1
|
Gorjão N, Borowski LS, Szczesny RJ, Graczyk D. POLR1D, a shared subunit of RNA polymerase I and III, modulates mTORC1 activity. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119957. [PMID: 40222657 DOI: 10.1016/j.bbamcr.2025.119957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 03/21/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) is a crucial nutrient sensor and a major regulator of cell growth and proliferation. While mTORC1 activity is frequently upregulated in cancer, the mechanisms regulating mTORC1 are not fully understood. POLR1D, a shared subunit of RNA polymerases I and III, is often upregulated in colorectal cancer (CRC) and mutated in Treacher-Collins syndrome. POLR1D, together with its binding partner POLR1C, forms a dimer that is believed to initiate the assembly of the multisubunit RNA polymerases I and III. Our data reveal an unexpected link between POLR1D and mTORC1 signalling. We found that the overproduction of POLR1D in human cells stimulates mTORC1 activity. In contrast, the downregulation of POLR1D leads to the repression of the mTORC1 pathway. Additionally, we demonstrate that a pool of POLR1D localises to the cytoplasm and interacts with the mTORC1 regulator RAGA and RAPTOR. Furthermore, POLR1D enhances the interaction between RAPTOR and RAGA and sustains mTORC1 activity under starvation conditions. We have identified a novel role for the RNA polymerase I/III subunit POLR1D in regulating mTORC1 signalling. Our findings suggest the existence of a new node in the already complex mTORC1 signalling network, where POLR1D functions to convey the cell's internal status, namely polymerase assembly, to this kinase.
Collapse
Affiliation(s)
- Neuton Gorjão
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Lukasz S Borowski
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106 Warsaw, Poland; University of Warsaw, Faculty of Biology, Institute of Genetics and Biotechnology, ul. Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Roman J Szczesny
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Damian Graczyk
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106 Warsaw, Poland.
| |
Collapse
|
2
|
Yeom E, Mun H, Lim J, Chun YL, Min KW, Lambert J, Cowart LA, Pierce JS, Ogretmen B, Cho JH, Chang JH, Buchan JR, Pitt J, Kaeberlein M, Kang SU, Kwon ES, Ko S, Choi KM, Lee YS, Ha YS, Kim SJ, Lee KP, Kim HS, Yang SY, Shin CH, Yoon JH, Lee KS. Phosphorylation of an RNA-Binding Protein Rck/Me31b by Hippo Is Essential for Adipose Tissue Aging. Aging Cell 2025:e70022. [PMID: 40070010 DOI: 10.1111/acel.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/20/2025] [Accepted: 02/10/2025] [Indexed: 05/15/2025] Open
Abstract
The metazoan lifespan is determined in part by a complex signaling network that regulates energy metabolism and stress responses. Key signaling hubs in this network include insulin/IGF-1, AMPK, mTOR, and sirtuins. The Hippo/Mammalian Ste20-like Kinase1 (MST1) pathway has been reported to maintain lifespan in Caenorhabditis elegans, but its role has not been studied in higher metazoans. In this study, we report that overexpression of Hpo, the MST1 homolog in Drosophila melanogaster, decreased lifespan with concomitant changes in lipid metabolism and aging-associated gene expression, while RNAi Hpo depletion increased lifespan. These effects were mediated primarily by Hpo-induced transcriptional activation of the RNA-binding protein maternal expression at 31B (Me31b)/RCK, resulting in stabilization of mRNA-encoding a lipolytic hormone, Akh. In mouse adipocytes, Hpo/Mst1 mediated adipocyte differentiation, phosphorylation of RNA-binding proteins such as Rck, decapping MRNA 2 (Dcp2), enhancer Of MRNA decapping 3 (Edc3), nucleolin (NCL), and glucagon mRNA stability by interacting with Rck. Decreased lifespan in Hpo-overexpressing Drosophila lines required expression of Me31b, but not DCP2, which was potentially mediated by recovering expression of lipid metabolic genes and formation of lipid droplets. Taken together, our findings suggest that Hpo/Mst1 plays a conserved role in longevity by regulating adipogenesis and fatty acid metabolism.
Collapse
Affiliation(s)
- Eunbyul Yeom
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea
- KNU G-LAMP Project Group, KNU Institute of Basic Sciences, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu, Korea
- Neurophysiology and Metabolism Research Group, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Hyejin Mun
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Oncology Science, University of Oklahoma, Oklahoma City, Oklahoma, USA
| | - Jinhwan Lim
- Department of Environmental and Occupational Heatlh, University of California, Irvine, California, USA
- Translational Gerontology Branch, National Institute of Aging Intramural Research Program, Baltimore, Maryland, USA
| | - Yoo Lim Chun
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Kyung-Won Min
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Biology, College of Natural Sciences, Gangneung-Wonju National University, Gangneung, South Korea
| | - Johana Lambert
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
- Hunter Holmes McGuire Veteran's Affairs Medical Center, Richmond, Virginia, USA
| | - L Ashley Cowart
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
- Hunter Holmes McGuire Veteran's Affairs Medical Center, Richmond, Virginia, USA
| | - Jason S Pierce
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Jung-Hyun Cho
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Jeong Ho Chang
- Department of Biology Education, Kyungpook National University, Daegu, Republic of Korea
| | - J Ross Buchan
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - Jason Pitt
- Department of Laboratory Medicine and Pathology, University of Washington, Washington, DC, USA
| | - Matt Kaeberlein
- Department of Laboratory Medicine and Pathology, University of Washington, Washington, DC, USA
| | - Sung-Ung Kang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eun-Soo Kwon
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Seungbeom Ko
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Kyoung-Min Choi
- Department of Oncology Science, University of Oklahoma, Oklahoma City, Oklahoma, USA
| | - Yong Sun Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Republic of Korea
| | - Yoon-Su Ha
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Seung-Jin Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Kwang-Pyo Lee
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Hyo-Sung Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea
- KNU G-LAMP Project Group, KNU Institute of Basic Sciences, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu, Korea
| | - Seo Young Yang
- Department of Biology Education, Kyungpook National University, Daegu, Republic of Korea
| | - Chang Hoon Shin
- Department of Oncology Science, University of Oklahoma, Oklahoma City, Oklahoma, USA
| | - Je-Hyun Yoon
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Oncology Science, University of Oklahoma, Oklahoma City, Oklahoma, USA
- Department of Pathology, University of Oklahoma, Oklahoma City, Oklahoma, USA
| | - Kyu-Sun Lee
- Neurophysiology and Metabolism Research Group, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
3
|
Wishna-Kadawarage RN, Połtowicz K, Hickey RM, Siwek M. Modulation of gene expression in immune-related organs by in ovo stimulation with probiotics and prophybiotics in broiler chickens. J Appl Genet 2025; 66:195-205. [PMID: 38987456 PMCID: PMC11761985 DOI: 10.1007/s13353-024-00891-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/20/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024]
Abstract
In ovo stimulation has been studied intensively as an alternative to antibiotic use in poultry production. We investigated the potential use of a probiotic in combination with a phytobiotic as a prophybiotic for in ovo stimulation and reported its beneficial effects on the gut microbiome of broiler chickens. The current study further investigates the gene expression in the immune-related organs of these chickens to understand the tissue-specific immunomodulatory effects of the treatments. The selected prophybiotic (Leuconostoc mesenteroides with garlic aqueous extract) and its probiotic component alone were injected into ROSS308 chicken eggs on the 12th day of incubation, and gene expression in cecal tonsils, spleen, and liver at 35 days of age was determined using qPCR method. The relative expression of each treatment was compared to the positive control, chickens injected with physiological saline in ovo. The results displayed a downregulation of pro- and anti-inflammatory cytokines in the cecal tonsils of the probiotic group and the liver of the prophybiotic group. The spleen displayed upregulated AVBD1 in both groups and upregulated IL1-β in the probiotic group. The probiotic group displayed increased expression of genes related to metabolism of energy (COX16), protein (mTOR), and lipids (CYP46A1) whereas the prophybiotic group displayed reduced expression of genes related to cholesterol synthesis (SREBP1) and glucose transportation (SLC2A2) in the liver. In conclusion, Leuconostoc mesenteroides differentially modulated gene expression in chickens when administered in ovo in combination with garlic aqueous extract. Further in ovo studies with different prophybiotic combinations are required to optimize the benefits in broiler chickens.
Collapse
Affiliation(s)
- Ramesha N Wishna-Kadawarage
- Department of Animal Biotechnology and Genetics, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Mazowiecka 28, 85-084, Bydgoszcz, Poland.
| | - Katarzyna Połtowicz
- Department of Poultry Breeding, National Research Institute of Animal Production, Krakowska 1, 32-083, Balice, Poland
| | - Rita M Hickey
- Teagasc Food Research Centre, Moorepark, P61 C996, Fermoy, Co. Cork, Ireland
| | - Maria Siwek
- Department of Animal Biotechnology and Genetics, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Mazowiecka 28, 85-084, Bydgoszcz, Poland
| |
Collapse
|
4
|
Tian Y, Wu X, Zhang Z, Li Y, Hou M, Jiang R, Li D, Zhang Y, Guo Y, Li G, Liu X, Kang X, Tian Y, Li W, Li Y. gga-miR-6634-5p Affects the proliferation and steroid hormone secretion of chicken (Gallus Gallus) granulosa cells by targeting MMP16. Poult Sci 2025; 104:104624. [PMID: 39647359 PMCID: PMC11667030 DOI: 10.1016/j.psj.2024.104624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024] Open
Abstract
MiRNAs are typically reported to play a negative regulatory role in post-transcriptional expression of target genes and are widely involved in a variety of biological processes such as growth, metabolism and reproduction. However, research on the role of miRNAs in the ovulation process of chicken ovaries is still insufficient compared to that in mammals. Here, we investigated the regulatory mechanisms of gga-miR-6634-5p in the growth and steroid hormone secretion of chicken granulosa cells (GCs) by targeting MMP16. We found that gga-miR-6634-5p significantly down-regulated the mRNA levels of proliferation-related genes (CCND1, CDK1, and CDK6), decreased cell viability, the number of EdU-labelled positive cells, and the percentage of S-phase cells, as analysed by quantitative real time PCR (qRT-PCR), cell counting kit-8 (CCK-8), 5-ethynyl-2'deoxyuridine (EdU) and flow cytometry analyses (P < 0.01 or P < 0.05). qRT-PCR and enzyme-linked immunosorbent assay (ELISA) results demonstrated that gga-miR-6634-5p up-regulated the expression of steroid synthesis-related genes (CYP19A1, 3β-HSD, StAR and FSHR) (P < 0.01 or P < 0.05), as well as the secretion of estradiol (E2) and progesterone (P4) (P < 0.01 or P < 0.05). Furthermore, we found that MMP16 protein and gene expression can be down-regulated by gga-miR-6634-5p and demonstrated that MMP16 is a target gene of gga-miR-6634-5p by dual luciferase reporter assay (P < 0.05). In addition, we found that MMP16 stimulated the proliferation of GCs, significantly inhibited the expression of steroid synthesis related genes (CYP19A1, StAR, 3β-HSD and FSHR), and decreased the secretion of E2 and P4 (P < 0.01 or P < 0.05), which was consistent with the inhibitory effect of gga-miR-6634-5p. It was further found by functional enrichment analysis, qRT-PCR, western blot (WB) and ELISA that MMP16 may play a regulatory role in GCs proliferation as well as steroid hormone secretion through the mTOR signaling pathway and PPAR signaling pathway. Therefore, this study demonstrates that gga-miR-6634-5p modulates the proliferation of chicken GCs and the secretion of steroid hormones by targeting MMP16, which may contribute to a better understanding of the functional mechanisms of miRNAs in the ovarian development of laying hens.
Collapse
Affiliation(s)
- Yixiang Tian
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xing Wu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Zihao Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yijie Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Meng Hou
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Donghua Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yanhua Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yulong Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Wenting Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yuetao Li
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China.
| |
Collapse
|
5
|
Liermann-Wooldrik KT, Kosmacek EA, Oberley-Deegan RE. Adipose Tissues Have Been Overlooked as Players in Prostate Cancer Progression. Int J Mol Sci 2024; 25:12137. [PMID: 39596205 PMCID: PMC11594286 DOI: 10.3390/ijms252212137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/07/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
Obesity is a common risk factor in multiple tumor types, including prostate cancer. Obesity has been associated with driving metastasis, therapeutic resistance, and increased mortality. The effect of adipose tissue on the tumor microenvironment is still poorly understood. This review aims to highlight the work conducted in the field of obesity and prostate cancer and bring attention to areas where more research is needed. In this review, we have described key differences between healthy adipose tissues and obese adipose tissues, as they relate to the tumor microenvironment, focusing on mechanisms related to metabolic changes, abnormal adipokine secretion, altered immune cell presence, and heightened oxidative stress as drivers of prostate cancer formation and progression. Interestingly, common treatment options for prostate cancer ignore the adipose tissue located near the site of the tumor. Because of this, we have outlined how excess adipose tissue potentially affects therapeutics' efficacy, such as androgen deprivation, chemotherapy, and radiation treatment, and identified possible drug targets to increase prostate cancer responsiveness to clinical treatments. Understanding how obesity affects the tumor microenvironment will pave the way for understanding why some prostate cancers become metastatic or treatment-resistant, and why patients experience recurrence.
Collapse
Affiliation(s)
| | | | - Rebecca E. Oberley-Deegan
- Department of Biochemistry and Molecular Biology, 985870 University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.T.L.-W.)
| |
Collapse
|
6
|
Seneff S, Kyriakopoulos AM, Nigh G. Is autism a PIN1 deficiency syndrome? A proposed etiological role for glyphosate. J Neurochem 2024; 168:2124-2146. [PMID: 38808598 DOI: 10.1111/jnc.16140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
Autism is a neurodevelopmental disorder, the prevalence of which has increased dramatically in the United States over the past two decades. It is characterized by stereotyped behaviors and impairments in social interaction and communication. In this paper, we present evidence that autism can be viewed as a PIN1 deficiency syndrome. Peptidyl-prolyl cis/trans isomerase, NIMA-Interacting 1 (PIN1) is a peptidyl-prolyl cis/trans isomerase, and it has widespread influences in biological organisms. Broadly speaking, PIN1 deficiency is linked to many neurodegenerative diseases, whereas PIN1 over-expression is linked to cancer. Death-associated protein kinase 1 (DAPK1) strongly inhibits PIN1, and the hormone melatonin inhibits DAPK1. Melatonin deficiency is strongly linked to autism. It has recently been shown that glyphosate exposure to rats inhibits melatonin synthesis as a result of increased glutamate release from glial cells and increased expression of metabotropic glutamate receptors. Glyphosate's inhibition of melatonin leads to a reduction in PIN1 availability in neurons. In this paper, we show that PIN1 deficiency can explain many of the unique morphological features of autism, including increased dendritic spine density, missing or thin corpus callosum, and reduced bone density. We show how PIN1 deficiency disrupts the functioning of powerful high-level signaling molecules, such as nuclear factor erythroid 2-related factor 2 (NRF2) and p53. Dysregulation of both of these proteins has been linked to autism. Severe depletion of glutathione in the brain resulting from chronic exposure to oxidative stressors and extracellular glutamate leads to oxidation of the cysteine residue in PIN1, inactivating the protein and further contributing to PIN1 deficiency. Impaired autophagy leads to increased sensitivity of neurons to ferroptosis. It is imperative that further research be conducted to experimentally validate whether the mechanisms described here take place in response to chronic glyphosate exposure and whether this ultimately leads to autism.
