1
|
Linnegar B, Kerlin DH, Eby P, Kemsley P, McCallum H, Peel AJ. Horse populations are severely underestimated in a region at risk of Hendra virus spillover. Aust Vet J 2024; 102:342-352. [PMID: 38567676 DOI: 10.1111/avj.13331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 02/12/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
OBJECTIVE To identify the size and distribution of the horse population in the Northern Rivers Region of NSW, including changes from 2007 to 2021, to better understand populations at risk of Hendra virus transmission. METHODS Census data from the 2007 Equine Influenza (EI) outbreak were compared with data collected annually by New South Wales Local Land Services (LLS) (2011-2021), and with field observations via road line transects (2021). RESULTS The horse populations reported to LLS in 2011 (3000 horses; 0.77 horses/km2) was 145% larger than that reported during the EI outbreak in 2007 (1225 horses; 0.32 horses/km2). This was inconsistent with the 6% increase in horses recorded from 2011 to 2020 within the longitudinal LLS dataset. Linear modelling suggested the true horse population of this region in 2007 was at least double that reported at the time. Distance sampling in 2021 estimated the region's population at 10,185 horses (3.89 per km2; 95% CI = 4854-21,372). Field sampling and modelling identified higher horse densities in rural cropland, with the percentage of conservation land, modified grazing, and rural residential land identified as the best predictors of horse densities. CONCLUSIONS Data from the 2007 EI outbreak no longer correlates to the current horse population in size or distribution and was likely not a true representation at the time. Current LLS data also likely underestimates horse populations. Ongoing efforts to further quantify and map horse populations in Australia are important for estimating and managing the risk of equine zoonoses.
Collapse
Affiliation(s)
- B Linnegar
- Centre for Planetary Health and Food Security, Griffith University, Nathan, Queensland, Australia
| | - D H Kerlin
- Centre for Planetary Health and Food Security, Griffith University, Nathan, Queensland, Australia
| | - P Eby
- Centre for Planetary Health and Food Security, Griffith University, Nathan, Queensland, Australia
- School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
- Centre for Large Landscape Conservation, Bozeman, Montana, USA
| | - P Kemsley
- North Coast Local Land Services, Wollongbar, New South Wales, Australia
| | - H McCallum
- Centre for Planetary Health and Food Security, Griffith University, Nathan, Queensland, Australia
| | - A J Peel
- Centre for Planetary Health and Food Security, Griffith University, Nathan, Queensland, Australia
| |
Collapse
|
2
|
Sánchez CA, Phelps KL, Frank HK, Geldenhuys M, Griffiths ME, Jones DN, Kettenburg G, Lunn TJ, Moreno KR, Mortlock M, Vicente-Santos A, Víquez-R LR, Kading RC, Markotter W, Reeder DM, Olival KJ. Advances in understanding bat infection dynamics across biological scales. Proc Biol Sci 2024; 291:20232823. [PMID: 38444339 PMCID: PMC10915549 DOI: 10.1098/rspb.2023.2823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/31/2024] [Indexed: 03/07/2024] Open
Abstract
Over the past two decades, research on bat-associated microbes such as viruses, bacteria and fungi has dramatically increased. Here, we synthesize themes from a conference symposium focused on advances in the research of bats and their microbes, including physiological, immunological, ecological and epidemiological research that has improved our understanding of bat infection dynamics at multiple biological scales. We first present metrics for measuring individual bat responses to infection and challenges associated with using these metrics. We next discuss infection dynamics within bat populations of the same species, before introducing complexities that arise in multi-species communities of bats, humans and/or livestock. Finally, we outline critical gaps and opportunities for future interdisciplinary work on topics involving bats and their microbes.
Collapse
Affiliation(s)
| | | | - Hannah K. Frank
- Department of Ecology & Evolutionary Biology, Tulane University, New Orleans, LA 70118, USA
| | - Marike Geldenhuys
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, South Africa
| | | | - Devin N. Jones
- Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | | | - Tamika J. Lunn
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Kelsey R. Moreno
- Department of Psychology, Saint Xavier University, Chicago, IL 60655, USA
| | - Marinda Mortlock
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, South Africa
| | | | - Luis R. Víquez-R
- Department of Biology, Bucknell University, Lewisburg, PA 17837, USA
| | - Rebekah C. Kading
- Department of Microbiology, Immunology and Pathology, Center for Vector-borne and Infectious Diseases, Colorado State University, Fort Collins, CO 80523, USA
| | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, South Africa
| | - DeeAnn M. Reeder
- Department of Biology, Bucknell University, Lewisburg, PA 17837, USA
| | | |
Collapse
|
3
|
Caruso S, Edwards SJ. Recently Emerged Novel Henipa-like Viruses: Shining a Spotlight on the Shrew. Viruses 2023; 15:2407. [PMID: 38140648 PMCID: PMC10747904 DOI: 10.3390/v15122407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Henipaviruses are zoonotic viruses, including some highly pathogenic and capable of serious disease and high fatality rates in both animals and humans. Hendra virus and Nipah virus are the most notable henipaviruses, resulting in significant outbreaks across South Asia, South-East Asia, and Australia. Pteropid fruit bats have been identified as key zoonotic reservoirs; however, the increased discovery of henipaviruses outside the geographic distribution of Pteropid fruit bats and the detection of novel henipa-like viruses in other species such as the shrew, rat, and opossum suggest that Pteropid bats are not the sole reservoir for henipaviruses. In this review, we provide an update on henipavirus spillover events and describe the recent detection of novel unclassified henipaviruses, with a strong focus on the shrew and its emerging role as a key host of henipaviruses.
