1
|
Marshall EM, Rashidi AS, van Gent M, Rockx B, Verjans GMGM. Neurovirulence of Usutu virus in human fetal organotypic brain slice cultures partially resembles Zika and West Nile virus. Sci Rep 2024; 14:20095. [PMID: 39209987 PMCID: PMC11362282 DOI: 10.1038/s41598-024-71050-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Usutu (USUV), West Nile (WNV), and Zika virus (ZIKV) are neurotropic arthropod-borne viruses (arboviruses) that cause severe neurological disease in humans. However, USUV-associated neurological disease is rare, suggesting a block in entry to or infection of the brain. We determined the replication, cell tropism and neurovirulence of these arboviruses in human brain tissue using a well-characterized human fetal organotypic brain slice culture model. Furthermore, we assessed the efficacy of interferon-β and 2'C-methyl-cytidine, a synthetic nucleoside analogue, in restricting viral replication. All three arboviruses replicated within the brain slices, with WNV reaching the highest titers, and all primarily infected neuronal cells. USUV- and WNV-infected cells exhibited a shrunken morphology, not associated with detectable cell death. Pre-treatment with interferon-β inhibited replication of all arboviruses, while 2'C-methyl-cytidine reduced only USUV and ZIKV titers. Collectively, USUV can infect human brain tissue, showing similarities in tropism and neurovirulence as WNV and ZIKV. These data suggest that a blockade to infection of the human brain may not be the explanation for the low clinical incidence of USUV-associated neurological disease. However, USUV replicated more slowly and to lower titers than WNV, which could help to explain the reduced severity of neurological disease resulting from USUV infection.
Collapse
Affiliation(s)
- Eleanor M Marshall
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ahmad S Rashidi
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
- HerpeslabNL of the Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Michiel van Gent
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
- HerpeslabNL of the Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Barry Rockx
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Georges M G M Verjans
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands.
- HerpeslabNL of the Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
2
|
Wang ZJ, Zhang RR, Wu M, Zhao H, Li XF, Ye Q, Qin CF. Development of a live-attenuated chimeric vaccine against the emerging Usutu virus. Vaccine 2024; 42:1363-1371. [PMID: 38310016 DOI: 10.1016/j.vaccine.2024.01.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/30/2023] [Accepted: 01/23/2024] [Indexed: 02/05/2024]
Abstract
Usutu virus (USUV) is an emerging arthropod-borne flavivirus that has expanded into multiple European countries during the past several decades. USUV infection in human has been linked to severe neurological complications, and no vaccine is now available against USUV. In this work, we develop a live-attenuated chimeric USUV vaccine (termed ChinUSUV) based on the full-length infectious cDNA clone of the licensed Japanese encephalitis virus (JEV) vaccine strain SA14-14-2. In vitro studies demonstrate that ChinUSUV replicates efficiently and maintains its genetic stability. Remarkably, ChinUSUV exhibits a significant attenuation phenotype in multiple mouse models even compared with the licensed JEV vaccine. A single immunization with ChinUSUV elicits potent IgG and neutralizing antibody responses as well as T cell response. Passive transfer of sera from ChinUSUV-immunized mice confers significant protection against lethal homologous challenge in suckling mice. Taken together, our results suggest that ChinUSUV represents a potential USUV vaccine candidate that merits further development.
Collapse
Affiliation(s)
- Zheng-Jian Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Rong-Rong Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Mei Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Hui Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xiao-Feng Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Qing Ye
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing 100071, China.
| |
Collapse
|
3
|
Vouillon A, Barthelemy J, Lebeau L, Nisole S, Savini G, Lévêque N, Simonin Y, Garcia M, Bodet C. Skin tropism during Usutu virus and West Nile virus infection: an amplifying and immunological role. J Virol 2024; 98:e0183023. [PMID: 38088560 PMCID: PMC10805065 DOI: 10.1128/jvi.01830-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 01/24/2024] Open
Abstract
Usutu virus (USUV) and West Nile virus (WNV) are closely related emerging arboviruses belonging to the Flavivirus genus and posing global public health concerns. Although human infection by these viruses is mainly asymptomatic, both have been associated with neurological disorders such as encephalitis and meningoencephalitis. Since USUV and WNV are transmitted through the bite of an infected mosquito, the skin represents the initial site of virus inoculation and provides the first line of host defense. Although some data on the early stages of WNV skin infection are available, very little is known about USUV. Herein, USUV-skin resident cell interactions were characterized. Using primary human keratinocytes and fibroblasts, an early replication of USUV during the first 24 hours was shown in both skin cells. In human skin explants, a high viral tropism for keratinocytes was observed. USUV infection of these models induced type I and III interferon responses associated with upregulated expression of various interferon-stimulated genes as well as pro-inflammatory cytokine and chemokine genes. Among the four USUV lineages studied, the Europe 2 strain replicated more efficiently in skin cells and induced a higher innate immune response. In vivo, USUV and WNV disseminated quickly from the inoculation site to distal cutaneous tissues. In addition, viral replication and persistence in skin cells were associated with an antiviral response. Taken together, these results provide a better understanding of the pathophysiology of the early steps of USUV infection and suggest that the skin constitutes a major amplifying organ for USUV and WNV infection.IMPORTANCEUsutu virus (USUV) and West Nile virus (WNV) are closely related emerging Flaviviruses transmitted through the bite of an infected mosquito. Since they are directly inoculated within the upper skin layers, the interactions between the virus and skin cells are critical in the pathophysiology of USUV and WNV infection. Here, during the early steps of infection, we showed that USUV can efficiently infect two human resident skin cell types at the inoculation site: the epidermal keratinocytes and the dermal fibroblasts, leading to the induction of an antiviral innate immune response. Moreover, following cutaneous inoculation, we demonstrated that both viruses can rapidly spread, replicate, and persist in all distal cutaneous tissues in mice, a phenomenon associated with a generalized skin inflammatory response. These results highlight the key amplifying and immunological role of the skin during USUV and WNV infection.
Collapse
Affiliation(s)
- Axelle Vouillon
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines (LITEC), Université de Poitiers, Poitiers, France
| | - Jonathan Barthelemy
- Pathogenesis and Control of Chronic and Emerging Infections (PCCEI), University of Montpellier, INSERM, EFS, Montpellier, France
| | - Lucie Lebeau
- Service d'Anatomie et Cytologie Pathologiques, CHU de Poitiers, Poitiers, France
| | - Sébastien Nisole
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, Montpellier, France
| | - Giovanni Savini
- Department of Virology, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise (IZS-Teramo), Teramo, Italy
| | - Nicolas Lévêque
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines (LITEC), Université de Poitiers, Poitiers, France
- Laboratoire de Virologie et Mycobactériologie, CHU de Poitiers, Poitiers, France
| | - Yannick Simonin
- Pathogenesis and Control of Chronic and Emerging Infections (PCCEI), University of Montpellier, INSERM, EFS, Montpellier, France
| | - Magali Garcia
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines (LITEC), Université de Poitiers, Poitiers, France
- Laboratoire de Virologie et Mycobactériologie, CHU de Poitiers, Poitiers, France
| | - Charles Bodet
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines (LITEC), Université de Poitiers, Poitiers, France
| |
Collapse
|
4
|
Llorente F, Gutiérrez-López R, Pérez-Ramirez E, Sánchez-Seco MP, Herrero L, Jiménez-Clavero MÁ, Vázquez A. Experimental infections in red-legged partridges reveal differences in host competence between West Nile and Usutu virus strains from Southern Spain. Front Cell Infect Microbiol 2023; 13:1163467. [PMID: 37396301 PMCID: PMC10308050 DOI: 10.3389/fcimb.2023.1163467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/23/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction West Nile virus (WNV) and Usutu virus (USUV) are emerging zoonotic arboviruses sharing the same life cycle with mosquitoes as vectors and wild birds as reservoir hosts. The main objective of this study was to characterize the pathogenicity and course of infection of two viral strains (WNV/08 and USUV/09) co-circulating in Southern Spain in a natural host, the red-legged partridge (Alectoris rufa), and to compare the results with those obtained with the reference strain WNV/NY99. Methods WNV inoculated birds were monitored for clinical and analytical parameters (viral load, viremia, and antibodies) for 15 days post-inoculation. Results and discussion Partridges inoculated with WNV/NY99 and WNV/08 strains showed clinical signs such as weight loss, ruffled feathers, and lethargy, which were not observed in USUV/09-inoculated individuals. Although statistically significant differences in mortality were not observed, partridges inoculated with WNV strains developed significantly higher viremia and viral loads in blood than those inoculated with USUV. In addition, the viral genome was detected in organs and feathers of WNV-inoculated partridges, while it was almost undetectable in USUV-inoculated ones. These experimental results indicate that red-legged partridges are susceptible to the assayed Spanish WNV with pathogenicity similar to that observed for the prototype WNV/NY99 strain. By contrast, the USUV/09 strain was not pathogenic for this bird species and elicited extremely low viremia levels, demonstrating that red-legged partridges are not a competent host for the transmission of this USUV strain.