Collapse
Affiliation(s)
- Stephanie Seneff
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | - Greg Nigh
- Immersion Health, Portland, Oregon, USA
| |
Collapse
|
7
|
Lei Z, Pan C, Li F, Wei D, Ma Y. SGK1 promotes the lipid accumulation via regulating the transcriptional activity of FOXO1 in bovine. BMC Genomics 2024; 25:737. [PMID: 39080526 PMCID: PMC11290151 DOI: 10.1186/s12864-024-10644-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
OBJECTIVES Serum/glucocorticoid-inducible kinase 1 (SGK1) gene encodes a serine/threonine protein kinase that plays an essential role in cellular stress response and regulation of multiple metabolic processes. However, its role in bovine adipogenesis remains unknown. In this study, we aimed to clarify the role of SGK1 in bovine lipid accumulation and improvement of meat quality. METHODS Preadipocytes were induced to differentiation to detect the temporal expression pattern of SGK1. Heart, liver, lung, spleen, kidney, muscle and fat tissues were collected to detect its tissue expression profile. Recombinant adenovirus and the lentivirus were packaged for overexpression and knockdown. Oil Red O staining, quantitative real-time PCR, Western blot analysis, Yeast two-hybrid assay, luciferase assay and RNA-seq were performed to study the regulatory mechanism of SGK1. RESULTS SGK1 showed significantly higher expression in adipose and significantly induced expression in differentiated adipocytes. Furthermore, overexpression of SGK1 greatly promoted adipogenesis and inhibited proliferation, which could be shown by the remarkable increasement of lipid droplet, and the expression levels of adipogenic marker genes and cell cycle-related genes. Inversely, its knockdown inhibited adipogenesis and facilitated proliferation. Mechanistically, SGK1 regulates the phosphorylation and expression of two critical proteins of FoxO family, FOXO1/FOXO3. Importantly, SGK1 attenuates the transcriptional repression role of FOXO1 for PPARγ via phosphorylating the site S256, then promoting the bovine fat deposition. CONCLUSIONS SGK1 is a required epigenetic regulatory factor for bovine preadipocyte proliferation and differentiation, which contributes to a better understanding of fat deposition and meat quality improvement in cattle.
Collapse
Affiliation(s)
- Zhaoxiong Lei
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Cuili Pan
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Fen Li
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Dawei Wei
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China.
| | - Yun Ma
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China.
| |
Collapse
|
8
|
Meza-Perez S, Liu M, Silva-Sanchez A, Morrow CD, Eipers PG, Lefkowitz EJ, Ptacek T, Scharer CD, Rosenberg AF, Hill DD, Arend RC, Gray MJ, Randall TD. Proteobacteria impair anti-tumor immunity in the omentum by consuming arginine. Cell Host Microbe 2024; 32:1177-1191.e7. [PMID: 38942027 PMCID: PMC11245731 DOI: 10.1016/j.chom.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/19/2024] [Accepted: 06/04/2024] [Indexed: 06/30/2024]
Abstract
Gut microbiota influence anti-tumor immunity, often by producing immune-modulating metabolites. However, microbes consume a variety of metabolites that may also impact host immune responses. We show that tumors grow unchecked in the omenta of microbe-replete mice due to immunosuppressive Tregs. By contrast, omental tumors in germ-free, neomycin-treated mice or mice colonized with altered Schaedler's flora (ASF) are spontaneously eliminated by CD8+ T cells. These mice lack Proteobacteria capable of arginine catabolism, causing increases in serum arginine that activate the mammalian target of the rapamycin (mTOR) pathway in Tregs to reduce their suppressive capacity. Transfer of the Proteobacteria, Escherichia coli (E. coli), but not a mutant unable to catabolize arginine, to ASF mice reduces arginine levels, restores Treg suppression, and prevents tumor clearance. Supplementary arginine similarly decreases Treg suppressive capacity, increases CD8+ T cell effectiveness, and reduces tumor burden. Thus, microbial consumption of arginine alters anti-tumor immunity, offering potential therapeutic strategies for tumors in visceral adipose tissue.
Collapse
Affiliation(s)
- Selene Meza-Perez
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mingyong Liu
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Aaron Silva-Sanchez
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Casey D Morrow
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Peter G Eipers
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Elliot J Lefkowitz
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Travis Ptacek
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Alexander F Rosenberg
- Department of Biomedical Informatics and Data Science, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Dave D Hill
- Department of Biomedical Informatics and Data Science, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Rebecca C Arend
- Department of Obstetrics and Gynecology, Division of Gynecological Oncology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Michael J Gray
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Troy D Randall
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
9
|
Velayutham N, Garbern JC, Elwell HLT, Zhuo Z, Rüland L, Elcure Alvarez F, Frontini S, Rodriguez Carreras Y, Eichholtz M, Ricci‐Blair E, Shaw JY, Bouffard AH, Sokol M, Mancheño Juncosa E, Rhoades S, van den Berg D, Kreymerman A, Aoyama J, Höfflin J, Ryan H, Ho Sui S, Lee RT. P53 Activation Promotes Maturational Characteristics of Pluripotent Stem Cell-Derived Cardiomyocytes in 3-Dimensional Suspension Culture Via FOXO-FOXM1 Regulation. J Am Heart Assoc 2024; 13:e033155. [PMID: 38934864 PMCID: PMC11255683 DOI: 10.1161/jaha.123.033155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/02/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Current protocols generate highly pure human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in vitro that recapitulate characteristics of mature in vivo cardiomyocytes. Yet, a risk of arrhythmias exists when hiPSC-CMs are injected into large animal models. Thus, understanding hiPSC-CM maturational mechanisms is crucial for clinical translation. Forkhead box (FOX) transcription factors regulate postnatal cardiomyocyte maturation through a balance between FOXO and FOXM1. We also previously demonstrated that p53 activation enhances hiPSC-CM maturation. Here, we investigate whether p53 activation modulates the FOXO/FOXM1 balance to promote hiPSC-CM maturation in 3-dimensional suspension culture. METHODS AND RESULTS Three-dimensional cultures of hiPSC-CMs were treated with Nutlin-3a (p53 activator, 10 μM), LOM612 (FOXO relocator, 5 μM), AS1842856 (FOXO inhibitor, 1 μM), or RCM-1 (FOXM1 inhibitor, 1 μM), starting 2 days after onset of beating, with dimethyl sulfoxide (0.2% vehicle) as control. P53 activation promoted hiPSC-CM metabolic and electrophysiological maturation alongside FOXO upregulation and FOXM1 downregulation, in n=3 to 6 per group for all assays. FOXO inhibition significantly decreased expression of cardiac-specific markers such as TNNT2. In contrast, FOXO activation or FOXM1 inhibition promoted maturational characteristics such as increased contractility, oxygen consumption, and voltage peak maximum upstroke velocity, in n=3 to 6 per group for all assays. Further, by single-cell RNA sequencing of n=2 LOM612-treated cells compared with dimethyl sulfoxide, LOM612-mediated FOXO activation promoted expression of cardiac maturational pathways. CONCLUSIONS We show that p53 activation promotes FOXO and suppresses FOXM1 during 3-dimensional hiPSC-CM maturation. These results expand our understanding of hiPSC-CM maturational mechanisms in a clinically-relevant 3-dimensional culture system.
Collapse
Affiliation(s)
- Nivedhitha Velayutham
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Jessica C. Garbern
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
- Department of CardiologyBoston Children’s HospitalBostonMAUSA
| | - Hannah L. T. Elwell
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Zhu Zhuo
- Bioinformatics Core, Department of BiostatisticsHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - Laura Rüland
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Farid Elcure Alvarez
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Sara Frontini
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Yago Rodriguez Carreras
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Marie Eichholtz
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Elisabeth Ricci‐Blair
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Jeanna Y. Shaw
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Aldric H. Bouffard
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Morgan Sokol
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Estela Mancheño Juncosa
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | | | - Daphne van den Berg
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Alexander Kreymerman
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Junya Aoyama
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | | | | | - Shannan Ho Sui
- Bioinformatics Core, Department of BiostatisticsHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - Richard T. Lee
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
- Division of Cardiovascular Medicine, Department of MedicineBrigham and Women’s Hospital and Harvard Medical SchoolBostonMAUSA
| |
Collapse
|
10
|
Lim L, Kim H, Jeong J, Han SH, Yu YB, Song H. Yohimbine Inhibits PDGF-Induced Vascular Smooth Muscle Cell Proliferation and Migration via FOXO3a Factor. Int J Mol Sci 2024; 25:6899. [PMID: 39000009 PMCID: PMC11240894 DOI: 10.3390/ijms25136899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/16/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Yohimbine (YHB) has been reported to possess anti-inflammatory, anticancer, and cardiac function-enhancing properties. Additionally, it has been reported to inhibit the proliferation, migration, and neointimal formation of vascular smooth muscle cells (VSMCs) induced by platelet-derived growth factor (PDGF) stimulation by suppressing the phospholipase C-gamma 1 pathway. However, the transcriptional regulatory mechanism of YHB controlling the behavior of VSMCs is not fully understood. In this study, YHB downregulated the expression of cell cycle regulatory proteins, such as proliferating cell nuclear antigen (PCNA), cyclin D1, cyclin-dependent kinase 4 (CDK4), and cyclin E, by modulating the transcription factor FOXO3a in VSMCs induced by PDGF. Furthermore, YHB decreased p-38 and mTOR phosphorylation in a dose-dependent manner. Notably, YHB significantly reduced the phosphorylation at Y397 and Y925 sites of focal adhesion kinase (FAK), and this effect was greater at the Y925 site than Y397. In addition, the expression of paxillin, a FAK-associated protein known to bind to the Y925 site of FAK, was significantly reduced by YHB treatment in a dose-dependent manner. A pronounced reduction in the migration and proliferation of VSMCs was observed following co-treatment of YHB with mTOR or p38 inhibitors. In conclusion, this study shows that YHB inhibits the PDGF-induced proliferation and migration of VSMCs by regulating the transcription factor FOXO3a and the mTOR/p38/FAK signaling pathway. Therefore, YHB may be a potential therapeutic candidate for preventing and treating cardiovascular diseases such as atherosclerosis and vascular restenosis.
Collapse
MESH Headings
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/drug effects
- Forkhead Box Protein O3/metabolism
- Cell Proliferation/drug effects
- Cell Movement/drug effects
- Animals
- Platelet-Derived Growth Factor/metabolism
- Platelet-Derived Growth Factor/pharmacology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Phosphorylation/drug effects
- Yohimbine/pharmacology
- Rats
- Signal Transduction/drug effects
- TOR Serine-Threonine Kinases/metabolism
- p38 Mitogen-Activated Protein Kinases/metabolism
- Focal Adhesion Kinase 1/metabolism
- Cells, Cultured
- Paxillin/metabolism
- Rats, Sprague-Dawley
- Male
Collapse
Affiliation(s)
- Leejin Lim
- Advanced Cancer Controlling Research Center, Chosun University, Gwangju 61452, Republic of Korea
| | - Hyeonhwa Kim
- Department of Biomedical Sciences, Chosun University Graduate School, Gwangju 61452, Republic of Korea
| | - Jihye Jeong
- Department of Biomedical Sciences, Chosun University Graduate School, Gwangju 61452, Republic of Korea
| | - Sung Hee Han
- Institute of Human Behavior & Genetics, Biomedical Research Center, Korea University, Seoul 02841, Republic of Korea
| | - Young-Bob Yu
- Department of Paramedicine, Nambu University, Gwangju 62271, Republic of Korea
| | - Heesang Song
- Advanced Cancer Controlling Research Center, Chosun University, Gwangju 61452, Republic of Korea
- Department of Biomedical Sciences, Chosun University Graduate School, Gwangju 61452, Republic of Korea
- Department of Biochemistry and Molecular Biology, Chosun University School of Medicine, Gwangju 61452, Republic of Korea
| |
Collapse
|
11
|
Jang EH, Kim SA. Long-Term Epigenetic Regulation of Foxo3 Expression in Neonatal Valproate-Exposed Rat Hippocampus with Sex-Related Differences. Int J Mol Sci 2024; 25:5287. [PMID: 38791325 PMCID: PMC11121443 DOI: 10.3390/ijms25105287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Perinatal exposure to valproic acid is commonly used for autism spectrum disorder (ASD) animal model development. The inhibition of histone deacetylases by VPA has been proposed to induce epigenetic changes during neurodevelopment, but the specific alterations in genetic expression underlying ASD-like behavioral changes remain unclear. We used qPCR-based gene expression and epigenetics tools and Western blotting in the hippocampi of neonatal valproic acid-exposed animals at 4 weeks of age and conducted the social interaction test to detect behavioral changes. Significant alterations in gene expression were observed in males, particularly concerning mRNA expression of Foxo3, which was significantly associated with behavioral changes. Moreover, notable differences were observed in H3K27ac chromatin immunoprecipitation, quantitative PCR (ChIP-qPCR), and methylation-sensitive restriction enzyme-based qPCR targeting the Foxo3 gene promoter region. These findings provide evidence that epigenetically regulated hippocampal Foxo3 expression may influence social interaction-related behavioral changes. Furthermore, identifying sex-specific gene expression and epigenetic changes in this model may elucidate the sex disparity observed in autism spectrum disorder prevalence.
