1
|
Siew ZY, Ong GK, Wong ST, Leong PP, Tan BS, Leong CO, Chupri JB, Fang CM, Voon K. Safety profile of sikamat virus and its oncolytic potential in leukemic cells and cancer stem cells. Sci Rep 2025; 15:13817. [PMID: 40258869 PMCID: PMC12012088 DOI: 10.1038/s41598-025-96061-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/25/2025] [Indexed: 04/23/2025] Open
Abstract
Leukaemia remains a global health concern. The oncotherapy resistance of leukaemia might be due to the existence of cancer stem cell populations. This study investigated the therapeutic potential of Sikamat virus (PRV7S), a Pteropine orthoreovirus, as an oncolytic virus against acute myeloid leukaemia (AML) and chronic myeloid leukaemia (CML). Using AML and CML cell lines (THP-1 and K562), as well as an AML-M5-derived cancer stem cell (CSC) model, PRV7S was shown to infect these leukaemic cells, replicate within them, and reduce their viability. PRV7S-induced cell death was associated with caspase-mediated apoptosis without significant cell cycle arrest. Transcriptomic and proteomic analyses revealed that PRV7S infection altered several cell death pathways, including apoptosis and necroptosis, highlighting its complex cell death mechanisms. PRV7S replicated efficiently in infected cells, though it did not cause persistent infection. An in vivo safety evaluation in immunocompetent mice demonstrated that PRV7S was well-tolerated, showing no adverse effects on survival, body weight, or histopathology, and no evidence of viral persistence. These findings suggest PRV7S as a promising oncolytic candidate for myeloid leukaemia, with potential efficacy against CSCs and a favourable safety profile. In conclusion, the study provides new insights into the cellular pathways involved in PRV7S-mediated oncolysis and supports further exploration of PRV7S's potential against resistant leukaemic and solid tumours.
Collapse
MESH Headings
- Animals
- Neoplastic Stem Cells/virology
- Neoplastic Stem Cells/pathology
- Neoplastic Stem Cells/metabolism
- Humans
- Oncolytic Virotherapy/methods
- Oncolytic Viruses/physiology
- Mice
- Cell Line, Tumor
- Apoptosis
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Cell Survival
Collapse
Affiliation(s)
- Zhen Yun Siew
- School of Pharmacy, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia.
| | - Ghee Khang Ong
- School of Medicine, IMU University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Siew Tung Wong
- School of Medicine, IMU University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| | - Pooi Pooi Leong
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, 43000, Kajang, Selangor, Malaysia
| | - Boon Shing Tan
- AGTC Genomics, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Chee-Onn Leong
- AGTC Genomics, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Juita Binti Chupri
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Chee-Mun Fang
- School of Pharmacy, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia
| | - Kenny Voon
- School of Pharmacy, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia.
- School of Medicine, IMU University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
2
|
Intaruck K, Tabata K, Itakura Y, Kawaguchi N, Kishimoto M, Setiyono A, Handharyani E, Harima H, Kimura T, Hall WW, Orba Y, Sawa H, Sasaki M. Characterization of a mammalian orthoreovirus isolated from the large flying fox, Pteropus vampyrus, in Indonesia. J Gen Virol 2024; 105. [PMID: 39319430 DOI: 10.1099/jgv.0.002028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
Fruit bats serve as an important reservoir for many zoonotic pathogens, including Nipah virus, Hendra virus, Marburg virus and Lyssavirus. To gain a deeper insight into the virological characteristics, pathogenicity and zoonotic potential of bat-borne viruses, recovery of infectious viruses from field samples is important. Here, we report the isolation and characterization of a mammalian orthoreovirus (MRV) from a large flying fox (Pteropus vampyrus) in Indonesia, which is the first detection of MRV in Southeast Asia. MRV was recovered from faecal samples of three different P. vampyrus in Central Java. Nucleotide sequence analysis revealed that the genome of the three MRV isolates shared more than 99% nucleotide sequence identity. We tentatively named one isolated strain as MRV12-52 for further analysis and characterization. Among 10 genome segments, MRV12-52 S1 and S4, which encode the cell-attachment protein and outer capsid protein, had 93.6 and 95.1% nucleotide sequence identities with known MRV strains, respectively. Meanwhile, the remaining genome segments of MRV12-52 were divergent with 72.9-80.7 % nucleotide sequence identities. Based on the nucleotide sequence of the S1 segment, MRV12-52 was grouped into serotype 2, and phylogenetic analysis demonstrated evidence of past reassortment events. In vitro characterization of MRV12-52 showed that the virus efficiently replicated in BHK-21, HEK293T and A549 cells. In addition, experimental infection of laboratory mice with MRV12-52 caused severe pneumonia with 75% mortality. This study highlights the presence of pathogenic MRV in Indonesia, which could serve as a potential animal and public health concern.
Collapse
Affiliation(s)
- Kittiya Intaruck
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Koshiro Tabata
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
| | - Yukari Itakura
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
| | - Nijiho Kawaguchi
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Mai Kishimoto
- Laboratory of Veterinary Microbiology, Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Japan
| | - Agus Setiyono
- Division of Pathology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Ekowati Handharyani
- Division of Pathology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Hayato Harima
- Laboratory of Veterinary Public Health, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Takashi Kimura
- Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - William W Hall
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
- National Virus Reference Laboratory, School of Medicine, University College of Dublin, Dublin, Ireland
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Global Virus Network, Baltimore, MD, USA
| | - Yasuko Orba
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Hirofumi Sawa
- One Health Research Center, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Global Virus Network, Baltimore, MD, USA
| | - Michihito Sasaki
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
| |
Collapse
|
3
|
Hondo E, Katta T, Sato A, Kadofusa N, Ishibashi T, Shimoda H, Katoh H, Iida A. Antiviral effects of micafungin against pteropine orthoreovirus, an emerging zoonotic virus carried by bats. Virus Res 2024; 339:199248. [PMID: 37858730 PMCID: PMC10665676 DOI: 10.1016/j.virusres.2023.199248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
Bat-borne emerging zoonotic viruses cause major outbreaks, such as the Ebola virus, Nipah virus, and/or beta coronavirus. Pteropine orthoreovirus (PRV), whose spillover event occurred from fruits bats to humans, causes respiratory syndrome in humans widely in South East Asia. Repurposing approved drugs against PRV is an effective tool to confront future PRV pandemics. We screened 2,943 compounds in an FDA-approved drug library and identified eight hit compounds that reduce viral cytopathic effects on cultured Vero cells. Real-time quantitative PCR analysis revealed that six of eight hit compounds significantly inhibited PRV replication. Among them, micafungin used clinically as an antifungal drug, displayed a prominent antiviral effect on PRV. Secondly, the antiviral effects of micafungin on PRV infected human cell lines (HEK293T and A549), and their transcriptome changes by PRV infection were investigated, compared to four different bat-derived cell lines (FBKT1 (Ryukyu flying fox), DEMKT1 (Leschenault's rousette), BKT1 (Greater horseshoe bat), YUBFKT1 (Eastern bent-wing bats)). In two human cell lines, unlike bat cells that induce an IFN-γ response pathway, an endoplasmic reticulum stress response pathway was commonly activated. Additionally, micafungin inhibits viral release rather than suppressing PRV genome replication in human cells, although it was disturbed in Vero cells. The target of micafungin's action may vary depending on the animal species, but it must be useful for human purposes as a first choice of medical care.
Collapse
Affiliation(s)
- Eiichi Hondo
- Laboratory of Animal Morphology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan.
| | - Tetsufumi Katta
- Laboratory of Animal Morphology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Ayato Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8601, Japan
| | - Naoya Kadofusa
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8601, Japan
| | - Tomoki Ishibashi
- Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Hiroshi Shimoda
- Laboratory of Veterinary Microbiology, Joint Graduate School of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Hirokazu Katoh
- Department of Virology, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Atsuo Iida
- Laboratory of Animal Morphology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
4
|
Kuang G, Xu Z, Wang J, Gao Z, Yang W, Wu W, Liang G, Shi M, Feng Y. Nelson Bay Reovirus Isolated from Bats and Blood-Sucking Arthropods Collected in Yunnan Province, China. Microbiol Spectr 2023; 11:e0512222. [PMID: 37306586 PMCID: PMC10433815 DOI: 10.1128/spectrum.05122-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/22/2023] [Indexed: 06/13/2023] Open
Abstract
Nelson Bay reovirus (NBV) is an emerging zoonotic virus that can cause acute respiratory disease in humans. These viruses are mainly discovered in Oceania, Africa, and Asia, and bats have been identified as their main animal reservoir. However, despite recent expansion of diversity for NBVs, the transmission dynamics and evolutionary history of NBVs are still unclear. This study successfully isolated two NBV strains (MLBC1302 and MLBC1313) from blood-sucking bat fly specimens (Eucampsipoda sundaica) and one (WDBP1716) from the spleen specimen of a fruit bat (Rousettus leschenaultii), which were collected at the China-Myanmar border area of Yunnan Province. Syncytia cytopathic effects (CPE) were observed in BHK-21 and Vero E6 cells infected with the three strains at 48 h postinfection. Electron micrographs of ultrathin sections showed numerous spherical virions with a diameter of approximately 70 nm in the cytoplasm of infected cells. The complete genome nucleotide sequence of the viruses was determined by metatranscriptomic sequencing of infected cells. Phylogenetic analysis demonstrated that the novel strains were closely related to Cangyuan orthoreovirus, Melaka orthoreovirus, and human-infecting Pteropine orthoreovirus HK23629/07. Simplot analysis revealed the strains originated from complex genomic reassortment among different NBVs, suggesting the viruses experienced a high reassortment rate. In addition, strains successfully isolated from bat flies also implied that blood-sucking arthropods might serve as potential transmission vectors. IMPORTANCE Bats are the reservoir of many viral pathogens with strong pathogenicity, including NBVs. Nevertheless, it is unclear whether arthropod vectors are involved in transmitting NBVs. In this study, we successfully isolated two NBV strains from bat flies collected from the body surface of bats, which implies that they may be vectors for virus transmission between bats. While the potential threat to humans remains to be determined, evolutionary analyses involving different segments revealed that the novel strains had complex reassortment histories, with S1, S2, and M1 segments highly similar to human pathogens. Further experiments are required to determine whether more NBVs are vectored by bat flies, their potential threat to humans, and transmission dynamics.
Collapse
Affiliation(s)
- Guopeng Kuang
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, China
| | - Ziqian Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jing Wang
- Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Zhangjin Gao
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, China
- School of Public Health, Dali University, Dali, China
| | - Weihong Yang
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, China
| | - Weichen Wu
- Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Guodong Liang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Mang Shi
- Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yun Feng
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, China
- School of Public Health, Dali University, Dali, China
- College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
| |
Collapse
|
5
|
Veletanlic V, Sartalamacchia K, Diller JR, Ogden KM. Multiple rotavirus species encode fusion-associated small transmembrane (FAST) proteins with cell type-specific activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.07.536061. [PMID: 37066280 PMCID: PMC10104117 DOI: 10.1101/2023.04.07.536061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Fusion-associated small transmembrane (FAST) proteins are viral nonstructural proteins that mediate cell-cell fusion to form multinucleated syncytia. We previously reported that human species B rotavirus NSP1-1 is a FAST protein that induces syncytia in primate epithelial cells but not rodent fibroblasts. We hypothesized that the NSP1-1 proteins of other rotavirus species could also mediate cell-cell fusion and that fusion activity might be limited to cell types derived from homologous hosts. To test this hypothesis, we predicted the structure and domain organization of NSP1-1 proteins of species B rotavirus from a human, goat, and pig, species G rotavirus from a pigeon and turkey, and species I rotavirus from a dog and cat. We cloned these sequences into plasmids and transiently expressed the NSP1-1 proteins in avian, canine, hamster, human, porcine, and simian cells. Regardless of host origin of the virus, each NSP1-1 protein induced syncytia in primate cells, while few induced syncytia in other cell types. To identify the domains that determined cell-specific fusion activity for human species B rotavirus NSP1-1, we engineered chimeric proteins containing domain exchanges with the p10 FAST protein from Nelson Bay orthoreovirus. Using the chimeric proteins, we found that the N-terminal and transmembrane domains determined the cell type specificity of fusion activity. Although the species and cell type criteria for fusion activity remain unclear, these findings suggest that rotavirus species B, G, and I NSP1-1 are functional FAST proteins whose N termini play a role in specifying the cells in which they mediate syncytia formation.
