1
|
Costa RM, Acosta-Alvarez L, Curtis K, Zarbock K, Kelleher J, Lamichhane BS, Valesano AL, Fitzsimmons WJ, Lauring AS, Seger J, Adler FR, Potts WK. Influenza virus evolution and defective genome formation are shaped by host genotype and sex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.26.638946. [PMID: 40060519 PMCID: PMC11888471 DOI: 10.1101/2025.02.26.638946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Host-specific factors, including genetic background and sex, shape viral adaptation and influence virulence, yet their interactions and quantitative effects remain poorly understood. Additionally, multiple infections, where a host is infected with viruses from more than one source, are hypothesized to enhance viral diversity and increase virulence, but their impact in vertebrate hosts remains largely unexplored. We experimentally adapted influenza A virus (IAV) to male and female BALB/c and C57BL/6 mice under single and multiple infection conditions. Using a novel three-dimensional mapping approach, we identified genotype- and sex-specific selection hotspots that drive viral adaptation at multiple scales, from localized substitutions to broader structural changes. Our findings reveal that host genotype plays a dominant role in shaping viral evolution, with sex-dependent selection patterns observed in certain contexts. In BALB/c-adapted viruses, selection favored mutations at a specific site of a protein interface in females, whereas male-adapted lineages exhibited a more diffuse distribution of mutations across the same region. We further demonstrate that host genotype influences the formation of defective viral genomes (DVGs), with C57BL/6-adapted viruses accumulating significantly more and longer deletions, leading to reduced cytopathic effect and altered virulence trajectories. Multiple infections accelerated viral adaptation, increasing replication and mortality in a host-dependent manner. Adaptation to BALB/c hosts selected for high-virulence variants that maintained pathogenicity across diverse host backgrounds, whereas C57BL/6-adapted viruses exhibited attenuated virulence in novel hosts. These findings highlight the role of host genotype and sex in shaping viral evolution, reveal a previously unrecognized host-specific effect on DVG formation, and provide insights into how multiple infections drive the emergence of virulence-associated variants.
Collapse
Affiliation(s)
- Rodrigo M. Costa
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | | | - Kaili Curtis
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Kort Zarbock
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Justin Kelleher
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Bhawika S. Lamichhane
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Andrew L. Valesano
- Department of Internal Medicine and Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - William J. Fitzsimmons
- Department of Internal Medicine and Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Adam S. Lauring
- Department of Internal Medicine and Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Jon Seger
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Frederick R. Adler
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Wayne K. Potts
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
2
|
Ferous S, Siafakas N, Boufidou F, Patrinos GP, Tsakris A, Anastassopoulou C. Investigating ABO Blood Groups and Secretor Status in Relation to SARS-CoV-2 Infection and COVID-19 Severity. J Pers Med 2024; 14:346. [PMID: 38672973 PMCID: PMC11051264 DOI: 10.3390/jpm14040346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
The ABO blood groups, Lewis antigens, and secretor systems are important components of transfusion medicine. These interconnected systems have been also shown to be associated with differing susceptibility to bacterial and viral infections, likely as the result of selection over the course of evolution and the constant tug of war between humans and infectious microbes. This comprehensive narrative review aimed to explore the literature and to present the current state of knowledge on reported associations of the ABO, Lewis, and secretor blood groups with SARS-CoV-2 infection and COVID-19 severity. Our main finding was that the A blood group may be associated with increased susceptibility to SARS-CoV-2 infection, and possibly also with increased disease severity and overall mortality. The proposed pathophysiological pathways explaining this potential association include antibody-mediated mechanisms and increased thrombotic risk amongst blood group A individuals, in addition to altered inflammatory cytokine expression profiles. Preliminary evidence does not support the association between ABO blood groups and COVID-19 vaccine response, or the risk of developing long COVID. Even though the emergency state of the pandemic is over, further research is needed especially in this area since tens of millions of people worldwide suffer from lingering COVID-19 symptoms.
Collapse
Affiliation(s)
- Stefanos Ferous
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (S.F.); (A.T.)
| | - Nikolaos Siafakas
- Department of Clinical Microbiology, Attikon General Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Fotini Boufidou
- Neurochemistry and Biological Markers Unit, 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - George P. Patrinos
- Laboratory of Pharmacogenomics and Individualized Therapy, Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece;
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Athanasios Tsakris
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (S.F.); (A.T.)
| | - Cleo Anastassopoulou
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (S.F.); (A.T.)
| |
Collapse
|
3
|
Hardisty G, Nicol MQ, Shaw DJ, Bennet ID, Bryson K, Ligertwood Y, Schwarze J, Beard PM, Hopkins J, Dutia BM. Latent gammaherpesvirus infection enhances type I IFN response and reduces virus spread in an influenza A virus co-infection model. J Gen Virol 2024; 105. [PMID: 38329395 DOI: 10.1099/jgv.0.001962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024] Open
Abstract
Infections with persistent or latent viruses alter host immune homeostasis and have potential to affect the outcome of concomitant acute viral infections such as influenza A virus (IAV). Gammaherpesviruses establish life-long infections and require an on-going immune response to control reactivation. We have used a murine model of co-infection to investigate the response to IAV infection in mice latently infected with the gammaherpesvirus MHV-68. Over the course of infection, latently infected BALB/c mice showed less weight loss, clinical signs, pulmonary cellular infiltration and expression of inflammatory mediators than naïve mice infected with IAV and had significantly more activated CD8+ T cells in the lungs. Four days after IAV infection, virus spread in the lungs of latently infected animals was significantly lower than in naïve animals. By 7 days after IAV infection latently infected lungs express elevated levels of cytokines and chemokines indicating they are primed to respond to the secondary infection. Investigation at an early time point showed that 24 h after IAV infection co-infected animals had higher expression of IFNβ and Ddx58 (RIG-I) and a range of ISGs than mice infected with IAV alone suggesting that the type I IFN response plays a role in the protective effect. This effect was mouse strain dependent and did not occur in 129/Sv/Ev mice. These results offer insight into innate immune mechanisms that could be utilized to protect against IAV infection and highlight on-going and persistent viral infections as a significant factor impacting the severity of acute respiratory infections.
Collapse
Affiliation(s)
- Gareth Hardisty
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, 4-5 Little France Drive, Edinburgh. EH16 4UU, UK
| | - Marlynne Q Nicol
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Darren J Shaw
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Ian D Bennet
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Karen Bryson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Yvonne Ligertwood
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Jurgen Schwarze
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, 4-5 Little France Drive, Edinburgh. EH16 4UU, UK
| | - Philippa M Beard
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
- School of Life Sciences, Keele University, Keele, Staffordshire, ST5 5BF, UK
| | - John Hopkins
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Bernadette M Dutia
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| |
Collapse
|
4
|
NFκB1 Polymorphisms Are Associated with Severe Influenza A (H1N1) Virus Infection in a Canadian Population. Microorganisms 2022; 10:microorganisms10101886. [PMID: 36296162 PMCID: PMC9606957 DOI: 10.3390/microorganisms10101886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/24/2022] Open
Abstract
Background: We examined associations between NFκB1 polymorphisms and influenza A (H1N1) clinical outcomes in Canadian. Methods: A total of thirty-six Caucasian patients admitted to the intensive care unit (ICU) in hospitals in Canada were recruited during the 2009 H1N1 pandemic. Genomic DNA was extracted from the whole blood samples. The NFkB1 gene was targeted for genotyping using next-generation sequencing technology—Roche 454. Results: A total of 136 single nucleotide polymorphisms (SNPs) were discovered within the NFκB1 gene. Among them, 63 SNPs were significantly enriched in patients admitted in the ICU (p < 0.05) compared with the British Caucasian population in the 1000 Genomes study. These enriched SNPs are mainly intron variants, and only two are exon SNPs from the non-transcribing portion of the NFκB1 gene. Conclusions: Genetic variations in the NFκB1 gene could influence clinical outcomes of pandemic H1N1 infections. Our findings showed that sequence variations of the NFκB1 gene might influence patient response to influenza infection.
Collapse
|
5
|
Abstract
Infectious diseases have shaped the human population genetic structure, and genetic variation influences the susceptibility to many viral diseases. However, a variety of challenges have made the implementation of traditional human Genome-wide Association Studies (GWAS) approaches to study these infectious outcomes challenging. In contrast, mouse models of infectious diseases provide an experimental control and precision, which facilitates analyses and mechanistic studies of the role of genetic variation on infection. Here we use a genetic mapping cross between two distinct Collaborative Cross mouse strains with respect to severe acute respiratory syndrome coronavirus (SARS-CoV) disease outcomes. We find several loci control differential disease outcome for a variety of traits in the context of SARS-CoV infection. Importantly, we identify a locus on mouse chromosome 9 that shows conserved synteny with a human GWAS locus for SARS-CoV-2 severe disease. We follow-up and confirm a role for this locus, and identify two candidate genes, CCR9 and CXCR6, that both play a key role in regulating the severity of SARS-CoV, SARS-CoV-2, and a distantly related bat sarbecovirus disease outcomes. As such we provide a template for using experimental mouse crosses to identify and characterize multitrait loci that regulate pathogenic infectious outcomes across species. IMPORTANCE Host genetic variation is an important determinant that predicts disease outcomes following infection. In the setting of highly pathogenic coronavirus infections genetic determinants underlying host susceptibility and mortality remain unclear. To elucidate the role of host genetic variation on sarbecovirus pathogenesis and disease outcomes, we utilized the Collaborative Cross (CC) mouse genetic reference population as a model to identify susceptibility alleles to SARS-CoV and SARS-CoV-2 infections. Our findings reveal that a multitrait loci found in chromosome 9 is an important regulator of sarbecovirus pathogenesis in mice. Within this locus, we identified and validated CCR9 and CXCR6 as important regulators of host disease outcomes. Specifically, both CCR9 and CXCR6 are protective against severe SARS-CoV, SARS-CoV-2, and SARS-related HKU3 virus disease in mice. This chromosome 9 multitrait locus may be important to help identify genes that regulate coronavirus disease outcomes in humans.
Collapse
|
6
|
Schäfer A, Leist SR, Gralinski LE, Martinez DR, Winkler ES, Okuda K, Hawkins PE, Gully KL, Graham RL, Scobey DT, Bell TA, Hock P, Shaw GD, Loome JF, Madden EA, Anderson E, Baxter VK, Taft-Benz SA, Zweigart MR, May SR, Dong S, Clark M, Miller DR, Lynch RM, Heise MT, Tisch R, Boucher RC, Pardo Manuel de Villena F, Montgomery SA, Diamond MS, Ferris MT, Baric RS. A Multitrait Locus Regulates Sarbecovirus Pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.06.01.494461. [PMID: 35677067 PMCID: PMC9176644 DOI: 10.1101/2022.06.01.494461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Infectious diseases have shaped the human population genetic structure, and genetic variation influences the susceptibility to many viral diseases. However, a variety of challenges have made the implementation of traditional human Genome-wide Association Studies (GWAS) approaches to study these infectious outcomes challenging. In contrast, mouse models of infectious diseases provide an experimental control and precision, which facilitates analyses and mechanistic studies of the role of genetic variation on infection. Here we use a genetic mapping cross between two distinct Collaborative Cross mouse strains with respect to SARS-CoV disease outcomes. We find several loci control differential disease outcome for a variety of traits in the context of SARS-CoV infection. Importantly, we identify a locus on mouse Chromosome 9 that shows conserved synteny with a human GWAS locus for SARS-CoV-2 severe disease. We follow-up and confirm a role for this locus, and identify two candidate genes, CCR9 and CXCR6 that both play a key role in regulating the severity of SARS-CoV, SARS-CoV-2 and a distantly related bat sarbecovirus disease outcomes. As such we provide a template for using experimental mouse crosses to identify and characterize multitrait loci that regulate pathogenic infectious outcomes across species.
