1
|
Feng R, Xue RY, Liu C, Li GC, Deng Y, Jin Z, Liu JY, Zhang SS, Cheng H, Guo MY, Zou QM, Li HB. RBD-displaying OMV nanovaccine boosts immunity against SARS-CoV-2. J Nanobiotechnology 2025; 23:97. [PMID: 39923096 PMCID: PMC11807311 DOI: 10.1186/s12951-025-03191-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/01/2025] [Indexed: 02/10/2025] Open
Abstract
BACKGROUND Since the emergence of SARS-CoV-2, the causative agent of COVID-19, the global health landscape has confronted an unprecedented and formidable challenge. The SARS-CoV-2 receptor-binding domain (RBD) is a key antigen in vaccine design. However, its low immunogenicity has been a hurdle, resulting in the production of minimal anti-RBD antibodies even when combined with alum adjuvant. Outer membrane vesicles (OMVs), secreted by Gram-negative bacteria, are nanospherical structures that can display or deliver antigens while also providing adjuvant activity through pathogen-associated molecular patterns (PAMPs). RESULTS In this study, we utilized the SpyTag (ST)/SpyCatcher (SC) bioconjugation system to couple OMV and SARS-CoV-2 RBD in vitro. We successfully prepared a 'plug-and-display' nanovaccine OMV-RBD, which demonstrated good safety profiles and promoted the uptake of antigens by DCs and the maturation of BMDCs by activating TLR3 and NOD2 signaling pathways. Both intranasal and intramuscular immunization with OMV-RBD vaccine elicited robust antigen-specific humoral and cellular immune responses. Importantly, the induced antibodies effectively inhibited the binding of RBD to human angiotensin-converting enzyme 2 (hACE2) and neutralized SARS-CoV-2 pseudoviruses. CONCLUSIONS This vaccine platform offers an alternative strategy for developing recombinant subunit vaccines against SARS-CoV-2, potentially enhancing immune responses and improving vaccine efficacy.
Collapse
Affiliation(s)
- Rang Feng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
- Chinese People's Liberation Army Unit 32605, Chongqing, 400042, People's Republic of China
| | - Ruo-Yi Xue
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
- Department of Laboratory Pathology, Chinese People's Liberation Army No. 72 Hospital, Huzhou, 313000, People's Republic of China
| | - Chang Liu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
| | - Guo-Cheng Li
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
| | - Yan Deng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
| | - Zhe Jin
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
| | - Jing-Yi Liu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
| | - Shan-Shan Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
| | - Hao Cheng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
| | - Man-Ying Guo
- Department of Laboratory Pathology, Chinese People's Liberation Army No. 72 Hospital, Huzhou, 313000, People's Republic of China
| | - Quan-Ming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China.
| | - Hai-Bo Li
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China.
| |
Collapse
|
2
|
Banerjee S, Halder P, Das S, Maiti S, Withey JH, Mitobe J, Chowdhury G, Kitahara K, Miyoshi SI, Mukhopadhyay AK, Dutta S, Koley H. Trivalent outer membrane vesicles-based combination vaccine candidate induces protective immunity against Campylobacter and invasive non-typhoidal Salmonella in adult mice. Med Microbiol Immunol 2024; 213:21. [PMID: 39407046 DOI: 10.1007/s00430-024-00805-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 10/07/2024] [Indexed: 12/28/2024]
Abstract
Campylobacter and invasive non-typhoidal Salmonella (iNTS) are among the most common causative agents of gastroenteritis worldwide. As of now, no single combination licensed vaccine is available for public health use against both iNTS and Campylobacter species. Outer-membrane vesicles (OMVs) are nanoscale proteoliposomes released from the surface of gram-negative bacteria during log phase and harbor a variety of immunogenic proteins. Based on epidemiology of infections, we formulated a novel trivalent outer membrane vesicles (TOMVs)-based vaccine candidate against Campylobacter jejuni (CJ), Salmonella Typhimurium (ST) and Salmonella Enteritidis (SE). Isolated OMVs from CJ, ST and SE were combined in equal ratios for formulation of TOMVs and 5 µg of the developed vaccine candidate was used for intraperitoneal immunization of adult BALB/c mice. Immunization with TOMVs significantly activated both the humoral and cellular arm of adaptive immune response. Robust bactericidal effect was elicited by TOMVs immunized adult mice sera. TOMVs immunization induced long-term protective efficacy against CJ, ST and SE infections in mice. The study illustrates the ability of TOMVs-based combination immunogen in eliciting broad-spectrum protective immunity against prevalent Campylobacter and iNTS pathogens. According to the findings, TOMVs can work as a potent combination-based acellular vaccine candidate for amelioration of Campylobacter and iNTS-mediated gastroenteritis.
Collapse
Affiliation(s)
- Soumalya Banerjee
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Prolay Halder
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Sanjib Das
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Suhrid Maiti
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, USA
| | - Jeffrey H Withey
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jiro Mitobe
- Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo, Japan
| | - Goutam Chowdhury
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
- Collaborative Research Centre of Okayama University for Infectious Diseases at ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Kei Kitahara
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Collaborative Research Centre of Okayama University for Infectious Diseases at ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Shin-Ichi Miyoshi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Collaborative Research Centre of Okayama University for Infectious Diseases at ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Asish Kumar Mukhopadhyay
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Hemanta Koley
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India.
| |
Collapse
|
3
|
Ebenberger SP, Cakar F, Chen Y, Pressler K, Eberl L, Schild S. The activity of the quorum sensing regulator HapR is modulated by the bacterial extracellular vesicle (BEV)-associated protein ObfA of Vibrio cholerae. J Extracell Vesicles 2024; 13:e12507. [PMID: 39252550 PMCID: PMC11386269 DOI: 10.1002/jev2.12507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/05/2024] [Accepted: 08/22/2024] [Indexed: 09/11/2024] Open
Abstract
Vibrio cholerae, a facultative human pathogen and causative agent of the severe diarrheal disease cholera, transits between the human intestinal tract and aquatic reservoirs. Like other bacterial species, V. cholerae continuously releases bacterial extracellular vesicles (BEVs) from its surface, which have been recently characterised for their role during in vivo colonisation. However, between epidemic outbreaks, V. cholerae persists in the biofilm mode for extended periods in aquatic reservoirs, which enhances environmental fitness and host transition. In this study, we investigated the effect of V. cholerae BEVs on biofilm formation, a critical feature for ex vivo survival. In contrast to BEVs from planktonic cultures, our results show that physiological concentrations of BEVs from dynamic biofilm cultures facilitate V. cholerae biofilm formation, which could be linked to a proteinaceous factor. Comparative proteomic analyses of planktonic- and biofilm-derived BEVs identified a previously uncharacterised outer membrane protein as an abundant component of dynamic biofilm-derived BEVs, which was found to be responsible for the BEV-dependent enhancement of biofilm production. Consequently, this protein was named outer membrane-associated biofilm facilitating protein A (ObfA). Comprehensive molecular studies unravelled ObfA as a negative modulator of HapR activity. HapR is a key transcriptional regulator of the V. cholerae quorum sensing (QS) cascade acting as a potent repressor of biofilm formation and virulence. Consistently, obfA mutants not only exhibited reduced biofilm production but also reduced colonisation fitness. Surprisingly, our results demonstrate that ObfA does not affect HapR through the canonical QS system but via the Csr-cascade altering the expression of the small regulatory RNAs CsrC and CsrD. In summary, this study elucidates a novel intraspecies BEV-based communication in V. cholerae that influences biofilm formation and colonisation fitness via a new regulatory pathway involving HapR, Csr-cascade and the BEV-associated protein ObfA.
Collapse
Affiliation(s)
| | - Fatih Cakar
- Institute of Molecular BiosciencesUniversity of GrazGrazAustria
| | - Yi‐Chi Chen
- Department of Plant and Microbial BiologyUniversity of ZurichZurichSwitzerland
| | | | - Leo Eberl
- Department of Plant and Microbial BiologyUniversity of ZurichZurichSwitzerland
| | - Stefan Schild
- Institute of Molecular BiosciencesUniversity of GrazGrazAustria
- BioTechMed‐GrazGrazAustria
- Field of Excellence BiohealthUniversity of GrazGrazAustria
| |
Collapse
|
4
|
Luo Z, Cheng X, Feng B, Fan D, Liu X, Xie R, Luo T, Wegner SV, Ma D, Chen F, Zeng W. Engineering Versatile Bacteria-Derived Outer Membrane Vesicles: An Adaptable Platform for Advancing Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400049. [PMID: 38952055 PMCID: PMC11434149 DOI: 10.1002/advs.202400049] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/13/2024] [Indexed: 07/03/2024]
Abstract
In recent years, cancer immunotherapy has undergone a transformative shift toward personalized and targeted therapeutic strategies. Bacteria-derived outer membrane vesicles (OMVs) have emerged as a promising and adaptable platform for cancer immunotherapy due to their unique properties, including natural immunogenicity and the ability to be engineered for specific therapeutic purposes. In this review, a comprehensive overview is provided of state-of-the-art techniques and methodologies employed in the engineering of versatile OMVs for cancer immunotherapy. Beginning by exploring the biogenesis and composition of OMVs, unveiling their intrinsic immunogenic properties for therapeutic appeal. Subsequently, innovative approaches employed to engineer OMVs are delved into, ranging from the genetic engineering of parent bacteria to the incorporation of functional molecules. The importance of rational design strategies is highlighted to enhance the immunogenicity and specificity of OMVs, allowing tailoring for diverse cancer types. Furthermore, insights into clinical studies and potential challenges utilizing OMVs as cancer vaccines or adjuvants are also provided, offering a comprehensive assessment of the current landscape and future prospects. Overall, this review provides valuable insights for researchers involved in the rapidly evolving field of cancer immunotherapy, offering a roadmap for harnessing the full potential of OMVs as a versatile and adaptable platform for cancer treatment.
Collapse
Affiliation(s)
- Ziheng Luo
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| | - Xiang Cheng
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| | - Bin Feng
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| | - Duoyang Fan
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| | - Xiaohui Liu
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| | - Ruyan Xie
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| | - Ting Luo
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| | - Seraphine V. Wegner
- Institute of Physiological Chemistry and PathobiochemistryUniversity of Münster48149MünsterGermany
| | - Dayou Ma
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| | - Fei Chen
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| |
Collapse
|
5
|
Yılmaz Çolak Ç. Bacterial Membrane Vesicles as a Novel Vaccine Platform against SARS-CoV-2. Curr Microbiol 2024; 81:317. [PMID: 39164527 DOI: 10.1007/s00284-024-03846-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/15/2024] [Indexed: 08/22/2024]
Abstract
Throughout history, infectious diseases have plagued humanity, with outbreaks occurring regularly worldwide. Not every outbreak affects people globally; however, in the case of Coronavirus Disease 2019 (COVID-19), caused by a novel coronavirus (SARS-CoV-2), it reached a pandemic level within a remarkably short period. Fortunately, advancements in medicine and biotechnology have facilitated swift responses to the disease, resulting in the development of therapeutics and vaccines. Nevertheless, the persistent spread of the virus and the emergence of new variants underscore the necessity for protective interventions, leading researchers to seek more effective vaccines. Despite the presence of various types of vaccines, including mRNA and inactivated vaccines against SARS-CoV-2, new platforms have been investigated since the pandemic, and research on bacterial membrane vesicles (BMVs) has demonstrated their potential as a novel COVID-19 vaccine platform. Researchers have explored different strategies for BMV-based COVID-19 vaccines, such as mixing the vesicles with antigenic components of the virus due to their adjuvant capacity or decorating the vesicles with the viral antigens to create adjuvanted delivery systems. These approaches have presented promising results in inducing robust immune responses, but obstacles such as reproducibility in obtaining and homogeneous characterization of BMVs remain in developing vesicle-based vaccines. Overall, the development of BMV-based vaccines represents a novel and promising strategy in the fight against COVID-19. Additional research and clinical trials are needed to further evaluate the potential of these vaccines to offer long-lasting protection against SARS-CoV-2 and its evolving variants.
Collapse
Affiliation(s)
- Çiğdem Yılmaz Çolak
- Life Sciences, Marmara Research Center, TUBITAK, Kocaeli, Türkiye.