Collapse
Affiliation(s)
- Vanesa Veletanlic
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kylie Sartalamacchia
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Julia R. Diller
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kristen M. Ogden
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
6
|
Siew ZY, Loh A, Segeran S, Leong PP, Voon K. Oncolytic Reoviruses: Can These Emerging Zoonotic Reoviruses Be Tamed and Utilized? DNA Cell Biol 2023. [PMID: 37015068 DOI: 10.1089/dna.2022.0561] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023] Open
Abstract
Orthoreovirus is a nonenveloped double-stranded RNA virus under the Reoviridae family. This group of viruses, especially mammalian orthoreovirus (MRV), are reported with great therapeutic values due to their oncolytic effects. In this review, the life cycle and oncolytic effect of MRV and a few emerging reoviruses were summarized. This article also highlights the challenges and strategies of utilizing MRV and the emerging reoviruses, avian orthoreovirus (ARV) and pteropine orthoreovirus (PRV), as oncolytic viruses (OVs). Besides, the emergence of potential ARV and PRV as OVs were discussed in comparison to MRV. Finally, the risk of reovirus as zoonosis or reverse zoonosis (zooanthroponosis) were debated, and concerns were raised in this article, which warrant continue surveillance of reovirus (MRV, ARV, and PRV) in animals, humans, and the environment.
Collapse
Affiliation(s)
- Zhen Yun Siew
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Alson Loh
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Sharrada Segeran
- School of Medicine, Australian National University, Canberra, Australia
| | - Pooi Pooi Leong
- Faculty of Medicine and Health Sciences, Universiti of Tunku Abdul Rahman, Kajang, Malaysia
| | - Kenny Voon
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Malaysia
| |
Collapse
|
7
|
Tee KK, Chan PQ, Loh AMK, Singh S, Teo CH, Iyadorai T, Chook JB, Ng KT, Takebe Y, Chan KG, Sam IC, Voon K. Surveillance, isolation and genomic characterization of Pteropine orthoreovirus of probable bat origin among patients with acute respiratory infection in Malaysia. J Med Virol 2023; 95:e28520. [PMID: 36691929 DOI: 10.1002/jmv.28520] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023]
Abstract
Pteropine orthoreovirus (PRV), an emerging bat-borne virus, has been linked to cases of acute respiratory infections (ARI) in humans. The prevalence, epidemiology and genomic diversity of PRV among ARI of unknown origin were studied. Among 632 urban outpatients tested negative for all known respiratory viruses, 2.2% were PRV-positive. Patients mainly presented with moderate to severe forms of cough, sore throat and muscle ache, but rarely with fever. Phylogenetic analysis revealed that over 90% of patients infected with the Melaka virus (MelV)-like PRV, while one patient infected with the Pulau virus previously found only in fruit bats. Human oral keratinocytes and nasopharyngeal epithelial cells were susceptible to clinical isolates of PRV, including the newly isolated MelV-like 12MYKLU1034. Whole genome sequence of 12MYKLU1034 using Nanopore technique revealed a novel reassortant strain. Evolutionary analysis of the global PRV strains suggests the continuous evolution of PRV through genetic reassortment among PRV strains circulating in human, bats and non-human primate hosts, creating a spectrum of reassortant lineages with complex evolutionary characteristics. In summary, the role of PRV as a common etiologic agent of ARI is evident. Continuous monitoring of PRV prevalence, pathogenicity and diversity among human and animal hosts is important to trace the emergence of novel reassortants.
Collapse
Affiliation(s)
- Kok Keng Tee
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.,Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Selangor Darul Ehsan, Malaysia.,Special Resource Centre, Institute for Medical Research, Ministry of Health, Shah Alam, Malaysia
| | - Po Qhuan Chan
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Alson Mun-Khin Loh
- School of Medicine, Pathology Division, International Medical University, Kuala Lumpur, Malaysia
| | - Sarbhan Singh
- Special Resource Centre, Institute for Medical Research, Ministry of Health, Shah Alam, Malaysia
| | - Chee How Teo
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Thevambiga Iyadorai
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Jack Bee Chook
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Kim Tien Ng
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yutaka Takebe
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.,AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kok Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia.,International Genome Centre, Jiangsu University, Zhenjiang, China
| | - I-Ching Sam
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Kenny Voon
- School of Medicine, Pathology Division, International Medical University, Kuala Lumpur, Malaysia.,School of Pharmacy, University of Nottingham Malaysia, Semenyih, Malaysia
| |
Collapse
|
8
|
Abstract
Bats perform important ecological roles in our ecosystem. However, recent studies have demonstrated that bats are reservoirs of emerging viruses that have spilled over into humans and agricultural animals to cause severe diseases. These viruses include Hendra and Nipah paramyxoviruses, Ebola and Marburg filoviruses, and coronaviruses that are closely related to severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and the recently emerged SARS-CoV-2. Intriguingly, bats that are naturally or experimentally infected with these viruses do not show clinical signs of disease. Here we have reviewed ecological, behavioral, and molecular factors that may influence the ability of bats to harbor viruses. We have summarized known zoonotic potential of bat-borne viruses and stress on the need for further studies to better understand the evolutionary relationship between bats and their viruses, along with discovering the intrinsic and external factors that facilitate the successful spillover of viruses from bats.
Collapse
Affiliation(s)
- Victoria Gonzalez
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Arinjay Banerjee
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
9
|
Intaruck K, Itakura Y, Kishimoto M, Chambaro HM, Setiyono A, Handharyani E, Uemura K, Harima H, Taniguchi S, Saijo M, Kimura T, Orba Y, Sawa H, Sasaki M. Isolation and characterization of an orthoreovirus from Indonesian fruit bats. Virology 2022; 575:10-19. [PMID: 35987079 DOI: 10.1016/j.virol.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022]
Abstract
Nelson Bay orthoreovirus (NBV) is an emerging bat-borne virus and causes respiratory tract infections in humans sporadically. Over the last two decades, several strains genetically related to NBV were isolated from humans and various bat species, predominantly in Southeast Asia (SEA), suggesting a high prevalence of the NBV species in this region. In this study, an orthoreovirus (ORV) belonging to the NBV species was isolated from Indonesian fruit bats' feces, tentatively named Paguyaman orthoreovirus (PgORV). Serological studies revealed that 81.2% (108/133) of Indonesian fruit bats sera had neutralizing antibodies against PgORV. Whole-genome sequencing and phylogenetic analysis of PgORV suggested the occurrence of past reassortments with other NBV strains isolated in SEA, indicating the dispersal and circulation of NBV species among bats in this region. Intranasal PgORV inoculation of laboratory mice caused severe pneumonia. Our study characterized PgORV's unique genetic background and highlighted the potential risk of PgORV-related diseases in Indonesia.
Collapse
Affiliation(s)
- Kittiya Intaruck
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yukari Itakura
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Mai Kishimoto
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Herman M Chambaro
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Agus Setiyono
- Department of Veterinary Clinic, Reproduction and Pathology, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Ekowati Handharyani
- Department of Veterinary Clinic, Reproduction and Pathology, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Kentaro Uemura
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Drug Discovery and Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan; Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Hayato Harima
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Satoshi Taniguchi
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masayuki Saijo
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takashi Kimura
- Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yasuko Orba
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Hirofumi Sawa
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; One Health Research Center, Hokkaido University, Sapporo, Japan; Global Virus Network, Baltimore, MD, USA
| | - Michihito Sasaki
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
10
|
Nouda R, Kawagishi T, Kanai Y, Shimojima M, Saijo M, Matsuura Y, Kobayashi T. The nonstructural p17 protein of a fusogenic bat-borne reovirus regulates viral replication in virus species- and host-specific manners. PLoS Pathog 2022; 18:e1010553. [PMID: 35653397 PMCID: PMC9162341 DOI: 10.1371/journal.ppat.1010553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/26/2022] [Indexed: 11/25/2022] Open
Abstract
Nelson Bay orthoreovirus (NBV), a member of the family Reoviridae, genus Orthoreovirus, is a bat-borne virus that causes respiratory diseases in humans. NBV encodes two unique nonstructural proteins, fusion-associated small transmembrane (FAST) protein and p17 protein, in the S1 gene segment. FAST induces cell–cell fusion between infected cells and neighboring cells and the fusogenic activity is required for efficient viral replication. However, the function of p17 in the virus cycle is not fully understood. Here, various p17 mutant viruses including p17-deficient viruses were generated by a reverse genetics system for NBV. The results demonstrated that p17 is not essential for viral replication and does not play an important role in viral pathogenesis. On the other hand, NBV p17 regulated viral replication in a bat cell line but not in other human and animal cell lines. Nuclear localization of p17 is associated with the regulation of NBV replication in bat cells. We also found that p17 dramatically enhances the cell–cell fusion activity of NBV FAST protein for efficient replication in bat cells. Furthermore, we found that a protein homologue of NBV p17 from another bat-borne orthoreovirus, but not those of avian orthoreovirus or baboon orthoreovirus, also supported efficient viral replication in bat cells using a p17-deficient virus-based complementation approach. These results provide critical insights into the functioning of the unique replication machinery of bat-borne viruses in their natural hosts. Bat-borne viruses including the severe acute respiratory syndrome coronavirus and Nipah virus generally cause highly pathogenic diseases in humans but not in their bat reservoirs. Nelson Bay orthoreovirus (NBV), a bat-borne virus associated with acute respiratory tract infections in humans, possesses two unique nonstructural proteins, FAST and p17. FAST enhances viral replication through its cell–cell fusion activity, while the function of p17 in the viral life cycle is poorly understood. In this study, we show that p17 is non-essential for viral replication in several human and animal cell lines and does not play a critical role in pathogenesis in vivo. However, p17 localizes to the nucleus and regulates viral replication specifically in cells derived from bats by enhancing the cell–cell fusion activity of FAST in a host-specific manner. Furthermore, the expression of NBV p17 or an NBV p17 homologue from another bat-borne orthoreovirus enhanced the replication of an NBV mutant deficient in p17 in bat cells, suggesting that the function of p17 is virus species-specific. These findings will contribute to our understanding of how the replication of viruses is regulated in their natural reservoirs.