Collapse
|
7
|
Wang G, Lv C, Liu C, Shen W. Neutrophil-to-lymphocyte ratio as a potential biomarker in predicting influenza susceptibility. Front Microbiol 2022; 13:1003380. [PMID: 36274727 PMCID: PMC9583527 DOI: 10.3389/fmicb.2022.1003380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/20/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Human population exposed to influenza viruses exhibited wide variation in susceptibility. The ratio of neutrophils to lymphocytes (NLR) has been examined to be a marker of systemic inflammation. We sought to investigate the relationship between influenza susceptibility and the NLR taken before influenza virus infection. METHODS We investigated blood samples from five independent influenza challenge cohorts prior to influenza inoculation at the cellular level by using digital cytometry. We used multi-cohort gene expression analysis to compare the NLR between the symptomatic infected (SI) and asymptomatic uninfected (AU) subjects. We then used a network analysis approach to identify host factors associated with NLR and influenza susceptibility. RESULTS The baseline NLR was significantly higher in the SI group in both discovery and validation cohorts. The NLR achieved an AUC of 0.724 on the H3N2 data, and 0.736 on the H1N1 data in predicting influenza susceptibility. We identified four key modules that were not only significantly correlated with the baseline NLR, but also differentially expressed between the SI and AU groups. Genes within these four modules were enriched in pathways involved in B cell-mediated immune responses, cellular metabolism, cell cycle, and signal transduction, respectively. CONCLUSIONS This study identified the NLR as a potential biomarker for predicting disease susceptibility to symptomatic influenza. An elevated NLR was detected in susceptible hosts, who may have defects in B cell-mediated immunity or impaired function in cellular metabolism, cell cycle or signal transduction. Our work can serve as a comparative model to provide insights into the COVID-19 susceptibility.
Collapse
Affiliation(s)
- Guoyun Wang
- Department of Bioinformatics, Shantou University Medical College, Shantou, China
- Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
| | - Cheng Lv
- Department of Bioinformatics, Shantou University Medical College, Shantou, China
| | - Cheng Liu
- Department of Computer Science, Shantou University, Shantou, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou, China
| | - Wenjun Shen
- Department of Bioinformatics, Shantou University Medical College, Shantou, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou, China
- *Correspondence: Wenjun Shen
| |
Collapse
|
8
|
Yin L, Liu S, Shi H, Feng Y, Zhang Y, Wu D, Song Z, Zhang L. Subcellular Proteomic Analysis Reveals Dysregulation in Organization of Human A549 Cells Infected with Influenza Virus H7N9. CURR PROTEOMICS 2021. [DOI: 10.2174/1570164619666211222145450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
H7N9 influenza virus poses a high risk to human beings and proteomic evaluations of these infections may help to better understand its pathogenic mechanisms in human systems. Objective: To find membrane proteins related to H7N9 infection.
Methods:
Here, we infected primary human alveolar adenocarcinoma epithelial cells (A549) cells with H7N9 (including wild and mutant strains) and then produced enriched cellular membrane isolations which were evaluated by western blot. The proteins in these cell membrane fractions were analyzed using the isobaric Tags for Relative and Absolute Quantitation (iTRAQ) proteome technologies.
Results:
Differentially expressed proteins (n = 32) were identified following liquid chromatography-tandem mass spectrometry, including 20 down-regulated proteins such as CD44 antigen, and CD151 antigen, and 12 up-regulated proteins such as tight junction protein ZO-1, and prostaglandin reductase 1. Gene Ontology database searching revealed that 20 out of the 32 differentially expressed proteins were localized to the plasma membrane. These proteins were primarily associated with cellular component organization (n = 20), and enriched in the Reactome pathway of extracellular matrix organization (n = 4).
Conclusion:
These findings indicate that H7N9 may dysregulate cellular organization via specific alterations to the protein profile of the plasma membrane.
Collapse
Affiliation(s)
- Lin Yin
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Siyuan Liu
- The College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 201400, China
| | - Huichun Shi
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yanling Feng
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yujiao Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Dage Wu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Zhigang Song
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Lijun Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| |
Collapse
|
9
|
Van Goethem N, Danwang C, Bossuyt N, Van Oyen H, Roosens NHC, Robert A. A systematic review and meta-analysis of host genetic factors associated with influenza severity. BMC Genomics 2021; 22:912. [PMID: 34930124 PMCID: PMC8686082 DOI: 10.1186/s12864-021-08240-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/07/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The severity of influenza disease can range from mild symptoms to severe respiratory failure and can partly be explained by host genetic factors that predisposes the host to severe influenza. Here, we aimed to summarize the current state of evidence that host genetic variants play a role in the susceptibility to severe influenza infection by conducting a systematic review and performing a meta-analysis for all markers with at least three or more data entries. RESULTS A total of 34 primary human genetic association studies were identified that investigated a total of 20 different genes. The only significant pooled ORs were retrieved for the rs12252 polymorphism: an overall OR of 1.52 (95% CI [1.06-2.17]) for the rs12252-C allele compared to the rs12252-T allele. A stratified analysis by ethnicity revealed opposite effects in different populations. CONCLUSION With exception for the rs12252 polymorphism, we could not identify specific genetic polymorphisms to be associated with severe influenza infection in a pooled meta-analysis. This advocates for the use of large, hypothesis-free, genome-wide association studies that account for the polygenic nature and the interactions with other host, pathogen and environmental factors.
Collapse
Affiliation(s)
- Nina Van Goethem
- Scientific Directorate of Epidemiology and Public Health, Sciensano, J. Wytsmanstraat 14, 1050 Brussels, Belgium
- Department of Epidemiology and Biostatistics, Institut de Recherche Expérimentale et Clinique, Faculty of Public Health, Université Catholique de Louvain, Clos Chapelle-aux-champs 30, 1200 Brussels, Belgium
| | - Célestin Danwang
- Department of Epidemiology and Biostatistics, Institut de Recherche Expérimentale et Clinique, Faculty of Public Health, Université Catholique de Louvain, Clos Chapelle-aux-champs 30, 1200 Brussels, Belgium
| | - Nathalie Bossuyt
- Scientific Directorate of Epidemiology and Public Health, Sciensano, J. Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Herman Van Oyen
- Scientific Directorate of Epidemiology and Public Health, Sciensano, J. Wytsmanstraat 14, 1050 Brussels, Belgium
- Department of Public Health and Primary Care, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Nancy H. C. Roosens
- Transversal Activities in Applied Genomics, Sciensano, J. Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Annie Robert
- Department of Epidemiology and Biostatistics, Institut de Recherche Expérimentale et Clinique, Faculty of Public Health, Université Catholique de Louvain, Clos Chapelle-aux-champs 30, 1200 Brussels, Belgium
| |
Collapse
|
10
|
N-Glycomics of Human Erythrocytes. Int J Mol Sci 2021; 22:ijms22158063. [PMID: 34360826 PMCID: PMC8347577 DOI: 10.3390/ijms22158063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/29/2022] Open
Abstract
Glycosylation is a complex post-translational modification that conveys functional diversity to glycoconjugates. Cell surface glycosylation mediates several biological activities such as induction of the intracellular signaling pathway and pathogen recognition. Red blood cell (RBC) membrane N-glycans determine blood type and influence cell lifespan. Although several proteomic studies have been carried out, the glycosylation of RBC membrane proteins has not been systematically investigated. This work aims at exploring the human RBC N-glycome by high-sensitivity MALDI-MS techniques to outline a fingerprint of RBC N-glycans. To this purpose, the MALDI-TOF spectra of healthy subjects harboring different blood groups were acquired. Results showed the predominant occurrence of neutral and sialylated complex N-glycans with bisected N-acetylglucosamine and core- and/or antennary fucosylation. In the higher mass region, these species presented with multiple N-acetyllactosamine repeating units. Amongst the detected glycoforms, the presence of glycans bearing ABO(H) antigens allowed us to define a distinctive spectrum for each blood group. For the first time, advanced glycomic techniques have been applied to a comprehensive exploration of human RBC N-glycosylation, providing a new tool for the early detection of distinct glycome changes associated with disease conditions as well as for understanding the molecular recognition of pathogens.
Collapse
|
11
|
Satterfield BA, Dikilitas O, Kullo IJ. Leveraging the Electronic Health Record to Address the COVID-19 Pandemic. Mayo Clin Proc 2021; 96:1592-1608. [PMID: 34088418 PMCID: PMC8059945 DOI: 10.1016/j.mayocp.2021.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/17/2021] [Accepted: 04/08/2021] [Indexed: 01/08/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic continues its global spread. Coordinated effort on a vast scale is required to halt its progression and to save lives. Electronic health record (EHR) data are a valuable resource to mitigate the COVID-19 pandemic. We review how the EHR could be used for disease surveillance and contact tracing. When linked to "omics" data, the EHR could facilitate identification of genetic susceptibility variants, leading to insights into risk factors, disease complications, and drug repurposing. Real-time monitoring of patients could enable early detection of potential complications, informing appropriate interventions and therapy. We reviewed relevant articles from PubMed, MEDLINE, and Google Scholar searches as well as preprint servers, given the rapidly evolving understanding of the COVID-19 pandemic.
Collapse
Affiliation(s)
| | - Ozan Dikilitas
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Iftikhar J Kullo
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN; Gonda Vascular Center, Mayo Clinic, Rochester, MN.
| |
Collapse
|
12
|
Shelton JF, Shastri AJ, Ye C, Weldon CH, Filshtein-Sonmez T, Coker D, Symons A, Esparza-Gordillo J, Aslibekyan S, Auton A. Trans-ancestry analysis reveals genetic and nongenetic associations with COVID-19 susceptibility and severity. Nat Genet 2021; 53:801-808. [PMID: 33888907 DOI: 10.1038/s41588-021-00854-7] [Citation(s) in RCA: 172] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/22/2021] [Indexed: 01/08/2023]
Abstract
COVID-19 presents with a wide range of severity, from asymptomatic in some individuals to fatal in others. Based on a study of 1,051,032 23andMe research participants, we report genetic and nongenetic associations with testing positive for SARS-CoV-2, respiratory symptoms and hospitalization. Using trans-ancestry genome-wide association studies, we identified a strong association between blood type and COVID-19 diagnosis, as well as a gene-rich locus on chromosome 3p21.31 that is more strongly associated with outcome severity. Hospitalization risk factors include advancing age, male sex, obesity, lower socioeconomic status, non-European ancestry and preexisting cardiometabolic conditions. While non-European ancestry was a significant risk factor for hospitalization after adjusting for sociodemographics and preexisting health conditions, we did not find evidence that these two primary genetic associations explain risk differences between populations for severe COVID-19 outcomes.
Collapse
|
13
|
Person-to-Person Transmission of Avian Influenza A (H7N9) Among Family Members in Eastern China, 2016. Disaster Med Public Health Prep 2021; 15:164-169. [DOI: 10.1017/dmp.2020.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
ABSTRACTObjective:Human infections with avian influenza A (H7N9) virus are associated with exposure to poultry and live poultry markets, but the evidence of person-to-person transmission remains limited. This study reports a suspected person-to-person transmission of H7N9 virus, and explores what factors influenced this transmission.Methods:We interviewed 2 patients with H7N9 infection and their family members as well as health-care workers. Samples from the patients and environments were tested by real-time reverse transcription-polymerase chain reaction.Results:The index patient became ill 5 to 6 days after his last exposure to the poultry bought in the market of Weimiao town. The second patient, the sister of the index patient, who had sustained intensive and unprotected close contact with the index patient, had no exposure to poultry. This study documents that the H7N9 virus was transmitted directly from the index patient to his sister.Conclusions:Our findings suggest that person-to-person transmission may be associated with sustained close contact with the patient during his onset of early stage, when the H7N9 viral shedding increases sharply.
