D(2)G(2)), Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, QL 4072, Australia
| | - Paula Kuo
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, QL 4102, Australia
| | - Simon Phipps
- QIMR Berghofer Medical Research Institute, Herston, QL 4006, Australia
| | - Mark A F Kendall
- The Delivery of Drugs and Genes Group (D(2)G(2)), Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, QL 4072, Australia; The Australian National University, Canberra, Australian Capital Territory 2600, Australia.
| |
Collapse
|
22
|
Manning JE, Cantaert T. Time to Micromanage the Pathogen-Host-Vector Interface: Considerations for Vaccine Development. Vaccines (Basel) 2019; 7:E10. [PMID: 30669682 PMCID: PMC6466432 DOI: 10.3390/vaccines7010010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/10/2019] [Accepted: 01/16/2019] [Indexed: 12/18/2022] Open
Abstract
The current increase in vector-borne disease worldwide necessitates novel approaches to vaccine development targeted to pathogens delivered by blood-feeding arthropod vectors into the host skin. A concept that is gaining traction in recent years is the contribution of the vector or vector-derived components, like salivary proteins, to host-pathogen interactions. Indeed, the triad of vector-host-pathogen interactions in the skin microenvironment can influence host innate and adaptive responses alike, providing an advantage to the pathogen to establish infection. A better understanding of this "bite site" microenvironment, along with how host and vector local microbiomes immunomodulate responses to pathogens, is required for future vaccines for vector-borne diseases. Microneedle administration of such vaccines may more closely mimic vector deposition of pathogen and saliva into the skin with the added benefit of near painless vaccine delivery. Focusing on the 'micro'⁻from microenvironments to microbiomes to microneedles⁻may yield an improved generation of vector-borne disease vaccines in today's increasingly complex world.
Collapse
Affiliation(s)
- Jessica E Manning
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh 12201, Cambodia.
| | - Tineke Cantaert
- Immunology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh 12201, Cambodia.
| |
Collapse
|
23
|
Lee H, Song C, Baik S, Kim D, Hyeon T, Kim DH. Device-assisted transdermal drug delivery. Adv Drug Deliv Rev 2018; 127:35-45. [PMID: 28867296 DOI: 10.1016/j.addr.2017.08.009] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/19/2017] [Accepted: 08/29/2017] [Indexed: 12/31/2022]
Abstract
Transdermal drug delivery is a prospective drug delivery strategy to complement the limitations of conventional drug delivery systems including oral and injectable methods. This delivery route allows both convenient and painless drug delivery and a sustained release profile with reduced side effects. However, physiological barriers in the skin undermine the delivery efficiency of conventional patches, limiting drug candidates to small-molecules and lipophilic drugs. Recently, transdermal drug delivery technology has advanced from unsophisticated methods simply relying on natural diffusion to drug releasing systems that dynamically respond to external stimuli. Furthermore, physical barriers in the skin have been overcome using microneedles, and controlled delivery by wearable biosensors has been enabled ultimately. In this review, we classify the evolution of advanced drug delivery strategies based on generations and provide a comprehensive overview. Finally, the recent progress in advanced diagnosis and therapy through customized drug delivery systems based on real-time analysis of physiological cues is highlighted.
Collapse
Affiliation(s)
- Hyunjae Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Changyeong Song
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seungmin Baik
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dokyoon Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
24
|
Zaric M, Becker PD, Hervouet C, Kalcheva P, Ibarzo Yus B, Cocita C, O'Neill LA, Kwon SY, Klavinskis LS. Long-lived tissue resident HIV-1 specific memory CD8 + T cells are generated by skin immunization with live virus vectored microneedle arrays. J Control Release 2017; 268:166-175. [PMID: 29056444 PMCID: PMC5735037 DOI: 10.1016/j.jconrel.2017.10.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/13/2017] [Accepted: 10/14/2017] [Indexed: 11/23/2022]
Abstract
The generation of tissue resident memory (TRM) cells at the body surfaces to provide a front line defence against invading pathogens represents an important goal in vaccine development for a wide variety of pathogens. It has been widely assumed that local vaccine delivery to the mucosae is necessary to achieve that aim. Here we characterise a novel micro-needle array (MA) delivery system fabricated to deliver a live recombinant human adenovirus type 5 vaccine vector (AdHu5) encoding HIV-1 gag. We demonstrate rapid dissolution kinetics of the microneedles in skin. Moreover, a consequence of MA vaccine cargo release was the generation of long-lived antigen-specific CD8+ T cells that accumulate in mucosal tissues, including the female genital and respiratory tract. The memory CD8+ T cell population maintained in the peripheral mucosal tissues was attributable to a MA delivered AdHu5 vaccine instructing CD8+ T cell expression of CXCR3+, CD103+, CD49a+, CD69+, CD127+ homing, retention and survival markers. Furthermore, memory CD8+ T cells generated by MA immunization significantly expanded upon locally administered antigenic challenge and showed a predominant poly-functional profile producing high levels of IFNγ and Granzyme B. These data demonstrate that skin vaccine delivery using microneedle technology induces mobilization of long lived, poly-functional CD8+ T cells to peripheral tissues, phenotypically displaying hallmarks of residency and yields new insights into how to design and deliver effective vaccine candidates with properties to exert local immunosurveillance at the mucosal surfaces.
Collapse
Affiliation(s)
- Marija Zaric
- Peter Gorer Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, United Kingdom
| | - Pablo Daniel Becker
- Peter Gorer Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, United Kingdom
| | - Catherine Hervouet
- Peter Gorer Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, United Kingdom
| | - Petya Kalcheva
- Peter Gorer Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, United Kingdom
| | - Barbara Ibarzo Yus
- Peter Gorer Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, United Kingdom
| | - Clement Cocita
- Peter Gorer Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, United Kingdom
| | - Lauren Alexandra O'Neill
- Peter Gorer Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, United Kingdom
| | | | - Linda Sylvia Klavinskis
- Peter Gorer Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, United Kingdom.
| |
Collapse
|
25
|
Leone M, Mönkäre J, Bouwstra JA, Kersten G. Dissolving Microneedle Patches for Dermal Vaccination. Pharm Res 2017; 34:2223-2240. [PMID: 28718050 PMCID: PMC5643353 DOI: 10.1007/s11095-017-2223-2] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/26/2017] [Indexed: 12/31/2022]
Abstract
The dermal route is an attractive route for vaccine delivery due to the easy skin accessibility and a dense network of immune cells in the skin. The development of microneedles is crucial to take advantage of the skin immunization and simultaneously to overcome problems related to vaccination by conventional needles (e.g. pain, needle-stick injuries or needle re-use). This review focuses on dissolving microneedles that after penetration into the skin dissolve releasing the encapsulated antigen. The microneedle patch fabrication techniques and their challenges are discussed as well as the microneedle characterization methods and antigen stability aspects. The immunogenicity of antigens formulated in dissolving microneedles are addressed. Finally, the early clinical development is discussed.