Collapse
Affiliation(s)
- Ryotaro Nouda
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Takahiro Kawagishi
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Yuta Kanai
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Masayuki Shimojima
- Special Pathogens Laboratory, Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Masayuki Saijo
- Special Pathogens Laboratory, Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Yoshiharu Matsuura
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| | - Takeshi Kobayashi
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
- * E-mail:
| |
Collapse
|
11
|
Tarigan R, Katta T, Takemae H, Shimoda H, Maeda K, Iida A, Hondo E. Distinct interferon response in bat and other mammalian cell lines infected with Pteropine orthoreovirus. Virus Genes 2021; 57:510-520. [PMID: 34432209 PMCID: PMC8386163 DOI: 10.1007/s11262-021-01865-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 08/09/2021] [Indexed: 12/24/2022]
Abstract
Bats serve as natural hosts of Pteropine orthoreovirus (PRV), an emerging group of bat-borne, zoonotic viruses. Bats appear to possess unique innate immune system responses that can inhibit viral replication, thus reducing clinical symptoms. We examined the innate immune response against PRV and assessed viral replication in cell lines derived from four bat species (Miniopterus fuliginosus, Pteropus dasymallus, Rhinolophus ferrumequinum, and Rousettus leschenaultii), one rodent (Mesocricetous auratus), and human (Homo sapiens). The expression levels of pattern recognition receptors (PRRs) (TLR3, RIG-I, and MDA5) and interferons (IFNB1 and IFNL1) were higher and PRV replication was lower in cell lines derived from M. fuliginosus, R. ferrumequinum, and R. leschenaultii. Reduction of IFNB1 expression by the knockdown of PRRs in the cell line derived from R. ferrumequinum was associated with increased PRV replication. The knockdown of RIG-I led to the most significant reduction in viral replication for all cell lines. These results suggest that RIG-I production is important for antiviral response against PRV in R. ferrumequinum.
Collapse
Affiliation(s)
- Ronald Tarigan
- Laboratory of Animal Morphology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Tetsufumi Katta
- Laboratory of Animal Morphology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Hitoshi Takemae
- Laboratory of Animal Morphology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Hiroshi Shimoda
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Ken Maeda
- Division of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Atsuo Iida
- Laboratory of Animal Morphology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Eiichi Hondo
- Laboratory of Animal Morphology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
| |
Collapse
|
12
|
Leong WJ, Quek XF, Tan HY, Wong KM, Muhammad HS, Mohamed NA, Wong ST, Abdullah ML, Leong PP, Wang L, Voon K. Seroprevalence of Pteropine orthoreovirus in humans remain similar after nearly two decades (2001-2002 vs. 2017) in Tioman Island, Malaysia. J Med Virol 2021; 94:771-775. [PMID: 34708881 DOI: 10.1002/jmv.27422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 01/18/2021] [Accepted: 10/25/2021] [Indexed: 11/06/2022]
Abstract
Pteropine orthoreovirus (PRV) is an emerging zoonotic respiratory virus that can be transmitted from bats to humans. In Malaysia, aside from PRV2P (Pulau virus) being isolated from Pteropus hypomelanus sampled in Tioman Island, PRV3M (Melaka virus), PRV4K (Kampar virus), and PRV7S (Sikamat virus) were all isolated from samples of patients who reported having a disease spectrum from acute respiratory distress to influenza-like illness and sometimes even with enteric symptoms such as diarrhea and abdominal pain. Screening of sera collected from human volunteers on Tioman Island in 2001-2002 demonstrated that 12.8% (14/109) were positive for PRV2P and PRV3M. Taking all these together, we aim to investigate the serological prevalence of PRV (including PRV4K and PRV7S) among Tioman Island inhabitants again with the assumption that the seroprevalence rate will remain nearly similar to the above reported if human exposure to bats is still happening in the island. Using sera collected from human volunteers on the same island in 2017, we demonstrated seroprevalence of 17.8% (28/157) against PRV2P and PRV3M, respectively. Seropositivity of 11.4% among Tioman Island inhabitants against PRV4K and PRV7S, respectively, was described in this study. In addition, the seroprevalence of 89.5% (17/19), 73.6% (14/19), 63.0% (12/19), and 73.6% (14/19) against PRV2P, PRV3M, PRV4K, and PRV7S, respectively, were observed among pteropid bats in the island. We revealed that the seroprevalence of PRV among island inhabitants remains nearly similar after nearly two decades, suggesting that potential spill-over events in bat-human interface areas in the Tioman Island. We are unclear whether such spillover was directly from bats to humans, as suspected for the PRV3M human cases, or from an intermediate host(s) yet to be identified. There is a high possibility of the viruses circulating among the bats as demonstrated by high seroprevalence against PRV in the bats.
Collapse
Affiliation(s)
- Wai J Leong
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Xin F Quek
- School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Hui Y Tan
- School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Kim M Wong
- School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Hariz S Muhammad
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai, Negeri Sembilan, Malaysia
| | - Nurul A Mohamed
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai, Negeri Sembilan, Malaysia
| | - Siew T Wong
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Mohd L Abdullah
- Department of Wildlife and National Parks, National Wildlife Forensic Laboratory, Kuala Lumpur, Malaysia
| | - Pooi P Leong
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
| | - Linfa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Kenny Voon
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Harima H, Sasaki M, Orba Y, Okuya K, Qiu Y, Wastika CE, Changula K, Kajihara M, Simulundu E, Yamaguchi T, Eto Y, Mori-Kajihara A, Sato A, Taniguchi S, Takada A, Saijo M, Hang’ombe BM, Sawa H. Attenuated infection by a Pteropine orthoreovirus isolated from an Egyptian fruit bat in Zambia. PLoS Negl Trop Dis 2021; 15:e0009768. [PMID: 34492038 PMCID: PMC8448348 DOI: 10.1371/journal.pntd.0009768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/17/2021] [Accepted: 08/27/2021] [Indexed: 11/18/2022] Open
Abstract
Background Pteropine orthoreovirus (PRV) is an emerging bat-borne zoonotic virus that causes severe respiratory illness in humans. Although PRVs have been identified in fruit bats and humans in Australia and Asia, little is known about the prevalence of PRV infection in Africa. Therefore, this study performed an PRV surveillance in fruit bats in Zambia. Methods Egyptian fruit bats (Rousettus aegyptiacus, n = 47) and straw-colored fruit bats (Eidolon helvum, n = 33) captured in Zambia in 2017–2018 were screened for PRV infection using RT-PCR and serum neutralization tests. The complete genome sequence of an isolated PRV strain was determined by next generation sequencing and subjected to BLAST and phylogenetic analyses. Replication capacity and pathogenicity of the strain were investigated using Vero E6 cell cultures and BALB/c mice, respectively. Results An PRV strain, tentatively named Nachunsulwe-57, was isolated from one Egyptian fruit bat. Serological assays demonstrated that 98% of sera (69/70) collected from Egyptian fruit bats (n = 37) and straw-colored fruit bats (n = 33) had neutralizing antibodies against PRV. Genetic analyses revealed that all 10 genome segments of Nachunsulwe-57 were closely related to a bat-derived Kasama strain found in Uganda. Nachunsulwe-57 showed less efficiency in viral growth and lower pathogenicity in mice than another PRV strain, Miyazaki-Bali/2007, isolated from a patient. Conclusions A high proportion of Egyptian fruit bats and straw-colored fruit bats were found to be seropositive to PRV in Zambia. Importantly, a new PRV strain (Nachunsulwe-57) was isolated from an Egyptian fruit bat in Zambia, which had relatively weak pathogenicity in mice. Taken together, our findings provide new epidemiological insights about PRV infection in bats and indicate the first isolation of an PRV strain that may have low pathogenicity to humans. Pteropine orthoreovirus (PRV) is a causative agent of acute respiratory illness in humans in tropical and sub-tropical regions in Southeast Asia. PRVs have been originally isolated from fruit bats, and it is assumed that PRVs spread to humans by both bat-to-human and human-to-human transmission. Recently, an PRV was also detected from a fruit bat in the Afrotropical region and might potentially cause an emerging infection of the bat-borne zoonotic virus in Africa. However, little is known about the prevalence of PRV infection in Africa. In this study, we demonstrated the high prevalence of PRV infection in bat populations in Zambia and isolated a new strain of PRV from Egyptian fruit bats. In addition, we found that the bat-derived PRV strain had lower pathogenicity in mice than a human-derived PRV strain isolated from a patient in Southeast Asia. Our findings provide new epidemiological information about PRV in fruit bats in the Afrotropical region and indicate the first isolation of an PRV strain that may cause attenuated infection in humans.
Collapse
Affiliation(s)
- Hayato Harima
- Hokudai Center for Zoonosis Control in Zambia, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Michihito Sasaki
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yasuko Orba
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Kosuke Okuya
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yongjin Qiu
- Hokudai Center for Zoonosis Control in Zambia, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Christida E. Wastika
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Katendi Changula
- Department of Para-clinical Studies, School of Veterinary Medicine, the University of Zambia, Lusaka, Zambia
| | - Masahiro Kajihara
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Edgar Simulundu
- Department of Disease Control, School of Veterinary Medicine, the University of Zambia, Lusaka, Zambia
- Macha Research Trust, Choma, Zambia
| | - Tomoyuki Yamaguchi
- Division of Bioresources, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yoshiki Eto
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Akina Mori-Kajihara
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Akihiko Sato
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Drug Discovery & Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| | - Satoshi Taniguchi
- Department of Virology I, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Ayato Takada
- International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Department of Disease Control, School of Veterinary Medicine, the University of Zambia, Lusaka, Zambia
- Africa Center of Excellence for Infectious Diseases of Humans and Animals, the University of Zambia, Lusaka, Zambia
| | - Masayuki Saijo
- Department of Virology I, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Bernard M. Hang’ombe
- Department of Para-clinical Studies, School of Veterinary Medicine, the University of Zambia, Lusaka, Zambia
- Africa Center of Excellence for Infectious Diseases of Humans and Animals, the University of Zambia, Lusaka, Zambia
| | - Hirofumi Sawa
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Department of Disease Control, School of Veterinary Medicine, the University of Zambia, Lusaka, Zambia
- Africa Center of Excellence for Infectious Diseases of Humans and Animals, the University of Zambia, Lusaka, Zambia
- Global Virus Network, Baltimore, Maryland, United States of America
- One Health Research Center, Hokkaido University, Sapporo, Japan
- * E-mail:
| |
Collapse
|
14
|
Kanai Y, Kobayashi T. Rotavirus reverse genetics systems: Development and application. Virus Res 2021; 295:198296. [PMID: 33440223 DOI: 10.1016/j.virusres.2021.198296] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/31/2020] [Accepted: 01/05/2021] [Indexed: 12/14/2022]
Abstract
Rotaviruses (RVs) cause acute gastroenteritis in infants and young children. Since 2006, live-attenuated vaccines have reduced the number of RV-associated deaths; however, RV is still responsible for an estimated 228,047 annual deaths worldwide. RV, a member of the family Reoviridae, has an 11-segmented double-stranded RNA genome contained within a non-enveloped, triple layered virus particle. In 2017, a long-awaited helper virus-free reverse genetics system for RV was established. Since then, numerous studies have reported the generation of recombinant RVs; these studies verify the robustness of reverse genetics systems. This review provides technical insight into current reverse genetics systems for RVs, as well as discussing basic and applied studies that have used these systems.
Collapse
Affiliation(s)
- Yuta Kanai
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Takeshi Kobayashi
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
15
|
Leroy H, Han M, Woottum M, Bracq L, Bouchet J, Xie M, Benichou S. Virus-Mediated Cell-Cell Fusion. Int J Mol Sci 2020; 21:E9644. [PMID: 33348900 PMCID: PMC7767094 DOI: 10.3390/ijms21249644] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
Cell-cell fusion between eukaryotic cells is a general process involved in many physiological and pathological conditions, including infections by bacteria, parasites, and viruses. As obligate intracellular pathogens, viruses use intracellular machineries and pathways for efficient replication in their host target cells. Interestingly, certain viruses, and, more especially, enveloped viruses belonging to different viral families and including human pathogens, can mediate cell-cell fusion between infected cells and neighboring non-infected cells. Depending of the cellular environment and tissue organization, this virus-mediated cell-cell fusion leads to the merge of membrane and cytoplasm contents and formation of multinucleated cells, also called syncytia, that can express high amount of viral antigens in tissues and organs of infected hosts. This ability of some viruses to trigger cell-cell fusion between infected cells as virus-donor cells and surrounding non-infected target cells is mainly related to virus-encoded fusion proteins, known as viral fusogens displaying high fusogenic properties, and expressed at the cell surface of the virus-donor cells. Virus-induced cell-cell fusion is then mediated by interactions of these viral fusion proteins with surface molecules or receptors involved in virus entry and expressed on neighboring non-infected cells. Thus, the goal of this review is to give an overview of the different animal virus families, with a more special focus on human pathogens, that can trigger cell-cell fusion.
