1
|
Zhao L, Hall M, Giridhar P, Ghafari M, Kemp S, Chai H, Klenerman P, Barnes E, Ansari MA, Lythgoe K. Genetically distinct within-host subpopulations of hepatitis C virus persist after Direct-Acting Antiviral treatment failure. PLoS Pathog 2025; 21:e1012959. [PMID: 40168433 PMCID: PMC11981120 DOI: 10.1371/journal.ppat.1012959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 04/09/2025] [Accepted: 02/05/2025] [Indexed: 04/03/2025] Open
Abstract
Analysis of viral genetic data has previously revealed distinct within-host population structures in both untreated and interferon-treated chronic hepatitis C virus (HCV) infections. While multiple subpopulations persisted during the infection, each subpopulation was observed only intermittently. However, it was unknown whether similar patterns were also present after Direct-Acting Antiviral (DAA) treatment, where viral populations were often assumed to go through narrow bottlenecks. Here we tested for the maintenance of population structure after DAA treatment failure, and whether there were different evolutionary rates along distinct lineages where they were observed. We analysed whole-genome next-generation sequencing data generated from a randomised study using DAAs (the BOSON study). We focused on samples collected from patients (N=84) who did not achieve sustained virological response (i.e., treatment failure) and had sequenced virus from multiple timepoints. Given the short-read nature of the data, we used a number of methods to identify distinct within-host lineages including tracking concordance in intra-host nucleotide variant (iSNV) frequencies, applying sequenced-based and tree-based clustering algorithms to sliding windows along the genome, and haplotype reconstruction. Distinct viral subpopulations were maintained among a high proportion of individuals post DAA treatment failure. Using maximum likelihood modelling and model comparison, we found an overdispersion of viral evolutionary rates among individuals, and significant differences in evolutionary rates between lineages within individuals. These results suggest the virus is compartmentalised within individuals, with the varying evolutionary rates due to different viral replication rates and/or different selection pressures. We endorse lineage awareness in future analyses of HCV evolution and infections to avoid conflating patterns from distinct lineages, and to recognise the likely existence of unsampled subpopulations.
Collapse
Affiliation(s)
- Lele Zhao
- Nuffield Department of Medicine, Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| | - Matthew Hall
- Nuffield Department of Medicine, Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| | | | - Mahan Ghafari
- Nuffield Department of Medicine, Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
| | - Steven Kemp
- Nuffield Department of Medicine, Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
| | - Haiting Chai
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Paul Klenerman
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Eleanor Barnes
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - M. Azim Ansari
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Katrina Lythgoe
- Nuffield Department of Medicine, Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
- Department of Biology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Schmitz D, Zwagemaker F, van der Veer B, Vennema H, Laros JFJ, Koopmans MPG, De Graaf M, Kroneman A. Metagenomic Surveillance of Viral Gastroenteritis in a Public Health Setting. Microbiol Spectr 2023; 11:e0502222. [PMID: 37432120 PMCID: PMC10434279 DOI: 10.1128/spectrum.05022-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 06/06/2023] [Indexed: 07/12/2023] Open
Abstract
Norovirus is the primary cause of viral gastroenteritis (GE). To investigate norovirus epidemiology, there is a need for whole-genome sequencing and reference sets consisting of complete genomes. To investigate the potential of shotgun metagenomic sequencing on the Illumina platform for whole-genome sequencing, 71 reverse transcriptase quantitative PCR (RT-qPCR) norovirus positive-feces (threshold cycle [CT], <30) samples from norovirus surveillance within The Netherlands were subjected to metagenomic sequencing. Data were analyzed through an in-house next-generation sequencing (NGS) analysis workflow. Additionally, we assessed the potential of metagenomic sequencing for the surveillance of off-target viruses that are of importance for public health, e.g., sapovirus, rotavirus A, enterovirus, parechovirus, aichivirus, adenovirus, and bocaparvovirus. A total of 60 complete and 10 partial norovirus genomes were generated, representing 7 genogroup I capsid genotypes and 12 genogroup II capsid genotypes. In addition to the norovirus genomes, the metagenomic approach yielded partial or complete genomes of other viruses for 39% of samples from children and 6.7% of samples from adults, including adenovirus 41 (N = 1); aichivirus 1 (N = 1); coxsackievirus A2 (N = 2), A4 (N = 2), A5 (N = 1), and A16 (N = 1); bocaparvovirus 1 (N = 1) and 3 (N = 1); human parechovirus 1 (N = 2) and 3 (N = 1); Rotavirus A (N = 1); and a sapovirus GI.7 (N = 1). The sapovirus GI.7 was initially not detected through RT-qPCR and warranted an update of the primer and probe set. Metagenomic sequencing on the Illumina platform robustly determines complete norovirus genomes and may be used to broaden gastroenteritis surveillance by capturing off-target enteric viruses. IMPORTANCE Viral gastroenteritis results in significant morbidity and mortality in vulnerable individuals and is primarily caused by norovirus. To investigate norovirus epidemiology, there is a need for whole-genome sequencing and reference sets consisting of full genomes. Using surveillance samples sent to the Dutch National Institute for Public Health and the Environment (RIVM), we compared metagenomics against conventional techniques, such as RT-qPCR and Sanger-sequencing, with norovirus as the target pathogen. We determined that metagenomics is a robust method to generate complete norovirus genomes, in parallel to many off-target pathogenic enteric virus genomes, thereby broadening our surveillance efforts. Moreover, we detected a sapovirus that was not detected by our validated gastroenteritis RT-qPCR panel, which exemplifies the strength of metagenomics. Our study shows that metagenomics can be used for public health gastroenteritis surveillance, the generation of reference-sets for molecular epidemiology, and how it compares to current surveillance strategies.
Collapse
Affiliation(s)
- Dennis Schmitz
- National Institute of Public Health and the Environment, Center for Infectious Disease Control, Bilthoven, The Netherlands
- Erasmus Medical Center, Viroscience, Rotterdam, The Netherlands
| | - Florian Zwagemaker
- National Institute of Public Health and the Environment, Center for Infectious Disease Control, Bilthoven, The Netherlands
| | - Bas van der Veer
- National Institute of Public Health and the Environment, Center for Infectious Disease Control, Bilthoven, The Netherlands
| | - Harry Vennema
- National Institute of Public Health and the Environment, Center for Infectious Disease Control, Bilthoven, The Netherlands
| | - Jeroen F. J. Laros
- National Institute of Public Health and the Environment, Center for Infectious Disease Control, Bilthoven, The Netherlands
- Leiden University Medical Center, Department of Human Genetics, Leiden, The Netherlands
| | | | | | - Annelies Kroneman
- National Institute of Public Health and the Environment, Center for Infectious Disease Control, Bilthoven, The Netherlands
| |
Collapse
|
3
|
Miah M, Hossain ME, Hasan R, Alam MS, Puspo JA, Hasan MM, Islam A, Chowdhury S, Rahman MZ. Culture-Independent Workflow for Nanopore MinION-Based Sequencing of Influenza A Virus. Microbiol Spectr 2023; 11:e0494622. [PMID: 37212605 PMCID: PMC10269883 DOI: 10.1128/spectrum.04946-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/04/2023] [Indexed: 05/23/2023] Open
Abstract
Whole-genome sequencing (WGS) of influenza A virus (IAV) is crucial for identifying diverse subtypes and newly evolved variants and for selecting vaccine strains. In developing countries, where facilities are often inadequate, WGS is challenging to perform using conventional next-generation sequencers. In this study, we established a culture-independent, high-throughput native barcode amplicon sequencing workflow that can sequence all influenza subtypes directly from a clinical specimen. All segments of IAV in 19 clinical specimens, irrespective of their subtypes, were amplified simultaneously using a two-step reverse transcriptase PCR (RT-PCR) system. First, the library was prepared using the ligation sequencing kit, barcoded individually using the native barcodes, and sequenced on the MinION MK 1C platform with real-time base-calling. Then, subsequent data analyses were performed with the appropriate tools. WGS of 19 IAV-positive clinical samples was carried out successfully with 100% coverage and 3,975-fold mean coverage for all segments. This easy-to-install and low-cost capacity-building protocol took only 24 h complete from extracting RNA to obtaining finished sequences. Overall, we developed a high-throughput portable sequencing workflow ideal for resource-limited clinical settings, aiding in real-time surveillance, outbreak investigation, and the detection of emerging viruses and genetic reassortment events. However, further evaluation is required to compare its accuracy with other high-throughput sequencing technologies to validate the widespread application of these findings, including WGS from environmental samples. IMPORTANCE The Nanopore MinION-based influenza sequencing approach we are proposing makes it possible to sequence the influenza A virus, irrespective of its diverse serotypes, directly from clinical and environmental swab samples, so that we are not limited to virus culture. This third-generation, portable, multiplexing, and real-time sequencing strategy is highly convenient for local sequencing, particularly in low- and middle-income countries like Bangladesh. Furthermore, the cost-efficient sequencing method could provide new opportunities to respond to the early phase of an influenza pandemic and enable the timely detection of the emerging subtypes in clinical samples. Here, we meticulously described the entire process that might help the researcher who will follow this methodology in the future. Our findings suggest that this proposed method is ideal for clinical and academic settings and will aid in real-time surveillance and in the detection of potential outbreak agents and newly evolved viruses.
Collapse
Affiliation(s)
- Mojnu Miah
- Infectious Diseases Division, ICDDR,B, Dhaka, Bangladesh
| | | | - Rashedul Hasan
- Infectious Diseases Division, ICDDR,B, Dhaka, Bangladesh
| | | | | | | | - Ariful Islam
- EcoHealth Alliance, New York, New York, USA
- Centre for Integrative Ecology, School of Life and Environmental Science, Deakin University, Burwood, Victoria, Australia
| | | | | |
Collapse
|
4
|
Smith DA, Fernandez-Antunez C, Magri A, Bowden R, Chaturvedi N, Fellay J, McLauchlan J, Foster GR, Irving WL, Simmonds P, Pedergnana V, Ramirez S, Bukh J, Barnes E, Ansari MA. Viral genome wide association study identifies novel hepatitis C virus polymorphisms associated with sofosbuvir treatment failure. Nat Commun 2021; 12:6105. [PMID: 34671027 PMCID: PMC8528821 DOI: 10.1038/s41467-021-25649-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
Persistent hepatitis C virus (HCV) infection is a major cause of chronic liver disease, worldwide. With the development of direct-acting antivirals, treatment of chronically infected patients has become highly effective, although a subset of patients responds less well to therapy. Sofosbuvir is a common component of current de novo or salvage combination therapies, that targets the HCV NS5B polymerase. We use pre-treatment whole-genome sequences of HCV from 507 patients infected with HCV subtype 3a and treated with sofosbuvir containing regimens to detect viral polymorphisms associated with response to treatment. We find three common polymorphisms in non-targeted HCV NS2 and NS3 proteins are associated with reduced treatment response. These polymorphisms are enriched in post-treatment HCV sequences of patients unresponsive to treatment. They are also associated with lower reductions in viral load in the first week of therapy. Using in vitro short-term dose-response assays, these polymorphisms do not cause any reduction in sofosbuvir potency, suggesting an indirect mechanism of action in decreasing sofosbuvir efficacy. The identification of polymorphisms in NS2 and NS3 proteins associated with poor treatment outcomes emphasises the value of systematic genome-wide analyses of viruses in uncovering clinically relevant polymorphisms that impact treatment.
Collapse
Affiliation(s)
- David A Smith
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 1SY, UK
| | - Carlota Fernandez-Antunez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Magri
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 1SY, UK
| | - Rory Bowden
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Nimisha Chaturvedi
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jacques Fellay
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Precision Medicine Unit, University Hospital and University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - John McLauchlan
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, UK
| | - Graham R Foster
- Barts Liver Centre, Blizard Institute, Queen Mary University of London, London, UK
| | - William L Irving
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Peter Simmonds
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 1SY, UK
| | | | - Santseharay Ramirez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 1SY, UK
| | - M Azim Ansari
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 1SY, UK.
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.
| |
Collapse
|
5
|
Microbiome analysis, the immune response and transplantation in the era of next generation sequencing. Hum Immunol 2021; 82:883-901. [PMID: 34364710 DOI: 10.1016/j.humimm.2021.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 07/01/2021] [Accepted: 07/14/2021] [Indexed: 12/14/2022]
Abstract
The human gastrointestinal tract, skin and mucosal surfaces are inhabited by a complex system of bacteria, viruses, fungi, archaea, protists, and eukaryotic parasites with predominance of bacteria and bacterial viruses (bacteriophages). Collectively these microbes form the microbiota of the microecosystem of humans. Recent advancement in technologies for nucleic acid isolation from various environmental samples, feces and body secretions and advancements in shotgun throughput massive parallel DNA and RNA sequencing along with 16S ribosomal gene sequencing have unraveled the identity of otherwise unknown microbial entities constituting the human microecosystem. The improved transcriptome analysis, technological developments in biochemical analytical methods and availability of complex bioinformatics tools have allowed us to begin to understand the metabolome of the microbiome and the biochemical pathways and potential signal transduction pathways in human cells in response to microbial infections and their products. Also, developments in human whole genome sequencing, targeted gene sequencing of histocompatibility genes and other immune response associated genes by Next Generation Sequencing (NGS) have allowed us to have a better conceptualization of immune responses, and alloimmune responses. These modern technologies have enabled us to dive into the intricate relationship between commensal symbiotic and pathogenic microbiome and immune system. For the most part, the commensal symbiotic microbiota helps to maintain normal immune homeostasis besides providing healthy nutrients, facilitating digestion, and protecting the skin, mucosal and intestinal barriers. However, changes in diets, administration of therapeutic agents like antibiotics, chemotherapeutic agents, immunosuppressants etc. along with certain host factors including human histocompatibility antigens may alter the microbial ecosystem balance by causing changes in microbial constituents, hierarchy of microbial species and even dysbiosis. Such alterations may cause immune dysregulation, breach of barrier protection and lead to immunopathogenesis rather than immune homeostasis. The effects of human microbiome on immunity, health and disease are currently under intense research with cutting edge technologies in molecular biology, biochemistry, and bioinformatics along with tremendous ability to characterize immune response at single cell level. This review will discuss the contemporary status on human microbiome immune system interactions and their potential effects on health, immune homeostasis and allograft transplantation.
