1
|
Ding H, Nguyen HT, Li W, Deshpande A, Zhang S, Jiang F, Zhang Z, Anang S, Mothes W, Sodroski J, Kappes JC. Inducible cell lines producing replication-defective human immunodeficiency virus particles containing envelope glycoproteins stabilized in a pretriggered conformation. J Virol 2024; 98:e0172024. [PMID: 39508605 PMCID: PMC11650979 DOI: 10.1128/jvi.01720-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 11/15/2024] Open
Abstract
During the process by which human immunodeficiency virus (HIV-1) enters cells, the envelope glycoprotein (Env) trimer on the virion surface engages host cell receptors. Binding to the receptor CD4 induces Env to undergo transitions from a pretriggered, "closed" (State-1) conformation to more "open" (State 2/3) conformations. Most broadly neutralizing antibodies (bNAbs), which are difficult to elicit, recognize the pretriggered (State-1) conformation. More open Env conformations are recognized by poorly neutralizing antibodies (pNAbs), which are readily elicited during natural infection and vaccination with current Env immunogens. Env heterogeneity likely contributes to HIV-1 persistence by skewing antibody responses away from the pretriggered conformation. The conformationally flexible gp160 Env precursor on the infected cell or virion surface potentially presents multiple pNAb epitopes to the host immune system. Although proteolytic cleavage to produce the functional, mature Env trimer [(gp120/gp41)3] stabilizes State-1, many primary HIV-1 Envs spontaneously sample more open conformations. Here, we establish inducible cell lines that produce replication-defective HIV-1 particles with Env trimers stabilized in a pretriggered conformation. The mature Env is enriched on virus-like particles (VLPs). Using complementary approaches, we estimate an average of 25-50 Env trimers on each VLP. The stabilizing changes in Env limit the natural conformational heterogeneity of the VLP Env trimers, allowing recognition by bNAbs but not pNAbs. These defective VLPs provide a more homogeneous source of pretriggered Env trimers in a native membrane environment. Thus, these VLPs may facilitate the characterization of this functionally important Env conformation and its interaction with the immune system.IMPORTANCEA major impediment to the development of an effective HIV/AIDS vaccine is the inefficiency with which human immunodeficiency virus (HIV-1) envelope glycoproteins elicit antibodies that neutralize multiple virus strains. Neutralizing antibodies recognize a particular shape of the envelope glycoproteins that resides on the viral membrane before the virus engages the host cell. Here, we report the creation of stable cell lines that inducibly produce non-infectious HIV-like particles. The normally flexible envelope glycoprotein spikes on these virus-like particles have been stabilized in a conformation that is recognized by broadly neutralizing antibodies. These virus-like particles allow the study of the envelope glycoprotein conformation, its modification by sugars, and its ability to elicit desired neutralizing antibodies.
Collapse
Affiliation(s)
- Haitao Ding
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Hanh T. Nguyen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Wenwei Li
- Department of Microbial Pathogenesis, Yale University, New Haven, Connecticut, USA
| | - Ashlesha Deshpande
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Shijian Zhang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Fan Jiang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Zhiqing Zhang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Saumya Anang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University, New Haven, Connecticut, USA
| | - Joseph Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - John C. Kappes
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, Alabama, USA
| |
Collapse
|
2
|
Zhang P, Gorman J, Tsybovsky Y, Lu M, Liu Q, Gopan V, Singh M, Lin Y, Miao H, Seo Y, Kwon A, Olia AS, Chuang GY, Geng H, Lai YT, Zhou T, Mascola JR, Mothes W, Kwong PD, Lusso P. Design of soluble HIV-1 envelope trimers free of covalent gp120-gp41 bonds with prevalent native-like conformation. Cell Rep 2024; 43:114518. [PMID: 39028623 PMCID: PMC11459465 DOI: 10.1016/j.celrep.2024.114518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/21/2024] Open
Abstract
Soluble HIV-1 envelope (Env) trimers may serve as effective vaccine immunogens. The widely utilized SOSIP trimers have been paramount for structural studies, but the disulfide bond they feature between gp120 and gp41 constrains intersubunit mobility and may alter antigenicity. Here, we report an alternative strategy to generate stabilized soluble Env trimers free of covalent gp120-gp41 bonds. Stabilization was achieved by introducing an intrasubunit disulfide bond between the inner and outer domains of gp120, defined as interdomain lock (IDL). Correctly folded IDL trimers displaying a native-like antigenic profile were produced for HIV-1 Envs of different clades. Importantly, the IDL design abrogated CD4 binding while not affecting recognition by potent neutralizing antibodies to the CD4-binding site. By cryoelectron microscopy, IDL trimers were shown to adopt a closed prefusion configuration, while single-molecule fluorescence resonance energy transfer documented a high prevalence of native-like conformation. Thus, IDL trimers may be promising candidates as vaccine immunogens.
Collapse
Affiliation(s)
- Peng Zhang
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Maolin Lu
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Qingbo Liu
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Vinay Gopan
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mamta Singh
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yin Lin
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Huiyi Miao
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yuna Seo
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alice Kwon
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adam S Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hui Geng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yen-Ting Lai
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; ModeX Therapeutics, 20 Riverside Road, Weston, MA 02493, USA
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paolo Lusso
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
3
|
Zhang Z, Anang S, Nguyen HT, Fritschi C, Smith AB, Sodroski JG. Membrane HIV-1 envelope glycoproteins stabilized more strongly in a pretriggered conformation than natural virus Envs. iScience 2024; 27:110141. [PMID: 38979012 PMCID: PMC11228805 DOI: 10.1016/j.isci.2024.110141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/08/2024] [Accepted: 05/27/2024] [Indexed: 07/10/2024] Open
Abstract
The pretriggered conformation of the human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer ((gp120/gp41)3) is targeted by virus entry inhibitors and broadly neutralizing antibodies (bNAbs). The lability of pretriggered Env has hindered its characterization. Here, we produce membrane Env variants progressively stabilized in pretriggered conformations, in some cases to a degree beyond that found in natural HIV-1 strains. Pretriggered Env stability correlated with stronger trimer subunit association, increased virus sensitivity to bNAb neutralization, and decreased capacity to mediate cell-cell fusion and virus entry. For some highly stabilized Env mutants, after virus-host cell engagement, the normally inaccessible gp120 V3 region on an Env intermediate became targetable by otherwise poorly neutralizing antibodies. Thus, evolutionary pressure on HIV-1 Env to maintain trimer integrity, responsiveness to the CD4 receptor, and resistance to antibodies modulates pretriggered Env stability. The strongly stabilized pretriggered membrane Envs reported here will facilitate further characterization of this functionally important conformation.
Collapse
Affiliation(s)
- Zhiqing Zhang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Saumya Anang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Hanh T. Nguyen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher Fritschi
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amos B. Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joseph G. Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
4
|
Zhang Z, Wang Q, Nguyen HT, Chen HC, Chiu TJ, Smith Iii AB, Sodroski JG. Alterations in gp120 glycans or the gp41 fusion peptide-proximal region modulate the stability of the human immunodeficiency virus (HIV-1) envelope glycoprotein pretriggered conformation. J Virol 2023; 97:e0059223. [PMID: 37696048 PMCID: PMC10537687 DOI: 10.1128/jvi.00592-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/07/2023] [Indexed: 09/13/2023] Open
Abstract
The human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer mediates entry into host cells by binding receptors, CD4 and CCR5/CXCR4, and fusing the viral and cell membranes. In infected cells, cleavage of the gp160 Env precursor yields the mature Env trimer, with gp120 exterior and gp41 transmembrane Env subunits. Env cleavage stabilizes the State-1 conformation, which is the major target for broadly neutralizing antibodies, and decreases the spontaneous sampling of more open Env conformations that expose epitopes for poorly neutralizing antibodies. During HIV-1 entry into cells, CD4 binding drives the metastable Env from a pretriggered (State-1) conformation into more "open," lower-energy states. Here, we report that changes in two dissimilar elements of the HIV-1 Env trimer, namely particular gp120 glycans and the gp41 fusion peptide-proximal region (FPPR), can independently modulate the stability of State 1. Individual deletion of several gp120 glycans destabilized State 1, whereas removal of a V1 glycan resulted in phenotypes indicative of a more stable pretriggered Env conformation. Likewise, some alterations of the gp41 FPPR decreased the level of spontaneous shedding of gp120 from the Env trimer and stabilized the pretriggered State-1 Env conformation. State-1-stabilizing changes were additive and could suppress the phenotypes associated with State-1-destabilizing alterations in Env. Our results support a model in which multiple protein and carbohydrate elements of the HIV-1 Env trimer additively contribute to the stability of the pretriggered (State-1) conformation. The Env modifications identified in this study will assist efforts to characterize the structure and immunogenicity of the metastable State-1 conformation. IMPORTANCE The elicitation of antibodies that neutralize multiple strains of HIV-1 is an elusive goal that has frustrated the development of an effective vaccine. The pretriggered shape of the HIV-1 envelope glycoprotein (Env) spike on the virus surface is the major target for such broadly neutralizing antibodies. The "closed" pretriggered Env shape resists the binding of most antibodies but is unstable and often assumes "open" shapes that elicit ineffective antibodies. We identified particular changes in both the protein and the sugar components of the Env trimer that stabilize the pretriggered shape. Combinations of these changes were even more effective at stabilizing the pretriggered Env than the individual changes. Stabilizing changes in Env could counteract the effect of Env changes that destabilize the pretriggered shape. Locking Env in its pretriggered shape will assist efforts to understand the Env spike on the virus and to incorporate this shape into vaccines.
Collapse
Affiliation(s)
- Zhiqing Zhang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute , Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School , Boston, Massachusetts, USA
| | - Qian Wang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute , Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School , Boston, Massachusetts, USA
| | - Hanh T Nguyen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute , Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School , Boston, Massachusetts, USA
| | - Hung-Ching Chen
- Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania, USA
| | - Ta-Jung Chiu
- Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania, USA
| | - Amos B Smith Iii
- Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania, USA
| | - Joseph G Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute , Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School , Boston, Massachusetts, USA
| |
Collapse
|
5
|
Tong T, D’Addabbo A, Xu J, Chawla H, Nguyen A, Ochoa P, Crispin M, Binley JM. Impact of stabilizing mutations on the antigenic profile and glycosylation of membrane-expressed HIV-1 envelope glycoprotein. PLoS Pathog 2023; 19:e1011452. [PMID: 37549185 PMCID: PMC10434953 DOI: 10.1371/journal.ppat.1011452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/17/2023] [Accepted: 07/16/2023] [Indexed: 08/09/2023] Open
Abstract
Recent HIV-1 vaccine development has centered on "near native" soluble envelope glycoprotein (Env) trimers that are artificially stabilized laterally (between protomers) and apically (between gp120 and gp41). These mutations have been leveraged for use in membrane-expressed Env mRNA vaccines, although their effects in this context are unclear. To address this question, we used virus-like particle (VLP) produced in 293T cells. Uncleaved (UNC) trimers were laterally unstable upon gentle lysis from membranes. However, gp120/gp41 processing improved lateral stability. Due to inefficient gp120/gp41 processing, UNC is incorporated into VLPs. A linker between gp120 and gp41 neither improved trimer stability nor its antigenic profile. An artificially introduced enterokinase cleavage site allowed post-expression gp120/gp41 processing, concomitantly increasing trimer stability. Gp41 N-helix mutations I559P and NT1-5 imparted lateral trimer stability, but also reduced gp120/gp41 processing and/or impacted V2 apex and interface NAb binding. I559P consistently reduced recognition by HIV+ human plasmas, further supporting antigenic differences. Mutations in the gp120 bridging sheet failed to stabilize membrane trimers in a pre-fusion conformation, and also reduced gp120/gp41 processing and exposed non-neutralizing epitopes. Reduced glycan maturation and increased sequon skipping were common side effects of these mutations. In some cases, this may be due to increased rigidity which limits access to glycan processing enzymes. In contrast, viral gp120 did not show glycan skipping. A second, minor species of high mannose gp160 was unaffected by any mutations and instead bypasses normal folding and glycan maturation. Including the full gp41 cytoplasmic tail led to markedly reduced gp120/gp41 processing and greatly increased the proportion of high mannose gp160. Remarkably, monoclonal antibodies were unable to bind to this high mannose gp160 in native protein gels. Overall, our findings suggest caution in leveraging stabilizing mutations in nucleic acid-based immunogens to ensure they impart valuable membrane trimer phenotypes for vaccine use.