Collapse
Affiliation(s)
- Héloïse Leroy
- Institut Cochin, Inserm U1016, 75014 Paris, France; (H.L.); (M.H.); (M.W.)
- Centre National de la Recherche Scientifique CNRS, UMR8104, 75014 Paris, France
- Faculty of Health, University of Paris, 75014 Paris, France
| | - Mingyu Han
- Institut Cochin, Inserm U1016, 75014 Paris, France; (H.L.); (M.H.); (M.W.)
- Centre National de la Recherche Scientifique CNRS, UMR8104, 75014 Paris, France
- Faculty of Health, University of Paris, 75014 Paris, France
| | - Marie Woottum
- Institut Cochin, Inserm U1016, 75014 Paris, France; (H.L.); (M.H.); (M.W.)
- Centre National de la Recherche Scientifique CNRS, UMR8104, 75014 Paris, France
- Faculty of Health, University of Paris, 75014 Paris, France
| | - Lucie Bracq
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland;
| | - Jérôme Bouchet
- Laboratory Orofacial Pathologies, Imaging and Biotherapies UR2496, University of Paris, 92120 Montrouge, France;
| | - Maorong Xie
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK;
| | - Serge Benichou
- Institut Cochin, Inserm U1016, 75014 Paris, France; (H.L.); (M.H.); (M.W.)
- Centre National de la Recherche Scientifique CNRS, UMR8104, 75014 Paris, France
- Faculty of Health, University of Paris, 75014 Paris, France
| |
Collapse
|
16
|
Harima H, Sasaki M, Kajihara M, Mori-Kajihara A, Hang'ombe BM, Changula K, Orba Y, Ogawa H, Simuunza M, Yoshida R, Mweene A, Takada A, Sawa H. Detection of novel orthoreovirus genomes in shrew (Crocidura hirta) and fruit bat (Rousettus aegyptiacus). J Vet Med Sci 2019; 82:162-167. [PMID: 31866632 PMCID: PMC7041985 DOI: 10.1292/jvms.19-0424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Orthoreoviruses have been indentified in several mammals, however, there is no
information about orthoreoviruses in shrews. In this study, we screened wild animals in
Zambia, including shrews, rodents, and bats for the detection of orthoreoviruses. Two
orthoreovirus RNA genomes were detected from a shrew intestinal-contents (1/24) and a bat
colon (1/96) sample by reverse-transcription (RT)-PCR targeting the RNA-dependent RNA
polymerase gene of orthoreoviruses. Phylogenetic analyses revealed that each of the
identified orthoreoviruses formed a distinct branch among members of the
Orthoreovirus genus. This is the first report that shrews are
susceptible to orthoreovirus infection. Our results suggest the existence of undiscovered
orthoreoviruses in shrews and provide important information about the genetic diversity of
orthoreoviruses.
Collapse
Affiliation(s)
- Hayato Harima
- Hokudai Center for Zoonosis Control in Zambia, School of Veterinary Medicine, the University of Zambia, PO Box 32379, Lusaka, Zambia
| | - Michihito Sasaki
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
| | - Masahiro Kajihara
- Hokudai Center for Zoonosis Control in Zambia, School of Veterinary Medicine, the University of Zambia, PO Box 32379, Lusaka, Zambia
| | - Akina Mori-Kajihara
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
| | - Bernard M Hang'ombe
- Department of Para-clinical studies, School of Veterinary Medicine, the University of Zambia, PO Box 32379, Lusaka, Zambia.,Africa Center of Excellence for Infectious Diseases of Humans and Animals, the University of Zambia, PO Box 32379, Lusaka, Zambia
| | - Katendi Changula
- Department of Para-clinical studies, School of Veterinary Medicine, the University of Zambia, PO Box 32379, Lusaka, Zambia.,Africa Center of Excellence for Infectious Diseases of Humans and Animals, the University of Zambia, PO Box 32379, Lusaka, Zambia
| | - Yasuko Orba
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
| | - Hirohito Ogawa
- Department of Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Martin Simuunza
- Africa Center of Excellence for Infectious Diseases of Humans and Animals, the University of Zambia, PO Box 32379, Lusaka, Zambia.,Department of Disease Control, School of Veterinary Medicine, the University of Zambia, PO Box 32379, Lusaka, Zambia
| | - Reiko Yoshida
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
| | - Aaron Mweene
- Africa Center of Excellence for Infectious Diseases of Humans and Animals, the University of Zambia, PO Box 32379, Lusaka, Zambia.,Department of Disease Control, School of Veterinary Medicine, the University of Zambia, PO Box 32379, Lusaka, Zambia
| | - Ayato Takada
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan.,Africa Center of Excellence for Infectious Diseases of Humans and Animals, the University of Zambia, PO Box 32379, Lusaka, Zambia.,Department of Disease Control, School of Veterinary Medicine, the University of Zambia, PO Box 32379, Lusaka, Zambia.,Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
| | - Hirofumi Sawa
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan.,Africa Center of Excellence for Infectious Diseases of Humans and Animals, the University of Zambia, PO Box 32379, Lusaka, Zambia.,Department of Disease Control, School of Veterinary Medicine, the University of Zambia, PO Box 32379, Lusaka, Zambia.,Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Kita-ku, Sapporo, Hokkaido 001-0020, Japan.,Global Virus Network, 725 West Lombard St, Room S413, Baltimore, MD 21201, USA
| |
Collapse
|
17
|
Tan CW, Wittwer K, Lim XF, Uehara A, Mani S, Wang LF, Anderson DE. Serological evidence and experimental infection of cynomolgus macaques with pteropine orthoreovirus reveal monkeys as potential hosts for transmission to humans. Emerg Microbes Infect 2019; 8:787-795. [PMID: 31132935 PMCID: PMC6542153 DOI: 10.1080/22221751.2019.1621668] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pteropine orthoreoviruses (PRV) are emerging bat-borne viruses with proven zoonotic transmission. We recently demonstrated human exposure to PRV in Singapore, which together with previous reports from Malaysia and Vietnam suggest that human infection of PRV may occur periodically in the region. This raises the question whether bats are the only sources of human infection. In this study, we screened 517 cynomolgus macaques caught in Singapore for evidence of exposure to PRV3M (also known as Melaka virus), which was first isolated from human patients in Melaka, Malaysia. We found that 67 serum samples were PRV3M positive by ELISA and 34 were also positive by virus neutralization assay. To investigate whether monkeys could act as hosts for PRV transmission, we experimentally infected cynomolgus macaques with PRV3M and housed these animals with uninfected monkeys. Although no clinical signs of infection were observed in infected animals, viral RNA was detected in nasal and rectal swabs and all infected macaques seroconverted. Additionally, one of the uninfected animals seroconverted, implying active shedding and transmission of PRV3M. We provide evidence that PRV exposure in the macaque population in Singapore occurs at a relatively high prevalence and this study suggests that cynomolgus macaques may be an intermediate or reservoir host for PRVs.
Collapse
Affiliation(s)
- Chee Wah Tan
- a Programme in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore
| | - Kevin Wittwer
- a Programme in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore.,b Veterinary Medicine Division , Paul-Ehrlich-Institute , Langen , Germany
| | - Xiao Fang Lim
- a Programme in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore
| | - Anna Uehara
- a Programme in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore
| | - Shailendra Mani
- a Programme in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore
| | - Lin-Fa Wang
- a Programme in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore
| | - Danielle E Anderson
- a Programme in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore
| |
Collapse
|
18
|
Tao XL, Zhao W, Tong W, Wang XF, Dou LL, Chen JM, Liu N, Lu Y, Zhang YB, Jin XP, Shen YF, Zhao HY, Jin H, Li YG. The effects of autophagy on the replication of Nelson Bay orthoreovirus. Virol J 2019; 16:90. [PMID: 31319897 PMCID: PMC6639940 DOI: 10.1186/s12985-019-1196-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 06/26/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nelson Bay orthoreovirus (NBV) was first isolated over 40 years ago from a fruit bat in Australia. Normally, NBV does not cause human diseases, but recently several NBV strains have been associated with human respiratory tract infections, thus attracting clinical attention. Autophagy, an evolutionarily conserved process in eukaryotic cells, degrades intracellular substrates, participates in multiple physiological processes, and maintains cellular homeostasis. In addition, autophagy is intimately involved in viral infection. METHODS A new strain of NBV, isolated from a patient with a respiratory tract infection who returned to Japan from Bali, Indonesia, in 2007, was used in this study. NBV was rescued using a reverse genetics system involving cotransfection of BHK cells with 11 plasmids (pT7-L1 MB, pT7-L2 MB, pT7-L3 MB, pT7-M1 MB, pT7-M2 MB, pT7-M3 MB, pT7-S1 MB, pT7-S2 MB, pT7-S3 MB, pT7-S4 MB, and pcDNA3.1-T7), yielding NBV-MB. Recovered viruses were confirmed by immunofluorescence. The effect of NBV-MB on autophagy was evaluated by measuring the LC3-I/II proteins by immunoblot analysis after infection of BHK cells. Furthermore, after treatment with rapamycin (RAPA), 3-methyladenine (3-MA), chloroquine (CQ), or plasmid (GFP-LC3) transfection, the changes in expression of the LC3 gene and the amount of LC3-I/II protein were examined. In addition, variations in viral titer were assayed after treatment of BHK cells with drugs or after transfection with plasmids pCAGM3 and pCAGS3, which encode virus nonstructural proteins μNS and σNS, respectively. RESULTS NBV-MB infection induced autophagy in host cells; however, the level of induction was dependent on viral replication. Induction of autophagy increased viral replication. By contrast, inhibiting autophagy suppressed NBV replication, albeit not significantly. The NBV-MB nonstructural protein μNS was involved in the induction of autophagy with viral infection. CONCLUSIONS NBV-MB infection triggered autophagy. Also, the NBV nonstructural protein μNS may contribute to augmentation of autophagy upon viral infection.