Collapse
Affiliation(s)
- M Leone
- Division of Drug Delivery Technology, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, P.O. Box 9502, 2300 RA, Leiden, the Netherlands
| | - J Mönkäre
- Division of Drug Delivery Technology, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, P.O. Box 9502, 2300 RA, Leiden, the Netherlands
| | - J A Bouwstra
- Division of Drug Delivery Technology, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, P.O. Box 9502, 2300 RA, Leiden, the Netherlands.
| | - G Kersten
- Division of Drug Delivery Technology, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, P.O. Box 9502, 2300 RA, Leiden, the Netherlands.,Department of Analytical Development and Formulation, Intravacc, Bilthoven, the Netherlands
| |
Collapse
|
26
|
Zaric M, Ibarzo Yus B, Kalcheva PP, Klavinskis LS. Microneedle-mediated delivery of viral vectored vaccines. Expert Opin Drug Deliv 2016; 14:1177-1187. [PMID: 27591122 DOI: 10.1080/17425247.2017.1230096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Microneedle array platforms are a promising technology for vaccine delivery, due to their ease of administration with no sharp waste generated, small size, possibility of targeted delivery to the specified skin depth and efficacious delivery of different vaccine formulations, including viral vectors. Areas covered: Attributes and challenges of the most promising viral vector candidates that have advanced to the clinic and that have been leveraged for skin delivery by microneedles; The importance of understanding the immunobiology of antigen-presenting cells in the skin, in particular dendritic cells, in order to generate further improved skin vaccination strategies; recent studies where viral vectors expressing various antigens have been coupled with microneedle technology to examine their potential for improved vaccination. Expert opinion: Simple, economic and efficacious vaccine delivery methods are needed to improve health outcomes and manage possible outbreaks of new emerging viruses. Understanding what innate/inflammatory signals are required to induce both immediate and long-term responses remains a major hurdle in the development of the effective vaccines. One approach to meet these needs is microneedle-mediated viral vector vaccination. In order for this technology to fulfil this potential the industry must invest significantly to further develop its design, production, biosafety, delivery and large-scale manufacturing.
Collapse
Affiliation(s)
- Marija Zaric
- a Peter Gorer Department of Immunobiology , King's College London , London , UK
| | - Bárbara Ibarzo Yus
- a Peter Gorer Department of Immunobiology , King's College London , London , UK
| | | | | |
Collapse
|
27
|
Wang X, Wang N, Li N, Zhen Y, Wang T. Multifunctional particle-constituted microneedle arrays as cutaneous or mucosal vaccine adjuvant-delivery systems. Hum Vaccin Immunother 2016; 12:2075-2089. [PMID: 27159879 DOI: 10.1080/21645515.2016.1158368] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
To overcome drawbacks of current injection vaccines, such as causing needle phobia, needing health professionals for inoculation, and generating dangerous sharps wastes, researchers have designed novel vaccines that are combined with various microneedle arrays (MAs), in particular, with the multifunctional particle-constructed MAs (MPMAs). MPMAs prove able to enhance vaccine stability through incorporating vaccine ingredients in the carrier, and can be painlessly inoculated by minimally trained workers or by self-administration, leaving behind no metal needle pollution while eliciting robust systemic and mucosal immunity to antigens, thanks to delivering vaccines to cutaneous or mucosal compartments enriched in professional antigen-presenting cells (APCs). Especially, MPMAs can be easily integrated with functional molecules fulfilling targeting vaccine delivery or controlling immune response toward a Th1 or Th2 pathway to generate desired immunity against pathogens. Herein, we introduce the latest research and development of various MPMAs which are a novel but promising vaccine adjuvant delivery system (VADS).
Collapse
Affiliation(s)
- Xueting Wang
- a School of Pharmacy, Anhui Medical University , Hefei , China
| | - Ning Wang
- b School of Medical Engineering, Hefei University of Technology , Hefei , China
| | - Ning Li
- a School of Pharmacy, Anhui Medical University , Hefei , China
| | - Yuanyuan Zhen
- a School of Pharmacy, Anhui Medical University , Hefei , China
| | - Ting Wang
- a School of Pharmacy, Anhui Medical University , Hefei , China
| |
Collapse
|
28
|
Römgens AM, Bader DL, Bouwstra JA, Oomens CWJ. Predicting the optimal geometry of microneedles and their array for dermal vaccination using a computational model. Comput Methods Biomech Biomed Engin 2016; 19:1599-609. [DOI: 10.1080/10255842.2016.1173684] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Anne M. Römgens
- Soft Tissue Biomechanics and Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Dan L. Bader
- Soft Tissue Biomechanics and Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Faculty of Health Sciences, University of Southampton, Southampton, UK
| | - Joke A. Bouwstra
- Division of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Cees W. J. Oomens
- Soft Tissue Biomechanics and Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
29
|
Li N, Wang N, Wang X, Zhen Y, Wang T. Microneedle arrays delivery of the conventional vaccines based on nonvirulent viruses. Drug Deliv 2016; 23:3234-3247. [DOI: 10.3109/10717544.2016.1165311] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Ning Li
- School of Pharmacy, Anhui Medical University, Hefei, China, and
| | - Ning Wang
- School of Medical Engineering, Hefei University of Technology, Hefei, China
| | - Xueting Wang
- School of Pharmacy, Anhui Medical University, Hefei, China, and
| | - Yuanyuan Zhen
- School of Pharmacy, Anhui Medical University, Hefei, China, and
| | - Ting Wang
- School of Pharmacy, Anhui Medical University, Hefei, China, and
| |
Collapse
|
30
|
Römgens AM, Bader DL, Bouwstra JA, Oomens CW. A theoretical compartment model for antigen kinetics in the skin. Eur J Pharm Sci 2016; 84:18-25. [DOI: 10.1016/j.ejps.2016.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 01/05/2016] [Accepted: 01/06/2016] [Indexed: 12/16/2022]
|
31
|
Meseda CA, Atukorale V, Kuhn J, Schmeisser F, Weir JP. Percutaneous Vaccination as an Effective Method of Delivery of MVA and MVA-Vectored Vaccines. PLoS One 2016; 11:e0149364. [PMID: 26895072 PMCID: PMC4760941 DOI: 10.1371/journal.pone.0149364] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/29/2016] [Indexed: 12/22/2022] Open
Abstract