Collapse
|
6
|
Myers CE, Houldcroft CJ, Roy S, Margetts BK, Best T, Venturini C, Guerra-Assunção JA, Williams CA, Williams R, Dunn H, Hartley JC, Rao K, Rolfe KJ, Breuer J. Using Whole Genome Sequences to Investigate Adenovirus Outbreaks in a Hematopoietic Stem Cell Transplant Unit. Front Microbiol 2021; 12:667790. [PMID: 34276599 PMCID: PMC8284422 DOI: 10.3389/fmicb.2021.667790] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/05/2021] [Indexed: 11/18/2022] Open
Abstract
A recent surge in human mastadenovirus (HAdV) cases, including five deaths, amongst a haematopoietic stem cell transplant population led us to use whole genome sequencing (WGS) to investigate. We compared sequences from 37 patients collected over a 20-month period with sequences from GenBank and our own database of HAdVs. Maximum likelihood trees and pairwise differences were used to evaluate genotypic relationships, paired with the epidemiological data from routine infection prevention and control (IPC) records and hospital activity data. During this time period, two formal outbreaks had been declared by IPC, while WGS detected nine monophyletic clusters, seven were corroborated by epidemiological evidence and by comparison of single-nucleotide polymorphisms. One of the formal outbreaks was confirmed, and the other was not. Of the five HAdV-associated deaths, three were unlinked and the remaining two considered the source of transmission. Mixed infection was frequent (10%), providing a sentinel source of recombination and superinfection. Immunosuppressed patients harboring a high rate of HAdV positivity require comprehensive surveillance. As a consequence of these findings, HAdV WGS is being incorporated routinely into clinical practice to influence IPC policy contemporaneously.
Collapse
Affiliation(s)
- Chloe E Myers
- Cambridge Clinical Microbiology and Public Health Laboratory, Public Health England, Cambridge, United Kingdom
| | | | - Sunando Roy
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Ben K Margetts
- Division of Infection, Immunity and Inflammation, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Timothy Best
- Department of Microbiology, Virology and Infection Prevention and Control, Great Ormond Street Hospital for Children National Health Service Foundation Trust, London, United Kingdom
| | - Cristina Venturini
- Division of Infection and Immunity, University College London, London, United Kingdom
| | | | - Charlotte A Williams
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Rachel Williams
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Helen Dunn
- Department of Microbiology, Virology and Infection Prevention and Control, Great Ormond Street Hospital for Children National Health Service Foundation Trust, London, United Kingdom
| | - John C Hartley
- Department of Microbiology, Virology and Infection Prevention and Control, Great Ormond Street Hospital for Children National Health Service Foundation Trust, London, United Kingdom
| | - Kanchan Rao
- Department of Microbiology, Virology and Infection Prevention and Control, Great Ormond Street Hospital for Children National Health Service Foundation Trust, London, United Kingdom
| | - Kathryn J Rolfe
- Cambridge Clinical Microbiology and Public Health Laboratory, Public Health England, Cambridge, United Kingdom
| | - Judith Breuer
- Division of Infection and Immunity, University College London, London, United Kingdom.,Department of Microbiology, Virology and Infection Prevention and Control, Great Ormond Street Hospital for Children National Health Service Foundation Trust, London, United Kingdom
| |
Collapse
|
7
|
Tsvetkov N, MacPhail VJ, Colla SR, Zayed A. Conservation genomics reveals pesticide and pathogen exposure in the declining bumble bee Bombus terricola. Mol Ecol 2021; 30:4220-4230. [PMID: 34181797 PMCID: PMC8457087 DOI: 10.1111/mec.16049] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022]
Abstract
In recent years, many pollinators have experienced large population declines, which threaten food security and the stability of natural ecosystems. Bumble bees are particularly important because their ability to “buzz” pollinate and tolerate cooler conditions make them critical pollinators for certain plants and regions. Here, we apply a conservation genomics approach to study the vulnerable Bombus terricola. We sequenced RNA from 30 worker abdomens, 18 of which were collected from agricultural sites and 12 of which were collected from nonagricultural sites. We found transcriptional signatures associated with exposure to insecticides, with gene expression patterns suggesting that bumble bees were exposed to neonicotinoids and/or fipronil—two compounds known to negatively impact bees. We also found transcriptional signatures associated with pathogen infections. In addition to the transcriptomic analysis, we carried out a metatranscriptomic analysis and detected five pathogens in the abdomens of workers, three of which are common in managed honey bee and bumble bee colonies. Our conservation genomics study provides functional support for the role of pesticides and pathogen spillover in the decline of B. terricola. We demonstrate that conservation genomics is an invaluable tool which allows researchers to quantify the effects of multiple stressors that impact pollinator populations in the wild.
Collapse
Affiliation(s)
| | - Victoria J MacPhail
- Faculty of Environmental and Urban Change, York University, Toronto, ON, Canada
| | - Sheila R Colla
- Faculty of Environmental and Urban Change, York University, Toronto, ON, Canada
| | - Amro Zayed
- Department of Biology, York University, Toronto, ON, Canada
| |
Collapse
|
8
|
Kelly D, Jere KC, Darby AC, Allen DJ, Iturriza-Gómara M. Complete genome characterization of human noroviruses allows comparison of minor alleles during acute and chronic infections. Access Microbiol 2021; 3:000203. [PMID: 34151158 PMCID: PMC8209700 DOI: 10.1099/acmi.0.000203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/24/2021] [Indexed: 11/18/2022] Open
Abstract
Human noroviruses (HuNoVs) circulate globally, affect all age groups and place a substantial burden upon health services. High genetic diversity leading to antigenic variation plays a significant role in HuNoV epidemiology, driving periodic global emergence of epidemic variants. Studies have suggested that immunocompromised individuals may be a reservoir for such epidemic variants, but studies investigating the diversity and emergence of HuNoV variants in immunocompetent individuals are underrepresented. To address this, we sequenced the genomes of HuNoVs present in samples collected longitudinally from one immunocompetent (acute infection) and one immunocompromised (chronic infection) patient. A broadly reactive HuNoV capture-based method was used to concentrate the virus present in these specimens prior to massively parallel sequencing to recover near complete viral genomes. Using a novel bioinformatics pipeline, we demonstrated that persistent minor alleles were present in both acute and chronic infections, and that minor allele frequencies represented a larger proportion of the population during chronic infection. In acute infection, minor alleles were more evenly spread across the genome, although present at much lower frequencies, and therefore difficult to discern from error. By contrast, in the chronic infection, more minor alleles were present in the minor structural protein. No non-synonymous minor alleles were detected in the major structural protein over the short sampling period of the HuNoV chronic infection, suggesting where immune pressure is variable or non-existent, epidemic variants could emerge over longer periods of infection by random chance.
Collapse
Affiliation(s)
- Daniel Kelly
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.,Present address: Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Khuzwayo C Jere
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.,Malawi-Liverpool Wellcome Trust - Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Alistair C Darby
- Centre of Genomic Research, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - David J Allen
- Department of Pathogen Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.,Virus Reference Department, National Infections Service, Public Health England, Colindale, London, UK.,NIHR Health Protection Research Unit Gastrointestinal Infections, Liverpool, UK
| | - Miren Iturriza-Gómara
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.,NIHR Health Protection Research Unit Gastrointestinal Infections, Liverpool, UK
| |
Collapse
|
9
|
Hopken MW, Piaggio AJ, Pabilonia KL, Pierce J, Anderson T, Abdo Z. Predicting whole genome sequencing success for archived avian influenza virus (Orthomyxoviridae) samples using real-time and droplet PCRs. J Virol Methods 2019; 276:113777. [PMID: 31730870 DOI: 10.1016/j.jviromet.2019.113777] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/05/2019] [Accepted: 11/10/2019] [Indexed: 01/01/2023]
Abstract
Long-term viral archives are valuable sources of research data. Each archive can store hundreds of thousands of diverse sample types. In the current era of whole genome sequencing, archived samples become a rich source of evolutionary and epidemiological data that can span years, and even decades. However, the ability to obtain high quality viral whole genome sequences from samples of various types, age, and quality is inconsistent. A minimum quality threshold that helps predict the best success of obtaining high quality genomic sequences for both recent and archived samples is highly valuable. Real-time reverse transcription PCR (rrt-PCR) and droplet digital PCR (ddPCR) are useful tools to evaluate nucleic acid integrity. We hypothesized that diagnostic rrt-PCR and ddPCR data for avian influenza virus (AIV) can predict viral whole genome sequencing success. To test this hypothesis we used RNA extracted from cloacal and oropharyngeal swabs stored in the USDA-APHIS National Wildlife Disease Program Wildlife Tissue Archive. We determined that a specific rrt-PCR Cq value or ddPCR copies/μL resulted in recovery of complete sequences of all eight AIV gene segments. We used logistic regression to estimate probabilities of whole genome recovery at 0.95 (Cq = 15, copies/μL = 49,350), 0.75 (Cq = 24, copies/μL = 16,800), 0.50 (Cq = 29, copies/μL = <1), and 0.25 (Cq = 235, copies/μL = <1). We also identified values at which we predictably recovered HA and NA segments for diagnosing subtypes (Cq = 27.29; copies/μL = 757.50). This approach will allow researchers to assess the potential success of AIV whole genome recovery from diagnostic samples collected in routine AIV surveillance.
Collapse
Affiliation(s)
- Matthew W Hopken
- Department of Microbiology, Immunology, and Pathology, College of Veterinary and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA; United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, CO, 80521, USA
| | - Antoinette J Piaggio
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, CO, 80521, USA
| | - Kristy L Pabilonia
- Department of Microbiology, Immunology, and Pathology, College of Veterinary and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA; Veterinary Diagnostics Laboratory, College of Veterinary and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80526, USA
| | - James Pierce
- Department of Microbiology, Immunology, and Pathology, College of Veterinary and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Theodore Anderson
- Veterinary Diagnostics Laboratory, College of Veterinary and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80526, USA
| | - Zaid Abdo
- Department of Microbiology, Immunology, and Pathology, College of Veterinary and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
10
|
Chen K, Khatabi B, Fondong VN. The AC4 Protein of a Cassava Geminivirus Is Required for Virus Infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:865-875. [PMID: 30699305 DOI: 10.1094/mpmi-12-18-0354-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Geminiviruses (family Geminiviridae) are among the most devastating plant viruses worldwide, causing severe damage in crops of economic and subsistence importance. These viruses have very compact genomes and many of the encoded proteins are multifunctional. Here, we investigated the role of the East African cassava mosaic Cameroon virus (EACMCV) AC4 on virus infectivity in Nicotiana benthamiana. Results showed that plants inoculated with EACMCV containing a knockout mutation in an AC4 open reading frame displayed symptoms 2 to 3 days later than plants inoculated with wild-type virus, and these plants recovered from infection, whereas plants inoculated with the wild-type virus did not. Curiously, when an additional mutation was made in the knockout mutant, the resulting double mutant virus completely failed to cause any apparent symptoms. Interestingly, the role of AC4 on virus infectivity appeared to be dependent on an encoded N-myristoylation motif that mediates cell membrane binding. We previously showed that EACMCV containing the AC4T38I mutant produced virus progeny characterized by second-site mutations and reversion to wild-type virus. These results were confirmed in this study using additional mutations. Together, these results show involvement of EACMCV AC4 in virus infectivity; they also suggest a role for the combined action of mutation and selection, under prevailing environmental conditions, on begomovirus genetic variation and diversity.
Collapse
Affiliation(s)
- Kegui Chen
- 1 Delaware State University, Department of Biological Sciences, Dover, Delaware, U.S.A
- 2 Kegui Chen, Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, P.R. China
| | - Behnam Khatabi
- 1 Delaware State University, Department of Biological Sciences, Dover, Delaware, U.S.A
- 3 Department of Natural Sciences, Department of Agriculture, Food and Resource Sciences, Princess Anne, MD 21853, U.S.A
| | - Vincent N Fondong
- 1 Delaware State University, Department of Biological Sciences, Dover, Delaware, U.S.A
| |
Collapse
|
11
|
Fischer TK, Rasmussen LD, Fonager J. Taking gastro-surveillance into the 21st century. J Clin Virol 2019; 117:43-48. [PMID: 31176211 DOI: 10.1016/j.jcv.2019.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/20/2019] [Accepted: 05/30/2019] [Indexed: 01/04/2023]
Abstract
Enteric viruses, particularly rotaviruses and noroviruses, are leading causes of gastroenteritis worldwide. Human rotaviruses are ubiquitous and globally almost every child has been infected by 3-5 years of age. Noroviruses affect people of all ages and is the leading cause of foodborne outbreaks. Rota- and noroviruses account for ˜40% and ˜17% of diarrhea-associated hospitalizations, and ˜200,000 deaths annually respectively, with most deaths occurring in developing countries. Two rotavirus vaccines have currently been implemented in ˜95 countries and several norovirus vaccine candidates are currently in development and/or clinical testing. Surveillance of enteric viruses is an important part of outbreak investigations as well as pre- and post-vaccine impact studies but is even in developed countries often limited to investigation of sporadic cases or comprehensive outbreaks. Conventional methods for enteric virus detection and subtyping relies on standard RT-PCR methods, supplemented with Sanger-sequencing. However, for viruses with even moderate mutationrates, PCR-based-typing of only limited parts of the virus genome is challenging and requires regular update of primers. Full-genomecharacterization technologies based on sequence independent methods based on next generation sequencing (NGS), have demonstrated great potential for enteric virus detection and/or typing in both clinical and environmental samples. However, cost-benefits must balance for such methods to be widely accepted for public health purposes. In Europe as also globally, routine use of NGS-methods for surveillance of enteric viruses is currently limited to few national public health laboratories. What important lessons can be learned from these and what is the future of NGS-based surveillance?