Collapse
Affiliation(s)
| | - Sarah J. Edwards
- Australian Centre for Disease Preparedness, Health & Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), 5 Portarlington Road, East Geelong, VIC 3219, Australia;
| |
Collapse
|
4
|
McMichael L, Mclean J, Taylor J, Martinez Y, Meers J. Cleft Palate Syndrome in the Endangered Spectacled Flying Fox ( Pteropus conspicillatus): Implications for Conservation and Comparative Research. Vet Sci 2023; 10:vetsci10010038. [PMID: 36669041 PMCID: PMC9865782 DOI: 10.3390/vetsci10010038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Cleft palate syndrome, first observed in the spectacled flying fox population in 1998, has produced sporadic neonatal mortality events over the past two decades, with an estimated incidence of up to 1/1000 births per year. This study presents a rudimentary characterisation of the syndrome, presenting gross pathology of syndromic signs upon visual inspection, a histological examination of palate malformations, and syndrome incidence data representing the past two decades. The syndrome presents with a range of signs, primarily congenital palate malformations ranging from a pinhole cleft to a complete hard and soft palate deficit, resulting in the death or abandonment of neonates shortly after birth. The congenital palate malformations are often associated with claw deformities, wiry facial hair, and in some instances, muscle weakness and neurological signs. The natural occurrence of the lethal congenital orofacial birth defects in the spectacled flying fox presents a unique opportunity for the investigation of putative aetiologies, drawing parallels between bat and other mammalian cleft palate risk factors. Further syndrome investigation has the potential to deliver both biodiversity conservation and comparative veterinary and biomedical outcomes.
Collapse
Affiliation(s)
- Lee McMichael
- School of Veterinary Science, University of Queensland, Gatton, QLD 4343, Australia
- Correspondence:
| | - Jennefer Mclean
- Tolga Bat Rescue and Research Inc., Carrington Road, Atherton, QLD 4883, Australia
| | - Jim Taylor
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4810, Australia
| | - Yissu Martinez
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4810, Australia
| | - Joanne Meers
- School of Veterinary Science, University of Queensland, Gatton, QLD 4343, Australia
| |
Collapse
|
5
|
Becker DJ, Eby P, Madden W, Peel AJ, Plowright RK. Ecological conditions predict the intensity of Hendra virus excretion over space and time from bat reservoir hosts. Ecol Lett 2023; 26:23-36. [PMID: 36310377 DOI: 10.1111/ele.14007] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 12/27/2022]
Abstract
The ecological conditions experienced by wildlife reservoirs affect infection dynamics and thus the distribution of pathogen excreted into the environment. This spatial and temporal distribution of shed pathogen has been hypothesised to shape risks of zoonotic spillover. However, few systems have data on both long-term ecological conditions and pathogen excretion to advance mechanistic understanding and test environmental drivers of spillover risk. We here analyse three years of Hendra virus data from nine Australian flying fox roosts with covariates derived from long-term studies of bat ecology. We show that the magnitude of winter pulses of viral excretion, previously considered idiosyncratic, are most pronounced after recent food shortages and in bat populations displaced to novel habitats. We further show that cumulative pathogen excretion over time is shaped by bat ecology and positively predicts spillover frequency. Our work emphasises the role of reservoir host ecology in shaping pathogen excretion and provides a new approach to estimate spillover risk.
Collapse
Affiliation(s)
- Daniel J Becker
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, USA.,Department of Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Peggy Eby
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia.,Centre for Planetary Health and Food Security, Griffith University, Queensland, Australia
| | - Wyatt Madden
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, USA
| | - Alison J Peel
- Centre for Planetary Health and Food Security, Griffith University, Queensland, Australia
| | - Raina K Plowright
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
6
|
Bruno L, Nappo MA, Ferrari L, Di Lecce R, Guarnieri C, Cantoni AM, Corradi A. Nipah Virus Disease: Epidemiological, Clinical, Diagnostic and Legislative Aspects of This Unpredictable Emerging Zoonosis. Animals (Basel) 2022; 13:ani13010159. [PMID: 36611767 PMCID: PMC9817766 DOI: 10.3390/ani13010159] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Nipah virus (NiV) infection is a viral disease caused by a Henipavirus, belonging to the Paramyxoviridae family, responsible for a zoonosis. The course of the disease can be very serious and lead to death. NiV natural hosts are fruit bats (also known as megabats) belonging to the Pteropodidae family, especially those of the Pteropus genus. Natural infection in domestic animals has been described in farming pigs, horses, domestic and feral dogs and cats. Natural NiV transmission is possible intra-species (pig-to-pig, human-to-human) and inter-species (flying bat-to-human, pig-to-human, horse-to-human). The infection can be spread by humans or animals in different ways. It is peculiar how the viral transmission modes among different hosts also change depending on the geographical area for different reasons, including different breeding methods, eating habits and the recently identified genetic traits/molecular features of main virus proteins related to virulence. Outbreaks have been described in Malaysia, Singapore, Bangladesh, India and the Philippines with, in some cases, severe respiratory and neurological disease and high mortality in both humans and pigs. Diagnosis can be made using different methods including serological, molecular, virological and immunohistochemical methods. The cornerstones for control of the disease are biosecurity (via the correct management of reservoir and intermediate/amplifying hosts) and potential vaccines which are still under development. However, the evaluation of the potential influence of climate and anthropogenic changes on the NiV reservoir bats and their habitat as well as on disease spread and inter-specific infections is of great importance. Bats, as natural reservoirs of the virus, are responsible for the viral spread and, therefore, for the outbreaks of the disease in humans and animals. Due to the worldwide distribution of bats, potential new reports and spillovers are not to be dismissed in the future.