The robustness of immune responses to an antigen could be dictated by the route of vaccine inoculation. Traditional smallpox vaccines, essentially vaccinia virus strains, that were used in the eradication of smallpox were administered by percutaneous inoculation (skin scarification). The modified vaccinia virus Ankara is licensed as a smallpox vaccine in Europe and Canada and currently undergoing clinical development in the United States. MVA is also being investigated as a vector for the delivery of heterologous genes for prophylactic or therapeutic immunization. Since MVA is replication-deficient, MVA and MVA-vectored vaccines are often inoculated through the intramuscular, intradermal or subcutaneous routes. Vaccine inoculation via the intramuscular, intradermal or subcutaneous routes requires the use of injection needles, and an estimated 10 to 20% of the population of the United States has needle phobia. Following an observation in our laboratory that a replication-deficient recombinant vaccinia virus derived from the New York City Board of Health strain elicited protective immune responses in a mouse model upon inoculation by tail scarification, we investigated whether MVA and MVA recombinants can elicit protective responses following percutaneous administration in mouse models. Our data suggest that MVA administered by percutaneous inoculation, elicited vaccinia-specific antibody responses, and protected mice from lethal vaccinia virus challenge, at levels comparable to or better than subcutaneous or intramuscular inoculation. High titers of specific neutralizing antibodies were elicited in mice inoculated with a recombinant MVA expressing the herpes simplex type 2 glycoprotein D after scarification. Similarly, a recombinant MVA expressing the hemagglutinin of attenuated influenza virus rgA/Viet Nam/1203/2004 (H5N1) elicited protective immune responses when administered at low doses by scarification. Taken together, our data suggest that MVA and MVA-vectored vaccines inoculated by scarification can elicit protective immune responses that are comparable to subcutaneous vaccination, and may allow for antigen sparing when vaccine supply is limited.
Collapse
Affiliation(s)
- Clement A. Meseda
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food & Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland, 20993, United States of America
| | - Vajini Atukorale
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food & Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland, 20993, United States of America
| | - Jordan Kuhn
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food & Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland, 20993, United States of America
| | - Falko Schmeisser
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food & Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland, 20993, United States of America
| | - Jerry P. Weir
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food & Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland, 20993, United States of America
| |
Collapse
|
32
|
Zhao X, Birchall JC, Coulman SA, Tatovic D, Singh RK, Wen L, Wong FS, Dayan CM, Hanna SJ. Microneedle delivery of autoantigen for immunotherapy in type 1 diabetes. J Control Release 2016; 223:178-187. [DOI: 10.1016/j.jconrel.2015.12.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 11/24/2022]
|
33
|
Vrdoljak A, Allen EA, Ferrara F, Temperton NJ, Crean AM, Moore AC. Induction of broad immunity by thermostabilised vaccines incorporated in dissolvable microneedles using novel fabrication methods. J Control Release 2016; 225:192-204. [PMID: 26774221 DOI: 10.1016/j.jconrel.2016.01.019] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 01/10/2016] [Accepted: 01/11/2016] [Indexed: 10/22/2022]
Abstract
Dissolvable microneedle (DMN) patches for immunization have multiple benefits, including vaccine stability and ease-of-use. However, conventional DMN fabrication methods have several drawbacks. Here we describe a novel, microfluidic, drop dispensing-based dissolvable microneedle production method that overcomes these issues. Uniquely, heterogeneous arrays, consisting of microneedles of diverse composition, can be easily produced on the same patch. Robustness of the process was demonstrated by incorporating and stabilizing adenovirus and MVA vaccines. Clinically-available trivalent inactivated influenza vaccine (TIV) in DMN patches is fully stable for greater than 6months at 40°C. Immunization using low dose TIV-loaded DMN patches induced significantly higher antibody responses compared to intramuscular-based immunization in mice. TIV-loaded patches also induced a broader, heterosubtypic neutralizing antibody response. By addressing issues that will be faced in large-scale fill-finish DMN fabrication processes and demonstrating superior thermostable characteristics and immunogenicity, this study progresses the translation of this microneedle platform to eventual clinical deployment.
Collapse
Affiliation(s)
- Anto Vrdoljak
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Evin A Allen
- School of Pharmacy, University College Cork, Cork, Ireland
| | | | | | - Abina M Crean
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Anne C Moore
- School of Pharmacy, University College Cork, Cork, Ireland; Department of Pharmacology, University College Cork, Cork, Ireland.
| |
Collapse
|
34
|
Microneedle patches for vaccination in developing countries. J Control Release 2015; 240:135-141. [PMID: 26603347 DOI: 10.1016/j.jconrel.2015.11.019] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/31/2015] [Accepted: 11/17/2015] [Indexed: 12/17/2022]
Abstract
Millions of people die of infectious diseases each year, mostly in developing countries, which could largely be prevented by the use of vaccines. While immunization rates have risen since the introduction of the Expanded Program on Immunization (EPI), there remain major challenges to more effective vaccination in developing countries. As a possible solution, microneedle patches containing an array of micron-sized needles on an adhesive backing have been developed to be used for vaccine delivery to the skin. These microneedle patches can be easily and painlessly applied by pressing against the skin and, in some designs, do not leave behind sharps waste. The patches are single-dose, do not require reconstitution, are easy to administer, have reduced size to simplify storage, transportation and waste disposal, and offer the possibility of improved vaccine immunogenicity, dose sparing and thermostability. This review summarizes vaccination challenges in developing countries and discusses advantages that microneedle patches offer for vaccination to address these challenges. We conclude that microneedle patches offer a powerful new technology that can enable more effective vaccination in developing countries.