Collapse
Affiliation(s)
- Francisco Llorente
- Centro de Investigación en Sanidad Animal (CISA-INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, Madrid, Spain
| | - Rafael Gutiérrez-López
- Centro de Investigación en Sanidad Animal (CISA-INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, Madrid, Spain
| | - Elisa Pérez-Ramirez
- Centro de Investigación en Sanidad Animal (CISA-INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, Madrid, Spain
| | - María Paz Sánchez-Seco
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Laura Herrero
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Miguel Ángel Jiménez-Clavero
- Centro de Investigación en Sanidad Animal (CISA-INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, Madrid, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Ana Vázquez
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
5
|
Prioteasa FL, Dinu S, Tiron GV, Stancu IG, Fălcuță E, Ceianu CS, Cotar AI. First Detection and Molecular Characterization of Usutu Virus in Culex pipiens Mosquitoes Collected in Romania. Microorganisms 2023; 11:microorganisms11030684. [PMID: 36985256 PMCID: PMC10054730 DOI: 10.3390/microorganisms11030684] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Usutu virus (USUV) is an emergent arbovirus in Europe causing mortality in bird populations. Similar to West Nile virus (WNV), USUV is maintained in sylvatic cycles between mosquito vectors and bird reservoirs. Spillover events may result in human neurological infection cases. Apart from indirect evidence provided by a recent serological study in wild birds, the circulation of USUV in Romania was not assessed. We aimed to detect and molecular characterize USUV circulating in mosquito vectors collected in South-Eastern Romania-a well-known WNV endemic region-during four transmission seasons. Mosquitoes were collected from Bucharest metropolitan area and Danube Delta, pooled, and screened by real-time RT-PCR for USUV. Partial genomic sequences were obtained and used for phylogeny. USUV was detected in Culex pipiens s.l. female mosquitoes collected in Bucharest, in 2019. The virus belonged to Europe 2 lineage, sub-lineage EU2-A. Phylogenetic analysis revealed high similarity with isolates infecting mosquito vectors, birds, and humans in Europe starting with 2009, all sharing common origin in Northern Italy. To our knowledge, this is the first study characterizing a strain of USUV circulating in Romania.
Collapse
Affiliation(s)
- Florian Liviu Prioteasa
- Medical Entomology Laboratory, Cantacuzino National Military Medical Institute for Research and Development, 103 Splaiul Independenței, 050096 Bucharest, Romania
| | - Sorin Dinu
- Molecular Epidemiology for Communicable Diseases Laboratory, Cantacuzino National Military Medical Institute for Research and Development, 103 Splaiul Independenței, 050096 Bucharest, Romania
| | - Georgiana Victorița Tiron
- Vector-Borne Infections Laboratory, Cantacuzino National Military Medical Institute for Research and Development, 103 Splaiul Independenței, 050096 Bucharest, Romania
- Department of Microbiology, Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalelor, 060101 Bucharest, Romania
| | - Ioana Georgeta Stancu
- Vector-Borne Infections Laboratory, Cantacuzino National Military Medical Institute for Research and Development, 103 Splaiul Independenței, 050096 Bucharest, Romania
- Department of Genetics, Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalelor, 060101 Bucharest, Romania
| | - Elena Fălcuță
- Medical Entomology Laboratory, Cantacuzino National Military Medical Institute for Research and Development, 103 Splaiul Independenței, 050096 Bucharest, Romania
| | - Cornelia Svetlana Ceianu
- Vector-Borne Infections Laboratory, Cantacuzino National Military Medical Institute for Research and Development, 103 Splaiul Independenței, 050096 Bucharest, Romania
| | - Ani Ioana Cotar
- Vector-Borne Infections Laboratory, Cantacuzino National Military Medical Institute for Research and Development, 103 Splaiul Independenței, 050096 Bucharest, Romania
| |
Collapse
|
6
|
Co-Circulation of West Nile, Usutu, and Tick-Borne Encephalitis Viruses in the Same Area: A Great Challenge for Diagnostic and Blood and Organ Safety. Viruses 2023; 15:v15020366. [PMID: 36851580 PMCID: PMC9966648 DOI: 10.3390/v15020366] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Viral infections caused by viruses from the family Flaviviridae such as Zika (ZIKV), Dengue (DENV), yellow fever (YFV), tick-borne encephalitis (TBEV), West Nile (WNV), and Usutu (USUV) are some of the most challenging diseases for recognition in clinical diagnostics and epidemiological tracking thanks to their short viremia, non-specific symptoms, and high cross-reactivity observed in laboratory techniques. In Central Europe, the most relevant endemic flaviviruses are mosquito-borne WNV and USUV, and tick-borne TBEV. All three viruses have been recognised to be responsible for human neuroinvasive diseases. Moreover, they are interrupting the blood and transplantation safety processes, when the great efforts made to save a patient's life could be defeated by acquired infection from donors. Due to the trend of changing distribution and abundance of flaviviruses and their vectors influenced by global change, the co-circulation of WNV, USUV, and TBEV can be observed in the same area. In this perspective, we discuss the problems of flavivirus diagnostics and epidemiology monitoring in Slovakia as a model area of Central Europe, where co-circulation of WNV, USUV, and TBEV in the same zone has been recently detected. This new situation presents multiple challenges not only for diagnostics or surveillance but particularly also for blood and organ safety. We conclude that the current routinely used laboratory diagnostics and donor screening applied by the European Union (EU) regulations are out of date and the novel methods which have become available in recent years, e.g., next-gene sequencing or urine screening should be implemented immediately.
Collapse
|
7
|
Cadar D, Simonin Y. Human Usutu Virus Infections in Europe: A New Risk on Horizon? Viruses 2022; 15:77. [PMID: 36680117 PMCID: PMC9866956 DOI: 10.3390/v15010077] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
The Usutu virus (USUV), a neurotropic mosquito-borne flavivirus discovered in 1959 in South Africa, has spread over the last twenty years across the European continent. This virus follows an enzootic cycle involving mosquitoes and birds. This caused epizootics with significant bird mortality in Europe in 2016 and 2018. It can also occasionally infect humans and other mammals, including horses and bats, which act as incidental or dead-end hosts. The zoonotic risk associated with this succession of avian epizootics in Europe deserves attention, even if, to date, human cases remain exceptional. Human infection is most often asymptomatic or responsible for mild clinical symptoms. However, human Usutu infections have also been associated with neurological disorders, such as encephalitis and meningoencephalitis. One of the major complexities of the study of USUV pathogenesis is the presence of a great diversity of lineages which could co-circulate spatiotemporally. In this review we discuss several aspects of the circulation of Usutu virus in humans in Europe, the neurological disorders associated, involved viral lineages, and the issues and questions raised by their circulation.
Collapse
Affiliation(s)
- Dániel Cadar
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, 20359 Hamburg, Germany
| | - Yannick Simonin
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, 34000 Montpellier, France
| |
Collapse
|
8
|
Holicki CM, Bergmann F, Stoek F, Schulz A, Groschup MH, Ziegler U, Sadeghi B. Expedited retrieval of high-quality Usutu virus genomes via Nanopore sequencing with and without target enrichment. Front Microbiol 2022; 13:1044316. [PMID: 36439823 PMCID: PMC9681921 DOI: 10.3389/fmicb.2022.1044316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/20/2022] [Indexed: 10/04/2023] Open
Abstract
Usutu virus (USUV) is a mosquito-borne zoonotic virus and one of the causes of flavivirus encephalitis in birds and occasionally in humans. USUV rapidly disperses in a susceptible host and vector environment, as is the case in South and Central Europe. However, compared to other flaviviruses, USUV has received less research attention and there is therefore limited access to whole-genome sequences and also to in-depth phylogenetic and phylodynamic analyses. To ease future molecular studies, this study compares first- (partial sequencing via Sanger), second- (Illumina), and third-generation (MinION Nanopore) sequencing platforms for USUV. With emphasis on MinION Nanopore sequencing, cDNA-direct and target-enrichment (amplicon-based) sequencing approaches were validated in parallel. The study was based on four samples from succumbed birds commonly collected throughout Germany. The samples were isolated from various sample matrices, organs as well as blood cruor, and included three different USUV lineages. We concluded that depending on the focus of a research project, amplicon-based MinION Nanopore sequencing can be an ideal cost- and time-effective alternative to Illumina in producing optimal genome coverage. It can be implemented for an array of lab- or field-based objectives, including among others: phylodynamic studies and the analysis of viral quasispecies.