Collapse
|
14
|
Mehrbod P, Eybpoosh S, Farahmand B, Fotouhi F, Khanzadeh Alishahi M. Association of the host genetic factors, hypercholesterolemia and diabetes with mild influenza in an Iranian population. Virol J 2021; 18:64. [PMID: 33766078 PMCID: PMC7993858 DOI: 10.1186/s12985-021-01486-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 01/02/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Variation in host genetic factors may result in variation in the host immune response to the infection. Some chronic diseases may also affect individuals' susceptibility to infectious diseases. The aim of this study was to evaluate the association of the host genetic factors mostly involved in inflammation, as well as hypercholesterolemia and diabetes with mild flu in an Iranian population. METHODS In this cross-sectional study, nasopharyngeal swab samples were collected from 93 patients referred to primary care centers of Markazi, Semnan, and Zanjan provinces (central Iran) due to flu-like symptoms between March 2015 and December 2018. Of these, PCR test identified 49 influenza A/H1N1 and 44 flu-negative individuals. Twelve single-nucleotide polymorphisms (SNPs) in RPAIN, FCGR2A, MBL-2, CD55, C1QBP, IL-10, TNF-α and an unknown gene were genotyped using iPLEX GOLD SNP genotyping analysis. Hypercholesterolemia and diabetes status was determined based on the physician diagnosis. Association of the host genetic variants, hypercholesterolemia and diabetes with mild A/H1N1 flu was assessed with univariable and multivariable logistic regression analysis as implemented in Stata software (v.14). Statistical tests were considered as significant at 0.05 levels. RESULTS Frequency of diabetes and hypercholesterolemia, as well as participants mean age was significantly higher in the flu-negative rather than the flu-positive group. Of 12 SNPs, nine did not show any significant association with mild flu in our study (rs1801274, rs1800451, rs2564978, rs361525, rs1800450, rs1800871, rs1800872, rs1800896, rs1800629). Possessing G vs. A allele in two SNPs (rs3786054 and rs8070740) was associated with a threefold increase in the chance of mild flu when compared to flu-negative patients (95% CI: 1.1, 22.0). Possessing C allele (vs. A) in the rs9856661 locus also increased the chance of mild flu up to 2 folds (95% CI: 1.0, 10.0). CONCLUSION The results showed that possessing the G allele in either rs3786054 or rs8070740 loci in C1QBP and RPAIN genes, respectively, increased the risk of H1N1 infection up to 3.3 folds, regardless of the patient's age, BMI, diabetes, and hypercholesterolemia. Complementary functional genomic studies would shed more light on the underlying mechanism of human immunity associated with these genetic markers. The identified genetic factors may have the same role in susceptibility to similar respiratory infections with RNA viruses, like SARS, MERS and COVID-19. Future genetic association studies targeting these RNA viruses, especially COVID-19 is recommended. Studies on other ethnic groups would also shed light on possible ethnic variations in genetic susceptibility to respiratory RNA viruses. Trial registry IR.PII.REC.1399.063.
Collapse
Affiliation(s)
- Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran, Iran
| | - Sana Eybpoosh
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Behrokh Farahmand
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Fotouhi
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|
15
|
Aston EJ, Wang Y, Tracy KE, Gallardo RA, Lamont SJ, Zhou H. Comparison of cellular immune responses to avian influenza virus in two genetically distinct, highly inbred chicken lines. Vet Immunol Immunopathol 2021; 235:110233. [PMID: 33823380 DOI: 10.1016/j.vetimm.2021.110233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 12/24/2022]
Abstract
Low pathogenicity avian influenza causes mild disease involving the respiratory, gastrointestinal, and reproductive systems of wild and domestic birds. Avian influenza research often emphasizes the effect of the virus genetics on disease, but the influence of host genetics on resistance to infection is not well understood. The genetic determinants of enhanced resistance to influenza can be explored by using genetically distinct, highly inbred chicken lines that differ in susceptibility to influenza. In this study, we compared the mucosal cellular immune responses between the relatively resistant Fayoumi M43 chicken line and the relatively susceptible Leghorn GB2 chicken line after challenging with low pathogenicity avian influenza virus (LPAIV) H6N2. The birds were inoculated at 21 days of age with 107 50 % egg infective dose (EID50) LPAIV H6N2 via nasal and tracheal routes in two separate experiments. Clinical signs were recorded, tracheal swabs were collected to measure viral titer, and tracheas and lungs were harvested for flow cytometric analysis of macrophage, B cell, and T cell populations at 4 days post-infection (dpi) (Experiments 1 and 2) and 6 dpi (Experiment 2). Blood and tears were also collected at 7 and 14 dpi (Experiment 1) to measure antibody levels. Compared to both the non-challenged Fayoumis and the relatively susceptible Leghorn chickens, relatively resistant Fayoumi chickens challenged with LPAIV demonstrated enhanced MHC class I expression on antigen-presenting cells and increased macrophage, B cell, and T cell frequencies in the trachea, which were associated with reduced tracheal viral titers at 4 dpi. In contrast, MHC class I expression and immune cell frequencies in the trachea were not different between challenged Leghorns and non-challenged Leghorns. Furthermore, Leghorns shed higher virus titers in their trachea compared to Fayoumis. Challenged Fayoumis and Leghorns both produced AIV-specific IgY detected in the serum and tears, but AIV-specific IgA was not detected in the tears. In this study, we provide new insight into immune mechanisms of enhanced resistance to avian influenza in chickens, which may lead to improved vaccination strategies and breeding programs.
Collapse
Affiliation(s)
- Emily J Aston
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California-Davis, Davis, CA, United States
| | - Ying Wang
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California-Davis, Davis, CA, United States
| | - Karen E Tracy
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California-Davis, Davis, CA, United States
| | - Rodrigo A Gallardo
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, United States
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Huaijun Zhou
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California-Davis, Davis, CA, United States.
| |
Collapse
|
16
|
Lisowski ZM, Lefevre L, Mair TS, Clark EL, Hudson NPH, Hume DA, Pirie RS. Use of quantitative real-time PCR to determine the local inflammatory response in the intestinal mucosa and muscularis of horses undergoing small intestinal resection. Equine Vet J 2021; 54:52-62. [PMID: 33524178 DOI: 10.1111/evj.13429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 11/30/2020] [Accepted: 01/22/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Studies in rodents and humans have demonstrated that intestinal manipulation or surgical trauma initiates an inflammatory response in the intestine which results in leucocyte recruitment to the muscularis externa causing smooth muscle dysfunction. OBJECTIVES To examine the intestinal inflammatory response in horses undergoing colic surgery by measuring relative differential gene expression in intestinal tissues harvested from surgical colic cases and control horses. STUDY DESIGN Prospective case-control study. METHODS Mucosa and muscularis externa were harvested from healthy margins of resected small intestine from horses undergoing colic surgery (n = 12) and from intestine derived from control horses euthanised for reasons unrelated to the gastrointestinal tract (n = 6). Tissue was analysed for genes encoding proteins involved in the inflammatory response: interleukin (IL) 6 and IL1β, C-C motif chemokine ligand 2 (CCL2), tumour necrosis factor (TNF), prostaglandin-endoperoxide synthase 2 (PTGS2) and indoleamine 2,3-dioxygenase (IDO1). Relative expression of these genes was compared between the two groups. Further analysis was applied to the colic cases to determine whether the magnitude of relative gene expression was associated with the subsequent development of post-operative reflux (POR). RESULTS Samples obtained from colic cases had increased relative expression of IL1β, IL6, CCL2 and TNF in the mucosa and muscularis externa when compared with the control group. There was no difference in relative gene expression between proximal and distal resection margins and no association between duration of colic, age, resection length, short-term survival and the presence of pre-operative reflux and the relative expression of the genes of interest. Horses that developed POR had significantly greater relative gene expression of TNF in the mucosa compared with horses that did not develop POR. MAIN LIMITATIONS Small sample size per group and variation within the colic cases. CONCLUSIONS These preliminary data support an upregulation of inflammatory genes in the intestine of horses undergoing colic surgery.
Collapse
Affiliation(s)
- Zofia M Lisowski
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, UK
| | - Lucas Lefevre
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, UK
| | - Tim S Mair
- The Bell Equine Veterinary Clinic, Maidstone, UK
| | - Emily L Clark
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, UK
| | - Neil P H Hudson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, UK
| | - David A Hume
- Mater Research Institute-University of Queensland, South Brisbane, QLD, Australia
| | - R Scott Pirie
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, UK
| |
Collapse
|
17
|
He Z, Chin Y, Yu S, Huang J, Zhang CJP, Zhu K, Azarakhsh N, Sheng J, He Y, Jayavanth P, Liu Q, Akinwunmi BO, Ming WK. The Influence of Average Temperature and Relative Humidity on New Cases of COVID-19: Time-Series Analysis. JMIR Public Health Surveill 2021; 7:e20495. [PMID: 33232262 PMCID: PMC7836910 DOI: 10.2196/20495] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/12/2020] [Accepted: 10/24/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The influence of meteorological factors on the transmission and spread of COVID-19 is of interest and has not been investigated. OBJECTIVE This study aimed to investigate the associations between meteorological factors and the daily number of new cases of COVID-19 in 9 Asian cities. METHODS Pearson correlation and generalized additive modeling (GAM) were performed to assess the relationships between daily new COVID-19 cases and meteorological factors (daily average temperature and relative humidity) with the most updated data currently available. RESULTS The Pearson correlation showed that daily new confirmed cases of COVID-19 were more correlated with the average temperature than with relative humidity. Daily new confirmed cases were negatively correlated with the average temperature in Beijing (r=-0.565, P<.001), Shanghai (r=-0.47, P<.001), and Guangzhou (r=-0.53, P<.001). In Japan, however, a positive correlation was observed (r=0.416, P<.001). In most of the cities (Shanghai, Guangzhou, Hong Kong, Seoul, Tokyo, and Kuala Lumpur), GAM analysis showed the number of daily new confirmed cases to be positively associated with both average temperature and relative humidity, especially using lagged 3D modeling where the positive influence of temperature on daily new confirmed cases was discerned in 5 cities (exceptions: Beijing, Wuhan, Korea, and Malaysia). Moreover, the sensitivity analysis showed, by incorporating the city grade and public health measures into the model, that higher temperatures can increase daily new case numbers (beta=0.073, Z=11.594, P<.001) in the lagged 3-day model. CONCLUSIONS The findings suggest that increased temperature yield increases in daily new cases of COVID-19. Hence, large-scale public health measures and expanded regional research are still required until a vaccine becomes widely available and herd immunity is established.
Collapse
Affiliation(s)
- Zonglin He
- School of Medicine, Jinan University, Guangzhou, China
- Faculty of Medicine, International School, Jinan University, Guangzhou, China
| | - Yiqiao Chin
- Faculty of Medicine, International School, Jinan University, Guangzhou, China
| | - Shinning Yu
- Faculty of Medicine, International School, Jinan University, Guangzhou, China
| | - Jian Huang
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Casper J P Zhang
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Ke Zhu
- School of Medicine, Jinan University, Guangzhou, China
| | - Nima Azarakhsh
- International School, Jinan University, Guangzhou, China
| | - Jie Sheng
- College of Economics, Jinan University, Guangzhou, China
| | - Yi He
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | | | - Qian Liu
- National Media Experimental Teaching Demonstration Center, School of Journalism and Communication, Jinan University, Guangzhou, China
| | | | - Wai-Kit Ming
- School of Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
18
|
Xu F, Gao J, Bergmann S, Sims AC, Ashbrook DG, Baric RS, Cui Y, Jonsson CB, Li K, Williams RW, Schughart K, Lu L. Genetic Dissection of the Regulatory Mechanisms of Ace2 in the Infected Mouse Lung. Front Immunol 2021; 11:607314. [PMID: 33488611 PMCID: PMC7819859 DOI: 10.3389/fimmu.2020.607314] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/19/2020] [Indexed: 12/23/2022] Open
Abstract
Acute lung injury (ALI) is an important cause of morbidity and mortality after viral infections, including influenza A virus H1N1, SARS-CoV, MERS-CoV, and SARS-CoV-2. The angiotensin I converting enzyme 2 (ACE2) is a key host membrane-bound protein that modulates ALI induced by viral infection, pulmonary acid aspiration, and sepsis. However, the contributions of ACE2 sequence variants to individual differences in disease risk and severity after viral infection are not understood. In this study, we quantified H1N1 influenza-infected lung transcriptomes across a family of 41 BXD recombinant inbred strains of mice and both parents—C57BL/6J and DBA/2J. In response to infection Ace2 mRNA levels decreased significantly for both parental strains and the expression levels was associated with disease severity (body weight loss) and viral load (expression levels of viral NA segment) across the BXD family members. Pulmonary RNA-seq for 43 lines was analyzed using weighted gene co-expression network analysis (WGCNA) and Bayesian network approaches. Ace2 not only participated in virus-induced ALI by interacting with TNF, MAPK, and NOTCH signaling pathways, but was also linked with high confidence to gene products that have important functions in the pulmonary epithelium, including Rnf128, Muc5b, and Tmprss2. Comparable sets of transcripts were also highlighted in parallel studies of human SARS-CoV-infected primary human airway epithelial cells. Using conventional mapping methods, we determined that weight loss at two and three days after viral infection maps to chromosome X—the location of Ace2. This finding motivated the hierarchical Bayesian network analysis, which defined molecular endophenotypes of lung infection linked to Ace2 expression and to a key disease outcome. Core members of this Bayesian network include Ace2, Atf4, Csf2, Cxcl2, Lif, Maml3, Muc5b, Reg3g, Ripk3, and Traf3. Collectively, these findings define a causally-rooted Ace2 modulatory network relevant to host response to viral infection and identify potential therapeutic targets for virus-induced respiratory diseases, including those caused by influenza and coronaviruses.