- Molecular Biology and Genetics Department, Istanbul Technical University, Istanbul, Türkiye.
| |
Collapse
|
6
|
Pavkova I, Bavlovic J, Kubelkova K, Stulik J, Klimentova J. Protective potential of outer membrane vesicles derived from a virulent strain of Francisella tularensis. Front Microbiol 2024; 15:1355872. [PMID: 38533334 PMCID: PMC10963506 DOI: 10.3389/fmicb.2024.1355872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/12/2024] [Indexed: 03/28/2024] Open
Abstract
Francisella tularensis secretes tubular outer membrane vesicles (OMVs) that contain a number of immunoreactive proteins as well as virulence factors. We have reported previously that isolated Francisella OMVs enter macrophages, cumulate inside, and induce a strong pro-inflammatory response. In the current article, we present that OMVs treatment of macrophages also enhances phagocytosis of the bacteria and suppresses their intracellular replication. On the other hand, the subsequent infection with Francisella is able to revert to some extent the strong pro-inflammatory effect induced by OMVs in macrophages. Being derived from the bacterial surface, isolated OMVs may be considered a "non-viable mixture of Francisella antigens" and as such, they present a promising protective material. Immunization of mice with OMVs isolated from a virulent F. tularensis subsp. holarctica strain FSC200 prolonged the survival time but did not fully protect against the infection with a lethal dose of the parent strain. However, the sera of the immunized animals revealed unambiguous cytokine and antibody responses and proved to recognize a set of well-known Francisella immunoreactive proteins. For these reasons, Francisella OMVs present an interesting material for future protective studies.
Collapse
Affiliation(s)
| | | | | | | | - Jana Klimentova
- Department of Molecular Pathology and Biology, Military Faculty of Medicine, University of Defence, Hradec Kralove, Czechia
| |
Collapse
|
7
|
Lei EK, Azmat A, Henry KA, Hussack G. Outer membrane vesicles as a platform for the discovery of antibodies to bacterial pathogens. Appl Microbiol Biotechnol 2024; 108:232. [PMID: 38396192 PMCID: PMC10891261 DOI: 10.1007/s00253-024-13033-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
Bacterial outer membrane vesicles (OMVs) are nanosized spheroidal particles shed by gram-negative bacteria that contain biomolecules derived from the periplasmic space, the bacterial outer membrane, and possibly other compartments. OMVs can be purified from bacterial culture supernatants, and by genetically manipulating the bacterial cells that produce them, they can be engineered to harbor cargoes and/or display molecules of interest on their surfaces including antigens that are immunogenic in mammals. Since OMV bilayer-embedded components presumably maintain their native structures, OMVs may represent highly useful tools for generating antibodies to bacterial outer membrane targets. OMVs have historically been utilized as vaccines or vaccine constituents. Antibodies that target bacterial surfaces are increasingly being explored as antimicrobial agents either in unmodified form or as targeting moieties for bactericidal compounds. Here, we review the properties of OMVs, their use as immunogens, and their ability to elicit antibody responses against bacterial antigens. We highlight antigens from bacterial pathogens that have been successfully targeted using antibodies derived from OMV-based immunization and describe opportunities and limitations for OMVs as a platform for antimicrobial antibody development. KEY POINTS: • Outer membrane vesicles (OMVs) of gram-negative bacteria bear cell-surface molecules • OMV immunization allows rapid antibody (Ab) isolation to bacterial membrane targets • Review and analysis of OMV-based immunogens for antimicrobial Ab development.
Collapse
Affiliation(s)
- Eric K Lei
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Aruba Azmat
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Kevin A Henry
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Greg Hussack
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada.
| |
Collapse
|
8
|
Banerjee S, Halder P, Das S, Maiti S, Bhaumik U, Dutta M, Chowdhury G, Kitahara K, Miyoshi SI, Mukhopadhyay AK, Dutta S, Koley H. Pentavalent outer membrane vesicles immunized mice sera confers passive protection against five prevalent pathotypes of diarrhoeagenic Escherichia coli in neonatal mice. Immunol Lett 2023; 263:33-45. [PMID: 37734682 DOI: 10.1016/j.imlet.2023.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Diarrhoeagenic Escherichia coli (DEC) pathotypes are one of the major causative agents of diarrhoea induced childhood morbidity and mortality in developing countries. Licensed vaccines providing broad spectrum protection against DEC mediated infections are not available. Outer membrane vesicles (OMVs) are microvesicles released by gram-negative bacteria during the growth phase and contain multiple immunogenic proteins. Based on prevalence of infections, we have formulated a pentavalent outer-membrane vesicles (POMVs) based immunogen targeting five main pathotypes of DEC responsible for diarrhoeal diseases. Following isolation, OMVs from five DEC pathotypes were mixed in equal proportions to formulate POMVs and 10 µg of the immunogen was intraperitoneally administered to adult BALB/c mice. Three doses of POMVs induced significant humoral immune response against whole cell lysates (WCLs), outer membrane proteins (OMPs) and lipopolysaccharides (LPS) isolated from DEC pathotypes along with significant induction of cellular immune response in adult mice. Passive transfer of POMVs immunized adult mice sera protected neonatal mice significantly against DEC infections. Overall, this study finds POMVs to be immunogenic in conferring broad-spectrum passive protection to neonatal mice against five main DEC pathotypes. Altogether, these findings suggest that POMVs can be used as a potent vaccine candidate to ameliorate the DEC-mediated health burden.
Collapse
Affiliation(s)
- Soumalya Banerjee
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Prolay Halder
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Sanjib Das
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Suhrid Maiti
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Ushasi Bhaumik
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Moumita Dutta
- Division of Electron Microscopy, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Goutam Chowdhury
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India; Collaborative Research Centre of Okayama University for Infectious Diseases at ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Kei Kitahara
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan; Collaborative Research Centre of Okayama University for Infectious Diseases at ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Shin-Ichi Miyoshi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan; Collaborative Research Centre of Okayama University for Infectious Diseases at ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Asish Kumar Mukhopadhyay
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Hemanta Koley
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India.
| |
Collapse
|
9
|
Thapa HB, Kohl P, Zingl FG, Fleischhacker D, Wolinski H, Kufer TA, Schild S. Characterization of the Inflammatory Response Evoked by Bacterial Membrane Vesicles in Intestinal Cells Reveals an RIPK2-Dependent Activation by Enterotoxigenic Escherichia coli Vesicles. Microbiol Spectr 2023; 11:e0111523. [PMID: 37306596 PMCID: PMC10433812 DOI: 10.1128/spectrum.01115-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/23/2023] [Indexed: 06/13/2023] Open
Abstract
Although the immunomodulatory potency of bacterial membrane vesicles (MVs) is widely acknowledged, their interactions with host cells and the underlying signaling pathways have not been well studied. Herein, we provide a comparative analysis of the proinflammatory cytokine profile secreted by human intestinal epithelial cells exposed to MVs derived from 32 gut bacteria. In general, outer membrane vesicles (OMVs) from Gram-negative bacteria induced a stronger proinflammatory response than MVs from Gram-positive bacteria. However, the quality and quantity of cytokine induction varied between MVs from different species, highlighting their unique immunomodulatory properties. OMVs from enterotoxigenic Escherichia coli (ETEC) were among those showing the strongest proinflammatory potency. In depth analyses revealed that the immunomodulatory activity of ETEC OMVs relies on a so far unprecedented two-step mechanism, including their internalization into host cells followed by intracellular recognition. First, OMVs are efficiently taken up by intestinal epithelial cells, which mainly depends on caveolin-mediated endocytosis as well as the presence of the outer membrane porins OmpA and OmpF on the MVs. Second, lipopolysaccharide (LPS) delivered by OMVs is intracellularly recognized by novel caspase- and RIPK2-dependent pathways. This recognition likely occurs via detection of the lipid A moiety as ETEC OMVs with underacylated LPS exhibited reduced proinflammatory potency but similar uptake dynamics compared to OMVs derived from wild-type (WT) ETEC. Intracellular recognition of ETEC OMVs in intestinal epithelial cells is pivotal for the proinflammatory response as inhibition of OMV uptake also abolished cytokine induction. The study signifies the importance of OMV internalization by host cells to exercise their immunomodulatory activities. IMPORTANCE The release of membrane vesicles from the bacterial cell surface is highly conserved among most bacterial species, including outer membrane vesicles (OMVs) from Gram-negative bacteria as well as vesicles liberated from the cytoplasmic membrane of Gram-positive bacteria. It is becoming increasingly evident that these multifactorial spheres, carrying membranous, periplasmic, and even cytosolic content, contribute to intra- and interspecies communication. In particular, gut microbiota and the host engage in a myriad of immunogenic and metabolic interactions. This study highlights the individual immunomodulatory activities of bacterial membrane vesicles from different enteric species and provides new mechanistic insights into the recognition of ETEC OMVs by human intestinal epithelial cells.
Collapse
Affiliation(s)
- Himadri B. Thapa
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Paul Kohl
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Franz G. Zingl
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | | - Heimo Wolinski
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Field of Excellence Biohealth, University of Graz, Graz, Austria
| | - Thomas A. Kufer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Stefan Schild
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Field of Excellence Biohealth, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
10
|
Su YC, Kadari M, Straw ML, Janoušková M, Jonsson S, Thofte O, Jalalvand F, Matuschek E, Sandblad L, Végvári Á, Zubarev RA, Riesbeck K. Non-typeable Haemophilus influenzae major outer membrane protein P5 contributes to bacterial membrane stability, and affects the membrane protein composition crucial for interactions with the human host. Front Cell Infect Microbiol 2023; 13:1085908. [PMID: 37305414 PMCID: PMC10250671 DOI: 10.3389/fcimb.2023.1085908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/10/2023] [Indexed: 06/13/2023] Open
Abstract
Non-typeable Haemophilus influenzae (NTHi) is a Gram-negative human pathogen that causes a wide range of airway diseases. NTHi has a plethora of mechanisms to colonize while evading the host immune system for the establishment of infection. We previously showed that the outer membrane protein P5 contributes to bacterial serum resistance by the recruitment of complement regulators. Here, we report a novel role of P5 in maintaining bacterial outer membrane (OM) integrity and protein composition important for NTHi-host interactions. In silico analysis revealed a peptidoglycan-binding motif at the periplasmic C-terminal domain (CTD) of P5. In a peptidoglycan-binding assay, the CTD of P5 (P5CTD) formed a complex with peptidoglycan. Protein profiling analysis revealed that deletion of CTD or the entire P5 changed the membrane protein composition of the strains NTHi 3655Δp5CTD and NTHi 3655Δp5, respectively. Relative abundance of several membrane-associated virulence factors that are crucial for adherence to the airway mucosa, and serum resistance were altered. This was also supported by similar attenuated pathogenic phenotypes observed in both NTHi 3655Δp5 CTD and NTHi 3655Δp5. We found (i) a decreased adherence to airway epithelial cells and fibronectin, (ii) increased complement-mediated killing, and (iii) increased sensitivity to the β-lactam antibiotics in both mutants compared to NTHi 3655 wild-type. These mutants were also more sensitive to lysis at hyperosmotic conditions and hypervesiculated compared to the parent wild-type bacteria. In conclusion, our results suggest that P5 is important for bacterial OM stability, which ultimately affects the membrane proteome and NTHi pathogenesis.
Collapse
Affiliation(s)
- Yu-Ching Su
- Department of Translational Medicine, Clinical Microbiology, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Mahendar Kadari
- Department of Translational Medicine, Clinical Microbiology, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Megan L. Straw
- Department of Translational Medicine, Clinical Microbiology, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Martina Janoušková
- Department of Translational Medicine, Clinical Microbiology, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Sandra Jonsson
- Department of Translational Medicine, Clinical Microbiology, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Oskar Thofte
- Department of Translational Medicine, Clinical Microbiology, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Farshid Jalalvand
- Department of Translational Medicine, Clinical Microbiology, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Erika Matuschek
- European Committee on Antimicrobial Susceptibility Testing (EUCAST) Development Laboratory, c/o Clinical Microbiology, Central Hospital, Växjö, Sweden
| | - Linda Sandblad
- Department of Chemistry and The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Ákos Végvári
- Division of Chemistry I, Department of Medical Biochemistry & Biophysics (MBB), Proteomics Biomedicum, Karolinska Institute, Stockholm, Sweden
| | - Roman A. Zubarev
- Division of Chemistry I, Department of Medical Biochemistry & Biophysics (MBB), Proteomics Biomedicum, Karolinska Institute, Stockholm, Sweden
| | - Kristian Riesbeck
- Department of Translational Medicine, Clinical Microbiology, Faculty of Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
11
|
Zhang X, Yang Y, Chen S, Li W, Li Y, Akerley BJ, Shao L, Zhang W, Shen H, Abt MC. Antigen-specific memory Th17 cells promote cross-protection against nontypeable Haemophilus influenzae after mild influenza A virus infection. Mucosal Immunol 2023; 16:153-166. [PMID: 36736665 DOI: 10.1016/j.mucimm.2023.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 01/22/2023] [Indexed: 02/05/2023]
Abstract
Secondary bacterial pneumonia after influenza A virus (IAV) infection is the leading cause of hospitalization and death associated with IAV infection worldwide. Nontypeable Haemophilus influenzae (NTHi) is one of the most common causes of secondary bacterial pneumonia. Current efforts to develop vaccines against NTHi infection focus on inducing antibodies but are hindered by antigenic diversity among NTHi strains. Therefore, we investigated the contribution of the memory T helper type 17 (Th17) response in protective immunity against IAV/NTHi coinfection. We observed that even a mild IAV infection impaired the NTHi-specific Th17 response and increased morbidity and mortality compared with NTHi monoinfected mice. However, pre-existing memory NTHi-specific Th17 cells induced by a previous NTHi infection overcame IAV-driven Th17 inhibition and were cross-protective against different NTHi strains. Last, mice immunized with a NTHi protein that induced a strong Th17 memory response were broadly protected against diverse NTHi strains after challenge with coinfection. These results indicate that vaccination that limits IAV infection to mild disease may be insufficient to eliminate the risk of a lethal secondary bacterial pneumonia. However, NTHi-specific memory Th17 cells provide serotype-independent protection despite an ongoing IAV infection and demonstrate the advantage of developing broadly protective Th17-inducing vaccines against secondary bacterial pneumonia.