Collapse
Affiliation(s)
| | - Soon-Ae Kim
- Department of Pharmacology, School of Medicine, Eulji University, Daejeon 34824, Republic of Korea;
| |
Collapse
|
12
|
Uehara K, Lee WD, Stefkovich M, Biswas D, Santoleri D, Garcia Whitlock A, Quinn W, Coopersmith T, Creasy KT, Rader DJ, Sakamoto K, Rabinowitz JD, Titchenell PM. mTORC1 controls murine postprandial hepatic glycogen synthesis via Ppp1r3b. J Clin Invest 2024; 134:e173782. [PMID: 38290087 PMCID: PMC10977990 DOI: 10.1172/jci173782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/26/2024] [Indexed: 02/01/2024] Open
Abstract
In response to a meal, insulin drives hepatic glycogen synthesis to help regulate systemic glucose homeostasis. The mechanistic target of rapamycin complex 1 (mTORC1) is a well-established insulin target and contributes to the postprandial control of liver lipid metabolism, autophagy, and protein synthesis. However, its role in hepatic glucose metabolism is less understood. Here, we used metabolomics, isotope tracing, and mouse genetics to define a role for liver mTORC1 signaling in the control of postprandial glycolytic intermediates and glycogen deposition. We show that mTORC1 is required for glycogen synthase activity and glycogenesis. Mechanistically, hepatic mTORC1 activity promotes the feeding-dependent induction of Ppp1r3b, a gene encoding a phosphatase important for glycogen synthase activity whose polymorphisms are linked to human diabetes. Reexpression of Ppp1r3b in livers lacking mTORC1 signaling enhances glycogen synthase activity and restores postprandial glycogen content. mTORC1-dependent transcriptional control of Ppp1r3b is facilitated by FOXO1, a well characterized transcriptional regulator involved in the hepatic response to nutrient intake. Collectively, we identify a role for mTORC1 signaling in the transcriptional regulation of Ppp1r3b and the subsequent induction of postprandial hepatic glycogen synthesis.
Collapse
Affiliation(s)
- Kahealani Uehara
- Institute for Diabetes, Obesity, and Metabolism
- Biochemistry and Molecular Biophysics Graduate Group, and
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Won Dong Lee
- Lewis Sigler Institute for Integrative Genomics
- Department of Chemistry, and
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton, New Jersey, USA
| | | | - Dipsikha Biswas
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Dominic Santoleri
- Institute for Diabetes, Obesity, and Metabolism
- Biochemistry and Molecular Biophysics Graduate Group, and
| | | | | | | | - Kate Townsend Creasy
- Institute for Diabetes, Obesity, and Metabolism
- Department of Medicine, Division of Translational Medicine and Human Genetics, and
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel J. Rader
- Institute for Diabetes, Obesity, and Metabolism
- Department of Medicine, Division of Translational Medicine and Human Genetics, and
| | - Kei Sakamoto
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Joshua D. Rabinowitz
- Lewis Sigler Institute for Integrative Genomics
- Department of Chemistry, and
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton, New Jersey, USA
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Paul M. Titchenell
- Institute for Diabetes, Obesity, and Metabolism
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
Zhou Z, Wu H, Wu Z, Mo L, Li D, Zeng W, Luo H, Huang J. Identification of sex pheromone of red swamp crayfish Procambarus clarkii and exploration of the chemosensory mechanism of their antennae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105580. [PMID: 37666605 DOI: 10.1016/j.pestbp.2023.105580] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 09/06/2023]
Abstract
Red swamp crayfish, Procambarus clarkii, is a globally invasive species, which has caused great damage to biodiversity, agriculture, and fishing. Therefore, the development of effective management methods, such as pheromone control, is necessary for biological control and biodiversity protection. However, the components of P. clarkii sex pheromones have not yet been explored, and the chemosensory mechanism of the P. clarkii antennae after stimulation by sex pheromone also remains unknown. In this study, we isolated and identified the candidate bioactive component of the female P. clarkii sex pheromone using ultrafiltration centrifugation, semi-preparative liquid phase separation and omics technologies and conducted bioassays to determine its attraction ability. Meanwhile, RNA-Seq technology was used to analyze the potential chemosensory mechanism of antennae. Our results indicated that the male P. clarkii were uniaxially attracted to the female crude conditioned water (FCW), medium fraction (MF, isolated by ultrafiltration centrifugation), and preparative fragment 6 of females (PFF6, isolated by semi-preparative liquid phase separation). Metabolomic analysis revealed the presence of 18 differential metabolites between the PFF6 and PFM6 samples, among which 15 were significantly upregulated in the PFF6 sample. Bioassay test also showed that mestranol, especially at concentrations of 10-5-10-2 mol∙l-1, could significantly attract P. clarkii males; therefore, mestranol was identified as the candidate sex pheromone component of P. clarkii females. Furthermore, RNA-Seq results showed that most differentially expressed genes (DEGs) enriched in lipid metabolism and signal transduction pathways were up-regulated in P. clarkii males. In addition, high expressions of Ca2+-binding protein and ion transporting ATPases may enhance the sensitivity of the antennae of P. clarkii males towards sex pheromones. Our study provides data on P. clarkii sex pheromone composition and reveals the molecular mechanism of sex pheromone response in P. clarkii. Moreover, our study provides a referable method for the isolation of candidate bioactive molecules from the P. clarkii sex pheromone.
Collapse
Affiliation(s)
- Zihao Zhou
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, Guangxi 541006, China; Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, Guangxi 541006, China; College of Life Sciences, Guangxi Normal University, Guilin, Guangxi 541006, China
| | - Hongying Wu
- College of Life Sciences, Guangxi Normal University, Guilin, Guangxi 541006, China
| | - Zhengjun Wu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, Guangxi 541006, China; Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, Guangxi 541006, China; College of Life Sciences, Guangxi Normal University, Guilin, Guangxi 541006, China
| | - Lili Mo
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, Guangxi 541006, China; Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, Guangxi 541006, China; College of Life Sciences, Guangxi Normal University, Guilin, Guangxi 541006, China
| | - Dinghong Li
- College of Life Sciences, Guangxi Normal University, Guilin, Guangxi 541006, China
| | - Wenlong Zeng
- College of Life Sciences, Guangxi Normal University, Guilin, Guangxi 541006, China
| | - Haiyu Luo
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, Guangxi 541006, China; Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, Guangxi 541006, China; College of Life Sciences, Guangxi Normal University, Guilin, Guangxi 541006, China
| | - Jinlong Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, Guangxi 541006, China; Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, Guangxi 541006, China; College of Life Sciences, Guangxi Normal University, Guilin, Guangxi 541006, China.
| |
Collapse
|
14
|
Xiang Y, Yang Y, Liu J, Yang X. Functional role of MicroRNA/PI3K/AKT axis in osteosarcoma. Front Oncol 2023; 13:1219211. [PMID: 37404761 PMCID: PMC10315918 DOI: 10.3389/fonc.2023.1219211] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/01/2023] [Indexed: 07/06/2023] Open
Abstract
Osteosarcoma (OS) is a primary malignant bone tumor that occurs in children and adolescents, and the PI3K/AKT pathway is overactivated in most OS patients. MicroRNAs (miRNAs) are highly conserved endogenous non-protein-coding RNAs that can regulate gene expression by repressing mRNA translation or degrading mRNA. MiRNAs are enriched in the PI3K/AKT pathway, and aberrant PI3K/AKT pathway activation is involved in the development of osteosarcoma. There is increasing evidence that miRNAs can regulate the biological functions of cells by regulating the PI3K/AKT pathway. MiRNA/PI3K/AKT axis can regulate the expression of osteosarcoma-related genes and then regulate cancer progression. MiRNA expression associated with PI3K/AKT pathway is also clearly associated with many clinical features. In addition, PI3K/AKT pathway-associated miRNAs are potential biomarkers for osteosarcoma diagnosis, treatment and prognostic assessment. This article reviews recent research advances on the role and clinical application of PI3K/AKT pathway and miRNA/PI3K/AKT axis in the development of osteosarcoma.
Collapse
|
15
|
Krishnan U A, Viswanathan P, Venkataraman AC. AMPK activation by AICAR reduces diet induced fatty liver in C57BL/6 mice. Tissue Cell 2023; 82:102054. [PMID: 36913846 DOI: 10.1016/j.tice.2023.102054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
Dysregulation of 5'-adenosine monophosphate-activated protein kinase (AMPK) occurs in metabolic disorders including non-alcoholic fatty liver disease (NAFLD) which makes it a molecular target for treatment. An AMPK activator, 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) alleviates NAFLD in experimental rats, however the specific mechanism remains to be explored. We aimed to study the effect of AICAR on lipid levels, oxidant-antioxidant balance, AMPK and mTOR activation and FOXO3 gene expression in liver of mice model. Fatty liver was induced in two groups of C57BL/6 mice (groups 2 and 3) by providing a high fat high fructose diet (HFFD) for 10 weeks while groups 1 and 4 animals were fed normal pellet. For the last two weeks, groups 3 and 4 were administered AICAR (150 mg/kg bw/day, i.p.) while groups 1 and 2 were administered saline. AICAR decreased fatty liver, decreased glucose and insulin in circulation, prevented the accumulation of triglycerides and collagen and ameliorated oxidative stress in HFFD fed mice. At the molecular level, AICAR upregulated FOXO3 and p-AMPK expression and reduced p-mTOR expression. AMPK activation may involve FOXO3 in protection against NAFLD. The role of AMPK, mTOR and FOXO3 crosstalk in NAFLD needs to be characterised in future.
Collapse
Affiliation(s)
- Ajay Krishnan U
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, Tamil Nadu, India
| | - Periyasamy Viswanathan
- Department of Pathology, Karpaga Vinayaga Institute of Medical Sciences and Research Centre, Madhuranthagam, Tamil Nadu, India
| | - Anuradha Carani Venkataraman
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, Tamil Nadu, India.
| |
Collapse
|
16
|
Sun Y, Wang H, Qu T, Luo J, An P, Ren F, Luo Y, Li Y. mTORC2: a multifaceted regulator of autophagy. Cell Commun Signal 2023; 21:4. [PMID: 36604720 PMCID: PMC9814435 DOI: 10.1186/s12964-022-00859-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/06/2022] [Indexed: 01/06/2023] Open
Abstract
Autophagy is a multi-step catabolic process that delivers cellular components to lysosomes for degradation and recycling. The dysregulation of this precisely controlled process disrupts cellular homeostasis and leads to many pathophysiological conditions. The mechanistic target of rapamycin (mTOR) is a central nutrient sensor that integrates growth signals with anabolism to fulfil biosynthetic and bioenergetic requirements. mTOR nucleates two distinct evolutionarily conserved complexes (mTORC1 and mTORC2). However, only mTORC1 is acutely inhibited by rapamycin. Consequently, mTORC1 is a well characterized regulator of autophagy. While less is known about mTORC2, the availability of acute small molecule inhibitors and multiple genetic models has led to increased understanding about the role of mTORC2 in autophagy. Emerging evidence suggests that the regulation of mTORC2 in autophagy is mainly through its downstream effector proteins, and is variable under different conditions and cellular contexts. Here, we review recent advances that describe a role for mTORC2 in this catabolic process, and propose that mTORC2 could be a potential clinical target for the treatment of autophagy-related diseases. Video abstract.
Collapse
Affiliation(s)
- Yanan Sun
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083 China
| | - Huihui Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070 China
| | - Taiqi Qu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083 China
| | - Junjie Luo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083 China
| | - Peng An
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083 China
| | - Fazheng Ren
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083 China
| | - Yongting Luo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083 China
| | - Yixuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083 China
| |
Collapse
|
17
|
Faltus C, Lahnsteiner A, Barrdahl M, Assenov Y, Hüsing A, Bogatyrova O, Laplana M, Johnson T, Muley T, Meister M, Warth A, Thomas M, Plass C, Kaaks R, Risch A. Identification of NHLRC1 as a Novel AKT Activator from a Lung Cancer Epigenome-Wide Association Study (EWAS). Int J Mol Sci 2022; 23:ijms231810699. [PMID: 36142605 PMCID: PMC9505874 DOI: 10.3390/ijms231810699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Changes in DNA methylation identified by epigenome-wide association studies (EWAS) have been recently linked to increased lung cancer risk. However, the cellular effects of these differentially methylated positions (DMPs) are often unclear. Therefore, we investigated top differentially methylated positions identified from an EWAS study. This included a putative regulatory region of NHLRC1. Hypomethylation of this gene was recently linked with decreased survival rates in lung cancer patients. HumanMethylation450 BeadChip array (450K) analysis was performed on 66 lung cancer case-control pairs from the European Prospective Investigation into Cancer and Nutrition Heidelberg lung cancer EWAS (EPIC HD) cohort. DMPs identified in these pre-diagnostic blood samples were then investigated for differential DNA methylation in lung tumor versus adjacent normal lung tissue from The Cancer Genome Atlas (TCGA) and replicated in two independent lung tumor versus adjacent normal tissue replication sets with MassARRAY. The EPIC HD top hypermethylated DMP cg06646708 was found to be a hypomethylated region in multiple data sets of lung tumor versus adjacent normal tissue. Hypomethylation within this region caused increased mRNA transcription of the closest gene NHLRC1 in lung tumors. In functional assays, we demonstrate attenuated proliferation, viability, migration, and invasion upon NHLRC1 knock-down in lung cancer cells. Furthermore, diminished AKT phosphorylation at serine 473 causing expression of pro-apoptotic AKT-repressed genes was detected in these knock-down experiments. In conclusion, this study demonstrates the powerful potential for discovery of novel functional mechanisms in oncogenesis based on EWAS DNA methylation data. NHLRC1 holds promise as a new prognostic biomarker for lung cancer survival and prognosis, as well as a target for novel treatment strategies in lung cancer patients.