Collapse
Affiliation(s)
- Xiao-Li Tao
- Department of Pathogenic Microbiology, College of Basic Medical Sciences, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang City, 110013, Liaoning Province, People's Republic of China.,Department of Pathogenic Microbiology, College of Basic Medical Sciences, Jinzhou Medical University, No. 40, the Third Section of SongPo Rd, Jinzhou City, 121200, Liaoning Province, China
| | - Wei Zhao
- Department of Pathogenic Microbiology, College of Basic Medical Sciences, Jinzhou Medical University, No. 40, the Third Section of SongPo Rd, Jinzhou City, 121200, Liaoning Province, China
| | - Wei Tong
- Department of Pathogenic Microbiology, College of Basic Medical Sciences, Jinzhou Medical University, No. 40, the Third Section of SongPo Rd, Jinzhou City, 121200, Liaoning Province, China
| | - Xiao-Fang Wang
- Department of Pathogenic Microbiology, College of Basic Medical Sciences, Jinzhou Medical University, No. 40, the Third Section of SongPo Rd, Jinzhou City, 121200, Liaoning Province, China
| | - Li-Li Dou
- Department of Pathogenic Microbiology, College of Basic Medical Sciences, Jinzhou Medical University, No. 40, the Third Section of SongPo Rd, Jinzhou City, 121200, Liaoning Province, China
| | - Jiang-Man Chen
- Department of Pathogenic Microbiology, College of Basic Medical Sciences, Jinzhou Medical University, No. 40, the Third Section of SongPo Rd, Jinzhou City, 121200, Liaoning Province, China
| | - Nian Liu
- Department of Pathogenic Microbiology, College of Basic Medical Sciences, Jinzhou Medical University, No. 40, the Third Section of SongPo Rd, Jinzhou City, 121200, Liaoning Province, China
| | - Ying Lu
- Department of Pathogenic Microbiology, College of Basic Medical Sciences, Jinzhou Medical University, No. 40, the Third Section of SongPo Rd, Jinzhou City, 121200, Liaoning Province, China
| | - Yi-Bo Zhang
- Department of Pathogenic Microbiology, College of Basic Medical Sciences, Jinzhou Medical University, No. 40, the Third Section of SongPo Rd, Jinzhou City, 121200, Liaoning Province, China
| | - Xu-Peng Jin
- Department of Pathogenic Microbiology, College of Basic Medical Sciences, Jinzhou Medical University, No. 40, the Third Section of SongPo Rd, Jinzhou City, 121200, Liaoning Province, China
| | - Yan-Fei Shen
- Department of Pathogenic Microbiology, College of Basic Medical Sciences, Jinzhou Medical University, No. 40, the Third Section of SongPo Rd, Jinzhou City, 121200, Liaoning Province, China
| | - Hong-Yan Zhao
- Department of Pathogenic Microbiology, College of Basic Medical Sciences, Jinzhou Medical University, No. 40, the Third Section of SongPo Rd, Jinzhou City, 121200, Liaoning Province, China
| | - Hong Jin
- Department of Pathogenic Microbiology, College of Basic Medical Sciences, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang City, 110013, Liaoning Province, People's Republic of China.
| | - Yong-Gang Li
- Department of Pathogenic Microbiology, College of Basic Medical Sciences, Jinzhou Medical University, No. 40, the Third Section of SongPo Rd, Jinzhou City, 121200, Liaoning Province, China.
| |
Collapse
|
19
|
Abstract
With no limiting membrane surrounding virions, nonenveloped viruses have no need for membrane fusion to gain access to intracellular replication compartments. Consequently, nonenveloped viruses do not encode membrane fusion proteins. The only exception to this dogma is the fusogenic reoviruses that encode fusion-associated small transmembrane (FAST) proteins that induce syncytium formation. FAST proteins are the smallest viral membrane fusion proteins and, unlike their enveloped virus counterparts, are nonstructural proteins that evolved specifically to induce cell-to-cell, not virus-cell, membrane fusion. This distinct evolutionary imperative is reflected in structural and functional features that distinguish this singular family of viral fusogens from all other protein fusogens. These rudimentary fusogens comprise specific combinations of different membrane effector motifs assembled into small, modular membrane fusogens. FAST proteins offer a minimalist model to better understand the ubiquitous process of protein-mediated membrane fusion and to reveal novel mechanisms of nonenveloped virus dissemination that contribute to virulence.
Collapse
Affiliation(s)
- Roy Duncan
- Department of Microbiology & Immunology, Department of Biochemistry & Molecular Biology, and Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 4R2;
| |
Collapse
|
20
|
Kanai Y, Kawagishi T, Sakai Y, Nouda R, Shimojima M, Saijo M, Matsuura Y, Kobayashi T. Cell-cell fusion induced by reovirus FAST proteins enhances replication and pathogenicity of non-enveloped dsRNA viruses. PLoS Pathog 2019; 15:e1007675. [PMID: 31022290 PMCID: PMC6504114 DOI: 10.1371/journal.ppat.1007675] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 05/07/2019] [Accepted: 03/03/2019] [Indexed: 12/13/2022] Open
Abstract
Fusogenic reoviruses encode fusion-associated small transmembrane (FAST) protein, which induces cell-cell fusion. FAST protein is the only known fusogenic protein in non-enveloped viruses, and its role in virus replication is not yet known. We generated replication-competent, FAST protein-deficient pteropine orthoreovirus and demonstrated that FAST protein was not essential for viral replication, but enhanced viral replication in the early phase of infection. Addition of recombinant FAST protein enhanced replication of FAST-deficient virus and other non-fusogenic viruses in a fusion-dependent and FAST-species-independent manner. In a mouse model, replication and pathogenicity of FAST-deficient virus were severely impaired relative to wild-type virus, indicating that FAST protein is a major determinant of the high pathogenicity of fusogenic reovirus. FAST-deficient virus also conferred effective protection against challenge with lethal homologous virus strains in mice. Our results demonstrate a novel role of a viral fusogenic protein and the existence of a cell-cell fusion-dependent replication system in non-enveloped viruses.
Collapse
Affiliation(s)
- Yuta Kanai
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Takahiro Kawagishi
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yusuke Sakai
- Laboratory of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Ryotaro Nouda
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Masayuki Shimojima
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masayuki Saijo
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshiharu Matsuura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Takeshi Kobayashi
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| |
Collapse
|
21
|
Uehara A, Tan CW, Mani S, Chua KB, Leo YS, Anderson DE, Wang LF. Serological evidence of human infection by bat orthoreovirus in Singapore. J Med Virol 2018; 91:707-710. [PMID: 30411364 DOI: 10.1002/jmv.25355] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/31/2018] [Indexed: 12/21/2022]
Abstract
To determine whether Pteropine orthoreovirus (PRV) exposure has occurred in Singapore, we tested 856 individuals from an existing serum panel collected from 2005-2013. After an initial screen with luciferase immunoprecipitation system and secondary confirmation with virus neutralization test, we identified at least seven individuals with specific antibodies against PRV in both assays. Our findings confirm that PRV spillover into human populations is relatively common in this region of the world.
Collapse
Affiliation(s)
- Anna Uehara
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Chee Wah Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Shailendra Mani
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Kaw Bing Chua
- Molecular Pathogenesis Group, Temasek Lifesciences Laboratory, National University of Singapore, Singapore
| | - Yee Sin Leo
- Institute of Infectious Disease and Epidemiology, Communicable Disease Centre, Tan Tock Seng Hospital, Singapore
| | - Danielle E Anderson
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| |
Collapse
|
22
|
Kosoltanapiwat N, Reamtong O, Okabayashi T, Ampawong S, Rungruengkitkun A, Thiangtrongjit T, Thippornchai N, Leaungwutiwong P, Mahittikorn A, Mori H, Yoohanngoa T, Yamwong P. Mass spectrometry-based identification and whole-genome characterisation of the first pteropine orthoreovirus isolated from monkey faeces in Thailand. BMC Microbiol 2018; 18:135. [PMID: 30332986 PMCID: PMC6192116 DOI: 10.1186/s12866-018-1302-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 10/04/2018] [Indexed: 12/28/2022] Open
Abstract
Background The pteropine orthoreovirus (PRV) was isolated from monkey (Macaca fascicularis) faecal samples collected from human-inhabited areas in Lopburi Province, Thailand. These samples were initially obtained to survey for the presence of hepatitis E virus (HEV). Results Two virus isolates were retrieved by virus culture of 55 monkey faecal samples. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was successfully used to identify the viruses as the segmented dsRNA orthoreovirus. Phylogenetic analysis of the Lopburi orthoreovirus whole-genomes revealed relationships with the well-characterised PRVs Pulau (segment L1), Cangyuan (segments L2, M3 and S3), Melaka (segments L3 and M2), Kampar (segments M1 and S2) and Sikamat (segments S1 and S4) of Southeast Asia and China with nucleotide sequence identities of 93.5–98.9%. RT-PCR showed that PRV was detected in 10.9% (6/55) and HEV was detected in 25.5% (14/55) of the monkey faecal samples. Conclusions PRV was isolated from monkey faeces for the first time in Thailand via viral culture and LC-MS/MS. The genetic diversity of the virus genome segments suggested a re-assortment within the PRV species group. The overall findings emphasise that monkey faeces can be sources of zoonotic viruses, including PRV and HEV, and suggest the need for active virus surveillance in areas of human and monkey co-habitation to prevent and control emerging zoonotic diseases in the future. Electronic supplementary material The online version of this article (10.1186/s12866-018-1302-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nathamon Kosoltanapiwat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand.
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Tamaki Okabayashi
- Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, Gakuen-kibanadai-nishi-1-1, Miyazaki, 889-2192, Japan.,Mahidol-Osaka Center for Infectious Diseases (MOCID), Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Amporn Rungruengkitkun
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Tipparat Thiangtrongjit
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Narin Thippornchai
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Pornsawan Leaungwutiwong
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Aongart Mahittikorn
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Hirotake Mori
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Thanada Yoohanngoa
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Prechaya Yamwong
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| |
Collapse
|
23
|
Takemae H, Basri C, Mayasari NLPI, Tarigan R, Shimoda H, Omatsu T, Supratikno, Pramono D, Cahyadi DD, Kobayashi R, Iida K, Mizutani T, Maeda K, Agungpriyono S, Hondo E. Isolation of Pteropine orthoreovirus from Pteropus vampyrus in Garut, Indonesia. Virus Genes 2018; 54:823-827. [PMID: 30232692 DOI: 10.1007/s11262-018-1603-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/14/2018] [Indexed: 12/21/2022]
Abstract
Flying foxes belonging to the genus Pteropus are known to be reservoirs of zoonotic viruses. In this study, we describe the isolation of Pteropine orthoreovirus (PRV) from rectal swab samples of Pteropus vampyrus in Indonesia. PRV is an emerging zoonotic respiratory virus that can be transmitted from bats to humans. Rectal swabs (n = 91) were screened by PCR for PRV and 10 (11%) were positive. Phylogenetic analysis based on nucleotide sequences indicated that the S2, S3, S4, M3, L2, and L3 segments of one isolate (Garut-69) were closely related to previously isolated strains in Indonesia. The remaining gene segments showed both similarity and genetic divergence with other PRV strains, suggesting that re-assortment events had occurred. This is the first report of PRV infection to P. vampyrus in West Java, Indonesia.