Collapse
Affiliation(s)
- Xinyun Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China; Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Ying Yang
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - ShengSen Chen
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China; Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA; Department of Endoscopy, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Wenchao Li
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA; Shanghai Institute of Immunology, Shanghai Jiaotong University, Shanghai, China; Department of Immunology and Rheumatology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yong Li
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA; Shanghai Institute of Immunology, Shanghai Jiaotong University, Shanghai, China
| | - Brian J Akerley
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Linyun Shao
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenhong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China
| | - Hao Shen
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA.
| | - Michael C Abt
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA.
| |
Collapse
|
12
|
Mat Rani NNI, Alzubaidi ZM, Butt AM, Mohammad Faizal NDF, Sekar M, Azhari H, Mohd Amin MCI. Outer membrane vesicles as biomimetic vaccine carriers against infections and cancers. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1784. [PMID: 35194964 DOI: 10.1002/wnan.1784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/18/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
In the last decade, nanoparticle-based therapeutic modalities have emerged as promising treatment options for cancer and infectious diseases. To improve prognosis, chemotherapeutic and antimicrobial drugs must be delivered selectively to the target sites. Researchers have increasingly focused their efforts on improving drug delivery, with a particular emphasis on cancer and infectious diseases. When drugs are administered systemically, they become diluted and can diffuse to all tissues but only until the immune system intervenes and quickly removes them from circulation. To enhance and prolong the systemic circulation of drugs, nanocarriers have been explored and used; however, nanocarriers have a major drawback in that they can trigger immune responses. Numerous nanocarriers for optimal drug delivery have been developed using innovative and effective biointerface technologies. Autologous cell-derived drug carriers, such as outer membrane vesicles (OMVs), have demonstrated improved bioavailability and reduced toxicity. Thus, this study investigates the use of biomimetic OMVs as biomimetic vaccine carriers against infections and cancers to improve our understanding in the field of nanotechnology. In addition, discussion on the advantages, disadvantages, and future prospects of OMVs will also be explored. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
- Nur Najihah Izzati Mat Rani
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Perak, Malaysia
| | - Zahraa M Alzubaidi
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| | - Adeel Masood Butt
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Nur Dini Fatini Mohammad Faizal
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Perak, Malaysia
| | - Hanisah Azhari
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| | - Mohd Cairul Iqbal Mohd Amin
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Tarashi S, Zamani MS, Omrani MD, Fateh A, Moshiri A, Saedisomeolia A, Siadat SD, Kubow S. Commensal and Pathogenic Bacterial-Derived Extracellular Vesicles in Host-Bacterial and Interbacterial Dialogues: Two Sides of the Same Coin. J Immunol Res 2022; 2022:8092170. [PMID: 35224113 PMCID: PMC8872691 DOI: 10.1155/2022/8092170] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/17/2022] [Accepted: 02/01/2022] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) cause effective changes in various domains of life. These bioactive structures are essential to the bidirectional organ communication. Recently, increasing research attention has been paid to EVs derived from commensal and pathogenic bacteria in their potential role to affect human disease risk for cancers and a variety of metabolic, gastrointestinal, psychiatric, and mental disorders. The present review presents an overview of both the protective and harmful roles of commensal and pathogenic bacteria-derived EVs in host-bacterial and interbacterial interactions. Bacterial EVs could impact upon human health by regulating microbiota-host crosstalk intestinal homeostasis, even in distal organs. The importance of vesicles derived from bacteria has been also evaluated regarding epigenetic modifications and applications. Generally, the evaluation of bacterial EVs is important towards finding efficient strategies for the prevention and treatment of various human diseases and maintaining metabolic homeostasis.
Collapse
Affiliation(s)
- Samira Tarashi
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Mycobacteriology & Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
| | | | - Mir Davood Omrani
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolfazl Fateh
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Mycobacteriology & Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
| | - Arfa Moshiri
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Mycobacteriology & Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Ahmad Saedisomeolia
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
- School of Human Nutrition, McGill University, 21, 111 Lakeshore, Ste. Anne de Bellevue, QC, Canada H9X 3V9
| | - Seyed Davar Siadat
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Mycobacteriology & Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
| | - Stan Kubow
- School of Human Nutrition, McGill University, 21, 111 Lakeshore, Ste. Anne de Bellevue, QC, Canada H9X 3V9
| |
Collapse
|
14
|
Piccioli D, Bartolini E, Micoli F. GMMA as a 'plug and play' technology to tackle infectious disease to improve global health: context and perspectives for the future. Expert Rev Vaccines 2021; 21:163-172. [PMID: 34913415 DOI: 10.1080/14760584.2022.2009803] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Generalized-Modules-for-Membrane-Antigens (GMMA) is a technology platform developed to design outer membrane vesicle (OMV)-based vaccines. GMMA are basically OMVs derived from a bacterial strain specifically engineered to obtain a fit-for-purpose and affordable vaccine by potentiating, or deleting, expression of specific genes. OMVs can be used as a carrier for antigens by inducing their expression on them, with the aim to improve antigen immunogenicity and design multivalent combination vaccines. AREAS COVERED We expanded this finding to show that the chemical conjugation of different proteic and/or polysaccharidic antigens, to GMMA, is a methodology complementary to the genetic manipulation to obtain highly effective combination vaccines. Here we discuss our findings with a specific focus on the impact that GMMA technology can have on global health, as this technology platform is particularly suited to support the development of affordable vaccines for low-income countries. EXPERT OPINION We believe that it is critical to elucidate the mode of action of GMMA immunogenicity and have provided a summarized description of the immunological questions to be addressed in the near future. The improved knowledge of GMMA might lead to designing more effective and safer GMMA-based vaccines to tackle the most serious vaccine-preventable diseases.
Collapse
Affiliation(s)
| | | | - Francesca Micoli
- GSK Vaccine Institute for Global Health (GVGH), Preclinical Function, Siena, Italy
| |
Collapse
|
15
|
Thapa HB, Müller AM, Camilli A, Schild S. An Intranasal Vaccine Based on Outer Membrane Vesicles Against SARS-CoV-2. Front Microbiol 2021; 12:752739. [PMID: 34803974 PMCID: PMC8602898 DOI: 10.3389/fmicb.2021.752739] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/06/2021] [Indexed: 12/25/2022] Open
Abstract
The prevailing pandemic of SARS-CoV-2 highlights the desperate need of alternative vaccine-platforms, which are safe, effective, and can be modified to carry antigens of emerging pathogens. The current SARS-CoV-2 vaccines based on mRNA and adenoviral vector technology meet some of these criteria but still face limitations regarding administration route, mass production, stability, and storage. Herein, we introduce a novel SARS-CoV-2 vaccine candidate based on bacterial outer membrane vesicles (OMVs). Vibrio cholerae and enterotoxigenic Escherichia coli (ETEC) have been genetically modified to produce increased amounts of detoxified OMVs decorated with the receptor binding domain (RBD) of the SARS-CoV-2 Spike protein. Intranasal immunization with RBD-decorated OMVs induced not only a robust immune response against the bacterial outer membrane components but also detectable antibody titers against the Spike protein. Cell culture infection assays using a Spike-pseudotyped lentivirus confirmed the presence of SARS-CoV-2 neutralizing antibodies. Highest titers against the SARS-CoV-2 Spike protein and most potent neutralization activity were observed for an alternating immunization regimen using RBD-decorated OMVs from ETEC and V. cholerae in turn. These results highlight the versatile vaccine applications offered by OMVs via expression of heterologous antigens in the donor bacterium.
Collapse
Affiliation(s)
- Himadri B. Thapa
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Anna M. Müller
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Andrew Camilli
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States
| | - Stefan Schild
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Field of Excellence Biohealth, University of Graz, Graz, Austria
| |
Collapse
|
16
|
Kadry NA, Porsch EA, Shen H, St Geme JW. Immunization with HMW1 and HMW2 adhesins protects against colonization by heterologous strains of nontypeable Haemophilus influenzae. Proc Natl Acad Sci U S A 2021; 118:e2019923118. [PMID: 34344825 PMCID: PMC8364133 DOI: 10.1073/pnas.2019923118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) is a common cause of localized respiratory tract disease and results in significant morbidity. The pathogenesis of NTHi disease begins with nasopharyngeal colonization, and therefore, the prevention of colonization represents a strategy to prevent disease. The NTHi HMW1 and HMW2 proteins are a family of conserved adhesins that are present in 75 to 80% of strains and have been demonstrated to play a critical role in colonization of the upper respiratory tract in rhesus macaques. In this study, we examined the vaccine potential of HMW1 and HMW2 using a mouse model of nasopharyngeal colonization. Immunization with HMW1 and HMW2 by either the subcutaneous or the intranasal route resulted in a strain-specific antibody response associated with agglutination of bacteria and restriction of bacterial adherence. Despite the specificity of the antibody response, immunization resulted in protection against colonization by both the parent NTHi strain and heterologous strains expressing distinct HMW1 and HMW2 proteins. Pretreatment with antibody against IL-17A eliminated protection against heterologous strains, indicating that heterologous protection is IL-17A dependent. This work demonstrates the vaccine potential of the HMW1 and HMW2 proteins and highlights the importance of IL-17A in protection against diverse NTHi strains.
Collapse
Affiliation(s)
- Nadia A Kadry
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Eric A Porsch
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Hao Shen
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Shanghai Institute of Immunology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Joseph W St Geme
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104;
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| |
Collapse
|
17
|
Zingl FG, Leitner DR, Thapa HB, Schild S. Outer membrane vesicles as versatile tools for therapeutic approaches. MICROLIFE 2021; 2:uqab006. [PMID: 37223254 PMCID: PMC10117751 DOI: 10.1093/femsml/uqab006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/05/2021] [Indexed: 05/25/2023]
Abstract
Budding of the bacterial surface results in the formation and secretion of outer membrane vesicles, which is a conserved phenomenon observed in Gram-negative bacteria. Recent studies highlight that these sphere-shaped facsimiles of the donor bacterium's surface with enclosed periplasmic content may serve multiple purposes for their host bacterium. These include inter- and intraspecies cell-cell communication, effector delivery to target cells and bacterial adaptation strategies. This review provides a concise overview of potential medical applications to exploit outer membrane vesicles for therapeutic approaches. Due to the fact that outer membrane vesicles resemble the surface of their donor cells, they represent interesting nonliving candidates for vaccine development. Furthermore, bacterial donor species can be genetically engineered to display various proteins and glycans of interest on the outer membrane vesicle surface or in their lumen. Outer membrane vesicles also possess valuable bioreactor features as they have the natural capacity to protect, stabilize and enhance the activity of luminal enzymes. Along these features, outer membrane vesicles not only might be suitable for biotechnological applications but may also enable cell-specific delivery of designed therapeutics as they are efficiently internalized by nonprofessional phagocytes. Finally, outer membrane vesicles are potent modulators of our immune system with pro- and anti-inflammatory properties. A deeper understanding of immunoregulatory effects provoked by different outer membrane vesicles is the basis for their possible future applications ranging from inflammation and immune response modulation to anticancer therapy.
Collapse
Affiliation(s)
- Franz G Zingl
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Deborah R Leitner
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Himadri B Thapa
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Stefan Schild
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
- BioTechMed-Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
| |
Collapse
|
18
|
Behrouzi A, Mianroodi RA, Afrough P, Ayadi A, Serajian A. Evaluation of immunological responses against outer membrane vesicles (OMV) of nontypeable Haemophilus influenzae using MPLA-CpG adjuvant as a vaccine candidate. IRANIAN JOURNAL OF MICROBIOLOGY 2021; 12:417-423. [PMID: 33603996 PMCID: PMC7867700 DOI: 10.18502/ijm.v12i5.4602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background and Objectives Nontypeable Haemophilus influenzae (NTHi) are major causes of non-invasive infections, including otitis media and sinusitis and it can also contribute to respiratory infections of all ages. Currently, there is no licensed vaccine against NTHi commercially available. Many studies have been conducted on the use of OMV as a vaccine against NTHi. The purpose of this study is to achieve an immunogenic vaccine against NTHi. Materials and Methods In this study, standard OMV Haemophilus (ATCC49766) with adjuncts CpG and MPLA was used and after infusion into BALB/c mice, the levels of antibodies and cytokines were measured on serum of immunized mice. Results The results showed that total IgG antibody and IgG1 and IgG2a isotypes in OMV immunized mice with mixture of CpG-MPLA adjuvant had a significant increase. Also, the results of cytokines (IL-10, IL-4 and IFN-γ) showed that IL-4 had the highest rate. Conclusion These findings indicate that OMVs derived from NTHi strains have a high potential to act as a vaccine against NTHi infections.