Collapse
|
35
|
Bentley EM, Mather ST, Temperton NJ. The use of pseudotypes to study viruses, virus sero-epidemiology and vaccination. Vaccine 2015; 33:2955-62. [PMID: 25936665 PMCID: PMC7127415 DOI: 10.1016/j.vaccine.2015.04.071] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 04/11/2015] [Accepted: 04/20/2015] [Indexed: 01/23/2023]
Abstract
The globalization of the world's economies, accompanied by increasing international travel, changing climates, altered human behaviour and demographics is leading to the emergence of different viral diseases, many of which are highly pathogenic and hence are considered of great public and animal health importance. To undertake basic research and therapeutic development, many of these viruses require handling by highly trained staff in BSL-3/4 facilities not readily available to the majority of the global R&D community. In order to circumvent the enhanced biosafety requirement, the development of non-pathogenic, replication-defective pseudotyped viruses is an effective and established solution to permit the study of many aspects of virus biology in a low containment biosafety level (BSL)-1/2 laboratory. Under the spectre of the unfolding Ebola crisis, this timely conference (the second to be organised by the Viral Pseudotype Unit, www.viralpseudotypeunit.info*) discusses the recent advances in pseudotype technology and how it is revolutionizing the study of important human and animal pathogens (human and avian influenza viruses, rabies/lyssaviruses, HIV, Marburg and Ebola viruses). Key topics addressed in this conference include the exploitation of pseudotypes for serology and serosurveillance, immunogenicity testing of current and next-generation vaccines and new pseudotype assay formats (multiplexing, kit development). The first pseudotype-focused Euroscicon conference organised by the Viral Pseudotype Unit was recently reviewed [1].
Collapse
Affiliation(s)
- Emma M Bentley
- VPU Fitzrovia, Faculty of Science and Technology, University of Westminster, 115 New Cavendish Street, London W1W 6UW, United Kingdom
| | - Stuart T Mather
- VPU Medway, Medway School of Pharmacy, University of Kent, Anson Building, Central Avenue, Chatham Maritime, Kent ME4 4TB, United Kingdom
| | - Nigel J Temperton
- VPU Medway, Medway School of Pharmacy, University of Kent, Anson Building, Central Avenue, Chatham Maritime, Kent ME4 4TB, United Kingdom.
| |
Collapse
|
36
|
Becker PD, Hervouet C, Mason GM, Kwon SY, Klavinskis LS. Skin vaccination with live virus vectored microneedle arrays induce long lived CD8(+) T cell memory. Vaccine 2015; 33:4691-8. [PMID: 25917679 DOI: 10.1016/j.vaccine.2015.04.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 03/27/2015] [Accepted: 04/02/2015] [Indexed: 01/31/2023]
Abstract
A simple dissolvable microneedle array (MA) platform has emerged as a promising technology for vaccine delivery, due to needle-free injection with a formulation that preserves the immunogenicity of live viral vectored vaccines dried in the MA matrix. While recent studies have focused largely on design parameters optimized to induce primary CD8(+) T cell responses, the hallmark of a vaccine is synonymous with engendering long-lasting memory. Here, we address the capacity of dried MA vaccination to programme phenotypic markers indicative of effector/memory CD8(+) T cell subsets and also responsiveness to recall antigen benchmarked against conventional intradermal (ID) injection. We show that despite a slightly lower frequency of dividing T cell receptor transgenic CD8(+) T cells in secondary lymphoid tissue at an early time point, the absolute number of CD8(+) T cells expressing an effector memory (CD62L(-)CD127(+)) and central memory (CD62L(+)CD127(+)) phenotype during peak expansion were comparable after MA and ID vaccination with a recombinant human adenovirus type 5 vector (AdHu5) encoding HIV-1 gag. Similarly, both vaccination routes generated CD8(+) memory T cell subsets detected in draining LNs for at least two years post-vaccination capable of responding to secondary antigen. These data suggest that CD8(+) T cell effector/memory generation and long-term memory is largely unaffected by physical differences in vaccine delivery to the skin via dried MA or ID suspension.
Collapse
Affiliation(s)
- Pablo D Becker
- Peter Gorer Department of Immunobiology, Faculty of Life Sciences and Medicine, Kings's College London, London SE1 9RT, United Kingdom.
| | - Catherine Hervouet
- Peter Gorer Department of Immunobiology, Faculty of Life Sciences and Medicine, Kings's College London, London SE1 9RT, United Kingdom.
| | - Gavin M Mason
- Peter Gorer Department of Immunobiology, Faculty of Life Sciences and Medicine, Kings's College London, London SE1 9RT, United Kingdom.
| | | | - Linda S Klavinskis
- Peter Gorer Department of Immunobiology, Faculty of Life Sciences and Medicine, Kings's College London, London SE1 9RT, United Kingdom.
| |
Collapse
|
37
|
Multifunctional liposomes constituting microneedles induced robust systemic and mucosal immunoresponses against the loaded antigens via oral mucosal vaccination. Vaccine 2015; 33:4330-40. [PMID: 25858854 DOI: 10.1016/j.vaccine.2015.03.081] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 03/12/2015] [Accepted: 03/24/2015] [Indexed: 11/20/2022]
Abstract
To develop effective, convenient and stable mucosal vaccines, mannose-PEG-cholesterol (MPC)/lipid A-liposomes (MLLs) entrapping model antigen bovine serum albumin (BSA) were prepared by the procedure of emulsification-lyophilization and used to constitute microneedles, forming the proMLL-filled microneedle arrays (proMMAs). The proMMAs were rather stable and hard enough to pierce porcine skin and, upon rehydration, dissolved rapidly recovering the MLLs without size and entrapment change. The proMMAs given to mice via oral mucosal (o.m.) route, rather than routine intradermal administration, elicited robust systemic and mucosal immunoresponses against the loaded antigens as evidenced by high levels of BSA-specific IgG in the sera and IgA in the salivary, intestinal and vaginal secretions of mice. Enhanced levels of IgG2a and IFN-γ in treated mice revealed that proMMAs induced a mixed Th1/Th2 immunoresponse. Moreover, a significant increase in CD8(+) T cells confirmed that strong cellular immunity had also been established by the immunization of the proMMAs. Thus, the proMMAs can be immunized via o.m. route to set up an effective multiple defense against pathogen invasion and may be an effective vaccine adjuvant-delivery system (VADS) applicable in the controlled temperature chain.