Collapse
Affiliation(s)
- Hitoshi Takemae
- Laboratory of Animal Morphology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Chaerul Basri
- Faculty of Veterinary Medicine, Bogor Agricultural University (IPB), Bogor, 16680, Indonesia
| | | | - Ronald Tarigan
- Laboratory of Animal Morphology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan.,Faculty of Veterinary Medicine, Bogor Agricultural University (IPB), Bogor, 16680, Indonesia
| | - Hiroshi Shimoda
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Tsutomu Omatsu
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Supratikno
- Faculty of Veterinary Medicine, Bogor Agricultural University (IPB), Bogor, 16680, Indonesia
| | - Didik Pramono
- Faculty of Veterinary Medicine, Bogor Agricultural University (IPB), Bogor, 16680, Indonesia
| | - Danang Dwi Cahyadi
- Faculty of Veterinary Medicine, Bogor Agricultural University (IPB), Bogor, 16680, Indonesia
| | - Ryosuke Kobayashi
- Laboratory of Animal Morphology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Keisuke Iida
- Laboratory of Animal Morphology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Tetsuya Mizutani
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Ken Maeda
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Srihadi Agungpriyono
- Faculty of Veterinary Medicine, Bogor Agricultural University (IPB), Bogor, 16680, Indonesia
| | - Eiichi Hondo
- Laboratory of Animal Morphology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan.
| |
Collapse
|
24
|
Kanai Y, Kawagishi T, Okamoto M, Sakai Y, Matsuura Y, Kobayashi T. Lethal murine infection model for human respiratory disease-associated Pteropine orthoreovirus. Virology 2018; 514:57-65. [PMID: 29128757 PMCID: PMC7173163 DOI: 10.1016/j.virol.2017.10.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 12/24/2022]
Abstract
Pteropine orthoreovirus (PRV) is an emerging bat-borne human pathogen causing severe respiratory illness. To date, however, the evaluation of PRV virulence has largely depended on the limited numbers of clinical cases owing to the lack of animal models. To develop an in vivo model of PRV infection, an inbred C3H mouse strain was infected intranasally with pathogenic PRV strain Miyazaki-Bali/2007. C3H mice suffered severe lung infection with significant body weight reduction and died within 7 days after intranasal infection. Infectious viruses were isolated mainly from the lungs and trachea. Histopathological examination revealed interstitial pneumonia with monocytes infiltration. Following repeated intranasal infection, mice developed antibodies to particular structural and non-structural proteins of PRV. The results of these immunological assays will help to develop laboratory protocols for sero-epidemiological studies. Our small rodent model of lethal respiratory infection will further allow investigation of the molecular mechanisms underlying the high pathogenicity of PRV. A lethal PRV strain Miyazaki-Bali/2007 murine infection model was established. Susceptibility of different mouse strains to PRV infection was investigated. Antibody responses to PRV proteins in C3H mice post intranasal infection were studied.
Collapse
Affiliation(s)
- Yuta Kanai
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Takahiro Kawagishi
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Minoru Okamoto
- Department of Veterinary Pathology, Rakuno Gakuen University, Hokkaido, Japan
| | - Yusuke Sakai
- Laboratory of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Yoshiharu Matsuura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Takeshi Kobayashi
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
| |
Collapse
|
25
|
Abstract
With over 1200 species identified, bats represent almost one quarter of the world’s mammals. Bats provide crucial environmental services, such as insect control and pollination, and inhabit a wide variety of ecological niches on all continents except Antarctica. Despite their ubiquity and ecological importance, relatively little has been published on diseases of bats, while much has been written on bats’ role as reservoirs in disease transmission. This chapter will focus on diseases and pathologic processes most commonly reported in captive and free-ranging bats. Unique anatomical and histological features and common infectious and non-infectious diseases will be discussed. As recognition of both the importance and vulnerability of bats grows, particularly following population declines in North America due to the introduction of the fungal disease white-nose syndrome, efforts should be made to better understand threats to the health of this unique group of mammals.
Collapse
|
26
|
Virulence, pathology, and pathogenesis of Pteropine orthoreovirus (PRV) in BALB/c mice: Development of an animal infection model for PRV. PLoS Negl Trop Dis 2017; 11:e0006076. [PMID: 29240753 PMCID: PMC5730109 DOI: 10.1371/journal.pntd.0006076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/27/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Cases of acute respiratory tract infection caused by Pteropine orthoreovirus (PRV) of the genus Orthoreovirus (family: Reoviridae) have been reported in Southeast Asia, where it was isolated from humans and bats. It is possible that PRV-associated respiratory infections might be prevalent in Southeast Asia. The clinical course of PRV is not fully elucidated. METHODS The virulence, pathology, and pathogenesis of two PRV strains, a human-borne PRV strain (isolated from a patient, who returned to Japan from Bali, Indonesia in 2007) and a bat-borne PRV (isolated from a bat [Eonycteris spelaea] in the Philippines in 2013) were investigated in BALB/c mice using virological, pathological, and immunological study methods. RESULTS The intranasal inoculation of BALB/c mice with human-borne PRV caused respiratory infection. In addition, all mice with immunity induced by pre-inoculation with a non-lethal dose of PRV were completely protected against lethal PRV infection. Mice treated with antiserum with neutralizing antibody activity after inoculation with a lethal dose of PRV showed a reduced fatality rate. In this mouse model, bat-borne PRV caused respiratory infection similar to human-borne PRV. PRV caused lethal respiratory disease in an animal model of PRV infection, in which BALB/c mice were used. CONCLUSIONS The BALB/c mouse model might help to accelerate research on the virulence of PRV and be useful for evaluating the efficacy of therapeutic agents and vaccines for the treatment and prevention of PRV infection. PRV was shown for the first time to be a causative virus of respiratory disease on the basis of Koch's postulations by the additional demonstration that PRV caused respiratory disease in mice through their intranasal inoculation with PRV.
Collapse
|
27
|
Mok L, Wynne JW, Tachedjian M, Shiell B, Ford K, Matthews DA, Bacic A, Michalski WP. Proteomics informed by transcriptomics for characterising differential cellular susceptibility to Nelson Bay orthoreovirus infection. BMC Genomics 2017; 18:615. [PMID: 28806913 PMCID: PMC5556373 DOI: 10.1186/s12864-017-3994-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 08/01/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Nelson Bay orthoreovirus (NBV) is a fusogenic bat borne virus with an unknown zoonotic potential. Previous studies have shown that NBV can infect and replicate in a wide variety of cell types derived from their natural host (bat), as well as from human, mouse and monkey. Within permissive cells, NBV induced significant cytopathic effects characterised by cell-cell fusion and syncytia formation. To understand the molecular events that underpin NBV infection we examined the host transcriptome and proteome response of two cell types, derived from bat (PaKiT03) and mouse (L929), to characterise differential cellular susceptibility to NBV. RESULTS Despite significant differences in NBV replication and cytopathic effects in the L929 and PaKiT03 cells, the host response was remarkably similar in these cells. At both the transcriptome and proteome level, the host response was dominated by IFN production and signalling pathways. The majority of proteins up-regulated in L929 and PaKiT03 cells were also up-regulated at the mRNA (gene) level, and included many important IFN stimulated genes. Further functional experimentation demonstrated that stimulating IFN signalling prior to infection, significantly reduced NBV replication in PaKiT03 cells. Moreover, inhibiting IFN signalling (through specific siRNAs) increased NBV replication in L929 cells. In line with the significant cytopathic effects seen in PaKiT03 cells, we also observed a down-regulation of genes involved in cell-cell junctions, which may be related to the fusogenic effects of NBV. CONCLUSIONS This study provides new multi-dimensional insights into the host response of mammalian cells to NBV infection. We show that IFN activity is capable of reducing NBV replication, although it is unlikely that this is solely responsible for the reduced replication of NBV in L929 cells. The molecular events that underpin the fusogenic cytopathic effects described here will prove valuable for identifying potential therapeutic targets against fusogenic orthoreovirus.
Collapse
Affiliation(s)
- Lawrence Mok
- CSIRO, Australian Animal Health Laboratory, East Geelong, VIC, Australia.,ARC Centre of Excellence in Plant Cell Walls School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - James W Wynne
- CSIRO, Australian Animal Health Laboratory, East Geelong, VIC, Australia.
| | - Mary Tachedjian
- CSIRO, Australian Animal Health Laboratory, East Geelong, VIC, Australia
| | - Brian Shiell
- CSIRO, Australian Animal Health Laboratory, East Geelong, VIC, Australia
| | - Kris Ford
- ARC Centre of Excellence in Plant Cell Walls School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - David A Matthews
- Department of Cellular and Molecular Medicine, School of Medical Sciences, University of Bristol, Bristol, UK
| | - Antony Bacic
- ARC Centre of Excellence in Plant Cell Walls School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Wojtek P Michalski
- CSIRO, Australian Animal Health Laboratory, East Geelong, VIC, Australia
| |
Collapse
|
28
|
Basri C, Arifin EMZ, Takemae H, Hengjan Y, Iida K, Sudarnika E, Zahid A, Soejoedono RD, Susetya H, Sumiarto B, Kobayashi R, Agungpriyono S, Hondo E. Potential risk of viral transmission from flying foxes to domestic animals and humans on the southern coast of West Java, Indonesia. J Vet Med Sci 2017; 79:1615-1626. [PMID: 28724851 PMCID: PMC5627338 DOI: 10.1292/jvms.17-0222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Flying foxes have been considered to be involved in the transmission of serious infectious diseases to humans. Using questionnaires, we aimed to determine the direct and/or indirect contacts of flying foxes in an Indonesian
nature conservation area with domestic animals and humans living in the surrounding area. We surveyed 150 residents of 10 villages in West Java. Villages were classified into 3 groups: inside and/or within 1 km from the outer
border of the conservation area and 1–5 km or 5–10 km away from the reserve’s outer border. Data were collected by direct interview using a structured questionnaire consisting of the respondent characteristics (age, sex and
occupation); histories of contacts between flying foxes and humans, dogs and other domestic animals; and knowledge about infectious diseases, mainly rabies, in flying foxes. We found that flying foxes from the nature conservation
area often enter residential areas at night to look for food, especially during the fruit season. In these residential areas, flying foxes had direct contacts with humans and a few contacts with domestic animals, especially dogs.
People who encounter flying foxes seldom used personal protective equipment, such as leather gloves, goggles and caps. The residents living around the conservation area mostly had poor knowledge about flying foxes and disease
transmission. This situation shows that the population in this region is at a quite high risk for contracting infectious diseases from flying foxes.
Collapse
Affiliation(s)
- Chaerul Basri
- Department of Animal Infectious Diseases and Veterinary Public Health, Faculty of Veterinary Medicine, Bogor Agricultural University, Bogor16680, Indonesia.,Department of Veterinary Public Health, Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta 55281, Indonesia
| | | | - Hitoshi Takemae
- Laboratory of Animal Morphology, Nagoya University, Nagoya 464-8601, Japan
| | - Yupadee Hengjan
- Laboratory of Animal Morphology, Nagoya University, Nagoya 464-8601, Japan
| | - Keisuke Iida
- Laboratory of Animal Morphology, Nagoya University, Nagoya 464-8601, Japan
| | - Etih Sudarnika
- Department of Animal Infectious Diseases and Veterinary Public Health, Faculty of Veterinary Medicine, Bogor Agricultural University, Bogor16680, Indonesia
| | - Abdul Zahid
- Department of Animal Infectious Diseases and Veterinary Public Health, Faculty of Veterinary Medicine, Bogor Agricultural University, Bogor16680, Indonesia
| | - Retno Damayanti Soejoedono
- Department of Animal Infectious Diseases and Veterinary Public Health, Faculty of Veterinary Medicine, Bogor Agricultural University, Bogor16680, Indonesia
| | - Heru Susetya
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta 55281, Indonesia
| | - Bambang Sumiarto
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta 55281, Indonesia
| | - Ryosuke Kobayashi
- Laboratory of Animal Morphology, Nagoya University, Nagoya 464-8601, Japan
| | - Srihadi Agungpriyono
- Department of Animal Infectious Diseases and Veterinary Public Health, Faculty of Veterinary Medicine, Bogor Agricultural University, Bogor16680, Indonesia
| | - Eiichi Hondo
- Laboratory of Animal Morphology, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
29
|
First isolation and characterization of pteropine orthoreoviruses in fruit bats in the Philippines. Arch Virol 2017; 162:1529-1539. [PMID: 28190201 DOI: 10.1007/s00705-017-3251-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/17/2017] [Indexed: 12/25/2022]
Abstract
Pteropine orthoreovirus (PRV) causes respiratory tract illness (RTI) in humans. PRVs were isolated from throat swabs collected from 9 of 91 wild bats captured on the Mindanao Islands, The Philippines, in 2013. The nucleic acid sequence of the whole genome of each of these isolates was determined. Phylogenetic analysis based on predicted amino acid sequences indicated that the isolated PRVs were novel strains in which re-assortment events had occurred in the viral genome. Serum specimens collected from 76 of 84 bats were positive for PRV-neutralizing antibodies suggesting a high prevalence of PRV in wild bats in the Philippines. The bat-borne PRVs isolated in the Philippines were characterized in comparison to an Indonesian PRV isolate, Miyazaki-Bali/2007 strain, recovered from a human patient, revealing that the Philippine bat-borne PRVs had similar characteristics in terms of antigenicity to those of the Miyazaki-Bali/2007 strain, but with a slight difference (e.g., growth capacity in vitro). The impact of the Philippine bat-borne PRVs should be studied in human RTI cases in the Philippines.