Collapse
Affiliation(s)
- Ava Behrouzi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Reza Arabi Mianroodi
- Department of R&D, Research and Production Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Parviz Afrough
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Ahmad Ayadi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|
19
|
Sedaghat M, Siadat SD, Shahcheraghi F, Mirabzadeh Ardakani E, Keramati M, Vaziri F, Nojoumi SA. Assessment of Mouse Ileal loop Protection against Clinically Isolated Vibrio cholerae Outer Membrane Vesicles as a Vaccine Candidate. ARCHIVES OF RAZI INSTITUTE 2021; 75:451-461. [PMID: 33403840 DOI: 10.22092/ari.2019.126909.1365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/31/2019] [Indexed: 09/30/2022]
Abstract
Cholera, a life-threatening disease caused by the Gram-negative bacterium Vibrio cholera, remains a concern in developing countries. The present study investigated the immunogenicity and protective immunity of outer membrane vesicles (OMVs) and combination of OMV and killed whole cells (WC) of a local strain isolated from the last outbreak in Iran in addition to reference and local strains of V. cholerae El Tor O1 in comparison to Dukoral vaccine in mice model. The protein content, morphology, and size of extracted OMVs were evaluated by electrophoresis and microscopic analyses, respectively. The serum titers of total immunoglobulin G (IgG), IgG1, IgG2a, and immunoglobulin A (IgA) in addition to secretory IgA and total IgG in different mice groups were determined by enzyme-linked immunosorbent assay (ELISA). In addition, fluid accumulation (FA) assay regarding the resistance to live strain of V. cholerae in ligated ileal loops was carried out to determine immunogenicity by OMV or combination of OMV and WC in comparison to that reported for Dukoral vaccine. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of purified OMVs indicated protein profiles within the range of 34-52 kDa. Furthermore, transmission electron microscopy demonstrated the spherical shaped vesicles of 50-200 nm. The results of ELISA showed significant titers of systemic and mucosal immune anti-OMV IgGs in immunized BALB/c mice with different vaccine regimens. Additionally, a notable increase in the FA ratio was demonstrated in this study. The obtained results of the present study revealed that the WC-OMV combination of local strain can induce a high level of antibody response indicating more protection than OMV or WC separately. Moreover, it can be considered an effective immunogen against V. cholerae.
Collapse
Affiliation(s)
- M Sedaghat
- Department of Bacteriology, Pasteur Institute of Tehran, Iran
| | - S D Siadat
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran.,Mycobacteriology & Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - F Shahcheraghi
- Department of Bacteriology, Pasteur Institute of Tehran, Iran
| | | | - M Keramati
- Department of Pilot of Nano-Biotechnology, Pasteur Institute of Tehran, Iran
| | - F Vaziri
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran.,Mycobacteriology & Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
| | - S A Nojoumi
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran.,Mycobacteriology & Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
20
|
Micoli F, MacLennan CA. Outer membrane vesicle vaccines. Semin Immunol 2020; 50:101433. [PMID: 33309166 DOI: 10.1016/j.smim.2020.101433] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 10/22/2022]
Abstract
Outer Membrane Vesicles (OMV) have received increased attention in recent years as a vaccine platform against bacterial pathogens. OMV from Neisseria meningitidis serogroup B have been extensively explored. Following the success of the MeNZB OMV vaccine in controlling an outbreak of N. meningitidis B in New Zealand, additional research and development resulted in the licensure of the OMV-containing four-component 4CMenB vaccine, Bexsero. This provided broader protection against multiple meningococcal B strains. Advances in the field of genetic engineering have permitted further improvements in the platform resulting in increased yields, reduced endotoxicity and decoration with homologous and heterologous antigens to enhance immuno genicity and provide broader protection. The OMV vaccine platform has been extended to many other pathogens. In this review, we discuss progress in the development of the OMV vaccine delivery platform, highlighting successful applications, together with potential challenges and gaps.
Collapse
Affiliation(s)
| | - Calman A MacLennan
- Bill & Melinda Gates Foundation, 62 Buckingham Gate, London, United Kingdom; Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
21
|
Chen Y, Jie K, Li B, Yu H, Ruan H, Wu J, Huang X, Liu Q. Immunization With Outer Membrane Vesicles Derived From Major Outer Membrane Protein-Deficient Salmonella Typhimurium Mutants for Cross Protection Against Salmonella Enteritidis and Avian Pathogenic Escherichia coli O78 Infection in Chickens. Front Microbiol 2020; 11:588952. [PMID: 33329465 PMCID: PMC7720508 DOI: 10.3389/fmicb.2020.588952] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/12/2020] [Indexed: 11/19/2022] Open
Abstract
Colibacillosis is an economically important infectious disease in poultry, caused by avian pathogenic Escherichia coli (APEC). Salmonella enterica serovar Enteritidis (S. Enteritidis) is a major cause of food-borne diseases in human circulated through poultry-derived products, including meat and chicken eggs. Vaccine control is the mainstream approach for combating these infections, but it is difficult to create a vaccine for the broad-spectrum protection of poultry due to multiple serotypes of these pathogens. Our previous studies have shown that outer membrane vesicles (OMVs) derived from S. enterica serovar Typhimurium mutants with a remodeled outer membrane could induce cross-protection against heteroserotypic Salmonella infection. Therefore, in this study, we further evaluated the potential of broad-spectrum vaccines based on major outer membrane protein (OMP)-deficient OMVs, including ΔompA, ΔompC, and ΔompD, and determined the protection effectiveness of these candidate vaccines in murine and chicken infection models. The results showed that ΔompA led to an increase in the production of OMVs. Notably, ΔompAΔompCΔompD OMVs showed significantly better cross-protection against S. enterica serovar Choleraesuis, S. Enteritidis, APEC O78, and Shigella flexneri 2a than did other omp-deficient OMVs, with the exception of ΔompA OMVs. Subsequently, we verified the results in the chicken model, in which ΔompAΔompCΔompD OMVs elicited significant cross-protection against S. Enteritidis and APEC O78 infections. These findings further confirmed the feasibility of improving the immunogenicity of OMVs by remodeling the outer membrane and provide a new perspective for the development of broad-spectrum vaccines based on OMVs.
Collapse
Affiliation(s)
- Yuxuan Chen
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China.,The First Clinical Medical College, Nanchang University, Nanchang, China
| | - Kaiwen Jie
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China.,The First Clinical Medical College, Nanchang University, Nanchang, China
| | - Biaoxian Li
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Haiyan Yu
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Huan Ruan
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Jing Wu
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Xiaotian Huang
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China.,Key Laboratory of Tumor Pathogenesis and Molecular Pathology, School of Medicine, Nanchang University, Nanchang, China
| | - Qiong Liu
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China.,Key Laboratory of Tumor Pathogenesis and Molecular Pathology, School of Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
22
|
Mei C, Sun AH, Blackall PJ, Xian H, Li SF, Gong YM, Wang HJ. Component Identification and Functional Analysis of Outer Membrane Vesicles Released by Avibacterium paragallinarum. Front Microbiol 2020; 11:518060. [PMID: 33101220 PMCID: PMC7545073 DOI: 10.3389/fmicb.2020.518060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 08/27/2020] [Indexed: 11/16/2022] Open
Abstract
Avibacterium paragallinarum, the causative agent of infectious coryza, is known to release outer membrane vesicles (OMVs). In the present study, we investigated the composition, bioactivities, and functional properties of the OMVs of A. paragallinarum. Following extraction and purification, the OMVs were observed to be spherical in shape, with diameters ranging from 20 to 300 nm. The vesicles contained endotoxin as well as genomic DNA. The molecular weights of the OMV-contained protein fragments were mostly concentrated at 65 and 15 kDa. The components of the OMV proteins were mainly various functional enzymes (e.g., ATP-dependent RNA helicase), structural components (e.g., streptomycin B receptor and membrane protein), and some hypothetical proteins with unknown functions. The expression levels of inflammation-related factors, such as interleukin (IL)-2, IL-6, IL-1β, IL-10, and inducible nitric oxide synthase (iNOs), were significantly upregulated in chicken macrophage cells HD11 incubated with OMVs. Serum IgG antibodies were measured after two intramuscular injections of an OMV-based vaccine into specific pathogen-free (SPF) chickens. The vaccinated chickens were then challenged by A. paragallinarum of homologous and heterologous serovars. It was noted that the vaccinated chickens produced immunoglobulin G (IgG) antibodies against A. paragallinarum. The OMVs conferred an acceptable level of protection (70%), defined as an absence of colonization and of clinical signs, against the homologous strain (serovar A), while the cross-protection against heterologous challenge with serovars B and C was much weaker. However, the OMVS did provide significant protection against clinical signs for all three serovars. Overall, this study laid a foundation for further unraveling the functional roles of OMVs released by A. paragallinarum.
Collapse
Affiliation(s)
- Chen Mei
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry, Beijing, China
| | - Ai-Hua Sun
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry, Beijing, China
| | - Patrick J Blackall
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Hong Xian
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry, Beijing, China
| | - Shu-Fang Li
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry, Beijing, China
| | - Yu-Mei Gong
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry, Beijing, China
| | - Hong-Jun Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry, Beijing, China
| |
Collapse
|
23
|
Hu R, Li J, Zhao Y, Lin H, Liang L, Wang M, Liu H, Min Y, Gao Y, Yang M. Exploiting bacterial outer membrane vesicles as a cross-protective vaccine candidate against avian pathogenic Escherichia coli (APEC). Microb Cell Fact 2020; 19:119. [PMID: 32493405 PMCID: PMC7268718 DOI: 10.1186/s12934-020-01372-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/16/2020] [Indexed: 12/15/2022] Open
Abstract
Background The well-known fact that avian pathogenic Escherichia coli (APEC) is harder to prevent due to its numerous serogroups has promoted the development of biological immunostimulatory materials as new vaccine candidates in poultry farms. Bacterial outer membrane vesicles (OMVs), known as spherical nanovesicles enriched with various immunostimulants, are naturally secreted by Gram-negative bacteria, and have gained much attention for developing effective vaccine candidates. Recent report has demonstrated that OMVs of APEC O78 can induce protective immunity in chickens. Here, a novel multi-serogroup OMVs (MOMVs) vaccine was developed to achieve cross-protection against APEC infection in broiler chickens. Results In this study, OMVs produced by three APEC strains were isolated, purified and prepared into MOMVs by mixing these three OMVs. By using SDS-PAGE and LC–MS/MS, 159 proteins were identified in MOMVs and the subcellular location and biological functions of 20 most abundant proteins were analyzed. The immunogenicity of MOMVs was evaluated, and the results showed that MOMVs could elicit innate immune responses, including internalization by chicken macrophage and production of immunomodulatory cytokines. Vaccination with MOMVs induced specific broad-spectrum antibodies as well as Th1 and Th17 immune responses. The animal experiment has confirmed that immunization with an appropriate dose of MOMVs could not cause any adverse effect and was able to reduce bacteria loads and pro-inflammatory cytokines production, thus providing effective cross-protection against lethal infections induced by multi-serogroup APEC strains in chickens. Further experiments indicated that, although vesicular proteins were able to induce stronger protective efficiency than lipopolysaccharide, both vesicular proteins and lipopolysaccharide are crucial in MOMVs-mediated protection. Conclusions The multi-serogroup nanovesicles produced by APEC strains will open up a new way for the development of next generation vaccines with low toxicity and broad protection in the treatment and control of APEC infection.
Collapse
Affiliation(s)
- Rujiu Hu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jing Li
- Department of Animal Engineering, Yangling Vocation and Technical College, Yangling, 712100, Shaanxi, China
| | - Yuezhen Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hua Lin
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Liu Liang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mimi Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Haojing Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuna Min
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yupeng Gao
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Mingming Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
24
|
Uddin MJ, Dawan J, Jeon G, Yu T, He X, Ahn J. The Role of Bacterial Membrane Vesicles in the Dissemination of Antibiotic Resistance and as Promising Carriers for Therapeutic Agent Delivery. Microorganisms 2020; 8:E670. [PMID: 32380740 PMCID: PMC7284617 DOI: 10.3390/microorganisms8050670] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/25/2020] [Accepted: 05/02/2020] [Indexed: 12/11/2022] Open
Abstract
The rapid emergence and spread of antibiotic-resistant bacteria continues to be an issue difficult to deal with, especially in the clinical, animal husbandry, and food fields. The occurrence of multidrug-resistant bacteria renders treatment with antibiotics ineffective. Therefore, the development of new therapeutic methods is a worthwhile research endeavor in treating infections caused by antibiotic-resistant bacteria. Recently, bacterial membrane vesicles (BMVs) have been investigated as a possible approach to drug delivery and vaccine development. The BMVs are released by both pathogenic and non-pathogenic Gram-positive and Gram-negative bacteria, containing various components originating from the cytoplasm and the cell envelope. The BMVs are able to transform bacteria with genes that encode enzymes such as proteases, glycosidases, and peptidases, resulting in the enhanced antibiotic resistance in bacteria. The BMVs can increase the resistance of bacteria to antibiotics. However, the biogenesis and functions of BMVs are not fully understood in association with the bacterial pathogenesis. Therefore, this review aims to discuss BMV-associated antibiotic resistance and BMV-based therapeutic interventions.