Collapse
Affiliation(s)
- Tommy Tong
- San Diego Biomedical Research Institute, San Diego, California, United States of America
| | - Alessio D’Addabbo
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Jiamin Xu
- San Diego Biomedical Research Institute, San Diego, California, United States of America
| | - Himanshi Chawla
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Albert Nguyen
- San Diego Biomedical Research Institute, San Diego, California, United States of America
| | - Paola Ochoa
- San Diego Biomedical Research Institute, San Diego, California, United States of America
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - James M. Binley
- San Diego Biomedical Research Institute, San Diego, California, United States of America
| |
Collapse
|
6
|
Nguyen HT, Wang Q, Anang S, Sodroski JG. Characterization of the Human Immunodeficiency Virus (HIV-1) Envelope Glycoprotein Conformational States on Infectious Virus Particles. J Virol 2023; 97:e0185722. [PMID: 36815832 PMCID: PMC10062176 DOI: 10.1128/jvi.01857-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
Human immunodeficiency virus (HIV-1) entry into cells involves triggering of the viral envelope glycoprotein (Env) trimer ([gp120/gp41]3) by the primary receptor, CD4, and coreceptors, CCR5 or CXCR4. The pretriggered (State-1) conformation of the mature (cleaved) Env is targeted by broadly neutralizing antibodies (bNAbs), which are inefficiently elicited compared with poorly neutralizing antibodies (pNAbs). Here, we characterize variants of the moderately triggerable HIV-1AD8 Env on virions produced by an infectious molecular proviral clone; such virions contain more cleaved Env than pseudotyped viruses. We identified three types of cleaved wild-type AD8 Env trimers on virions: (i) State-1-like trimers preferentially recognized by bNAbs and exhibiting strong subunit association; (ii) trimers recognized by pNAbs directed against the gp120 coreceptor-binding region and exhibiting weak, detergent-sensitive subunit association; and (iii) a minor gp41-only population. The first Env population was enriched and the other Env populations reduced by introducing State-1-stabilizing changes in the AD8 Env or by treatment of the virions with crosslinker or the State-1-preferring entry inhibitor, BMS-806. These stabilized AD8 Envs were also more resistant to gp120 shedding induced by a CD4-mimetic compound or by incubation on ice. Conversely, a State-1-destabilized, CD4-independent AD8 Env variant exhibited weaker bNAb recognition and stronger pNAb recognition. Similar relationships between Env triggerability and antigenicity/shedding propensity on virions were observed for other HIV-1 strains. State-1 Envs on virions can be significantly enriched by minimizing the adventitious incorporation of uncleaved Env; stabilizing the pretriggered conformation by Env modification, crosslinking or BMS-806 treatment; strengthening Env subunit interactions; and using CD4-negative producer cells. IMPORTANCE Efforts to develop an effective HIV-1 vaccine have been frustrated by the inability to elicit broad neutralizing antibodies that recognize multiple virus strains. Such antibodies can bind a particular shape of the HIV-1 envelope glycoprotein trimer, as it exists on a viral membrane but before engaging receptors on the host cell. Here, we establish simple yet powerful assays to characterize the envelope glycoproteins in a natural context on virus particles. We find that, depending on the HIV-1 strain, some envelope glycoproteins change shape and fall apart, creating decoys that can potentially divert the host immune response. We identify requirements to keep the relevant envelope glycoprotein target for broad neutralizing antibodies intact on virus-like particles. These studies suggest strategies that should facilitate efforts to produce and use virus-like particles as vaccine immunogens.
Collapse
Affiliation(s)
- Hanh T. Nguyen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Qian Wang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Saumya Anang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph G. Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Valadés-Alcaraz A, Reinosa R, Holguín Á. HIV Transmembrane Glycoprotein Conserved Domains and Genetic Markers Across HIV-1 and HIV-2 Variants. Front Microbiol 2022; 13:855232. [PMID: 35694284 PMCID: PMC9184819 DOI: 10.3389/fmicb.2022.855232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
HIV envelope transmembrane glycoproteins gp41 (HIV-1) and gp36 (HIV-2) present high variability and play a key role in the HIV-host cell membrane's fusion, as a target for human broadly neutralizing antibodies (bnAbs) and drugs. Thus, a better knowledge of amino acid (aa) conservation across structural domains and HIV variants can help to identify conserved targets to direct new therapeutic and diagnostic strategies. All available gp41/gp36 nucleotide sequences were downloaded from Los Alamos National Laboratory (LANL) HIV Sequence Database, selecting 17,078 sequences ascribed to HIV-1 and HIV-2 variants with ≥3 sequences. After aligning and translating into aa with MEGAv6.0, an in-house bioinformatics program (EpiMolBio) was used to identify the most conserved aa and the aa changes that were specific for each variant (V-markers) vs. HXB2/BEN (HIV-1/HIV-2) reference sequence. We analyzed the presence of specific aa changes among V-markers affecting infectivity, gp41 structure, function, or resistance to the enfuvirtide viral fusion inhibitor (T-20). We also inferred the consensus sequences per HIV variant, describing in each HIV-1 group (M, N, O, P) the conservation level along the complete gp41 per structural domain and locating in each binding site the anti-gp41 human Abs (bnAbs and non bnAbs) described in LANL. We found 38.3/59.7% highly conserved aa present in ≥90% of the 16,803/275 gp41/gp36 sequences ascribed to 105/3 HIV-1/HIV-2 variants, with 9/12.6% of them showing complete conservation across LANL sequences. The fusion peptide, its proximal region, the N-heptad repeat, and the membrane-proximal external region were the gp41 domains with ≥84% of conserved aa in the HIV-1 consensus sequence, the target of most Abs. No natural major resistance mutations to T-20 were observed. Our results show, for the first time, a complete conservation study of gp41/gp36 per variant in the largest panel of HIV variants analyzed to date, providing useful information for a more rational design of drugs, vaccines, and molecular detection tests targeting the HIV transmembrane glycoprotein.
Collapse
|
8
|
Functional and Highly Cross-Linkable HIV-1 Envelope Glycoproteins Enriched in a Pretriggered Conformation. J Virol 2022; 96:e0166821. [PMID: 35343783 DOI: 10.1128/jvi.01668-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Binding to the receptor, CD4, drives the pretriggered, "closed" (state-1) conformation of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) trimer into more "open" conformations (states 2 and 3). Broadly neutralizing antibodies, which are elicited inefficiently, mostly recognize the state-1 Env conformation, whereas the more commonly elicited poorly neutralizing antibodies recognize states 2/3. HIV-1 Env metastability has created challenges for defining the state-1 structure and developing immunogens mimicking this labile conformation. The availability of functional state-1 Envs that can be efficiently cross-linked at lysine and/or acidic amino acid residues might assist these endeavors. To that end, we modified HIV-1AD8 Env, which exhibits an intermediate level of triggerability by CD4. We introduced lysine/acidic residues at positions that exhibit such polymorphisms in natural HIV-1 strains. Env changes that were tolerated with respect to gp120-gp41 processing, subunit association, and virus entry were further combined. Two common polymorphisms, Q114E and Q567K, as well as a known variant, A582T, additively rendered pseudoviruses resistant to cold, soluble CD4, and a CD4-mimetic compound, phenotypes indicative of stabilization of the pretriggered state-1 Env conformation. Combining these changes resulted in two lysine-rich HIV-1AD8 Env variants (E.2 and AE.2) with neutralization- and cold-resistant phenotypes comparable to those of natural, less triggerable tier 2/3 HIV-1 isolates. Compared with these and the parental Envs, the E.2 and AE.2 Envs were cleaved more efficiently and exhibited stronger gp120-trimer association in detergent lysates. These highly cross-linkable Envs enriched in a pretriggered conformation should assist characterization of the structure and immunogenicity of this labile state. IMPORTANCE The development of an efficient vaccine is critical for combating HIV-1 infection worldwide. However, the instability of the pretriggered shape (state 1) of the viral envelope glycoprotein (Env) makes it difficult to raise neutralizing antibodies against HIV-1. Here, by introducing multiple changes in Env, we derived two HIV-1 Env variants that are enriched in state 1 and can be efficiently cross-linked to maintain this shape. These Env complexes are more stable in detergent, assisting their purification. Thus, our study provides a path to a better characterization of the native pretriggered Env, which should assist vaccine development.
Collapse
|
9
|
Gonelli CA, King HAD, Mackenzie C, Sonza S, Center RJ, Purcell DFJ. Immunogenicity of HIV-1-Based Virus-Like Particles with Increased Incorporation and Stability of Membrane-Bound Env. Vaccines (Basel) 2021; 9:239. [PMID: 33801906 PMCID: PMC8002006 DOI: 10.3390/vaccines9030239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 01/04/2023] Open
Abstract
An optimal prophylactic vaccine to prevent human immunodeficiency virus (HIV-1) transmission should elicit protective antibody responses against the HIV-1 envelope glycoprotein (Env). Replication-incompetent HIV-1 virus-like particles (VLPs) offer the opportunity to present virion-associated Env with a native-like structure during vaccination that closely resembles that encountered on infectious virus. Here, we optimized the incorporation of Env into previously designed mature-form VLPs (mVLPs) and assessed their immunogenicity in mice. The incorporation of Env into mVLPs was increased by replacing the Env transmembrane and cytoplasmic tail domains with those of influenza haemagglutinin (HA-TMCT). Furthermore, Env was stabilized on the VLP surface by introducing an interchain disulfide and proline substitution (SOSIP) mutations typically employed to stabilize soluble Env trimers. The resulting mVLPs efficiently presented neutralizing antibody epitopes while minimizing exposure of non-neutralizing antibody sites. Vaccination of mice with mVLPs elicited a broader range of Env-specific antibody isotypes than Env presented on immature VLPs or extracellular vesicles. The mVLPs bearing HA-TMCT-modified Env consistently induced anti-Env antibody responses that mediated modest neutralization activity. These mVLPs are potentially useful immunogens for eliciting neutralizing antibody responses that target native Env epitopes on infectious HIV-1 virions.
Collapse
Affiliation(s)
- Christopher A. Gonelli
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia; (C.A.G.); (H.A.D.K.); (C.M.); (S.S.); (R.J.C.)
| | - Hannah A. D. King
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia; (C.A.G.); (H.A.D.K.); (C.M.); (S.S.); (R.J.C.)
- Viral Entry and Vaccines Laboratory, Disease Elimination, Burnet Institute, Melbourne, VIC 3004, Australia
| | - Charlene Mackenzie
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia; (C.A.G.); (H.A.D.K.); (C.M.); (S.S.); (R.J.C.)
| | - Secondo Sonza
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia; (C.A.G.); (H.A.D.K.); (C.M.); (S.S.); (R.J.C.)
| | - Rob J. Center
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia; (C.A.G.); (H.A.D.K.); (C.M.); (S.S.); (R.J.C.)
- Viral Entry and Vaccines Laboratory, Disease Elimination, Burnet Institute, Melbourne, VIC 3004, Australia
| | - Damian F. J. Purcell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia; (C.A.G.); (H.A.D.K.); (C.M.); (S.S.); (R.J.C.)
| |
Collapse
|
10
|
Lu M. Single-Molecule FRET Imaging of Virus Spike-Host Interactions. Viruses 2021; 13:v13020332. [PMID: 33669922 PMCID: PMC7924862 DOI: 10.3390/v13020332] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023] Open
Abstract
As a major surface glycoprotein of enveloped viruses, the virus spike protein is a primary target for vaccines and anti-viral treatments. Current vaccines aiming at controlling the COVID-19 pandemic are mostly directed against the SARS-CoV-2 spike protein. To promote virus entry and facilitate immune evasion, spikes must be dynamic. Interactions with host receptors and coreceptors trigger a cascade of conformational changes/structural rearrangements in spikes, which bring virus and host membranes in proximity for membrane fusion required for virus entry. Spike-mediated viral membrane fusion is a dynamic, multi-step process, and understanding the structure–function-dynamics paradigm of virus spikes is essential to elucidate viral membrane fusion, with the ultimate goal of interventions. However, our understanding of this process primarily relies on individual structural snapshots of endpoints. How these endpoints are connected in a time-resolved manner, and the order and frequency of conformational events underlying virus entry, remain largely elusive. Single-molecule Förster resonance energy transfer (smFRET) has provided a powerful platform to connect structure–function in motion, revealing dynamic aspects of spikes for several viruses: SARS-CoV-2, HIV-1, influenza, and Ebola. This review focuses on how smFRET imaging has advanced our understanding of virus spikes’ dynamic nature, receptor-binding events, and mechanism of antibody neutralization, thereby informing therapeutic interventions.