Collapse
Affiliation(s)
- Fuyi Xu
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Jun Gao
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States.,Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Silke Bergmann
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Amy C Sims
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - David G Ashbrook
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Yan Cui
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Colleen B Jonsson
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Kui Li
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Robert W Williams
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Klaus Schughart
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States.,Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany.,University of Veterinary Medicine Hannover, Hannover, Germany
| | - Lu Lu
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
19
|
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is currently the most critical challenge in public health. An understanding of the factors that affect severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection will help fight the COVID-19 pandemic. This study sought to investigate the association between SARS-CoV-2 infection and blood type distribution. The big data provided by the World Health Organization (WHO) and Johns Hopkins University were used to assess the dynamics of the COVID-19 epidemic. The infection data in the early phase of the pandemic from six countries in each of six geographic zones divided according to the WHO were used, representing approximately 5.4 billion people around the globe. We calculated the infection growth factor, doubling times of infection and death cases, reproductive number and infection and death cases in relation to the blood type distribution. The growth factor of infection and death cases significantly and positively correlated with the proportion of the population with blood type A and negatively correlated with the proportion of the population with blood type B. Compared with the lower blood type A population (<30%), the higher blood type A population (⩾30%) showed more infection and death cases, higher growth factors and shorter case doubling times for infections and deaths and thus higher epidemic dynamics. Thus, an association exists between SARS-CoV-2 and the ABO blood group distribution, which might be useful for fighting the COVID-19 pandemic.
Collapse
|
20
|
Geller G, Duggal P, Thio CL, Mathews D, Kahn JP, Maragakis LL, Garibaldi BT. Genomics in the era of COVID-19: ethical implications for clinical practice and public health. Genome Med 2020; 12:95. [PMID: 33168072 PMCID: PMC7649891 DOI: 10.1186/s13073-020-00792-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/26/2020] [Indexed: 12/26/2022] Open
Abstract
Genomic studies of patients with COVID-19, or exposed to it, are underway to delineate host factors associated with variability in susceptibility, infectivity, and disease severity. Here, we highlight the ethical implications-both potential benefits and harms-of genomics for clinical practice and public health in the era of COVID-19.
Collapse
Affiliation(s)
- Gail Geller
- Berman Institute of Bioethics, Johns Hopkins University, Deering Hall, Room 202, 1809 Ashland Ave., Baltimore, MD, 21205, USA. .,Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD, 21205, USA.
| | - Priya Duggal
- Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD, 21205, USA
| | - Chloe L Thio
- Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Johns Hopkins School of Medicine Hepatitis Center, 855 N. Wolfe St. Rangos Room 533, Baltimore, MD, 21205, USA
| | - Debra Mathews
- Berman Institute of Bioethics, Johns Hopkins University, Deering Hall, Room 202, 1809 Ashland Ave., Baltimore, MD, 21205, USA.,Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeffrey P Kahn
- Berman Institute of Bioethics, Johns Hopkins University, Deering Hall, Room 202, 1809 Ashland Ave., Baltimore, MD, 21205, USA.,Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD, 21205, USA
| | - Lisa L Maragakis
- Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Johns Hopkins School of Medicine Infection Control, 600 N. Wolfe St., Osler 425, Baltimore, MD, 21205, USA
| | - Brian T Garibaldi
- Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Johns Hopkins University School of Medicine Pulmonology, 5501 Hopkins Bayview Circle, Baltimore, MD, 21224, USA
| |
Collapse
|
21
|
Ochoa EE, Huda R, Scheibel SF, Nichols JE, Mock DJ, El-Daher N, Domurat FM, Roberts NJ. HLA-associated protection of lymphocytes during influenza virus infection. Virol J 2020; 17:128. [PMID: 32831108 PMCID: PMC7444183 DOI: 10.1186/s12985-020-01406-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 08/18/2020] [Indexed: 01/18/2023] Open
Abstract
Background Heterozygosity at HLA class I loci is generally considered beneficial for host defense. We report here an element of HLA class I homozygosity that may or may not help preserve its existence in populations but which could indicate a new avenue for antiviral research. Methods Lymphocytes from serologically HLA-homozygous or -heterozygous donors were examined for synthesis of influenza virus proteins and RNA after exposure to virus as peripheral blood mononuclear cells. The virus-exposed lymphocytes were also examined for internalization of the virus after exposure, and for susceptibility to virus-specific cytotoxic T lymphocytes in comparison with virus-exposed monocytes/macrophages and unseparated peripheral blood mononuclear cells. Results were compared using two-tailed Fisher’s exact test. Results Serologically-defined HLA-A2-homozygous lymphocytes, in contrast to heterozygous lymphocytes, did not synthesize detectable influenza virus RNA or protein after exposure to the virus. HLA-A2-homozygous lymphocytes, including both homozygous and heterozygous donors by genetic sequence subtyping, did internalize infectious virus but were not susceptible to lysis by autologous virus-specific cytotoxic T lymphocytes (“fratricide”). Similar intrinsic resistance to influenza virus infection was observed with HLA-A1- and HLA-A11-homozygous lymphocytes and with HLA-B-homozygous lymphocytes. Conclusions A significant proportion of individuals within a population that is characterized by common expression of HLA class I alleles may possess lymphocytes that are not susceptible to influenza virus infection and thus to mutual virus-specific lysis. Further study may identify new approaches to limit influenza virus infection.
Collapse
Affiliation(s)
- Eliana E Ochoa
- Division of Infectious Diseases, Department of Internal Medicine and the Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ruksana Huda
- Division of Infectious Diseases, Department of Internal Medicine and the Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Steven F Scheibel
- Infectious Diseases Unit, University of Rochester School of Medicine, Rochester, NY, USA
| | - Joan E Nichols
- Division of Infectious Diseases, Department of Internal Medicine and the Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - David J Mock
- Infectious Diseases Unit, University of Rochester School of Medicine, Rochester, NY, USA
| | - Nayef El-Daher
- Infectious Diseases Unit, University of Rochester School of Medicine, Rochester, NY, USA
| | - Frank M Domurat
- Infectious Diseases Unit, University of Rochester School of Medicine, Rochester, NY, USA
| | - Norbert J Roberts
- Division of Infectious Diseases, Department of Internal Medicine and the Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA. .,Infectious Diseases Unit, University of Rochester School of Medicine, Rochester, NY, USA. .,Division of Infectious Diseases and Immunology, Department of Medicine, New York University School of Medicine, 462 First Ave, Room A619, New York, NY, 10016, USA.
| |
Collapse
|
22
|
Vidaña B, Brookes SM, Everett HE, Garcon F, Nuñez A, Engelhardt O, Major D, Hoschler K, Brown IH, Zambon M. Inactivated pandemic 2009 H1N1 influenza A virus human vaccines have different efficacy after homologous challenge in the ferret model. Influenza Other Respir Viruses 2020; 15:142-153. [PMID: 32779850 PMCID: PMC7767958 DOI: 10.1111/irv.12784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/06/2020] [Accepted: 06/21/2020] [Indexed: 01/01/2023] Open
Abstract
Background The 2009 pandemic H1N1 (A(H1N1)pdm09) influenza A virus (IAV) has replaced the previous seasonal H1N1 strain in humans and continues to circulate worldwide. The comparative performance of inactivated A(H1N1)pdm09 influenza vaccines remains of considerable interest. The objective of this study was to evaluate the efficacy of two licensed A(H1N1)pdm09 inactivated vaccines (AS03B adjuvanted split virion Pandemrix from GlaxoSmithKline and referred here as (V1) and non‐adjuvanted whole virion Celvapan from Baxter and referred here as (V2)) in ferrets as a pre‐clinical model for human disease intervention. Methods Naïve ferrets were divided into two groups (V1 and V2) and immunised intramuscularly with two different A/California/07/2009‐derived inactivated vaccines, V1 administered in a single dose and V2 administered in 2 doses separated by 21 days. Six weeks after the first immunisation, vaccinated animals and a non‐vaccinated control (NVC) group were intra‐nasally challenged with 106.5 TCID50 of the isolate A/England/195/2009 A(H1N1)pdm09 with 99.1% amino acid identity to the vaccine strain. Clinical signs, lung histopathology, viral quantification and antibody responses were evaluated. Results and Conclusions Results revealed important qualitative differences in the performance of both inactivated vaccines in relation to protection against challenge with a comparable virus in a naive animal (ferret) model of human disease. Vaccine V1 limited and controlled viral shedding and reduced lower respiratory tract infection. In contrast, vaccine V2 did not control infection and animals showed sustained viral shedding and delayed lower respiratory infection, resulting in pulmonary lesions, suggesting lower efficacy of V2 vaccine.
Collapse
Affiliation(s)
- Beatriz Vidaña
- Bristol Veterinary School, Faculty of Health Science, University of Bristol, Bristol, UK.,Pathology Department, Animal and Plant Health Agency, APHA-Weybridge, Addlestone, UK
| | - Sharon M Brookes
- Virology Department, Animal and Plant Health Agency, APHA-Weybridge, Addlestone, UK
| | - Helen E Everett
- Virology Department, Animal and Plant Health Agency, APHA-Weybridge, Addlestone, UK
| | - Fanny Garcon
- Virology Department, Animal and Plant Health Agency, APHA-Weybridge, Addlestone, UK.,Laboratoires Théa, Clermont-Ferrand, France
| | - Alejandro Nuñez
- Pathology Department, Animal and Plant Health Agency, APHA-Weybridge, Addlestone, UK
| | - Othmar Engelhardt
- National Institute for Biological Standards and Control, Potters Bar, UK
| | - Diane Major
- National Institute for Biological Standards and Control, Potters Bar, UK
| | | | - Ian H Brown
- Virology Department, Animal and Plant Health Agency, APHA-Weybridge, Addlestone, UK
| | | |
Collapse
|
23
|
Zhao B, Chen Y, Li M, Zhou J, Teng Z, Chen J, Zhao X, Wu H, Bai T, Mao S, Fang F, Chu W, Huang H, Huai C, Shen L, Zhou W, Sun L, Zheng X, Cheng G, Sun Y, Wang D, He L, Shu Y, Zhang X, Qin S. Novel susceptibility loci for A(H7N9) infection identified by next generation sequencing and functional analysis. Sci Rep 2020; 10:11768. [PMID: 32678187 PMCID: PMC7366728 DOI: 10.1038/s41598-020-68675-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 06/29/2020] [Indexed: 12/23/2022] Open
Abstract
The A(H7N9) virus strain that emerged in 2013 was associated with a high fatality rate and may become a long-term threat to public health. A(H7N9) disease incidence is disproportionate to viral exposure, suggesting that host genetic factors may significantly influence susceptibility to A(H7N9) infection. Human genome variation in conferring risk for A(H7N9) infection in Chinese populations was identified by a two-stage investigation involving 121 A(H7N9) patients and 187 healthy controls using next generation sequencing followed by functional analysis. As a result, a low frequency variant (rs189256251; P = 0.0303, OR = 3.45, 95% CI 1.05–11.35, chi-square test) and three HLA alleles (DQB1*06:01, DQA1*05:05 and C*12:02) were identified in A(H7N9) infected volunteers. In an A549 cell line carrying the rs189256251 variant CT genotype, A(H7N9) infection incidence was elevated 6.665-fold over control cells carrying the CC genotype. Serum levels of interferon alpha were significantly lower in patients with the CT genotype compared to the CC genotype (P = 0.01). The study findings of genetic predisposition to A(H7N9) in the Chinese population may be valuable in systematic investigations of A(H7N9) disease etiology.