Collapse
Affiliation(s)
- Md Jalal Uddin
- Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (M.J.U.); (J.D.); (G.J.)
| | - Jirapat Dawan
- Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (M.J.U.); (J.D.); (G.J.)
| | - Gibeom Jeon
- Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (M.J.U.); (J.D.); (G.J.)
| | - Tao Yu
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272033, China;
| | - Xinlong He
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Juhee Ahn
- Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (M.J.U.); (J.D.); (G.J.)
| |
Collapse
|
25
|
Muda NM, Nasreen M, Dhouib R, Hosmer J, Hill J, Mahawar M, Schirra HJ, McEwan AG, Kappler U. Metabolic analyses reveal common adaptations in two invasive Haemophilus influenzae strains. Pathog Dis 2020; 77:5420469. [PMID: 30915434 DOI: 10.1093/femspd/ftz015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 03/19/2019] [Indexed: 01/22/2023] Open
Abstract
Non-typeable Haemophilus influenzae (NTHi) is a major pathogen in upper and lower respiratory tract infections in humans, and is increasingly also associated with invasive disease. We have examined two unrelated NTHi invasive disease isolates, R2866 and C188, in order to identify metabolic and physiological properties that distinguish them from respiratory tract disease isolates such as Hi2019. While the general use of the Hi metabolic network was similar across all three strains, the two invasive isolates secreted increased amounts of succinate, which can have anti-inflammatory properties. In addition, they showed a common shift in their carbon source utilization patterns, with strongly enhanced metabolism of nucleoside substrates, glucose and sialic acid. The latter two are major compounds present in blood and cerebrospinal fluid (CSF). Interestingly, C188 and R2866 also shared a reduced ability to invade or survive intracellularly in 16HBE14 bronchial epithelial cells relative to Hi2019 (4-fold (4 h), 25-fold (24 h) reduction). Altered metabolic properties, such as the ones observed here, could arise from genomic adaptations that NTHi undergo during infection. Together these data indicate that shifts in substrate preferences in otherwise conserved metabolic pathways may underlie strain niche specificity and thus have the potential to alter the outcomes of host-NTHi interactions.
Collapse
Affiliation(s)
- Noor Marian Muda
- School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, Centre for Metals in Biology, The University of Queensland, St. Lucia QLD 4072, Australia
| | - Marufa Nasreen
- School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, Centre for Metals in Biology, The University of Queensland, St. Lucia QLD 4072, Australia
| | - Rabeb Dhouib
- School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, Centre for Metals in Biology, The University of Queensland, St. Lucia QLD 4072, Australia
| | - Jennifer Hosmer
- School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, Centre for Metals in Biology, The University of Queensland, St. Lucia QLD 4072, Australia
| | - Julian Hill
- School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, Centre for Metals in Biology, The University of Queensland, St. Lucia QLD 4072, Australia
| | - Manish Mahawar
- School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, Centre for Metals in Biology, The University of Queensland, St. Lucia QLD 4072, Australia.,Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Horst Joachim Schirra
- Centre for Advanced Imaging, The University of Queensland, St. Lucia QLD 4072, Australia
| | - Alastair G McEwan
- School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, Centre for Metals in Biology, The University of Queensland, St. Lucia QLD 4072, Australia
| | - Ulrike Kappler
- School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, Centre for Metals in Biology, The University of Queensland, St. Lucia QLD 4072, Australia
| |
Collapse
|
26
|
Johnston EL, Kufer TA, Kaparakis-Liaskos M. Immunodetection and Pathogenesis Mediated by Bacterial Membrane Vesicles. BACTERIAL MEMBRANE VESICLES 2020:159-188. [DOI: 10.1007/978-3-030-36331-4_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
27
|
Woith E, Fuhrmann G, Melzig MF. Extracellular Vesicles-Connecting Kingdoms. Int J Mol Sci 2019; 20:E5695. [PMID: 31739393 PMCID: PMC6888613 DOI: 10.3390/ijms20225695] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/09/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022] Open
Abstract
It is known that extracellular vesicles (EVs) are shed from cells of almost every type of cell or organism, showing their ubiquity in all empires of life. EVs are defined as naturally released particles from cells, delimited by a lipid bilayer, and cannot replicate. These nano- to micrometer scaled spheres shuttle a set of bioactive molecules. EVs are of great interest as vehicles for drug targeting and in fundamental biological research, but in vitro culture of animal cells usually achieves only small yields. The exploration of other biological kingdoms promises comprehensive knowledge on EVs broadening the opportunities for basic understanding and therapeutic use. Thus, plants might be sustainable biofactories producing nontoxic and highly specific nanovectors, whereas bacterial and fungal EVs are promising vaccines for the prevention of infectious diseases. Importantly, EVs from different eukaryotic and prokaryotic kingdoms are involved in many processes including host-pathogen interactions, spreading of resistances, and plant diseases. More extensive knowledge of inter-species and interkingdom regulation could provide advantages for preventing and treating pests and pathogens. In this review, we present a comprehensive overview of EVs derived from eukaryota and prokaryota and we discuss how better understanding of their intercommunication role provides opportunities for both fundamental and applied biology.
Collapse
Affiliation(s)
- Eric Woith
- Institute of Pharmacy, Pharmaceutical Biology, Dahlem Center of Plant Sciences, Freie Universität Berlin, Königin-Luise-Str. 2+4, D-14195 Berlin, Germany;
| | - Gregor Fuhrmann
- Helmholtz Centre for Infection Research (HZI), Biogenic Nanotherapeutics Group (BION), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Matthias F. Melzig
- Institute of Pharmacy, Pharmaceutical Biology, Dahlem Center of Plant Sciences, Freie Universität Berlin, Königin-Luise-Str. 2+4, D-14195 Berlin, Germany;
| |
Collapse
|
28
|
Pressler K, Mitterer F, Vorkapic D, Reidl J, Oberer M, Schild S. Characterization of Vibrio cholerae's Extracellular Nuclease Xds. Front Microbiol 2019; 10:2057. [PMID: 31551990 PMCID: PMC6746945 DOI: 10.3389/fmicb.2019.02057] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/20/2019] [Indexed: 12/22/2022] Open
Abstract
The Gram-negative bacterium Vibrio cholerae encodes two nucleases, Dns and Xds, which play a major role during the human pathogen's lifecycle. Dns and Xds control three-dimensional biofilm formation and bacterial detachment from biofilms via degradation of extracellular DNA and thus contribute to the environmental, inter-epidemic persistence of the pathogen. During intestinal colonization the enzymes help evade the innate immune response, and therefore promote survival by mediating escape from neutrophil extracellular traps. Xds has the additional function of degrading extracellular DNA down to nucleotides, which are an important nutrient source for V. cholerae. Thus, Xds is a key enzyme for survival fitness during distinct stages of the V. cholerae lifecycle and could be a potential therapeutic target. This study provides detailed information about the enzymatic properties of Xds using purified protein in combination with a real time nuclease activity assay. The data define an optimal buffer composition for Xds activity as 50 mM Tris/HCl pH 7, 100 mM NaCl, 10 mM MgCl2, and 20 mM CaCl2. Moreover, maximal activity was observed using substrate DNA with low GC content and ambient temperatures of 20-25°C. In silico analysis and homology modeling predicted an exonuclease domain in the C-terminal part of the protein. Biochemical analyses with truncated variants and point mutants of Xds confirm that the C-terminal region is sufficient for nuclease activity. We also find that residues D787 and H837 within the predicted exonuclease domain are key to formation of the catalytic center.
Collapse
Affiliation(s)
| | - Fabian Mitterer
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Dina Vorkapic
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Joachim Reidl
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Monika Oberer
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Stefan Schild
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
29
|
Zhang Y, Fang Z, Li R, Huang X, Liu Q. Design of Outer Membrane Vesicles as Cancer Vaccines: A New Toolkit for Cancer Therapy. Cancers (Basel) 2019; 11:cancers11091314. [PMID: 31500086 PMCID: PMC6769604 DOI: 10.3390/cancers11091314] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/27/2019] [Accepted: 09/02/2019] [Indexed: 02/06/2023] Open
Abstract
Cancer vaccines have been extensively studied in recent years and have contributed to exceptional achievements in cancer treatment. They are some of the most newly developed vaccines, although only two are currently approved for use, Provenge and Talimogene laherparepvec (T-VEC). Despite the approval of these two vaccines, most vaccines have been terminated at the clinical trial stage, which indicates that although they are effective in theory, concerns still exist, including low antigenicity of targeting antigens and tumor heterogeneity. In recent years, with new understanding of the biological function and vaccine potential of outer membrane vesicles (OMVs), their potential application in cancer vaccine design deserves our attention. Therefore, this review focuses on the mechanisms, advantages, and prospects of OMVs as antigen-carrier vaccines in cancer vaccine development. We believe that OMV-based vaccines present a safe and effective cancer therapeutic option with broad application prospects.
Collapse
Affiliation(s)
- Yingxuan Zhang
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang 330006, China
| | - Zheyan Fang
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang 330006, China
| | - Ruizhen Li
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang 330006, China
| | - Xiaotian Huang
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang 330006, China
- Key Laboratory of Tumor Pathogenesis and Molecular Pathology, School of Medicine, Nanchang University, Nanchang 330006, China
| | - Qiong Liu
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang 330006, China.
- Key Laboratory of Tumor Pathogenesis and Molecular Pathology, School of Medicine, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
30
|
Vibrio cholerae Outer Membrane Vesicles Inhibit Bacteriophage Infection. J Bacteriol 2018; 200:JB.00792-17. [PMID: 29661863 DOI: 10.1128/jb.00792-17] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/01/2018] [Indexed: 01/12/2023] Open
Abstract
Novel preventatives could help in efforts to limit Vibrio cholerae infection and the spread of cholera. Bacteriophage (phage) treatment has been proposed as an alternative intervention, given the rapid replication of virulent phages, prey specificity, and relative ease of finding new virulent phages. Phage tropism is dictated in part by the presence of phage receptors on the bacterial surface. While many phages that can kill V. cholerae have been isolated, whether this pathogen is able to defend itself by neutralizing phage binding is unknown. Here, we show that secreted outer membrane vesicles (OMVs) act as a defense mechanism that confers protection to V. cholerae against phage predation and that this OMV-mediated inhibition is phage receptor dependent. Our results suggest that phage therapy or prophylaxis should take into consideration the production of OMVs as a bacterial decoy mechanism that could influence the outcome of phage treatment.IMPORTANCE Phages have been increasingly recognized for the significance of their interactions with bacterial cells in multiple environments. Bacteria use myriad strategies to defend against phage infection, including restriction modification, abortive infection, phase variation of cell surface receptors, phage-inducible chromosomal islands, and clustered regularly interspaced short palindromic repeat(s) (CRISPR)-Cas systems. The data presented here suggest that the apparently passive process of OMV release can also contribute to phage defense. By considering the effect of OMVs on V. cholerae infection by three unique virulent phages, ICP1, ICP2, and ICP3, we show that, in vitro, a reproducible reduction in bacterial killing is both dose and phage receptor dependent. This work supports a role for OMVs as natural decoys to defend bacteria from phage predation.
Collapse
|
31
|
Recognition of conserved antigens by Th17 cells provides broad protection against pulmonary Haemophilus influenzae infection. Proc Natl Acad Sci U S A 2018; 115:E7149-E7157. [PMID: 29987031 DOI: 10.1073/pnas.1802261115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) is a major cause of community acquired pneumonia and exacerbation of chronic obstructive pulmonary disease. A current effort in NTHi vaccine development has focused on generating humoral responses and has been greatly impeded by antigenic variation among the numerous circulating NTHi strains. In this study, we showed that pulmonary immunization of mice with killed NTHi generated broad protection against lung infection by different strains. While passive transfer of immune antibodies protected only against the homologous strain, transfer of immune T cells conferred protection against both homologous and heterologous strains. Further characterization revealed a strong Th17 response that was cross-reactive with different NTHi strains. Responding Th17 cells recognized both cytosolic and membrane-associated antigens, while immune antibodies preferentially responded to surface antigens and were highly strain specific. We further identified several conserved proteins recognized by lung Th17 cells during NTHi infection. Two proteins yielding the strongest responses were tested as vaccine candidates by immunization of mice with purified proteins plus an adjuvant. Immunization induced antigen-specific Th17 cells that recognized different strains and, upon adoptive transfer, conferred protection. Furthermore, immunized mice were protected against challenge with not only NTHi strains but also a fully virulent, encapsulated strain. Together, these results show that the immune mechanism of cross-protection against pneumonia involves Th17 cells, which respond to a broad spectrum of antigens, including those that are highly conserved among NTHi strains. These mechanistic insights suggest that inclusion of Th17 antigens in subunit vaccines offers the advantage of inducing broad protection and complements the current antibody-based approaches.