Collapse
Affiliation(s)
- Cora M Holicki
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Felicitas Bergmann
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Franziska Stoek
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Ansgar Schulz
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Martin H Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Ute Ziegler
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Balal Sadeghi
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| |
Collapse
|
9
|
Martin H, Barthelemy J, Chin Y, Bergamelli M, Moinard N, Cartron G, Tanguy Le Gac Y, Malnou CE, Simonin Y. Usutu Virus Infects Human Placental Explants and Induces Congenital Defects in Mice. Viruses 2022; 14:v14081619. [PMID: 35893684 PMCID: PMC9330037 DOI: 10.3390/v14081619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Usutu virus (USUV) is a neurotropic mosquito-borne flavivirus that has dispersed quickly in Europe these past years. This arbovirus mainly follows an enzootic cycle involving mosquitoes and birds, but can also infect other mammals, causing notably sporadic cases in humans. Although it is mainly asymptomatic or responsible for mild clinical symptoms, USUV has been associated with neurological disorders, such as encephalitis and meningoencephalitis, highlighting the potential health threat of this virus. Among the different transmission routes described for other flaviviruses, the capacity for some of them to be transmitted vertically has been demonstrated, notably for Zika virus or West Nile virus, which are closely related to USUV. To evaluate the ability of USUV to replicate in the placenta and gain access to the fetus, we combined the use of several trophoblast model cell lines, ex vivo human placental explant cultures from first and third trimester of pregnancy, and in vivo USUV-infected pregnant mice. Our data demonstrate that human placental cells and tissues are permissive to USUV replication, and suggest that viral transmission can occur in mice during gestation. Hence, our observations suggest that USUV could be efficiently transmitted by the vertical route.
Collapse
Affiliation(s)
- Hélène Martin
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France; (H.M.); (Y.C.); (M.B.)
| | - Jonathan Barthelemy
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, Montpellier, France;
| | - Yamileth Chin
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France; (H.M.); (Y.C.); (M.B.)
- Instituto Conmemorativo Gorgas de Estudios de la Salud, Ciudad de Panamá, Panamá
| | - Mathilde Bergamelli
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France; (H.M.); (Y.C.); (M.B.)
| | - Nathalie Moinard
- Développement Embryonnaire, Fertilité, Environnement (DEFE), INSERM UMR 1203, Université de Toulouse et Université de Montpellier, France;
- CECOS, Groupe d’Activité de Médecine de la Reproduction, CHU Toulouse, Hôpital Paule de Viguier, Toulouse, France
| | - Géraldine Cartron
- CHU Toulouse, Hôpital Paule de Viguier, Service de Gynécologie Obstétrique, Toulouse, France; (G.C.); (Y.T.L.G.)
| | - Yann Tanguy Le Gac
- CHU Toulouse, Hôpital Paule de Viguier, Service de Gynécologie Obstétrique, Toulouse, France; (G.C.); (Y.T.L.G.)
| | - Cécile E. Malnou
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France; (H.M.); (Y.C.); (M.B.)
- Correspondence: (C.E.M.); (Y.S.)
| | - Yannick Simonin
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, Montpellier, France;
- Correspondence: (C.E.M.); (Y.S.)
| |
Collapse
|
10
|
Zecchin B, Fusaro A, Milani A, Schivo A, Ravagnan S, Ormelli S, Mavian C, Michelutti A, Toniolo F, Barzon L, Monne I, Capelli G. The central role of Italy in the spatial spread of USUTU virus in Europe. Virus Evol 2021; 7:veab048. [PMID: 34513027 PMCID: PMC8427344 DOI: 10.1093/ve/veab048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
USUTU virus (USUV) is an arbovirus maintained in the environment through a bird-mosquito enzootic cycle. Previous surveillance plans highlighted the endemicity of USUV in North-eastern Italy. In this work, we sequenced 138 new USUV full genomes from mosquito pools (Culex pipiens) and wild birds collected in North-eastern Italy and we investigated the evolutionary processes (phylogenetic analysis, selection pressure and evolutionary time-scale analysis) and spatial spread of USUV strains circulating in the European context and in Italy, with a particular focus on North-eastern Italy. Our results confirmed the circulation of viruses belonging to four different lineages in Italy (EU1, EU2, EU3 and EU4), with the newly sequenced viruses from the North-eastern regions, Veneto and Friuli Venezia Giulia, belonging to the EU2 lineage and clustering into two different sub-lineages, EU2-A and EU2-B. Specific mutations characterize each European lineage and geographic location seem to have shaped their phylogenetic structure. By investigating the spatial spread in Europe, we were able to show that Italy acted mainly as donor of USUV to neighbouring countries. At a national level, we identified two geographical clusters mainly circulating in Northern and North-western Italy, spreading both northward and southward. Our analyses provide important information on the spatial and evolutionary dynamics of USUTU virus that can help to improve surveillance plans and control strategies for this virus of increasing concern for human health.
Collapse
Affiliation(s)
- B Zecchin
- Department of Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - A Fusaro
- Department of Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - A Milani
- Department of Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - A Schivo
- Department of Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - S Ravagnan
- National Reference Centre/OIE Collaborating Centre for Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - S Ormelli
- Department of Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - C Mavian
- Emerging Pathogens Institute, Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - A Michelutti
- National Reference Centre/OIE Collaborating Centre for Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - F Toniolo
- National Reference Centre/OIE Collaborating Centre for Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - L Barzon
- Department of Molecular Medicine, University of Padua, Padova, Italy
| | - I Monne
- Department of Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - G Capelli
- National Reference Centre/OIE Collaborating Centre for Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| |
Collapse
|
11
|
Khare B, Klose T, Fang Q, Rossmann MG, Kuhn RJ. Structure of Usutu virus SAAR-1776 displays fusion loop asymmetry. Proc Natl Acad Sci U S A 2021; 118:e2107408118. [PMID: 34417300 PMCID: PMC8403871 DOI: 10.1073/pnas.2107408118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Usutu virus (USUV) is an emerging arbovirus in Europe that has been increasingly identified in asymptomatic humans and donated blood samples and is a cause of increased incidents of neuroinvasive human disease. Treatment or prevention options for USUV disease are currently nonexistent, the result of a lack of understanding of the fundamental elements of USUV pathogenesis. Here, we report two structures of the mature USUV virus, determined at a resolution of 2.4 Å, using single-particle cryogenic electron microscopy. Mature USUV is an icosahedral shell of 180 copies of envelope (E) and membrane (M) proteins arranged in the classic herringbone pattern. However, unlike previous reports of flavivirus structures, we observe virus subpopulations and differences in the fusion loop disulfide bond. Presence of a second, unique E glycosylation site could elucidate host interactions, contributing to the broad USUV tissue tropism. The structures provide a basis for exploring USUV interactions with glycosaminoglycans and lectins, the role of the RGD motif as a receptor, and the inability of West Nile virus therapeutic antibody E16 to neutralize the mature USUV strain SAAR-1776. Finally, we identify three lipid binding sites and predict key residues that likely participate in virus stability and flexibility during membrane fusion. Our findings provide a framework for the development of USUV therapeutics and expand the current knowledge base of flavivirus biology.
Collapse
Affiliation(s)
- Baldeep Khare
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Thomas Klose
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Qianglin Fang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Michael G Rossmann
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Richard J Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
12
|
Clé M, Constant O, Barthelemy J, Desmetz C, Martin MF, Lapeyre L, Cadar D, Savini G, Teodori L, Monaco F, Schmidt-Chanasit J, Saiz JC, Gonzales G, Lecollinet S, Beck C, Gosselet F, Van de Perre P, Foulongne V, Salinas S, Simonin Y. Differential neurovirulence of Usutu virus lineages in mice and neuronal cells. J Neuroinflammation 2021; 18:11. [PMID: 33407600 PMCID: PMC7789689 DOI: 10.1186/s12974-020-02060-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/11/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Usutu virus (USUV) is an emerging neurotropic arthropod-borne virus recently involved in massive die offs of wild birds predominantly reported in Europe. Although primarily asymptomatic or presenting mild clinical signs, humans infected by USUV can develop neuroinvasive pathologies (including encephalitis and meningoencephalitis). Similar to other flaviviruses, such as West Nile virus, USUV is capable of reaching the central nervous system. However, the neuropathogenesis of USUV is still poorly understood, and the virulence of the specific USUV lineages is currently unknown. One of the major complexities of the study of USUV pathogenesis is the presence of a great diversity of lineages circulating at the same time and in the same location. METHODS The aim of this work was to determine the neurovirulence of isolates from the six main lineages circulating in Europe using mouse model and several neuronal cell lines (neurons, microglia, pericytes, brain endothelial cells, astrocytes, and in vitro Blood-Brain Barrier model). RESULTS Our results indicate that all strains are neurotropic but have different virulence profiles. The Europe 2 strain, previously described as being involved in several clinical cases, induced the shortest survival time and highest mortality in vivo and appeared to be more virulent and persistent in microglial, astrocytes, and brain endothelial cells, while also inducing an atypical cytopathic effect. Moreover, an amino acid substitution (D3425E) was specifically identified in the RNA-dependent RNA polymerase domain of the NS5 protein of this lineage. CONCLUSIONS Altogether, these data show a broad neurotropism for USUV in the central nervous system with lineage-dependent virulence. Our results will help to better understand the biological and epidemiological diversity of USUV infection.