Collapse
Affiliation(s)
- Thea K Fischer
- Department of Clinical Research, Nordsjaellands Hospital, Hilleroed, Denmark; Departments of Infectious Diseases and Global Health, Clinical Institute, University of Southern Denmark, Denmark; National Virus Surveillance and WHO Reference Laboratories, Dept of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark.
| | - Lasse D Rasmussen
- National Virus Surveillance and WHO Reference Laboratories, Dept of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Jannik Fonager
- Virus Research & Development Laboratory, Department of Microbiological Diagnostics and Virology, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
12
|
Smith D, Magri A, Bonsall D, Ip CL, Trebes A, Brown A, Piazza P, Bowden R, Nguyen D, Ansari MA, Simmonds P, Barnes E, STOP‐HCV Consortium. Resistance analysis of genotype 3 hepatitis C virus indicates subtypes inherently resistant to nonstructural protein 5A inhibitors. Hepatology 2019; 69:1861-1872. [PMID: 29425396 PMCID: PMC6492296 DOI: 10.1002/hep.29837] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/03/2018] [Indexed: 12/12/2022]
Abstract
Hepatitis C virus (HCV) genotype (gt) 3 is highly prevalent globally, with non-gt3a subtypes common in Southeast Asia. Resistance-associated substitutions (RASs) have been shown to play a role in treatment failure. However, the role of RASs in gt3 is not well understood. We report the prevalence of RASs in a cohort of direct-acting antiviral treatment-naive, gt3-infected patients, including those with rarer subtypes, and evaluate the effect of these RASs on direct-acting antivirals in vitro. Baseline samples from 496 gt3 patients enrolled in the BOSON clinical trial were analyzed by next-generation sequencing after probe-based enrichment for HCV. Whole viral genomes were analyzed for the presence of RASs to approved direct-acting antivirals. The resistance phenotype of RASs in combination with daclatasvir, velpatasvir, pibrentasvir, elbasvir, and sofosbuvir was measured using the S52 ΔN gt3a replicon model. The nonstructural protein 5A A30K and Y93H substitutions were the most common at 8.9% (n = 44) and 12.3% (n = 61), respectively, and showed a 10-fold and 11-fold increase in 50% effect concentration for daclatasvir compared to the unmodified replicon. Paired RASs (A30K + L31M and A30K + Y93H) were identified in 18 patients (9 of each pair); these combinations were shown to be highly resistant to daclatasvir, velpatasvir, elbasvir, and pibrentasvir. The A30K + L31M combination was found in all gt3b and gt3g samples. Conclusion: Our study reveals high frequencies of RASs to nonstructural protein 5A inhibitors in gt3 HCV; the paired A30K + L31M substitutions occur in all patients with gt3b and gt3g virus, and in vitro analysis suggests that these subtypes may be inherently resistant to all approved nonstructural protein 5A inhibitors for gt3 HCV. (Hepatology 2018).
Collapse
Affiliation(s)
- David Smith
- Nuffield Department of Medicine and the Oxford NIHR BRCUniversity of OxfordOxfordUK
| | - Andrea Magri
- Nuffield Department of Medicine and the Oxford NIHR BRCUniversity of OxfordOxfordUK
- Oxford Martin SchoolUniversity of OxfordOxfordUK
| | - David Bonsall
- Nuffield Department of Medicine and the Oxford NIHR BRCUniversity of OxfordOxfordUK
- Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Camilla L.C. Ip
- Nuffield Department of Medicine and the Oxford NIHR BRCUniversity of OxfordOxfordUK
- Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Amy Trebes
- Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Anthony Brown
- Nuffield Department of Medicine and the Oxford NIHR BRCUniversity of OxfordOxfordUK
| | - Palo Piazza
- Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Rory Bowden
- Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Dung Nguyen
- Nuffield Department of Medicine and the Oxford NIHR BRCUniversity of OxfordOxfordUK
| | - M. Azim Ansari
- Nuffield Department of Medicine and the Oxford NIHR BRCUniversity of OxfordOxfordUK
- Oxford Martin SchoolUniversity of OxfordOxfordUK
| | - Peter Simmonds
- Nuffield Department of Medicine and the Oxford NIHR BRCUniversity of OxfordOxfordUK
| | - Eleanor Barnes
- Nuffield Department of Medicine and the Oxford NIHR BRCUniversity of OxfordOxfordUK
| | | |
Collapse
|
13
|
Singer JB, Thomson EC, Hughes J, Aranday-Cortes E, McLauchlan J, da Silva Filipe A, Tong L, Manso CF, Gifford RJ, Robertson DL, Barnes E, Ansari MA, Mbisa JL, Bibby DF, Bradshaw D, Smith D. Interpreting Viral Deep Sequencing Data with GLUE. Viruses 2019; 11:E323. [PMID: 30987147 PMCID: PMC6520954 DOI: 10.3390/v11040323] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 01/29/2023] Open
Abstract
Using deep sequencing technologies such as Illumina's platform, it is possible to obtain reads from the viral RNA population revealing the viral genome diversity within a single host. A range of software tools and pipelines can transform raw deep sequencing reads into Sequence Alignment Mapping (SAM) files. We propose that interpretation tools should process these SAM files, directly translating individual reads to amino acids in order to extract statistics of interest such as the proportion of different amino acid residues at specific sites. This preserves per-read linkage between nucleotide variants at different positions within a codon location. The samReporter is a subsystem of the GLUE software toolkit which follows this direct read translation approach in its processing of SAM files. We test samReporter on a deep sequencing dataset obtained from a cohort of 241 UK HCV patients for whom prior treatment with direct-acting antivirals has failed; deep sequencing and resistance testing have been suggested to be of clinical use in this context. We compared the polymorphism interpretation results of the samReporter against an approach that does not preserve per-read linkage. We found that the samReporter was able to properly interpret the sequence data at resistance-associated locations in nine patients where the alternative approach was equivocal. In three cases, the samReporter confirmed that resistance or an atypical substitution was present at NS5A position 30. In three further cases, it confirmed that the sofosbuvir-resistant NS5B substitution S282T was absent. This suggests the direct read translation approach implemented is of value for interpreting viral deep sequencing data.
Collapse
Affiliation(s)
- Joshua B Singer
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK.
| | - Emma C Thomson
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK.
| | - Joseph Hughes
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK.
| | | | - John McLauchlan
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK.
| | | | - Lily Tong
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK.
| | - Carmen F Manso
- Virus Reference Department, National Infection Service, Public Health England, Colindale, London NW9 5EQ, UK.
| | - Robert J Gifford
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK.
| | - David L Robertson
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK.
| | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK.
| | - M Azim Ansari
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK.
| | - Jean L Mbisa
- Virus Reference Department, National Infection Service, Public Health England, Colindale, London NW9 5EQ, UK.
| | - David F Bibby
- Virus Reference Department, National Infection Service, Public Health England, Colindale, London NW9 5EQ, UK.
| | - Daniel Bradshaw
- Virus Reference Department, National Infection Service, Public Health England, Colindale, London NW9 5EQ, UK.
| | - David Smith
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK.
| |
Collapse
|
14
|
Understanding and overcoming the pitfalls and biases of next-generation sequencing (NGS) methods for use in the routine clinical microbiological diagnostic laboratory. Eur J Clin Microbiol Infect Dis 2019; 38:1059-1070. [PMID: 30834996 PMCID: PMC6520317 DOI: 10.1007/s10096-019-03520-3] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 02/20/2019] [Indexed: 12/14/2022]
Abstract
Recent advancements in next-generation sequencing (NGS) have provided the foundation for modern studies into the composition of microbial communities. The use of these NGS methods allows for the detection and identification of (‘difficult-to-culture’) microorganisms using a culture-independent strategy. In the field of routine clinical diagnostics however, the application of NGS is currently limited to microbial strain typing for epidemiological purposes only, even though the implementation of NGS for microbial community analysis may yield clinically important information. This lack of NGS implementation is due to many different factors, including issues relating to NGS method standardization and result reproducibility. In this review article, the authors provide a general introduction to the most widely used NGS methods currently available (i.e., targeted amplicon sequencing and shotgun metagenomics) and the strengths and weaknesses of each method is discussed. The focus of the publication then shifts toward 16S rRNA gene NGS methods, which are currently the most cost-effective and widely used NGS methods for research purposes, and are therefore more likely to be successfully implemented into routine clinical diagnostics in the short term. In this respect, the experimental pitfalls and biases created at each step of the 16S rRNA gene NGS workflow are explained, as well as their potential solutions. Finally, a novel diagnostic microbiota profiling platform (‘MYcrobiota’) is introduced, which was developed by the authors by taking into consideration the pitfalls, biases, and solutions explained in this article. The development of the MYcrobiota, and future NGS methodologies, will help pave the way toward the successful implementation of NGS methodologies into routine clinical diagnostics.
Collapse
|
15
|
Low-Bias RNA Sequencing of the HIV-2 Genome from Blood Plasma. J Virol 2018; 93:JVI.00677-18. [PMID: 30333167 PMCID: PMC6288329 DOI: 10.1128/jvi.00677-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/14/2018] [Indexed: 11/20/2022] Open
Abstract
Accurate determination of the genetic diversity present in the HIV quasispecies is critical for the development of a preventative vaccine: in particular, little is known about viral genetic diversity for the second type of HIV, HIV-2. A better understanding of HIV-2 biology is relevant to the HIV vaccine field because a substantial proportion of infected people experience long-term viral control, and prior HIV-2 infection has been associated with slower HIV-1 disease progression in coinfected subjects. The majority of traditional and next-generation sequencing methods have relied on target amplification prior to sequencing, introducing biases that may obscure the true signals of diversity in the viral population. Additionally, target enrichment through PCR requires a priori sequence knowledge, which is lacking for HIV-2. Therefore, a target enrichment free method of library preparation would be valuable for the field. We applied an RNA shotgun sequencing (RNA-Seq) method without PCR amplification to cultured viral stocks and patient plasma samples from HIV-2-infected individuals. Libraries generated from total plasma RNA were analyzed with a two-step pipeline: (i) de novo genome assembly, followed by (ii) read remapping. By this approach, whole-genome sequences were generated with a 28× to 67× mean depth of coverage. Assembled reads showed a low level of GC bias, and comparison of the genome diversities at the intrahost level showed low diversity in the accessory gene vpx in all patients. Our study demonstrates that RNA-Seq is a feasible full-genome de novo sequencing method for blood plasma samples collected from HIV-2-infected individuals.IMPORTANCE An accurate picture of viral genetic diversity is critical for the development of a globally effective HIV vaccine. However, sequencing strategies are often complicated by target enrichment prior to sequencing, introducing biases that can distort variant frequencies, which are not easily corrected for in downstream analyses. Additionally, detailed a priori sequence knowledge is needed to inform robust primer design when employing PCR amplification, a factor that is often lacking when working with tropical diseases localized in developing countries. Previous work has demonstrated that direct RNA shotgun sequencing (RNA-Seq) can be used to circumvent these issues for hepatitis C virus (HCV) and norovirus. We applied RNA-Seq to total RNA extracted from HIV-2 blood plasma samples, demonstrating the applicability of this technique to HIV-2 and allowing us to generate a dynamic picture of genetic diversity over the whole genome of HIV-2 in the context of low-bias sequencing.
Collapse
|
16
|
Petronella N, Ronholm J, Suresh M, Harlow J, Mykytczuk O, Corneau N, Bidawid S, Nasheri N. Genetic characterization of norovirus GII.4 variants circulating in Canada using a metagenomic technique. BMC Infect Dis 2018; 18:521. [PMID: 30333011 PMCID: PMC6191920 DOI: 10.1186/s12879-018-3419-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/27/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Human norovirus is the leading cause of viral gastroenteritis globally, and the GII.4 has been the most predominant genotype for decades. This genotype has numerous variants that have caused repeated epidemics worldwide. However, the molecular evolutionary signatures among the GII.4 variants have not been elucidated throughout the viral genome. METHOD A metagenomic, next-generation sequencing method, based on Illumina RNA-Seq, was applied to determine norovirus sequences from clinical samples. RESULTS Herein, the obtained deep-sequencing data was employed to analyze full-genomic sequences from GII.4 variants prevailing in Canada from 2012 to 2016. Phylogenetic analysis demonstrated that the majority of these sequences belong to New Orleans 2009 and Sydney 2012 strains, and a recombinant sequence was also identified. Genome-wide similarity analyses implied that while the capsid gene is highly diverse among the isolates, the viral protease and polymerase genes remain relatively conserved. Numerous amino acid substitutions were observed at each putative antigenic epitope of the VP1 protein, whereas few amino acid changes were identified in the polymerase protein. Co-infection with other enteric RNA viruses was investigated and the astrovirus genome was identified in one of the samples. CONCLUSIONS Overall this study demonstrated the application of whole genome sequencing as an important tool in molecular characterization of noroviruses.
Collapse
Affiliation(s)
- Nicholas Petronella
- Biostatistics and Modeling Division, Bureau of Food Surveillance and Science Integration, Food Directorate, Health Canada Ottawa, Ottawa, ON, Canada
| | - Jennifer Ronholm
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Montreal, QC, Canada.,Department of Animal Sciences, Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Montreal, QC, Canada
| | - Menka Suresh
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Jennifer Harlow
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Oksana Mykytczuk
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Nathalie Corneau
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Sabah Bidawid
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Neda Nasheri
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada.
| |
Collapse
|
17
|
Bonsall D, Black S, Howe AY, Chase R, Ingravallo P, Pak I, Brown A, Smith DA, Bowden R, Barnes E. Characterization of hepatitis C virus resistance to grazoprevir reveals complex patterns of mutations following on-treatment breakthrough that are not observed at relapse. Infect Drug Resist 2018; 11:1119-1135. [PMID: 30127629 PMCID: PMC6089106 DOI: 10.2147/idr.s156581] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PURPOSE A detailed analysis of hepatitis C virus (HCV) resistance-associated substitutions (RASs) is required to understand why people fail direct-acting antiviral therapies. This study was conducted to assess RASs in an analysis of 2 trials evaluating the second-generation NS3/4A protease inhibitor grazoprevir (GZR) in combination with peginterferon/ribavirin. PATIENTS AND METHODS From a total of 113 participants with HCV genotype 1 infection, RASs were evaluated in 25 patients who relapsed and 6 patients with on-treatment virologic breakthrough using consensus Sanger and clonal sequence analysis of NS3/NS4a genes, with in vitro testing of replicon mutants. Next-generation sequencing (NGS) was used in a subset of participants to assess minority variants and the evolution of the whole viral genome. RESULTS Baseline RASs did not predict treatment failure. Relapse was most commonly associated with RASs at D168, although additional RASs (Y56, R155 and A156) were also detected, particularly in participants with on-treatment breakthrough. Treatment-emergent RASs usually reverted to wild-type (WT), suggesting these mutations were associated with a negative fitness cost (confirmed using in vitro assays). NGS was the most sensitive assay for the detection of minor variants. Significant viral sequence divergence (up to 5.9% codons) was observed across whole genomes in association with the acquisition and reversion of RASs. CONCLUSION Relapse with GZR and peginterferon/ribavirin is commonly associated with single RASs in NS3 that generally revert to WT, while breakthrough follows more complex patterns of viral resistance. NGS suggests that large diverse pools of viral quasispecies that emerge with RASs facilitate rapid viral evolution.