Collapse
Affiliation(s)
- Christian Faltus
- Division of Cancer Epigenomics, DKFZ–German Cancer Research Center, 69120 Heidelberg, Germany
- Division of Cancer (Epi-)Genetics, Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria
| | - Angelika Lahnsteiner
- Division of Cancer (Epi-)Genetics, Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Myrto Barrdahl
- Division of Cancer Epidemiology, DKFZ-German Cancer Research Center, 69120 Heidelberg, Germany
| | - Yassen Assenov
- Division of Cancer Epigenomics, DKFZ–German Cancer Research Center, 69120 Heidelberg, Germany
| | - Anika Hüsing
- Division of Cancer Epidemiology, DKFZ-German Cancer Research Center, 69120 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), 69120 Heidelberg, Germany
| | - Olga Bogatyrova
- Division of Cancer Epigenomics, DKFZ–German Cancer Research Center, 69120 Heidelberg, Germany
| | - Marina Laplana
- Division of Cancer Epigenomics, DKFZ–German Cancer Research Center, 69120 Heidelberg, Germany
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, 25198 Lleida, Spain
| | - Theron Johnson
- Division of Cancer Epidemiology, DKFZ-German Cancer Research Center, 69120 Heidelberg, Germany
| | - Thomas Muley
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), 69120 Heidelberg, Germany
- Thoraxklinik at University Hospital Heidelberg, University of Heidelberg, 69126 Heidelberg, Germany
| | - Michael Meister
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), 69120 Heidelberg, Germany
- Thoraxklinik at University Hospital Heidelberg, University of Heidelberg, 69126 Heidelberg, Germany
| | - Arne Warth
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), 69120 Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Michael Thomas
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), 69120 Heidelberg, Germany
- Thoraxklinik at University Hospital Heidelberg, University of Heidelberg, 69126 Heidelberg, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, DKFZ–German Cancer Research Center, 69120 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), 69120 Heidelberg, Germany
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, DKFZ-German Cancer Research Center, 69120 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), 69120 Heidelberg, Germany
| | - Angela Risch
- Division of Cancer Epigenomics, DKFZ–German Cancer Research Center, 69120 Heidelberg, Germany
- Division of Cancer (Epi-)Genetics, Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +43-662-8044-7220
| |
Collapse
|
18
|
Fitzpatrick G, Nader D, Watkin R, McCoy CE, Curley GF, Kerrigan SW. Human endothelial cell-derived exosomal microRNA-99a/b drives a sustained inflammatory response during sepsis by inhibiting mTOR expression. Front Cell Infect Microbiol 2022; 12:854126. [PMID: 36061862 PMCID: PMC9434345 DOI: 10.3389/fcimb.2022.854126] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
The pathophysiology of sepsis and its accompanying hyper-inflammatory response are key events that lead to multi-organ failure and death. A growing body of literature now suggests that the vascular endothelium plays a critical role in driving early events of sepsis progression. In this study, we demonstrate how endothelial-derived exosomes contribute to a successive pro-inflammatory phenotype of monocytes. Exosomes isolated from S. aureus infected endothelial cells drive both CD11b and MHCII expression in monocytes and contribute dysregulated cytokine production. Conversely, healthy endothelial exosomes had no major effect. microRNA (miRNA) profiling of exosomes identified miR-99 upregulation which we hypothesised as driving this phenotypic change through mechanistic target of rapamycin (mTOR). Knockdown of mTOR with miR-99a and miR-99b mimetics in S. aureus infected monocytes increased IL-6 and decreased IL-10 production. Interestingly, inhibition of miRNAs with antagomirs has the opposing effect. Collectively, endothelial exosomes are driving a pro-inflammatory phenotype in monocytes through dysregulated expression of miR-99a and miR-99b.
Collapse
Affiliation(s)
- Glenn Fitzpatrick
- Cardiovascular Infection Research Group, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Danielle Nader
- Cardiovascular Infection Research Group, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Rebecca Watkin
- Cardiovascular Infection Research Group, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Claire E. McCoy
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Gerard F. Curley
- Department of Anaesthesia and Critical Care Medicine, RCSI University of Medicine and Health Sciences, Beaumont Hospital, Dublin, Ireland
| | - Steven W. Kerrigan
- Cardiovascular Infection Research Group, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- *Correspondence: Steven W. Kerrigan,
| |
Collapse
|
19
|
Poddar NK, Agarwal D, Agrawal Y, Wijayasinghe YS, Mukherjee A, Khan S. Deciphering the enigmatic crosstalk between prostate cancer and Alzheimer's disease: A current update on molecular mechanisms and combination therapy. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166524. [PMID: 35985445 DOI: 10.1016/j.bbadis.2022.166524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD) and prostate cancer (PCa) are considered the leading causes of death in elderly people worldwide. Although both these diseases have striking differences in their pathologies, a few underlying mechanisms are similar when cell survival is considered. In the current study, we employed an in-silico approach to decipher the possible role of bacterial proteins in the initiation and progression of AD and PCa. We further analyzed the molecular connections between these two life-threatening diseases. The androgen deprivation therapy used against PCa has been shown to promote castrate resistant PCa as well as AD. In addition, cell signaling pathways, such as Akt, IGF, and Wnt contribute to the progression of both AD and PCa. Besides, various proteins and genes are also common in disease progression. One such similarity is mTOR signaling. mTOR is the common downstream target for many signaling pathways and plays a vital role in both PCa and AD. Targeting mTOR can be a favorable line of treatment for both AD and PCa. However, drug resistance is one of the challenges in effective drug therapy. A few drugs that target mTOR have now become ineffective due to the development of resistance. In that regard, phytochemicals can be a rich source of novel drug candidates as they can act via multiple mechanisms. This review also presents mTOR targeting phytochemicals with promising anti-PCa, anti-AD activities, and approaches to overcome the issues associated with phytochemical-based therapies in clinical trials.
Collapse
Affiliation(s)
- Nitesh Kumar Poddar
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur-Ajmer Expressway, Jaipur, Rajasthan 303007, India.
| | - Disha Agarwal
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur-Ajmer Expressway, Jaipur, Rajasthan 303007, India
| | - Yamini Agrawal
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur-Ajmer Expressway, Jaipur, Rajasthan 303007, India
| | | | - Arunima Mukherjee
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur-Ajmer Expressway, Jaipur, Rajasthan 303007, India
| | - Shahanavaj Khan
- Department of Health Sciences, Novel Global Community Educational Foundation, NSW, Australia; Department of Pharmaceutics, College of Pharmacy, PO Box 2457, King Saud University, Riyadh 11451, Saudi Arabia; Department of Medical Lab Technology, Indian Institute of health and Technology (IIHT), Deoband, 247554 Saharanpur, UP, India.
| |
Collapse
|
20
|
Liu JT, Yao QP, Chen Y, Lv F, Liu Z, Bao H, Han Y, Zhang ML, Jiang ZL, Qi YX. Arterial cyclic stretch regulates Lamtor1 and promotes neointimal hyperplasia via circSlc8a1/miR-20a-5p axis in vein grafts. Am J Cancer Res 2022; 12:4851-4865. [PMID: 35836818 PMCID: PMC9274756 DOI: 10.7150/thno.69551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/03/2022] [Indexed: 01/12/2023] Open
Abstract
Rationale: Neointimal hyperplasia caused by dedifferentiation and proliferation of venous smooth muscle cells (SMCs) is the major challenge for restenosis after coronary artery bypass graft. Herein, we investigated the role of Lamtor1 in neointimal formation and the regulatory mechanism of non-coding RNA underlying this process. Methods: Using a "cuff" model, veins were grafted into arterial system and Lamtor1 expression which was correlated with the activation of mTORC1 signaling and dedifferentiation of SMCs, were measured by Western blot. Whole transcriptome deep sequencing (RNA-seq) of the grafted veins combined with bioinformatic analysis identified highly conserved circSlc8a1 and its interaction with miR-20a-5p, which may target Lamtor1. CircSlc8a1 was biochemically characterized by Sanger sequencing and resistant to RNase R digestion. The cytoplasmic location of circSlc8a1 was shown by fluorescence in situ hybridization (FISH). RNA pull-down, luciferase assays and RNA immunoprecipitation (RIP) with Ago2 assays were used to identify the interaction circSlc8a1 with miR-20a-5p. Furthermore, arterial mechanical stretch (10% elongation) was applied in vitro. Results:In vivo, Lamtor1 was significantly enhanced in grafted vein and activated mTORC1 signaling to promote dedifferentiation of SMCs. Arterial mechanical stretch (10% elongation) induced circSlc8a1 expression and positively regulated Lamtor1, activated mTORC1 and promoted SMC dedifferentiation and proliferation. Local injection of circSlc8a1 siRNA or SMC-specific Lamtor1 knockout mice prevented neointimal hyperplasia in vein grafts in vivo. Conclusions: Our study reveals a novel mechanobiological mechanism underlying the dedifferentiation and proliferation of venous SMCs in neointimal hyperplasia. CircSlc81/miR-20a-5p/Lamtor1 axis induced by arterial cyclic stretch may be a potential clinical target that attenuates neointimal hyperplasia in grafted vessels.
Collapse
Affiliation(s)
- Ji-Ting Liu
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qing-Ping Yao
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Chen
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Fan Lv
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Ze Liu
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Han Bao
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Han
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ming-Liang Zhang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China.,✉ Corresponding authors: Dr. Ying-Xin Qi, Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, China. Tel.: +86-21-34204863, Fax: +86-21-34204118, E-mail: ; Dr. Zong-Lai Jiang, Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, China. Tel.: +86-21-34204863, Fax: +86-21-34204118, E-mail: ; Dr. Ming-Liang Zhang, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, 600 Yishan Road, Xuhui, Shanghai 200233 China. Tel.: +86-21-24058337, Fax: +86-21-24058337, E-mail:
| | - Zong-Lai Jiang
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,✉ Corresponding authors: Dr. Ying-Xin Qi, Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, China. Tel.: +86-21-34204863, Fax: +86-21-34204118, E-mail: ; Dr. Zong-Lai Jiang, Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, China. Tel.: +86-21-34204863, Fax: +86-21-34204118, E-mail: ; Dr. Ming-Liang Zhang, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, 600 Yishan Road, Xuhui, Shanghai 200233 China. Tel.: +86-21-24058337, Fax: +86-21-24058337, E-mail:
| | - Ying-Xin Qi
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,✉ Corresponding authors: Dr. Ying-Xin Qi, Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, China. Tel.: +86-21-34204863, Fax: +86-21-34204118, E-mail: ; Dr. Zong-Lai Jiang, Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, China. Tel.: +86-21-34204863, Fax: +86-21-34204118, E-mail: ; Dr. Ming-Liang Zhang, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, 600 Yishan Road, Xuhui, Shanghai 200233 China. Tel.: +86-21-24058337, Fax: +86-21-24058337, E-mail:
| |
Collapse
|
21
|
Okura A, Inoue K, Sakuma E, Takase H, Ueki T, Mase M. SGK1 in Schwann cells is a potential molecular switch involved in axonal and glial regeneration during peripheral nerve injury. Biochem Biophys Res Commun 2022; 607:158-165. [DOI: 10.1016/j.bbrc.2022.03.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/23/2022] [Indexed: 12/29/2022]
|
22
|
Park SW, Seo MK, Webster MJ, Lee JG, Kim S. Differential expression of gene co-expression networks related to the mTOR signaling pathway in bipolar disorder. Transl Psychiatry 2022; 12:184. [PMID: 35508467 PMCID: PMC9067344 DOI: 10.1038/s41398-022-01944-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/09/2022] Open
Abstract
Bipolar disorder (BPD) is a severe mental illness characterized by episodes of depression and mania. To investigate the molecular mechanisms underlying the pathophysiology of bipolar disorder, we performed transcriptome studies using RNA-seq data from the prefrontal cortex (PFC) of individuals with BPD and matched controls, as well as data from cell culture and animal model studies. We found 879 differentially expressed genes that were also replicated in an independent cohort of post-mortem samples. Genes involving the mechanistic target of rapamycine (mTOR) pathway were down-regulated, while genes interrelated with the mTOR pathway such as Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway were up-regulated. Gene co-expression network analyses identified a module related to the mTOR pathway that was up-regulated in BPD and also enriched for markers of endothelial cells. We also found a down-regulated co-expression module enriched for genes involved in mTOR signalling and in mTOR related pathways and enriched with neuronal markers. The mTOR related modules were also replicated in the independent cohort of samples. To investigate whether the expression of the modules related to mTOR signalling pathway could be differentially regulated in different cell types we performed comparative network analyses in experimental models. We found both up-regulated modules in the PFC significantly overlapped with an up-regulated module in the brain endothelial cells from mice treated with lipopolysaccharides (LPS) and mTOR related pathways such as JAK-STAT, PI3K-Akt and ribosome were enriched in the common genes. In addition, the down-regulated module in the PFC significantly overlapped with a down-regulated module from neurons treated with the mTOR inhibitor, Torin1 and mTOR signalling, autophagy, and synaptic vesicle cycles were significantly enriched in the common genes. These results suggest that co-expression networks related to mTOR signalling pathways may be up- or down-regulated in different cell types in the PFC of BPD. These results provide novel insights into the molecular mechanisms underlying the pathophysiology of BPD.
Collapse
Affiliation(s)
- Sung Woo Park
- grid.411612.10000 0004 0470 5112Department of Convergence Biomedical Science, College of Medicine, Inje University, 75 Bokji-ro, Busnajin-gu, Busan, 47392 Republic of Korea ,grid.411612.10000 0004 0470 5112Paik Institute for Clinical Research, Inje University, 75 Bokji-ro, Busnajin-gu, Busan, 47392 Republic of Korea
| | - Mi Kyoung Seo
- grid.411612.10000 0004 0470 5112Paik Institute for Clinical Research, Inje University, 75 Bokji-ro, Busnajin-gu, Busan, 47392 Republic of Korea
| | - Maree J. Webster
- grid.453353.70000 0004 0473 2858Stanley Brain Research Laboratory, Stanley Medical Research Institute, 9800 Medical Center Drive, Rockville, MD 20850 USA
| | - Jung Goo Lee
- Paik Institute for Clinical Research, Inje University, 75 Bokji-ro, Busnajin-gu, Busan, 47392, Republic of Korea. .,Department of Psychiatry, College of Medicine, Haeundae Paik Hospital, Inje University, 875 Haeun-daero, Haeundae-gu, Busan, 47227, Republic of Korea.
| | - Sanghyeon Kim
- Stanley Brain Research Laboratory, Stanley Medical Research Institute, 9800 Medical Center Drive, Rockville, MD, 20850, USA.
| |
Collapse
|
23
|
Meng L, Altaye SZ, Feng M, Hu H, Han B, Li J. Phosphoproteomic basis of neuroplasticity in the antennal lobes influences the olfactory differences between A. mellifera and A. cerana honeybees. J Proteomics 2022; 251:104413. [PMID: 34728424 DOI: 10.1016/j.jprot.2021.104413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/29/2021] [Accepted: 10/16/2021] [Indexed: 10/19/2022]
Abstract
The honeybee species A. mellifera and A. cerana have evolved substantial differences in olfactory-driven behaviors and in peripheral olfactory systems. Knowledge of the central nervous system regulating these olfaction differences is limited, however. We compared the phosphoproteome of the antennal lobes (ALs, the primary olfactory neuropil) of A. mellifera and A. cerana, and identified a total of 2812 phosphopeptides carrying 2971 phosphosites from 1265 phosphoproteins. Of these, 76% of the phosphoproteins were shared by both species, which were mainly presynapse and cytoskeleton components, and were involved in signal transduction and neurotransmitter secretion. This finding indicates the fundamental role of protein phosphorylation in regulating signal transduction in the ALs. The mTOR signaling pathway, the phagosome pathway, and the autophagy pathway, which are important in protein metabolism, were enriched, suggesting glomeruli plasticity and olfactory processing are intensively modulated by phosphorylation via these pathways. Compared with A. mellifera, 107 phosphoproteins associated with protein metabolism and transport were uniquely expressed in A. cerana, indicating the protein synthesis-dependent synaptic plasticity is enhanced in A. cerana to facilitate the processing of more complex floral odor clues in mountain foraging areas. This finding is further supported by the significantly upregulated key phosphoproteins of the mTOR signaling pathway in A. cerana ALs. These results provide insights into the phosphoproteomic basis of neuroplasticity that is coupled with the divergent evolution of bees in different environments. SIGNIFICANCE: To adapt to their own ecological niche, the two major honeybee species, A. mellifera and A. cerana, have developed significant difference in olfactory-driven behaviors, but our understanding of the underlying regulation of the central nervous system is still limitate. Here we performed the first comprehensive phosphoproteomic comparison of antennal lobes (Als) between A. mellifera and A. cerena. A large proportion of the identified phosphosites and phosphoproteins were shared between the two species to serve as a core network in the regulation of signal transduction and glomeruli plasticity of ALs. However, compared with A. mellifera, 107 phosphoproteins associated with protein metabolism and transport were uniquely identified in A. cerana ALs, and also several key phosphoproteins in mTOR signaling pathway were found upregulated in A. cerana. These findings indicate protein phosphorylation enhanced the protein synthesis-dependent synaptic plasticity in A. cerana to facilitate the processing of more complex floral odor clues in mountain foraging areas. Our data provide a valuable insight into phosphoproteome-driven cerebral regulation of honeybee olfactory behaviors, which is potentially useful for further neurobiological investigation in both honeybees and other insects.