Collapse
Affiliation(s)
- Marion Clé
- Pathogenesis and Control of Chronic Infections, Université de Montpellier, INSERM, EFS, Montpellier, France
| | - Orianne Constant
- Pathogenesis and Control of Chronic Infections, Université de Montpellier, INSERM, EFS, Montpellier, France
| | - Jonathan Barthelemy
- Pathogenesis and Control of Chronic Infections, Université de Montpellier, INSERM, EFS, Montpellier, France
| | - Caroline Desmetz
- BioCommunication en CardioMétabolique (BC2M), Montpellier University, Montpellier, France
| | - Marie France Martin
- Université de Montpellier, CNRS, Viral Trafficking, Restriction and Innate Signaling, Montpellier, France
| | - Lina Lapeyre
- Université de Montpellier, CNRS, Viral Trafficking, Restriction and Innate Signaling, Montpellier, France
| | - Daniel Cadar
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, 20359, Hamburg, Germany
| | - Giovanni Savini
- OIE Reference Centre for West Nile Disease, Istituto Zooprofilattico Sperimentale "G. Caporale", 46100, Teramo, Italy
| | - Liana Teodori
- OIE Reference Centre for West Nile Disease, Istituto Zooprofilattico Sperimentale "G. Caporale", 46100, Teramo, Italy
| | - Federica Monaco
- OIE Reference Centre for West Nile Disease, Istituto Zooprofilattico Sperimentale "G. Caporale", 46100, Teramo, Italy
| | - Jonas Schmidt-Chanasit
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, 20359, Hamburg, Germany
- Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, 20148, Hamburg, Germany
| | | | - Gaëlle Gonzales
- UPE, Anses Animal Health Laboratory, UMR1161 Virology, INRA, Anses, ENVA, Maisons-Alfort, France
| | - Sylvie Lecollinet
- UPE, Anses Animal Health Laboratory, UMR1161 Virology, INRA, Anses, ENVA, Maisons-Alfort, France
| | - Cécile Beck
- UPE, Anses Animal Health Laboratory, UMR1161 Virology, INRA, Anses, ENVA, Maisons-Alfort, France
| | - Fabien Gosselet
- Blood-Brain Barrier Laboratory (BBB Lab), University of Artois, UR2465, F-62300, Lens, France
| | - Philippe Van de Perre
- Pathogenesis and Control of Chronic Infections, Université de Montpellier, INSERM, EFS, Montpellier, France
- Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Vincent Foulongne
- Pathogenesis and Control of Chronic Infections, Université de Montpellier, INSERM, EFS, Montpellier, France
- Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Sara Salinas
- Pathogenesis and Control of Chronic Infections, Université de Montpellier, INSERM, EFS, Montpellier, France
| | - Yannick Simonin
- Pathogenesis and Control of Chronic Infections, Université de Montpellier, INSERM, EFS, Montpellier, France.
| |
Collapse
|
13
|
Benzarti E, Garigliany M. In Vitro and In Vivo Models to Study the Zoonotic Mosquito-Borne Usutu Virus. Viruses 2020; 12:E1116. [PMID: 33008141 PMCID: PMC7599730 DOI: 10.3390/v12101116] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/15/2020] [Accepted: 09/27/2020] [Indexed: 12/18/2022] Open
Abstract
Usutu virus (USUV), a mosquito-borne zoonotic flavivirus discovered in South Africa in 1959, has spread to many European countries over the last 20 years. The virus is currently a major concern for animal health due to its expanding host range and the growing number of avian mass mortality events. Although human infections with USUV are often asymptomatic, they are occasionally accompanied by neurological complications reminiscent of those due to West Nile virus (another flavivirus closely related to USUV). Whilst USUV actually appears less threatening than some other emergent arboviruses, the lessons learned from Chikungunya, Dengue, and Zika viruses during the past few years should not be ignored. Further, it would not be surprising if, with time, USUV disperses further eastwards towards Asia and possibly westwards to the Americas, which may result in more pathogenic USUV strains to humans and/or animals. These observations, inviting the scientific community to be more vigilant about the spread and genetic evolution of USUV, have prompted the use of experimental systems to understand USUV pathogenesis and to boost the development of vaccines and antivirals. This review is the first to provide comprehensive coverage of existing in vitro and in vivo models for USUV infection and to discuss their contribution in advancing data concerning this neurotropic virus. We believe that this paper is a helpful tool for scientists to identify gaps in the knowledge about USUV and to design their future experiments to study the virus.
Collapse
Affiliation(s)
| | - Mutien Garigliany
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Sart Tilman B43, B-4000 Liège, Belgium;
| |
Collapse
|
14
|
Abstract
Usutu virus (USUV) is an emerging arbovirus that was first isolated in South Africa in 1959. This Flavivirus is maintained in the environment through a typical enzootic cycle involving mosquitoes and birds. USUV has spread to a large part of the European continent over the two decades mainly leading to substantial avian mortalities with a significant recrudescence of bird infections recorded throughout Europe within the few last years. USUV infection in humans is considered to be most often asymptomatic or to cause mild clinical signs. Nonetheless, a few cases of neurological complications such as encephalitis or meningoencephalitis have been reported. USUV and West Nile virus (WNV) share many features, like a close phylogenetic relatedness and a similar ecology, with co-circulation frequently observed in nature. However, USUV has been much less studied and in-depth comparisons of the biology of these viruses are yet rare. In this review, we discuss the main body of knowledge regarding USUV and compare it with the literature on WNV, addressing in particular virological and clinical aspects, and pointing data gaps.
Collapse
|
15
|
Papa A, Gewehr S, Tsioka K, Kalaitzopoulou S, Pappa S, Mourelatos S. Detection of flaviviruses and alphaviruses in mosquitoes in Central Macedonia, Greece, 2018. Acta Trop 2020; 202:105278. [PMID: 31756306 DOI: 10.1016/j.actatropica.2019.105278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 11/24/2022]
Abstract
Culex mosquitoes are vectors of several flaviviruses and alphaviruses posing a potential risk to public and veterinary health. In order to gain an insight into the flaviviruses and alphaviruses circulating in the five regional units of Central Macedonia in northern Greece, 17,470 female Culex spp. mosquitoes collected during 2018 were tested for these viruses. Among 229 mosquito pools, West Nile virus (WNV) was detected in 10 (4.4%) pools, while insect-specific flavi- and alphaviruses were detected in 2 (0.9%) and 8 (3.5%) pools, respectively. WNV minimum infection rate (MIR) was 0.57. The highest MIR was identified in Thessaloniki regional unit, where several human cases of WNV infection occurred in 2018. All ten WNV sequences cluster into the Central European subclade of lineage 2. It is of note that the first WNV-positive mosquito pool was detected two weeks prior the report of the first human case in the area, suggesting that testing of mosquitoes could serve as early warning system.
Collapse
|
16
|
Vilibic-Cavlek T, Savic V, Petrovic T, Toplak I, Barbic L, Petric D, Tabain I, Hrnjakovic-Cvjetkovic I, Bogdanic M, Klobucar A, Mrzljak A, Stevanovic V, Dinjar-Kujundzic P, Radmanic L, Monaco F, Listes E, Savini G. Emerging Trends in the Epidemiology of West Nile and Usutu Virus Infections in Southern Europe. Front Vet Sci 2019; 6:437. [PMID: 31867347 PMCID: PMC6908483 DOI: 10.3389/fvets.2019.00437] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 11/19/2019] [Indexed: 02/05/2023] Open
Abstract
The epidemiology of West Nile (WNV) and Usutu virus (USUV) has changed dramatically over the past two decades. Since 1999, there have been regular reports of WNV outbreaks and the virus has expanded its area of circulation in many Southern European countries. After emerging in Italy in 1996, USUV has spread to other countries causing mortality in several bird species. In 2009, USUV seroconversion in horses was reported in Italy. Co-circulation of both viruses was detected in humans, horses and birds. The main vector of WNV and USUV in Europe is Culex pipiens, however, both viruses were found in native Culex mosquito species (Cx. modestus, Cx. perexiguus). Experimental competence to transmit the WNV was also proven for native and invasive mosquitoes of Aedes and Culex genera (Ae. albopictus, Ae. detritus, Cx. torrentium). Recently, Ae. albopictus and Ae. japonicus naturally-infected with USUV were reported. While neuroinvasive human WNV infections are well-documented, USUV infections are sporadically detected. However, there is increasing evidence of a role of USUV in human disease. Seroepidemiological studies showed that USUV circulation is more common than WNV in some endemic regions. Recent data showed that WNV strains detected in humans, horses, birds, and mosquitoes mainly belong to lineage 2. In addition to European USUV lineages, some reports indicate the presence of African USUV lineages as well. The trends in WNV/USUV range and vector expansion are likely to continue in future years. This mini-review provides an update on the epidemiology of WNV and USUV infections in Southern Europe within a multidisciplinary "One Health" context.