Collapse
|
30
|
Kanai Y, Kobayashi T. [A plasmid-based reverse genetics system for rotaviruses]. Uirusu 2017; 67:99-110. [PMID: 30369541 DOI: 10.2222/jsv.67.99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Rotavirus (RV), a non-enveloped icosahedral virus containing eleven gene segments of double-stranded RNA, is the leading cause of severe, acute diarrhea among infants and young children worldwide. Safe and effective rotavirus vaccines have been available since 2006, and have markedly reduced the number of deaths by severe gastroenteritis. However, rotaviruses are still responsible for approximately 200,000 deaths annually worldwide. Reverse genetics systems for the manipulation of viral genomes are a powerful approach for studying viral replication and pathogenesis, and for developing vaccines and viral vectors. The understanding of the molecular mechanisms underlying RV pathogenesis, or development of next generation vaccines, has been hampered by the lack of a complete reverse genetics system. Recently, we developed a novel reverse genetics system which enabled recovery of recombinant RVs entirely from cloned cDNAs. This new strategy requires co-expression of a small transmembrane protein that accelerates cell-to-cell fusion and vaccinia virus capping enzyme. In this review, the strategies and history of the development of reverse genetics systems for the family Reoviridae are described.
Collapse
Affiliation(s)
- Yuta Kanai
- Department of Virology, Research Institute for Microbial Diseases, Osaka University
| | - Takeshi Kobayashi
- Department of Virology, Research Institute for Microbial Diseases, Osaka University
| |
Collapse
|
31
|
Betancourt WQ, Gerba CP. Rethinking the Significance of Reovirus in Water and Wastewater. FOOD AND ENVIRONMENTAL VIROLOGY 2016; 8:161-73. [PMID: 27318494 PMCID: PMC7091427 DOI: 10.1007/s12560-016-9250-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/13/2016] [Indexed: 05/19/2023]
Abstract
The genus Orthoreovirus contains nonenveloped viruses with double-stranded gene segments encased in a double-layered icosahedral capsid shell. These features constitute major determinants of virion stability in the environment and virion resistance against physical and chemical agents. Reovirus (ReoV) is the general term most commonly used for all virus strains that infect humans and nonhuman animals. Several studies have demonstrated the frequent occurrence of ReoV in wastewaters and natural waters, including surface and ground waters from different geographical areas. Most of these studies have reported higher concentrations of ReoV than any other enteric virus analyzed. They are more commonly isolated in chlorine-disinfected wastewaters than other enteric viruses, and appear to survive longer in water. The ability of ReoV to form large aggregates, even with different types of enteric viruses (e.g., poliovirus) and their ability to undergo mechanisms of gene segment reassortment among different serotypes may also explain their greater stability. Different approaches have been applied for concentration of ReoV from water; however, the recovery efficiency of the filtration methods has not been fully evaluated. Recently, molecular methods for identification of ReoV strains and quantification of virus genome have been developed. Studies have shown that the overall detection sensitivity of ReoV RNA is enhanced through initial replication of infectious virions in cell culture. More studies are needed to specifically address unresolved issues about the fate and distribution of ReoV in the environment since this virus is not commonly included in virological investigations.
Collapse
Affiliation(s)
- Walter Q Betancourt
- Department of Soil, Water and Environmental Science, University of Arizona, Tucson, AZ, USA.
| | - Charles P Gerba
- Department of Soil, Water and Environmental Science, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
32
|
Yang XL, Tan B, Wang B, Li W, Wang N, Luo CM, Wang MN, Zhang W, Li B, Peng C, Ge XY, Zhang LB, Shi ZL. Isolation and identification of bat viruses closely related to human, porcine and mink orthoreoviruses. J Gen Virol 2016; 96:3525-3531. [PMID: 26475793 PMCID: PMC7081072 DOI: 10.1099/jgv.0.000314] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bats have been identified as natural reservoirs of many viruses, including reoviruses. Recent studies have demonstrated the interspecies transmission of bat reoviruses to humans. In this study, we report the isolation and molecular characterization of six strains of mammalian orthoreovirus (MRV) from Hipposideros and Myotis spp. These isolates were grouped into MRV serotype 1, 2 or 3 based on the sequences of the S1 gene, which encodes the outer coat protein s1. Importantly, we found that three of six bat MRV strains shared high similarity with MRVs isolated from diseased minks, piglets or humans based on the S1 segment, suggesting that interspecies transmission has occurred between bats and humans or animals. Phylogenetic analyses based on the 10 segments showed that the genomic segments of these bat MRVs had different evolution lineages, suggesting that these bat MRVs may have arisen through reassortment of MRVs of different origins.
Collapse
Affiliation(s)
- Xing-Lou Yang
- Key Laboratory of Special Pathogens and Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Bing Tan
- Key Laboratory of Special Pathogens and Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Bo Wang
- Key Laboratory of Special Pathogens and Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Wen Li
- Key Laboratory of Special Pathogens and Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Ning Wang
- Key Laboratory of Special Pathogens and Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Chu-Ming Luo
- Key Laboratory of Special Pathogens and Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Mei-Niang Wang
- Key Laboratory of Special Pathogens and Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Wei Zhang
- Key Laboratory of Special Pathogens and Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Bei Li
- Key Laboratory of Special Pathogens and Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Cheng Peng
- Key Laboratory of Special Pathogens and Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Xing-Yi Ge
- Key Laboratory of Special Pathogens and Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Li-Biao Zhang
- Guangdong Entomological Institute, Guangzhou, PR China
| | - Zheng-Li Shi
- Key Laboratory of Special Pathogens and Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| |
Collapse
|
33
|
Serologic assays for the detection and strain identification of Pteropine orthoreovirus. Emerg Microbes Infect 2016; 5:e44. [PMID: 27165561 PMCID: PMC4893542 DOI: 10.1038/emi.2016.35] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/25/2015] [Accepted: 01/18/2016] [Indexed: 01/01/2023]
Abstract
Pteropine orthoreovirus (PRV), potentially of bat origin, is reported to be a causative agent of emerging respiratory tract infections among humans in Southeast Asia. We evaluated the efficacy of serologic assays using the major outer capsid and cell attachment proteins (CAP) of PRV strains in the screening, confirmation and identification of three groups of human PRV infections; Indonesian/Japanese, Indonesian/Hong Kong and Malaysian strains. The different serologic assays were tested using rabbit polyclonal antisera raised against these proteins of selected PRV strains, and validation was carried out using sera from a Miyazaki-Bali/2007 PRV-infected patient and the patient's contacts. The results of this study showed that rabbit polyclonal antisera raised against the CAP of the Miyazaki-Bali/2007 PRV strain showed the highest reactivity to the Miyazaki-Bali/2007 PRV and to a lesser extent, cross-reactivity with the HK23629/07 and Melaka PRVs, respectively. Neutralization activity against the Miyazaki-Bali/2007 PRV was observed using rabbit anti-Miyazaki-Bali/2007 PRV CAP (320) but not with rabbit anti-HK23629/07 (<20) and Melaka (<20) PRV CAP. This lack of cross-neutralization, suggests the potential for human reinfection with different strains. The use of sera collected from contacts of the Miyazaki-Bali/2007 PRV-infected patient suggested that human-to-human infections with PRV are unlikely. Previously reported cases of PRV infections among human have been mild. However, the expanding geographic distribution of these viruses, of which its virulence remains unknown, warrants close monitoring to enable the development of prevention and control strategies in the event that a change in virulence occurs.
Collapse
|
34
|
Isolation of a Novel Fusogenic Orthoreovirus from Eucampsipoda africana Bat Flies in South Africa. Viruses 2016; 8:65. [PMID: 27011199 PMCID: PMC4810255 DOI: 10.3390/v8030065] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/26/2016] [Accepted: 02/23/2016] [Indexed: 12/29/2022] Open
Abstract
We report on the isolation of a novel fusogenic orthoreovirus from bat flies (Eucampsipoda africana) associated with Egyptian fruit bats (Rousettus aegyptiacus) collected in South Africa. Complete sequences of the ten dsRNA genome segments of the virus, tentatively named Mahlapitsi virus (MAHLV), were determined. Phylogenetic analysis places this virus into a distinct clade with Baboon orthoreovirus, Bush viper reovirus and the bat-associated Broome virus. All genome segments of MAHLV contain a 5' terminal sequence (5'-GGUCA) that is unique to all currently described viruses of the genus. The smallest genome segment is bicistronic encoding for a 14 kDa protein similar to p14 membrane fusion protein of Bush viper reovirus and an 18 kDa protein similar to p16 non-structural protein of Baboon orthoreovirus. This is the first report on isolation of an orthoreovirus from an arthropod host associated with bats, and phylogenetic and sequence data suggests that MAHLV constitutes a new species within the Orthoreovirus genus.
Collapse
|
35
|
Reverse Genetics for Fusogenic Bat-Borne Orthoreovirus Associated with Acute Respiratory Tract Infections in Humans: Role of Outer Capsid Protein σC in Viral Replication and Pathogenesis. PLoS Pathog 2016; 12:e1005455. [PMID: 26901882 PMCID: PMC4762779 DOI: 10.1371/journal.ppat.1005455] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 01/24/2016] [Indexed: 12/26/2022] Open
Abstract
Nelson Bay orthoreoviruses (NBVs) are members of the fusogenic orthoreoviruses and possess 10-segmented double-stranded RNA genomes. NBV was first isolated from a fruit bat in Australia more than 40 years ago, but it was not associated with any disease. However, several NBV strains have been recently identified as causative agents for respiratory tract infections in humans. Isolation of these pathogenic bat reoviruses from patients suggests that NBVs have evolved to propagate in humans in the form of zoonosis. To date, no strategy has been developed to rescue infectious viruses from cloned cDNA for any member of the fusogenic orthoreoviruses. In this study, we report the development of a plasmid-based reverse genetics system free of helper viruses and independent of any selection for NBV isolated from humans with acute respiratory infection. cDNAs corresponding to each of the 10 full-length RNA gene segments of NBV were cotransfected into culture cells expressing T7 RNA polymerase, and viable NBV was isolated using a plaque assay. The growth kinetics and cell-to-cell fusion activity of recombinant strains, rescued using the reverse genetics system, were indistinguishable from those of native strains. We used the reverse genetics system to generate viruses deficient in the cell attachment protein σC to define the biological function of this protein in the viral life cycle. Our results with σC-deficient viruses demonstrated that σC is dispensable for cell attachment in several cell lines, including murine fibroblast L929 cells but not in human lung epithelial A549 cells, and plays a critical role in viral pathogenesis. We also used the system to rescue a virus that expresses a yellow fluorescent protein. The reverse genetics system developed in this study can be applied to study the propagation and pathogenesis of pathogenic NBVs and in the generation of recombinant NBVs for future vaccines and therapeutics. Nelson Bay orthoreoviruses (NBVs) are members of the fusogenic orthoreoviruses that have various host species, including reptiles, birds, and mammals. Recently, several NBV strains have been isolated from patients with acute respiratory tract infections. Isolation of these pathogenic reoviruses raises concerns about the potential emerging infections of bat-borne orthoreoviruses in humans. The development of an entirely plasmid-based reverse genetics system for double-stranded RNA viruses has trailed other systems of major animal RNA virus groups because of the technical complexities involved in the manipulation of genomes composed of 10 or more segments. In this study, we developed a plasmid-based reverse genetics system for a pathogenic NBV strain. We used this system to generate viruses incapable of expressing the cell attachment protein σC and to rescue a replication-competent virus that expresses a yellow fluorescent protein. Our studies using σC-deficient viruses suggest that NBVs may engage multiple independent viral ligands and cellular receptors for efficient cell attachment and viral pathogenesis, thus providing new insight into the biology of orthoreoviruses. The reverse genetics approach described in this study can be exploited for fusogenic orthoreovirus biology and used to develop vaccines, diagnostics, and therapeutics.