Collapse
|
38
|
Pearson FE, O'Mahony C, Moore AC, Hill AVS. Induction of CD8(+) T cell responses and protective efficacy following microneedle-mediated delivery of a live adenovirus-vectored malaria vaccine. Vaccine 2015; 33:3248-55. [PMID: 25839104 DOI: 10.1016/j.vaccine.2015.03.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/17/2015] [Accepted: 03/12/2015] [Indexed: 12/11/2022]
Abstract
There is an urgent need for improvements in vaccine delivery technologies. This is particularly pertinent for vaccination programmes within regions of limited resources, such as those required for adequate provision for disposal of used needles. Microneedles are micron-sized structures that penetrate the stratum corneum of the skin, creating temporary conduits for the needle-free delivery of drugs or vaccines. Here, we aimed to investigate immunity induced by the recombinant simian adenovirus-vectored vaccine ChAd63.ME-TRAP; currently undergoing clinical assessment as a candidate malaria vaccine, when delivered percutaneously by silicon microneedle arrays. In mice, we demonstrate that microneedle-mediated delivery of ChAd63.ME-TRAP induced similar numbers of transgene-specific CD8(+) T cells compared to intradermal (ID) administration with needle-and-syringe, following a single immunisation and after a ChAd63/MVA heterologous prime-boost schedule. When mice immunised with ChAd63/MVA were challenged with live Plasmodium berghei sporozoites, microneedle-mediated ChAd63.ME-TRAP priming demonstrated equivalent protective efficacy as did ID immunisation. Furthermore, responses following ChAd63/MVA immunisation correlated with a specific design parameter of the array used ('total array volume'). The level of transgene expression at the immunisation site and skin-draining lymph node (dLN) was also linked to total array volume. These findings have implications for defining silicon microneedle array design for use with live, vectored vaccines.
Collapse
Affiliation(s)
- Frances E Pearson
- The Jenner Institute, University of Oxford, Roosevelt Drive, Oxford, United Kingdom.
| | - Conor O'Mahony
- Tyndall National Institute, Lee Maltings, University College Cork, Cork, Ireland.
| | - Anne C Moore
- School of Pharmacy, University College Cork, Cork, Ireland; Department of Pharmacology, University College Cork, Cork, Ireland.
| | - Adrian V S Hill
- The Jenner Institute, University of Oxford, Roosevelt Drive, Oxford, United Kingdom.
| |
Collapse
|
39
|
Animal models for cutaneous vaccine delivery. Eur J Pharm Sci 2015; 71:112-22. [PMID: 25686596 DOI: 10.1016/j.ejps.2015.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 02/04/2015] [Accepted: 02/05/2015] [Indexed: 12/20/2022]
Abstract
Main challenges in skin vaccination are overcoming the stratum corneum (SC) barrier and targeting the antigen presenting cells (APC) in the epidermis and the dermis. For this purpose many delivery techniques are being developed. In vivo immunogenicity and safety studies in animals are mandatory before moving to clinical trials. However, the results obtained in animals may or may not be predictive for humans. Knowledge about differences and similarities in skin architecture and immunology within a species and between species is crucial. In this review, we discuss variables, including skin morphology, skin barrier function, mechanical properties, site of application and immunology, which should be taken into account when designing animal studies for vaccination via the skin in order to support the translation to clinical trial outcomes.
Collapse
|
40
|
Wang T, Zhen Y, Ma X, Wei B, Li S, Wang N. Mannosylated and lipid A-incorporating cationic liposomes constituting microneedle arrays as an effective oral mucosal HBV vaccine applicable in the controlled temperature chain. Colloids Surf B Biointerfaces 2015; 126:520-30. [PMID: 25612819 DOI: 10.1016/j.colsurfb.2015.01.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 12/11/2014] [Accepted: 01/04/2015] [Indexed: 10/24/2022]
Abstract
To develop an effective, convenient and stable mucosal vaccine against hepatitis B virus (HBV), the mannose-PEG-cholesterol/lipid A-liposomes (MLLs) loaded with HBsAg were prepared by the procedure of emulsification-lyophilization and, subsequently, filled into the microholes of microneedle array reverse molds and dried to form the proHBsAg-MLLs microneedle arrays (proHMAs). The proHMAs were stable even at 40 °C for up to 3 days and hard enough to pierce porcine skin but, upon rehydration, rapidly dissolved recovering the HBsAg-MLLs without obvious changes in size and antigen association efficiency. Notably, immunization of mice only once with the proHMAs at oral mucosa induced robust systemic and widespread mucosal immunoresponses, as evidenced by the high levels of HBsAg-specific IgG in the sera and IgA in the salivary, intestinal and vaginal secretions. In addition, a strong cellular immunity against HBV had been established through a mixed Th1/Th2 response, as confirmed by a significant increase in CD8(+) T cells as well as the enhanced levels of IgG2a and IFN-γ in the treated mice. Thus, the proHMAs can be conveniently vaccinated via oral mucosal route to set up a multiple immune defense against HBV invasion and, in addition, may be a stable HBV vaccine applicable in the controlled temperature chain for wide distribution.
Collapse
Affiliation(s)
- Ting Wang
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province 230032, China.
| | - Yuanyuan Zhen
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province 230032, China
| | - Xiaoyu Ma
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province 230032, China
| | - Biao Wei
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province 230032, China
| | - Shuqin Li
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province 230032, China
| | - Ning Wang
- School of Medical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui Province 230009, China.
| |
Collapse
|
41
|
Paleco R, Vučen SR, Crean AM, Moore A, Scalia S. Enhancement of the in vitro penetration of quercetin through pig skin by combined microneedles and lipid microparticles. Int J Pharm 2014; 472:206-13. [DOI: 10.1016/j.ijpharm.2014.06.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/06/2014] [Accepted: 06/08/2014] [Indexed: 01/03/2023]
|
42
|
Carey JB, Vrdoljak A, O'Mahony C, Hill AVS, Draper SJ, Moore AC. Microneedle-mediated immunization of an adenovirus-based malaria vaccine enhances antigen-specific antibody immunity and reduces anti-vector responses compared to the intradermal route. Sci Rep 2014; 4:6154. [PMID: 25142082 PMCID: PMC4139947 DOI: 10.1038/srep06154] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 08/04/2014] [Indexed: 11/28/2022] Open
Abstract
Substantial effort has been placed in developing efficacious recombinant attenuated adenovirus-based vaccines. However induction of immunity to the vector is a significant obstacle to its repeated use. Here we demonstrate that skin-based delivery of an adenovirus-based malaria vaccine, HAdV5-PyMSP142, to mice using silicon microneedles induces equivalent or enhanced antibody responses to the encoded antigen, however it results in decreased anti-vector responses, compared to intradermal delivery. Microneedle-mediated vaccine priming and resultant induction of low anti-vector antibody titres permitted repeated use of the same adenovirus vaccine vector. This resulted in significantly increased antigen-specific antibody responses in these mice compared to ID-treated mice. Boosting with a heterologous vaccine; MVA-PyMSP142 also resulted in significantly greater antibody responses in mice primed with HAdV5-PyMSP142 using MN compared to the ID route. The highest protection against blood-stage malaria challenge was observed when a heterologous route of immunization (MN/ID) was used. Therefore, microneedle-mediated immunization has potential to both overcome some of the logistic obstacles surrounding needle-and-syringe-based immunization as well as to facilitate the repeated use of the same adenovirus vaccine thereby potentially reducing manufacturing costs of multiple vaccines. This could have important benefits in the clinical ease of use of adenovirus-based immunization strategies.