Collapse
Affiliation(s)
- Maolin Lu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA
| |
Collapse
|
11
|
Anand SP, Prévost J, Richard J, Perreault J, Tremblay T, Drouin M, Fournier MJ, Lewin A, Bazin R, Finzi A. High-throughput detection of antibodies targeting the SARS-CoV-2 Spike in longitudinal convalescent plasma samples. Transfusion 2021; 61:1377-1382. [PMID: 33604922 PMCID: PMC8013554 DOI: 10.1111/trf.16318] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus is the cause of the ongoing coronavirus disease 2019 (COVID-19) pandemic, infecting millions of people and causing more than two million deaths. The SARS-CoV-2 Spike glycoproteins mediate viral entry and represent the main target for antibody responses. Humoral responses were shown to be important for preventing and controlling infection by coronaviruses. A promising approach to reduce the severity of COVID-19 is the transfusion of convalescent plasma. However, longitudinal studies revealed that the level of antibodies targeting the receptor-binding domain (RBD) of the SARS-CoV-2 Spike declines rapidly after the resolution of the infection. STUDY DESIGN AND METHODS To extend this observation beyond the RBD domain, we performed a longitudinal analysis of the persistence of antibodies targeting the full-length SARS-CoV-2 Spike in the plasma from 15 convalescent donors. We generated a 293T cell line constitutively expressing the SARS-CoV-2 Spike and used it to develop a high-throughput flow cytometry-based assay to detect SARS-CoV-2 Spike-specific antibodies in the plasma of convalescent donors. RESULTS AND CONCLUSION We found that the level of antibodies targeting the full-length SARS-CoV-2 Spike declines gradually after the resolution of the infection. This decline was not related to the number of donations but strongly correlated with the decline of RBD-specific antibodies and the number of days post-symptom onset. These findings help to better understand the decline of humoral responses against the SARS-CoV-2 Spike and provide important information on when to collect plasma after recovery from active infection for convalescent plasma transfusion.
Collapse
Affiliation(s)
- Sai Priya Anand
- Centre de Recherche du CHUM, Montréal, Quebec, Canada.,Department of Microbiology and Immunology, McGill University, Montréal, Quebec, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montréal, Quebec, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Quebec, Canada
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montréal, Quebec, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Quebec, Canada
| | - Josée Perreault
- Héma-Québec, Affaires Médicales et Innovation, Montréal and Québec City, Quebec, Canada
| | - Tony Tremblay
- Héma-Québec, Affaires Médicales et Innovation, Montréal and Québec City, Quebec, Canada
| | - Mathieu Drouin
- Héma-Québec, Affaires Médicales et Innovation, Montréal and Québec City, Quebec, Canada
| | - Marie-Josée Fournier
- Héma-Québec, Affaires Médicales et Innovation, Montréal and Québec City, Quebec, Canada
| | - Antoine Lewin
- Héma-Québec, Affaires Médicales et Innovation, Montréal and Québec City, Quebec, Canada
| | - Renée Bazin
- Héma-Québec, Affaires Médicales et Innovation, Montréal and Québec City, Quebec, Canada
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, Quebec, Canada.,Department of Microbiology and Immunology, McGill University, Montréal, Quebec, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
12
|
Hikichi Y, Van Duyne R, Pham P, Groebner JL, Wiegand A, Mellors JW, Kearney MF, Freed EO. Mechanistic Analysis of the Broad Antiretroviral Resistance Conferred by HIV-1 Envelope Glycoprotein Mutations. mBio 2021; 12:e03134-20. [PMID: 33436439 PMCID: PMC7844542 DOI: 10.1128/mbio.03134-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
Despite the effectiveness of antiretroviral (ARV) therapy, virological failure can occur in some HIV-1-infected patients in the absence of mutations in drug target genes. We previously reported that, in vitro, the lab-adapted HIV-1 NL4-3 strain can acquire resistance to the integrase inhibitor dolutegravir (DTG) by acquiring mutations in the envelope glycoprotein (Env) that enhance viral cell-cell transmission. In this study, we investigated whether Env-mediated drug resistance extends to ARVs other than DTG and whether it occurs in other HIV-1 isolates. We demonstrate that Env mutations can reduce susceptibility to multiple classes of ARVs and also increase resistance to ARVs when coupled with target-gene mutations. We observe that the NL4-3 Env mutants display a more stable and closed Env conformation and lower rates of gp120 shedding than the WT virus. We also selected for Env mutations in clinically relevant HIV-1 isolates in the presence of ARVs. These Env mutants exhibit reduced susceptibility to DTG, with effects on replication and Env structure that are HIV-1 strain dependent. Finally, to examine a possible in vivo relevance of Env-mediated drug resistance, we performed single-genome sequencing of plasma-derived virus from five patients failing an integrase inhibitor-containing regimen. This analysis revealed the presence of several mutations in the highly conserved gp120-gp41 interface despite low frequency of resistance mutations in integrase. These results suggest that mutations in Env that enhance the ability of HIV-1 to spread via a cell-cell route may increase the opportunity for the virus to acquire high-level drug resistance mutations in ARV target genes.IMPORTANCE Although combination antiretroviral (ARV) therapy is highly effective in controlling the progression of HIV disease, drug resistance can be a major obstacle. Recent findings suggest that resistance can develop without ARV target gene mutations. We previously reported that mutations in the HIV-1 envelope glycoprotein (Env) confer resistance to an integrase inhibitor. Here, we investigated the mechanism of Env-mediated drug resistance and the possible contribution of Env to virological failure in vivo We demonstrate that Env mutations can reduce sensitivity to major classes of ARVs in multiple viral isolates and define the effect of the Env mutations on Env subunit interactions. We observed that many Env mutations accumulated in individuals failing integrase inhibitor therapy despite a low frequency of resistance mutations in integrase. Our findings suggest that broad-based Env-mediated drug resistance may impact therapeutic strategies and provide clues toward understanding how ARV-treated individuals fail therapy without acquiring mutations in drug target genes.
Collapse
Affiliation(s)
- Yuta Hikichi
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Rachel Van Duyne
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Phuong Pham
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Jennifer L Groebner
- Translational Research Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Ann Wiegand
- Translational Research Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - John W Mellors
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mary F Kearney
- Translational Research Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Eric O Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
13
|
Probing the Structure of the HIV-1 Envelope Trimer Using Aspartate Scanning Mutagenesis. J Virol 2020; 94:JVI.01426-20. [PMID: 32817217 DOI: 10.1128/jvi.01426-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/11/2020] [Indexed: 12/20/2022] Open
Abstract
HIV-1 envelope (Env) glycoprotein gp160 exists as a trimer of heterodimers on the viral surface. In most structures of the soluble ectodomain of trimeric HIV-1 envelope glycoprotein, the regions from 512 to 517 of the fusion peptide and from 547 to 568 of the N-heptad repeat are disordered. We used aspartate scanning mutagenesis of subtype B strain JRFL Env as an alternate method to probe residue burial in the context of cleaved, cell surface-expressed Env, as buried residues should be intolerant to substitution with Asp. The data are inconsistent with a fully disordered 547 to 568 stretch, as residues 548, 549, 550, 555, 556, 559, 562, and 566 to 569 are all sensitive to Asp substitution. In the fusion peptide region, residues 513 and 515 were also sensitive to Asp substitution, suggesting that the fusion peptide may not be fully exposed in native Env. gp41 is metastable in the context of native trimer. Introduction of Asp at residues that are exposed in the prefusion state but buried in the postfusion state is expected to destabilize the postfusion state and any intermediate states where the residue is buried. We therefore performed soluble CD4 (sCD4)-induced gp120 shedding experiments to identify Asp mutants at residues 551, 554 to 559, 561 to 567, and 569 that could prevent gp120 shedding. We also observed similar mutational effects on shedding for equivalent mutants in the context of clade C Env from isolate 4-2J.41. These substitutions can potentially be used to stabilize native-like trimer derivatives that are used as HIV-1 vaccine immunogens.IMPORTANCE In most crystal structures of the soluble ectodomain of the HIV-1 Env trimer, some residues in the fusion and N-heptad repeat regions are disordered. Whether this is true in the context of native, functional Env on the virion surface is not known. This knowledge may be useful for stabilizing Env in its prefusion conformation and will also help to improve understanding of the viral entry process. Burial of the charged residue Asp in a protein structure is highly destabilizing. We therefore used Asp scanning mutagenesis to probe the burial of apparently disordered residues in native Env and to examine the effect of mutations in these regions on Env stability and conformation as probed by antibody binding to cell surface-expressed Env, CD4-induced shedding of HIV-1 gp120, and viral infectivity studies. Mutations that prevent shedding can potentially be used to stabilize native-like Env constructs for use as vaccine immunogens.
Collapse
|
14
|
Cao W, Li B, Liu H, Cheng X, Liu Y, Zhao X, Qiao Y. CD4 binding loop responsible for the neutralization of human monoclonal neutralizing antibody Y498. Virus Res 2020; 285:198001. [PMID: 32413370 DOI: 10.1016/j.virusres.2020.198001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 10/24/2022]
Abstract
Broad and potent human monoclonal neutralizing antibodies have considerable potential in the prevention and treatment of acquired immunodeficiency syndrome (AIDS). To identify the key amino acid recognition site contacted with neutralizing antibody Y498, peptides were panned from the PhD-12 peptide library and predicted using online software. Then, four key amino acid sites, G367, D368, E370, and V372 located on the CD4 binding loop on gp120 of envelope of human immunodeficiency virus-1 (HIV-1), were found to determine the neutralization of antibody Y498. Residue E370 is in the deep part of the CD4 binding loop, which affects Y498-mediated neutralization. This form of recognition leads to a somewhat limiting neutralization spectrum of neutralizing antibody Y498, although it has some neutralization ability. Further study of the interactions between the neutralizing antibody Y498 and its epitope on the surface of the virus may facilitate vaccine development and so prevent new AIDS cases.
Collapse
Affiliation(s)
- Weiyou Cao
- Binzhou Medical University, Yantai, Shandong Province, China.
| | - Boqing Li
- Binzhou Medical University, Yantai, Shandong Province, China.
| | - Huan Liu
- Binzhou Medical University, Yantai, Shandong Province, China.
| | - Xue Cheng
- Binzhou Medical University, Yantai, Shandong Province, China.
| | - Yezi Liu
- Binzhou Medical University, Yantai, Shandong Province, China.
| | - Xueqing Zhao
- Binzhou Medical University, Yantai, Shandong Province, China.
| | - Yuanyuan Qiao
- Binzhou Medical University, Yantai, Shandong Province, China; MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
15
|
The Conformational States of the HIV-1 Envelope Glycoproteins. Trends Microbiol 2020; 28:655-667. [PMID: 32418859 DOI: 10.1016/j.tim.2020.03.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/25/2020] [Indexed: 12/16/2022]
Abstract
During HIV-1 entry into target cells, binding of the virus to host receptors, CD4 and CCR5/CXCR4, triggers serial conformational changes in the envelope glycoprotein (Env) trimer that result in the fusion of the viral and cell membranes. Recent discoveries have refined our knowledge of Env conformational states, allowing characterization of the targets of small-molecule HIV-1 entry inhibitors and neutralizing antibodies, and identifying a novel off-pathway conformation (State 2A). Here, we provide an overview of the current understanding of these conformational states, focusing on (i) the events during HIV-1 entry; (ii) conformational preferences of HIV-1 Env ligands; (iii) evasion of the host antibody response; and (iv) potential implications for therapy and prevention of HIV-1 infection.