Collapse
Affiliation(s)
- Baihui Zhao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, China.,Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200036, China
| | - Yongkun Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 510275, China
| | - Mo Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jianfang Zhou
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health Commission, Beijing, 102206, China
| | - Zheng Teng
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200036, China
| | - Jian Chen
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200036, China
| | - Xue Zhao
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200036, China
| | - Hao Wu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Tian Bai
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health Commission, Beijing, 102206, China
| | - Shenghua Mao
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200036, China
| | - Fanghao Fang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200036, China
| | - Wei Chu
- Shanghai Huangpu District Center for Disease Control and Prevention, Shanghai, 200023, China
| | - Hailiang Huang
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Cong Huai
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Lu Shen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Wei Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Liangdan Sun
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Xiaodong Zheng
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | | | - Ye Sun
- Jinan Infectious Disease Hospital, Jinan, 250021, China
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention China CDC, Beijing, 102206, China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 510275, China. .,National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health Commission, Beijing, 102206, China.
| | - Xi Zhang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200036, China.
| | - Shengying Qin
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, China. .,Collaborative Innovation Center, Jining Medical University, Jining, 272067, China.
| |
Collapse
|
24
|
Merchant R, Doctor P, Varaiya A. Molecular basis of susceptibility and protection from microbial infections. CLINICAL MOLECULAR MEDICINE 2020:403-421. [DOI: 10.1016/b978-0-12-809356-6.00023-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
25
|
Clohisey S, Baillie JK. Host susceptibility to severe influenza A virus infection. Crit Care 2019; 23:303. [PMID: 31488196 PMCID: PMC6729070 DOI: 10.1186/s13054-019-2566-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/13/2019] [Indexed: 11/30/2022] Open
Abstract
Most people exposed to a new flu virus do not notice any symptoms. A small minority develops critical illness. Some of this extremely broad variation in susceptibility is explained by the size of the initial inoculum or the influenza exposure history of the individual; some is explained by generic host factors, such as frailty, that decrease resilience following any systemic insult. Some demographic factors (pregnancy, obesity, and advanced age) appear to confer a more specific susceptibility to severe illness following infection with influenza viruses. As with other infectious diseases, a substantial component of susceptibility is determined by host genetics. Several genetic susceptibility variants have now been reported with varying levels of evidence. Susceptible hosts may have impaired intracellular controls of viral replication (e.g. IFITM3, TMPRS22 variants), defective interferon responses (e.g. GLDC, IRF7/9 variants), or defects in cell-mediated immunity with increased baseline levels of systemic inflammation (obesity, pregnancy, advanced age). These mechanisms may explain the prolonged viral replication reported in critically ill patients with influenza: patients with life-threatening disease are, by definition, abnormal hosts. Understanding these molecular mechanisms of susceptibility may in the future enable the design of host-directed therapies to promote resilience.
Collapse
Affiliation(s)
- Sara Clohisey
- Division of Genetics and Genomics, Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK
| | - John Kenneth Baillie
- Division of Genetics and Genomics, Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK.
- Intensive Care Unit, Royal Infirmary of Edinburgh, 54 Little France Drive, Edinburgh, EH16 5SA, UK.
| |
Collapse
|
26
|
Chandler JD, Hu X, Ko EJ, Park S, Fernandes J, Lee YT, Orr ML, Hao L, Smith MR, Neujahr DC, Uppal K, Kang SM, Jones DP, Go YM. Low-dose cadmium potentiates lung inflammatory response to 2009 pandemic H1N1 influenza virus in mice. ENVIRONMENT INTERNATIONAL 2019; 127:720-729. [PMID: 30999129 PMCID: PMC6536378 DOI: 10.1016/j.envint.2019.03.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/08/2019] [Accepted: 03/24/2019] [Indexed: 05/04/2023]
Abstract
Cadmium (Cd) is a toxic, pro-inflammatory metal ubiquitous in the diet that accumulates in body organs due to inefficient elimination. Responses to influenza virus infection are variable, particularly severity of pneumonia. We used a murine model of chronic low-dose oral exposure to Cd to test if increased lung tissue Cd worsened inflammation in response to sub-lethal H1N1 infection. The results show that Cd-treated mice had increased lung tissue inflammatory cells, including neutrophils, monocytes, T lymphocytes and dendritic cells, following H1N1 infection. Lung genetic responses to infection (increasing TNF-α, interferon and complement, and decreasing myogenesis) were also exacerbated. To reveal the organization of a network structure, pinpointing molecules critical to Cd-altered lung function, global correlations were made for immune cell counts, leading edge gene transcripts and metabolites. This revealed that Cd increased correlation of myeloid immune cells with pro-inflammatory genes, particularly interferon-γ and metabolites. Together, the results show that Cd burden in mice increased inflammation in response to sub-lethal H1N1 challenge, which was coordinated by genetic and metabolic responses, and could provide new targets for intervention against lethal inflammatory pathology of clinical H1N1 infection.
Collapse
Affiliation(s)
- Joshua D Chandler
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Atlanta, GA 30322, United States of America
| | - Xin Hu
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Atlanta, GA 30322, United States of America
| | - Eun-Ju Ko
- Center for Inflammation, Immunity and Infection, Georgia State University, Atlanta, GA 30303, United States of America
| | - Soojin Park
- Center for Inflammation, Immunity and Infection, Georgia State University, Atlanta, GA 30303, United States of America
| | - Jolyn Fernandes
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Atlanta, GA 30322, United States of America
| | - Young-Tae Lee
- Center for Inflammation, Immunity and Infection, Georgia State University, Atlanta, GA 30303, United States of America
| | - Michael L Orr
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Atlanta, GA 30322, United States of America
| | - Li Hao
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Atlanta, GA 30322, United States of America
| | - M Ryan Smith
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Atlanta, GA 30322, United States of America
| | - David C Neujahr
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Atlanta, GA 30322, United States of America
| | - Karan Uppal
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Atlanta, GA 30322, United States of America
| | - Sang-Moo Kang
- Center for Inflammation, Immunity and Infection, Georgia State University, Atlanta, GA 30303, United States of America
| | - Dean P Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Atlanta, GA 30322, United States of America.
| | - Young-Mi Go
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Atlanta, GA 30322, United States of America.
| |
Collapse
|
27
|
Wellington D, Laurenson-Schafer H, Abdel-Haq A, Dong T. IFITM3: How genetics influence influenza infection demographically. Biomed J 2019; 42:19-26. [PMID: 30987701 PMCID: PMC6468115 DOI: 10.1016/j.bj.2019.01.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/06/2018] [Accepted: 01/07/2019] [Indexed: 12/18/2022] Open
Abstract
The role of host genetics in influenza infection is unclear despite decades of interest. Confounding factors such as age, sex, ethnicity and environmental factors have made it difficult to assess the role of genetics without influence. In recent years a single nucleotide polymorphism, interferon-induced transmembrane protein 3 (IFITM3) rs12252, has been shown to alter the severity of influenza infection in Asian populations. In this review we investigate this polymorphism as well as several others suggested to alter the host's defence against influenza infection. In addition, we highlight the open questions surrounding the viral restriction protein IFITM3 with the hope that by answering some of these questions we can elucidate the mechanism of IFITM3 viral restriction and therefore how this restriction is altered due to the rs12252 polymorphism.
Collapse
Affiliation(s)
- Dannielle Wellington
- MRC Human Immunology Unit, WIMM, University of Oxford, OX3 9DS, UK; CAMS Oxford Institute, Nuffield Department of Medicine, Oxford University, OX3 9FZ, UK.
| | - Henry Laurenson-Schafer
- MRC Human Immunology Unit, WIMM, University of Oxford, OX3 9DS, UK; CAMS Oxford Institute, Nuffield Department of Medicine, Oxford University, OX3 9FZ, UK
| | - Adi Abdel-Haq
- MRC Human Immunology Unit, WIMM, University of Oxford, OX3 9DS, UK; Martin-Luther-University, Halle-Wittenberg, Germany
| | - Tao Dong
- MRC Human Immunology Unit, WIMM, University of Oxford, OX3 9DS, UK; CAMS Oxford Institute, Nuffield Department of Medicine, Oxford University, OX3 9FZ, UK.
| |
Collapse
|
28
|
Matos AR, Martins JSCC, Oliveira MDLA, Garcia CC, Siqueira MM. Human CCR5Δ32 (rs333) polymorphism has no influence on severity and mortality of influenza A(H1N1)pdm09 infection in Brazilian patients from the post pandemic period. INFECTION GENETICS AND EVOLUTION 2018; 67:55-59. [PMID: 30389547 DOI: 10.1016/j.meegid.2018.10.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/12/2018] [Accepted: 10/29/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Influenza is an acute and highly contagious viral respiratory infection that causes significant morbidity and mortality. The identification of host genetic factors associated with susceptibility and severity of influenza virus infection is of paramount importance. Previous studies evaluating the potential involvement of the CCR5Δ32 polymorphism (rs333), a 32 base pair deletion in CC motif chemokine receptor 5 (CCR5) gene, in severity and mortality of influenza A(H1N1)pdm09 infected individuals have been reported, but their results are quite conflicting. OBJECTIVES The aim of this study was the evaluation of the CCR5Δ32 frequency in individuals with mild, severe and fatal influenza A(H1N1)pdm09 infection and its putative association with clinical and epidemiologic data. PATIENTS/METHODS A total of 432 individuals were included in this study and classified according to their clinical status, into the following groups: influenza like illness (ILI) (n = 153); severe acute respiratory infection (SARI) (n = 173) and fatal (n = 106) cases. The samples were collected in the post pandemic period, from 2012 to 2018. Individuals were further stratified according to their clinical and epidemiological data. The CCR5Δ32 variant was genotyped by PCR amplification and a subset of samples was further submitted to Sanger sequencing. RESULTS The different clinical groups (ILI, SARI and fatal) presented similar distribution of wt/wt and wt/Δ32 genotypes and CCR5Δ32 allele frequencies. Genotype Δ32/Δ32 was not detected in our study. Additionally, no association between wt/wt and wt/Δ32 genotypes and dyspnea, a clinical factor for influenza complications was found. Similarly, no significant differences in the distribution of wt/wt and wt/Δ32 genotypes and CCR5Δ32 variant allele frequencies were observed in samples from the different Brazilian geographical regions. CONCLUSIONS The CCR5Δ32 variant does not influence the susceptibility to influenza A(H1N1)pdm09 severe disease or mortality in individuals from Brazil.
Collapse
Affiliation(s)
- Aline R Matos
- Laboratório de Vírus Respiratórios e do Sarampo, National Influenza Center (NIC)/World Health Organization (WHO), Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Brazil.
| | - Jéssica S C C Martins
- Laboratório de Vírus Respiratórios e do Sarampo, National Influenza Center (NIC)/World Health Organization (WHO), Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Brazil
| | - Maria de Lourdes A Oliveira
- Laboratório de Desenvolvimento Tecnológico em Virologia, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Brazil
| | - Cristiana C Garcia
- Laboratório de Vírus Respiratórios e do Sarampo, National Influenza Center (NIC)/World Health Organization (WHO), Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Brazil
| | - Marilda M Siqueira
- Laboratório de Vírus Respiratórios e do Sarampo, National Influenza Center (NIC)/World Health Organization (WHO), Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
29
|
Identification of complement-related host genetic risk factors associated with influenza A(H1N1)pdm09 outcome: challenges ahead. Med Microbiol Immunol 2018; 208:631-640. [PMID: 30306260 PMCID: PMC7102177 DOI: 10.1007/s00430-018-0567-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 10/03/2018] [Indexed: 10/28/2022]
Abstract
Influenza remains an important threat for human health, despite the extensive study of influenza viruses and the production of effective vaccines. In contrast to virus genetics determinants, host genetic factors with clinical impact remained unexplored until recently. The association between three single nucleotide polymorphisms (SNPs) and influenza outcome in a European population was investigated in the present study. All samples were collected during the influenza A(H1N1)pdm09 post-pandemic period 2010-11 and a sufficient number of severe and fatal cases was included. Host genomic DNA was isolated from pharyngeal samples of 110 patients from northern Greece with severe (n = 59) or mild (n = 51) influenza A(H1N1)pdm09 disease, at baseline, and the genotype of CD55 rs2564978, C1QBP rs3786054 and FCGR2A rs1801274 SNPs was investigated. Our findings suggest a relationship between the two complement-related SNPs, namely, the rare TT genotype of CD55 and the rare AA genotype of C1QBP with increased death risk. No significant differences were observed for FCGR2A genotypes neither with fatality nor disease severity. Additional large-scale genetic association studies are necessary for the identification of reliable host genetic risk factors associated with influenza A(H1N1)pdm09 outcome. Prophylactic intervention of additional high-risk populations, according to their genetic profile, will be a key achievement for the fight against influenza viruses.