Collapse
Affiliation(s)
- David Bonsall
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK,
| | - Stuart Black
- Department of Infectious Diseases, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Anita Ym Howe
- Department of Infectious Diseases, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Robert Chase
- Department of Infectious Diseases, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Paul Ingravallo
- Department of Infectious Diseases, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Irene Pak
- Department of Infectious Diseases, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Anthony Brown
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK,
| | - David A Smith
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK,
| | - Rory Bowden
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK,
| | - Eleanor Barnes
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK,
| |
Collapse
|
18
|
Pedersen MS, Fahnøe U, Hansen TA, Pedersen AG, Jenssen H, Bukh J, Schønning K. A near full-length open reading frame next generation sequencing assay for genotyping and identification of resistance-associated variants in hepatitis C virus. J Clin Virol 2018; 105:49-56. [PMID: 29886373 DOI: 10.1016/j.jcv.2018.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 05/22/2018] [Accepted: 05/26/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND The current treatment options for hepatitis C virus (HCV), based on direct acting antivirals (DAA), are dependent on virus genotype and previous treatment experience. Treatment failures have been associated with detection of resistance-associated substitutions (RASs) in the DAA targets of HCV, the NS3, NS5A and NS5 B proteins. OBJECTIVE To develop a next generation sequencing based method that provides genotype and detection of HCV NS3, NS5A, and NS5 B RASs without prior knowledge of sample genotype. STUDY DESIGN In total, 101 residual plasma samples from patients with HCV covering 10 different viral subtypes across 4 genotypes with viral loads of 3.84-7.61 Log IU/mL were included. All samples were de-identified and consequently prior treatment status for patients was unknown. Almost full open reading frame amplicons (∼ 9 kb) were generated using RT-PCR with a single primer set. The resulting amplicons were sequenced with high throughput sequencing and analysed using an in-house developed script for detecting RASs. RESULTS The method successfully amplified and sequenced 94% (95/101) of samples with an average coverage of 14,035; four of six failed samples were genotype 4a. Samples analysed twice yielded reproducible nucleotide frequencies across all sites. RASs were detected in 21/95 (22%) samples at a 15% threshold. The method identified one patient infected with two genotype 2b variants, and the presence of subgenomic deletion variants in 8 (8.4%) of 95 successfully sequenced samples. CONCLUSIONS The presented method may provide identification of HCV genotype, RASs detection, and detect multiple HCV infection without prior knowledge of sample genotype.
Collapse
Affiliation(s)
- M S Pedersen
- Department of Microbiology, Copenhagen University Hospital, Hvidovre, Denmark; Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Copenhagen University Hospital, Hvidovre, And Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Science and Environment, Roskilde University, Denmark
| | - U Fahnøe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Copenhagen University Hospital, Hvidovre, And Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - T A Hansen
- Department of Microbiology, Copenhagen University Hospital, Hvidovre, Denmark
| | - A G Pedersen
- DTU Bioinformatics, Technical University of Denmark, Denmark
| | - H Jenssen
- Department of Science and Environment, Roskilde University, Denmark
| | - J Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Copenhagen University Hospital, Hvidovre, And Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - K Schønning
- Department of Microbiology, Copenhagen University Hospital, Hvidovre, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
19
|
Oshiki M, Miura T, Kazama S, Segawa T, Ishii S, Hatamoto M, Yamaguchi T, Kubota K, Iguchi A, Tagawa T, Okubo T, Uemura S, Harada H, Kobayashi N, Araki N, Sano D. Microfluidic PCR Amplification and MiSeq Amplicon Sequencing Techniques for High-Throughput Detection and Genotyping of Human Pathogenic RNA Viruses in Human Feces, Sewage, and Oysters. Front Microbiol 2018; 9:830. [PMID: 29755444 PMCID: PMC5934477 DOI: 10.3389/fmicb.2018.00830] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/11/2018] [Indexed: 01/31/2023] Open
Abstract
Detection and genotyping of pathogenic RNA viruses in human and environmental samples are useful for monitoring the circulation and prevalence of these pathogens, whereas a conventional PCR assay followed by Sanger sequencing is time-consuming and laborious. The present study aimed to develop a high-throughput detection-and-genotyping tool for 11 human RNA viruses [Aichi virus; astrovirus; enterovirus; norovirus genogroup I (GI), GII, and GIV; hepatitis A virus; hepatitis E virus; rotavirus; sapovirus; and human parechovirus] using a microfluidic device and next-generation sequencer. Microfluidic nested PCR was carried out on a 48.48 Access Array chip, and the amplicons were recovered and used for MiSeq sequencing (Illumina, Tokyo, Japan); genotyping was conducted by homology searching and phylogenetic analysis of the obtained sequence reads. The detection limit of the 11 tested viruses ranged from 100 to 103 copies/μL in cDNA sample, corresponding to 101–104 copies/mL-sewage, 105–108 copies/g-human feces, and 102–105 copies/g-digestive tissues of oyster. The developed assay was successfully applied for simultaneous detection and genotyping of RNA viruses to samples of human feces, sewage, and artificially contaminated oysters. Microfluidic nested PCR followed by MiSeq sequencing enables efficient tracking of the fate of multiple RNA viruses in various environments, which is essential for a better understanding of the circulation of human pathogenic RNA viruses in the human population.
Collapse
Affiliation(s)
- Mamoru Oshiki
- Department of Civil Engineering, National Institute of Technology, Nagaoka, Japan
| | - Takayuki Miura
- Department of Environmental Health, National Institute of Public Health, Wako, Japan
| | - Shinobu Kazama
- Center for Simulation Sciences and Informational Biology, Ochanomizu University, Bunkyô, Japan
| | - Takahiro Segawa
- Center for Life Science Research, University of Yamanashi, Kofu, Japan
| | - Satoshi Ishii
- Department of Soil, Water and Climate, University of Minnesota, Minneapolis, MN, United States
| | - Masashi Hatamoto
- Department of Environmental Systems Engineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Takashi Yamaguchi
- Department of Science of Technology Innovation, Nagaoka University of Technology, Nagaoka, Japan
| | - Kengo Kubota
- Department of Civil and Environmental Engineering, Tohoku University, Sendai, Japan
| | - Akinori Iguchi
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Tadashi Tagawa
- Department of Civil Engineering, National Institute of Technology, Nagaoka, Japan
| | - Tsutomu Okubo
- Department of Civil Engineering, National Institute of Technology, Nagaoka, Japan
| | - Shigeki Uemura
- Department of Civil Engineering, National Institute of Technology, Nagaoka, Japan
| | - Hideki Harada
- New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| | - Naohiro Kobayashi
- Department of Civil Engineering, National Institute of Technology, Nagaoka, Japan
| | - Nobuo Araki
- Department of Civil Engineering, National Institute of Technology, Nagaoka, Japan
| | - Daisuke Sano
- Department of Civil and Environmental Engineering, Tohoku University, Sendai, Japan
| |
Collapse
|
20
|
Ratmann O, Wymant C, Colijn C, Danaviah S, Essex M, Frost S, Gall A, Gaseitsiwe S, Grabowski MK, Gray R, Guindon S, von Haeseler A, Kaleebu P, Kendall M, Kozlov A, Manasa J, Minh BQ, Moyo S, Novitsky V, Nsubuga R, Pillay S, Quinn TC, Serwadda D, Ssemwanga D, Stamatakis A, Trifinopoulos J, Wawer M, Brown AL, de Oliveira T, Kellam P, Pillay D, Fraser C, on behalf of the PANGEA-HIV Consort. HIV-1 full-genome phylogenetics of generalized epidemics in sub-Saharan Africa: impact of missing nucleotide characters in next-generation sequences. AIDS Res Hum Retroviruses 2017; 33:1083-1098. [PMID: 28540766 PMCID: PMC5597042 DOI: 10.1089/aid.2017.0061] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
To characterize HIV-1 transmission dynamics in regions where the burden of HIV-1 is greatest, the “Phylogenetics and Networks for Generalised HIV Epidemics in Africa” consortium (PANGEA-HIV) is sequencing full-genome viral isolates from across sub-Saharan Africa. We report the first 3,985 PANGEA-HIV consensus sequences from four cohort sites (Rakai Community Cohort Study, n = 2,833; MRC/UVRI Uganda, n = 701; Mochudi Prevention Project, n = 359; Africa Health Research Institute Resistance Cohort, n = 92). Next-generation sequencing success rates varied: more than 80% of the viral genome from the gag to the nef genes could be determined for all sequences from South Africa, 75% of sequences from Mochudi, 60% of sequences from MRC/UVRI Uganda, and 22% of sequences from Rakai. Partial sequencing failure was primarily associated with low viral load, increased for amplicons closer to the 3′ end of the genome, was not associated with subtype diversity except HIV-1 subtype D, and remained significantly associated with sampling location after controlling for other factors. We assessed the impact of the missing data patterns in PANGEA-HIV sequences on phylogeny reconstruction in simulations. We found a threshold in terms of taxon sampling below which the patchy distribution of missing characters in next-generation sequences (NGS) has an excess negative impact on the accuracy of HIV-1 phylogeny reconstruction, which is attributable to tree reconstruction artifacts that accumulate when branches in viral trees are long. The large number of PANGEA-HIV sequences provides unprecedented opportunities for evaluating HIV-1 transmission dynamics across sub-Saharan Africa and identifying prevention opportunities. Molecular epidemiological analyses of these data must proceed cautiously because sequence sampling remains below the identified threshold and a considerable negative impact of missing characters on phylogeny reconstruction is expected.
Collapse
Affiliation(s)
- Oliver Ratmann
- MRC Centre for Outbreak Analyses and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | - Chris Wymant
- Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Caroline Colijn
- Department of Mathematics, Imperial College London, London, United Kingdom
| | - Siva Danaviah
- Africa Health Research Institute, KwaZulu-Natal, South Africa
| | - Max Essex
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Simon Frost
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Astrid Gall
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Mary K. Grabowski
- Department of Epidemiology Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Rakai Health Sciences Program, Entebbe, Uganda
| | - Ronald Gray
- Department of Epidemiology Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Rakai Health Sciences Program, Entebbe, Uganda
| | - Stephane Guindon
- Department of Statistics, University of Auckland, Auckland, New Zealand
- Laboratoire d'Informatique, de Robotique et de Microelectronique de Montpellier–UMR 5506, CNRS & UM, Montpellier, France
| | - Arndt von Haeseler
- Centre for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, Vienna, Austria
- Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
| | | | - Michelle Kendall
- Department of Mathematics, Imperial College London, London, United Kingdom
| | - Alexey Kozlov
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Justen Manasa
- Africa Health Research Institute, KwaZulu-Natal, South Africa
| | - Bui Quang Minh
- Centre for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, Vienna, Austria
| | - Sikhulile Moyo
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Vlad Novitsky
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | | | | | - Thomas C. Quinn
- Rakai Health Sciences Program, Entebbe, Uganda
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
- Department of Medicine Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - David Serwadda
- Rakai Health Sciences Program, Entebbe, Uganda
- Makerere University School of Public Health, Makerere University College of Health Sciences, Kampala, Uganda
| | | | - Alexandros Stamatakis
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
- Institute for Theoretical Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Jana Trifinopoulos
- Centre for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, Vienna, Austria
| | - Maria Wawer
- Department of Epidemiology Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Rakai Health Sciences Program, Entebbe, Uganda
| | - Andy Leigh Brown
- School of Biological Sciences, Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Tulio de Oliveira
- Nelson R. Mandela School of Medicine, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Paul Kellam
- Department of Infectious Diseases and Immunity, Imperial College London, United Kingdom
| | - Deenan Pillay
- Africa Health Research Institute, KwaZulu-Natal, South Africa
- Division of Infection & Immunity, Faculty of Medical Sciences, University College London, London, United Kingdom
| | - Christophe Fraser
- Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
21
|
Lin HH, Liao YC. drVM: a new tool for efficient genome assembly of known eukaryotic viruses from metagenomes. Gigascience 2017; 6:1-10. [PMID: 28369462 PMCID: PMC5466706 DOI: 10.1093/gigascience/gix003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 01/15/2017] [Indexed: 11/29/2022] Open
Abstract
Background: Virus discovery using high-throughput next-generation sequencing has become more commonplace. However, although analysis of deep next-generation sequencing data allows us to identity potential pathogens, the entire analytical procedure requires competency in the bioinformatics domain, which includes implementing proper software packages and preparing prerequisite databases. Simple and user-friendly bioinformatics pipelines are urgently required to obtain complete viral genome sequences from metagenomic data. Results: This manuscript presents a pipeline, drVM (detect and reconstruct known viral genomes from metagenomes), for rapid viral read identification, genus-level read partition, read normalization, de novo assembly, sequence annotation, and coverage profiling. The first two procedures and sequence annotation rely on known viral genomes as a reference database. drVM was validated via the analysis of over 300 sequencing runs generated by Illumina and Ion Torrent platforms to provide complete viral genome assemblies for a variety of virus types including DNA viruses, RNA viruses, and retroviruses. drVM is available for free download at: https://sourceforge.net/projects/sb2nhri/files/drVM/ and is also assembled as a Docker container, an Amazon machine image, and a virtual machine to facilitate seamless deployment. Conclusions: drVM was compared with other viral detection tools to demonstrate its merits in terms of viral genome completeness and reduced computation time. This substantiates the platform's potential to produce prompt and accurate viral genome sequences from clinical samples.