Collapse
Affiliation(s)
- Luigi Bruno
- Department of Prevention, Azienda Sanitaria Locale (A.S.L.) Napoli 3 Sud, 80053 Castellammare di Stabia, Italy
- Correspondence: (L.B.); (L.F.)
| | - Maria Anna Nappo
- Department of Prevention, Azienda Sanitaria Locale (A.S.L.) Napoli 3 Sud, 80053 Castellammare di Stabia, Italy
| | - Luca Ferrari
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
- Correspondence: (L.B.); (L.F.)
| | - Rosanna Di Lecce
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
| | - Chiara Guarnieri
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
| | - Anna Maria Cantoni
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
| | - Attilio Corradi
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
| |
Collapse
|
7
|
Meza DK, Mollentze N, Broos A, Tello C, Valderrama W, Recuenco S, Carrera JE, Shiva C, Falcon N, Viana M, Streicker DG. Ecological determinants of rabies virus dynamics in vampire bats and spillover to livestock. Proc Biol Sci 2022; 289:20220860. [PMID: 36069012 PMCID: PMC9449476 DOI: 10.1098/rspb.2022.0860] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/16/2022] [Indexed: 12/03/2022] Open
Abstract
The pathogen transmission dynamics in bat reservoirs underpin efforts to reduce risks to human health and enhance bat conservation, but are notoriously challenging to resolve. For vampire bat rabies, the geographical scale of enzootic cycles, whether environmental factors modulate baseline risk, and how within-host processes affect population-level dynamics remain unresolved. We studied patterns of rabies exposure using an 11-year, spatially replicated sero-survey of 3709 Peruvian vampire bats and co-occurring outbreaks in livestock. Seroprevalence was correlated among nearby sites but fluctuated asynchronously at larger distances. A generalized additive mixed model confirmed spatially compartmentalized transmission cycles, but no effects of bat demography or environmental context on seroprevalence. Among 427 recaptured bats, we observed long-term survival following rabies exposure and antibody waning, supporting hypotheses that immunological mechanisms influence viral maintenance. Finally, seroprevalence in bats was only weakly correlated with outbreaks in livestock, reinforcing the challenge of spillover prediction even with extensive data. Together our results suggest that rabies maintenance requires transmission among multiple, nearby bat colonies which may be facilitated by waning of protective immunity. However, the likelihood of incursions and dynamics of transmission within bat colonies appear largely independent of bat ecology. The implications of these results for spillover anticipation and controlling transmission at the source are discussed.
Collapse
Affiliation(s)
- Diana K. Meza
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Nardus Mollentze
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Alice Broos
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Carlos Tello
- ILLARIY (Asociación para el Desarrollo y Conservación de los Recursos Naturales), Lima, Perú
- Yunkawasi, Lima, Perú
| | - William Valderrama
- ILLARIY (Asociación para el Desarrollo y Conservación de los Recursos Naturales), Lima, Perú
- Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Sergio Recuenco
- Facultad de Medicina San Fernando, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Jorge E. Carrera
- Departamento de Mastozoología, Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Lima, Perú
- Programa de Conservación de Murciélagos de Perú, Perú
| | - Carlos Shiva
- Universidad Peruana Cayetano Heredia, Lima, Perú
| | | | - Mafalda Viana
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Daniel G. Streicker
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
| |
Collapse
|
8
|
Byrne AW, Barrett D, Breslin P, O’Keeffe J, Murphy KJ, Conteddu K, Morera-Pujol V, Ryan E, Ciuti S. Disturbance Ecology Meets Bovine Tuberculosis (bTB) Epidemiology: A Before-and-After Study on the Association between Forest Clearfelling and bTB Herd Risk in Cattle Herds. Pathogens 2022; 11:807. [PMID: 35890051 PMCID: PMC9321662 DOI: 10.3390/pathogens11070807] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 02/01/2023] Open
Abstract
Disturbance ecology refers to the study of discrete processes that disrupt the structure or dynamics of an ecosystem. Such processes can, therefore, affect wildlife species ecology, including those that are important pathogen hosts. We report on an observational before-and-after study on the association between forest clearfelling and bovine tuberculosis (bTB) herd risk in cattle herds, an episystem where badgers (Meles meles) are the primary wildlife spillover host. The study design compared herd bTB breakdown risk for a period of 1 year prior to and after exposure to clearfelling across Ireland at sites cut in 2015-2017. The percent of herds positive rose from 3.47% prior to clearfelling to 4.08% after exposure. After controlling for confounders (e.g., herd size, herd type), we found that cattle herds significantly increased their odds of experiencing a bTB breakdown by 1.2-times (95%CIs: 1.07-1.36) up to 1 year after a clearfell risk period. Disturbance ecology of wildlife reservoirs is an understudied area with regards to shared endemic pathogens. Epidemiological observational studies are the first step in building an evidence base to assess the impact of such disturbance events; however, such studies are limited in inferring the mechanism for any changes in risk observed. The current cohort study suggested an association between clearfelling and bTB risk, which we speculate could relate to wildlife disturbance affecting pathogen spillback to cattle, though the study design precludes causal inference. Further studies are required. However, ultimately, integration of epidemiology with wildlife ecology will be important for understanding the underlying mechanisms involved, and to derive suitable effective management proposals, if required.