Collapse
|
30
|
Haller O, Arnheiter H, Pavlovic J, Staeheli P. The Discovery of the Antiviral Resistance Gene Mx: A Story of Great Ideas, Great Failures, and Some Success. Annu Rev Virol 2018; 5:33-51. [PMID: 29958082 DOI: 10.1146/annurev-virology-092917-043525] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The discovery of the Mx gene-dependent, innate resistance of mice against influenza virus was a matter of pure chance. Although the subsequent analysis of this antiviral resistance was guided by straightforward logic, it nevertheless led us into many blind alleys and was full of surprising turns and twists. Unexpectedly, this research resulted in the identification of one of the first interferon-stimulated genes and provided a new view of interferon action. It also showed that in many species, MX proteins have activities against a broad range of viruses. To this day, Mx research continues to flourish and to provide insights into the never-ending battle between viruses and their hosts.
Collapse
Affiliation(s)
- Otto Haller
- Institute of Virology, Medical Center University of Freiburg, D-79104 Freiburg, Germany; .,Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| | - Heinz Arnheiter
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jovan Pavlovic
- Institute of Medical Virology, University of Zürich, 8057 Zürich, Switzerland
| | - Peter Staeheli
- Institute of Virology, Medical Center University of Freiburg, D-79104 Freiburg, Germany; .,Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
31
|
Prabhu SS, Chakraborty TT, Kumar N, Banerjee I. Association between IFITM3 rs12252 polymorphism and influenza susceptibility and severity: A meta-analysis. Gene 2018; 674:70-79. [PMID: 29940276 DOI: 10.1016/j.gene.2018.06.070] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 06/21/2018] [Indexed: 01/01/2023]
Abstract
Intrinsic host susceptibility to viral infections plays a major role in determining infection severity in different individuals. In human influenza virus infections, multiple genetic association studies have identified specific human gene variants that might contribute to enhanced susceptibility or resistance to influenza. Recent studies suggested, the rs12252 T > C polymorphism in the interferon-inducible transmembrane protein 3 (IFITM3) gene might be associated with susceptibility to severe influenza. However, the studies reported conflicting and inconclusive results. To resolve the controversy, we conducted a systematic meta-analysis to evaluate the role of the IFITM3 rs12252 polymorphism in influenza susceptibility and severity, including twelve studies published before February 19, 2018 with a total 16,263 subjects (1836 influenza cases and 14,427 controls). Odds ratios (OR) and 95% confidence intervals were used to assess the strength of the association. Our results indicated increased risk of both severe and mild influenza in subjects carrying the IFITM3 rs12252 polymorphism in the allele contrast C vs. T: OR (severe) = 1.69, 95% CI = 1.23-2.33, P = 0.001, and OR (mild) = 1.46, 95% CI = 1.13-1.87, P = 0.004. Similar results were obtained in the homozygote comparison and dominant model. Stratified analyses by ethnicity revealed increased risk of severe influenza in both the White and East Asian populations, but significant association with mild influenza was found only in the White population. Overall, our meta-analysis suggests a significant association between the IFITM3 rs12252 polymorphism and the risk of influenza in both the White and East Asian populations.
Collapse
Affiliation(s)
- Suchitra S Prabhu
- Cellular Virology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, India
| | - Trirupa Tapas Chakraborty
- Cellular Virology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, India
| | - Nirmal Kumar
- Cellular Virology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, India
| | - Indranil Banerjee
- Cellular Virology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, India.
| |
Collapse
|
32
|
Yudin NS, Barkhash AV, Maksimov VN, Ignatieva EV, Romaschenko AG. Human Genetic Predisposition to Diseases Caused by Viruses from Flaviviridae Family. Mol Biol 2018. [DOI: 10.1134/s0026893317050223] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Sambaturu N, Mukherjee S, López-García M, Molina-París C, Menon GI, Chandra N. Role of genetic heterogeneity in determining the epidemiological severity of H1N1 influenza. PLoS Comput Biol 2018; 14:e1006069. [PMID: 29561846 PMCID: PMC5880410 DOI: 10.1371/journal.pcbi.1006069] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 04/02/2018] [Accepted: 02/26/2018] [Indexed: 12/31/2022] Open
Abstract
Genetic differences contribute to variations in the immune response mounted by different individuals to a pathogen. Such differential response can influence the spread of infectious disease, indicating why such diseases impact some populations more than others. Here, we study the impact of population-level genetic heterogeneity on the epidemic spread of different strains of H1N1 influenza. For a population with known HLA class-I allele frequency and for a given H1N1 viral strain, we classify individuals into sub-populations according to their level of susceptibility to infection. Our core hypothesis is that the susceptibility of a given individual to a disease such as H1N1 influenza is inversely proportional to the number of high affinity viral epitopes the individual can present. This number can be extracted from the HLA genetic profile of the individual. We use ethnicity-specific HLA class-I allele frequency data, together with genome sequences of various H1N1 viral strains, to obtain susceptibility sub-populations for 61 ethnicities and 81 viral strains isolated in 2009, as well as 85 strains isolated in other years. We incorporate these data into a multi-compartment SIR model to analyse the epidemic dynamics for these (ethnicity, viral strain) epidemic pairs. Our results show that HLA allele profiles which lead to a large spread in individual susceptibility values can act as a protective barrier against the spread of influenza. We predict that populations skewed such that a small number of highly susceptible individuals coexist with a large number of less susceptible ones, should exhibit smaller outbreaks than populations with the same average susceptibility but distributed more uniformly across individuals. Our model tracks some well-known qualitative trends of influenza spread worldwide, suggesting that HLA genetic diversity plays a crucial role in determining the spreading potential of different influenza viral strains across populations. Levels of immunity to strains of H1N1 influenza can vary, depending on the individual. This strongly influences how the disease spreads in a population. Accounting for such variations is a major challenge for the epidemiology of infectious diseases. We study the effect of population-level genetic heterogeneity on the epidemic spread of different strains of H1N1 influenza. We model the immune response of specific ethnicities to a number of H1N1 viral strains, using this information to study disease spread for these (ethnicity, viral strain) epidemic pairs. Our results show that larger genetic diversity at the level of immune response, leading to the presence of susceptibility sub-populations with a broad distribution of susceptibilities, protects against the spread of influenza in a population. We also show that populations with a small number of highly susceptible individuals, but with a large number of less susceptible ones, should exhibit smaller outbreaks than populations with the same average susceptibility but where it is more uniformly distributed. Our work captures some qualitative trends of influenza spread worldwide, providing a first attempt at understanding how susceptibility heterogeneities arising from variations in immune response determine disease spread in populations.
Collapse
Affiliation(s)
- Narmada Sambaturu
- IISc Mathematics Initiative, Indian Institute of Science, Bangalore, Karnataka, India
| | - Sumanta Mukherjee
- IISc Mathematics Initiative, Indian Institute of Science, Bangalore, Karnataka, India
| | - Martín López-García
- Department of Applied Mathematics, University of Leeds, Leeds, United Kingdom
| | - Carmen Molina-París
- Department of Applied Mathematics, University of Leeds, Leeds, United Kingdom
| | - Gautam I. Menon
- Computational Biology and Theoretical Physics groups, The Institute of Mathematical Sciences, Chennai, Tamil Nadu, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, Maharashtra, India
- * E-mail: (NC); (GIM)
| | - Nagasuma Chandra
- IISc Mathematics Initiative, Indian Institute of Science, Bangalore, Karnataka, India
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka, India
- * E-mail: (NC); (GIM)
| |
Collapse
|
34
|
David S, Correia V, Antunes L, Faria R, Ferrão J, Faustino P, Nunes B, Maltez F, Lavinha J, Rebelo de Andrade H. Population genetics of IFITM3 in Portugal and Central Africa reveals a potential modifier of influenza severity. Immunogenetics 2018; 70:169-177. [PMID: 28842783 DOI: 10.1007/s00251-017-1026-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/04/2017] [Indexed: 12/29/2022]
Abstract
Influenza epidemics are a serious global public health and economic problem. The IFITM3 allele (rs12252-C) was suggested as a population-based genetic risk factor for severe influenza virus infection by A(H1N1)pdm09. We analyzed the population genetics of IFITM3 variants in the Portuguese general population (n = 200) and Central Africans (largely Angolan) (n = 148) as well as its association to influenza severity in Portuguese patients (n = 41). Seven SNPs, within the 352 bp IFITM3 amplicon around rs12252, were identified. SNP distributions in the Portuguese appeared at an intermediate level between the Africans and other Europeans. According to HapMap, rs34481144 belongs to the same linkage disequilibrium (LD) block as rs12252 and is in strong LD with rs6421983. A negative association with severe relative to mild disease was observed for allele rs34481144-A, indicating a protective effect under the dominant model. Moreover, haplotype Hap4 with rs34481144-A, not including rs12252-C, was significantly associated to mild influenza. Conversely, although with borderline significance, haplotype Hap1 with rs34481144-G, not including rs12252-C, was associated to severe disease. Moreover, in comparison to the general Portuguese population, statistical significant differences in the frequencies of the protective allele rs34481144-A in the severe disease group, the deleterious Hap1 in the mild disease group, and the protective Hap4 in the severe disease group were observed. The population attributable risk (PAR) for the targeted rs34481144 allele or genotype was of 55.91 and 64.44% in the general population and the mildly infected individuals, respectively. Implication of these variants in disease phenotype needs further validation, namely through functional analysis as is discussed.
Collapse
Affiliation(s)
- Susana David
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisbon, Portugal.
- Centro de Estudos de Ciência Animal, Instituto de Ciências e Tecnologias Agrárias e Agro-Alimentares, Universidade do Porto, Porto, Portugal.
| | - Vanessa Correia
- Departamento de Doenças Infeciosas, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal
| | - Liliana Antunes
- Departamento de Epidemiologia, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal
| | - Ricardo Faria
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisbon, Portugal
| | - José Ferrão
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisbon, Portugal
| | - Paula Faustino
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisbon, Portugal
- ISAMB, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Baltazar Nunes
- Departamento de Epidemiologia, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal
| | - Fernando Maltez
- Serviço de Doenças Infeciosas, Hospital de Curry Cabral, Centro Hospitalar de Lisboa Central, Lisbon, Portugal
| | - João Lavinha
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisbon, Portugal
- BioISI, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Helena Rebelo de Andrade
- Departamento de Doenças Infeciosas, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal
- Centro de Patogénese Molecular-Retrovirus e Infeções Associadas (CPM-URIA), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
35
|
Mehrbod P, Eybpoosh S, Fotouhi F, Shokouhi Targhi H, Mazaheri V, Farahmand B. Association of IFITM3 rs12252 polymorphisms, BMI, diabetes, and hypercholesterolemia with mild flu in an Iranian population. Virol J 2017; 14:218. [PMID: 29121968 PMCID: PMC5680824 DOI: 10.1186/s12985-017-0884-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 10/31/2017] [Indexed: 11/10/2022] Open
Abstract
Background IFITM3 has been suggested to be associated with infection in some ethnic groups. Diabetes and hypercholesterolemia are also important clinical conditions that can predispose individuals to infection. The aim of this study was to investigate the association of rs12252 C polymorphism, BMI, diabetes, and hypercholesterolemia with mild flu in an Iranian population. Methods We conducted a case-control study, including 79 mild flu and 125 flu-negative individuals attending primary care centers of three provinces of Iran (i.e, Markazi, Semnan, and Zanjan). Pharyngeal swab specimens were collected from all participants, and were subjected to RNA and DNA extractions for Real-time PCR and PCR tests. All PCR products were then sequenced to find T/C polymorphisms in the rs12252 region. Data on demographic, anthropometric, and clinical variables were collected from participants’ medical records available in the primary care centers. The data was analyzed using DNASIS (v. 2.5) and Stata (v.11) software. Results All participants were of Fars ethnic background. The allele frequency for rs12252-C was found to be 9.49% among cases and 2.40% among controls. Carriers of the rs12252 C allele (CT + CC genotypes) showed 5.92 folds increase in the risk of mild flu comparing to the T allele homozygotes (P value: 0.007). We also found a significant positive association between rs12252 C allele heterozygote and mild flu (OR: 7.62, P value: 0.008), but not in C allele homozygote group (OR: 2.71, P value: 0.406). Similarly, we did not find a significant association between mild flu and BMI (OR: 1.06, P value: 0.087), diabetes (OR: 0.61, P value: 0.392), and hypercholesterolemia (OR: 0.50, P value: 0.393) in multivariable logistic regression. Conclusions This is the first study evaluating the association between rs12252 polymorphisms, diabetes, hypercholesterolemia, and BMI and susceptibility to mild flu in an Iranian population. Our results suggest a significant positive association between mild flu and rs12252 C allele heterozygous and carriage. Future replication of the strong association observed here between rs12252 C allele carriage and mild flu might candidate this polymorphism as a genetic marker for early screening of susceptibility to mild flu. Lack of significant association between C allele homozygous and mild flu, observed in this study, might be the result of small sample size in this group. Trial registration IR.PII.REC.1395.3. Electronic supplementary material The online version of this article (10.1186/s12985-017-0884-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Parvaneh Mehrbod
- Influenza and Other Respiratory Viruses Department, Pasteur Institute of Iran, Tehran, Iran
| | - Sana Eybpoosh
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Fotouhi
- Influenza and Other Respiratory Viruses Department, Pasteur Institute of Iran, Tehran, Iran
| | | | - Vahideh Mazaheri
- Influenza and Other Respiratory Viruses Department, Pasteur Institute of Iran, Tehran, Iran
| | - Behrokh Farahmand
- Influenza and Other Respiratory Viruses Department, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
36
|
Protein profiling of nasopharyngeal aspirates of hospitalized and outpatients revealed cytokines associated with severe influenza A(H1N1)pdm09 virus infections: A pilot study. Cytokine 2016; 86:10-14. [DOI: 10.1016/j.cyto.2016.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/04/2016] [Accepted: 07/05/2016] [Indexed: 12/19/2022]
|
37
|
Using Clinical Trial Simulators to Analyse the Sources of Variance in Clinical Trials of Novel Therapies for Acute Viral Infections. PLoS One 2016; 11:e0156622. [PMID: 27332704 PMCID: PMC4917234 DOI: 10.1371/journal.pone.0156622] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/17/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND About 90% of drugs fail in clinical development. The question is whether trials fail because of insufficient efficacy of the new treatment, or rather because of poor trial design that is unable to detect the true efficacy. The variance of the measured endpoints is a major, largely underestimated source of uncertainty in clinical trial design, particularly in acute viral infections. We use a clinical trial simulator to demonstrate how a thorough consideration of the variability inherent in clinical trials of novel therapies for acute viral infections can improve trial design. METHODS AND FINDINGS We developed a clinical trial simulator to analyse the impact of three different types of variation on the outcome of a challenge study of influenza treatments for infected patients, including individual patient variability in the response to the drug, the variance of the measurement procedure, and the variance of the lower limit of quantification of endpoint measurements. In addition, we investigated the impact of protocol variation on clinical trial outcome. We found that the greatest source of variance was inter-individual variability in the natural course of infection. Running a larger phase II study can save up to $38 million, if an unlikely to succeed phase III trial is avoided. In addition, low-sensitivity viral load assays can lead to falsely negative trial outcomes. CONCLUSIONS Due to high inter-individual variability in natural infection, the most important variable in clinical trial design for challenge studies of potential novel influenza treatments is the number of participants. 100 participants are preferable over 50. Using more sensitive viral load assays increases the probability of a positive trial outcome, but may in some circumstances lead to false positive outcomes. Clinical trial simulations are powerful tools to identify the most important sources of variance in clinical trials and thereby help improve trial design.