Collapse
|
22
|
Manso CF, Bibby DF, Mbisa JL. Efficient and unbiased metagenomic recovery of RNA virus genomes from human plasma samples. Sci Rep 2017. [PMID: 28646219 PMCID: PMC5482852 DOI: 10.1038/s41598-017-02239-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
RNA viruses cause significant human pathology and are responsible for the majority of emerging zoonoses. Mainstream diagnostic assays are challenged by their intrinsic diversity, leading to false negatives and incomplete characterisation. New sequencing techniques are expanding our ability to agnostically interrogate nucleic acids within diverse sample types, but in the clinical setting are limited by overwhelming host material and ultra-low target frequency. Through selective host RNA depletion and compensatory protocol adjustments for ultra-low RNA inputs, we are able to detect three major blood-borne RNA viruses – HIV, HCV and HEV. We recovered complete genomes and up to 43% of the genome from samples with viral loads of 104 and 103 IU/ml respectively. Additionally, we demonstrated the utility of this method in detecting and characterising members of diverse RNA virus families within a human plasma background, some present at very low levels. By applying this method to a patient sample series, we have simultaneously determined the full genome of both a novel subtype of HCV genotype 6, and a co-infecting human pegivirus. This method builds upon earlier RNA metagenomic techniques and can play an important role in the surveillance and diagnostics of blood-borne viruses.
Collapse
Affiliation(s)
- Carmen F Manso
- Antiviral Unit, Virus Reference Department, National Infection Service, Public Health England, Colindale, London, NW9 5EQ, United Kingdom
| | - David F Bibby
- Antiviral Unit, Virus Reference Department, National Infection Service, Public Health England, Colindale, London, NW9 5EQ, United Kingdom.
| | - Jean L Mbisa
- Antiviral Unit, Virus Reference Department, National Infection Service, Public Health England, Colindale, London, NW9 5EQ, United Kingdom
| |
Collapse
|
23
|
Kumar A, Murthy S, Kapoor A. Evolution of selective-sequencing approaches for virus discovery and virome analysis. Virus Res 2017; 239:172-179. [PMID: 28583442 PMCID: PMC5819613 DOI: 10.1016/j.virusres.2017.06.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/28/2016] [Accepted: 06/02/2017] [Indexed: 12/11/2022]
Abstract
Description of virus enrichment techniques for metagenomics based virome analysis. Usefulness of recently developed virome capture sequencing techniques. Perspective on negative and positive selection approaches for virome analysis.
Recent advances in sequencing technologies have transformed the field of virus discovery and virome analysis. Once mostly confined to the traditional Sanger sequencing based individual virus discovery, is now entirely replaced by high throughput sequencing (HTS) based virus metagenomics that can be used to characterize the nature and composition of entire viromes. To better harness the potential of HTS for the study of viromes, sample preparation methodologies use different approaches to exclude amplification of non-viral components that can overshadow low-titer viruses. These virus-sequence enrichment approaches mostly focus on the sample preparation methods, like enzymatic digestion of non-viral nucleic acids and size exclusion of non-viral constituents by column filtration, ultrafiltration or density gradient centrifugation. However, recently a new approach of virus-sequence enrichment called virome-capture sequencing, focused on the amplification or HTS library preparation stage, was developed to increase the ability of virome characterization. This new approach has the potential to further transform the field of virus discovery and virome analysis, but its technical complexity and sequence-dependence warrants further improvements. In this review we discuss the different methods, their applications and evolution, for selective sequencing based virome analysis and also propose refinements needed to harness the full potential of HTS for virome analysis.
Collapse
Affiliation(s)
- Arvind Kumar
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Satyapramod Murthy
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Amit Kapoor
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA; Department of Pediatrics, College of Medicine and Public Health, Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
24
|
Quick J, Grubaugh ND, Pullan ST, Claro IM, Smith AD, Gangavarapu K, Oliveira G, Robles-Sikisaka R, Rogers TF, Beutler NA, Burton DR, Lewis-Ximenez LL, de Jesus JG, Giovanetti M, Hill SC, Black A, Bedford T, Carroll MW, Nunes M, Alcantara LC, Sabino EC, Baylis SA, Faria NR, Loose M, Simpson JT, Pybus OG, Andersen KG, Loman NJ. Multiplex PCR method for MinION and Illumina sequencing of Zika and other virus genomes directly from clinical samples. Nat Protoc 2017; 12:1261-1276. [PMID: 28538739 PMCID: PMC5902022 DOI: 10.1038/nprot.2017.066] [Citation(s) in RCA: 778] [Impact Index Per Article: 97.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genome sequencing has become a powerful tool for studying emerging infectious diseases; however, genome sequencing directly from clinical samples (i.e., without isolation and culture) remains challenging for viruses such as Zika, for which metagenomic sequencing methods may generate insufficient numbers of viral reads. Here we present a protocol for generating coding-sequence-complete genomes, comprising an online primer design tool, a novel multiplex PCR enrichment protocol, optimized library preparation methods for the portable MinION sequencer (Oxford Nanopore Technologies) and the Illumina range of instruments, and a bioinformatics pipeline for generating consensus sequences. The MinION protocol does not require an Internet connection for analysis, making it suitable for field applications with limited connectivity. Our method relies on multiplex PCR for targeted enrichment of viral genomes from samples containing as few as 50 genome copies per reaction. Viral consensus sequences can be achieved in 1-2 d by starting with clinical samples and following a simple laboratory workflow. This method has been successfully used by several groups studying Zika virus evolution and is facilitating an understanding of the spread of the virus in the Americas. The protocol can be used to sequence other viral genomes using the online Primal Scheme primer designer software. It is suitable for sequencing either RNA or DNA viruses in the field during outbreaks or as an inexpensive, convenient method for use in the lab.
Collapse
Affiliation(s)
- Joshua Quick
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | | | - Steven T Pullan
- Public Health England, National Infection Service, Porton Down, Salisbury, UK
| | - Ingra M Claro
- Department of Infectious Disease and Institute of Tropical Medicine, University of Saõ Paulo, Saõ Paulo, Brazil
| | - Andrew D Smith
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | | | - Glenn Oliveira
- Scripps Translational Science Institute, La Jolla, California, USA
| | | | - Thomas F Rogers
- The Scripps Research Institute, La Jolla, California, USA
- Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | | | | | | | - Marta Giovanetti
- Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- University of Rome, Tor Vergata, Italy
| | - Sarah C Hill
- Department of Zoology, University of Oxford, Oxford, UK
| | - Allison Black
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Trevor Bedford
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Miles W Carroll
- Public Health England, National Infection Service, Porton Down, Salisbury, UK
- University of Southampton, South General Hospital, Southampton, UK
| | | | | | - Ester C Sabino
- Department of Infectious Disease and Institute of Tropical Medicine, University of Saõ Paulo, Saõ Paulo, Brazil
| | | | - Nuno R Faria
- Department of Zoology, University of Oxford, Oxford, UK
| | - Matthew Loose
- DeepSeq, School of Life Sciences, University of Nottingham, Nottingham, UK
| | | | | | - Kristian G Andersen
- The Scripps Research Institute, La Jolla, California, USA
- Scripps Translational Science Institute, La Jolla, California, USA
| | - Nicholas J Loman
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
25
|
Fonager J, Stegger M, Rasmussen LD, Poulsen MW, Rønn J, Andersen PS, Fischer TK. A universal primer-independent next-generation sequencing approach for investigations of norovirus outbreaks and novel variants. Sci Rep 2017; 7:813. [PMID: 28400558 PMCID: PMC5429772 DOI: 10.1038/s41598-017-00926-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 03/21/2017] [Indexed: 12/16/2022] Open
Abstract
Norovirus (NoV) is the most common cause of non-bacterial gastroenteritis and is a major agent associated with outbreaks of gastroenteritis. Conventional molecular genotyping analysis of NoV, used for the identification of transmission routes, relies on standard typing methods (STM) by Sanger-sequencing of only a limited part of the NoV genome, which could lead to wrong conclusions. Here, we combined a NoV capture method with next generation sequencing (NGS), which increased the proportion of norovirus reads by ~40 fold compared to NGS without prior capture. Of 15 NoV samples from 6 single-genotype outbreaks, near full-genome coverage (>90%) was obtained from 9 samples. Fourteen polymerase (RdRp) and 15 capsid (cap) genotypes were identified compared to 12 and 13 for the STM, respectively. Analysis of 9 samples from two mixed-genotype outbreaks identified 6 RdRp and 6 cap genotypes (two at >90% NoV genome coverage) compared to 4 and 2 for the STM, respectively. Furthermore, complete or partial sequences from the P2 hypervariable region were obtained from 7 of 8 outbreaks and a new NoV recombinant was identified. This approach could therefore strengthen outbreak investigations and could be applied to other important viruses in stool samples such as hepatitis A and enterovirus.
Collapse
Affiliation(s)
- Jannik Fonager
- Virology Surveillance and Research Section, Department of Microbiological diagnostics and Virology, Statens Serum Institut, Copenhagen, Denmark.
| | - Marc Stegger
- Department of Microbiology and Infection Control, Statens Serum Institut, Copenhagen, Denmark
| | - Lasse Dam Rasmussen
- Virology Surveillance and Research Section, Department of Microbiological diagnostics and Virology, Statens Serum Institut, Copenhagen, Denmark
| | - Mille Weismann Poulsen
- Virology Surveillance and Research Section, Department of Microbiological diagnostics and Virology, Statens Serum Institut, Copenhagen, Denmark
| | - Jesper Rønn
- Virology Surveillance and Research Section, Department of Microbiological diagnostics and Virology, Statens Serum Institut, Copenhagen, Denmark
| | - Paal Skytt Andersen
- Department of Microbiology and Infection Control, Statens Serum Institut, Copenhagen, Denmark
- Department of Veterinary Disease Biology, University of Copenhagen, Copenhagen, Denmark
| | - Thea Kølsen Fischer
- Virology Surveillance and Research Section, Department of Microbiological diagnostics and Virology, Statens Serum Institut, Copenhagen, Denmark
- Department of Infectious Diseases and Centre for Global health, Clinical Unit, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
26
|
Nasheri N, Petronella N, Ronholm J, Bidawid S, Corneau N. Characterization of the Genomic Diversity of Norovirus in Linked Patients Using a Metagenomic Deep Sequencing Approach. Front Microbiol 2017; 8:73. [PMID: 28197136 PMCID: PMC5282449 DOI: 10.3389/fmicb.2017.00073] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/11/2017] [Indexed: 01/14/2023] Open
Abstract
Norovirus (NoV) is the leading cause of gastroenteritis worldwide. A robust cell culture system does not exist for NoV and therefore detailed characterization of outbreak and sporadic strains relies on molecular techniques. In this study, we employed a metagenomic approach that uses non-specific amplification followed by next-generation sequencing to whole genome sequence NoV genomes directly from clinical samples obtained from 8 linked patients. Enough sequencing depth was obtained for each sample to use a de novo assembly of near-complete genome sequences. The resultant consensus sequences were then used to identify inter-host nucleotide variations that occur after direct transmission, analyze amino acid variations in the major capsid protein, and provide evidence of recombination events. The analysis of intra-host quasispecies diversity was possible due to high coverage-depth. We also observed a linear relationship between NoV viral load in the clinical sample and the number of sequence reads that could be attributed to NoV. The method demonstrated here has the potential for future use in whole genome sequence analyses of other RNA viruses isolated from clinical, environmental, and food specimens.
Collapse
Affiliation(s)
- Neda Nasheri
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada Ottawa, ON, Canada
| | - Nicholas Petronella
- Biostatistics and Modeling Division, Bureau of Food Surveillance and Science Integration, Food Directorate, Health Canada Ottawa, ON, Canada
| | - Jennifer Ronholm
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill UniversityMontreal, QC, Canada; Department of Animal Science, Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill UniversityMontreal, QC, Canada
| | - Sabah Bidawid
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada Ottawa, ON, Canada
| | - Nathalie Corneau
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada Ottawa, ON, Canada
| |
Collapse
|
27
|
Zhang J, Zheng Y, Xia XQ, Chen Q, Bade SA, Yoon KJ, Harmon KM, Gauger PC, Main RG, Li G. High-throughput whole genome sequencing of Porcine reproductive and respiratory syndrome virus from cell culture materials and clinical specimens using next-generation sequencing technology. J Vet Diagn Invest 2016; 29:41-50. [PMID: 28074712 DOI: 10.1177/1040638716673404] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Next-generation sequencing (NGS) technologies have increasingly played crucial roles in biological and medical research, but are not yet in routine use in veterinary diagnostic laboratories. We developed and applied a procedure for high-throughput RNA sequencing of Porcine reproductive and respiratory syndrome virus (PRRSV) from cell culture-derived isolates and clinical specimens. Ten PRRSV isolates with known sequence information, 2 mixtures each with 2 different PRRSV isolates, and 51 clinical specimens (19 sera, 16 lungs, and 16 oral fluids) with various PCR threshold cycle (Ct) values were subjected to nucleic acid extraction, cDNA library preparation (24-plexed), and sequencing. Whole genome sequences were obtained from 10 reference isolates with expected sequences and from sera with a PRRSV real-time reverse transcription PCR Ct ≤ 23.6, lung tissues with Ct ≤ 21, and oral fluids with Ct ≤ 20.6. For mixtures with PRRSV-1 and -2 isolates (57.8% nucleotide identity), NGS was able to distinguish them as well as obtain their respective genome sequences. For mixtures with 2 PRRSV-2 isolates (92.4% nucleotide identity), sequence reads with nucleotide ambiguity at numerous sites were observed, indicating mixed infection; however, individual virus sequences could only be separated when 1 isolate identity and sequence in the mixture is known. The NGS approach described herein offers the prospect of high-throughput sequencing and could be adapted to routine workflows in veterinary diagnostic laboratories, although further improvement of sequencing outcomes from clinical specimens with higher Ct values remains to be investigated.