Collapse
|
16
|
Ding S, Grenier MC, Tolbert WD, Vézina D, Sherburn R, Richard J, Prévost J, Chapleau JP, Gendron-Lepage G, Medjahed H, Abrams C, Sodroski J, Pazgier M, Smith AB, Finzi A. A New Family of Small-Molecule CD4-Mimetic Compounds Contacts Highly Conserved Aspartic Acid 368 of HIV-1 gp120 and Mediates Antibody-Dependent Cellular Cytotoxicity. J Virol 2019; 93:e01325-19. [PMID: 31554684 PMCID: PMC6880173 DOI: 10.1128/jvi.01325-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 09/18/2019] [Indexed: 12/20/2022] Open
Abstract
The HIV-1 envelope glycoprotein (Env) trimer mediates virus entry into cells. The "closed" conformation of Env is resistant to nonneutralizing antibodies (nnAbs). These antibodies mostly recognize occluded epitopes that can be exposed upon binding of CD4 or small-molecule CD4 mimetics (CD4mc). Here, we describe a new family of small molecules that expose Env to nnAbs and sensitize infected cells to antibody-dependent cellular cytotoxicity (ADCC). These compounds have a limited capacity to inhibit virus infection directly but are able to sensitize viral particles to neutralization by otherwise nonneutralizing antibodies. Structural analysis shows that some analogs of this family of CD4mc engage the gp120 Phe43 cavity by contacting the highly conserved D368 residue, making them attractive scaffolds for drug development.IMPORTANCE HIV-1 has evolved multiple strategies to avoid humoral responses. One efficient mechanism is to keep its envelope glycoprotein (Env) in its "closed" conformation. Here, we report on a new family of small molecules that are able to "open up" Env, thus exposing vulnerable epitopes. This new family of molecules binds in the Phe43 cavity and contacts the highly conserved D368 residue. The structural and biological attributes of molecules of this family make them good candidates for drug development.
Collapse
Affiliation(s)
- Shilei Ding
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Melissa C Grenier
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - William D Tolbert
- Infectious Diseases Division, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Dani Vézina
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Rebekah Sherburn
- Infectious Diseases Division, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Jean-Philippe Chapleau
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | | | | | - Cameron Abrams
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania, USA
| | - Joseph Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Marzena Pazgier
- Infectious Diseases Division, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Amos B Smith
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
17
|
Ringe RP, Colin P, Torres JL, Yasmeen A, Lee WH, Cupo A, Ward AB, Klasse PJ, Moore JP. SOS and IP Modifications Predominantly Affect the Yield but Not Other Properties of SOSIP.664 HIV-1 Env Glycoprotein Trimers. J Virol 2019; 94:e01521-19. [PMID: 31619555 PMCID: PMC6912111 DOI: 10.1128/jvi.01521-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/08/2019] [Indexed: 01/20/2023] Open
Abstract
Soluble recombinant native-like (NL) envelope glycoprotein (Env) trimers of various human immunodeficiency virus type 1 (HIV-1) genotypes are being developed as vaccine candidates aimed at the induction of broadly neutralizing antibodies (bNAbs). The prototypic design, designated BG505 SOSIP.664, incorporates an intersubunit disulfide bond (SOS) to covalently link the gp120 and gp41 ectodomain (gp41ECTO) subunits and a point substitution, I559P (IP), to further stabilize the gp41ECTO components. Without the SOS and IP changes, proteolytically cleaved trimers tend to disintegrate into their constituent gp120 and gp41ECTO subunits. We show, however, that NL trimers lacking the SOS and/or IP change can be affinity purified in amounts sufficient for analyses of their antigenicity and thermal stability. In general, these trimer variants have properties highly comparable to those of the fully stabilized SOSIP.664 version. We conclude that the major effect of the SOS and IP changes is to substantially increase trimer stability during and after the expression process, thereby allowing useful amounts to be produced. However, once the trimers have been purified, the SOS and IP changes have only subtle impacts on thermostability and the antigenicity of bNAb and other epitopes.IMPORTANCE Recombinant trimeric proteins based on HIV-1 env genes are being developed for vaccine trials in humans. A feature of these proteins is their mimicry of the envelope glycoprotein structure on virus particles that is targeted by neutralizing antibodies, i.e., antibodies that prevent cells from becoming infected. One vaccine concept under exploration is that recombinant trimers may be able to elicit virus-neutralizing antibodies when delivered as immunogens. A commonly used design is designated SOSIP.664, a term reflecting the sequence changes that are used to stabilize the trimers and allow their production in practically useful amounts. Here, we show that these stabilizing changes act to increase trimer yield during the biosynthesis process within the producer cell but have little impact on the properties of purified trimers.
Collapse
Affiliation(s)
- Rajesh P Ringe
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, USA
| | - Philippe Colin
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, USA
| | - Jonathan L Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, USA
| | - Anila Yasmeen
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, USA
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Albert Cupo
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, USA
- International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, California, USA
| | - P J Klasse
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, USA
| | - John P Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, USA
| |
Collapse
|
18
|
Yang Z, Wang H, Liu AZ, Gristick HB, Bjorkman PJ. Asymmetric opening of HIV-1 Env bound to CD4 and a coreceptor-mimicking antibody. Nat Struct Mol Biol 2019; 26:1167-1175. [PMID: 31792452 PMCID: PMC6899201 DOI: 10.1038/s41594-019-0344-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/29/2019] [Indexed: 11/09/2022]
Abstract
The human immunodeficiency virus (HIV-1) envelope (Env) glycoprotein, a (gp120-gp41)3 trimer, mediates fusion of viral and host cell membranes after gp120 binding to host receptor CD4. Receptor binding triggers conformational changes allowing coreceptor (CCR5) recognition through CCR5's tyrosine-sulfated amino (N) terminus, release of the gp41 fusion peptide and fusion. We present 3.3 Å and 3.5 Å cryo-EM structures of E51, a tyrosine-sulfated coreceptor-mimicking antibody, complexed with a CD4-bound open HIV-1 native-like Env trimer. Two classes of asymmetric Env interact with E51, revealing tyrosine-sulfated interactions with gp120 mimicking CCR5 interactions, and two conformations of gp120-gp41 protomers (A and B protomers in AAB and ABB trimers) that differ in their degree of CD4-induced trimer opening and induction of changes to the fusion peptide. By integrating the new structural information with previous closed and open envelope trimer structures, we modeled the order of conformational changes on the path to coreceptor binding site exposure and subsequent viral-host cell membrane fusion.
Collapse
Affiliation(s)
- Zhi Yang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena CA, USA
| | - Haoqing Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena CA, USA.,Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | - Albert Z Liu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena CA, USA.,Biochemistry, Cellular, and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Harry B Gristick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena CA, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena CA, USA.
| |
Collapse
|
19
|
Ding S, Gasser R, Gendron-Lepage G, Medjahed H, Tolbert WD, Sodroski J, Pazgier M, Finzi A. CD4 Incorporation into HIV-1 Viral Particles Exposes Envelope Epitopes Recognized by CD4-Induced Antibodies. J Virol 2019; 93:e01403-19. [PMID: 31484748 PMCID: PMC6819941 DOI: 10.1128/jvi.01403-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 08/29/2019] [Indexed: 12/23/2022] Open
Abstract
CD4 downregulation on infected cells is a highly conserved function of primate lentiviruses. It has been shown to positively impact viral replication by a variety of mechanisms, including enhanced viral release and infectivity, decrease of cell reinfection, and protection from antibody-dependent cellular cytotoxicity (ADCC), which is often mediated by antibodies that require CD4 to change envelope (Env) conformation. Here, we report that incorporation of CD4 into HIV-1 viral particles affects Env conformation resulting in the exposure of occluded epitopes recognized by CD4-induced antibodies. This translates into enhanced neutralization susceptibility by these otherwise nonneutralizing antibodies but is prevented by the HIV-1 Nef accessory protein. Altogether, these findings suggest that another functional consequence of Nef-mediated CD4 downregulation is the protection of viral particles from neutralization by commonly elicited CD4-induced antibodies.IMPORTANCE It has been well established that Env-CD4 complexes expose epitopes recognized by commonly elicited CD4-induced antibodies at the surface of HIV-1-infected cells, rendering them vulnerable to ADCC responses. Here, we show that CD4 incorporation has a profound impact on Env conformation at the surface of viral particles. Incorporated CD4 exposes CD4-induced epitopes on Env, rendering HIV-1 susceptible to neutralization by otherwise nonneutralizing antibodies.
Collapse
Affiliation(s)
- Shilei Ding
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Romain Gasser
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | | | | | - William D Tolbert
- Infectious Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Joseph Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Marzena Pazgier
- Infectious Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
20
|
Abstract
Single-molecule Förster resonance energy transfer (smFRET) imaging has emerged as a powerful tool to probe conformational dynamics of viral proteins, identify novel structural intermediates that are hiding in averaging population-based measurements, permit access to the energetics of transitions and as such to the precise molecular mechanisms of viral replication. One strength of smFRET is the capability of characterizing biological molecules in their fully hydrated/native state, which are not necessarily available to other structural methods. Elegant experimental design for physiologically relevant conditions, such as intact virions, has permitted the detection of previously unknown conformational states of viral glycoproteins, revealed asymmetric intermediates, and allowed access to the real-time imaging of conformational changes during viral fusion. As more laboratories are applying smFRET, our understanding of the molecular mechanisms and the dynamic nature of viral proteins throughout the virus life cycle are predicted to improve and assist the development of novel antiviral therapies and vaccine design.
Collapse
Affiliation(s)
- Maolin Lu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, United States.
| | - Xiaochu Ma
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, United States
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, United States.
| |
Collapse
|
21
|
Chen B. Molecular Mechanism of HIV-1 Entry. Trends Microbiol 2019; 27:878-891. [PMID: 31262533 DOI: 10.1016/j.tim.2019.06.002] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/20/2019] [Accepted: 06/05/2019] [Indexed: 11/19/2022]
Abstract
HIV-1 envelope glycoprotein [Env; trimeric (gp160)3 cleaved to (gp120/gp41)3] attaches the virion to a susceptible cell and induces fusion of viral and cell membranes to initiate infection. It interacts with the primary receptor CD4 and coreceptor (e.g., chemokine receptor CCR5 or CXCR4) to allow viral entry by triggering large structural rearrangements and unleashing the fusogenic potential of gp41 to induce membrane fusion. Recent advances in structural biology of HIV-1 Env and its complexes with the cellular receptors have revealed molecular details of HIV-1 entry and yielded new mechanistic insights. In this review, I summarize our latest understanding of the HIV-1 membrane fusion process and discuss possible pathways for productive viral entry.
Collapse
Affiliation(s)
- Bing Chen
- Division of Molecular Medicine, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, MA 02115, USA.
| |
Collapse
|
22
|
Effects of the SOS (A501C/T605C) and DS (I201C/A433C) Disulfide Bonds on HIV-1 Membrane Envelope Glycoprotein Conformation and Function. J Virol 2019; 93:JVI.00304-19. [PMID: 30944182 DOI: 10.1128/jvi.00304-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/29/2019] [Indexed: 02/06/2023] Open
Abstract
Most broadly neutralizing antibodies and many entry inhibitors target the pretriggered (state 1) conformation of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env). Here we examine two previously reported Env mutants designed to be stabilized in this conformation by the introduction of artificial disulfide bonds: A501C/T605C (called SOS) and I201C/A433C (called DS). SOS Env supported virus entry and cell-cell fusion only after exposure to a reducing agent, dithiothreitol (DTT). Deletion of the Env cytoplasmic tail improved the efficiency with which the SOS Env supported virus infection in a reducing environment. The antigenicity of the SOS Env was similar to that of the unmodified Env, except for greater sensitivity to some state 1-preferring ligands. In contrast, viruses with the DS Env were not infectious, even after DTT treatment. The proteolytic maturation of the DS Env on both cell surfaces and virions was severely compromised compared with that of the unmodified Env. The DS Env exhibited detectable cell-fusing activity when DTT was present. However, the profiles of cell-surface Env recognition and cell-cell fusion inhibition by antibodies differed for the DS Env and the unmodified Env. Thus, the DS Env appears to be stabilized in an off-pathway conformation that is nonfunctional on the virus. The SOS change exerted more subtle, context-dependent effects on Env conformation and function.IMPORTANCE The human immunodeficiency virus type 1 (HIV-1) envelope proteins (Envs) bind receptors on the host cell and change shape to allow the virus to enter the cell. Most virus-inhibiting antibodies and drugs recognize a particular shape of Env called state 1. Disulfide bonds formed by cysteine residues have been introduced into soluble forms of the flexible envelope proteins in an attempt to lock them into state 1 for use in vaccines and as research tools. We evaluated the effect of these cysteine substitutions on the ability of the membrane Env to support virus entry and on susceptibility to inhibition by antibodies and small molecules. We found that the conformation of the envelope proteins with the cysteine substitutions differed from that of the unmodified membrane envelope proteins. Awareness of these effects can assist efforts to create stable HIV-1 Env complexes that more closely resemble the state 1 conformation.