Collapse
Affiliation(s)
- Lifeng Meng
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Solomon Zewdu Altaye
- Ethiopian Institute of Agricultural Research, PO Box 2003, Addis Ababa, Ethiopia
| | - Mao Feng
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Han Hu
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Bin Han
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Science, Beijing 100093, China.
| | - Jianke Li
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Science, Beijing 100093, China.
| |
Collapse
|
24
|
Prado DS, Cattley RT, Shipman CW, Happe C, Lee M, Boggess WC, MacDonald ML, Hawse WF. Synergistic and additive interactions between receptor signaling networks drive the regulatory T cell versus T helper 17 cell fate choice. J Biol Chem 2021; 297:101330. [PMID: 34688667 PMCID: PMC8645459 DOI: 10.1016/j.jbc.2021.101330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 12/04/2022] Open
Abstract
CD4+ T cells differentiate into subsets that promote immunity or minimize damage to the host. T helper 17 cells (Th17) are effector cells that function in inflammatory responses. T regulatory cells (Tregs) maintain tolerance and prevent autoimmunity by secreting immunosuppressive cytokines and expressing check point receptors. While the functions of Th17 and Treg cells are different, both cell fate trajectories require T cell receptor (TCR) and TGF-β receptor (TGF-βR) signals, and Th17 polarization requires an additional IL-6 receptor (IL-6R) signal. Utilizing high-resolution phosphoproteomics, we identified that both synergistic and additive interactions between TCR, TGF-βR, and IL-6R shape kinase signaling networks to differentially regulate key pathways during the early phase of Treg versus Th17 induction. Quantitative biochemical analysis revealed that CD4+ T cells integrate receptor signals via SMAD3, which is a mediator of TGF-βR signaling. Treg induction potentiates the formation of the canonical SMAD3/4 trimer to activate a negative feedback loop through kinases PKA and CSK to suppress TCR signaling, phosphatidylinositol metabolism, and mTOR signaling. IL-6R signaling activates STAT3 to bind SMAD3 and block formation of the SMAD3/4 trimer during the early phase of Th17 induction, which leads to elevated TCR and PI3K signaling. These data provide a biochemical mechanism by which CD4+ T cells integrate TCR, TGF-β, and IL-6 signals via generation of alternate SMAD3 complexes that control the development of early signaling networks to potentiate the choice of Treg versus Th17 cell fate.
Collapse
Affiliation(s)
- Douglas S Prado
- Department of Immunology and Center for Systems Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Richard T Cattley
- Department of Immunology and Center for Systems Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Corey W Shipman
- Department of Immunology and Center for Systems Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Cassandra Happe
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mijoon Lee
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - William C Boggess
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Matthew L MacDonald
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - William F Hawse
- Department of Immunology and Center for Systems Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
25
|
Agarwal D, Kumari R, Ilyas A, Tyagi S, Kumar R, Poddar NK. Crosstalk between epigenetics and mTOR as a gateway to new insights in pathophysiology and treatment of Alzheimer's disease. Int J Biol Macromol 2021; 192:895-903. [PMID: 34662652 DOI: 10.1016/j.ijbiomac.2021.10.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/19/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022]
Abstract
Epigenetics in the current times has become a gateway to acquire answers to questions that were left unanswered by classical and modern genetics, be it resolving the complex mystery behind neurodegenerative disorders or understanding the complexity behind life-threatening cancers. It has presented to the world an entirely new dimension and has added a dynamic angle to an otherwise static field of genetics. Alzheimer's disease is one of the most prevalent neurodegenerative disorders is largely found to be a result of alterations in epigenetic pathways. These changes majorly comprise an imbalance in DNA methylation levels and altered acetylation and methylation of histones. They are often seen to cross-link with metabolic regulatory pathways such as that of mTOR, contributing significantly to the pathophysiology of AD. This review focusses on the study of the interplay of the mTOR regulatory pathway with that of epigenetic machinery that may elevate the rate of early diagnosis and prove to be a gateway to the development of an efficient and novel therapeutic strategy for the treatment of Alzheimer's disease at an early stage.
Collapse
Affiliation(s)
- Disha Agarwal
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur-Ajmer Expressway, Jaipur, Rajasthan 303007, India
| | - Ruchika Kumari
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur-Ajmer Expressway, Jaipur, Rajasthan 303007, India
| | - Ashal Ilyas
- Department of Biotechnology, Invertis University, Bareilly 243 123, India
| | - Shweta Tyagi
- HNo-88, Ranjit Avenue, Bela Chowk, Kota Nihang, Punjab 140001, India
| | - Rajnish Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Uttar Pradesh. India
| | - Nitesh Kumar Poddar
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur-Ajmer Expressway, Jaipur, Rajasthan 303007, India.
| |
Collapse
|
26
|
Nurcahyanti ADR, Jap A, Lady J, Prismawan D, Sharopov F, Daoud R, Wink M, Sobeh M. Function of selected natural antidiabetic compounds with potential against cancer via modulation of the PI3K/AKT/mTOR cascade. Biomed Pharmacother 2021; 144:112138. [PMID: 34750026 DOI: 10.1016/j.biopha.2021.112138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/19/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus (DM) is a metabolic disorder with growing global incidence, as 387 million people were diagnosed in 2014 with an expected projection of 642 million in 2040. Several complications are associated with DM including heart attack, stroke, kidney failure, blindness, and cancer. The latter is the second leading cause of death worldwide accounting for one in every six deaths, with liver, pancreas, and endometrium cancers are the most abundant among patients with diabetes. Phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway plays a vital role in developing a wide array of pathological disorders, among them diabetes and cancer. Natural secondary metabolites that counteract the deleterious effects of reactive oxygen species (ROS) and modulate PI3K/Akt/mTOR pathway could be a promising approach in cancer therapy. Here, 717 medicinal plants with antidiabetic activities were highlighted along with 357 bioactive compounds responsible for the antidiabetic activity. Also, 43 individual plant compounds with potential antidiabetic activities against cancer via the modulation of PI3K/Akt/mTOR cascade were identified. Taken together, the available data give an insight of the potential of repurposing medicinal plants and/or the individual secondary metabolites with antidiabetic activities for cancer therapy.
Collapse
Affiliation(s)
- Agustina Dwi Retno Nurcahyanti
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Pluit Raya 2, 14440 Jakarta, Indonesia.
| | - Adeline Jap
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Pluit Raya 2, 14440 Jakarta, Indonesia
| | - Jullietta Lady
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Pluit Raya 2, 14440 Jakarta, Indonesia
| | - Deka Prismawan
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Pluit Raya 2, 14440 Jakarta, Indonesia
| | - Farukh Sharopov
- Chinese-Tajik Innovation Center for Natural Products, National Academy of Sciences of Tajikistan, Ayni str. 299/2, 734063, Dushanbe, Tajikistan
| | - Rachid Daoud
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Mansour Sobeh
- AgroBiosciences Research, Mohammed VI Polytechnic University, Lot 660-Hay Moulay Rachid, 43150 Ben-Guerir, Morocco.
| |
Collapse
|
27
|
Pungsrinont T, Kallenbach J, Baniahmad A. Role of PI3K-AKT-mTOR Pathway as a Pro-Survival Signaling and Resistance-Mediating Mechanism to Therapy of Prostate Cancer. Int J Mol Sci 2021; 22:11088. [PMID: 34681745 PMCID: PMC8538152 DOI: 10.3390/ijms222011088] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/27/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
Androgen deprivation therapy (ADT) and androgen receptor (AR)-targeted therapy are the gold standard options for treating prostate cancer (PCa). These are initially effective, as localized and the early stage of metastatic disease are androgen- and castration-sensitive. The tumor strongly relies on systemic/circulating androgens for activating AR signaling to stimulate growth and progression. However, after a certain point, the tumor will eventually develop a resistant stage, where ADT and AR antagonists are no longer effective. Mechanistically, it seems that the tumor becomes more aggressive through adaptive responses, relies more on alternative activated pathways, and is less dependent on AR signaling. This includes hyperactivation of PI3K-AKT-mTOR pathway, which is a central signal that regulates cell pro-survival/anti-apoptotic pathways, thus, compensating the blockade of AR signaling. The PI3K-AKT-mTOR pathway is well-documented for its crosstalk between genomic and non-genomic AR signaling, as well as other signaling cascades. Such a reciprocal feedback loop makes it more complicated to target individual factor/signaling for treating PCa. Here, we highlight the role of PI3K-AKT-mTOR signaling as a resistance mechanism for PCa therapy and illustrate the transition of prostate tumor from AR signaling-dependent to PI3K-AKT-mTOR pathway-dependent. Moreover, therapeutic strategies with inhibitors targeting the PI3K-AKT-mTOR signal used in clinic and ongoing clinical trials are discussed.
Collapse
Affiliation(s)
| | | | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, 07747 Jena, Germany; (T.P.); (J.K.)
| |
Collapse
|
28
|
Sosnowska M, Kutwin M, Strojny B, Wierzbicki M, Cysewski D, Szczepaniak J, Ficek M, Koczoń P, Jaworski S, Chwalibog A, Sawosz E. Diamond Nanofilm Normalizes Proliferation and Metabolism in Liver Cancer Cells. Nanotechnol Sci Appl 2021; 14:115-137. [PMID: 34511890 PMCID: PMC8420805 DOI: 10.2147/nsa.s322766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/28/2021] [Indexed: 01/10/2023] Open
Abstract
Purpose Surgical resection of hepatocellular carcinoma can be associated with recurrence resulting from the degeneration of residual volume of the liver. The objective was to assess the possibility of using a biocompatible nanofilm, made of a colloid of diamond nanoparticles (nfND), to fill the side after tumour resection and optimize its contact with proliferating liver cells, minimizing their cancerous transformation. Methods HepG2 and C3A liver cancer cells and HS-5 non-cancer cells were used. An aqueous colloid of diamond nanoparticles, which covered the cell culture plate, was used to create the nanofilm. The roughness of the resulting nanofilm was measured by atomic force microscopy. Mitochondrial activity and cell proliferation were measured by XTT and BrdU assays. Cell morphology and a scratch test were used to evaluate the invasiveness of cells. Flow cytometry determined the number of cells within the cell cycle. Protein expression in was measured by mass spectrometry. Results The nfND created a surface with increased roughness and exposed oxygen groups compared with a standard plate. All cell lines were prone to settling on the nanofilm, but cancer cells formed more relaxed clusters. The surface compatibility was dependent on the cell type and decreased in the order C3A >HepG2 >HS-5. The invasion was reduced in cancer lines with the greatest effect on the C3A line, reducing proliferation and increasing the G2/M cell population. Among the proteins with altered expression, membrane and nuclear proteins dominated. Conclusion In vitro studies demonstrated the antiproliferative properties of nfND against C3A liver cancer cells. At the same time, the need to personalize potential therapy was indicated due to the differential protein synthetic responses in C3A vs HepG2 cells. We documented that nfND is a source of signals capable of normalizing the expression of many intracellular proteins involved in the transformation to non-cancerous cells.
Collapse
Affiliation(s)
- Malwina Sosnowska
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Marta Kutwin
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Barbara Strojny
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Mateusz Wierzbicki
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Dominik Cysewski
- Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Science, Warsaw, Poland
| | - Jarosław Szczepaniak
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Mateusz Ficek
- Department of Metrology and Optoelectronics, Gdansk University of Technology, Gdansk, Poland
| | - Piotr Koczoń
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Sławomir Jaworski
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - André Chwalibog
- Department of Veterinary and Animal, Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Ewa Sawosz
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
29
|
Lin J, Guan L, Ge L, Liu G, Bai Y, Liu X. Nanopore-based full-length transcriptome sequencing of Muscovy duck (Cairina moschata) ovary. Poult Sci 2021; 100:101246. [PMID: 34198095 PMCID: PMC8253917 DOI: 10.1016/j.psj.2021.101246] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/28/2021] [Accepted: 05/02/2021] [Indexed: 01/17/2023] Open
Abstract
Unlike mammals, studies on mechanisms that regulate waterfowl ovulation have been rarely reported. To advance our understanding of the ovulation differences in Muscovy duck, we utilized the Oxford Nanopore Technologies (ONT) to generate transcriptome data from 3 groups of female duck ovaries with ovulation differences (i.e., preovulation [PO], consecutive ovulation [CO], and inconsecutive ovulation [IO]). In this study, the full-length transcriptome data qualitative analysis showed that a total of 24,504 nonredundant full-length transcripts were generated, 19,060 new transcripts were discovered and 14,848 novel transcripts were successfully annotated. For the quantitative analysis, differentially expressed genes (DEGs) between the 3 groups were identified and functional properties were characterized. CTNNB1, IGF1, FOXO3, HSPA2, PTEN and SMC4 may be potential hub genes that regulate ovulation. Adhesion-related pathway, mTOR pathway, TGF-β signaling pathway and FoxO signaling pathway have been considered as important pathways that affect follicular development and ovulation. These results provide a more complete data source of full-length transcriptome for the further study of gene expression and genetics in Muscovy duck. The hub genes and potential mechanisms that affect the ovulation of Muscovy duck have been screened out to provide a scientific basis for breeding work to improve the reproduction performance of Muscovy duck.