Collapse
Affiliation(s)
- Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA (Zhang, Zheng, Chen, Bade, Yoon, Harmon, Gauger, Main, Li).,Laboratory of Aquatic Bioinformatics, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China (Xia)
| | - Ying Zheng
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA (Zhang, Zheng, Chen, Bade, Yoon, Harmon, Gauger, Main, Li).,Laboratory of Aquatic Bioinformatics, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China (Xia)
| | - Xiao-Qin Xia
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA (Zhang, Zheng, Chen, Bade, Yoon, Harmon, Gauger, Main, Li).,Laboratory of Aquatic Bioinformatics, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China (Xia)
| | - Qi Chen
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA (Zhang, Zheng, Chen, Bade, Yoon, Harmon, Gauger, Main, Li).,Laboratory of Aquatic Bioinformatics, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China (Xia)
| | - Sarah A Bade
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA (Zhang, Zheng, Chen, Bade, Yoon, Harmon, Gauger, Main, Li).,Laboratory of Aquatic Bioinformatics, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China (Xia)
| | - Kyoung-Jin Yoon
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA (Zhang, Zheng, Chen, Bade, Yoon, Harmon, Gauger, Main, Li).,Laboratory of Aquatic Bioinformatics, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China (Xia)
| | - Karen M Harmon
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA (Zhang, Zheng, Chen, Bade, Yoon, Harmon, Gauger, Main, Li).,Laboratory of Aquatic Bioinformatics, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China (Xia)
| | - Phillip C Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA (Zhang, Zheng, Chen, Bade, Yoon, Harmon, Gauger, Main, Li).,Laboratory of Aquatic Bioinformatics, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China (Xia)
| | - Rodger G Main
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA (Zhang, Zheng, Chen, Bade, Yoon, Harmon, Gauger, Main, Li).,Laboratory of Aquatic Bioinformatics, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China (Xia)
| | - Ganwu Li
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA (Zhang, Zheng, Chen, Bade, Yoon, Harmon, Gauger, Main, Li).,Laboratory of Aquatic Bioinformatics, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China (Xia)
| |
Collapse
|
28
|
Cotten M, Koopmans M. Next-generation sequencing and norovirus. Future Virol 2016; 11:719-722. [PMID: 28757893 DOI: 10.2217/fvl-2016-0099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 09/23/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Matthew Cotten
- Virosciences Department, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Marion Koopmans
- Virosciences Department, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
29
|
Brown JR, Roy S, Ruis C, Yara Romero E, Shah D, Williams R, Breuer J. Norovirus Whole-Genome Sequencing by SureSelect Target Enrichment: a Robust and Sensitive Method. J Clin Microbiol 2016; 54:2530-7. [PMID: 27487952 PMCID: PMC5035417 DOI: 10.1128/jcm.01052-16] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/21/2016] [Indexed: 01/11/2023] Open
Abstract
Norovirus full-genome sequencing is challenging due to sequence heterogeneity among genomes. Previous methods have relied on PCR amplification, which is problematic due to primer design, and transcriptome sequencing (RNA-Seq), which nonspecifically sequences all RNA, including host and bacterial RNA, in stool specimens. Target enrichment uses a panel of custom-designed 120-mer RNA baits that are complementary to all publicly available norovirus sequences, with multiple baits targeting each position of the genome, which overcomes the challenge of primer design. Norovirus genomes are enriched from stool RNA extracts to minimize the sequencing of nontarget RNA. SureSelect target enrichment and Illumina sequencing were used to sequence full genomes from 507 norovirus-positive stool samples with reverse transcription-real-time PCR cycle threshold (CT) values of 10 to 43. Sequencing on an Illumina MiSeq system in batches of 48 generated, on average, 81% on-target reads per sample and 100% genome coverage with >12,000-fold read depth. Samples included genotypes GI.1, GI.2, GI.3, GI.6, GI.7, GII.1, GII.2, GII.3, GII.4, GII.5, GII.6, GII.7, GII.13, GII.14, and GII.17. When outliers were accounted for, we generated >80% genome coverage for all positive samples, regardless of CT values. A total of 164 samples were tested in parallel with conventional PCR genotyping of the capsid shell domain; 164/164 samples were successfully sequenced, compared to 158/164 samples that were amplified by PCR. Four of the samples that failed capsid PCR analysis had low titers, which suggests that target enrichment is more sensitive than gel-based PCR. Two samples failed PCR due to primer mismatches; target enrichment uses multiple baits targeting each position, thus accommodating sequence heterogeneity among norovirus genomes.
Collapse
Affiliation(s)
- Julianne R Brown
- Microbiology, Virology, and Infection Control, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom NIHR Biomedical Research Centre at Great Ormond Street Hospital for Children NHS Foundation Trust and University College London, London, United Kingdom
| | - Sunando Roy
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Christopher Ruis
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Erika Yara Romero
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Divya Shah
- Microbiology, Virology, and Infection Control, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom NIHR Biomedical Research Centre at Great Ormond Street Hospital for Children NHS Foundation Trust and University College London, London, United Kingdom
| | - Rachel Williams
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Judy Breuer
- Microbiology, Virology, and Infection Control, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
30
|
Yang Z, Leonard SR, Mammel MK, Elkins CA, Kulka M. Towards next-generation sequencing analytics for foodborne RNA viruses: Examining the effect of RNA input quantity and viral RNA purity. J Virol Methods 2016; 236:221-230. [DOI: 10.1016/j.jviromet.2016.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/28/2016] [Accepted: 07/15/2016] [Indexed: 11/15/2022]
|
31
|
Swadling L, Halliday J, Kelly C, Brown A, Capone S, Ansari MA, Bonsall D, Richardson R, Hartnell F, Collier J, Ammendola V, Del Sorbo M, Von Delft A, Traboni C, Hill AVS, Colloca S, Nicosia A, Cortese R, Klenerman P, Folgori A, Barnes E. Highly-Immunogenic Virally-Vectored T-cell Vaccines Cannot Overcome Subversion of the T-cell Response by HCV during Chronic Infection. Vaccines (Basel) 2016; 4:E27. [PMID: 27490575 PMCID: PMC5041021 DOI: 10.3390/vaccines4030027] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/19/2016] [Accepted: 07/19/2016] [Indexed: 02/06/2023] Open
Abstract
An effective therapeutic vaccine for the treatment of chronic hepatitis C virus (HCV) infection, as an adjunct to newly developed directly-acting antivirals (DAA), or for the prevention of reinfection, would significantly reduce the global burden of disease associated with chronic HCV infection. A recombinant chimpanzee adenoviral (ChAd3) vector and a modified vaccinia Ankara (MVA), encoding the non-structural proteins of HCV (NSmut), used in a heterologous prime/boost regimen induced multi-specific, high-magnitude, durable HCV-specific CD4+ and CD8+ T-cell responses in healthy volunteers, and was more immunogenic than a heterologous Ad regimen. We now assess the immunogenicity of this vaccine regimen in HCV infected patients (including patients with a low viral load suppressed with interferon/ribavirin therapy), determine T-cell cross-reactivity to endogenous virus, and compare immunogenicity with that observed previously in both healthy volunteers and in HCV infected patients vaccinated with the heterologous Ad regimen. Vaccination of HCV infected patients with ChAd3-NSmut/MVA-NSmut was well tolerated. Vaccine-induced HCV-specific T-cell responses were detected in 8/12 patients; however, CD4+ T-cell responses were rarely detected, and the overall magnitude of HCV-specific T-cell responses was markedly reduced when compared to vaccinated healthy volunteers. Furthermore, HCV-specific cells had a distinct partially-functional phenotype (lower expression of activation markers, granzyme B, and TNFα production, weaker in vitro proliferation, and higher Tim3 expression, with comparable Tbet and Eomes expression) compared to healthy volunteers. Robust anti-vector T-cells and antibodies were induced, showing that there is no global defect in immunity. The level of viremia at the time of vaccination did not correlate with the magnitude of the vaccine-induced T-cell response. Full-length, next-generation sequencing of the circulating virus demonstrated that T-cells were only induced by vaccination when there was a sequence mismatch between the autologous virus and the vaccine immunogen. However, these T-cells were not cross-reactive with the endogenous viral variant epitopes. Conversely, when there was complete homology between the immunogen and circulating virus at a given epitope T-cells were not induced. T-cell induction following vaccination had no significant impact on HCV viral load. In vitro T-cell culture experiments identified the presence of T-cells at baseline that could be expanded by vaccination; thus, HCV-specific T-cells may have been expanded from pre-existing low-level memory T-cell populations that had been exposed to HCV antigens during natural infection, explaining the partial T-cell dysfunction. In conclusion, vaccination with ChAd3-NSmut and MVA-NSmut prime/boost, a potent vaccine regimen previously optimized in healthy volunteers was unable to reconstitute HCV-specific T-cell immunity in HCV infected patients. This highlights the major challenge of overcoming T-cell exhaustion in the context of persistent antigen exposure.
Collapse
Affiliation(s)
- Leo Swadling
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK.
| | - John Halliday
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK.
- Oxford NIHR BRC, and Translational Gastroenterology Unit, Oxford OX3 9DU, UK.
- Royal Melbourne Hospital, Parkville, Victoria 3050, Australia.
| | - Christabel Kelly
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK.
- Oxford NIHR BRC, and Translational Gastroenterology Unit, Oxford OX3 9DU, UK.
| | - Anthony Brown
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK.
| | - Stefania Capone
- Reithera Srl (former Okairos Srl), Viale Città d'Europa, 679, Rome 00144, Italy.
| | - M Azim Ansari
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK.
| | - David Bonsall
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK.
| | - Rachel Richardson
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK.
| | - Felicity Hartnell
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK.
| | - Jane Collier
- Oxford NIHR BRC, and Translational Gastroenterology Unit, Oxford OX3 9DU, UK.
| | - Virginia Ammendola
- Reithera Srl (former Okairos Srl), Viale Città d'Europa, 679, Rome 00144, Italy.
| | | | - Annette Von Delft
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK.
| | - Cinzia Traboni
- Reithera Srl (former Okairos Srl), Viale Città d'Europa, 679, Rome 00144, Italy.
| | - Adrian V S Hill
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK.
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK.
| | - Stefano Colloca
- Reithera Srl (former Okairos Srl), Viale Città d'Europa, 679, Rome 00144, Italy.
| | - Alfredo Nicosia
- Reithera Srl (former Okairos Srl), Viale Città d'Europa, 679, Rome 00144, Italy.
- CEINGE, via Gaetano Salvatore 486, Naples 80145, Italy.
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy.
| | | | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK.
- Oxford NIHR BRC, and Translational Gastroenterology Unit, Oxford OX3 9DU, UK.
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK.
| | - Antonella Folgori
- Reithera Srl (former Okairos Srl), Viale Città d'Europa, 679, Rome 00144, Italy.
| | - Eleanor Barnes
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK.
- Oxford NIHR BRC, and Translational Gastroenterology Unit, Oxford OX3 9DU, UK.
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK.
| |
Collapse
|
32
|
Hasing ME, Hazes B, Lee BE, Preiksaitis JK, Pang XL. A next generation sequencing-based method to study the intra-host genetic diversity of norovirus in patients with acute and chronic infection. BMC Genomics 2016; 17:480. [PMID: 27363999 PMCID: PMC4929757 DOI: 10.1186/s12864-016-2831-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 06/12/2016] [Indexed: 12/12/2022] Open
Abstract
Background Immunocompromised individuals with chronic norovirus (NoV) infection and elderly patients are hypothesized to be reservoirs where NoV might accumulate mutations and evolve into pandemic strains. Next generation sequencing (NGS) methods can monitor the intra-host diversity of NoV and its evolution but low abundance of viral RNA results in sub-optimal efficiency. In this study, we: 1) established a next generation sequencing-based method for NoV using bacterial rRNA depletion as a viral RNA enrichment strategy, and 2) measured the intra-host genetic diversity of NoV in specimens of patients with acute NoV infection (n = 4) and in longitudinal specimens of an immunocompromised patient with chronic NoV infection (n = 2). Results A single Illumina MiSeq dataset resulted in near full-length genome sequences for 5 out of 6 multiplexed samples. Experimental depletion of bacterial rRNA in stool RNA provided up to 1.9 % of NoV reads. The intra-host viral population in patients with acute NoV infection was homogenous and no single nucleotide variants (SNVs) were detected. In contrast, the NoV population from the immunocompromised patient was highly diverse and accumulated SNVs over time (51 SNVs in the first sample and 122 SNVs in the second sample collected 4 months later). The percentages of SNVs causing non-synonymous mutations were 27.5 % and 20.5 % for the first and second samples, respectively. The majority of non-synonymous mutations occurred, in increasing order of frequency, in p22, the major capsid (VP1) and minor capsid (VP2) genes. Conclusions The results provide data useful for the selection and improvement of NoV RNA enrichment strategies for NGS. Whole genome analysis using next generation sequencing confirmed that the within-host population of NoV in an immunocompromised individual with chronic NoV infection was more diverse compared to that in individuals with acute infection. We also observed an accumulation of non-synonymous mutations at the minor capsid gene that has not been reported in previous studies and might have a role in NoV adaptation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2831-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria E Hasing
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | - Bart Hazes
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Bonita E Lee
- Department of Pediatrics, University of Alberta, Edmonton, AB, T6G 1C9, Canada
| | - Jutta K Preiksaitis
- Department of Medicine, University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | - Xiaoli L Pang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2B7, Canada. .,Provincial Laboratory for Public Health (ProvLab), Edmonton, AB, T6G 2 J2, Canada.
| |
Collapse
|
33
|
Chen H, Hu Y. Molecular Diagnostic Methods for Detection and Characterization of Human Noroviruses. Open Microbiol J 2016; 10:78-89. [PMID: 27335620 PMCID: PMC4899541 DOI: 10.2174/1874285801610010078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 02/04/2023] Open
Abstract
Human noroviruses are a group of viral agents that afflict people of all age groups. The viruses are now recognized as the most common causative agent of nonbacterial acute gastroenteritis and foodborne viral illness worldwide. However, they have been considered to play insignificant roles in the disease burden of acute gastroenteritis for the past decades until the recent advent of new and more sensitive molecular diagnostic methods. The availability and application of the molecular diagnostic methods have led to enhanced detection of noroviruses in clinical, food and environmental samples, significantly increasing the recognition of noroviruses as an etiologic agent of epidemic and sporadic acute gastroenteritis. This article aims to summarize recent efforts made for the development of molecular methods for the detection and characterization of human noroviruses.