Collapse
Affiliation(s)
- John B Carey
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Anto Vrdoljak
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Conor O'Mahony
- The Tyndall National Institute, University College Cork, Cork, Ireland
| | | | | | - Anne C Moore
- 1] School of Pharmacy, University College Cork, Cork, Ireland [2] Dept. of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| |
Collapse
|
43
|
Quinn HL, Kearney MC, Courtenay AJ, McCrudden MTC, Donnelly RF. The role of microneedles for drug and vaccine delivery. Expert Opin Drug Deliv 2014; 11:1769-80. [PMID: 25020088 DOI: 10.1517/17425247.2014.938635] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Transdermal drug delivery offers a number of advantages for the patient, not only due to its non-invasive and convenient nature, but also due to factors such as avoidance of first-pass metabolism and prevention of gastrointestinal degradation. It has been demonstrated that microneedles (MNs) can increase the number of compounds amenable to transdermal delivery by penetrating the skin's protective barrier, the stratum corneum, and creating a pathway for drug permeation to the dermal tissue below. AREAS COVERED MNs have been extensively investigated for drug and vaccine delivery. The different types of MN arrays and their delivery capabilities are discussed in terms of drugs, including biopharmaceutics and vaccines. Patient usage and effects on the skin are also considered. EXPERT OPINION MN research and development is now at the stage where commercialisation is a viable possibility. There are a number of long-term safety questions relating to patient usage which will need to be addressed moving forward. Regulatory guidance is awaited to direct the scale-up of the manufacturing process alongside provision of clearer patient instruction for safe and effective use of MN devices.
Collapse
Affiliation(s)
- Helen L Quinn
- Queen's University Belfast, School of Pharmacy , 97 Lisburn Road, Belfast, BT9 7BL , UK
| | | | | | | | | |
Collapse
|
44
|
Wang N, Wang T, Zhang M, Chen R, Niu R, Deng Y. Mannose derivative and lipid A dually decorated cationic liposomes as an effective cold chain free oral mucosal vaccine adjuvant-delivery system. Eur J Pharm Biopharm 2014; 88:194-206. [PMID: 24769065 DOI: 10.1016/j.ejpb.2014.04.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/14/2014] [Accepted: 04/16/2014] [Indexed: 01/24/2023]
Abstract
To develop convenient, effective cold chain-free subunit vaccines, a mannose-PEG-cholesterol conjugate (MPC) was synthesized as a lectin binding molecule and anchored onto liposomes which entrapped lipid A and model antigen to form a vaccine adjuvant-delivery system targeting antigen presenting cells. With MPC, soy phosphatidylcholine, stearylamine and monophosphoryl lipid A as emulsifiers dissolved in oil phase (O), and sucrose and BSA in water phase (W), the O/W emulsions were prepared and subsequently lyophilized. The lyophilized product was stable enough to be stored at room temperature and, upon rehydration, formed MPC-/lipid A-liposomes (MLLs) with a size under 300 nm and antigen association rates of around 36%. The MLLs given to mice via oral mucosal (o.m.) administration showed no side effects but induced potent immune responses as evidenced by the high levels of IgG in the sera and IgA in the salivary, intestinal and vaginal secretions of mice. High levels of IgG2a and IFN-γ in treated mice revealed that MLLs via o.m. vaccination induced a mixed Th1/Th2 response against antigens, establishing both humoral and cellular immunity. Thus, the MLLs may be a potent cold chain-free oral mucosal vaccine adjuvant-delivery system.
Collapse
Affiliation(s)
- Ning Wang
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, China
| | - Ting Wang
- Department of Pharmacy, Anhui Medical University, Hefei, China; Department of Pharmacy, Jining Medical College, Sunshine City, China.
| | - Meiling Zhang
- Department of Pharmacy, Anhui Medical University, Hefei, China
| | - Ruonan Chen
- Department of Pharmacy, Anhui Medical University, Hefei, China
| | - Ruowen Niu
- Department of Pharmacy, Anhui Medical University, Hefei, China
| | - Yihui Deng
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
45
|
Depelsenaire ACI, Meliga SC, McNeilly CL, Pearson FE, Coffey JW, Haigh OL, Flaim CJ, Frazer IH, Kendall MAF. Colocalization of cell death with antigen deposition in skin enhances vaccine immunogenicity. J Invest Dermatol 2014; 134:2361-2370. [PMID: 24714201 PMCID: PMC4216316 DOI: 10.1038/jid.2014.174] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/28/2014] [Accepted: 04/01/2014] [Indexed: 01/31/2023]
Abstract
Vaccines delivered to the skin by microneedles – with and without adjuvants – have increased immunogenicity with lower doses than standard vaccine delivery techniques such as intramuscular (i.m.) or intradermal (i.d.) injection. However, the mechanisms behind this skin-mediated ‘adjuvant’ effect are not clear. Here, we show that the dynamic application of a microprojection array (the Nanopatch) to skin generates localized transient stresses invoking cell death around each projection. Nanopatch application caused significantly higher levels (~65-fold) of cell death in murine ear skin than i.d. injection using a hypodermic needle. Measured skin cell death is associated with modeled stresses ~1–10 MPa. Nanopatch-immunized groups also yielded consistently higher anti-IgG endpoint titers (up to 50-fold higher) than i.d. groups after delivery of a split virion influenza vaccine. Importantly, co-localization of cell death with nearby live skin cells and delivered antigen was necessary for immunogenicity enhancement. These results suggest a correlation between cell death caused by the Nanopatch with increased immunogenicity. We propose that the localized cell death serves as a ‘physical immune enhancer’ for the adjacent viable skin cells, which also receive antigen from the projections. This natural immune enhancer effect has the potential to mitigate or replace chemical-based adjuvants in vaccines.