Collapse
Affiliation(s)
- Andrew W. Byrne
- One Health Scientific Support Unit, Department of Agriculture, Food and the Marine, D02 WK12 Dublin, Ireland;
| | - Damien Barrett
- One Health Scientific Support Unit, Department of Agriculture, Food and the Marine, D02 WK12 Dublin, Ireland;
- Ruminant Animal Health Division, Department of Agriculture, Food and the Marine, D02 WK12 Dublin, Ireland; (P.B.); (J.O.); (E.R.)
| | - Philip Breslin
- Ruminant Animal Health Division, Department of Agriculture, Food and the Marine, D02 WK12 Dublin, Ireland; (P.B.); (J.O.); (E.R.)
| | - James O’Keeffe
- Ruminant Animal Health Division, Department of Agriculture, Food and the Marine, D02 WK12 Dublin, Ireland; (P.B.); (J.O.); (E.R.)
| | - Kilian J. Murphy
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, D04 V1W8 Dublin, Ireland; (K.J.M.); (K.C.); (V.M.-P.); (S.C.)
| | - Kimberly Conteddu
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, D04 V1W8 Dublin, Ireland; (K.J.M.); (K.C.); (V.M.-P.); (S.C.)
| | - Virginia Morera-Pujol
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, D04 V1W8 Dublin, Ireland; (K.J.M.); (K.C.); (V.M.-P.); (S.C.)
| | - Eoin Ryan
- Ruminant Animal Health Division, Department of Agriculture, Food and the Marine, D02 WK12 Dublin, Ireland; (P.B.); (J.O.); (E.R.)
| | - Simone Ciuti
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, D04 V1W8 Dublin, Ireland; (K.J.M.); (K.C.); (V.M.-P.); (S.C.)
| |
Collapse
|
9
|
Yabsley SH, Meade J, Martin JM, Welbergen JA. Human-modified landscapes provide key foraging areas for a threatened flying mammal: The grey-headed flying-fox. PLoS One 2021; 16:e0259395. [PMID: 34723974 PMCID: PMC8559981 DOI: 10.1371/journal.pone.0259395] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/18/2021] [Indexed: 12/01/2022] Open
Abstract
Urban expansion is a major threat to natural ecosystems but also creates novel opportunities that adaptable species can exploit. The grey-headed flying-fox (Pteropus poliocephalus) is a threatened, highly mobile species of bat that is increasingly found in human-dominated landscapes, leading to many management and conservation challenges. Flying-fox urbanisation is thought to be a result of diminishing natural foraging habitat or increasing urban food resources, or both. However, little is known about landscape utilisation of flying-foxes in human-modified areas, and how this may differ in natural areas. Here we examine positional data from 98 satellite-tracked P. poliocephalus for up to 5 years in urban and non-urban environments, in relation to vegetation data and published indices of foraging habitat quality. Our findings indicate that human-modified foraging landscapes sustain a large proportion of the P. poliocephalus population year-round. When individuals roosted in non-urban and minor-urban areas, they relied primarily on wet and dry sclerophyll forest, forested wetlands, and rainforest for foraging, and preferentially visited foraging habitat designated as high-quality. However, our results highlight the importance of human-modified foraging habitats throughout the species' range, and particularly for individuals that roosted in major-urban environments. The exact plant species that exist in human-modified habitats are largely undocumented; however, where this information was available, foraging by P. poliocephalus was associated with different dominant plant species depending on whether individuals roosted in 'urban' or 'non-urban' areas. Overall, our results demonstrate clear differences in urban- and non-urban landscape utilisation by foraging P. poliocephalus. However, further research is needed to understand the exact foraging resources used, particularly in human-modified habitats, and hence what attracts flying-foxes to urban areas. Such information could be used to modify the urban foraging landscape, to assist long-term habitat management programs aimed at minimising human-wildlife conflict and maximising resource availability within and outside of urban environments.
Collapse
Affiliation(s)
- Samantha H. Yabsley
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Jessica Meade
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - John M. Martin
- Institute of Science and Learning, Taronga Conservation Society Australia, Mosman, NSW, Australia
| | - Justin A. Welbergen
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
10
|
Wang J, Anderson DE, Halpin K, Hong X, Chen H, Walker S, Valdeter S, van der Heide B, Neave MJ, Bingham J, O'Brien D, Eagles D, Wang LF, Williams DT. A new Hendra virus genotype found in Australian flying foxes. Virol J 2021; 18:197. [PMID: 34641882 PMCID: PMC8510678 DOI: 10.1186/s12985-021-01652-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/29/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hendra virus (HeV) has caused lethal disease outbreaks in humans and horses in Australia. Flying foxes are the wildlife reservoir from which the virus was first isolated in 1996. Following a heat stress mortality event in Australian flying foxes in 2013, a novel HeV variant was discovered. This study describes the subsequent surveillance of Australian flying foxes for this novel virus over a nine year period using qRT-PCR testing of tissues from flying foxes submitted primarily for Australian bat lyssavirus diagnosis. Genome sequencing and characterisation of the novel HeV variant was also undertaken. METHODS Spleen and kidney samples harvested from flying fox carcasses were initially screened with two real-time qRT-PCR assays specific for the prototype HeV. Two additional qRT-PCR assays were developed specific for the HeV variant first detected in samples from a flying fox in 2013. Next-generation sequencing and virus isolation was attempted from selected samples to further characterise the new virus. RESULTS Since 2013, 98 flying foxes were tested and 11 were positive for the new HeV variant. No samples were positive for the original HeV. Ten of the positive samples were from grey-headed flying foxes (GHFF, Pteropus poliocephalus), however this species was over-represented in the opportunistic sampling (83% of bats tested were GHFF). The positive GHFF samples were collected from Victoria and South Australia and one positive Little red flying fox (LRFF, Pteropus scapulatus) was collected from Western Australia. Immunohistochemistry confirmed the presence of henipavirus antigen, associated with an inflammatory lesion in cardiac blood vessels of one GHFF. Positive samples were sequenced and the complete genome was obtained from three samples. When compared to published HeV genomes, there was 84% sequence identity at the nucleotide level. Based on phylogenetic analyses, the newly detected HeV belongs to the HeV species but occupies a distinct lineage. We have therefore designated this virus HeV genotype 2 (HeV-g2). Attempts to isolate virus from PCR positive samples have not been successful. CONCLUSIONS A novel HeV genotype (HeV-g2) has been identified in two flying fox species submitted from three states in Australia, indicating that the level of genetic diversity for HeV is broader than first recognised. Given its high genetic relatedness to HeV, HeV-g2 is a zoonotic pathogen.