Collapse
Affiliation(s)
- Haifeng Chen
- Division of Molecular Biology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, USA
| | - Yuan Hu
- Northeast Region Laboratory, Office of Regulatory Affairs, U.S. Food and Drug Administration, Jamaica, NY, USA
| |
Collapse
|
34
|
Li D, Li Z, Zhou Z, Li Z, Qu X, Xu P, Zhou P, Bo X, Ni M. Direct next-generation sequencing of virus-human mixed samples without pretreatment is favorable to recover virus genome. Biol Direct 2016; 11:3. [PMID: 26754142 PMCID: PMC4710016 DOI: 10.1186/s13062-016-0105-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 01/05/2016] [Indexed: 02/07/2023] Open
Abstract
Abstract Next-generation sequencing (NGS) enables the recovery of pathogen genomes from clinical samples without the need for culturing. Depletion of host/microbiota components (e.g., ribosomal RNA and poly-A RNA) and whole DNA/cDNA amplification are routine methods to improve recovery results. Using mixtures of human and influenza A virus (H1N1) RNA as a model, we found that background depletion and whole transcriptome amplification introduced biased distributions of read coverage over the H1N1 genome, thereby hampering genome assembly. Influenza serotyping was also affected by pretreatments. We propose that direct sequencing of noncultured samples without pretreatment is a favorable option for pathogen genome recovery applications. Reviewer This article was reviewed by Sebastian Maurer-Stroh. Electronic supplementary material The online version of this article (doi:10.1186/s13062-016-0105-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dingchen Li
- Department of Biotechnology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, People's Republic of China. .,Genomics Center of Academy of Military Medical Sciences, 27 Taiping Road, Beijing, 100850, People's Republic of China.
| | - Zongwei Li
- Department of Biotechnology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, People's Republic of China. .,Genomics Center of Academy of Military Medical Sciences, 27 Taiping Road, Beijing, 100850, People's Republic of China.
| | - Zhe Zhou
- Department of Biotechnology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, People's Republic of China. .,Genomics Center of Academy of Military Medical Sciences, 27 Taiping Road, Beijing, 100850, People's Republic of China.
| | - Zhen Li
- Department of Biotechnology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, People's Republic of China. .,Genomics Center of Academy of Military Medical Sciences, 27 Taiping Road, Beijing, 100850, People's Republic of China.
| | - Xinyan Qu
- Department of Biotechnology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, People's Republic of China. .,Genomics Center of Academy of Military Medical Sciences, 27 Taiping Road, Beijing, 100850, People's Republic of China.
| | - Peisong Xu
- Department of Research Service, Zhiyuan Inspection Medical Institute, 8 Huazangsi Lane, Hangzhou, 310009, People's Republic of China.
| | - Pingkun Zhou
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, People's Republic of China.
| | - Xiaochen Bo
- Department of Biotechnology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, People's Republic of China. .,Genomics Center of Academy of Military Medical Sciences, 27 Taiping Road, Beijing, 100850, People's Republic of China.
| | - Ming Ni
- Department of Biotechnology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, People's Republic of China. .,Genomics Center of Academy of Military Medical Sciences, 27 Taiping Road, Beijing, 100850, People's Republic of China.
| |
Collapse
|
35
|
Quantifying Next Generation Sequencing Sample Pre-Processing Bias in HIV-1 Complete Genome Sequencing. Viruses 2016; 8:v8010012. [PMID: 26751471 PMCID: PMC4728572 DOI: 10.3390/v8010012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/08/2015] [Accepted: 12/15/2015] [Indexed: 12/24/2022] Open
Abstract
Genetic analyses play a central role in infectious disease research. Massively parallelized “mechanical cloning” and sequencing technologies were quickly adopted by HIV researchers in order to broaden the understanding of the clinical importance of minor drug-resistant variants. These efforts have, however, remained largely limited to small genomic regions. The growing need to monitor multiple genome regions for drug resistance testing, as well as the obvious benefit for studying evolutionary and epidemic processes makes complete genome sequencing an important goal in viral research. In addition, a major drawback for NGS applications to RNA viruses is the need for large quantities of input DNA. Here, we use a generic overlapping amplicon-based near full-genome amplification protocol to compare low-input enzymatic fragmentation (Nextera™) with conventional mechanical shearing for Roche 454 sequencing. We find that the fragmentation method has only a modest impact on the characterization of the population composition and that for reliable results, the variation introduced at all steps of the procedure—from nucleic acid extraction to sequencing—should be taken into account, a finding that is also relevant for NGS technologies that are now more commonly used. Furthermore, by applying our protocol to deep sequence a number of pre-therapy plasma and PBMC samples, we illustrate the potential benefits of a near complete genome sequencing approach in routine genotyping.
Collapse
|
36
|
Bavelaar HH, Rahamat-Langendoen J, Niesters HG, Zoll J, Melchers WJ. Whole genome sequencing of fecal samples as a tool for the diagnosis and genetic characterization of norovirus. J Clin Virol 2015; 72:122-5. [DOI: 10.1016/j.jcv.2015.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/30/2015] [Accepted: 10/03/2015] [Indexed: 11/16/2022]
|
37
|
Bonsall D, Ansari MA, Ip C, Trebes A, Brown A, Klenerman P, Buck D, Piazza P, Barnes E, Bowden R. ve-SEQ: Robust, unbiased enrichment for streamlined detection and whole-genome sequencing of HCV and other highly diverse pathogens. F1000Res 2015; 4:1062. [PMID: 27092241 PMCID: PMC4821293 DOI: 10.12688/f1000research.7111.1] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/08/2015] [Indexed: 12/22/2022] Open
Abstract
The routine availability of high-depth virus sequence data would allow the sensitive detection of resistance-associated variants that can jeopardize HIV or hepatitis C virus (HCV) treatment. We introduce ve-SEQ, a high-throughput method for sequence-specific enrichment and characterization of whole-virus genomes at up to 20% divergence from a reference sequence and 1,000-fold greater sensitivity than direct sequencing. The extreme genetic diversity of HCV led us to implement an algorithm for the efficient design of panels of oligonucleotide probes to capture any sequence among a defined set of targets without detectable bias. ve-SEQ enables efficient detection and sequencing of any HCV genome, including mixtures and intra-host variants, in a single experiment, with greater tolerance of sequence diversity than standard amplification methods and greater sensitivity than metagenomic sequencing, features that are directly applicable to other pathogens or arbitrary groups of target organisms, allowing the combination of sensitive detection with sequencing in many settings.
Collapse
Affiliation(s)
- David Bonsall
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX1 4BH, UK
| | - M Azim Ansari
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX1 4BH, UK.,Oxford Martin School, University of Oxford, Oxford, OX1 4BH, UK
| | - Camilla Ip
- Oxford Genomics Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX1 4BH, UK
| | - Amy Trebes
- Oxford Genomics Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX1 4BH, UK
| | - Anthony Brown
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX1 4BH, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX1 4BH, UK.,National Institute for Health Research Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - David Buck
- Oxford Genomics Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX1 4BH, UK
| | | | - Paolo Piazza
- Oxford Genomics Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX1 4BH, UK
| | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX1 4BH, UK.,National Institute for Health Research Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - Rory Bowden
- Oxford Genomics Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX1 4BH, UK
| |
Collapse
|
38
|
Full genome analysis of bovine astrovirus from fecal samples of cattle in Japan: identification of possible interspecies transmission of bovine astrovirus. Arch Virol 2015. [PMID: 26212364 DOI: 10.1007/s00705-015-2543-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A viral metagenomics approach was used to investigate fecal samples of Japanese calves with and without diarrhea. Of the different viral pathogens detected, read counts gave nearly complete astrovirus-related RNA sequences in 15 of the 146 fecal samples collected in three distinct areas (Hokkaido, Ishikawa, and Kagoshima Prefectures) between 2009 and 2015. Due to the lack of genetic information about bovine astroviruses (BoAstVs) in Japan, these sequences were analyzed in this study. Nine of the 15 Japanese BoAstVs were closely related to Chinese BoAstVs and clustered into a lineage (tentatively named lineage 1) in all phylogenetic trees. Three of 15 strains were phylogenetically separate from lineage 1, showing low sequence identities, and clustered instead with an American strain isolated from cattle with respiratory disease (tentatively named lineage 2). Interestingly, two of 15 strains clustered with lineage 1 in the open reading frame (ORF)1a and ORF1b regions, while they clustered with lineage 2 in the ORF2 region. Remarkably, one of 15 strains exhibited low amino acid sequence similarity to other BoAstVs and was clustered separately with porcine astrovirus type 5 in all trees, and ovine astrovirus in the ORF2 region, suggesting past interspecies transmission.
Collapse
|
39
|
Characterization of Hepatitis C Virus Recombination in Cameroon by Use of Nonspecific Next-Generation Sequencing. J Clin Microbiol 2015. [PMID: 26202126 PMCID: PMC4572555 DOI: 10.1128/jcm.00483-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The importance of recombination in the evolution and genetic diversity of the hepatitis C virus (HCV) is currently uncertain. Only a small number of intergenotypic recombinants have been identified so far, and each has core and envelope genes classified as belonging to genotype 2. Here, we investigated two putative genotype 4/1 recombinants from southern Cameroon using a number of approaches, including standard Sanger sequencing, genotype-specific PCR amplification, and non-HCV-specific Illumina RNA sequencing (RNA-seq). Recombination between genotypes 1 and 4 was confirmed in both samples, and the parental lineages of each recombinant belong to HCV subtypes that are cocirculating at a high prevalence in Cameroon. Using the RNA-seq approach, we obtained a complete genome for one sample, which contained a recombination breakpoint at the E2/P7 gene junction. We developed and applied a new method, called Deep SimPlot, which can be used to visualize and identify viral recombination directly from the short sequence reads created by next-generation sequencing in conjunction with a consensus sequence.
Collapse
|
40
|
Abstract
Norovirus is an important cause of gastroenteritis outbreaks globally and the most prevalent cause of sporadic gastroenteritis in many regions. Rapid and accurate identification of causative viral agents is critical for outbreak investigation, disease surveillance, and management. Because norovirus is not cultivable and has a highly diversified and variable genome, it is difficult to develop diagnostic assays. Detection methods have evolved from electron microscopy to conventional end-point reverse transcription polymerase chain reaction (RT-PCR), immunoassay, real-time RT-PCR, other molecular technologies, and nanotechnology array-based assays. The status and features of various testing methods are summarized in this review.
Collapse
Affiliation(s)
- Xiaoli Pang
- Provincial Laboratory for Public Health, Walter Mackenzie Health Sciences Centre, University of Alberta Hospital, 8440 - 112 Street, Edmonton, Alberta T6G 2J2, Canada; Department of Laboratory Medicine and Pathology, University of Alberta, 8440-112 Street, Edmonton, Alberta T6G 2B7, Canada.
| | - Bonita E Lee
- Department of Pediatrics, University of Alberta, 11405, 87 Avenue, Edmonton, Alberta T6G 1C9, Canada
| |
Collapse
|
41
|
Abstract
Hepatitis C virus (HCV) infection is a major health problem worldwide. The effects of chronic infection include cirrhosis, end-stage liver disease, and hepatocellular carcinoma. As a result of shared routes of transmission, co-infection with HIV is a substantial problem, and individuals infected with both viruses have poorer outcomes than do peers infected with one virus. No effective vaccine exists, although persistent HCV infection is potentially curable. The standard of care has been subcutaneous interferon alfa and oral ribavirin for 24-72 weeks. This treatment results in a sustained virological response in around 50% of individuals, and is complicated by clinically significant adverse events. In the past 10 years, advances in HCV cell culture have enabled an improved understanding of HCV virology, which has led to development of many new direct-acting antiviral drugs that target key components of virus replication. These direct-acting drugs allow for simplified and shortened treatments for HCV that can be given as oral regimens with increased tolerability and efficacy than interferon and ribavirin. Remaining obstacles include access to appropriate care and treatment, and development of a vaccine.
Collapse
Affiliation(s)
- Daniel P Webster
- Department of Virology, Royal Free London NHS Foundation Trust, London, UK.
| | - Paul Klenerman
- National Institute for Health Research (NIHR) Biomedical Research Centre and Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Geoffrey M Dusheiko
- Institute of Liver and Digestive Health, University College London, London, UK
| |
Collapse
|
42
|
Nemoto M, Nagai M, Tsunemitsu H, Omatsu T, Furuya T, Shirai J, Kondo T, Fujii Y, Todaka R, Katayama K, Mizutani T. Whole-genome sequence analysis of G3 and G14 equine group A rotaviruses isolated in the late 1990s and 2009-2010. Arch Virol 2015; 160:1171-9. [DOI: 10.1007/s00705-015-2374-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/14/2015] [Indexed: 11/29/2022]
|
43
|
Logan G, Freimanis GL, King DJ, Valdazo-González B, Bachanek-Bankowska K, Sanderson ND, Knowles NJ, King DP, Cottam EM. A universal protocol to generate consensus level genome sequences for foot-and-mouth disease virus and other positive-sense polyadenylated RNA viruses using the Illumina MiSeq. BMC Genomics 2014; 15:828. [PMID: 25269623 PMCID: PMC4247156 DOI: 10.1186/1471-2164-15-828] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 09/22/2014] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Next-Generation Sequencing (NGS) is revolutionizing molecular epidemiology by providing new approaches to undertake whole genome sequencing (WGS) in diagnostic settings for a variety of human and veterinary pathogens. Previous sequencing protocols have been subject to biases such as those encountered during PCR amplification and cell culture, or are restricted by the need for large quantities of starting material. We describe here a simple and robust methodology for the generation of whole genome sequences on the Illumina MiSeq. This protocol is specific for foot-and-mouth disease virus (FMDV) or other polyadenylated RNA viruses and circumvents both the use of PCR and the requirement for large amounts of initial template. RESULTS The protocol was successfully validated using five FMDV positive clinical samples from the 2001 epidemic in the United Kingdom, as well as a panel of representative viruses from all seven serotypes. In addition, this protocol was successfully used to recover 94% of an FMDV genome that had previously been identified as cell culture negative. Genome sequences from three other non-FMDV polyadenylated RNA viruses (EMCV, ERAV, VESV) were also obtained with minor protocol amendments. We calculated that a minimum coverage depth of 22 reads was required to produce an accurate consensus sequence for FMDV O. This was achieved in 5 FMDV/O/UKG isolates and the type O FMDV from the serotype panel with the exception of the 5' genomic termini and area immediately flanking the poly(C) region. CONCLUSIONS We have developed a universal WGS method for FMDV and other polyadenylated RNA viruses. This method works successfully from a limited quantity of starting material and eliminates the requirement for genome-specific PCR amplification. This protocol has the potential to generate consensus-level sequences within a routine high-throughput diagnostic environment.