Collapse
Affiliation(s)
- Alexandra C I Depelsenaire
- D2G2, The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, Australia
| | - Stefano C Meliga
- D2G2, The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, Australia
| | - Celia L McNeilly
- D2G2, The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, Australia
| | - Frances E Pearson
- D2G2, The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, Australia
| | - Jacob W Coffey
- D2G2, The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, Australia
| | - Oscar L Haigh
- D2G2, The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, Australia
| | - Christopher J Flaim
- D2G2, The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, Australia
| | - Ian H Frazer
- The University of Queensland, Diamantina Institute for Cancer, Brisbane, Queensland, Australia
| | - Mark A F Kendall
- D2G2, The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, Australia; The University of Queensland, Diamantina Institute for Cancer, Brisbane, Queensland, Australia; Faculty of Medicine and Biomedical Sciences, The University of Queensland, Centre for Clinical Research, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia.
| |
Collapse
|
46
|
Wang N, Wang T, Zhang M, Chen R, Deng Y. Using procedure of emulsification-lyophilization to form lipid A-incorporating cochleates as an effective oral mucosal vaccine adjuvant-delivery system (VADS). Int J Pharm 2014; 468:39-49. [PMID: 24704308 DOI: 10.1016/j.ijpharm.2014.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 03/07/2014] [Accepted: 04/02/2014] [Indexed: 12/22/2022]
Abstract
Using a procedure of emulsification-lyophilization (PEL), adjuvant lipid A-cochleates (LACs) were prepared as a carrier for model antigen bovine serum albumin (BSA). With phosphatidylserine and lipid A as emulsifiers dissolved in oil phase (O), sucrose and CaCl2 in the inner water phase (W1), and BSA, sucrose and PEG2000 in the outer water phase (W2), the W1/O/W2 emulsions were prepared and subsequently lyophilized to form a dry product which was stable enough to be stored at room temperature. Upon rehydration of the dry products, cochleates formed with a size of 800 nm and antigen association rates of 38%. After vaccination of mice through oral mucosal (o.m.) administration, LACs showed no side effects but induced potent immune responses as evidenced by high levels of IgG in the sera and IgA in the salivary, intestinal and vaginal secretions of mice. In addition, high levels of IgG2a and IFN-γ in the sera or culture supernatants of splenocytes of the immunized mice were also detected. These results revealed that LACs induced a mixed Th1/Th2 response against the loaded antigens. Thus, the LACs prepared by PEL were able to induce both systemic and mucosal immune responses and may act as a potent cold-chain-free oral mucosal vaccine adjuvant delivery system (VADS).
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/chemistry
- Administration, Oral
- Animals
- Cells, Cultured
- Chemistry, Pharmaceutical
- Drug Carriers
- Drug Stability
- Emulsions
- Excipients/chemistry
- Female
- Freeze Drying
- Immunity, Humoral/drug effects
- Immunity, Mucosal/drug effects
- Immunoglobulin A, Secretory/metabolism
- Immunoglobulin G/blood
- Interferon-gamma/metabolism
- Lipid A/administration & dosage
- Lipid A/chemistry
- Lipid A/immunology
- Mice
- Mouth Mucosa/drug effects
- Mouth Mucosa/immunology
- Particle Size
- Phagocytosis/drug effects
- Powders
- Serum Albumin, Bovine/administration & dosage
- Serum Albumin, Bovine/chemistry
- Serum Albumin, Bovine/immunology
- Technology, Pharmaceutical/methods
- Th1 Cells/drug effects
- Th1 Cells/immunology
- Th2 Cells/drug effects
- Th2 Cells/immunology
Collapse
Affiliation(s)
- Ning Wang
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Ting Wang
- Department of Pharmacy, Anhui Medical University, 81 Mei Hill Road, Hefei, Anhui Province 230032, China; Department of Pharmacy, Jining Medical College, 669 Xueyuan Road, Sunshine City, Shandong Province 276826, China.
| | - Meiling Zhang
- Department of Pharmacy, Anhui Medical University, 81 Mei Hill Road, Hefei, Anhui Province 230032, China
| | - Ruonan Chen
- Department of Pharmacy, Anhui Medical University, 81 Mei Hill Road, Hefei, Anhui Province 230032, China
| | - Yihui Deng
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China.
| |
Collapse
|
47
|
O’Mahony C. Structural characterization and in-vivo reliability evaluation of silicon microneedles. Biomed Microdevices 2014; 16:333-43. [DOI: 10.1007/s10544-014-9836-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Vučen SR, Vuleta G, Crean AM, Moore AC, Ignjatović N, Uskoković D. Improved percutaneous delivery of ketoprofen using combined application of nanocarriers and silicon microneedles. J Pharm Pharmacol 2013; 65:1451-62. [DOI: 10.1111/jphp.12118] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 06/20/2013] [Indexed: 01/01/2023]
Abstract
Abstract
Objectives
The aim of our study was to evaluate the effect of designing ketoprofen-loaded nanosized spheres and combining them with solid silicon microneedles for enhanced and sustained percutaneous drug delivery.
Methods
Ketoprofen-loaded nanoparticles (KET-NP) were designed by modified solvent displacement method, using poly (D, L-lactic acid) (PDLLA). All prepared nanoparticles were characterised with regard to their particle size distribution, morphology, surface properties, thermal behaviour, drug content, drug release and stability. In-vitro skin permeation studies were conducted on Franz-type diffusion cells using porcine skin treated with ImmuPatch silicon microneedles (Tyndall Nation Institute, Cork, Ireland).
Key findings
The study showed that uniform nanospheres were prepared with high encapsulation efficiency and retained stable for 2 months. After an initial burst release, the PDLLA nanoparticles were capable of sustaining and controlling ketoprofen release that followed Korsmeyer–Peppas kinetics. An enhanced flux of ketoprofen was observed in the skin treated with silicon microneedles over a prolonged period of time.
Conclusions
Following application of silicon microneedle arrays, KET-NP were able to enhance ketoprofen flux and supply the porcine skin with drug over a prolonged (24 h) period of time. Our findings indicate that the delivery strategy described here could be used for the further development of effective and painless administration systems for sustained percutaneous delivery of ketoprofen.