Collapse
Affiliation(s)
- Junyuan Lin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Linfei Guan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Liyan Ge
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Guangyu Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yujie Bai
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaolin Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
30
|
Pairawan S, Zhao M, Yuca E, Annis A, Evans K, Sutton D, Carvajal L, Ren JG, Santiago S, Guerlavais V, Akcakanat A, Tapia C, Yang F, Bose PSC, Zheng X, Dumbrava EI, Aivado M, Meric-Bernstam F. First in class dual MDM2/MDMX inhibitor ALRN-6924 enhances antitumor efficacy of chemotherapy in TP53 wild-type hormone receptor-positive breast cancer models. Breast Cancer Res 2021; 23:29. [PMID: 33663585 PMCID: PMC7934277 DOI: 10.1186/s13058-021-01406-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 02/17/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND MDM2/MDMX proteins are frequently elevated in hormone receptor-positive (ER+) breast cancer. We sought to determine the antitumor efficacy of the combination of ALRN-6924, a dual inhibitor of MDM2/MDMX, with chemotherapy in ER+ breast cancer models. METHODS Three hundred two cell lines representing multiple tumor types were screened to confirm the role of TP53 status in ALRN-6924 efficacy. ER+ breast cancer cell lines (MCF-7 and ZR-75-1) were used to investigate the antitumor efficacy of ALRN-6924 combination. In vitro cell proliferation, cell cycle, and apoptosis assays were performed. Xenograft tumor volumes were measured, and reverse-phase protein array (RPPA), immunohistochemistry (IHC), and TUNEL assay of tumor tissues were performed to evaluate the in vivo pharmacodynamic effects of ALRN-6924 with paclitaxel. RESULTS ALRN-6924 was active in wild-type TP53 (WT-TP53) cancer cell lines, but not mutant TP53. On ER+ breast cancer cell lines, it was synergistic in vitro and had enhanced in vivo antitumor activity with both paclitaxel and eribulin. Flow cytometry revealed signs of mitotic crisis in all treatment groups; however, S phase was only decreased in MCF-7 single agent and combinatorial ALRN-6924 arms. RPPA and IHC demonstrated an increase in p21 expression in both combinatorial and single agent ALRN-6924 in vivo treatment groups. Apoptotic assays revealed a significantly enhanced in vivo apoptotic rate in ALRN-6924 combined with paclitaxel treatment arm compared to either single agent. CONCLUSION The significant synergy observed with ALRN-6924 in combination with chemotherapeutic agents supports further evaluation in patients with hormone receptor-positive breast cancer.
Collapse
Affiliation(s)
- Seyed Pairawan
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ming Zhao
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Blvd, Houston, TX, 77030, USA
| | - Erkan Yuca
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Blvd, Houston, TX, 77030, USA
| | | | - Kurt Evans
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Blvd, Houston, TX, 77030, USA
| | | | | | | | | | | | - Argun Akcakanat
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Blvd, Houston, TX, 77030, USA
| | - Coya Tapia
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Present address: Epizyme Inc., Cambridge, MA, USA
| | - Fei Yang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Priya Subash Chandra Bose
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaofeng Zheng
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ecaterina Ileana Dumbrava
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Blvd, Houston, TX, 77030, USA
| | | | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Blvd, Houston, TX, 77030, USA.
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
31
|
Marcellus KA, Crawford Parks TE, Almasi S, Jasmin BJ. Distinct roles for the RNA-binding protein Staufen1 in prostate cancer. BMC Cancer 2021; 21:120. [PMID: 33541283 PMCID: PMC7863451 DOI: 10.1186/s12885-021-07844-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/26/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Prostate cancer is one of the most common malignant cancers with the second highest global rate of mortality in men. During the early stages of disease progression, tumour growth is local and androgen-dependent. Despite treatment, a large percentage of patients develop androgen-independent prostate cancer, which often results in metastases, a leading cause of mortality in these patients. Our previous work on the RNA-binding protein Staufen1 demonstrated its novel role in cancer biology, and in particular rhabdomyosarcoma tumorigenesis. To build upon this work, we have focused on the role of Staufen1 in other forms of cancer and describe here the novel and differential roles of Staufen1 in prostate cancer. METHODS Using a cell-based approach, three independent prostate cancer cell lines with different characteristics were used to evaluate the expression of Staufen1 in human prostate cancer relative to control prostate cells. The functional impact of Staufen1 on several key oncogenic features of prostate cancer cells including proliferation, apoptosis, migration and invasion were systematically investigated. RESULTS We show that Staufen1 levels are increased in all human prostate cancer cells examined in comparison to normal prostate epithelial cells. Furthermore, Staufen1 differentially regulates growth, migration, and invasion in the various prostate cancer cells assessed. In LNCaP prostate cancer cells, Staufen1 regulates cell proliferation through mTOR activation. Conversely, Staufen1 regulates migration and invasion of the highly invasive, bone metastatic-derived, PC3 prostate cells via the activation of focal adhesion kinase. CONCLUSIONS Collectively, these results show that Staufen1 has a direct impact in prostate cancer development and further demonstrate that its functions vary amongst the prostate cancer cell types. Accordingly, Staufen1 represents a novel target for the development of much-needed therapeutic strategies for prostate cancer.
Collapse
Affiliation(s)
- Kristen A Marcellus
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H8M5, Canada.,The Eric J. Poulin Centre for Neuromuscular Diseases, Ottawa, Ontario, Canada
| | - Tara E Crawford Parks
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H8M5, Canada.,The Eric J. Poulin Centre for Neuromuscular Diseases, Ottawa, Ontario, Canada
| | - Shekoufeh Almasi
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H8M5, Canada.,The Eric J. Poulin Centre for Neuromuscular Diseases, Ottawa, Ontario, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H8M5, Canada. .,The Eric J. Poulin Centre for Neuromuscular Diseases, Ottawa, Ontario, Canada.
| |
Collapse
|
32
|
Nada S, Okada M. Genetic dissection of Ragulator structure and function in amino acid-dependent regulation of mTORC1. J Biochem 2020; 168:621-632. [PMID: 32653916 DOI: 10.1093/jb/mvaa076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/30/2020] [Indexed: 11/12/2022] Open
Abstract
Ragulator is a heteropentameric protein complex consisting of two roadblock heterodimers wrapped by the membrane anchor p18/Lamtor1. The Ragulator complex functions as a lysosomal membrane scaffold for Rag GTPases to recruit and activate mechanistic target of rapamycin complex 1 (mTORC1). However, the roles of Ragulator structure in the regulation of mTORC1 function remain elusive. In this study, we disrupted Ragulator structure by directly anchoring RagC to lysosomes and monitored the effect on amino acid-dependent mTORC1 activation. Expression of lysosome-anchored RagC in p18-deficient cells resulted in constitutive lysosomal localization and amino acid-independent activation of mTORC1. Co-expression of Ragulator in this system restored the amino acid dependency of mTORC1 activation. Furthermore, ablation of Gator1, a suppressor of Rag GTPases, induced amino acid-independent activation of mTORC1 even in the presence of Ragulator. These results demonstrate that Ragulator structure is essential for amino acid-dependent regulation of Rag GTPases via Gator1. In addition, our genetic analyses revealed new roles of amino acids in the regulation of mTORC1 as follows: amino acids could activate a fraction of mTORC1 in a Rheb-independent manner, and could also drive negative-feedback regulation of mTORC1 signalling via protein phosphatases. These intriguing findings contribute to our overall understanding of the regulatory mechanisms of mTORC1 signalling.
Collapse
Affiliation(s)
- Shigeyuki Nada
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565, Japan
| | - Masato Okada
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565, Japan
| |
Collapse
|
33
|
Ros S, Wright AJ, D'Santos P, Hu DE, Hesketh RL, Lubling Y, Georgopoulou D, Lerda G, Couturier DL, Razavi P, Pelossof R, Batra AS, Mannion E, Lewis DY, Martin A, Baird RD, Oliveira M, de Boo LW, Linn SC, Scaltriti M, Rueda OM, Bruna A, Caldas C, Brindle KM. Metabolic Imaging Detects Resistance to PI3Kα Inhibition Mediated by Persistent FOXM1 Expression in ER + Breast Cancer. Cancer Cell 2020; 38:516-533.e9. [PMID: 32976773 PMCID: PMC7562820 DOI: 10.1016/j.ccell.2020.08.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 06/26/2020] [Accepted: 08/25/2020] [Indexed: 12/25/2022]
Abstract
PIK3CA, encoding the PI3Kα isoform, is the most frequently mutated oncogene in estrogen receptor (ER)-positive breast cancer. Isoform-selective PI3K inhibitors are used clinically but intrinsic and acquired resistance limits their utility. Improved selection of patients that will benefit from these drugs requires predictive biomarkers. We show here that persistent FOXM1 expression following drug treatment is a biomarker of resistance to PI3Kα inhibition in ER+ breast cancer. FOXM1 drives expression of lactate dehydrogenase (LDH) but not hexokinase 2 (HK-II). The downstream metabolic changes can therefore be detected using MRI of LDH-catalyzed hyperpolarized 13C label exchange between pyruvate and lactate but not by positron emission tomography measurements of HK-II-mediated trapping of the glucose analog 2-deoxy-2-[18F]fluorodeoxyglucose. Rapid assessment of treatment response in breast cancer using this imaging method could help identify patients that benefit from PI3Kα inhibition and design drug combinations to counteract the emergence of resistance.
Collapse
Affiliation(s)
- Susana Ros
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Cancer Centre, Cambridge, UK.
| | - Alan J Wright
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Cancer Centre, Cambridge, UK
| | - Paula D'Santos
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Cancer Centre, Cambridge, UK
| | - De-En Hu
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Cancer Centre, Cambridge, UK
| | - Richard L Hesketh
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Cancer Centre, Cambridge, UK
| | - Yaniv Lubling
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Cancer Centre, Cambridge, UK
| | - Dimitra Georgopoulou
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Cancer Centre, Cambridge, UK
| | - Giulia Lerda
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Cancer Centre, Cambridge, UK
| | - Dominique-Laurent Couturier
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Pedram Razavi
- Human Oncology and Pathogenesis Program, X and Department of Pathology, Y and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rapahel Pelossof
- Human Oncology and Pathogenesis Program, X and Department of Pathology, Y and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ankita S Batra
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Cancer Centre, Cambridge, UK
| | - Elizabeth Mannion
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Cancer Centre, Cambridge, UK
| | - David Y Lewis
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Cancer Centre, Cambridge, UK
| | - Alistair Martin
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Cancer Centre, Cambridge, UK
| | - Richard D Baird
- Breast Cancer Research Programme, Cancer Research UK Cambridge Centre, Cambridge, UK
| | - Mafalda Oliveira
- Medical Oncology, Vall d'Hebron Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Leonora W de Boo
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Sabine C Linn
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Maurizio Scaltriti
- Human Oncology and Pathogenesis Program, X and Department of Pathology, Y and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Oscar M Rueda
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Cancer Centre, Cambridge, UK
| | - Alejandra Bruna
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Cancer Centre, Cambridge, UK
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Cancer Centre, Cambridge, UK
| | - Kevin M Brindle
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Cancer Centre, Cambridge, UK; Department of Biochemistry, University of Cambridge, Cambridge UK.
| |
Collapse
|
34
|
Vares G, Ahire V, Sunada S, Ho Kim E, Sai S, Chevalier F, Romeo PH, Yamamoto T, Nakajima T, Saintigny Y. A multimodal treatment of carbon ions irradiation, miRNA-34 and mTOR inhibitor specifically control high-grade chondrosarcoma cancer stem cells. Radiother Oncol 2020; 150:253-261. [PMID: 32717360 DOI: 10.1016/j.radonc.2020.07.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND PURPOSE High-grade chondrosarcomas are chemo- and radio-resistant cartilage-forming tumors of bone that often relapse and metastase. Thus, new therapeutic strategies are urgently needed. MATERIAL AND METHODS Chondrosarcoma cells (CH-2879) were exposed to carbon-ion irradiation, combined with miR-34 mimic and/or rapamycin administration. The effects of treatment on cancer stem cells, stemness-associated phenotype, radioresistance and tumor-initiating properties were evaluated. RESULTS We show that high-grade chondrosarcoma cells contain a population of radioresistant cancer stem cells that can be targeted by a combination of carbon-ion therapy, miR-34 mimic administration and/or rapamycin treatment that triggers FOXO3 and miR-34 over-expression. mTOR inhibition by rapamycin triggered FOXO3 and miR-34, leading to KLF4 repression. CONCLUSION Our results show that particle therapy combined with molecular treatments effectively controls cancer stem cells and may overcome treatment resistance of high-grade chondrosarcoma.
Collapse
Affiliation(s)
- Guillaume Vares
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Japan.
| | - Vidhula Ahire
- Research Laboratory and Open Facility for Radiation Biology with Accelerated Ions (LARIA), CEA/DRF/IBFJ/IRCM, Caen, France; Centre de Recherche sur les Ions, les Matériaux et la Photonique (CIMAP), Normandie Univ/ENSICAEN/UNICAEN/CEA/CNRS, Caen, France
| | - Shigeaki Sunada
- Department of Radiation Effects Research, National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan; Department of Molecular Genetics, Tokyo Medical and Dental University (TMDU), Japan
| | - Eun Ho Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, South Korea
| | - Sei Sai
- Department of Charged Particle Therapy Research, National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - François Chevalier
- Research Laboratory and Open Facility for Radiation Biology with Accelerated Ions (LARIA), CEA/DRF/IBFJ/IRCM, Caen, France; Centre de Recherche sur les Ions, les Matériaux et la Photonique (CIMAP), Normandie Univ/ENSICAEN/UNICAEN/CEA/CNRS, Caen, France
| | - Paul-Henri Romeo
- Research Laboratory on Repair and Transcription in Hematopoietic Stem Cells (LRTS), François Jacob Institute of Biology, CEA/DRF/IBFJ/IRCM, Fontenay-aux-Roses, France
| | - Tadashi Yamamoto
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Japan
| | - Tetsuo Nakajima
- Department of Radiation Effects Research, National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Yannick Saintigny
- Research Laboratory and Open Facility for Radiation Biology with Accelerated Ions (LARIA), CEA/DRF/IBFJ/IRCM, Caen, France; Centre de Recherche sur les Ions, les Matériaux et la Photonique (CIMAP), Normandie Univ/ENSICAEN/UNICAEN/CEA/CNRS, Caen, France.
| |
Collapse
|
35
|
Mak HK, Yung JSY, Weinreb RN, Ng SH, Cao X, Ho TYC, Ng TK, Chu WK, Yung WH, Choy KW, Wang CC, Lee TL, Leung CKS. MicroRNA-19a-PTEN Axis Is Involved in the Developmental Decline of Axon Regenerative Capacity in Retinal Ganglion Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:251-263. [PMID: 32599451 PMCID: PMC7327411 DOI: 10.1016/j.omtn.2020.05.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/15/2020] [Accepted: 05/28/2020] [Indexed: 11/23/2022]
Abstract
Irreversible blindness from glaucoma and optic neuropathies is attributed to retinal ganglion cells (RGCs) losing the ability to regenerate axons. While several transcription factors and proteins have demonstrated enhancement of axon regeneration after optic nerve injury, mechanisms contributing to the age-related decline in axon regenerative capacity remain elusive. In this study, we show that microRNAs are differentially expressed during RGC development and identify microRNA-19a (miR-19a) as a heterochronic marker; developmental decline of miR-19a relieves suppression of phosphatase and tensin homolog (PTEN), a key regulator of axon regeneration, and serves as a temporal indicator of decreasing axon regenerative capacity. Intravitreal injection of miR-19a promotes axon regeneration after optic nerve crush in adult mice, and it increases axon extension in RGCs isolated from aged human donors. This study uncovers a previously unrecognized involvement of the miR-19a-PTEN axis in RGC axon regeneration, and it demonstrates therapeutic potential of microRNA-mediated restoration of axon regenerative capacity in optic neuropathies.