Collapse
Affiliation(s)
- Tatjana Vilibic-Cavlek
- Department of Virology, Croatian Institute of Public Health, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Vladimir Savic
- Poultry Center, Croatian Veterinary Institute, Zagreb, Croatia
| | - Tamas Petrovic
- Department for Virology, Scientific Veterinary Institute, Novi Sad, Serbia
| | - Ivan Toplak
- Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Ljubo Barbic
- Department of Microbiology and Infectious Diseases With Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Dusan Petric
- Laboratory for Medical and Veterinary Entomology, Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
| | - Irena Tabain
- Department of Virology, Croatian Institute of Public Health, Zagreb, Croatia
| | - Ivana Hrnjakovic-Cvjetkovic
- Center for Microbiology, Institute of Public Health Vojvodina, Novi Sad, Serbia
- Medical Faculty, University of Novi Sad, Novi Sad, Serbia
| | - Maja Bogdanic
- Department of Virology, Croatian Institute of Public Health, Zagreb, Croatia
| | - Ana Klobucar
- Division of Disinfection, Disinfestation and Pest Control, Andrija Stampar Teaching Institute of Public Health, Zagreb, Croatia
| | - Anna Mrzljak
- School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Medicine, Merkur University Hospital, Zagreb, Croatia
| | - Vladimir Stevanovic
- Department of Microbiology and Infectious Diseases With Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | | | - Luka Radmanic
- Department of Microbiology and Infectious Diseases With Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Federica Monaco
- OIE Reference Center for West Nile Disease, Istituto Zooprofilattico Sperimentale “G. Caporale”, Teramo, Italy
| | - Eddy Listes
- Laboratory for Diagnostics, Croatian Veterinary Institute, Regional Institute Split, Split, Croatia
| | - Giovanni Savini
- OIE Reference Center for West Nile Disease, Istituto Zooprofilattico Sperimentale “G. Caporale”, Teramo, Italy
| |
Collapse
|
17
|
Usutu Virus: An Arbovirus on the Rise. Viruses 2019; 11:v11070640. [PMID: 31336826 PMCID: PMC6669749 DOI: 10.3390/v11070640] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/23/2022] Open
Abstract
The Usutu virus (USUV) is a flavivirus that is drawing increasing attention because of its potential for emergence. First isolated in Africa, it was introduced into Europe where it caused significant outbreaks in birds, such as in Austria in 2001. Since then, its geographical distribution has rapidly expanded, with increased circulation, especially in the last few years. Similar to West Nile virus (WNV), the USUV enzootic transmission cycle involves Culex mosquitoes as vectors, and birds as amplifying reservoir hosts, with humans and other mammals likely being dead-end hosts. A similarity in the ecology of these two viruses, which co-circulate in several European countries, highlights USUV’s potential to become an important human pathogen. While USUV has had a severe impact on the blackbird population, the number of human cases remains low, with most infections being asymptomatic. However, some rare cases of neurological disease have been described, both in healthy and immuno-compromised patients. Here, we will discuss the transmission dynamics and the current state of USUV circulation in Europe.
Collapse
|
18
|
Vilibic-Cavlek T, Savic V, Sabadi D, Peric L, Barbic L, Klobucar A, Miklausic B, Tabain I, Santini M, Vucelja M, Dvorski E, Butigan T, Kolaric-Sviben G, Potocnik-Hunjadi T, Balenovic M, Bogdanic M, Andric Z, Stevanovic V, Capak K, Balicevic M, Listes E, Savini G. Prevalence and molecular epidemiology of West Nile and Usutu virus infections in Croatia in the 'One health' context, 2018. Transbound Emerg Dis 2019; 66:1946-1957. [PMID: 31067011 DOI: 10.1111/tbed.13225] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/19/2019] [Accepted: 05/03/2019] [Indexed: 12/14/2022]
Abstract
In 2018, Croatia reported the largest outbreak of West Nile virus (WNV) infections as well as the re-occurrence of human Usutu virus (USUV) infections. For the first time, fatal WNV and USUV infections were detected in wild birds. We analysed epidemiological characteristics and molecular epidemiology of WNV and USUV infections detected during 2018 transmission season. From April to November, 178 patients with neuroinvasive disease and 68 patients with febrile disease were tested for WNV and USUV. Viral RNA was detected in cerebrospinal fluid (CSF) and urine samples using a real-time RT-PCR. Positive samples were tested by nested RT-PCR and nucleotide sequencing. IgM/IgG antibodies were detected in serum/CSF samples using ELISA with confirmation of cross-reactive samples by virus neutralization test (VNT). WNV neuroinvasive disease was confirmed in 54 and WNV fever in seven patients from 10 continental Croatian counties. Areas affected in 2018 were those in which cases occurred in previous seasons, while in three areas human cases were reported for the first time. Phylogenetic analysis of six strains from patients residing in different geographic areas showed circulation of WNV lineage 2. In three patients, neuroinvasive USUV infection was confirmed by RT-PCR or VNT. Sequence analysis of one detected strain revealed USUV Europe 2 lineage. During the same period, a total of 2,574 horse and 1,069 poultry serum samples were tested for WNV antibodies using ELISA. Acute asymptomatic WNV infection (IgM antibodies) was documented in 20/0.7% horses. WNV IgG antibodies were found in 307/11.9% horses and in 125/12.7% poultry. WNV RNA was detected in two goshawks and USUV RNA was detected in one blackbird from north-western Croatia. In the Zagreb area, 3,670 female mosquitoes were collected. One Culex pipiens pool collected in July tested positive for USUV RNA. Our results highlight the importance of continuous multidisciplinary 'One health' surveillance of these emerging arboviruses.
Collapse
Affiliation(s)
- Tatjana Vilibic-Cavlek
- Croatian Institute of Public Health, Zagreb, Croatia.,School of Medicine, University of Zagreb, Zagreb, Croatia
| | | | - Dario Sabadi
- Clinical Hospital Center Osijek, Osijek, Croatia.,Medical Faculty, Josip Juraj Stossmayer University of Osijek, Osijek, Croatia
| | - Ljiljana Peric
- Clinical Hospital Center Osijek, Osijek, Croatia.,Medical Faculty, Josip Juraj Stossmayer University of Osijek, Osijek, Croatia
| | - Ljubo Barbic
- Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Ana Klobucar
- Andrija Stampar Teaching Institute of Public Health, Zagreb, Croatia
| | - Bozana Miklausic
- University Hospital for Infectious Diseases "Dr Fran Mihaljevic", Zagreb, Croatia
| | - Irena Tabain
- Croatian Institute of Public Health, Zagreb, Croatia
| | - Marija Santini
- School of Medicine, University of Zagreb, Zagreb, Croatia.,University Hospital for Infectious Diseases "Dr Fran Mihaljevic", Zagreb, Croatia
| | - Marko Vucelja
- Faculty of Forestry, University of Zagreb, Zagreb, Croatia
| | | | | | | | | | | | - Maja Bogdanic
- Croatian Institute of Public Health, Zagreb, Croatia
| | | | | | | | | | - Eddy Listes
- Croatian Veterinary Institute, Regional Institute Split, Split, Croatia
| | - Giovanni Savini
- OIE Reference Center for West Nile Disease, Istituto Zooprofilattico Sperimentale "G. Caporale", Teramo, Italy
| |
Collapse
|
19
|
Benzarti E, Linden A, Desmecht D, Garigliany M. Mosquito-borne epornitic flaviviruses: an update and review. J Gen Virol 2019; 100:119-132. [PMID: 30628886 DOI: 10.1099/jgv.0.001203] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
West Nile Virus, Usutu virus, Bagaza virus, Israel turkey encephalitis virus and Tembusu virus currently constitute the five flaviviruses transmitted by mosquito bites with a marked pathogenicity for birds. They have been identified as the causative agents of severe neurological symptoms, drop in egg production and/or mortalities among avian hosts. They have also recently shown an expansion of their geographic distribution and/or a rise in cases of human infection. This paper is the first up-to-date review of the pathology of these flaviviruses in birds, with a special emphasis on the difference in susceptibility among avian species, in order to understand the specificity of the host spectrum of each of these viruses. Furthermore, given the lack of a clear prophylactic approach against these viruses in birds, a meta-analysis of vaccination trials conducted to date on these animals is given to constitute a solid platform from which designing future studies.
Collapse
Affiliation(s)
- Emna Benzarti
- 1FARAH Research Center, Department of Pathology, Faculty of Veterinary Medicine, University of Liège, Sart Tilman B43, B-4000 Liège, Belgium
| | - Annick Linden
- 2FARAH Research Center, Surveillance Network for Wildlife Diseases, Faculty of Veterinary Medicine, University of Liège, Sart Tilman B43, B-4000 Liège, Belgium
| | - Daniel Desmecht
- 1FARAH Research Center, Department of Pathology, Faculty of Veterinary Medicine, University of Liège, Sart Tilman B43, B-4000 Liège, Belgium
| | - Mutien Garigliany
- 1FARAH Research Center, Department of Pathology, Faculty of Veterinary Medicine, University of Liège, Sart Tilman B43, B-4000 Liège, Belgium
| |
Collapse
|
20
|
Chen Z, Ye F, Lin S, Yang F, Cheng Y, Cao Y, Chen Z, Lu G. Crystal structure of Usutu virus envelope protein in the pre-fusion state. Virol J 2018; 15:183. [PMID: 30477514 PMCID: PMC6260896 DOI: 10.1186/s12985-018-1092-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 11/08/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Usutu virus (USUV) is a mosquito-born flavivirus that can infect multiple avian and mammalian species. The viral surface envelope (E) protein functions to initiate the viral infection by recognizing cellular receptors and mediating the subsequent membrane fusion, and is therefore a key virulence factor involved in the pathogenesis of USUV. The structural features of USUV-E, however, remains un-investigated thus far. FINDINGS Using the crystallographic method, we determined the structure of USUV-E in the pre-fusion state at 2.0 angstrom. As expected, the overall fold of USUV-E, with three β-barrel domains (DI, DII, and DIII), resembles those of other flaviviral E proteins. In comparison to other pre-fusion E structures, however, USUV-E exhibits an apparently enlarged inter-domain angle between DI and DII, leading to a more extended conformation. Using our structure and other reported pre-fusion E structures, the DI-DII domain-angle difference was analyzed in a pairwise manner. The result shows a much higher degree of variations for USUV-E, indicating the potential for remarkable DI-DII domain angle plasticity among flaviviruses. CONCLUSION We report the crystal structure of USUV-E and show that its pre-fusion structure has an enlarged DI-DII domain-angle which has not been observed in other reported flaviviral E-structures.