Collapse
|
32
|
Turner L, Bitto NJ, Steer DL, Lo C, D'Costa K, Ramm G, Shambrook M, Hill AF, Ferrero RL, Kaparakis-Liaskos M. Helicobacter pylori Outer Membrane Vesicle Size Determines Their Mechanisms of Host Cell Entry and Protein Content. Front Immunol 2018; 9:1466. [PMID: 30013553 PMCID: PMC6036113 DOI: 10.3389/fimmu.2018.01466] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/12/2018] [Indexed: 01/26/2023] Open
Abstract
Gram-negative pathogens ubiquitously shed outer membrane vesicles (OMVs) that play a central role in initiating and regulating pathogenesis in the host. Due to their highly inflammatory nature, OMVs are extensively being examined for their role in mediating disease in addition to their applications in innovative vaccines. A key mechanism whereby OMVs mediate inflammation and disease progression is dependent on their ability to enter host cells. Currently, the role of OMV size on determining their mechanism of cellular entry and their protein composition remains unknown. In this study, we examined the mechanisms whereby OMV size regulates their mode of entry into epithelial cells, in addition to their protein cargo and composition. We identified that a heterogeneous sized population of Helicobacter pylori OMVs entered epithelial cells via macropinocytosis, clathrin, and caveolin-dependent endocytosis. However, smaller OMVs ranging from 20 to 100 nm in size preferentially entered host cells via caveolin-mediated endocytosis. Whereas larger OMVs ranging between 90 and 450 nm in size entered host epithelial cells via macropinocytosis and endocytosis. Most importantly, we identified the previously unknown contribution that OMV size has on determining their protein content, as fewer and less diverse bacterial proteins were contained within small OMVs compared to larger OMVs. Collectively, these findings identify the importance of OMV size in determining the mechanisms of OMV entry into host cells, in addition to regulating their protein cargo, composition, and subsequent immunogenicity. These findings have significant implications in broadening our understanding of the bacterial regulation of virulence determinants and immunogenic proteins associated with OMVs, their role in mediating pathogenesis and in refining the design and development of OMV-based vaccines.
Collapse
Affiliation(s)
- Lorinda Turner
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Melbourne, VIC, Australia
| | - Natalie J Bitto
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, VIC, Australia.,Research Centre for Extracellular Vesicles, School of Molecular Sciences, La Trobe University, Melbourne, VIC, Australia
| | | | - Camden Lo
- Monash Micro Imaging, Monash University, Clayton, VIC, Australia
| | - Kimberley D'Costa
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Melbourne, VIC, Australia
| | - Georg Ramm
- Monash Biomedical Proteomics Facility, Monash University, Clayton, VIC, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Mitch Shambrook
- Research Centre for Extracellular Vesicles, School of Molecular Sciences, La Trobe University, Melbourne, VIC, Australia.,La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, VIC, Australia
| | - Andrew F Hill
- Research Centre for Extracellular Vesicles, School of Molecular Sciences, La Trobe University, Melbourne, VIC, Australia.,La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, VIC, Australia
| | - Richard L Ferrero
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Melbourne, VIC, Australia.,Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Maria Kaparakis-Liaskos
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Melbourne, VIC, Australia.,Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, VIC, Australia.,Research Centre for Extracellular Vesicles, School of Molecular Sciences, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
33
|
Jalalvand F, Riesbeck K. Update on non-typeable Haemophilus influenzae-mediated disease and vaccine development. Expert Rev Vaccines 2018; 17:503-512. [DOI: 10.1080/14760584.2018.1484286] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Farshid Jalalvand
- Centre for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
34
|
Ma YK, Chen YB, Li P. Quercetin inhibits NTHi-triggered CXCR4 activation through suppressing IKKα/NF-κB and MAPK signaling pathways in otitis media. Int J Mol Med 2018; 42:248-258. [PMID: 29568908 PMCID: PMC5979834 DOI: 10.3892/ijmm.2018.3577] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 02/21/2018] [Indexed: 12/16/2022] Open
Abstract
Otitis media is one of the most common bacterial infections in children, contributing to hearing loss. A vital bacterial pathogen leading to otitis media development is the nontypeable Haemophilus influenzae (NTHi). Inflammation response is reported as an important characristic for otitis media. Chemokine CXC receptor 4 (CXCR4) is a 352-amino acid seven-span transmembrane G-protein coupled receptor, essential for inflammatory response. However, the possible molecular mechanism indicating the alteration of CXCR4 modulated by NTHi is poorly known. In the present study, NTHi enhanced CXCR4 expression through phosphorylation of IKKα and p38, which relied on nuclear factor-κB (NF-κB) translocation in vitro as well as in the middle ear of mice in vivo. Previously, quercetin, a natural production mainly isolated from rutin, has shown anti-inflammatory effects. Here, we report that quercetin suppressed NTHi-induced CXCR4 expression levels in vitro and in vivo. Quercetin blocked CXCR4 activation through direct IKKβ phosphorylation inhibition, as well as of p38 MAPK restraining. Hence, identification of quercetin may be a potential therapeutic strategy for treating otitis media induced by NTHi through inflammation suppression.
Collapse
Affiliation(s)
- Yu-Kun Ma
- Department of Otorhinolaryngology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630 P.R. China
| | - Yu-Bin Chen
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630 P.R. China
| | - Peng Li
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630 P.R. China
| |
Collapse
|
35
|
Osman KL, Jefferies JM, Woelk CH, Cleary DW, Clarke SC. The adhesins of non-typeable Haemophilus influenzae. Expert Rev Anti Infect Ther 2018; 16:187-196. [PMID: 29415569 DOI: 10.1080/14787210.2018.1438263] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Nontypeable Haemophilus influenzae (NTHi) is an opportunistic pathogen of the respiratory tract and the greatest contributor to invasive Haemophilus disease. Additionally, in children, NTHi is responsible for the majority of otitis media (OM) which can lead to chronic infection and hearing loss. In adults, NTHi infection in the lungs is responsible for the onset of acute exacerbations in chronic obstructive pulmonary disease (COPD). Unfortunately, there is currently no vaccine available to protect against NTHi infections. Areas covered: NTHi uses an arsenal of adhesins to colonise the respiratory epithelium. The adhesins also have secondary roles that aid in the virulence of NTHi, including mechanisms that avoid immune clearance, adjust pore size to avoid antimicrobial destruction, form micro-colonies and invoke phase variation for protein mediation. Bacterial adhesins can also be ideal antigens for subunit vaccine design due to surface exposure and immunogenic capabilities. Expert commentary: The host-pathogen interactions of the NTHi adhesins are not fully investigated. The relationship between adhesins and the extracellular matrix (ECM) play a part in the success of NTHi colonisation and virulence by immune evasion, migration and biofilm development. Further research into these immunogenic proteins would further our understanding and enable a basis for better combatting NTHi disease.
Collapse
Affiliation(s)
- Karen L Osman
- a Faulty of Medicine , University of Southampton , Southampton , UK
| | | | - Christopher H Woelk
- a Faulty of Medicine , University of Southampton , Southampton , UK.,b Merck Exploratory Science Center , Merck Research Laboratories , Cambridge , MA , USA
| | - David W Cleary
- a Faulty of Medicine , University of Southampton , Southampton , UK.,c Faculty of Medicine and Institute for Life Sciences , University of Southampton , Southampton SO17 1BJ , UK.,d NIHR Southampton Biomedical Research Centre , University Hospital Southampton Foundation NHS Trust , Southampton SO16 6YD , UK
| | - Stuart C Clarke
- a Faulty of Medicine , University of Southampton , Southampton , UK.,c Faculty of Medicine and Institute for Life Sciences , University of Southampton , Southampton SO17 1BJ , UK.,d NIHR Southampton Biomedical Research Centre , University Hospital Southampton Foundation NHS Trust , Southampton SO16 6YD , UK.,e Global Health Research Institute , University of Southampton , Southampton SO17 1BJ , UK
| |
Collapse
|
36
|
Isolation of Outer Membrane Vesicles Including Their Quantitative and Qualitative Analyses. Methods Mol Biol 2018; 1839:117-134. [PMID: 30047059 DOI: 10.1007/978-1-4939-8685-9_11] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Outer membrane vesicles (OMVs) are naturally secreted from the bacterial cell surface and therefore localized in the cell-free supernatant of bacterial cultures. Here we describe methods for crude and density gradient-purified OMV isolation and protocols for control analyses for protein profiling (SDS-PAGE), detection of indicator proteins (immunoblot analysis), lipid profiling (lipid extraction and LC-MS analysis), vesicle size determination (NanoSight), rough estimation of biomass (TrayCell™), as well as quantifications of defined OMV components, e.g., proteins (Bradford) and LPS (Purpald).
Collapse
|
37
|
Immunogenicity of Nontypeable Haemophilus influenzae Outer Membrane Vesicles and Protective Ability in the Chinchilla Model of Otitis Media. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00138-17. [PMID: 28768669 DOI: 10.1128/cvi.00138-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/31/2017] [Indexed: 12/22/2022]
Abstract
Outer membrane vesicles (OMVs) produced by Gram-negative bacteria are enriched in several outer membrane components, including major and minor outer membrane proteins and lipooligosaccharide. We assessed the functional activity of nontypeable Haemophilus influenzae (NTHi) OMV-specific antisera and the protective ability of NTHi OMVs as vaccine antigens in the chinchilla otitis media model. OMVs were purified from three HMW1/HMW2-expressing NTHi strains, two of which were also engineered to overexpress Hia proteins. OMV-specific antisera raised in guinea pigs were assessed for their ability to mediate killing of representative NTHi in an opsonophagocytic assay. The three OMV-specific antisera mediated killing of 18 of 65, 24 of 65, and 30 of 65 unrelated HMW1/HMW2-expressing NTHi strains. Overall, they mediated killing of 39 of 65 HMW1/HMW2-expressing strains. The two Hia-expressing OMV-specific antisera mediated killing of 17 of 25 and 14 of 25 unrelated Hia-expressing NTHi strains. Overall, they mediated killing of 20 of 25 Hia-expressing strains. OMVs from prototype NTHi strain 12 were used to immunize chinchillas and the course of middle ear infection was monitored following intrabullar challenge with the homologous strain. All control animals developed culture-positive otitis media, as did two of three HMW1/HMW2-immunized animals. All OMV-immunized animals, with or without supplemental HMW1/HMW2 immunization, were completely protected against otitis media. NTHi OMVs are the first immunogens examined in this model that provided complete protection with sterile immunity after NTHi strain 12 challenge. These data suggest that NTHi OMVs hold significant potential as components of protective NTHi vaccines, possibly in combination with HMW1/HMW2 proteins.
Collapse
|
38
|
Pettigrew MM, Alderson MR, Bakaletz LO, Barenkamp SJ, Hakansson AP, Mason KM, Nokso-Koivisto J, Patel J, Pelton SI, Murphy TF. Panel 6: Vaccines. Otolaryngol Head Neck Surg 2017; 156:S76-S87. [PMID: 28372533 DOI: 10.1177/0194599816632178] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Objective To review the literature on progress regarding (1) effectiveness of vaccines for prevention of otitis media (OM) and (2) development of vaccine antigens for OM bacterial and viral pathogens. Data Sources PubMed database of the National Library of Science. Review Methods We performed literature searches in PubMed for OM pathogens and candidate vaccine antigens, and we restricted the searches to articles in English that were published between July 2011 and June 2015. Panel members reviewed literature in their area of expertise. Conclusions Pneumococcal conjugate vaccines (PCVs) are somewhat effective for the prevention of pneumococcal OM, recurrent OM, OM visits, and tympanostomy tube insertions. Widespread use of PCVs has been associated with shifts in pneumococcal serotypes and bacterial pathogens associated with OM, diminishing PCV effectiveness against AOM. The 10-valent pneumococcal vaccine containing Haemophilus influenzae protein D (PHiD-CV) is effective for pneumococcal OM, but results from studies describing the potential impact on OM due to H influenzae have been inconsistent. Progress in vaccine development for H influenzae, Moraxella catarrhalis, and OM-associated respiratory viruses has been limited. Additional research is needed to extend vaccine protection to additional pneumococcal serotypes and other otopathogens. There are likely to be licensure challenges for protein-based vaccines, and data on correlates of protection for OM vaccine antigens are urgently needed. Implications for Practice OM continues to be a significant health care burden globally. Prevention is preferable to treatment, and vaccine development remains an important goal. As a polymicrobial disease, OM poses significant but not insurmountable challenges for vaccine development.