Collapse
Affiliation(s)
- Sonja R Vučen
- School of Pharmacy, University College Cork, Cork, UK
- Department of Pharmacy, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Gordana Vuleta
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Abina M Crean
- School of Pharmacy, University College Cork, Cork, UK
| | - Anne C Moore
- School of Pharmacy, University College Cork, Cork, UK
- Department of Pharmacology and Therapeutics, University College Cork, Cork, UK
| | - Nenad Ignjatović
- Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Dragan Uskoković
- Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Belgrade, Serbia
| |
Collapse
|
49
|
Pearson FE, McNeilly CL, Crichton ML, Primiero CA, Yukiko SR, Fernando GJP, Chen X, Gilbert SC, Hill AVS, Kendall MAF. Dry-coated live viral vector vaccines delivered by nanopatch microprojections retain long-term thermostability and induce transgene-specific T cell responses in mice. PLoS One 2013; 8:e67888. [PMID: 23874462 PMCID: PMC3706440 DOI: 10.1371/journal.pone.0067888] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/23/2013] [Indexed: 11/20/2022] Open
Abstract
The disadvantages of needle-based immunisation motivate the development of simple, low cost, needle-free alternatives. Vaccine delivery to cutaneous environments rich in specialised antigen-presenting cells using microprojection patches has practical and immunological advantages over conventional needle delivery. Additionally, stable coating of vaccine onto microprojections removes logistical obstacles presented by the strict requirement for cold-chain storage and distribution of liquid vaccine, or lyophilised vaccine plus diluent. These attributes make these technologies particularly suitable for delivery of vaccines against diseases such as malaria, which exerts its worst effects in countries with poorly-resourced healthcare systems. Live viral vectors including adenoviruses and poxviruses encoding exogenous antigens have shown significant clinical promise as vaccines, due to their ability to generate high numbers of antigen-specific T cells. Here, the simian adenovirus serotype 63 and the poxvirus modified vaccinia Ankara--two vectors under evaluation for the delivery of malaria antigens to humans--were formulated for coating onto Nanopatch microprojections and applied to murine skin. Co-formulation with the stabilising disaccharides trehalose and sucrose protected virions during the dry-coating process. Transgene-specific CD8(+) T cell responses following Nanopatch delivery of both vectors were similar to intradermal injection controls after a single immunisation (despite a much lower delivered dose), though MVA boosting of pre-primed responses with Nanopatch was found to be less effective than the ID route. Importantly, disaccharide-stabilised ChAd63 could be stored for 10 weeks at 37°C with less than 1 log10 loss of viability, and retained single-dose immunogenicity after storage. These data support the further development of microprojection patches for the deployment of live vaccines in hot climates.
Collapse
Affiliation(s)
- Frances E. Pearson
- Delivery of Drugs and Genes Group (D2G2), Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
- The Jenner Institute, The University of Oxford, Oxford, United Kingdom
| | - Celia L. McNeilly
- Delivery of Drugs and Genes Group (D2G2), Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Michael L. Crichton
- Delivery of Drugs and Genes Group (D2G2), Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
- Vaxxas Pty Ltd, Australian Institute for Bioengineering and Nanotechnology, Brisbane, Queensland, Australia
| | - Clare A. Primiero
- Delivery of Drugs and Genes Group (D2G2), Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Sally R. Yukiko
- Delivery of Drugs and Genes Group (D2G2), Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
- Vaxxas Pty Ltd, Australian Institute for Bioengineering and Nanotechnology, Brisbane, Queensland, Australia
| | - Germain J. P. Fernando
- Delivery of Drugs and Genes Group (D2G2), Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
- Vaxxas Pty Ltd, Australian Institute for Bioengineering and Nanotechnology, Brisbane, Queensland, Australia
| | - Xianfeng Chen
- Delivery of Drugs and Genes Group (D2G2), Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Sarah C. Gilbert
- The Jenner Institute, The University of Oxford, Oxford, United Kingdom
| | - Adrian V. S. Hill
- The Jenner Institute, The University of Oxford, Oxford, United Kingdom
| | - Mark A. F. Kendall
- Delivery of Drugs and Genes Group (D2G2), Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
- Diamantina Institute, The University of Queensland, Brisbane, Queensland, Australia
- Vaxxas Pty Ltd, Australian Institute for Bioengineering and Nanotechnology, Brisbane, Queensland, Australia
| |
Collapse
|
50
|
McGrath MG, Vucen S, Vrdoljak A, Kelly A, O'Mahony C, Crean AM, Moore A. Production of dissolvable microneedles using an atomised spray process: effect of microneedle composition on skin penetration. Eur J Pharm Biopharm 2013; 86:200-11. [PMID: 23727511 DOI: 10.1016/j.ejpb.2013.04.023] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 04/26/2013] [Accepted: 04/30/2013] [Indexed: 10/26/2022]
Abstract
Dissolvable microneedles offer an attractive delivery system for transdermal drug and vaccine delivery. They are most commonly formed by filling a microneedle mold with liquid formulation using vacuum or centrifugation to overcome the constraints of surface tension and solution viscosity. Here, we demonstrate a novel microneedle fabrication method employing an atomised spray technique that minimises the effects of the liquid surface tension and viscosity when filling molds. This spray method was successfully used to fabricate dissolvable microneedles (DMN) from a wide range of sugars (trehalose, fructose and raffinose) and polymeric materials (polyvinyl alcohol, polyvinylpyrrolidone, carboxymethylcellulose, hydroxypropylmethylcellulose and sodium alginate). Fabrication by spraying produced microneedles with amorphous content using single sugar compositions. These microneedles displayed sharp tips and had complete fidelity to the master silicon template. Using a method to quantify the consistency of DMN penetration into different skin layers, we demonstrate that the material of construction significantly influenced the extent of skin penetration. We demonstrate that this spraying method can be adapted to produce novel laminate-layered as well as horizontally-layered DMN arrays. To our knowledge, this is the first report documenting the use of an atomising spray, at ambient, mild processing conditions, to create dissolvable microneedle arrays that can possess novel, laminate layering.
Collapse
Affiliation(s)
| | - Sonja Vucen
- School of Pharmacy, University College Cork, Cork, Ireland.
| | - Anto Vrdoljak
- School of Pharmacy, University College Cork, Cork, Ireland.
| | - Adam Kelly
- School of Pharmacy, University College Cork, Cork, Ireland.
| | - Conor O'Mahony
- Tyndall National Institute, University College Cork, Cork, Ireland.
| | - Abina M Crean
- School of Pharmacy, University College Cork, Cork, Ireland.
| | - Anne Moore
- School of Pharmacy, University College Cork, Cork, Ireland; Dept. of Pharmacology, University College Cork, Cork, Ireland.
| |
Collapse
|