Collapse
Affiliation(s)
- Zimin Chen
- 0000 0004 1770 1022grid.412901.fWest China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan China
| | - Fei Ye
- 0000 0004 1770 1022grid.412901.fWest China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan China
| | - Sheng Lin
- 0000 0004 1770 1022grid.412901.fWest China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan China
| | - Fanli Yang
- 0000 0004 1770 1022grid.412901.fWest China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan China
| | - Yanwei Cheng
- 0000 0004 1770 1022grid.412901.fWest China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan China
| | - Yu Cao
- 0000 0004 1770 1022grid.412901.fWest China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan China ,0000 0001 0807 1581grid.13291.38Disaster Medicine Center, Sichuan University, Chengdu, 610041 Sichuan China
| | - Zhujun Chen
- 0000 0004 1770 1022grid.412901.fWest China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan China
| | - Guangwen Lu
- 0000 0004 1770 1022grid.412901.fWest China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan China
| |
Collapse
|
21
|
Satyam R, Janahi EM, Bhardwaj T, Somvanshi P, Haque S, Najm MZ. In silico identification of immunodominant B-cell and T-cell epitopes of non-structural proteins of Usutu Virus. Microb Pathog 2018; 125:129-143. [PMID: 30217517 DOI: 10.1016/j.micpath.2018.09.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 12/12/2022]
Abstract
Usutu Virus (USUV; flavivirus) is a re-emerging pathogen invading the territories of European countries, Asia, and Africa. It is a mosquito-borne zoonotic virus with a bi-directional transmission route from animal to human and vice versa, and causes neurological disorders such as meningoencephalitis in bats, Homo sapiens, birds and horses. Due to limited availability of information about USUV and its deleterious effects on neural cells causing neurologic impairments, it becomes imperative to study this virus in detail to equip ourselves with a solution beforehand. The current study aims to identify immunodominant peptides that could be exploited in future for designing global peptide vaccine for combating the infections caused by USUV. In this study, an immunoinformatics approach was applied to evaluate the immunogenicity of 7 non-structural proteins and determined 64 continuous B-cell epitopes, numerous probable discontinuous B-cell epitopes, 64 MHC Class-I binders, 126 MHC class-II binders and 52 promiscuous binders with a maximum population coverage of 98.55%(MHC Class-I binder ofYP_164815.1 NS4a) and 81.81% (MHC Class-II binders of YP_164812.1 NS2a, YP_164813.1 NS2b, YP_164814.1 NS3, YP_164817.1 NS4b, YP_164818.1 NS5). Further, studies involving experimental validation of these predicted epitopes is warranted to ensure the potential of B-cells and T-cells stimulation for their effective use as vaccine candidates, and as diagnostic agents against USUV.
Collapse
Affiliation(s)
- Rohit Satyam
- Department of Biotechnology, Noida Institute of Engineering and Technology, 19, Knowledge Park-II, Greater Noida, 201308, Uttar Pradesh, India
| | | | - Tulika Bhardwaj
- Department of Biotechnology, TERI School of Advanced Studies, 10, Institutional Area, Vasant Kunj, New Delhi, 110070, India
| | - Pallavi Somvanshi
- Department of Biotechnology, TERI School of Advanced Studies, 10, Institutional Area, Vasant Kunj, New Delhi, 110070, India.
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, University of Jazan, Jazan, 45142, Saudi Arabia.
| | - Mohammad Zeeshan Najm
- Department of Biotechnology, Noida Institute of Engineering and Technology, 19, Knowledge Park-II, Greater Noida, 201308, Uttar Pradesh, India
| |
Collapse
|
22
|
Bakonyi T, Jungbauer C, Aberle SW, Kolodziejek J, Dimmel K, Stiasny K, Allerberger F, Nowotny N. Usutu virus infections among blood donors, Austria, July and August 2017 - Raising awareness for diagnostic challenges. ACTA ACUST UNITED AC 2018; 22. [PMID: 29043962 PMCID: PMC5710119 DOI: 10.2807/1560-7917.es.2017.22.41.17-00644] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Between July and August 2017, seven of 12,047 blood donations from eastern Austria, reacted positive to West Nile virus (WNV) in the cobas test (Roche). Follow-up investigations revealed Usutu virus (USUV) nucleic acid in six of these. Retrospective analyses of four blood donors diagnosed as WNV-infected in 2016 showed one USUV positive. Blood transfusion services and public health authorities in USUV-endemic areas should be aware of a possible increase of human USUV infections.
Collapse
Affiliation(s)
- Tamás Bakonyi
- These authors contributed equally to this article and share first authorship.,Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary.,Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Christof Jungbauer
- Austrian Red Cross, Blood Service for Vienna, Lower Austria and Burgenland, Vienna, Austria.,These authors contributed equally to this article and share first authorship
| | - Stephan W Aberle
- Center for Virology, Medical University of Vienna, Vienna, Austria.,These authors contributed equally to this article and share first authorship
| | - Jolanta Kolodziejek
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Katharina Dimmel
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Karin Stiasny
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | | | - Norbert Nowotny
- Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.,These authors contributed equally to this article and share first authorship.,Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
23
|
Cadar D, Maier P, Müller S, Kress J, Chudy M, Bialonski A, Schlaphof A, Jansen S, Jöst H, Tannich E, Runkel S, Hitzler WE, Hutschenreuter G, Wessiepe M, Schmidt-Chanasit J. Blood donor screening for West Nile virus (WNV) revealed acute Usutu virus (USUV) infection, Germany, September 2016. ACTA ACUST UNITED AC 2017; 22:30501. [PMID: 28422005 PMCID: PMC5388121 DOI: 10.2807/1560-7917.es.2017.22.14.30501] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 04/06/2017] [Indexed: 11/20/2022]
Abstract
Between 1 June and 31 December 2016, 13,023 blood donations from the University Hospital Aachen in Germany were routinely screened for West Nile virus (WNV) RNA using the cobas TaqScreen WNV Test. On 28 September 2016, one blood donor was tested positive. Subsequent analysis revealed an acute Usutu virus (USUV) infection. During the ongoing USUV epizootics in Germany, blood transfusion services, public health authorities and clinicians should be aware of increased human USUV infections.
Collapse
Affiliation(s)
- Daniel Cadar
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, Hamburg, Germany.,German Centre for Infection Research (DZIF), partner site Hamburg-Luebeck-Borstel, Hamburg, Germany
| | - Philipp Maier
- Institute for Transfusion Medicine, University Hospital, Aachen, Germany
| | - Susanne Müller
- Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Julia Kress
- Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Michael Chudy
- Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Alexandra Bialonski
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, Hamburg, Germany
| | - Alexander Schlaphof
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, Hamburg, Germany
| | - Stephanie Jansen
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, Hamburg, Germany.,German Centre for Infection Research (DZIF), partner site Hamburg-Luebeck-Borstel, Hamburg, Germany
| | - Hanna Jöst
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, Hamburg, Germany.,German Centre for Infection Research (DZIF), partner site Hamburg-Luebeck-Borstel, Hamburg, Germany
| | - Egbert Tannich
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, Hamburg, Germany
| | - Stefan Runkel
- Transfusion Center, University Medical Center of the J.G. University, Mainz, Germany
| | - Walter E Hitzler
- Transfusion Center, University Medical Center of the J.G. University, Mainz, Germany
| | | | - Martina Wessiepe
- Institute for Transfusion Medicine, University Hospital, Aachen, Germany.,These authors contributed equally to this work
| | - Jonas Schmidt-Chanasit
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, Hamburg, Germany.,German Centre for Infection Research (DZIF), partner site Hamburg-Luebeck-Borstel, Hamburg, Germany.,These authors contributed equally to this work
| |
Collapse
|
24
|
Puggioli A, Bonilauri P, Calzolari M, Lelli D, Carrieri M, Urbanelli S, Pudar D, Bellini R. Does Aedes albopictus (Diptera: Culicidae) play any role in Usutu virus transmission in Northern Italy? Experimental oral infection and field evidences. Acta Trop 2017; 172:192-196. [PMID: 28495404 DOI: 10.1016/j.actatropica.2017.05.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 05/05/2017] [Accepted: 05/05/2017] [Indexed: 02/02/2023]
Abstract
This study evaluated the vector competence of Aedes albopictus in transmitting USUV after oral infection under laboratory conditions. Ae. albopictus showed a low vector competence for USUV, although the positive body sample found with a very high number of viral copies at one week post infection indicates that a replication in the mosquito body can occur, and that USUV can escape the midgut barrier. Field data from an extensive entomological arboviruses surveillance program showed a relevant incidence of Ae. albopictus USUV positive pools in the period 2009-2012 while all pools were negative from 2013 on. No conceivable explanation regarding this field evidence was addressed, suggesting that attention must be paid to the trend of development of this vector-pathogen association, being aware of the potential rapid arbovirus' adaptation to new vectors, to prevent possible new disease's emergence.