Collapse
Affiliation(s)
- Jianning Wang
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation (CSIRO), Geelong, Australia.
| | - Danielle E Anderson
- Programme in Emerging, Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Kim Halpin
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation (CSIRO), Geelong, Australia
| | - Xiao Hong
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation (CSIRO), Geelong, Australia
| | - Honglei Chen
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation (CSIRO), Geelong, Australia
| | - Som Walker
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation (CSIRO), Geelong, Australia
| | - Stacey Valdeter
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation (CSIRO), Geelong, Australia
| | - Brenda van der Heide
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation (CSIRO), Geelong, Australia
| | - Matthew J Neave
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation (CSIRO), Geelong, Australia
| | - John Bingham
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation (CSIRO), Geelong, Australia
| | - Dwane O'Brien
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation (CSIRO), Geelong, Australia
| | - Debbie Eagles
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation (CSIRO), Geelong, Australia
| | - Lin-Fa Wang
- Programme in Emerging, Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- SingHealth Duke-NUS Global Health Institute, Singapore, Singapore
| | - David T Williams
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation (CSIRO), Geelong, Australia
| |
Collapse
|
11
|
Giles JR, Peel AJ, Wells K, Plowright RK, McCallum H, Restif O. Optimizing noninvasive sampling of a zoonotic bat virus. Ecol Evol 2021; 11:12307-12321. [PMID: 34594501 PMCID: PMC8462156 DOI: 10.1002/ece3.7830] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/02/2022] Open
Abstract
Outbreaks of infectious viruses resulting from spillover events from bats have brought much attention to bat-borne zoonoses, which has motivated increased ecological and epidemiological studies on bat populations. Field sampling methods often collect pooled samples of bat excreta from plastic sheets placed under-roosts. However, positive bias is introduced because multiple individuals may contribute to pooled samples, making studies of viral dynamics difficult. Here, we explore the general issue of bias in spatial sample pooling using Hendra virus in Australian bats as a case study. We assessed the accuracy of different under-roost sampling designs using generalized additive models and field data from individually captured bats and pooled urine samples. We then used theoretical simulation models of bat density and under-roost sampling to understand the mechanistic drivers of bias. The most commonly used sampling design estimated viral prevalence 3.2 times higher than individual-level data, with positive bias 5-7 times higher than other designs due to spatial autocorrelation among sampling sheets and clustering of bats in roosts. Simulation results indicate using a stratified random design to collect 30-40 pooled urine samples from 80 to 100 sheets, each with an area of 0.75-1 m2, and would allow estimation of true prevalence with minimum sampling bias and false negatives. These results show that widely used under-roost sampling techniques are highly sensitive to viral presence, but lack specificity, providing limited information regarding viral dynamics. Improved estimation of true prevalence can be attained with minor changes to existing designs such as reducing sheet size, increasing sheet number, and spreading sheets out within the roost area. Our findings provide insight into how spatial sample pooling is vulnerable to bias for a wide range of systems in disease ecology, where optimal sampling design is influenced by pathogen prevalence, host population density, and patterns of aggregation.
Collapse
Affiliation(s)
- John R. Giles
- Department of EpidemiologyJohns Hopkins University Bloomberg School of Public HealthBaltimoreMDUSA
- Environmental Futures Research InstituteGriffith UniversityBrisbaneQldAustralia
| | - Alison J. Peel
- Environmental Futures Research InstituteGriffith UniversityBrisbaneQldAustralia
| | | | - Raina K. Plowright
- Department of Microbiology and ImmunologyMontana State UniversityBozemanMTUSA
| | - Hamish McCallum
- Environmental Futures Research InstituteGriffith UniversityBrisbaneQldAustralia
| | - Olivier Restif
- Disease Dynamics UnitDepartment of Veterinary MedicineUniversity of CambridgeCambridgeUK
| |
Collapse
|
12
|
Jeong J, McCallum H. Using Stochastic Modeling to Predict the Effect of Culling and Colony Dispersal of Bats on Zoonotic Viral Epidemics. Vector Borne Zoonotic Dis 2021; 21:369-377. [PMID: 33691497 DOI: 10.1089/vbz.2020.2700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Frequent outbreaks of emerging infectious diseases originating from wild animals have highlighted the necessity of managing wildlife populations to prevent zoonotic spillover, and the appropriate development of management protocols required attention on gaining a better understanding of viral dynamics in wild animal populations. In east Australia, there have been outbreaks of Hendra virus (HeV) infection in horses and humans following spillover from the virus's reservoir hosts, flying foxes (family Pteropodidae), and bat culling and colony dispersal have been proposed as appropriate management strategies. A key factor relating to flying fox population structure that influences HeV dynamics is that these bats form metapopulations, and consequently, to assess this factor, we designed an epidemic dynamics model of HeV transmission, focusing on bat metapopulation dynamics. Specifically, using flying fox movement data, we stochastically simulated models for a hypothetical metapopulation of flying foxes to examine the impact of metapopulation-related parameters, and subsequently simulated probable scenarios of culling and colony dispersal to estimate their effects on the probability of epidemic occurrence. Modeling of the hypothetical metapopulation revealed that a reduction in the number of large-sized colonies would lead to an increase in the probability of epidemic occurrence within the bat population, whereas the strong spatial coupling among colonies was found to dilute the effects of altering the number of colonies and the number of bats in each colony through culling or colony dispersal of bats on the probability that an epidemic within the bat population would occur. Culling and colony dispersal scenarios showed no significantly beneficial effect with respect to reducing the probability of an HeV epidemic occurring in flying foxes, and may indeed prove counterproductive. In conclusion, the modeling results indicate that bat culling and colony dispersal may not be an effective strategy to control HeV epidemics.