Collapse
|
23
|
Lu M, Ma X, Castillo-Menendez LR, Gorman J, Alsahafi N, Ermel U, Terry DS, Chambers M, Peng D, Zhang B, Zhou T, Reichard N, Wang K, Grover JR, Carman BP, Gardner MR, Nikić-Spiegel I, Sugawara A, Arthos J, Lemke EA, Smith AB, Farzan M, Abrams C, Munro JB, McDermott AB, Finzi A, Kwong PD, Blanchard SC, Sodroski JG, Mothes W. Associating HIV-1 envelope glycoprotein structures with states on the virus observed by smFRET. Nature 2019; 568:415-419. [PMID: 30971821 PMCID: PMC6655592 DOI: 10.1038/s41586-019-1101-y] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 03/08/2019] [Indexed: 11/09/2022]
Abstract
The HIV-1 envelope glycoprotein (Env) trimer mediates cell entry and is
conformationally dynamic1–8. Imaging
by single-molecule fluorescence resonance energy transfer (smFRET) has revealed
that, on the surface of intact virions, mature pre-fusion Env transitions from a
pre-triggered conformation (state 1) through a default intermediate conformation
(state 2) to a conformation in which it is bound to three CD4 receptor molecules
(state 3)8–10. It is currently unclear how these
states relate to known structures. Breakthroughs in the structural
characterization of the HIV-1 Env trimer have previously been achieved by
generating soluble and proteolytically cleaved trimers of gp140 Env that are
stabilized by a disulfide bond, an isoleucine-to-proline substitution at residue
559 and a truncation at residue 664 (SOSIP.664 trimers)5,11–18.
Cryo-electron microscopy studies have been performed with C-terminally truncated
Env of the HIV-1JR-FL strain in complex with the antibody PGT15119. Both approaches have revealed similar
structures for Env. Although these structures have been presumed to represent
the pre-triggered state 1 of HIV-1 Env, this hypothesis has never directly been
tested. Here we use smFRET to compare the conformational states of Env trimers
used for structural studies with native Env on intact virus. We find that the
constructs upon which extant high-resolution structures are based predominantly
occupy downstream conformations that represent states 2 and 3. Therefore, the
structure of the pretriggered state-1 conformation of viral Env that has been
identified by smFRET and that is preferentially stabilized by many broadly
neutralizing antibodies—and thus of interest for the design of
immunogens—remains unknown.
Collapse
Affiliation(s)
- Maolin Lu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Xiaochu Ma
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Luis R Castillo-Menendez
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nirmin Alsahafi
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada.,Centre de Recherche du CHUM (CRCHUM), Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Utz Ermel
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Daniel S Terry
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Michael Chambers
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dongjun Peng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nick Reichard
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Kevin Wang
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Jonathan R Grover
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Brennan P Carman
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Matthew R Gardner
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Ivana Nikić-Spiegel
- Werner Reichardt Centre for Integrative Neuroscience, University of Tuebingen, Tuebingen, Germany
| | - Akihiro Sugawara
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - James Arthos
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Edward A Lemke
- Departments of Biology and Chemistry, Pharmacy and Geosciences, Johannes Gutenberg University Mainz, Mainz, Germany.,Institute of Molecular Biology (IMB), Johannes Gutenberg University Mainz, Mainz, Germany.,Structural and Computational Biology Unit and Cell Biology and Biophysics Unit, EMBL, Heidelberg, Germany
| | - Amos B Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Farzan
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Cameron Abrams
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA, USA
| | - James B Munro
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Andrés Finzi
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada.,Centre de Recherche du CHUM (CRCHUM), Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Scott C Blanchard
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
| | - Joseph G Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA. .,Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
24
|
Conformational Differences between Functional Human Immunodeficiency Virus Envelope Glycoprotein Trimers and Stabilized Soluble Trimers. J Virol 2019; 93:JVI.01709-18. [PMID: 30429345 DOI: 10.1128/jvi.01709-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/07/2018] [Indexed: 01/11/2023] Open
Abstract
Binding to the receptor CD4 triggers entry-related conformational changes in the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) trimer, (gp120/gp41)3 Soluble versions of HIV-1 Env trimers (sgp140 SOSIP.664) stabilized by a gp120-gp41 disulfide bond and a change (I559P) in gp41 have been structurally characterized. Here, we use cross-linking/mass spectrometry to evaluate the conformations of functional membrane Env and sgp140 SOSIP.664. Differences were detected in the gp120 trimer association domain and C terminus and in the gp41 heptad repeat 1 (HR1) region. Whereas the membrane Env trimer exposes the gp41 HR1 coiled coil only after CD4 binding, the sgp140 SOSIP.664 HR1 coiled coil was accessible to the gp41 HR2 peptide even in the absence of CD4. Our results delineate differences in both gp120 and gp41 subunits between functional membrane Env and the sgp140 SOSIP.664 trimer and provide distance constraints that can assist validation of candidate structural models of the native HIV-1 Env trimer.IMPORTANCE HIV-1 envelope glycoprotein spikes mediate the entry of the virus into host cells and are a major target for vaccine-induced antibodies. Soluble forms of the envelope glycoproteins that are stable and easily produced have been characterized extensively and are being considered as vaccines. Here, we present evidence that these stabilized soluble envelope glycoproteins differ in multiple respects from the natural HIV-1 envelope glycoproteins. By pinpointing these differences, our results can guide the improvement of envelope glycoprotein preparations to achieve greater similarity to the viral envelope glycoprotein spike, potentially increasing their effectiveness as a vaccine.
Collapse
|
25
|
Ivan B, Sun Z, Subbaraman H, Friedrich N, Trkola A. CD4 occupancy triggers sequential pre-fusion conformational states of the HIV-1 envelope trimer with relevance for broadly neutralizing antibody activity. PLoS Biol 2019; 17:e3000114. [PMID: 30650070 PMCID: PMC6351000 DOI: 10.1371/journal.pbio.3000114] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/29/2019] [Accepted: 01/04/2019] [Indexed: 12/18/2022] Open
Abstract
During the entry process, the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) trimer undergoes a sequence of conformational changes triggered by both CD4 and coreceptor engagement. Resolving the conformation of these transient entry intermediates has proven challenging. Here, we fine-mapped the antigenicity of entry intermediates induced by increasing CD4 engagement of cell surface–expressed Env. Escalating CD4 triggering led to the sequential adoption of different pre-fusion conformational states of the Env trimer, up to the pre-hairpin conformation, that we assessed for antibody epitope presentation. Maximal accessibility of the coreceptor binding site was detected below Env saturation by CD4. Exposure of the fusion peptide and heptad repeat 1 (HR1) required higher CD4 occupancy. Analyzing the diverse antigenic states of the Env trimer, we obtained key insights into the transitions in epitope accessibility of broadly neutralizing antibodies (bnAbs). Several bnAbs preferentially bound CD4-triggered Env, indicating a potential capacity to neutralize both pre- and post-CD4 engagement, which needs to be explored. Assessing binding and neutralization activity of bnAbs, we confirm antibody dissociation rates as a driver of incomplete neutralization. Collectively, our findings highlight a need to resolve Env conformations that are neutralization-relevant to provide guidance for immunogen development. Comprehensive mapping of conformational stages adopted by the HIV‐1 envelope glycoprotein trimer during entry into the cell reveals the preference of broadly neutralizing antibodies for distinct pre-fusion states of the trimer. The trimeric human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) mediates HIV-1 entry into its target cells. Entry is initiated by sequential triggering of Env upon interaction with its primary receptor CD4 and a coreceptor on target cells. The ensuing structural rearrangements of the Env trimer bring the viral membrane in close vicinity of the cellular membrane, enabling fusion. Resolving the structural differences between the consecutive conformations Env adopts during the entry process is of high interest, as different antigenic domains are exposed, which may affect the capacity of neutralizing antibodies to bind to Env and inhibit entry. Here, we compared the conformation of unliganded closed Env with the transitional CD4-bound Env forms by studying the antigenicity of cell surface–expressed Env with and without CD4 triggering. We show that incremental triggering by soluble CD4 allows the capture of the full continuum of conformational changes, including events that follow coreceptor interaction. Thus, the setup we introduce here turns a simple binding assay into a powerful tool to study transitional conformation changes in HIV-1 Env. Analyzing the capacity of Env-reactive antibodies to recognize the diverse Env stages, our study reveals novel aspects of the binding preferences of neutralizing antibodies that affect their inhibitory activity.
Collapse
Affiliation(s)
- Branislav Ivan
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Zhaozhi Sun
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Harini Subbaraman
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Nikolas Friedrich
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
26
|
SOSIP Changes Affect Human Immunodeficiency Virus Type 1 Envelope Glycoprotein Conformation and CD4 Engagement. J Virol 2018; 92:JVI.01080-18. [PMID: 30021898 DOI: 10.1128/jvi.01080-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 07/13/2018] [Indexed: 01/31/2023] Open
Abstract
The entry of human immunodeficiency virus into host cells is mediated by the envelope glycoprotein (Env) trimeric spike, which consists of three exterior gp120 subunits and three transmembrane gp41 subunits. The trimeric Env undergoes extensive conformational rearrangement upon interaction with the CD4 receptor, transitioning from the unliganded, "closed" State 1 to more-open downstream State 2 and State 3 conformations. Changes in "restraining" amino acid residues, such as leucine 193 and isoleucine 423, destabilize State 1 Env, which then assumes entry-competent, downstream conformations. The introduction of an artificial disulfide bond linking the gp120 and gp41 subunits (SOS) in combination with the I559P (IP) change has allowed structural characterization of soluble gp140 (sgp140) trimers. The conformation of these SOSIP-stabilized sgp140 trimers has been suggested to represent the closed native State 1 conformation. Here we compare the impact on the membrane Env conformation of the SOSIP changes with that of the well-characterized changes (L193R and I423A) that shift Env to downstream States 2 and 3. The results presented here suggest that the SOSIP changes stabilize Env in a conformation that differs from State 1 but also from the downstream Env conformations stabilized by L193R or I423A.IMPORTANCE The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) trimer is triggered by receptor binding to mediate the entry of the virus into cells. Most structural studies of Env trimers have utilized truncated soluble gp140 Envs stabilized with the I559P and SOS changes. Here we present evidence indicating that these stabilizing changes have a profound impact on the conformation of Env, moving Env away from the native pretriggered Env conformation. Our studies underscore the need to acquire structural information on the pretriggered Env conformation, which is recognized by most broadly reactive neutralizing antibodies.
Collapse
|
27
|
Flemming J, Wiesen L, Herschhorn A. Conformation-Dependent Interactions Between HIV-1 Envelope Glycoproteins and Broadly Neutralizing Antibodies. AIDS Res Hum Retroviruses 2018; 34:794-803. [PMID: 29905080 DOI: 10.1089/aid.2018.0102] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
HIV type 1 (HIV-1) envelope glycoproteins (Env) mediate virus entry and are the target of neutralizing antibodies. Binding of the metastable HIV-1 Env trimer to the CD4 receptor triggers structural rearrangements that mediate Env conformational transitions from a closed conformation to a more open state through an intermediate step. Recent studies have revealed new insights on the dynamics, regulation, and molecular mechanisms of Env transitions along the entry pathway. In this study, we provide an overview of the current knowledge on Env conformational dynamics and the relationship between Env conformational states and neutralization selectivity of the broadly neutralizing antibodies that develop in 10%-20% of infected individuals and may provide guidance for the development of an effective HIV-1 vaccine.
Collapse
Affiliation(s)
- Juliana Flemming
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Lisa Wiesen
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Alon Herschhorn
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
28
|
HIV-1 gp41 Residues Modulate CD4-Induced Conformational Changes in the Envelope Glycoprotein and Evolution of a Relaxed Conformation of gp120. J Virol 2018; 92:JVI.00583-18. [PMID: 29875245 DOI: 10.1128/jvi.00583-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/24/2018] [Indexed: 01/09/2023] Open
Abstract
Entry of human immunodeficiency virus type 1 (HIV-1) into host cells is mediated by conformational changes in the envelope glycoprotein (Env) that are triggered by Env binding to cellular CD4 and chemokine receptors. These conformational changes involve the opening of the gp120 surface subunit, exposure of the fusion peptide in the gp41 transmembrane subunit, and refolding of the gp41 N- and C-terminal heptad repeat regions (HR1 and HR2) first into an extended prehairpin intermediate and then into a compact 6-helix bundle (6HB) that facilitates fusion between viral and host cell membranes. Previously, we reported that Envs resistant to HR1 peptide fusion inhibitors acquired key resistance mutations in either HR1 or HR2 that increased 6HB stability. Here, we identify residues in HR1 that contribute not only to fusion inhibitor resistance and 6HB stability but also to reduced reactivity to CD4-induced conformational changes that lead to 6HB formation. While all Envs show increased neutralization sensitivity to mimetic CD4 (mCD4), Envs with either the E560K or Q577R HR1 mutation reduced conformational reactivity to CD4 that resisted viral inactivation and triggering to the 6HB. Using a panel of monoclonal antibodies (mAbs), we further determined that Envs from both HR1 and HR2 resistance pathways exhibit a relaxed trimer conformation due to gp120 adaptive mutations in different regions of Env that segregate by resistance pathway. These findings highlight regions of cross talk between gp120 and gp41 and identify HR1 residues that play important roles in regulating CD4-induced conformational changes in Env.IMPORTANCE Binding of the HIV envelope glycoprotein (Env) to cellular CD4 and chemokine receptors triggers conformational changes in Env that mediate virus entry, but premature triggering of Env conformational changes leads to virus inactivation. Currently, we have a limited understanding of the network of residues that regulate Env conformational changes. Here, we identify residues in HR1 of gp41 that modulate conformational changes in response to gp120 binding to CD4 and show that the mutations in HR1 and HR2 that confer resistance to fusion inhibitors are associated with gp120 mutations in different regions of Env that confer a more open conformation. These findings contribute to our understanding of the regulation of Env conformational changes and efforts to design new entry inhibitors and stable Env vaccine immunogens.