Collapse
|
38
|
Ruiz-Hernandez R, Mwangi W, Peroval M, Sadeyen JR, Ascough S, Balkissoon D, Staines K, Boyd A, McCauley J, Smith A, Butter C. Host genetics determine susceptibility to avian influenza infection and transmission dynamics. Sci Rep 2016; 6:26787. [PMID: 27279280 PMCID: PMC4899695 DOI: 10.1038/srep26787] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 05/09/2016] [Indexed: 12/22/2022] Open
Abstract
Host-genetic control of influenza virus infection has been the object of little attention. In this study we determined that two inbred lines of chicken differing in their genetic background , Lines 0 and C-B12, were respectively relatively resistant and susceptible to infection with the low pathogenicity influenza virus A/Turkey/England/647/77 as defined by substantial differences in viral shedding trajectories. Resistant birds, although infected, were unable to transmit virus to contact birds, as ultimately only the presence of a sustained cloacal shedding (and not oropharyngeal shedding) was critical for transmission. Restriction of within-bird transmission of virus occurred in the resistant line, with intra-nares or cloacal infection resulting in only local shedding and failing to transmit fully through the gastro-intestinal-pulmonary tract. Resistance to infection was independent of adaptive immune responses, including the expansion of specific IFNγ secreting cells or production of influenza-specific antibody. Genetic resistance to a novel H9N2 virus was less robust, though significant differences between host genotypes were still clearly evident. The existence of host-genetic determination of the outcome of influenza infection offers tools for the further dissection of this regulation and also for understanding the mechanisms of influenza transmission within and between birds.
Collapse
Affiliation(s)
- Raul Ruiz-Hernandez
- Avian Viral Diseases program, The Pirbright Institute, Compton Laboratory, Newbury, United Kingdom
| | - William Mwangi
- Avian Viral Diseases program, The Pirbright Institute, Compton Laboratory, Newbury, United Kingdom
| | - Marylene Peroval
- Avian Viral Diseases program, The Pirbright Institute, Compton Laboratory, Newbury, United Kingdom
| | - Jean-Remy Sadeyen
- Avian Viral Diseases program, The Pirbright Institute, Compton Laboratory, Newbury, United Kingdom
| | - Stephanie Ascough
- Avian Viral Diseases program, The Pirbright Institute, Compton Laboratory, Newbury, United Kingdom
| | - Devanand Balkissoon
- Avian Viral Diseases program, The Pirbright Institute, Compton Laboratory, Newbury, United Kingdom
| | - Karen Staines
- Avian Viral Diseases program, The Pirbright Institute, Compton Laboratory, Newbury, United Kingdom
| | - Amy Boyd
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - John McCauley
- Crick Worldwide Influenza Centre, The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - Adrian Smith
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Colin Butter
- Avian Viral Diseases program, The Pirbright Institute, Compton Laboratory, Newbury, United Kingdom
| |
Collapse
|
39
|
Basile K, Dwyer DE, Kok J. Fat and flu: fact or fiction? Future Virol 2016. [DOI: 10.2217/fvl-2016-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel risk factors for severe influenza infection were described during the early phases of the influenza pandemic of 2009. Worldwide, the rate of severe influenza in the obese and morbidly obese population was disproportionate to that of the general population. This risk factor has now been recognized presumably due to the increasing prevalence of obesity. The cause behind this trend may extend beyond the known deleterious effects of obesity on respiratory physiology, as emerging evidence in animal models demonstrate A(H1N1)pdm09 itself confers worse outcomes compared with seasonal influenza subtypes. Currently, uncertainty remains regarding the optimal antiviral regimen and vaccination strategies in obese individuals. Therefore, further studies on the effects of obesity on influenza infection need to be prioritized.
Collapse
Affiliation(s)
- Kerri Basile
- Centre for Infectious Diseases & Microbiology Laboratory Services, Institute of Clinical Pathology & Medical Research, Westmead Hospital, University of Sydney, Westmead, New South Wales, Australia
- Marie Bashir Institute for Infectious Diseases & Biosecurity, Westmead Hospital, University of Sydney, Westmead, New South Wales, Australia
- Centre for Research Excellence in Critical Infections, Westmead Hospital, University of Sydney, Westmead, New South Wales, Australia
| | - Dominic E Dwyer
- Centre for Infectious Diseases & Microbiology Laboratory Services, Institute of Clinical Pathology & Medical Research, Westmead Hospital, University of Sydney, Westmead, New South Wales, Australia
- Marie Bashir Institute for Infectious Diseases & Biosecurity, Westmead Hospital, University of Sydney, Westmead, New South Wales, Australia
- Centre for Research Excellence in Critical Infections, Westmead Hospital, University of Sydney, Westmead, New South Wales, Australia
| | - Jen Kok
- Centre for Infectious Diseases & Microbiology Laboratory Services, Institute of Clinical Pathology & Medical Research, Westmead Hospital, University of Sydney, Westmead, New South Wales, Australia
- Marie Bashir Institute for Infectious Diseases & Biosecurity, Westmead Hospital, University of Sydney, Westmead, New South Wales, Australia
- Centre for Research Excellence in Critical Infections, Westmead Hospital, University of Sydney, Westmead, New South Wales, Australia
| |
Collapse
|
40
|
Ciancanelli MJ, Abel L, Zhang SY, Casanova JL. Host genetics of severe influenza: from mouse Mx1 to human IRF7. Curr Opin Immunol 2016; 38:109-20. [PMID: 26761402 PMCID: PMC4733643 DOI: 10.1016/j.coi.2015.12.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/30/2015] [Accepted: 12/03/2015] [Indexed: 12/22/2022]
Abstract
Influenza viruses cause mild to moderate respiratory illness in most people, and only rarely devastating or fatal infections. The virulence factors encoded by viral genes can explain seasonal or geographic differences at the population level but are unlikely to account for inter-individual clinical variability. Inherited or acquired immunodeficiencies may thus underlie severe cases of influenza. The crucial role of host genes was first demonstrated by forward genetics in inbred mice, with the identification of interferon (IFN)-α/β-inducible Mx1 as a canonical influenza susceptibility gene. Reverse genetics has subsequently characterized the in vivo role of other mouse genes involved in IFN-α/β and -λ immunity. A series of in vitro studies with mouse and human cells have also refined the cell-intrinsic mechanisms of protection against influenza viruses. Population-based human genetic studies have not yet uncovered variants with a significant impact. Interestingly, human primary immunodeficiencies affecting T and B cells were also not found to predispose to severe influenza. Recently however, human IRF7 was shown to be essential for IFN-α/β- and IFN-λ-dependent protective immunity against primary influenza in vivo, as inferred from a patient with life-threatening influenza revealed to be IRF7-deficient by whole exome sequencing. Next generation sequencing of human exomes and genomes will facilitate the analysis of the human genetic determinism of severe influenza.
Collapse
Affiliation(s)
- Michael J Ciancanelli
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.
| | - Laurent Abel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM-U1163, Necker Hospital for Sick Children, Paris, France; Paris Descartes University, Imagine Institute, Paris, France
| | - Shen-Ying Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM-U1163, Necker Hospital for Sick Children, Paris, France; Paris Descartes University, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM-U1163, Necker Hospital for Sick Children, Paris, France; Paris Descartes University, Imagine Institute, Paris, France; Howard Hughes Medical Institute, New York, NY, USA; Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris, France
| |
Collapse
|
41
|
Zhou K, Wang J, Li A, Zhao W, Wang D, Zhang W, Yan J, Gao GF, Liu W, Fang M. Swift and Strong NK Cell Responses Protect 129 Mice against High-Dose Influenza Virus Infection. THE JOURNAL OF IMMUNOLOGY 2016; 196:1842-54. [DOI: 10.4049/jimmunol.1501486] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 12/15/2015] [Indexed: 11/19/2022]
|
42
|
Bowen JR, Ferris MT, Suthar MS. Systems biology: A tool for charting the antiviral landscape. Virus Res 2016; 218:2-9. [PMID: 26795869 PMCID: PMC4902762 DOI: 10.1016/j.virusres.2016.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/22/2015] [Accepted: 01/08/2016] [Indexed: 12/25/2022]
Abstract
Conventional approaches overlook the complexity of the antiviral response. Systems biology approaches provide a comprehensive and unbiased analysis. The Collaborative Cross studies how host genetics influences antiviral immunity. Transcriptomics is a powerful tool to study tissue and cellular antiviral responses. Single cell analysis allows for discrimination between bystander and infected cells.
The host antiviral programs that are initiated following viral infection form a dynamic and complex web of responses that we have collectively termed as “the antiviral landscape”. Conventional approaches to studying antiviral responses have primarily used reductionist systems to assess the function of a single or a limited subset of molecules. Systems biology is a holistic approach that considers the entire system as a whole, rather than individual components or molecules. Systems biology based approaches facilitate an unbiased and comprehensive analysis of the antiviral landscape, while allowing for the discovery of emergent properties that are missed by conventional approaches. The antiviral landscape can be viewed as a hierarchy of complexity, beginning at the whole organism level and progressing downward to isolated tissues, populations of cells, and single cells. In this review, we will discuss how systems biology has been applied to better understand the antiviral landscape at each of these layers. At the organismal level, the Collaborative Cross is an invaluable genetic resource for assessing how genetic diversity influences the antiviral response. Whole tissue and isolated bulk cell transcriptomics serves as a critical tool for the comprehensive analysis of antiviral responses at both the tissue and cellular levels of complexity. Finally, new techniques in single cell analysis are emerging tools that will revolutionize our understanding of how individual cells within a bulk infected cell population contribute to the overall antiviral landscape.