Collapse
Affiliation(s)
- Melinda M Pettigrew
- 1 Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven Connecticut, USA
| | | | - Lauren O Bakaletz
- 3 Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | | | | | - Kevin M Mason
- 3 Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | | | - Janak Patel
- 7 University of Texas Medical Branch, Galveston, Texas, USA
| | - Stephen I Pelton
- 8 Boston University School of Medicine, Boston, Massachusetts, USA
| | - Timothy F Murphy
- 9 University at Buffalo, The State University of New York, Buffalo, New York, USA
| |
Collapse
|
39
|
Cooke FJ, Slack MP. Gram-Negative Coccobacilli. Infect Dis (Lond) 2017. [DOI: 10.1016/b978-0-7020-6285-8.00183-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
40
|
Staples KJ, Taylor S, Thomas S, Leung S, Cox K, Pascal TG, Ostridge K, Welch L, Tuck AC, Clarke SC, Gorringe A, Wilkinson TMA. Relationships between Mucosal Antibodies, Non-Typeable Haemophilus influenzae (NTHi) Infection and Airway Inflammation in COPD. PLoS One 2016; 11:e0167250. [PMID: 27898728 PMCID: PMC5127575 DOI: 10.1371/journal.pone.0167250] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/10/2016] [Indexed: 12/31/2022] Open
Abstract
Non-typeable Haemophilus influenzae (NTHi) is a key pathogen in COPD, being associated with airway inflammation and risk of exacerbation. Why some patients are susceptible to colonisation is not understood. We hypothesised that this susceptibility may be due to a deficiency in mucosal humoral immunity. The aim of our study (NCT01701869) was to quantify the amount and specificity of antibodies against NTHi in the lungs and the associated risk of infection and inflammation in health and COPD. Phlebotomy, sputum induction and bronchoscopy were performed on 24 mild-to-moderate COPD patients and 8 age and smoking-matched controls. BAL (Bronchoalveolar lavage) total IgG1, IgG2, IgG3, IgM and IgA concentrations were significantly increased in COPD patients compared to controls. NTHi was detected in the lungs of 7 of the COPD patients (NTHi+ve-29%) and these patients had a higher median number of previous exacerbations than NTHi-ve patients as well as evidence of increased systemic inflammation. When comparing NTHi+ve versus NTHi-ve patients we observed a decrease in the amount of both total IgG1 (p = 0.0068) and NTHi-specific IgG1 (p = 0.0433) in the BAL of NTHi+ve patients, but no differences in total IgA or IgM. We observed no evidence of decreased IgG1 in the serum of NTHi+ve patients, suggesting this phenomenon is restricted to the airway. Furthermore, the NTHi+ve patients had significantly greater levels of IL-1β (p = 0.0003), in BAL than NTHi-ve COPD patients.This study indicates that the presence of NTHi is associated with reduced levels and function of IgG1 in the airway of NTHi-colonised COPD patients. This decrease in total and NTHI-specific IgG1 was associated with greater systemic and airway inflammation and a history of more frequent exacerbations and may explain the susceptibility of some COPD patients to the impacts of NTHi.
Collapse
Affiliation(s)
- Karl J. Staples
- Clinical & Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Tremona Road, Southampton, United Kingdom
- Wessex Investigational Sciences Hub, University of Southampton Faculty of Medicine, Southampton General Hospital, Tremona Road, Southampton, United Kingdom
- * E-mail:
| | - Stephen Taylor
- Public Health England, Porton Down, Salisbury, United Kingdom
| | - Steve Thomas
- Public Health England, Porton Down, Salisbury, United Kingdom
| | - Stephanie Leung
- Public Health England, Porton Down, Salisbury, United Kingdom
| | - Karen Cox
- Clinical & Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Tremona Road, Southampton, United Kingdom
| | | | - Kristoffer Ostridge
- Southampton NIHR Respiratory Biomedical Research Unit, Southampton General Hospital, Tremona Road, Southampton, United Kingdom
| | - Lindsay Welch
- Southampton NIHR Respiratory Biomedical Research Unit, Southampton General Hospital, Tremona Road, Southampton, United Kingdom
| | - Andrew C. Tuck
- Clinical & Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Tremona Road, Southampton, United Kingdom
| | - Stuart C. Clarke
- Clinical & Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Tremona Road, Southampton, United Kingdom
- Wessex Investigational Sciences Hub, University of Southampton Faculty of Medicine, Southampton General Hospital, Tremona Road, Southampton, United Kingdom
- Southampton NIHR Respiratory Biomedical Research Unit, Southampton General Hospital, Tremona Road, Southampton, United Kingdom
| | - Andrew Gorringe
- Public Health England, Porton Down, Salisbury, United Kingdom
| | - Tom M. A. Wilkinson
- Clinical & Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Tremona Road, Southampton, United Kingdom
- Wessex Investigational Sciences Hub, University of Southampton Faculty of Medicine, Southampton General Hospital, Tremona Road, Southampton, United Kingdom
- Southampton NIHR Respiratory Biomedical Research Unit, Southampton General Hospital, Tremona Road, Southampton, United Kingdom
| |
Collapse
|
41
|
Jurkoshek KS, Wang Y, Athman JJ, Barton MR, Wearsch PA. Interspecies Communication between Pathogens and Immune Cells via Bacterial Membrane Vesicles. Front Cell Dev Biol 2016; 4:125. [PMID: 27891500 PMCID: PMC5104960 DOI: 10.3389/fcell.2016.00125] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/20/2016] [Indexed: 12/18/2022] Open
Abstract
The production of extracellular vesicles is a universal mechanism for intercellular communication that is conserved across kingdoms. Prokaryotes secrete 50–250 nm membrane vesicles (MVs) in a manner that is regulated by environmental stress and is thought to promote survival. Since many types of host-derived stress are encountered during infection, this implies an important role for MV secretion in bacterial pathogenesis. Accordingly, MVs produced by gram-positive and gram-negative pathogens contain toxins, virulence factors, and other molecules that promote survival in the host. However, recent studies have also shown that bacterial MVs are enriched for molecules that stimulate innate and adaptive immune responses. As an example, MVs may serve multiple, important roles in regulating the host response to Mycobacterium tuberculosis (Mtb), an intracellular pathogen that infects lung macrophages and resides within modified phagosomes. Previously, we demonstrated that Mtb secretes MVs during infection that may modulate infected and uninfected immune cells. Our present data demonstrates that Mtb MVs inhibit the functions of macrophages and T cells, but promote Major Histocompatibility Complex (MHC) class II antigen presentation by dendritic cells. We conclude that bacterial MVs serve dual and opposing roles in the activation of and defense against host immune responses to Mtb and other bacterial pathogens. We also propose that MV secretion is a central mechanism for interspecies communication between bacteria and host cells during infection.
Collapse
Affiliation(s)
| | - Ying Wang
- Department of Pathology, Case Western Reserve University Cleveland, OH, USA
| | - Jaffre J Athman
- Department of Pathology, Case Western Reserve University Cleveland, OH, USA
| | - Marian R Barton
- Department of Pathology, Case Western Reserve University Cleveland, OH, USA
| | - Pamela A Wearsch
- Department of Pathology, Case Western Reserve University Cleveland, OH, USA
| |
Collapse
|
42
|
Liu Q, Liu Q, Yi J, Liang K, Hu B, Zhang X, Curtiss R, Kong Q. Outer membrane vesicles from flagellin-deficient Salmonella enterica serovar Typhimurium induce cross-reactive immunity and provide cross-protection against heterologous Salmonella challenge. Sci Rep 2016; 6:34776. [PMID: 27698383 PMCID: PMC5048178 DOI: 10.1038/srep34776] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/16/2016] [Indexed: 01/12/2023] Open
Abstract
Outer membrane vesicles (OMVs) isolated from Salmonella Typhimurium are potentially useful for developing subunit vaccines because of high immunogenicity and protective efficacy. However, flagella might remain in OMV pellets following OMV purification, resulting in non-essential immune responses and counteraction of bacterial protective immune responses when developing a vaccine against infection of multiple serotypes Salmonella. In this study, a flagellin-deficient S. Typhimurium mutant was constructed. Lipopolysaccharide profiles, protein profiles and cryo-electron microscopy revealed that there were no significant differences between the wild-type and mutant OMVs, with the exception of a large amount of flagellin in the wild-type OMVs. Neither the wild-type OMVs nor the non-flagellin OMVs were toxic to macrophages. Mice immunized with the non-flagellin OMVs produced high concentrations of IgG. The non-flagellin OMVs elicited strong mucosal antibody responses in mice when administered via the intranasal route in addition to provoking higher cross-reactive immune responses against OMPs isolated from S. Choleraesuis and S. Enteritidis. Both intranasal and intraperitoneal immunization with the non-flagellin OMVs provided efficient protection against heterologous S. Choleraesuis and S. Enteritidis challenge. Our results indicate that the flagellin-deficient OMVs may represent a new vaccine platform that could be exploited to facilitate the production of a broadly protective vaccine.
Collapse
Affiliation(s)
- Qiong Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-5401, USA.,Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, 330006, China
| | - Qing Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jie Yi
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kang Liang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bo Hu
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, TX, 77030, USA
| | - Xiangmin Zhang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy/Health Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Roy Curtiss
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-5401, USA
| | - Qingke Kong
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-5401, USA
| |
Collapse
|
43
|
Pors SE, Pedersen IJ, Skjerning RB, Thøfner ICN, Persson G, Bojesen AM. Outer membrane vesicles of Gallibacterium anatis induce protective immunity in egg-laying hens. Vet Microbiol 2016; 195:123-127. [PMID: 27771057 DOI: 10.1016/j.vetmic.2016.09.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 09/05/2016] [Accepted: 09/27/2016] [Indexed: 11/29/2022]
Abstract
Gallibacterium anatis causes infections in the reproductive tract of egg-laying hens and induce increased mortality and decreased egg production. New prophylactic measures are needed in order to improve animal welfare and production efficiency. Bacterial outer membrane vesicles (OMVs) have previously shown promising results in protection against infections and we hypothesized that OMVs could serve as an immunogen to protect egg-laying hens against G. anatis. To investigate the immunogenic potential of G. anatis OMVs, two in vivo studies in egg-laying hens were made. The trials assessedthe degree of protection provided by immunization with G. anatis OMV against challenge and the IgY responses in serum after immunization and challenge, respectively. A total of 64 egg-laying hens were included in the trials. OMVs for immunization were produced and purified from a high-producing G. anatis ΔtolR mutant. Challenge was done with G. anatis 12656-12 and evaluated by scoring lesions and bacterial re-isolation rates from peritoneum. Finally, levels of OMV-specific IgY in sera were assayed by ELISA. Immunization with OMVs decreased the lesions scores significantly, while the bacterial re-isolation remained unchanged. Furthermore, a high OMV-specific IgY response was induced by immunization and subsequent challenge of the hens. The results strongly indicate that immunization with G. anatis OMVs provides significant protection against G. anatis challenge and induces specific antibody responses with high titers of OMV-specific IgY in serum. The results therefore show great promise for OMV based vaccines aiming at providing protecting against G. anatis in egg-laying hens.
Collapse
Affiliation(s)
- Susanne E Pors
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Ida J Pedersen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Ragnhild Bager Skjerning
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Ida C N Thøfner
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Gry Persson
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Anders M Bojesen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
44
|
Liu Q, Liu Q, Yi J, Liang K, Liu T, Roland KL, Jiang Y, Kong Q. Outer membrane vesicles derived from Salmonella Typhimurium mutants with truncated LPS induce cross-protective immune responses against infection of Salmonella enterica serovars in the mouse model. Int J Med Microbiol 2016; 306:697-706. [PMID: 27578609 DOI: 10.1016/j.ijmm.2016.08.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/21/2016] [Accepted: 08/24/2016] [Indexed: 11/25/2022] Open
Abstract
Salmonella enterica cause diarrheal and systemic diseases and are of considerable concern worldwide. Vaccines that are cross-protective against multiple serovars could provide effective control of Salmonella-mediated diseases. Bacteria-derived outer membrane vesicles (OMVs) are highly immunogenic and are capable of eliciting protective immune responses. Alterations in lipopolysaccharide (LPS) length can result in outer membrane remodeling and composition of outer membrane proteins (OMPs) changing. In this study, we investigated the impact of truncated LPS on both the production and immunogenicity of Salmonella OMVs, including the ability of OMVs to elicit cross-protection against challenge by heterologous Salmonella strains. We found that mutations in waaJ and rfbP enhanced vesiculation, while mutations in waaC, waaF and waaG inhibited this process. Animal experiments indicated that OMVs from waaC, rfaH and rfbP mutants induced stronger serum immune responses compared to OMVs from the parent strain, while all elicited protective responses against the wild-type S. Typhimurium challenge. Furthermore, intranasal or intraperitoneal immunization with OMVs derived from the waaC and rfbP mutants elicited significantly higher cross-reactive IgG responses and provided enhanced cross-protection against S. Choleraesuis and S. Enteritidis challenge than the wild-type OMVs. These results indicate that truncated-LPS OMVs are capable of conferring cross protection against multiple serotypes of Salmonella infection.