Collapse
Affiliation(s)
- Jaewoon Jeong
- Environmental Futures Research Institute, Griffith University, Brisbane, Queensland, Australia.,Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Hamish McCallum
- Environmental Futures Research Institute, Griffith University, Brisbane, Queensland, Australia
| |
Collapse
|
13
|
McKee CD, Islam A, Luby SP, Salje H, Hudson PJ, Plowright RK, Gurley ES. The Ecology of Nipah Virus in Bangladesh: A Nexus of Land-Use Change and Opportunistic Feeding Behavior in Bats. Viruses 2021; 13:169. [PMID: 33498685 PMCID: PMC7910977 DOI: 10.3390/v13020169] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/13/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023] Open
Abstract
Nipah virus is a bat-borne paramyxovirus that produces yearly outbreaks of fatal encephalitis in Bangladesh. Understanding the ecological conditions that lead to spillover from bats to humans can assist in designing effective interventions. To investigate the current and historical processes that drive Nipah spillover in Bangladesh, we analyzed the relationship among spillover events and climatic conditions, the spatial distribution and size of Pteropus medius roosts, and patterns of land-use change in Bangladesh over the last 300 years. We found that 53% of annual variation in winter spillovers is explained by winter temperature, which may affect bat behavior, physiology, and human risk behaviors. We infer from changes in forest cover that a progressive shift in bat roosting behavior occurred over hundreds of years, producing the current system where a majority of P. medius populations are small (median of 150 bats), occupy roost sites for 10 years or more, live in areas of high human population density, and opportunistically feed on cultivated food resources-conditions that promote viral spillover. Without interventions, continuing anthropogenic pressure on bat populations similar to what has occurred in Bangladesh could result in more regular spillovers of other bat viruses, including Hendra and Ebola viruses.
Collapse
Affiliation(s)
- Clifton D. McKee
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| | - Ausraful Islam
- Infectious Diseases Division, icddr,b, Dhaka 1212, Bangladesh;
| | - Stephen P. Luby
- Infectious Diseases and Geographic Medicine Division, Stanford University, Stanford, CA 94305, USA;
| | - Henrik Salje
- Department of Genetics, Cambridge University, Cambridge CB2 3EJ, UK;
| | - Peter J. Hudson
- Center for Infectious Disease Dynamics, Pennsylvania State University, State College, PA 16801, USA;
| | - Raina K. Plowright
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA;
| | - Emily S. Gurley
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| |
Collapse
|
14
|
Jeong J, McCallum H. The persistence of a SIR disease in a metapopulation: Hendra virus epidemics in Australian black flying foxes (Pteropus alecto). AUST J ZOOL 2021. [DOI: 10.1071/zo20094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Understanding how emerging viruses persist in bat populations is a fundamental step to understand the processes by which viruses are transmitted from reservoir hosts to spillover hosts. Hendra virus, which has caused fatal infections in horses and humans in eastern Australia since 1994, spills over from its natural reservoir hosts, Pteropus bats (colloquially known as flying foxes). It has been suggested that the Hendra virus maintenance mechanism in the bat populations might be implicated with their metapopulation structure. Here, we examine whether a metapopulation consisting of black flying fox (P. alecto) colonies that are smaller than the critical community size can maintain the Hendra virus. By using the Gillespie algorithm, stochastic mathematical models were used to simulate a cycle, in which viral extinction and recolonisation were repeated in a single colony within a metapopulation. Given estimated flying fox immigration rates, the simulation results showed that recolonisation occurred more frequently than extinction, which indicated that infection would not go extinct in the metapopulation. Consequently, this study suggests that a collection of transient epidemics of Hendra virus in numerous colonies of flying foxes in Australia can support the long-term persistence of the virus at the metapopulation level.