Collapse
|
36
|
Singh H, Yoshikawa T, Kobayashi T, Fukushi S, Tani H, Taniguchi S, Fukuma A, Yang M, Sugamata M, Shimojima M, Saijo M. Rapid whole genome sequencing of Miyazaki-Bali/2007 Pteropine orthoreovirus by modified rolling circular amplification with adaptor ligation - next generation sequencing. Sci Rep 2015; 5:16517. [PMID: 26558341 PMCID: PMC4642344 DOI: 10.1038/srep16517] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/12/2015] [Indexed: 12/19/2022] Open
Abstract
The emergence of orthoreoviruses as the causative agent of human respiratory illness over the past few years has led to a demand to determine their viral genome sequences. The whole genome sequencing of such RNA viruses using traditional methods, such as Sanger dideoxy sequencing following rapid amplification of cDNA ends presents a laborious challenge due to the numerous preparatory steps required before sequencing can commence. We developed a practical, time-efficient novel combination method capable of reducing the total time required from months to less than a week in the determination of whole genome sequence of Pteropine orthoreoviruses (PRV); through a combination of viral RNA purification and enrichment, adaptor ligation, reverse transcription, cDNA circularization and amplification, and next generation sequencing. We propose to call the method "modified rolling circular amplification with adaptor ligation - next generation sequencing (mRCA-NGS)". Here, we describe the technological focus and advantage of mRCA-NGS and its expansive application, exemplified through the phylogenetic understanding of the Miyazaki-Bali/2007 PRV.
Collapse
Affiliation(s)
- Harpal Singh
- Department of Intelligent Mechanical Systems, Graduate School of Systems Design, Tokyo Metropolitan University, Tokyo, 192-0065, Japan.,Special Pathogens Laboratory, Department of Virology 1, National Institute of Infectious Diseases, Tokyo, 208-0011, Japan
| | - Tomoki Yoshikawa
- Special Pathogens Laboratory, Department of Virology 1, National Institute of Infectious Diseases, Tokyo, 208-0011, Japan
| | - Takeshi Kobayashi
- Laboratory of Viral Replication, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Shuetsu Fukushi
- Special Pathogens Laboratory, Department of Virology 1, National Institute of Infectious Diseases, Tokyo, 208-0011, Japan
| | - Hideki Tani
- Special Pathogens Laboratory, Department of Virology 1, National Institute of Infectious Diseases, Tokyo, 208-0011, Japan
| | - Satoshi Taniguchi
- Special Pathogens Laboratory, Department of Virology 1, National Institute of Infectious Diseases, Tokyo, 208-0011, Japan
| | - Aiko Fukuma
- Special Pathogens Laboratory, Department of Virology 1, National Institute of Infectious Diseases, Tokyo, 208-0011, Japan
| | - Ming Yang
- Department of Intelligent Mechanical Systems, Graduate School of Systems Design, Tokyo Metropolitan University, Tokyo, 192-0065, Japan
| | - Masami Sugamata
- Department of Hygiene and Public Health, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Masayuki Shimojima
- Special Pathogens Laboratory, Department of Virology 1, National Institute of Infectious Diseases, Tokyo, 208-0011, Japan
| | - Masayuki Saijo
- Special Pathogens Laboratory, Department of Virology 1, National Institute of Infectious Diseases, Tokyo, 208-0011, Japan
| |
Collapse
|
37
|
Voon K, Tan YF, Leong PP, Teng CL, Gunnasekaran R, Ujang K, Chua KB, Wang LF. Pteropine orthoreovirus infection among out-patients with acute upper respiratory tract infection in Malaysia. J Med Virol 2015; 87:2149-53. [PMID: 26106066 PMCID: PMC7167058 DOI: 10.1002/jmv.24304] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2015] [Indexed: 12/22/2022]
Abstract
This study aims to assess the incidence rate of Pteropine orthreovirus (PRV) infection in patients with acute upper respiratory tract infection (URTI) in a suburban setting in Malaysia, where bats are known to be present in the neighborhood. Using molecular detection of PRVs directly from oropharyngeal swabs, our study demonstrates that PRV is among one of the common causative agents of acute URTI with cough and sore throat as the commonest presenting clinical features. Phylogenetic analysis on partial major outer and inner capsid proteins shows that these PRV strains are closely related to Melaka and Kampar viruses previously isolated in Malaysia. Further study is required to determine the public health significance of PRV infection in Southeast Asia, especially in cases where co‐infection with other pathogens may potentially lead to different clinical outcomes. J. Med. Virol. 87:2149–2153, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kenny Voon
- International Medical University, Kuala Lumpur, Malaysia
| | - Yeh Fong Tan
- International Medical University, Kuala Lumpur, Malaysia
| | - Pooi Pooi Leong
- University Tunku Abdul Rahman, Sungai Long, Selangor, Malaysia
| | | | | | | | | | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore
| |
Collapse
|
38
|
Ogasawara Y, Ueda H, Kirisawa R, Kikuchi N. Isolation and genomic characterization of a novel orthoreovirus from a brown-eared bulbul (Hypsipetes amaurotis) in Japan. J Gen Virol 2015; 96:1777-86. [DOI: 10.1099/vir.0.000110] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
39
|
Singh H, Shimojima M, Ngoc TC, Quoc Huy NV, Chuong TX, Le Van A, Saijo M, Yang M, Sugamata M. Serological evidence of human infection with Pteropine orthoreovirus in Central Vietnam. J Med Virol 2015; 87:2145-8. [PMID: 26010233 PMCID: PMC5157728 DOI: 10.1002/jmv.24274] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2015] [Indexed: 12/22/2022]
Abstract
Pteropine orthoreovirus, potentially of bat origin, has been reported to cause respiratory tract infections among human beings in Southeast Asia. Twelve IgG ELISA‐positive cases with antibodies against Pteropine orthoreovirus were detected among 272 human serum samples collected between March and June 2014 from in and around Hue City, Central Vietnam. These 12 cases were IgM ELISA negative. Neutralizing antibodies were also detected among six of these cases with the highest titer of 1:1,280 in 2 cases (both female, 32 and 68 years old, respectively). This is the first report of human infection with Pteropine orthoreovirus in Central Vietnam. These findings indicate the need for surveillance on Pteropine orthoreovirus infections in Southeast Asia to enable prevention and control strategies to be developed should a change in virulence occur. J. Med. Virol. 87:2145–2148, 2015. © 2015 The Authors. Journal of Medical Virology Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Harpal Singh
- Department of Intelligent Mechanical Systems, Graduate School of System Design, Tokyo Metropolitan University, Tokyo, Japan.,Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masayuki Shimojima
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Thanh Cao Ngoc
- Department of Obstetrics and Gynecology, Hue University of Medicine and Pharmacy, Hue City, Vietnam
| | - Nguyen Vu Quoc Huy
- Department of Obstetrics and Gynecology, Hue University of Medicine and Pharmacy, Hue City, Vietnam
| | - Tran Xuan Chuong
- Department of Infectious Diseases, Hue University of Medicine and Pharmacy, Hue City, Vietnam
| | - An Le Van
- Department of Microbiology, Hue University of Medicine and Pharmacy, Hue City, Vietnam
| | - Masayuki Saijo
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ming Yang
- Department of Intelligent Mechanical Systems, Graduate School of System Design, Tokyo Metropolitan University, Tokyo, Japan
| | - Masami Sugamata
- Department of Infectious Diseases, Hue University of Medicine and Pharmacy, Hue City, Vietnam.,Department of Microbiology, Hue University of Medicine and Pharmacy, Hue City, Vietnam.,Department of Hygiene and Public Health, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| |
Collapse
|
40
|
A new member of the Pteropine Orthoreovirus species isolated from fruit bats imported to Italy. INFECTION GENETICS AND EVOLUTION 2014; 30:55-58. [PMID: 25497353 DOI: 10.1016/j.meegid.2014.12.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/14/2014] [Accepted: 12/03/2014] [Indexed: 12/19/2022]
Abstract
A novel member of the Pteropine Orthoreovirus species has been isolated and sequenced for the whole genome from flying foxes (Pteropus vampyrus) imported to Italy from Indonesia. The new isolate named Indonesia/2010 is genetically similar to Melaka virus which has been the first virus of this species to be shown to be responsible for human respiratory disease. Our findings highlight the importance of flying foxes as vectors of potentially zoonotic viruses and the biological hazard that lies in the import of animals from geographical areas that are ecologically diverse from Europe.
Collapse
|
41
|
Ciechonska M, Duncan R. Reovirus FAST proteins: virus-encoded cellular fusogens. Trends Microbiol 2014; 22:715-24. [PMID: 25245455 DOI: 10.1016/j.tim.2014.08.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/06/2014] [Accepted: 08/08/2014] [Indexed: 10/24/2022]
Abstract
Reovirus fusion-associated small transmembrane (FAST) proteins are the only known nonenveloped virus fusogens and are dedicated to inducing cell-to-cell, not virus-cell, membrane fusion. Numerous structural and functional attributes distinguish this novel family of viral fusogens from all enveloped virus membrane fusion proteins. Both families of viral fusogens play key roles in virus dissemination and pathogenicity, but employ different mechanisms to mediate membrane apposition and merger. However, convergence of these distinct families of viral membrane fusion proteins on common pathways needed for pore expansion and syncytium formation suggests syncytiogenesis represents a cellular response to the presence of cell-cell fusion pores. Together, FAST proteins and enveloped virus fusion proteins provide exceptional insights into the ubiquitous process of cell-cell membrane fusion and syncytium formation.
Collapse
Affiliation(s)
- Marta Ciechonska
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Roy Duncan
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada; Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada; Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.
| |
Collapse
|
42
|
Abstract
Members of the genus Orthoreovirus in the family Reoviridae are nonenveloped, icosahedral viruses. Their genomes contain 10 segments of double-stranded RNA (dsRNA). The orthoreoviruses are divided into two subgroups, the fusogenic and nonfusogenic reoviruses, based on the ability of the virus to induce cell-to-cell fusion. The fusogenic subgroup consists of the avian reovirus, baboon reovirus, pteropine reovirus, and reptilian reovirus, whereas the nonfusogenic subgroup consists of the prototypical mammalian reovirus (MRV) species. MRVs are highly tractable experimental models for studies of segmented dsRNA virus replication and pathogenesis. Moreover, MRVs can selectively kill tumor cells and have been evaluated as oncolytic agents in clinical trials. This review provides a brief overview of current knowledge on the virological features of MRVs.
Collapse
Affiliation(s)
- Takeshi Kobayashi
- International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University
| |
Collapse
|