Collapse
|
29
|
Bowder D, Hollingsead H, Durst K, Hu D, Wei W, Wiggins J, Medjahed H, Finzi A, Sodroski J, Xiang SH. Contribution of the gp120 V3 loop to envelope glycoprotein trimer stability in primate immunodeficiency viruses. Virology 2018; 521:158-168. [PMID: 29936340 PMCID: PMC6053598 DOI: 10.1016/j.virol.2018.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/09/2018] [Accepted: 06/11/2018] [Indexed: 02/06/2023]
Abstract
The V3 loop of the human immunodeficiency virus type 1 (HIV-1) gp120 exterior envelope glycoprotein (Env) becomes exposed after CD4 binding and contacts the coreceptor to mediate viral entry. Prior to CD4 engagement, a hydrophobic patch located at the tip of the V3 loop stabilizes the non-covalent association of gp120 with the Env trimer of HIV-1 subtype B strains. Here, we show that this conserved hydrophobic patch (amino acid residues 307, 309 and 317) contributes to gp120-trimer association in HIV-1 subtype C, HIV-2 and SIV. Changes that reduced the hydrophobicity of these V3 residues resulted in increased gp120 shedding and decreased Env-mediated cell-cell fusion and virus entry in the different primate immunodeficiency viruses tested. Thus, the hydrophobic patch is an evolutionarily conserved element in the tip of the gp120 V3 loop that plays an essential role in maintaining the stability of the pre-triggered Env trimer in diverse primate immunodeficiency viruses. The V3-loop of HIV-1 gp120 contributes to Env trimer stability and viral entry. The hydrophobic patch in the tip of the V3 loop is critical for pre-triggered Env trimer stability. The hydrophobic patch is a conserved motif in primate immunodeficiency viruses.
Collapse
Affiliation(s)
- Dane Bowder
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, United States; School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Haley Hollingsead
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, United States; School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Kate Durst
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, United States; School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Duoyi Hu
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, United States; School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Wenzhong Wei
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, United States; School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Joshua Wiggins
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, United States; School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Halima Medjahed
- Centre de Recherche du CHUM, Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada
| | - Andrés Finzi
- Centre de Recherche du CHUM, Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada
| | - Joseph Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, United States; Department of Microbiology and Immunobiology, Division of AIDS, Harvard Medical School, Boston, MA 02215, United States; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States
| | - Shi-Hua Xiang
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, United States; School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, United States.
| |
Collapse
|
30
|
Comparison of Uncleaved and Mature Human Immunodeficiency Virus Membrane Envelope Glycoprotein Trimers. J Virol 2018; 92:JVI.00277-18. [PMID: 29618643 DOI: 10.1128/jvi.00277-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 03/26/2018] [Indexed: 12/21/2022] Open
Abstract
The mature envelope glycoprotein (Env) spike on the surfaces of human immunodeficiency virus type 1 (HIV-1)-infected cells and virions is derived from proteolytic cleavage of a trimeric gp160 glycoprotein precursor. In these studies, we compared the conformations of cleaved and uncleaved membrane Envs with truncated cytoplasmic tails to those of stabilized soluble gp140 SOSIP.664 Env trimers. Deletion of the gp41 cytoplasmic tail did not significantly affect the sensitivity of viruses with the HIV-1AD8 Env to inhibition by antibodies or a CD4-mimetic compound. After glutaraldehyde fixation and purification from membranes, a cleaved Env exhibited a hydrodynamic radius of ∼10 nm and an antibody-binding profile largely consistent with that expected based on virus neutralization sensitivity. The purified cleaved Env trimers exhibited a hollow architecture with a central void near the trimer axis. Uncleaved Env, cross-linked and purified in parallel, exhibited a hydrodynamic radius similar to that of the cleaved Env. However, the uncleaved Env was recognized by poorly neutralizing antibodies and appeared by negative-stain electron microscopy to sample multiple conformations. Compared with membrane Envs, stabilized soluble gp140 SOSIP.664 Env trimers appear to be more compact, as reflected in their smaller hydrodynamic radii and negative-stain electron microscopy structures. The antigenic features of the soluble gp140 SOSIP.664 Env trimers differed from those of the cleaved membrane Env, particularly in gp120 V3 and some CD4-binding-site epitopes. Thus, proteolytic maturation allows the membrane-anchored Env to achieve a conformation that retains functional metastability but masks epitopes for poorly neutralizing antibodies.IMPORTANCE The entry of human immunodeficiency virus type 1 (HIV-1) into host cells is mediated by the envelope glycoprotein (Env) spike on the surface of the virus. Host antibodies elicited during natural HIV-1 infection or by vaccination can potentially recognize the Env spike and block HIV-1 infection. However, the changing shape of the HIV-1 Env spike protects the virus from antibody binding. Understanding the shapes of natural and man-made preparations of HIV-1 Envs will assist the development of effective vaccines against the virus. Here, we evaluate the effects of several Env modifications commonly used to produce Env preparations for vaccine studies and the determination of structure. We found that the cleavage of the HIV-1 Env precursor helps Env to assume its natural shape, which resists the binding of many commonly elicited antibodies. Stabilized soluble Envs exhibit more compact shapes but expose some Env elements differently than the natural Env.
Collapse
|
31
|
Bale S, Martiné A, Wilson R, Behrens AJ, Le Fourn V, de Val N, Sharma SK, Tran K, Torres JL, Girod PA, Ward AB, Crispin M, Wyatt RT. Cleavage-Independent HIV-1 Trimers From CHO Cell Lines Elicit Robust Autologous Tier 2 Neutralizing Antibodies. Front Immunol 2018; 9:1116. [PMID: 29881382 PMCID: PMC5976746 DOI: 10.3389/fimmu.2018.01116] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 05/03/2018] [Indexed: 01/12/2023] Open
Abstract
Native flexibly linked (NFL) HIV-1 envelope glycoprotein (Env) trimers are cleavage-independent and display a native-like, well-folded conformation that preferentially displays broadly neutralizing determinants. The NFL platform simplifies large-scale production of Env by eliminating the need to co-transfect the precursor-cleaving protease, furin that is required by the cleavage-dependent SOSIP trimers. Here, we report the development of a CHO-M cell line that expressed BG505 NFL trimers at a high level of homogeneity and yields of ~1.8 g/l. BG505 NFL trimers purified by single-step lectin-affinity chromatography displayed a native-like closed structure, efficient recognition by trimer-preferring bNAbs, no recognition by non-neutralizing CD4 binding site-directed and V3-directed antibodies, long-term stability, and proper N-glycan processing. Following negative-selection, formulation in ISCOMATRIX adjuvant and inoculation into rabbits, the trimers rapidly elicited potent autologous tier 2 neutralizing antibodies. These antibodies targeted the N-glycan "hole" naturally present on the BG505 Env proximal to residues at positions 230, 241, and 289. The BG505 NFL trimers that did not expose V3 in vitro, elicited low-to-no tier 1 virus neutralization in vivo, indicating that they remained intact during the immunization process, not exposing V3. In addition, BG505 NFL and BG505 SOSIP trimers expressed from 293F cells, when formulated in Adjuplex adjuvant, elicited equivalent BG505 tier 2 autologous neutralizing titers. These titers were lower in potency when compared to the titers elicited by CHO-M cell derived trimers. In addition, increased neutralization of tier 1 viruses was detected. Taken together, these data indicate that both adjuvant and cell-type expression can affect the elicitation of tier 2 and tier 1 neutralizing responses in vivo.
Collapse
Affiliation(s)
- Shridhar Bale
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| | | | - Richard Wilson
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, United States
| | - Anna-Janina Behrens
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, United Kingdom
| | | | - Natalia de Val
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, United States.,Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States
| | - Shailendra K Sharma
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, United States
| | - Karen Tran
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, United States
| | - Jonathan L Torres
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, United States.,Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States.,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, United States
| | | | - Andrew B Ward
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, United States.,Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States.,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, United States
| | - Max Crispin
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States.,Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, United Kingdom.,Centre for Biological Sciences, Institute of Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Richard T Wyatt
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States.,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, United States.,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
32
|
Das S, Boliar S, Samal S, Ahmed S, Shrivastava T, Shukla BN, Goswami S, Bansal M, Chakrabarti BK. Identification and characterization of a naturally occurring, efficiently cleaved, membrane-bound, clade A HIV-1 Env, suitable for immunogen design, with properties comparable to membrane-bound BG505. Virology 2017; 510:22-28. [PMID: 28689085 DOI: 10.1016/j.virol.2017.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/29/2017] [Accepted: 07/02/2017] [Indexed: 10/19/2022]
Abstract
Efficient cleavage of HIV-1 Env gp160 into its constituent subunits correlates with selective binding to neutralizing antibodies and are the closest mimetic of native, functional Envs. This was first demonstrated with the clade B Env, JRFL. The correlation between efficient cleavage and selective binding to neutralizing antibodies is the guiding principle for immunogen design for HIV vaccine. We have recently reported that Envs 4-2.J41 (clade C) and JRCSF (clade B) are also efficiently cleaved and show similar properties. However, an efficiently cleaved, membrane-bound clade A Env suitable for genetic vaccination has not been directly demonstrated. Here we report that BG505 and a new clade A Env, QB726.70M.ENV.C4 (or A5) are efficiently cleaved on cell membrane. A5 shows desirable antigenic properties comparable with BG505 on cell surface. A5SOSIP in supernatant displays majority of bNAb binding epitopes. Thus, both BG505 and A5 Envs can be used in DNA prime-protein boost vaccination studies.
Collapse
Affiliation(s)
- Supratik Das
- THSTI-IAVI HIV Vaccine Design Program, Translational Health Science and Technology Institute, 3rd Milestone, Faridabad-Gurgaon Expressway, PO box #04, Faridabad 121001, Haryana, India
| | - Saikat Boliar
- THSTI-IAVI HIV Vaccine Design Program, Translational Health Science and Technology Institute, 3rd Milestone, Faridabad-Gurgaon Expressway, PO box #04, Faridabad 121001, Haryana, India
| | - Sweety Samal
- THSTI-IAVI HIV Vaccine Design Program, Translational Health Science and Technology Institute, 3rd Milestone, Faridabad-Gurgaon Expressway, PO box #04, Faridabad 121001, Haryana, India
| | - Shubbir Ahmed
- THSTI-IAVI HIV Vaccine Design Program, Translational Health Science and Technology Institute, 3rd Milestone, Faridabad-Gurgaon Expressway, PO box #04, Faridabad 121001, Haryana, India
| | - Tripti Shrivastava
- THSTI-IAVI HIV Vaccine Design Program, Translational Health Science and Technology Institute, 3rd Milestone, Faridabad-Gurgaon Expressway, PO box #04, Faridabad 121001, Haryana, India
| | - Brihaspati N Shukla
- THSTI-IAVI HIV Vaccine Design Program, Translational Health Science and Technology Institute, 3rd Milestone, Faridabad-Gurgaon Expressway, PO box #04, Faridabad 121001, Haryana, India
| | - Sandeep Goswami
- THSTI-IAVI HIV Vaccine Design Program, Translational Health Science and Technology Institute, 3rd Milestone, Faridabad-Gurgaon Expressway, PO box #04, Faridabad 121001, Haryana, India
| | - Manish Bansal
- THSTI-IAVI HIV Vaccine Design Program, Translational Health Science and Technology Institute, 3rd Milestone, Faridabad-Gurgaon Expressway, PO box #04, Faridabad 121001, Haryana, India
| | - Bimal K Chakrabarti
- THSTI-IAVI HIV Vaccine Design Program, Translational Health Science and Technology Institute, 3rd Milestone, Faridabad-Gurgaon Expressway, PO box #04, Faridabad 121001, Haryana, India; IAVI Neutralizing Antibody Center at TSRI, La Jolla, CA, USA.
| |
Collapse
|
33
|
Espy N, Pacheco B, Sodroski J. Adaptation of HIV-1 to cells with low expression of the CCR5 coreceptor. Virology 2017; 508:90-107. [PMID: 28521215 DOI: 10.1016/j.virol.2017.04.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 11/19/2022]
Abstract
The binding of the human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer ((gp120/gp41)3) to the receptors CD4 and CCR5 triggers virus entry into host cells. To identify Env regions that respond to CCR5 binding, HIV-1 was serially passaged on a CD4-positive canine cell line expressing progressively lower levels of CCR5. HIV-1 replication was observed in cells expressing ~1300 CCR5 molecules/cell. Env changes that conferred this low-CCR5 replication phenotype were located outside of the known CCR5-binding region of the gp120 Env subunit and did not apparently increase CCR5 binding affinity. The adaptation-associated changes, located in the gp120 α1 helix and in the gp41 HR1 heptad repeat and membrane-proximal external region (MPER), enhanced HIV-1 replication in cells at all levels of CCR5 expression. The adapted Envs exhibited a greater propensity to undergo conformational changes, as evidenced by increased exposure of conserved regions near the CD4- and CCR5-binding sites.