Collapse
Affiliation(s)
- James R Bowen
- Department of Pediatrics and Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30329, USA; Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Martin T Ferris
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill NC 27599, USA
| | - Mehul S Suthar
- Department of Pediatrics and Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30329, USA; Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA.
| |
Collapse
|
43
|
H1N1 influenza virus induces narcolepsy-like sleep disruption and targets sleep-wake regulatory neurons in mice. Proc Natl Acad Sci U S A 2015; 113:E368-77. [PMID: 26668381 DOI: 10.1073/pnas.1521463112] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
An increased incidence in the sleep-disorder narcolepsy has been associated with the 2009-2010 pandemic of H1N1 influenza virus in China and with mass vaccination campaigns against influenza during the pandemic in Finland and Sweden. Pathogenetic mechanisms of narcolepsy have so far mainly focused on autoimmunity. We here tested an alternative working hypothesis involving a direct role of influenza virus infection in the pathogenesis of narcolepsy in susceptible subjects. We show that infection with H1N1 influenza virus in mice that lack B and T cells (Recombinant activating gene 1-deficient mice) can lead to narcoleptic-like sleep-wake fragmentation and sleep structure alterations. Interestingly, the infection targeted brainstem and hypothalamic neurons, including orexin/hypocretin-producing neurons that regulate sleep-wake stability and are affected in narcolepsy. Because changes occurred in the absence of adaptive autoimmune responses, the findings show that brain infections with H1N1 virus have the potential to cause per se narcoleptic-like sleep disruption.
Collapse
|
44
|
Hemida MG, Al-Naeem A, Perera RAPM, Chin AWH, Poon LLM, Peiris M. Lack of middle East respiratory syndrome coronavirus transmission from infected camels. Emerg Infect Dis 2015; 21:699-701. [PMID: 25811546 PMCID: PMC4378477 DOI: 10.3201/eid2104.141949] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To determine risk for Middle East respiratory syndrome coronavirus transmission from camels to humans, we tested serum from 191 persons with various levels of exposure to an infected dromedary herd. We found no serologic evidence of human infection, suggesting that zoonotic transmission of this virus from dromedaries is rare.
Collapse
|
45
|
No Major Host Genetic Risk Factor Contributed to A(H1N1)2009 Influenza Severity. PLoS One 2015; 10:e0135983. [PMID: 26379185 PMCID: PMC4574704 DOI: 10.1371/journal.pone.0135983] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 07/28/2015] [Indexed: 11/19/2022] Open
Abstract
While most patients affected by the influenza A(H1N1) pandemic experienced mild symptoms, a small fraction required hospitalization, often without concomitant factors that could explain such a severe course. We hypothesize that host genetic factors could contribute to aggravate the disease. To test this hypothesis, we compared the allele frequencies of 547,296 genome-wide single nucleotide polymorphisms (SNPs) between 49 severe and 107 mild confirmed influenza A cases, as well as against a general population sample of 549 individuals. When comparing severe vs. mild influenza A cases, only one SNP was close to the conventional p = 5×10−8. This SNP, rs28454025, sits in an intron of the GSK233 gene, which is involved in a neural development, but seems not to have any connections with immunological or inflammatory functions. Indirectly, a previous association reported with CD55 was replicated. Although sample sizes are low, we show that the statistical power in our design was sufficient to detect highly-penetrant, quasi-Mendelian genetic factors. Hence, and assuming that rs28454025 is likely to be a false positive, no major genetic factor was detected that could explain poor influenza A course.
Collapse
|
46
|
Differential Susceptibilities of Human Lung Primary Cells to H1N1 Influenza Viruses. J Virol 2015; 89:11935-44. [PMID: 26378172 DOI: 10.1128/jvi.01792-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/09/2015] [Indexed: 01/10/2023] Open
Abstract
UNLABELLED Human alveolar epithelial cells (AECs) and alveolar macrophages (AMs) are the first lines of lung defense. Here, we report that AECs are the direct targets for H1N1 viruses that have circulated since the 2009 pandemic (H1N1pdm09). AMs are less susceptible to H1N1pdm09 virus, but they produce significantly more inflammatory cytokines than AECs from the same donor. AECs form an intact epithelial barrier that is destroyed by H1N1pdm09 infection. However, there is significant variation in the cellular permissiveness to H1N1pdm09 infection among different donors. AECs from obese donors appear to be more susceptible to H1N1pdm09 infection, whereas gender, smoking history, and age do not appear to affect AEC susceptibility. There is also a difference in response to different strains of H1N1pdm09 viruses. Compared to A/California04/09 (CA04), A/New York/1682/09 (NY1682) is more infectious and causes more epithelial barrier injury, although it stimulates less cytokine production. We further determined that a single amino acid residue substitution in NY1682 hemagglutinin is responsible for the difference in infectivity. In conclusion, this is the first study of host susceptibility of human lung primary cells and the integrity of the alveolar epithelial barrier to influenza. Further elucidation of the mechanism of increased susceptibility of AECs from obese subjects may facilitate the development of novel protection strategies against influenza virus infection. IMPORTANCE Disease susceptibility of influenza is determined by host and viral factors. Human alveolar epithelial cells (AECs) form the key line of lung defenses against pathogens. Using primary AECs from different donors, we provided cellular level evidence that obesity might be a risk factor for increased susceptibility to influenza. We also compared the infections of two closely related 2009 pandemic H1N1 strains in AECs from the same donor and identified a key viral factor that affected host susceptibility, the dominance of which may be correlated with disease epidemiology. In addition, primary human AECs can serve as a convenient and powerful model to investigate the mechanism of influenza-induced lung injury and determine the effect of genetic and epigenetic factors on host susceptibility to pandemic influenza virus infection.
Collapse
|
47
|
Genetic Susceptibility Is One of the Determinants for Severe Fever with Thrombocytopenia Syndrome Virus Infection and Fatal Outcome: An Epidemiological Investigation. PLoS One 2015. [PMID: 26207638 PMCID: PMC4514768 DOI: 10.1371/journal.pone.0132968] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease in China and case-fatality rate of SFTS is very high (approximately 10%). However, genetic susceptibility for SFTS virus (SFTSV) infection and fatal outcome of SFTSV infection in humans are unclear. In this study, we investigated the clinical, laboratory and epidemiological features of SFTS in a cluster of three sisters who died of SFTSV infection between late April and mid-May 2014. Before disease onset, two of the sisters (Case A and case B) had common exposure history for ticks by working together in a field to pick tea leaves from April 8 to April 12. The third sister (Case C) did not live or work together with case A and B, but had ticks in her living environment. SFTSV RNA sequences were amplified from three cases were not identical, suggesting that the three sisters were most likely infected with SFTSV through tick bite rather than through person-to-person transmission of SFTSV. The sequence of SFTSV from case C was identical to SFTSV sequences from 3 groups of ticks collected around the residential area of case C. Seroprevalence of SFTSV IgG antibody among healthy population in the area where the patients resided was 4.05% (3/74). The majority of SFTSV infections were mild cases and all three sisters died of SFTSV infection suggested that they were highly susceptible to SFTSV. Our findings indicated that genetic susceptibility was a risk factor for SFTSV infection and fatal outcome.
Collapse
|
48
|
Protection from Severe Influenza Virus Infections in Mice Carrying the Mx1 Influenza Virus Resistance Gene Strongly Depends on Genetic Background. J Virol 2015. [PMID: 26202236 PMCID: PMC4577889 DOI: 10.1128/jvi.01305-15] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Influenza virus infections represent a serious threat to human health. Both extrinsic and intrinsic factors determine the severity of influenza. The MX dynamin-like GTPase 1 (Mx1) gene has been shown to confer strong resistance to influenza A virus infections in mice. Most laboratory mouse strains, including C57BL/6J, carry nonsense or deletion mutations in Mx1 and thus a nonfunctional allele, whereas wild-derived mouse strains carry a wild-type Mx1 allele. Congenic C57BL/6J (B6-Mx1r/r) mice expressing a wild-type allele from the A2G mouse strain are highly resistant to influenza A virus infections, to both mono- and polybasic subtypes. Furthermore, in genetic mapping studies, Mx1 was identified as the major locus of resistance to influenza virus infections. Here, we investigated whether the Mx1 protective function is influenced by the genetic background. For this, we generated a congenic mouse strain carrying the A2G wild-type Mx1 resistance allele on a DBA/2J background (D2-Mx1r/r). Most remarkably, congenic D2-Mx1r/r mice expressing a functional Mx1 wild-type allele are still highly susceptible to H1N1 virus. However, pretreatment of D2-Mx1r/r mice with alpha interferon protected them from lethal infections. Our results showed, for the first time, that the presence of an Mx1 wild-type allele from A2G as such does not fully protect mice from lethal influenza A virus infections. These observations are also highly relevant for susceptibility to influenza virus infections in humans.
IMPORTANCE Influenza A virus represents a major health threat to humans. Seasonal influenza epidemics cause high economic loss, morbidity, and deaths each year. Genetic factors of the host strongly influence susceptibility and resistance to virus infections. The Mx1 (MX dynamin-like GTPase 1) gene has been described as a major resistance gene in mice and humans. Most inbred laboratory mouse strains are deficient in Mx1, but congenic B6-Mx1r/r mice that carry the wild-type Mx1 gene from the A2G mouse strain are highly resistant. Here, we show that, very unexpectedly, congenic D2-Mx1r/r mice carrying the wild-type Mx1 gene from the A2G strain are not fully protected against lethal influenza virus infections. These observations demonstrate that the genetic background is very important for the protective function of the Mx1 resistance gene. Our results are also highly relevant for understanding genetic susceptibility to influenza virus infections in humans.
Collapse
|
49
|
Abstract
Blood group antigens represent polymorphic traits inherited among individuals and populations. At present, there are 34 recognized human blood groups and hundreds of individual blood group antigens and alleles. Differences in blood group antigen expression can increase or decrease host susceptibility to many infections. Blood groups can play a direct role in infection by serving as receptors and/or coreceptors for microorganisms, parasites, and viruses. In addition, many blood group antigens facilitate intracellular uptake, signal transduction, or adhesion through the organization of membrane microdomains. Several blood groups can modify the innate immune response to infection. Several distinct phenotypes associated with increased host resistance to malaria are overrepresented in populations living in areas where malaria is endemic, as a result of evolutionary pressures. Microorganisms can also stimulate antibodies against blood group antigens, including ABO, T, and Kell. Finally, there is a symbiotic relationship between blood group expression and maturation of the gastrointestinal microbiome.
Collapse
Affiliation(s)
- Laura Cooling
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
50
|
Ferrara F, Molesti E, Temperton N. The application of pseudotypes to influenza pandemic preparedness. Future Virol 2015. [DOI: 10.2217/fvl.15.36] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ABSTRACT Human and animal populations are constantly exposed to multiple influenza strains due to zoonotic spillover and rapid viral evolution driven by intrinsic error-prone replication and immunological pressure. In this context, antibody responses directed against the hemagglutinin protein on the surface of the virus are of importance since they have been shown to correlate with protective immunity. Serological techniques, detecting these responses, play a critical role in influenza pandemic preparedness in particular with regard to the measurement of vaccine immunogenicity. As the recent human pandemics (H1N1) and avian influenza outbreaks (H5 and H7) have demonstrated, there is an urgent need to be better prepared to assess the contribution of the antibody response to protection against newly emerged viruses and to evaluate the extent of pre-existing heterosubtypic immunity in populations. This review compares pseudotype-based assays with wild-type and virus-like particle virus assays and discusses their place in the pandemic preparedness against the influenza virus. It additionally addresses the state-of-the-art developments of pseudotype-based assays (chimeric hemagglutinins, multiplex and post-attachment) including the development and future deployment of assay kits and approaches toward standardization to both preclinical and clinical endpoints. Progress toward the development of an influenza pseudotype library for the purposes of pandemic preparedness is also outlined and discussed.
Collapse
Affiliation(s)
- Francesca Ferrara
- Viral Pseudotype Unit, School of Pharmacy, University of Kent, Chatham Maritime, Kent, ME4 4TB, UK
| | - Eleonora Molesti
- Viral Pseudotype Unit, School of Pharmacy, University of Kent, Chatham Maritime, Kent, ME4 4TB, UK
| | - Nigel Temperton
- Viral Pseudotype Unit, School of Pharmacy, University of Kent, Chatham Maritime, Kent, ME4 4TB, UK
| |
Collapse
|