Collapse
Affiliation(s)
- Heather K Mak
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, PRC
| | - Jasmine S Y Yung
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, PRC
| | - Robert N Weinreb
- Hamilton Glaucoma Center, Shiley Eye Institute, University of California, San Diego, La Jolla, CA, USA; Department of Ophthalmology, University of California, San Diego, La Jolla, CA, USA
| | - Shuk Han Ng
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, PRC
| | - Xu Cao
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, PRC
| | - Tracy Y C Ho
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, PRC
| | - Tsz Kin Ng
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, PRC
| | - Wai Kit Chu
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, PRC
| | - Wing Ho Yung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, PRC; Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Hong Kong, PRC
| | - Kwong Wai Choy
- Department of Obstetrics and Gynecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, PRC
| | - Chi Chiu Wang
- Department of Obstetrics and Gynecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, PRC
| | - Tin Lap Lee
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, PRC
| | | |
Collapse
|
36
|
Kiptiyah K, Widodo W, Ciptadi G, Aulanni'Am A, Widodo MA, Sumitro SB. 10-gingerol induces oxidative stress through HTR1A in cumulus cells: in-vitro and in-silico studies. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2020; 17:/j/jcim.ahead-of-print/jcim-2019-0042/jcim-2019-0042.xml. [PMID: 32284444 DOI: 10.1515/jcim-2019-0042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 10/24/2019] [Indexed: 01/04/2023]
Abstract
Background We investigated whether 10-gingerol is able to induce oxidative stress in cumulus cells. Methods For the in-vitro research, we used a cumulus cell culture in M199, containing 10-gingerol in various concentrations (0, 12, 16, and 20 µM), and detected oxidative stress through superoxide dismutase (SOD) activity and malondialdehyde (MDA) concentrations, with incubation periods of 24, 48, 72, and 96 h. The obtained results were confirmed by in-silico studies. Results The in-vitro data revealed that SOD activity and MDA concentration increased with increasing incubation periods: SOD activity at 0 µM (1.39 ± 0.24i), 12 µM (16.42 ± 0.35ab), 16 µM (17.28 ± 0.55ab), 20 µM (17.81 ± 0.12a), with a contribution of 71.1%. MDA concentration at 0 µM (17.82 ± 1.39 l), 12 µM (72.99 ± 0.31c), 16 µM (79.77 ± 4.19b), 20 µM (85.07 ± 2.57a), with a contribution of 73.1%. Based on this, the in-silico data uncovered that 10-gingerol induces oxidative stress in cumulus cells by inhibiting HTR1A functions and inactivating GSK3B and AKT-1. Conclusions 10-gingerol induces oxidative stress in cumulus cells through enhancing SOD activity and MDA concentration by inhibiting HTR1A functions and inactivating GSK3B and AKT-1.
Collapse
Affiliation(s)
- Kiptiyah Kiptiyah
- Department of Biology, Maulana Malik Ibrahim Islamic State University of Malang, Malang 65144, Indonesia
| | - Widodo Widodo
- Department of Biology, Brawijaya University of Malang, Malang, Indonesia
| | - Gatot Ciptadi
- Husbandry Faculty, Brawijaya University of Malang, Malang, Indonesia
| | | | - Mohammad A Widodo
- Biomedical Study Programme, Brawijaya University of Malang, Malang, Indonesia
| | - Sutiman B Sumitro
- Department of Biology, Brawijaya University of Malang, Malang, Indonesia
| |
Collapse
|
37
|
Yang T, Yang WX. The dynamics and regulation of microfilament during spermatogenesis. Gene 2020; 744:144635. [PMID: 32244053 DOI: 10.1016/j.gene.2020.144635] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/28/2020] [Accepted: 03/30/2020] [Indexed: 12/22/2022]
Abstract
Spermatogenesis is a highly complex physiological process which contains spermatogonia proliferation, spermatocyte meiosis and spermatid morphogenesis. In the past decade, actin binding proteins and signaling pathways which are critical for regulating the actin cytoskeleton in testis had been found. In this review, we summarized 5 actin-binding proteins that have been proven to play important roles in the seminiferous epithelium. Lack of them perturbs spermatids polarity and the transport of spermatids. The loss of Arp2/3 complex, Formin1, Eps8, Palladin and Plastin3 cause sperm release failure suggesting their irreplaceable role in spermatogenesis. Actin regulation relies on multiple signal pathways. The PI3K/Akt signaling pathway positively regulate the mTOR pathway to promote actin reorganization in seminiferous epithelium. Conversely, TSC1/TSC2 complex, the upstream of mTOR, is activated by the LKB1/AMPK pathway to inhibit cell proliferation, differentiation and migration. The increasing researches focus on the function of actin binding proteins (ABPs), however, their collaborative regulation of actin patterns and potential regulatory signaling networks remains unclear. We reviewed ABPs that play important roles in mammalian spermatogenesis and signal pathways involved in the regulation of microfilaments. We suggest that more relevant studies should be performed in the future.
Collapse
Affiliation(s)
- Tong Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
38
|
Bertrams W, Griss K, Han M, Seidel K, Klemmer A, Sittka-Stark A, Hippenstiel S, Suttorp N, Finkernagel F, Wilhelm J, Greulich T, Vogelmeier CF, Vera J, Schmeck B. Transcriptional analysis identifies potential biomarkers and molecular regulators in pneumonia and COPD exacerbation. Sci Rep 2020; 10:241. [PMID: 31937830 PMCID: PMC6959367 DOI: 10.1038/s41598-019-57108-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/20/2019] [Indexed: 01/16/2023] Open
Abstract
Lower respiratory infections, such as community-acquired pneumonia (CAP), and chronic obstructive pulmonary disease (COPD) rank among the most frequent causes of death worldwide. Improved diagnostics and profound pathophysiological insights are urgent clinical needs. In our cohort, we analysed transcriptional networks of peripheral blood mononuclear cells (PBMCs) to identify central regulators and potential biomarkers. We investigated the mRNA- and miRNA-transcriptome of PBMCs of healthy subjects and patients suffering from CAP or AECOPD by microarray and Taqman Low Density Array. Genes that correlated with PBMC composition were eliminated, and remaining differentially expressed genes were grouped into modules. One selected module (120 genes) was particularly suitable to discriminate AECOPD and CAP and most notably contained a subset of five biologically relevant mRNAs that differentiated between CAP and AECOPD with an AUC of 86.1%. Likewise, we identified several microRNAs, e.g. miR-545-3p and miR-519c-3p, which separated AECOPD and CAP. We furthermore retrieved an integrated network of differentially regulated mRNAs and microRNAs and identified HNF4A, MCC and MUC1 as central network regulators or most important discriminatory markers. In summary, transcriptional analysis retrieved potential biomarkers and central molecular features of CAP and AECOPD.
Collapse
Affiliation(s)
- Wilhelm Bertrams
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Marburg, Germany
| | - Kathrin Griss
- Department of Internal Medicine/Infectious Diseases and Respiratory Medicine, Charité - University Medicine Berlin, Berlin, Germany
| | - Maria Han
- Department of Internal Medicine/Infectious Diseases and Respiratory Medicine, Charité - University Medicine Berlin, Berlin, Germany
| | - Kerstin Seidel
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Marburg, Germany
| | - Andreas Klemmer
- Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Alexandra Sittka-Stark
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Marburg, Germany
| | - Stefan Hippenstiel
- Department of Internal Medicine/Infectious Diseases and Respiratory Medicine, Charité - University Medicine Berlin, Berlin, Germany
| | - Norbert Suttorp
- Department of Internal Medicine/Infectious Diseases and Respiratory Medicine, Charité - University Medicine Berlin, Berlin, Germany
| | - Florian Finkernagel
- Institute of Molecular Biology and Tumor Research (IMT), Genomics Core Facility, Philipps-University of Marburg, Marburg, Germany
| | - Jochen Wilhelm
- Justus-Liebig-University, Universities Giessen & Marburg Lung Center, German Center for Lung Research (DZL), Giessen, Germany
| | - Timm Greulich
- Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Claus F Vogelmeier
- Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Julio Vera
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Bernd Schmeck
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Marburg, Germany. .,Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, German Center for Lung Research (DZL), Marburg, Germany. .,Center for Synthetic Microbiology (SYNMIKRO), Philipps-University of Marburg, Marburg, Germany. .,German Center for Infection Research (DZIF), partner site Giessen-Marburg-Langen, Marburg, Germany.
| |
Collapse
|
39
|
Signaling Network of Forkhead Family of Transcription Factors (FOXO) in Dietary Restriction. Cells 2019; 9:cells9010100. [PMID: 31906091 PMCID: PMC7016766 DOI: 10.3390/cells9010100] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/25/2019] [Accepted: 12/29/2019] [Indexed: 02/07/2023] Open
Abstract
Dietary restriction (DR), which is defined as a reduction of particular or total nutrient intake without causing malnutrition, has been proved to be a robust way to extend both lifespan and health-span in various species from yeast to mammal. However, the molecular mechanisms by which DR confers benefits on longevity were not yet fully elucidated. The forkhead box O transcription factors (FOXOs), identified as downstream regulators of the insulin/IGF-1 signaling pathway, control the expression of many genes regulating crucial biological processes such as metabolic homeostasis, redox balance, stress response and cell viability and proliferation. The activity of FOXOs is also mediated by AMP-activated protein kinase (AMPK), sirtuins and the mammalian target of rapamycin (mTOR). Therefore, the FOXO-related pathways form a complex network critical for coordinating a response to environmental fluctuations in order to maintain cellular homeostasis and to support physiological aging. In this review, we will focus on the role of FOXOs in different DR interventions. As different DR regimens or calorie (energy) restriction mimetics (CRMs) can elicit both distinct and overlapped DR-related signaling pathways, the benefits of DR may be maximized by combining diverse forms of interventions. In addition, a better understanding of the precise role of FOXOs in different mechanistic aspects of DR response would provide clear cellular and molecular insights on DR-induced increase of lifespan and health-span.
Collapse
|
40
|
Macelignan inhibits the inflammatory response of microglia and regulates neuronal survival. J Neuroimmunol 2019; 339:577123. [PMID: 31838278 DOI: 10.1016/j.jneuroim.2019.577123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/24/2019] [Accepted: 12/05/2019] [Indexed: 01/19/2023]
Abstract
Neuroinflammation is an important pathological process of neurodegenerative diseases, and microglial contributes to chronic inflammation and neuronal loss in progressive neurodegenerative. Therefore, regulating the inflammatory response of microglia could lead to the discovery of promising treatments for neurodegenerative diseases. In this study, we investigated the effects of the nutmeg plant seed extract, macelignan, on the inflammatory response of microglia and neuronal cell survival. We detected NO and iNOS using the Griess test and Western blotting. We measured phosphoinositide 3 kinase (PI3K)/Akt expression by Western blotting. The release of NO and inflammatory cytokines and the expression of iNOS decreased in a concentration-dependent manner, with an increase in macelignan concentration. PI3K/Akt phosphorylation levels decreased in a dose-dependent manner in lipopolysaccharide (LPS)-activated microglial cells after exposure to macelignan. We also demonstrated that macelignan improved HT22 cell viability, following exposure to a microglial-conditioned medium. Furthermore, macelignan inhibited microglial cell near neurons treated with a hypoxic conditioned medium. Finally, macelignan treatment reduced the expression of p27 and cyclin D1 in neurons cultured in an LPS-activated microglia-conditioned medium. Therefore, these results imply that macelignan can inhibit the inflammatory response of microglia and regulate neuronal survival through the PI3K/Akt pathway.
Collapse
|
41
|
Estradiol promotes trophoblast viability and invasion by activating SGK1. Biomed Pharmacother 2019; 117:109092. [DOI: 10.1016/j.biopha.2019.109092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/24/2019] [Accepted: 06/04/2019] [Indexed: 01/02/2023] Open
|
42
|
Downregulation of FOXO3a by DNMT1 promotes breast cancer stem cell properties and tumorigenesis. Cell Death Differ 2019; 27:966-983. [PMID: 31296961 PMCID: PMC7206060 DOI: 10.1038/s41418-019-0389-3] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 06/15/2019] [Accepted: 06/24/2019] [Indexed: 12/20/2022] Open
Abstract
Breast cancer stem cells (BCSCs) are tumor initiating cells that can self-renew and are highly tumorigenic and chemoresistant. Therefore, the identification of factors critical for BCSC function is vital for the development of therapies. Here, we report that DNMT1-mediated FOXO3a promoter hypermethylation leads to downregulation of FOXO3a expression in breast cancer. FOXO3a is functionally related to the inhibition of FOXM1/SOX2 signaling and to the consequent suppression of BCSCs properties and tumorigenicity. Moreover, we found that SOX2 directly transactivates DNMT1 expression and thereby alters the methylation landscape, which in turn feedback inhibits FOXO3a expression. Inhibition of DNMT activity suppressed tumor growth via regulation of FOXO3a/FOXM1/SOX2 signaling in breast cancer. Clinically, we observed a significant inverse correlation between FOXO3a and FOXM1/SOX2/DNMT1 expression levels, and loss of FOXO3a expression or increased expression of FOXM1, SOX2, and DNMT1 predicted poor prognosis in breast cancer. Collectively, our findings suggest an important role of the DNMT1/FOXO3a/FOXM1/SOX2 pathway in regulating BCSCs properties, suggesting potential therapeutic targets for breast cancer.