Collapse
Affiliation(s)
- Nicole Espy
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Beatriz Pacheco
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Joseph Sodroski
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
34
|
Crooks ET, Osawa K, Tong T, Grimley SL, Dai YD, Whalen RG, Kulp DW, Menis S, Schief WR, Binley JM. Effects of partially dismantling the CD4 binding site glycan fence of HIV-1 Envelope glycoprotein trimers on neutralizing antibody induction. Virology 2017; 505:193-209. [PMID: 28279830 PMCID: PMC5895097 DOI: 10.1016/j.virol.2017.02.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 12/31/2022]
Abstract
Previously, VLPs bearing JR-FL strain HIV-1 Envelope trimers elicited potent neutralizing antibodies (nAbs) in 2/8 rabbits (PLoS Pathog 11(5): e1004932) by taking advantage of a naturally absent glycan at position 197 that borders the CD4 binding site (CD4bs). In new immunizations, we attempted to improve nAb responses by removing the N362 glycan that also lines the CD4bs. All 4 rabbits developed nAbs. One targeted the N197 glycan hole like our previous sera. Two sera depended on the N463 glycan, again suggesting CD4bs overlap. Heterologous boosts appeared to reduce nAb clashes with the N362 glycan. The fourth serum targeted a N362 glycan-sensitive epitope. VLP manufacture challenges prevented us from immunizing larger rabbit numbers to empower a robust statistical analysis. Nevertheless, trends suggest that targeted glycan removal may improve nAb induction by exposing new epitopes and that it may be possible to modify nAb specificity using rational heterologous boosts.
Collapse
Affiliation(s)
- Ema T Crooks
- San Diego Biomedical Research Institute, 10865 Road to the Cure, San Diego, CA 92121, USA
| | - Keiko Osawa
- San Diego Biomedical Research Institute, 10865 Road to the Cure, San Diego, CA 92121, USA
| | - Tommy Tong
- San Diego Biomedical Research Institute, 10865 Road to the Cure, San Diego, CA 92121, USA
| | - Samantha L Grimley
- San Diego Biomedical Research Institute, 10865 Road to the Cure, San Diego, CA 92121, USA
| | - Yang D Dai
- The Scripps Research Institute, Department of Immunology and Microbial Science, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Robert G Whalen
- Altravax, Inc., 725 San Aleso Avenue, Suite 2, Sunnyvale, CA 94085, USA
| | - Daniel W Kulp
- IAVI Neutralizing Antibody Center at The Scripps Research Institute, Department of Immunology and Microbial Science, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Sergey Menis
- IAVI Neutralizing Antibody Center at The Scripps Research Institute, Department of Immunology and Microbial Science, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - William R Schief
- IAVI Neutralizing Antibody Center at The Scripps Research Institute, Department of Immunology and Microbial Science, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02129, USA
| | - James M Binley
- San Diego Biomedical Research Institute, 10865 Road to the Cure, San Diego, CA 92121, USA.
| |
Collapse
|
35
|
Liu Q, Acharya P, Dolan MA, Zhang P, Guzzo C, Lu J, Kwon A, Gururani D, Miao H, Bylund T, Chuang GY, Druz A, Zhou T, Rice WJ, Wigge C, Carragher B, Potter CS, Kwong PD, Lusso P. Quaternary contact in the initial interaction of CD4 with the HIV-1 envelope trimer. Nat Struct Mol Biol 2017; 24:370-378. [PMID: 28218750 DOI: 10.1038/nsmb.3382] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 01/25/2017] [Indexed: 12/19/2022]
Abstract
Binding of the gp120 envelope (Env) glycoprotein to the CD4 receptor is the first step in the HIV-1 infectious cycle. Although the CD4-binding site has been extensively characterized, the initial receptor interaction has been difficult to study because of major CD4-induced structural rearrangements. Here we used cryogenic electron microscopy (cryo-EM) to visualize the initial contact of CD4 with the HIV-1 Env trimer at 6.8-Å resolution. A single CD4 molecule is embraced by a quaternary HIV-1-Env surface formed by coalescence of the previously defined CD4-contact region with a second CD4-binding site (CD4-BS2) in the inner domain of a neighboring gp120 protomer. Disruption of CD4-BS2 destabilized CD4-trimer interaction and abrogated HIV-1 infectivity by preventing the acquisition of coreceptor-binding competence. A corresponding reduction in HIV-1 infectivity occurred after the mutation of CD4 residues that interact with CD4-BS2. Our results document the critical role of quaternary interactions in the initial HIV-Env-receptor contact, with implications for treatment and vaccine design.
Collapse
Affiliation(s)
- Qingbo Liu
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Priyamvada Acharya
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA.,National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, New York, USA
| | - Michael A Dolan
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Peng Zhang
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Christina Guzzo
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Jacky Lu
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Alice Kwon
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Deepali Gururani
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Huiyi Miao
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Tatsiana Bylund
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Aliaksandr Druz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - William J Rice
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, New York, USA
| | - Christoph Wigge
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, New York, USA
| | - Bridget Carragher
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, New York, USA
| | - Clinton S Potter
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, New York, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Paolo Lusso
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| |
Collapse
|
36
|
Residues in the gp41 Ectodomain Regulate HIV-1 Envelope Glycoprotein Conformational Transitions Induced by gp120-Directed Inhibitors. J Virol 2017; 91:JVI.02219-16. [PMID: 28003492 DOI: 10.1128/jvi.02219-16] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 12/15/2016] [Indexed: 01/08/2023] Open
Abstract
Interactions between the gp120 and gp41 subunits of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) trimer maintain the metastable unliganded form of the viral spike. Binding of gp120 to the receptor, CD4, changes the Env conformation to promote gp120 interaction with the second receptor, CCR5 or CXCR4. CD4 binding also induces the transformation of Env into the prehairpin intermediate, in which the gp41 heptad repeat 1 (HR1) coiled coil is assembled at the trimer axis. In nature, HIV-1 Envs must balance the requirements to maintain the noncovalent association of gp120 with gp41 and to evade the host antibody response with the need to respond to CD4 binding. Here we show that the gp41 HR1 region contributes to gp120 association with the unliganded Env trimer. Changes in particular amino acid residues in the gp41 HR1 region decreased the efficiency with which Env moved from the unliganded state. Thus, these gp41 changes decreased the sensitivity of HIV-1 to cold inactivation and ligands that require Env conformational changes to bind efficiently. Conversely, these gp41 changes increased HIV-1 sensitivity to small-molecule entry inhibitors that block Env conformational changes induced by CD4. Changes in particular gp41 HR1 amino acid residues can apparently affect the relative stability of the unliganded state and CD4-induced conformations. Thus, the gp41 HR1 region contributes to the association with gp120 and regulates Env transitions from the unliganded state to downstream conformations.IMPORTANCE The development of an efficient vaccine able to prevent HIV infection is a worldwide priority. Knowledge of the envelope glycoprotein structure and the conformational changes that occur after receptor engagement will help researchers to develop an immunogen able to elicit antibodies that block HIV-1 transmission. Here we identify residues in the HIV-1 transmembrane envelope glycoprotein that stabilize the unliganded state by modulating the transitions from the unliganded state to the CD4-bound state.
Collapse
|
37
|
Witt KC, Castillo-Menendez L, Ding H, Espy N, Zhang S, Kappes JC, Sodroski J. Antigenic characterization of the human immunodeficiency virus (HIV-1) envelope glycoprotein precursor incorporated into nanodiscs. PLoS One 2017; 12:e0170672. [PMID: 28151945 PMCID: PMC5289478 DOI: 10.1371/journal.pone.0170672] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 01/09/2017] [Indexed: 01/13/2023] Open
Abstract
The entry of human immunodeficiency virus (HIV-1) into host cells is mediated by the viral envelope glycoproteins (Envs), which are derived by the proteolytic cleavage of a trimeric gp160 Env precursor. The mature Env trimer is a major target for entry inhibitors and vaccine-induced neutralizing antibodies. Env interstrain variability, conformational flexibility and heavy glycosylation contribute to evasion of the host immune response, and create challenges for structural characterization and vaccine development. Here we investigate variables associated with reconstitution of the HIV-1 Env precursor into nanodiscs, nanoscale lipid bilayer discs enclosed by membrane scaffolding proteins. We identified detergents, as well as lipids similar in composition to the viral lipidome, that allowed efficient formation of Env-nanodiscs (Env-NDs). Env-NDs were created with the full-length Env precursor and with an Env precursor with the majority of the cytoplasmic tail intact. The self-association of Env-NDs was decreased by glutaraldehyde crosslinking. The Env-NDs exhibited an antigenic profile expected for the HIV-1 Env precursor. Env-NDs were recognized by broadly neutralizing antibodies. Of note, neutralizing antibody epitopes in the gp41 membrane-proximal external region and in the gp120:gp41 interface were well exposed on Env-NDs compared with Env expressed on cell surfaces. Most Env epitopes recognized by non-neutralizing antibodies were masked on the Env-NDs. This antigenic profile was stable for several days, exhibiting a considerably longer half-life than that of Env solubilized in detergents. Negative selection with weak neutralizing antibodies could be used to improve the antigenic profile of the Env-NDs. Finally, we show that lipid adjuvants can be incorporated into Env-NDs. These results indicate that Env-NDs represent a potentially useful platform for investigating the structural, functional and antigenic properties of the HIV-1 Env trimer in a membrane context.
Collapse
Affiliation(s)
- Kristen C. Witt
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA, United States of America
| | - Luis Castillo-Menendez
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA, United States of America
| | - Haitao Ding
- Departments of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Nicole Espy
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA, United States of America
| | - Shijian Zhang
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA, United States of America
| | - John C. Kappes
- Departments of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
- Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, AL, United States of America
| | - Joseph Sodroski
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA, United States of America
- Department of Immunology & Infectious Diseases, Harvard School of Public Health, Boston, MA, United States of America
- * E-mail:
| |
Collapse
|
38
|
Abstract
The HIV genome encodes a small number of viral proteins (i.e., 16), invariably establishing cooperative associations among HIV proteins and between HIV and host proteins, to invade host cells and hijack their internal machineries. As a known example, the HIV envelope glycoprotein GP120 is closely associated with GP41 for viral entry. From a genome-wide perspective, a hypothesis can be worked out to determine whether 16 HIV proteins could develop 120 possible pairwise associations either by physical interactions or by functional associations mediated via HIV or host molecules. Here, we present the first systematic review of experimental evidence on HIV genome-wide protein associations using a large body of publications accumulated over the past 3 decades. Of 120 possible pairwise associations between 16 HIV proteins, at least 34 physical interactions and 17 functional associations have been identified. To achieve efficient viral replication and infection, HIV protein associations play essential roles (e.g., cleavage, inhibition, and activation) during the HIV life cycle. In either a dispensable or an indispensable manner, each HIV protein collaborates with another viral protein to accomplish specific activities that precisely take place at the proper stages of the HIV life cycle. In addition, HIV genome-wide protein associations have an impact on anti-HIV inhibitors due to the extensive cross talk between drug-inhibited proteins and other HIV proteins. Overall, this study presents for the first time a comprehensive overview of HIV genome-wide protein associations, highlighting meticulous collaborations between all viral proteins during the HIV life cycle.