Collapse
|
15
|
Yuen KY, Fraser NS, Henning J, Halpin K, Gibson JS, Betzien L, Stewart AJ. Hendra virus: Epidemiology dynamics in relation to climate change, diagnostic tests and control measures. One Health 2020; 12:100207. [PMID: 33363250 PMCID: PMC7750128 DOI: 10.1016/j.onehlt.2020.100207] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 11/11/2022] Open
Abstract
Hendra virus (HeV) continues to pose a serious public health concern as spillover events occur sporadically. Terminally ill horses can exhibit a range of clinical signs including frothy nasal discharge, ataxia or forebrain signs. Early signs, if detected, can include depression, inappetence, colic or mild respiratory signs. All unvaccinated ill horses in areas where flying foxes exist, may potentially be infected with HeV, posing a significant risk to the veterinary community. Equivac® HeV vaccine has been fully registered in Australia since 2015 (and under an Australian Pesticides and Veterinary Medicines Authority special permit since 2012) for immunization of horses against HeV and is the most effective and direct solution to prevent disease transmission to horses and protect humans. No HeV vaccinated horse has tested positive for HeV infection. There is no registered vaccine to prevent, or therapeutics to treat, HeV infection in humans. Previous equine HeV outbreaks tended to cluster in winter overlapping with the foaling season (August to December), when veterinarians and horse owners have frequent close contact with horses and their bodily fluids, increasing the chance of zoonotic disease transmission. The most southerly case was detected in 2019 in the Upper Hunter region in New South Wales, which is Australia's Thoroughbred horse breeding capital. Future spillover events are predicted to move further south and inland in Queensland and New South Wales, aligning with the moving distribution of the main reservoir hosts. Here we (1) review HeV epidemiology and climate change predicted infection dynamics, (2) present a biosecurity protocol for veterinary clinics and hospitals to adopt, and (3) describe diagnostic tests currently available and those under development. Major knowledge and research gaps have been identified, including evaluation of vaccine efficacy in foals to assess current vaccination protocol recommendations. Hendra virus (HeV) continues to pose a serious public health threat to the equine and veterinary industries. HeV cases are likely to expand further south and inland due to climate change. Strict HeV specific biosecurity protocols should be implemented to protect veterinary staff. Research into HeV vaccination protocols in foals is required for evidence-based recommendations. Point-of-care and other diagnostic tests for HeV are currently under development.
Collapse
Key Words
- Biosecurity
- Climate change
- HeV, Hendra virus
- Infectious disease
- LAMP, Loop-mediated isothermal amplification
- MFI, Median fluorescent intensity
- NSW, New South Wales
- NiV, Nipah virus
- OIE, World Organization for Animal Health
- One health
- PC, Physical containment
- PPE, Personal protective equipment
- QLD, Queensland
- RNA, Ribonucleic acid
- SNT, Serum neutralization test
- Se, Sensitivity
- Sp, Specificity
- Vaccine
- Zoonosis
- iELISA, Indirect enzyme-linked immunosorbent assay
- qRT-PCR, Real-time reverse transcription polymerase chain reaction
- sG, Soluble G
Collapse
Affiliation(s)
- Ka Y Yuen
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Natalie S Fraser
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Joerg Henning
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Kim Halpin
- Australian Centre for Disease Preparedness, Commonwealth Science and Industry Research Organization (CSIRO), Geelong, VIC 3219, Australia
| | - Justine S Gibson
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Lily Betzien
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Allison J Stewart
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| |
Collapse
|
16
|
Anich NM, White JP, Anich SE. Interspecific Territorial Behavior of Two Mourning Cloaks (Nymphalis antiopa) in Response to a Diurnally Active Big Brown Bat (Eptesicus fuscus). Northeast Nat (Steuben) 2020. [DOI: 10.1656/045.027.0308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Nicholas M. Anich
- Wisconsin Department of Natural Resources, 2501 Golf Course Road, Ashland, WI 54806
| | - J. Paul White
- Wisconsin Department of Natural Resources, Madison WI 53703
| | | |
Collapse
|
17
|
Timmiss LA, Martin JM, Murray NJ, Welbergen JA, Westcott D, McKeown A, Kingsford RT. Threatened but not conserved: flying-fox roosting and foraging habitat in Australia. AUST J ZOOL 2020. [DOI: 10.1071/zo20086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Conservation relies upon a primary understanding of changes in a species’ population size, distribution, and habitat use. Bats represent about one in five mammal species in the world, but understanding for most species is poor. For flying-foxes, specifically the 66 Pteropus species globally, 31 are classified as threatened (Vulnerable, Endangered, Critically Endangered) on the IUCN Red List. Flying-foxes typically aggregate in colonies of thousands to hundreds of thousands of individuals at their roost sites, dispersing at sunset to forage on floral resources (pollen, nectar, and fruit) in nearby environments. However, understanding of flying-fox roosting habitat preferences is poor, hindering conservation efforts in many countries. In this study, we used a database of 654 known roost sites of the four flying-fox species that occur across mainland Australia to determine the land-use categories and vegetation types in which roost sites were found. In addition, we determined the land-use categories and vegetation types found within the surrounding 25 km radius of each roost, representing primary foraging habitat. Surprisingly, for the four species most roosts occurred in urban areas (42–59%, n = 4 species) followed by agricultural areas (21–31%). Critically, for the two nationally listed species, only 5.2% of grey-headed and 13.9% of spectacled flying-fox roosts occurred in habitat within protected areas. Roosts have previously been reported to predominantly occur in rainforest, mangrove, wetland, and dry sclerophyll vegetation types. However, we found that only 20–35% of roosts for each of the four species occurred in these habitats. This study shows that flying-fox roosts overwhelmingly occurred within human-modified landscapes across eastern Australia, and that conservation reserves inadequately protect essential habitat of roosting and foraging flying-foxes.