Collapse
|
43
|
Matteoni S, Abbruzzese C, Matarrese P, De Luca G, Mileo AM, Miccadei S, Schenone S, Musumeci F, Haas TL, Sette G, Carapella CM, Amato R, Perrotti N, Signore M, Paggi MG. The kinase inhibitor SI113 induces autophagy and synergizes with quinacrine in hindering the growth of human glioblastoma multiforme cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:202. [PMID: 31101126 PMCID: PMC6525441 DOI: 10.1186/s13046-019-1212-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/06/2019] [Indexed: 12/19/2022]
Abstract
Background Glioblastoma multiforme (GBM), due to its location, aggressiveness, heterogeneity and infiltrative growth, is characterized by an exceptionally dismal clinical outcome. The small molecule SI113, recently identified as a SGK1 inhibitor, has proven to be effective in restraining GBM growth in vitro and in vivo, showing also encouraging results when employed in combination with other antineoplastic drugs or radiotherapy. Our aim was to explore the pharmacological features of SI113 in GBM cells in order to elucidate the pivotal molecular pathways affected by the drug. Such knowledge would be of invaluable help in conceiving a rational offensive toward GBM. Methods We employed GBM cell lines, either established or primary (neurospheres), and used a Reverse-Phase Protein Arrays (RPPA) platform to assess the effect of SI113 upon 114 protein factors whose post-translational modifications are associated with activation or repression of specific signal transduction cascades. Results SI113 strongly affected the PI3K/mTOR pathway, evoking a pro-survival autophagic response in neurospheres. These results suggested the use of SI113 coupled, for maximum efficiency, with autophagy inhibitors. Indeed, the association of SI113 with an autophagy inhibitor, the antimalarial drug quinacrine, induced a strong synergistic effect in inhibiting GBM growth properties in all the cells tested, including neurospheres. Conclusions RPPA clearly identified the molecular pathways influenced by SI113 in GBM cells, highlighting their vulnerability when the drug was administered in association with autophagy inhibitors, providing a strong molecular rationale for testing SI113 in clinical trials in associative GBM therapy. Electronic supplementary material The online version of this article (10.1186/s13046-019-1212-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Silvia Matteoni
- Section of Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Claudia Abbruzzese
- Section of Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Paola Matarrese
- Center for Gender-Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Gabriele De Luca
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Anna M Mileo
- Tumor Immunology and Immunotherapy, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Stefania Miccadei
- Tumor Immunology and Immunotherapy, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | | | | | - Tobias L Haas
- Department of General Pathology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giovanni Sette
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Carmine M Carapella
- Division of Neurosurgery, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Rosario Amato
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Nicola Perrotti
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Michele Signore
- RPPA Unit, Proteomics Area, Core Facilities, Istituto Superiore di Sanità, Viale Regina Elena 299, 00162, Rome, Italy.
| | - Marco G Paggi
- Section of Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| |
Collapse
|
44
|
Jęśko H, Stępień A, Lukiw WJ, Strosznajder RP. The Cross-Talk Between Sphingolipids and Insulin-Like Growth Factor Signaling: Significance for Aging and Neurodegeneration. Mol Neurobiol 2019; 56:3501-3521. [PMID: 30140974 PMCID: PMC6476865 DOI: 10.1007/s12035-018-1286-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/25/2018] [Indexed: 12/20/2022]
Abstract
Bioactive sphingolipids: sphingosine, sphingosine-1-phosphate (S1P), ceramide, and ceramide-1-phosphate (C1P) are increasingly implicated in cell survival, proliferation, differentiation, and in multiple aspects of stress response in the nervous system. The opposite roles of closely related sphingolipid species in cell survival/death signaling is reflected in the concept of tightly controlled sphingolipid rheostat. Aging has a complex influence on sphingolipid metabolism, disturbing signaling pathways and the properties of lipid membranes. A metabolic signature of stress resistance-associated sphingolipids correlates with longevity in humans. Moreover, accumulating evidence suggests extensive links between sphingolipid signaling and the insulin-like growth factor I (IGF-I)-Akt-mTOR pathway (IIS), which is involved in the modulation of aging process and longevity. IIS integrates a wide array of metabolic signals, cross-talks with p53, nuclear factor κB (NF-κB), or reactive oxygen species (ROS) and influences gene expression to shape the cellular metabolic profile and stress resistance. The multiple connections between sphingolipids and IIS signaling suggest possible engagement of these compounds in the aging process itself, which creates a vulnerable background for the majority of neurodegenerative disorders.
Collapse
Affiliation(s)
- Henryk Jęśko
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Pawińskiego, 5, 02-106, Poland
| | - Adam Stępień
- Central Clinical Hospital of the Ministry of National Defense, Department of Neurology, Military Institute of Medicine, Warsaw, Szaserów, 128, 04-141, Poland
| | - Walter J Lukiw
- LSU Neuroscience Center and Departments of Neurology and Ophthalmology, Louisiana State University School of Medicine, New Orleans, USA
| | - Robert P Strosznajder
- Laboratory of Preclinical Research and Environmental Agents, Department of Neurosurgery, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Pawińskiego, 5, 02-106, Poland.
| |
Collapse
|
45
|
Shariati MBH, Niknafs B, Seghinsara AM, Shokrzadeh N, Alivand MR. Administration of dexamethasone disrupts endometrial receptivity by alteration of expression of miRNA 223, 200a, LIF, Muc1, SGK1, and ENaC via the ERK1/2-mTOR pathway. J Cell Physiol 2019; 234:19629-19639. [PMID: 30993706 DOI: 10.1002/jcp.28562] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/28/2019] [Accepted: 03/06/2019] [Indexed: 12/30/2022]
Abstract
Successful implantation of embryos requires endometrial receptivity. Glucocorticoids are one of the factors influencing the implantation window. In this study, 40 female BALB/c mice were used to study the impacts of dexamethasone administration on endometrial receptivity markers during implantation window. The mice mated and were randomly divided into four groups: control (vehicle), dexamethasone (100 μg/kg, IP), PP242 (30 mg/kg, IP), and dexamethasone + PP242 (Dex + PP242). On the Day 4th and 5th of gestation, mice received their respective treatments and were killed on the 5th day. To assess the expression of Muc1, leukemia inflammatory inhibitor (LIF), serum/glucocorticoid-inducible kinase 1 (SGK1), epithelial Na+ channel (ENaC), miRNA 200a, and miRNA 223-3p in the endometrium real-time polymerase chain reaction was performed. Furthermore, using Western blot analysis protein expressions of extracellular signal-regulated kinase 1/2 (ERK1/2), mammalian target of rapamycin (mTOR), and eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) were evaluated. Periodic Acid-Schiff staining was used to examine the histomorphological changes of the uterus. According to the results dexamethasone declined the expression of LIF, whereas upregulated expression of Muc1, SGK1, ENaC mRNA, miRNA 200a, and miRNA 223-3p in the endometrium. In addition, PP242, an mTOR inhibitor, induced mRNA expression of Muc1, miRNA200a, and miRNa223-3p whereas it declined the expression of LIF. Moreover, activity of the ERK1/2-mTOR pathway in the endometrial cells was deterred by dexamethasone and PP242. Nonstop epithelium proliferation and elevated surface glycoproteins layer on epithelium of dexamethasone and/or PP242-received groups were divulged through histochemical analysis. According to the above mentioned results, uterine receptivity during implantation period was declined by dexamethasone, at least in part, through modulation of involved genes in endometrial receptivity and inhibition of the ERK1/2-mTOR pathway.
Collapse
Affiliation(s)
| | - Behrooz Niknafs
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Science, Tabriz, Iran
| | - Abbas Majdi Seghinsara
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Naser Shokrzadeh
- Infertility and Reproductive Health Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Reza Alivand
- Department of Genetic, Facualty of Medcine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
46
|
Beyens M, Vandamme T, Peeters M, Van Camp G, Op de Beeck K. Resistance to targeted treatment of gastroenteropancreatic neuroendocrine tumors. Endocr Relat Cancer 2019; 26:R109-R130. [PMID: 32022503 DOI: 10.1530/erc-18-0420] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The mammalian target of rapamycin (mTOR) is part of the phosphoinositide-3-kinase (PI3K)/protein kinase B (Akt)/mTOR signaling. The PI3K/Akt/mTOR pathway has a pivotal role in the oncogenesis of neuroendocrine tumors (NETs). In addition, vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) drive angiogenesis in NETs and therefore contributes to neuroendocrine tumor development. Hence, mTOR and angiogenesis inhibitors have been developed. Everolimus, a first-generation mTOR inhibitor, has shown significant survival benefit in advanced gastroenteropancreatic NETs. Sunitinib, a pan-tyrosine kinase inhibitor that targets the VEGF receptor, has proven to increase progression-free survival in advanced pancreatic NETs. Nevertheless, primary and acquired resistance to rapalogs and sunitinib has limited the clinical benefit for NET patients. Despite the identification of multiple molecular mechanisms of resistance, no predictive biomarker has made it to the clinic. This review is focused on the mTOR signaling and angiogenesis in NET, the molecular mechanisms of primary and acquired resistance to everolimus and sunitinib and how to overcome this resistance by alternative drug compounds.
Collapse
Affiliation(s)
- Matthias Beyens
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
- Center for Oncological Research, University of Antwerp, Antwerp, Belgium
| | - Timon Vandamme
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
- Center for Oncological Research, University of Antwerp, Antwerp, Belgium
- Section of Endocrinology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Marc Peeters
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Guy Van Camp
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
- Center for Oncological Research, University of Antwerp, Antwerp, Belgium
| | - Ken Op de Beeck
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
- Center for Oncological Research, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
47
|
Li Q, Zeng Y, Jiang Q, Wu C, Zhou J. Role of mTOR signaling in the regulation of high glucose-induced podocyte injury. Exp Ther Med 2019; 17:2495-2502. [PMID: 30906437 PMCID: PMC6425130 DOI: 10.3892/etm.2019.7236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 12/12/2018] [Indexed: 02/06/2023] Open
Abstract
Podocyte injury, which promotes progressive nephropathy, is considered a key factor in the progression of diabetic nephropathy. The mammalian target of rapamycin (mTOR) signaling cascade controls cell growth, survival and metabolism. The present study investigated the role of mTOR signaling in regulating high glucose (HG)-induced podocyte injury. MTT assay and flow cytometry assay results indicated that HG significantly increased podocyte viability and apoptosis. HG effects on podocytes were suppressed by mTOR complex 1 (mTORC1) inhibitor, rapamycin, and further suppressed by dual mTORC1 and mTORC2 inhibitor, KU0063794, when compared with podocytes that received mannitol treatment. In addition, western blot analysis revealed that the expression levels of Thr-389-phosphorylated p70S6 kinase (p-p70S6K) and phosphorylated Akt (p-Akt) were significantly increased by HG when compared with mannitol treatment. Notably, rapamycin significantly inhibited HG-induced p-p70S6K expression, but did not significantly impact p-Akt expression. However, KU0063794 significantly inhibited the HG-induced p-p70S6K and p-Akt expression levels. Furthermore, the expression of ezrin was significantly reduced by HG when compared with mannitol treatment; however, α-smooth muscle actin (α-SMA) expression was significantly increased. Immunofluorescence analysis on ezrin and α-SMA supported the results of western blot analysis. KU0063794, but not rapamycin, suppressed the effect of HG on the expression levels of ezrin and α-SMA. Thus, it was suggested that the increased activation of mTOR signaling mediated HG-induced podocyte injury. In addition, the present findings suggest that the mTORC1 and mTORC2 signaling pathways may be responsible for the cell viability and apoptosis, and that the mTORC2 pathway could be primarily responsible for the regulation of cytoskeleton-associated proteins.
Collapse
Affiliation(s)
- Qiuyue Li
- Nephrology Department, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yan Zeng
- Nephrology Department, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qing Jiang
- Nephrology Department, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Cong Wu
- Nephrology Department, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jing Zhou
- Nephrology Department, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
48
|
Pietrzak J, Spickett CM, Płoszaj T, Virág L, Robaszkiewicz A. PARP1 promoter links cell cycle progression with adaptation to oxidative environment. Redox Biol 2018; 18:1-5. [PMID: 29886395 PMCID: PMC5991907 DOI: 10.1016/j.redox.2018.05.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 01/01/2023] Open
Abstract
Although electrophiles are considered as detrimental to cells, accumulating recent evidence indicates that proliferating non-cancerous and particularly cancerous cells utilize these agents for pro-survival and cell cycle promoting signaling. Hence, the redox shift to mild oxidant release must be balanced by multiple defense mechanisms. Our latest findings demonstrate that cell cycle progression, which dictates oxidant level in stress-free conditions, determines PARP1 transcription. Growth modulating factors regulate CDK4/6-RBs-E2Fs axis. In cells arrested in G1 and G0, RB1-E2F1 and RBL2-E2F4 dimers recruit chromatin remodelers such as HDAC1, SWI/SNF and PRC2 to condense chromatin and turn off transcription. Release of retinoblastoma-based repressive complexes from E2F-dependent gene promoters in response to cell transition to S phase enables transcription of PARP1. This enzyme contributes to repair of oxidative DNA damage by supporting several strand break repair pathways and nucleotide or base excision repair pathways, as well as acting as a co-activator of transcription factors such as NRF2 and HIF1a, which control expression of antioxidant enzymes involved in removal of electrophiles and secondary metabolites. Furthermore, PARP1 is indispensible for transcription of the pro-survival kinases MAP2K6, ERK1/2 and AKT1, and for maintaining MAPK activity by suppressing transcription of the MAPK inhibitor, MPK1. In summary, cell cycle controlled PARP1 transcription helps cells to adapt to a pro-oxidant redox shift.
Collapse
Affiliation(s)
- Julita Pietrzak
- Department of General Biophysics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Corinne M Spickett
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Tomasz Płoszaj
- Department of Molecular Biology, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; MTA-DE Cell Biology and Signaling Research Group, Debrecen, Hungary
| | - Agnieszka Robaszkiewicz
- Department of General Biophysics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| |
Collapse
|
49
|
Banerjee D, Sinha A, Saikia S, Gogoi B, Rathore AK, Das AS, Pal D, Buragohain AK, Dasgupta S. Inflammation-induced mTORC2-Akt-mTORC1 signaling promotes macrophage foam cell formation. Biochimie 2018; 151:139-149. [DOI: 10.1016/j.biochi.2018.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 06/04/2018] [Indexed: 01/10/2023]
|
50
|
Shapiro MC, Tang T, Dasgupta A, Kurenbekova L, Shuck R, Gaber MW, Yustein JT. In Vitro and In Vivo Characterization of a Preclinical Irradiation-Adapted Model for Ewing Sarcoma. Int J Radiat Oncol Biol Phys 2018. [DOI: 10.1016/j.ijrobp.2018.01.095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|