Collapse
Affiliation(s)
- Qiong Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, 611130 Chengdu, China; Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287-5401, USA; Department of Medical Microbiology, School of Medicine, Nanchang University, 330006 Nanchang, China
| | - Qing Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, 611130 Chengdu, China
| | - Jie Yi
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, 611130 Chengdu, China
| | - Kang Liang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, 611130 Chengdu, China
| | - Tian Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, 611130 Chengdu, China
| | - Kenneth L Roland
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287-5401, USA
| | - Yanlong Jiang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, 130118 Changchun, China
| | - Qingke Kong
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, 611130 Chengdu, China; Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287-5401, USA.
| |
Collapse
|
45
|
Duell BL, Su YC, Riesbeck K. Host-pathogen interactions of nontypeable Haemophilus influenzae: from commensal to pathogen. FEBS Lett 2016; 590:3840-3853. [PMID: 27508518 DOI: 10.1002/1873-3468.12351] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/01/2016] [Accepted: 08/05/2016] [Indexed: 11/09/2022]
Abstract
Nontypeable Haemophilus influenzae (NTHi) is a commensal microbe often isolated from the upper and lower respiratory tract. This bacterial species can cause sinusitis, acute otitis media in preschool children, exacerbations in patients suffering from chronic obstructive pulmonary disease, as well as conjunctivitis and bacteremia. Since the introduction of a vaccine against H. influenzae serotype b in the 1990s, the burden of H. influenzae-related infections has been increasingly dominated by NTHi. Understanding the ability of NTHi to cause infection is currently an expanding area of study. NTHi is able to exert differential binding to the host tissue through the use of a broad range of adhesins. NTHi survival in the host is multifaceted, that is, using virulence factors involved in complement resistance, biofilm, modified immunoglobulin responses, and, finally, formation and utilization of host proteins as a secondary strategy of increasing the adhesive ability.
Collapse
Affiliation(s)
- Benjamin Luke Duell
- Clinical Microbiology, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Yu-Ching Su
- Clinical Microbiology, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
46
|
Pressler K, Vorkapic D, Lichtenegger S, Malli G, Barilich BP, Cakar F, Zingl FG, Reidl J, Schild S. AAA+ proteases and their role in distinct stages along the Vibrio cholerae lifecycle. Int J Med Microbiol 2016; 306:452-62. [PMID: 27345492 DOI: 10.1016/j.ijmm.2016.05.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/09/2016] [Accepted: 05/24/2016] [Indexed: 12/29/2022] Open
Abstract
The facultative human pathogen Vibrio cholerae has to adapt to different environmental conditions along its lifecycle by means of transcriptional, translational and post-translational regulation. This study provides a first comprehensive analysis regarding the contribution of the cytoplasmic AAA+ proteases Lon, ClpP and HslV to distinct features of V. cholerae behaviour, including biofilm formation, motility, cholera toxin expression and colonization fitness in the mouse model. While absence of HslV did not yield to any altered phenotype compared to wildtype, absence of Lon or ClpP resulted in significantly reduced colonization in vivo. In addition, a Δlon deletion mutant showed altered biofilm formation and increased motility, which could be correlated with higher expression of V. cholerae flagella gene class IV. Concordantly, we could show by immunoblot analysis, that Lon is the main protease responsible for proteolytic control of FliA, which is required for class IV flagella gene transcription, but also downregulates virulence gene expression. FliA becomes highly sensitive to proteolytic degradation in absence of its anti-sigma factor FlgM, a scenario reported to occur during mucosal penetration due to FlgM secretion through the broken flagellum. Our results confirm that the high stability of FliA in the absence of Lon results in less cholera toxin and toxin corgulated pilus production under virulence gene inducing conditions and in the presence of a damaged flagellum. Thus, the data presented herein provide a molecular explanation on how V. cholerae can achieve full expression of virulence genes during early stages of colonization, despite FliA getting liberated from the anti-sigma factor FlgM.
Collapse
Affiliation(s)
- Katharina Pressler
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, A-8010 Graz, Austria
| | - Dina Vorkapic
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, A-8010 Graz, Austria
| | - Sabine Lichtenegger
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, A-8010 Graz, Austria
| | - Gerald Malli
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, A-8010 Graz, Austria
| | - Benjamin P Barilich
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, A-8010 Graz, Austria
| | - Fatih Cakar
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, A-8010 Graz, Austria
| | - Franz G Zingl
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, A-8010 Graz, Austria
| | - Joachim Reidl
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, A-8010 Graz, Austria
| | - Stefan Schild
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, A-8010 Graz, Austria.
| |
Collapse
|
47
|
Khan MN, Ren D, Kaur R, Basha S, Zagursky R, Pichichero ME. Developing a vaccine to prevent otitis media caused by nontypeable Haemophilus influenzae. Expert Rev Vaccines 2016; 15:863-78. [PMID: 26894630 DOI: 10.1586/14760584.2016.1156539] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nontypeable Haemophilus influenzae (NTHi) is a predominant organism of the upper respiratory nasopharyngeal microbiota. Its disease spectrum includes otitis media, sinusitis, non-bacteremic pneumonia and invasive infections. Protein-based vaccines to prevent NTHi infections are needed to alleviate these infections in children and vulnerable populations such as the elderly and those with chronic obstructive pulmonary disease (COPD). One NTHi protein is included in a pneumococcal conjugate vaccine and has been shown to provide efficacy. Our lab has been interested in understanding the immunogenicity of NTHi vaccine candidates P6, protein D and OMP26 for preventing acute otitis media in young children. We expect that continued investigation and progress in the development of an efficacious protein based vaccine against NTHi infections is achievable in the near future.
Collapse
Affiliation(s)
- M Nadeem Khan
- a Center for Infectious Disease and Immunology , Rochester General Hospital Research Institute , Rochester , NY , USA
| | - Dabin Ren
- a Center for Infectious Disease and Immunology , Rochester General Hospital Research Institute , Rochester , NY , USA
| | - Ravinder Kaur
- a Center for Infectious Disease and Immunology , Rochester General Hospital Research Institute , Rochester , NY , USA
| | - Saleem Basha
- a Center for Infectious Disease and Immunology , Rochester General Hospital Research Institute , Rochester , NY , USA
| | - Robert Zagursky
- a Center for Infectious Disease and Immunology , Rochester General Hospital Research Institute , Rochester , NY , USA
| | - Michael E Pichichero
- a Center for Infectious Disease and Immunology , Rochester General Hospital Research Institute , Rochester , NY , USA
| |
Collapse
|
48
|
Characterization and Vaccine Potential of Outer Membrane Vesicles Produced by Haemophilus parasuis. PLoS One 2016; 11:e0149132. [PMID: 26930282 PMCID: PMC4773134 DOI: 10.1371/journal.pone.0149132] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/26/2016] [Indexed: 11/19/2022] Open
Abstract
Haemophilus parasuis is a Gram-negative bacterium that colonizes the upper respiratory tract of swine and is capable of causing a systemic infection, resulting in high morbidity and mortality. H. parasuis isolates display a wide range of virulence and virulence factors are largely unknown. Commercial bacterins are often used to vaccinate swine against H. parasuis, though strain variability and lack of cross-reactivity can make this an ineffective means of protection. Outer membrane vesicles (OMV) are spherical structures naturally released from the membrane of bacteria and OMV are often enriched in toxins, signaling molecules and other bacterial components. Examination of OMV structures has led to identification of virulence factors in a number of bacteria and they have been successfully used as subunit vaccines. We have isolated OMV from both virulent and avirulent strains of H. parasuis, have examined their protein content and assessed their ability to induce an immune response in the host. Vaccination with purified OMV derived from the virulent H. parasuis Nagasaki strain provided protection against challenge with a lethal dose of the bacteria.
Collapse
|
49
|
Roier S, Zingl FG, Cakar F, Durakovic S, Kohl P, Eichmann TO, Klug L, Gadermaier B, Weinzerl K, Prassl R, Lass A, Daum G, Reidl J, Feldman MF, Schild S. A novel mechanism for the biogenesis of outer membrane vesicles in Gram-negative bacteria. Nat Commun 2016; 7:10515. [PMID: 26806181 PMCID: PMC4737802 DOI: 10.1038/ncomms10515] [Citation(s) in RCA: 339] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 12/15/2015] [Indexed: 12/20/2022] Open
Abstract
Bacterial outer membrane vesicles (OMVs) have important biological roles in pathogenesis and intercellular interactions, but a general mechanism of OMV formation is lacking. Here we show that the VacJ/Yrb ABC (ATP-binding cassette) transport system, a proposed phospholipid transporter, is involved in OMV formation. Deletion or repression of VacJ/Yrb increases OMV production in two distantly related Gram-negative bacteria, Haemophilus influenzae and Vibrio cholerae. Lipidome analyses demonstrate that OMVs from VacJ/Yrb-defective mutants in H. influenzae are enriched in phospholipids and certain fatty acids. Furthermore, we demonstrate that OMV production and regulation of the VacJ/Yrb ABC transport system respond to iron starvation. Our results suggest a new general mechanism of OMV biogenesis based on phospholipid accumulation in the outer leaflet of the outer membrane. This mechanism is highly conserved among Gram-negative bacteria, provides a means for regulation, can account for OMV formation under all growth conditions, and might have important pathophysiological roles in vivo.
Collapse
Affiliation(s)
- Sandro Roier
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, BioTechMed-Graz, Humboldtstraße 50, A-8010 Graz, Austria
| | - Franz G. Zingl
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, BioTechMed-Graz, Humboldtstraße 50, A-8010 Graz, Austria
| | - Fatih Cakar
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, BioTechMed-Graz, Humboldtstraße 50, A-8010 Graz, Austria
| | - Sanel Durakovic
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, BioTechMed-Graz, Humboldtstraße 50, A-8010 Graz, Austria
| | - Paul Kohl
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, BioTechMed-Graz, Humboldtstraße 50, A-8010 Graz, Austria
| | - Thomas O. Eichmann
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, BioTechMed-Graz, Humboldtstraße 50, A-8010 Graz, Austria
| | - Lisa Klug
- Institute of Biochemistry, Graz University of Technology, NAWI Graz, BioTechMed-Graz, Petersgasse 12/2, A-8010 Graz, Austria
| | - Bernhard Gadermaier
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, BioTechMed-Graz, Humboldtstraße 50, A-8010 Graz, Austria
| | - Katharina Weinzerl
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, BioTechMed-Graz, Humboldtstraße 50, A-8010 Graz, Austria
| | - Ruth Prassl
- Institute of Biophysics, Medical University of Graz, BioTechMed-Graz, Harrachgasse 21, A-8010 Graz, Austria
| | - Achim Lass
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, BioTechMed-Graz, Humboldtstraße 50, A-8010 Graz, Austria
| | - Günther Daum
- Institute of Biochemistry, Graz University of Technology, NAWI Graz, BioTechMed-Graz, Petersgasse 12/2, A-8010 Graz, Austria
| | - Joachim Reidl
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, BioTechMed-Graz, Humboldtstraße 50, A-8010 Graz, Austria
| | - Mario F. Feldman
- Department of Biological Sciences, University of Alberta, CW405 Biological Sciences Building, Edmonton, Alberta, Canada T6G 2E9
| | - Stefan Schild
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, BioTechMed-Graz, Humboldtstraße 50, A-8010 Graz, Austria
| |
Collapse
|
50
|
Identification of the Avian Pasteurella multocida phoP Gene and Evaluation of the Effects of phoP Deletion on Virulence and Immunogenicity. Int J Mol Sci 2015; 17:ijms17010012. [PMID: 26703595 PMCID: PMC4730259 DOI: 10.3390/ijms17010012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 12/16/2022] Open
Abstract
Pasteurella multocida (P. multocida) is an animal pathogen of worldwide economic significance that causes fowl cholera in poultry and wild birds. Global gene regulators, including PhoP are important in regulating bacterial virulence and are good targets for developing attenuated vaccines against many pathogenic bacteria. However, the biological significance of phoP gene has not been identified in P. multocida. Here, we identified the phoP gene in P. multocida, and we evaluated the roles of phoP in P. multocida by deleting the phoP gene. The P. multocida phoP mutant exhibited similar growth curves and lipopolysaccharide and outer membrane protein profiles but displayed defective polymyxin resistance in vitro compared with the parent strain. Additionally, the phoP deletion resulted in decreased virulence. The LD50 of the ΔphoP mutant was 32- and 154-fold higher than the parent strain via the oral and intranasal routes, respectively. Transcriptome sequencing analysis showed that 161 genes were up-regulated and 173 genes were down-regulated in the absence of the phoP gene. Finally, the immunogenicity and protective efficacy of the ΔphoP mutant were evaluated. Immunized ducks produced significantly higher levels of serum IgY and bile IgA compared to the control ducks, and immunization with the ΔphoP mutant conferred 54.5% protection efficiency against challenge with the virulent P. multocida. This work provides a platform to dissect the function of phoP and develop a new vaccine against P. multocida.
Collapse
|