Collapse
Affiliation(s)
- Guangdi Li
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China KU Leuven-University of Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Leuven, Belgium
| | - Erik De Clercq
- KU Leuven-University of Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Leuven, Belgium
| |
Collapse
|
39
|
HIV Genome-Wide Protein Associations: a Review of 30 Years of Research. Microbiol Mol Biol Rev 2016; 80:679-731. [PMID: 27357278 DOI: 10.1128/mmbr.00065-15] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The HIV genome encodes a small number of viral proteins (i.e., 16), invariably establishing cooperative associations among HIV proteins and between HIV and host proteins, to invade host cells and hijack their internal machineries. As a known example, the HIV envelope glycoprotein GP120 is closely associated with GP41 for viral entry. From a genome-wide perspective, a hypothesis can be worked out to determine whether 16 HIV proteins could develop 120 possible pairwise associations either by physical interactions or by functional associations mediated via HIV or host molecules. Here, we present the first systematic review of experimental evidence on HIV genome-wide protein associations using a large body of publications accumulated over the past 3 decades. Of 120 possible pairwise associations between 16 HIV proteins, at least 34 physical interactions and 17 functional associations have been identified. To achieve efficient viral replication and infection, HIV protein associations play essential roles (e.g., cleavage, inhibition, and activation) during the HIV life cycle. In either a dispensable or an indispensable manner, each HIV protein collaborates with another viral protein to accomplish specific activities that precisely take place at the proper stages of the HIV life cycle. In addition, HIV genome-wide protein associations have an impact on anti-HIV inhibitors due to the extensive cross talk between drug-inhibited proteins and other HIV proteins. Overall, this study presents for the first time a comprehensive overview of HIV genome-wide protein associations, highlighting meticulous collaborations between all viral proteins during the HIV life cycle.
Collapse
|
40
|
Cimbro R, Peterson FC, Liu Q, Guzzo C, Zhang P, Miao H, Van Ryk D, Ambroggio X, Hurt DE, De Gioia L, Volkman BF, Dolan MA, Lusso P. Tyrosine-sulfated V2 peptides inhibit HIV-1 infection via coreceptor mimicry. EBioMedicine 2016; 10:45-54. [PMID: 27389109 PMCID: PMC5006643 DOI: 10.1016/j.ebiom.2016.06.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/15/2016] [Accepted: 06/24/2016] [Indexed: 11/06/2022] Open
Abstract
Tyrosine sulfation is a post-translational modification that facilitates protein-protein interaction. Two sulfated tyrosines (Tys173 and Tys177) were recently identified within the second variable (V2) loop of the major HIV-1 envelope glycoprotein, gp120, and shown to contribute to stabilizing the intramolecular interaction between V2 and the third variable (V3) loop. Here, we report that tyrosine-sulfated peptides derived from V2 act as structural and functional mimics of the CCR5 N-terminus and potently block HIV-1 infection. Nuclear magnetic and surface plasmon resonance analyses indicate that a tyrosine-sulfated V2 peptide (pV2α-Tys) adopts a CCR5-like helical conformation and directly interacts with gp120 in a CD4-dependent fashion, competing with a CCR5 N-terminal peptide. Sulfated V2 mimics, but not their non-sulfated counterparts, inhibit HIV-1 entry and fusion by preventing coreceptor utilization, with the highly conserved C-terminal sulfotyrosine, Tys177, playing a dominant role. Unlike CCR5 N-terminal peptides, V2 mimics inhibit a broad range of HIV-1 strains irrespective of their coreceptor tropism, highlighting the overall structural conservation of the coreceptor-binding site in gp120. These results document the use of receptor mimicry by a retrovirus to occlude a key neutralization target site and provide leads for the design of therapeutic strategies against HIV-1. Tyrosine-sulfated peptides derived from the V2 domain of HIV-1 gp120 mimic the N-terminal domain of the CCR5 coreceptor. Tyrosine-sulfated V2 peptides are potent and broad-spectrum inhibitors of HIV-1 infection.
Understanding how HIV-1 protects its outer envelope from the immune system may help devise effective strategies for treatment and vaccine. We derived synthetic peptides from the V2 loop of the external HIV-1 envelope glycoprotein, gp120, which contains sulfate-modified tyrosines that contribute to maintaining the envelope in an antibody-protected configuration. We found that these peptides mimic the structure and function of CCR5, a key cellular coreceptor for HIV-1, interacting with and occluding a major CCR5-binding site in gp120. Tyrosine-sulfated V2 peptides potently block HIV-1 entry and may serve as templates for the design of new antiviral inhibitors.
Collapse
Affiliation(s)
- Raffaello Cimbro
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Francis C Peterson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Qingbo Liu
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Christina Guzzo
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Peng Zhang
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Huiyi Miao
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Donald Van Ryk
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Xavier Ambroggio
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Darrell E Hurt
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Michael A Dolan
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Paolo Lusso
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
41
|
Gao K, Zhang Y, Lou J. Exploring the membrane fusion mechanism through force-induced disassembly of HIV-1 six-helix bundle. Biochem Biophys Res Commun 2016; 473:1185-1190. [PMID: 27079239 DOI: 10.1016/j.bbrc.2016.04.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 04/08/2016] [Indexed: 10/22/2022]
Abstract
Enveloped virus, such as HIV-1, employs membrane fusion mechanism to invade into host cell. HIV-1 gp41 ectodomain uses six-helix bundle configuration to accomplish this process. Using molecular dynamic simulations, we confirmed the stability of this six-helix bundle by showing high occupancy of hydrogen bonds and hydrophobic interactions. Key residues and interactions important for the bundle integration were characterized by force-induced unfolding simulations of six-helix bundle, exhibiting the collapse order of these groups of interactions. Moreover, our results in some way concerted with a previous theory that the formation of coiled-coil choose a route which involved cooperative interactions between the N-terminal and C-terminal helix.
Collapse
Affiliation(s)
- Kai Gao
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Zhang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jizhong Lou
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
42
|
Stieh DJ, King DF, Klein K, Aldon Y, McKay PF, Shattock RJ. Discrete partitioning of HIV-1 Env forms revealed by viral capture. Retrovirology 2015; 12:81. [PMID: 26399966 PMCID: PMC4581120 DOI: 10.1186/s12977-015-0207-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/15/2015] [Indexed: 11/25/2022] Open
Abstract
Background The structure of HIV-1 envelope glycoprotein (Env) is flexible and heterogeneous on whole virions. Although functional Env complexes are thought to require trimerization of cleaved gp41/gp120 heterodimers, variable processing can result in the potential incorporation of non-functional uncleaved proteins (gp160), non-trimeric arrangements of gp41/gp120 heterodimers, and gp120 depleted gp41 stumps. The potential distribution of functional and non-functional Env forms across replication-competent viral populations may have important implications for neutralizing and non-neutralizing antibody functions. This study applied an immuno-bead viral capture assay (VCA) to interrogate the potential distribution (heterologous vs homologous) of functional and non-functional forms of virion associated Env. Results The VCA revealed a significant association between depletion of infectious virions and virion Env incorporation, but not between infectivity and p24-gag. Three distinct subpopulations of virions were identified within pools of genetically homogenous viral particles. Critically, a significant subpopulation of infectious virions were exclusively captured by neutralizing antibodies (nAbs) indicative of a homologous distribution of functional trimeric Env forms. A second infectious subpopulation bound both neutralizing and non-neutralizing antibodies (nnAbs) representative of a heterologous distribution of Env forms, while a third non-infectious subpopulation was predominantly bound by nnAbs recognizing gp41 stumps. Conclusions The observation that a distinct and significant subpopulation of infectious virions is exclusively captured by neutralizing antibodies has important implications for understanding antibody binding and neutralization, as well as other antibody effector functions. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0207-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel J Stieh
- Department of Cellular and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| | - Deborah F King
- Mucosal Infection and Immunity Group, Section of Infectious Diseases, Imperial College London, St Mary's Campus, London, W2 1PG, UK.
| | - Katja Klein
- Mucosal Infection and Immunity Group, Section of Infectious Diseases, Imperial College London, St Mary's Campus, London, W2 1PG, UK.
| | - Yoann Aldon
- Mucosal Infection and Immunity Group, Section of Infectious Diseases, Imperial College London, St Mary's Campus, London, W2 1PG, UK.
| | - Paul F McKay
- Mucosal Infection and Immunity Group, Section of Infectious Diseases, Imperial College London, St Mary's Campus, London, W2 1PG, UK.
| | - Robin J Shattock
- Mucosal Infection and Immunity Group, Section of Infectious Diseases, Imperial College London, St Mary's Campus, London, W2 1PG, UK.
| |
Collapse
|
43
|
Conformational Masking and Receptor-Dependent Unmasking of Highly Conserved Env Epitopes Recognized by Non-Neutralizing Antibodies That Mediate Potent ADCC against HIV-1. Viruses 2015; 7:5115-32. [PMID: 26393642 PMCID: PMC4584300 DOI: 10.3390/v7092856] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/12/2015] [Accepted: 08/18/2015] [Indexed: 01/11/2023] Open
Abstract
The mechanism of antibody-mediated protection is a major focus of HIV-1 vaccine development and a significant issue in the control of viremia. Virus neutralization, Fc-mediated effector function, or both, are major mechanisms of antibody-mediated protection against HIV-1, although other mechanisms, such as virus aggregation, are known. The interplay between virus neutralization and Fc-mediated effector function in protection against HIV-1 is complex and only partially understood. Passive immunization studies using potent broadly neutralizing antibodies (bnAbs) show that both neutralization and Fc-mediated effector function provides the widest dynamic range of protection; however, a vaccine to elicit these responses remains elusive. By contrast, active immunization studies in both humans and non-human primates using HIV-1 vaccine candidates suggest that weakly neutralizing or non-neutralizing antibodies can protect by Fc-mediated effector function, albeit with a much lower dynamic range seen for passive immunization with bnAbs. HIV-1 has evolved mechanisms to evade each type of antibody-mediated protection that must be countered by a successful AIDS vaccine. Overcoming the hurdles required to elicit bnAbs has become a major focus of HIV-1 vaccine development. Here, we discuss a less studied problem, the structural basis of protection (and its evasion) by antibodies that protect only by potent Fc-mediated effector function.
Collapse
|
44
|
Chen J, Kovacs JM, Peng H, Rits-Volloch S, Lu J, Park D, Zablowsky E, Seaman MS, Chen B. HIV-1 ENVELOPE. Effect of the cytoplasmic domain on antigenic characteristics of HIV-1 envelope glycoprotein. Science 2015; 349:191-5. [PMID: 26113642 DOI: 10.1126/science.aaa9804] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/08/2015] [Indexed: 12/20/2022]
Abstract
A major goal for HIV-1 vaccine development is the production of an immunogen to mimic native, functional HIV-1 envelope trimeric spikes (Env) on the virion surface. We lack a reliable description of a native, functional trimer, however, because of inherent instability and heterogeneity in most preparations. We describe here two conformationally homogeneous Envs derived from difficult-to-neutralize primary isolates. All their non-neutralizing epitopes are fully concealed and independent of their proteolytic processing. Most broadly neutralizing antibodies (bnAbs) recognize these native trimers. Truncation of their cytoplasmic tail has little effect on membrane fusion, but it diminishes binding to trimer-specific bnAbs while exposing non-neutralizing epitopes. These results yield a more accurate antigenic picture than hitherto possible of a genuinely untriggered and functional HIV-1 Env; they can guide effective vaccine development.
Collapse
Affiliation(s)
- Jia Chen
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA. Department of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, MA 02115, USA
| | - James M Kovacs
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA. Department of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, MA 02115, USA
| | - Hanqin Peng
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jianming Lu
- Codex BioSolutions, Inc., 401 Professional Drive, Gaithersburg, MD 20879, USA
| | - Donghyun Park
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Elise Zablowsky
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Bing Chen
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA. Department of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, MA 02115, USA.
| |
Collapse
|
45
|
Correction: Effects of the I559P gp41 Change on the Conformation and Function of the Human Immunodeficiency Virus (HIV-1) Membrane Envelope Glycoprotein Trimer. PLoS One 2015; 10:e0129405. [PMID: 26010978 PMCID: PMC4444099 DOI: 10.1371/journal.pone.0129405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|