Collapse
|
25
|
Gaibani P, Rossini G. An overview of Usutu virus. Microbes Infect 2017; 19:382-387. [DOI: 10.1016/j.micinf.2017.05.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/26/2017] [Accepted: 05/29/2017] [Indexed: 10/19/2022]
|
26
|
Tetro JA. Is Usutu virus ready for prime time? Microbes Infect 2017; 19:380-381. [PMID: 28619684 DOI: 10.1016/j.micinf.2017.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
Abstract
Although considered a neglected tropical disease, the mosquito-borne Usutu virus has demonstrated signs of emergence from Africa to Europe. While human cases are infrequent, the potential for neuroinvasive infection, even in immunocompetent individuals, suggests a need for increased research into virus biology and pathogenesis, as well as rapid measures for diagnosis and environmental surveillance.
Collapse
Affiliation(s)
- Jason A Tetro
- College of Biological Sciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
27
|
Marini G, Poletti P, Giacobini M, Pugliese A, Merler S, Rosà R. The Role of Climatic and Density Dependent Factors in Shaping Mosquito Population Dynamics: The Case of Culex pipiens in Northwestern Italy. PLoS One 2016; 11:e0154018. [PMID: 27105065 PMCID: PMC4841511 DOI: 10.1371/journal.pone.0154018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/07/2016] [Indexed: 11/19/2022] Open
Abstract
Culex pipiens mosquito is a species widely spread across Europe and represents a competent vector for many arboviruses such as West Nile virus (WNV), which has been recently circulating in many European countries, causing hundreds of human cases. In order to identify the main determinants of the high heterogeneity in Cx. pipiens abundance observed in Piedmont region (Northwestern Italy) among different seasons, we developed a density-dependent stochastic model that takes explicitly into account the role played by temperature, which affects both developmental and mortality rates of different life stages. The model was calibrated with a Markov chain Monte Carlo approach exploring the likelihood of recorded capture data gathered in the study area from 2000 to 2011; in this way, we disentangled the role played by different seasonal eco-climatic factors in shaping the vector abundance. Illustrative simulations have been performed to forecast likely changes if temperature or density–dependent inputs would change. Our analysis suggests that inter-seasonal differences in the mosquito dynamics are largely driven by different temporal patterns of temperature and seasonal-specific larval carrying capacities. Specifically, high temperatures during early spring hasten the onset of the breeding season and increase population abundance in that period, while, high temperatures during the summer can decrease population size by increasing adult mortality. Higher densities of adult mosquitoes are associated with higher larval carrying capacities, which are positively correlated with spring precipitations. Finally, an increase in larval carrying capacity is expected to proportionally increase adult mosquito abundance.
Collapse
Affiliation(s)
- Giovanni Marini
- Department of Mathematics, University of Trento, Trento, Italy
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy
- * E-mail:
| | - Piero Poletti
- Bruno Kessler Foundation, Trento, Italy
- Dondena Centre for Research on Social Dynamics and Public Policy, Department of Policy Analysis and Public Management, Universitá Commerciale L. Bocconi, Milan, Italy
| | - Mario Giacobini
- Department of Veterinary Sciences, University of Torino, Torino, Italy
| | - Andrea Pugliese
- Department of Mathematics, University of Trento, Trento, Italy
| | | | - Roberto Rosà
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy
| |
Collapse
|
28
|
Reconstruction of the Evolutionary History and Dispersal of Usutu Virus, a Neglected Emerging Arbovirus in Europe and Africa. mBio 2016; 7:e01938-15. [PMID: 26838717 PMCID: PMC4742707 DOI: 10.1128/mbio.01938-15] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Usutu virus (USUV), one of the most neglected Old World encephalitic flaviviruses, causes epizootics among wild and captive birds and sporadic infection in humans. The dynamics of USUV spread and evolution in its natural hosts are unknown. Here, we present the phylogeny and evolutionary history of all available USUV strains, including 77 newly sequenced complete genomes from a variety of host species at a temporal and spatial scaled resolution. The results showed that USUV can be classified into six distinct lineages and that the most recent common ancestor of the recent European epizootics emerged in Africa at least 500 years ago. We demonstrated that USUV was introduced regularly from Africa into Europe in the last 50 years, and the genetic diversity of European lineages is shaped primarily by in situ evolution, while the African lineages have been driven by extensive gene flow. Most of the amino acid changes are deleterious polymorphisms removed by purifying selection, with adaptive evolution restricted to the NS5 gene and several others evolving under episodic directional selection, indicating that the ecological or immunological factors were mostly the key determinants of USUV dispersal and outbreaks. Host-specific mutations have been detected, while the host transition analysis identified mosquitoes as the most likely origin of the common ancestor and birds as the source of the recent European USUV lineages. Our results suggest that the major migratory bird flyways could predict the continental and intercontinental dispersal patterns of USUV and that migratory birds might act as potential long-distance dispersal vehicles. Usutu virus (USUV), a mosquito-borne flavivirus of the Japanese encephalitis virus antigenic group, caused massive bird die-offs, mostly in Europe. There is increasing evidence that USUV appears to be pathogenic for humans, becoming a potential public health problem. The emergence of USUV in Europe allows us to understand how an arbovirus spreads, adapts, and evolves in a naive environment. Thus, understanding the epidemiological and evolutionary processes that contribute to the emergence, maintenance, and further spread of viral diseases is the sine qua non to develop and implement surveillance strategies for their control. In this work, we performed an expansive phylogeographic and evolutionary analysis of USUV using all published sequences and those generated during this study. Subsequently, we described the genetic traits, reconstructed the potential pattern of geographic spread between continents/countries of the identified viral lineages and the drivers of viral migration, and traced the origin of outbreaks and transition events between different hosts.
Collapse
|
29
|
Fros JJ, Miesen P, Vogels CB, Gaibani P, Sambri V, Martina BE, Koenraadt CJ, van Rij RP, Vlak JM, Takken W, Pijlman GP. Comparative Usutu and West Nile virus transmission potential by local Culex pipiens mosquitoes in north-western Europe. One Health 2015; 1:31-36. [PMID: 28616462 PMCID: PMC5441354 DOI: 10.1016/j.onehlt.2015.08.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/21/2015] [Accepted: 08/24/2015] [Indexed: 12/17/2022] Open
Abstract
Originating from Africa, Usutu virus (USUV) first emerged in Europe in 2001. This mosquito-borne flavivirus caused high mortality rates in its bird reservoirs, which strongly resembled the introduction of West Nile virus (WNV) in 1999 in the United States. Mosquitoes infected with USUV incidentally transmit the virus to other vertebrates, including humans, which can result in neuroinvasive disease. USUV and WNV co-circulate in parts of southern Europe, but the distribution of USUV extends into central and northwestern Europe. In the field, both viruses have been detected in the northern house mosquito Culex pipiens, of which the potential for USUV transmission is unknown. To understand the transmission dynamics and assess the potential spread of USUV, we determined the vector competence of C. pipiens for USUV and compared it with the well characterized WNV. We show for the first time that northwestern European mosquitoes are highly effective vectors for USUV, with infection rates of 11% at 18 °C and 53% at 23 °C, which are comparable with values obtained for WNV. Interestingly, at a high temperature of 28 °C, mosquitoes became more effectively infected with USUV (90%) than with WNV (58%), which could be attributed to barriers in the mosquito midgut. Small RNA deep sequencing of infected mosquitoes showed for both viruses a strong bias for 21-nucleotide small interfering (si)RNAs, which map across the entire viral genome both on the sense and antisense strand. No evidence for viral PIWI-associated RNA (piRNA) was found, suggesting that the siRNA pathway is the major small RNA pathway that targets USUV and WNV infection in C. pipiens mosquitoes. Northwestern European mosquitoes are highly effective vectors for USUV. Culex pipiens is significantly more competent for USUV than for WNV at 28 °C. The siRNA but not the piRNA pathway targets USUV and WNV infections in C. pipiens. USUV may be a prelude to WNV transmission in northwestern Europe.