Collapse
Affiliation(s)
- Grace Logan
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF United Kingdom
| | - Graham L Freimanis
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF United Kingdom
| | - David J King
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF United Kingdom
| | | | | | - Nicholas D Sanderson
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF United Kingdom
| | - Nick J Knowles
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF United Kingdom
| | - Donald P King
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF United Kingdom
| | - Eleanor M Cottam
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF United Kingdom
| |
Collapse
|
44
|
Bigoraj E, Kwit E, Chrobocińska M, Rzeżutka A. Occurrence of norovirus and hepatitis A virus in wild mussels collected from the Baltic Sea. FOOD AND ENVIRONMENTAL VIROLOGY 2014; 6:207-212. [PMID: 24906970 DOI: 10.1007/s12560-014-9153-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 05/20/2014] [Indexed: 06/03/2023]
Abstract
The aim of the study was to define the occurrence of human noroviruses of genogroup I and II (NoV GI and NoV GII) and hepatitis A virus (HAV) in the Baltic Sea mussels. The shellfish samples were taken at the sampling sites located on the Polish coast. In total, 120 shellfish were tested as pooled samples using RT-PCR and hybridisation with virus specific probes. NoV GI was detected in 22 (18.3%), NoV GII in 28 (23.3%), and HAV in 9 (7.5%) of the shellfish. The nucleotide sequence analysis of the detected NoV GII strains showed a 97.3-99.3% similarity to GII.4 virus strain. This is the first report describing the NoV and HAV occurrence in wild Baltic mussels and their possible role as bioindicators of seawater contamination with human enteric viruses.
Collapse
Affiliation(s)
- Ewelina Bigoraj
- Department of Food and Environmental Virology, National Veterinary Research Institute, Al. Partyzantów 57, 24-100, Puławy, Poland
| | | | | | | |
Collapse
|
45
|
Rooney BL, Pettipas J, Grudeski E, Mykytczuk O, Pang XL, Booth TF, Hatchette TF, LeBlanc JJ. Detection of circulating norovirus genotypes: hitting a moving target. Virol J 2014; 11:129. [PMID: 25037234 PMCID: PMC4112979 DOI: 10.1186/1743-422x-11-129] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 07/06/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Although national surveillance programs are in place to monitor norovirus epidemiology, the emergence of new strains and the genetic diversity among genotypes can be challenging for clinical laboratories. This study evaluated the analytical and clinical performance characteristics of one real-time RT-PCR and two end-point RT-PCRs commonly used in microbiology laboratories. METHODS Lower limit of detection (LoD) was determined using 10-fold dilutions of noroviruses belonging to different genotypes. The clinical performance of the real-time and end-point RT-PCRs was assessed in parallel using nucleic acids extracted from 186 stool specimens. RESULTS The real-time RT-PCR was highly sensitive and specific for the detection of norovirus genotypes that are currently circulating in Canada. In contrast, the two end-point RT-PCRs displayed poor analytical sensitivity or complete failure to detect certain norovirus genotypes, which was correlated to sequence mismatches in the primer-binding sites. In an attempt to improve norovirus detection with the end-point RT-PCRs, both assays were processed concurrently and detection from either assay was considered a positive result. Concurrent testing resulted in only a modest increase in clinical sensitivity (75.0%) compared to each assay alone (62.5% and 71.9%). However, the false positivity rate increased from 1.98% and 3.36% for the assays alone to 5.47% with concurrent testing. CONCLUSIONS This study emphasizes the benefits of a real-time method and provides support for routine surveillance to monitor norovirus epidemiology and ongoing proficiency testing to ensure detection of circulating norovirus genotypes.
Collapse
Affiliation(s)
- Brenda-Lee Rooney
- Dalhousie University, Halifax, Nova Scotia, Canada
- Division of Microbiology, Department of Pathology and Laboratory Medicine, Capital District Health Authority (CDHA), Dalhousie University, Halifax, Nova Scotia, Canada
| | - Janice Pettipas
- Division of Microbiology, Department of Pathology and Laboratory Medicine, Capital District Health Authority (CDHA), Dalhousie University, Halifax, Nova Scotia, Canada
| | - Elsie Grudeski
- Enteroviruses and Enteric Viruses Laboratory, National Microbiology Laboratory (NML), Winnipeg, Manitoba, Canada
| | - Oksana Mykytczuk
- Food Virology Reference Centre, Bureau of Microbial Hazards, Health Canada, Ottawa, Ontario, Canada
| | - Xiao-Li Pang
- Provincial Laboratory for Public Health (ProvLab), Edmonton, Alberta, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Tim F Booth
- Enteroviruses and Enteric Viruses Laboratory, National Microbiology Laboratory (NML), Winnipeg, Manitoba, Canada
| | - Todd F Hatchette
- Dalhousie University, Halifax, Nova Scotia, Canada
- Division of Microbiology, Department of Pathology and Laboratory Medicine, Capital District Health Authority (CDHA), Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jason J LeBlanc
- Dalhousie University, Halifax, Nova Scotia, Canada
- Division of Microbiology, Department of Pathology and Laboratory Medicine, Capital District Health Authority (CDHA), Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
46
|
Comprehensive human virus screening using high-throughput sequencing with a user-friendly representation of bioinformatics analysis: a pilot study. J Clin Microbiol 2014; 52:3351-61. [PMID: 25009045 DOI: 10.1128/jcm.01389-14] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
High-throughput sequencing (HTS) provides the means to analyze clinical specimens in unprecedented molecular detail. While this technology has been successfully applied to virus discovery and other related areas of research, HTS methodology has yet to be exploited for use in a clinical setting for routine diagnostics. Here, a bioinformatics pipeline (ezVIR) was designed to process HTS data from any of the standard platforms and to evaluate the entire spectrum of known human viruses at once, providing results that are easy to interpret and customizable. The pipeline works by identifying the most likely viruses present in the specimen given the sequencing data. Additionally, ezVIR can generate optional reports for strain typing, can create genome coverage histograms, and can perform cross-contamination analysis for specimens prepared in series. In this pilot study, the pipeline was challenged using HTS data from 20 clinical specimens representative of those most often collected and analyzed in daily practice. The specimens (5 cerebrospinal fluid, 7 bronchoalveolar lavage fluid, 5 plasma, 2 serum, and 1 nasopharyngeal aspirate) were originally found to be positive for a diverse range of DNA or RNA viruses by routine molecular diagnostics. The ezVIR pipeline correctly identified 14 of 14 specimens containing viruses with genomes of <40,000 bp, and 4 of 6 specimens positive for large-genome viruses. Although further validation is needed to evaluate sensitivity and to define detection cutoffs, results obtained in this pilot study indicate that the overall detection success rate, coupled with the ease of interpreting the analysis reports, makes it worth considering using HTS for clinical diagnostics.
Collapse
|
47
|
Identification of novel bovine group A rotavirus G15P[14] strain from epizootic diarrhea of adult cows by de novo sequencing using a next-generation sequencer. Vet Microbiol 2014; 171:66-73. [PMID: 24725447 PMCID: PMC7127257 DOI: 10.1016/j.vetmic.2014.03.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 03/03/2014] [Accepted: 03/06/2014] [Indexed: 12/13/2022]
Abstract
There are few reports describing diarrhea of adult cattle caused by group A rotaviruses. Here, we report the identification of a novel bovine group A rotavirus from diarrhea of adult cows. A group A rotavirus was detected from an epizootic outbreak of diarrhea in adult cows with a decrease in milk production in Japan in 2013. The comprehensive genomic analyses from fecal samples by viral metagenomics using a next-generation sequencer revealed that it had an unreported genotype combination G15P[14]. The genome constellation of this strain, namely, RVA/Cow-wt/JPN/Tottori-SG/2013/G15P[14] was G15-P[14]-I2-R2-C2-M2-A3-N2-T6-E2-H3 representing VP7-VP4-VP6-VP1-VP2-VP3-NSP1-NSP2-NSP3-NSP4-NSP5, respectively. Each gene segment of Tottori-SG was most closely related to Japanese bovine group A rotaviruses suggesting that Tottori-SG might have derived from multiple reassortment events from group A rotavirus strains circulating among Japanese cattle. No other diarrhea pathogen of adult cattle was detected by routine diagnosis and metagenomics. Viral metagenomics, using a next-generation sequencer, is useful to characterize group A rotaviruses from fecal samples and offers unbiased comprehensive investigations of pathogen.
Collapse
|
48
|
Diagnostic metagenomics: potential applications to bacterial, viral and parasitic infections. Parasitology 2014; 141:1856-62. [PMID: 24576467 PMCID: PMC4255322 DOI: 10.1017/s0031182014000134] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The term ‘shotgun metagenomics’ is applied to the direct sequencing of DNA extracted from a sample without culture or target-specific amplification or capture. In diagnostic metagenomics, this approach is applied to clinical samples in the hope of detecting and characterizing pathogens. Here, I provide a conceptual overview, before reviewing several recent promising proof-of-principle applications of metagenomics in virus discovery, analysis of outbreaks and detection of pathogens in contemporary and historical samples. I also evaluate future prospects for diagnostic metagenomics in the light of relentless improvements in sequencing technologies.
Collapse
|
49
|
Wong THN, Dearlove BL, Hedge J, Giess AP, Piazza P, Trebes A, Paul J, Smit E, Smith EG, Sutton JK, Wilcox MH, Dingle KE, Peto TEA, Crook DW, Wilson DJ, Wyllie DH. Whole genome sequencing and de novo assembly identifies Sydney-like variant noroviruses and recombinants during the winter 2012/2013 outbreak in England. Virol J 2013; 10:335. [PMID: 24220146 PMCID: PMC3874643 DOI: 10.1186/1743-422x-10-335] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 11/11/2013] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Norovirus is the commonest cause of epidemic gastroenteritis among people of all ages. Outbreaks frequently occur in hospitals and the community, costing the UK an estimated £110 m per annum. An evolutionary explanation for periodic increases in norovirus cases, despite some host-specific post immunity is currently limited to the identification of obvious recombinants. Our understanding could be significantly enhanced by full length genome sequences for large numbers of intensively sampled viruses, which would also assist control and vaccine design. Our objective is to develop rapid, high-throughput, end-to-end methods yielding complete norovirus genome sequences. We apply these methods to recent English outbreaks, placing them in the wider context of the international norovirus epidemic of winter 2012. METHOD Norovirus sequences were generated from 28 unique clinical samples by Illumina RNA sequencing (RNA-Seq) of total faecal RNA. A range of de novo sequence assemblers were attempted. The best assembler was identified by validation against three replicate samples and two norovirus qPCR negative samples, together with an additional 20 sequences determined by PCR and fractional capillary sequencing. Phylogenetic methods were used to reconstruct evolutionary relationships from the whole genome sequences. RESULTS Full length norovirus genomes were generated from 23/28 samples. 5/28 partial norovirus genomes were associated with low viral copy numbers. The de novo assembled sequences differed from sequences determined by capillary sequencing by <0.003%. Intra-host nucleotide sequence diversity was rare, but detectable by mapping short sequence reads onto its de novo assembled consensus. Genomes similar to the Sydney 2012 strain caused 78% (18/23) of cases, consistent with its previously documented association with the winter 2012 global outbreak. Interestingly, phylogenetic analysis and recombination detection analysis of the consensus sequences identified two related viruses as recombinants, containing sequences in prior circulation to Sydney 2012 in open reading frame (ORF) 2. CONCLUSION Our approach facilitates the rapid determination of complete norovirus genomes. This method provides high resolution of full norovirus genomes which, when coupled with detailed epidemiology, may improve the understanding of evolution and control of this important healthcare-associated pathogen.
Collapse
Affiliation(s)
- T H Nicholas Wong
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
- Public Health England Collaborating Centre, Oxford; John Radcliffe Hospital, Oxford, UK
| | - Bethany L Dearlove
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Jessica Hedge
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Adam P Giess
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Paolo Piazza
- Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, UK
| | - Amy Trebes
- Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, UK
| | - John Paul
- Public Health Laboratory, Royal Sussex County Hospital, Brighton, UK
| | - Erasmus Smit
- Public Health Laboratory, Heart of England NHS Foundation Trust, Birmingham, UK
| | - E Grace Smith
- Public Health Laboratory, Heart of England NHS Foundation Trust, Birmingham, UK
| | - Julian K Sutton
- Public Health Laboratory, Southampton General Hospital, Southampton, UK
| | - Mark H Wilcox
- Public Health Laboratory, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Kate E Dingle
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - Tim E A Peto
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
- Public Health England Collaborating Centre, Oxford; John Radcliffe Hospital, Oxford, UK
| | - Derrick W Crook
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
- Public Health England Collaborating Centre, Oxford; John Radcliffe Hospital, Oxford, UK
| | - Daniel J Wilson
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, UK
| | - David H Wyllie
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Public Health England Collaborating Centre, Oxford; John Radcliffe Hospital, Oxford, UK
| |
Collapse
|