Collapse
Affiliation(s)
- Jelke J Fros
- Laboratory of Virology Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Pascal Miesen
- Department of Medical Microbiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Chantal B Vogels
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Paolo Gaibani
- Regional Reference Centre for Microbiological Emergencies (CRREM), Microbiology Unit, Azienda Ospedaliero-Universitaria di Bologna, Policlinico S. Orsola-Malpighi, Bologna, Italy
| | - Vittorio Sambri
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, Piazza della Liberazione, 60, 47522 Pievesestina, FC, Italy
| | - Byron E Martina
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands.,Artemis One Health, Utrecht, The Netherlands
| | - Constantianus J Koenraadt
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Just M Vlak
- Laboratory of Virology Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Willem Takken
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Gorben P Pijlman
- Laboratory of Virology Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
30
|
Maggi F, Mazzetti P, Focosi D, Macera L, Scagnolari C, Manzin A, Antonelli G, Nelli LC. Lack of usutu virus RNA in cerebrospinal fluid of patients with encephalitis of unknown etiology, Tuscany, Italy. J Med Virol 2015; 87:913-6. [DOI: 10.1002/jmv.24149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2014] [Indexed: 11/10/2022]
Affiliation(s)
| | | | | | - Lisa Macera
- Virology Unit; Pisa University Hospital; Italy
- Department of Biomedical Sciences; Clinical Microbiology and Virology Unit; University of Cagliari Medical School; Cagliari Italy
| | - Carolina Scagnolari
- Pasteur Institute-Cenci Bolognetti Foundation; Department of Molecular Medicine; Laboratory of Virology; Sapienza University of Rome
| | - Aldo Manzin
- Department of Biomedical Sciences; Clinical Microbiology and Virology Unit; University of Cagliari Medical School; Cagliari Italy
| | - Guido Antonelli
- Pasteur Institute-Cenci Bolognetti Foundation; Department of Molecular Medicine; Laboratory of Virology; Sapienza University of Rome
| | | |
Collapse
|
31
|
Grisenti M, Vázquez A, Herrero L, Cuevas L, Perez-Pastrana E, Arnoldi D, Rosà R, Capelli G, Tenorio A, Sánchez-Seco MP, Rizzoli A. Wide detection of Aedes flavivirus in north-eastern Italy – a European hotspot of emerging mosquito-borne diseases. J Gen Virol 2015; 96:420-430. [DOI: 10.1099/vir.0.069625-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Michela Grisenti
- Department of Veterinary Sciences, University of Torino, largo Paolo Braccini 2, 10095 Grugliasco, Torino, Italy
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’Adige, Trento, Italy
| | - Ana Vázquez
- Laboratory of Arboviruses and Viral Imported Diseases, Institute of Health ‘Carlos III’, Ctra Pozuelo-Majadahonda, Km 2, 28220 Majadahonda, Madrid, Spain
| | - Laura Herrero
- Laboratory of Arboviruses and Viral Imported Diseases, Institute of Health ‘Carlos III’, Ctra Pozuelo-Majadahonda, Km 2, 28220 Majadahonda, Madrid, Spain
| | - Laureano Cuevas
- Electron Microscopy Department, National Center of Microbiology, Institute of Health ‘Carlos III’, Ctra Pozuelo-Majadahonda, Km 2, 28220 Majadahonda, Madrid, Spain
| | - Esperanza Perez-Pastrana
- Electron Microscopy Department, National Center of Microbiology, Institute of Health ‘Carlos III’, Ctra Pozuelo-Majadahonda, Km 2, 28220 Majadahonda, Madrid, Spain
| | - Daniele Arnoldi
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’Adige, Trento, Italy
| | - Roberto Rosà
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’Adige, Trento, Italy
| | - Gioia Capelli
- Laboratory of Parasitology, Istituto Zooprofilattico Sperimentale delle Venezie, viale dell’Università 10, 35020 Legnaro, Padova, Italy
| | - Antonio Tenorio
- Laboratory of Arboviruses and Viral Imported Diseases, Institute of Health ‘Carlos III’, Ctra Pozuelo-Majadahonda, Km 2, 28220 Majadahonda, Madrid, Spain
| | - Maria Paz Sánchez-Seco
- Laboratory of Arboviruses and Viral Imported Diseases, Institute of Health ‘Carlos III’, Ctra Pozuelo-Majadahonda, Km 2, 28220 Majadahonda, Madrid, Spain
| | - Annapaola Rizzoli
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’Adige, Trento, Italy
| |
Collapse
|
32
|
Ashraf U, Ye J, Ruan X, Wan S, Zhu B, Cao S. Usutu virus: an emerging flavivirus in Europe. Viruses 2015; 7:219-38. [PMID: 25606971 PMCID: PMC4306835 DOI: 10.3390/v7010219] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/13/2015] [Indexed: 12/24/2022] Open
Abstract
Usutu virus (USUV) is an African mosquito-borne flavivirus belonging to the Japanese encephalitis virus serocomplex. USUV is closely related to Murray Valley encephalitis virus, Japanese encephalitis virus, and West Nile virus. USUV was discovered in South Africa in 1959. In Europe, the first true demonstration of circulation of USUV was reported in Austria in 2001 with a significant die-off of Eurasian blackbirds. In the subsequent years, USUV expanded to neighboring countries, including Italy, Germany, Spain, Hungary, Switzerland, Poland, England, Czech Republic, Greece, and Belgium, where it caused unusual mortality in birds. In 2009, the first two human cases of USUV infection in Europe have been reported in Italy, causing meningoencephalitis in immunocompromised patients. This review describes USUV in terms of its life cycle, USUV surveillance from Africa to Europe, human cases, its cellular tropism and pathogenesis, its genetic relationship with other flaviviruses, genetic diversity among USUV strains, its diagnosis, and a discussion of the potential future threat to Asian countries.
Collapse
Affiliation(s)
- Usama Ashraf
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Jing Ye
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Xindi Ruan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Shengfeng Wan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Bibo Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Shengbo Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
33
|
Rosà R, Marini G, Bolzoni L, Neteler M, Metz M, Delucchi L, Chadwick EA, Balbo L, Mosca A, Giacobini M, Bertolotti L, Rizzoli A. Early warning of West Nile virus mosquito vector: climate and land use models successfully explain phenology and abundance of Culex pipiens mosquitoes in north-western Italy. Parasit Vectors 2014; 7:269. [PMID: 24924622 PMCID: PMC4061321 DOI: 10.1186/1756-3305-7-269] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 06/03/2014] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND West Nile Virus (WNV) is an emerging global health threat. Transmission risk is strongly related to the abundance of mosquito vectors, typically Culex pipiens in Europe. Early-warning predictors of mosquito population dynamics would therefore help guide entomological surveillance and thereby facilitate early warnings of transmission risk. METHODS We analysed an 11-year time series (2001 to 2011) of Cx. pipiens mosquito captures from the Piedmont region of north-western Italy to determine the principal drivers of mosquito population dynamics. Linear mixed models were implemented to examine the relationship between Cx. pipiens population dynamics and environmental predictors including temperature, precipitation, Normalized Difference Water Index (NDWI) and the proximity of mosquito traps to urban areas and rice fields. RESULTS Warm temperatures early in the year were associated with an earlier start to the mosquito season and increased season length, and later in the year, with decreased abundance. Early precipitation delayed the start and shortened the length of the mosquito season, but increased total abundance. Conversely, precipitation later in the year was associated with a longer season. Finally, higher NDWI early in the year was associated with an earlier start to the season and increased season length, but was not associated with abundance. Proximity to rice fields predicted higher total abundance when included in some models, but was not a significant predictor of phenology. Proximity to urban areas was not a significant predictor in any of our models. Predicted variations in start of the season and season length ranged from one to three weeks, across the measured range of variables. Predicted mosquito abundance was highly variable, with numbers in excess of 1000 per trap per year when late season temperatures were low (average 21°C) to only 150 when late season temperatures were high (average 30°C). CONCLUSIONS Climate data collected early in the year, in conjunction with local land use, can be used to provide early warning of both the timing and magnitude of mosquito outbreaks. This potentially allows targeted mosquito control measures to be implemented, with implications for prevention and control of West Nile Virus and other mosquito borne diseases.
Collapse
Affiliation(s)
- Roberto Rosà
- Dipartimento di Biodiversità ed Ecologia Molecolare, Centro Ricerca e Innovazione, Fondazione Edmund Mach, San Michele all'Adige, TN, Italia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Bakonyi T, Busquets N, Nowotny N. Comparison of complete genome sequences of Usutu virus strains detected in Spain, Central Europe, and Africa. Vector Borne Zoonotic Dis 2014; 14:324-9. [PMID: 24746182 DOI: 10.1089/vbz.2013.1510] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The complete genomic sequence of Usutu virus (USUV, genus Flavivirus, family Flaviviridae) strain MB119/06, detected in a pool of Culex pipiens mosquitoes in northeastern Spain (Viladecans, Catalonia) in 2006, was determined and analyzed. The phylogenetic relationship with all other available complete USUV genome sequences was established. The Spanish sequence investigated showed the closest relationship to the USUV prototype strain SA AR 1776 isolated in South Africa in 1959 (96.9% nucleotide and 98.8% amino acid identities). Conserved structural elements and enzyme motifs of the putative polyprotein precursor were identified. Unique amino acid substitutions were recognized; however, their potential roles as virulence markers could not be verified. Comparisons of the polyprotein precursor sequences of USUV strains detected in mosquitoes, birds, and humans could not confirm the predicted role of unique amino acid substitutions in relation to virulence in humans. Phylogenetic analysis of a partial coding section of the NS5 protein gene region indicated that USUV strains circulating in Europe form three different genetic clusters. Broad and targeted surveys for USUV in mosquitoes could reveal further details of the geographic distribution and genetic diversity of the virus in Europe and in Africa.
Collapse
Affiliation(s)
- Tamás Bakonyi
- 1 Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna , Vienna, Austria
| | | | | |
Collapse
|