Collapse
|
18
|
Roberts BJ, Mo M, Roache M, Eby P. Review of dispersal attempts at flying-fox camps in Australia. AUST J ZOOL 2020. [DOI: 10.1071/zo20043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The permanent exclusion of flying-foxes from camps (camp dispersal) near human settlements is a management tool commonly used to mitigate human–wildlife conflict. We summarised information on the costs and outcomes of 48 camp dispersals in Australia. Our aim was to improve the information base on which camp management decisions are made. Camp dispersals were largely triggered by impacts on neighbouring residents (75%). A disproportionately high number occurred in 2013–14, associated with changes in Queensland flying-fox management policy following an increase in the number of urban camps. Repeat actions over months or years were typically required to exclude flying-foxes from camps (58%). In 88% of cases, replacement camps formed within 1 km and became sites of transferred conflict. Only 23% of dispersal attempts were successful in resolving conflict for communities, generally after extensive destruction of roost habitat. Costs were poorly documented, although no dispersal attempt costing less than AU$250 000 proved successful. We conclude that camp dispersal is a high-risk, high-cost tool for mitigating human–wildlife conflict, in situ management strategies and tools should be developed, evidence-based information on management options should be made available to stakeholders via a nationally curated resource library, and research is required on impacts of camp management practices on flying-foxes.
Collapse
|
19
|
Glennon EE, Becker DJ, Peel AJ, Garnier R, Suu-Ire RD, Gibson L, Hayman DTS, Wood JLN, Cunningham AA, Plowright RK, Restif O. What is stirring in the reservoir? Modelling mechanisms of henipavirus circulation in fruit bat hosts. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190021. [PMID: 31401962 PMCID: PMC6711305 DOI: 10.1098/rstb.2019.0021] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Pathogen circulation among reservoir hosts is a precondition for zoonotic spillover. Unlike the acute, high morbidity infections typical in spillover hosts, infected reservoir hosts often exhibit low morbidity and mortality. Although it has been proposed that reservoir host infections may be persistent with recurrent episodes of shedding, direct evidence is often lacking. We construct a generalized SEIR (susceptible, exposed, infectious, recovered) framework encompassing 46 sub-models representing the full range of possible transitions among those four states of infection and immunity. We then use likelihood-based methods to fit these models to nine years of longitudinal data on henipavirus serology from a captive colony of Eidolon helvum bats in Ghana. We find that reinfection is necessary to explain observed dynamics; that acute infectious periods may be very short (hours to days); that immunity, if present, lasts about 1-2 years; and that recurring latent infection is likely. Although quantitative inference is sensitive to assumptions about serology, qualitative predictions are robust. Our novel approach helps clarify mechanisms of viral persistence and circulation in wild bats, including estimated ranges for key parameters such as the basic reproduction number and the duration of the infectious period. Our results inform how future field-based and experimental work could differentiate the processes of viral recurrence and reinfection in reservoir hosts. This article is part of the theme issue 'Dynamic and integrative approaches to understanding pathogen spillover'.
Collapse
Affiliation(s)
- Emma E Glennon
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Daniel J Becker
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA.,Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Alison J Peel
- Environmental Futures Research Institute, Griffith University, Nathan, Queensland, QLD 4111, Australia
| | - Romain Garnier
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK.,Department of Biology, Georgetown University, Washington, DC 20007, USA
| | - Richard D Suu-Ire
- School of Veterinary Medicine, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Louise Gibson
- Institute of Zoology, Zoological Society of London, London NW1 4RY, UK
| | - David T S Hayman
- Molecular Epidemiology and Public Health Laboratory, Infectious Disease Research Centre, Hopkirk Research Institute, Massey University, Palmerston North, 4442, New Zealand
| | - James L N Wood
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | | | - Raina K Plowright
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Olivier Restif
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| |
Collapse
|
20
|
Edson D, Peel AJ, Huth L, Mayer DG, Vidgen ME, McMichael L, Broos A, Melville D, Kristoffersen J, de Jong C, McLaughlin A, Field HE. Time of year, age class and body condition predict Hendra virus infection in Australian black flying foxes (Pteropus alecto). Epidemiol Infect 2019; 147:e240. [PMID: 31364577 PMCID: PMC6625375 DOI: 10.1017/s0950268819001237] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 05/16/2019] [Accepted: 05/31/2019] [Indexed: 01/12/2023] Open
Abstract
Hendra virus (HeV) continues to cause fatal infection in horses and threaten infection in close-contact humans in eastern Australia. Species of Pteropus bats (flying-foxes) are the natural reservoir of the virus. We caught and sampled flying-foxes from a multispecies roost in southeast Queensland, Australia on eight occasions between June 2013 and June 2014. The effects of sample date, species, sex, age class, body condition score (BCS), pregnancy and lactation on HeV antibody prevalence, log-transformed median fluorescent intensity (lnMFI) values and HeV RNA status were assessed using unbalanced generalised linear models. A total of 1968 flying-foxes were sampled, comprising 1012 Pteropus alecto, 742 P. poliocephalus and 214 P. scapulatus. Sample date, species and age class were each statistically associated with HeV RNA status, antibody status and lnMFI values; BCS was statistically associated with HeV RNA status and antibody status. The findings support immunologically naïve sub-adult P. alecto playing an important role in maintaining HeV infection at a population level. The biological significance of the association between BCS and HeV RNA status, and BCS and HeV antibody status, is less clear and warrants further investigation. Contrary to previous studies, we found no direct association between HeV infection and pregnancy or lactation. The findings in P. poliocephalus suggest that HeV exposure in this species may not result in systemic infection and virus excretion, or alternatively, may reflect assay cross-reactivity with another (unidentified) henipavirus.
Collapse
Affiliation(s)
- D. Edson
- Biosecurity Queensland, Department of Agriculture and Fisheries, Coopers Plains, Queensland, Australia
- Department of Agriculture, Canberra, ACT, Australia
| | - A. J. Peel
- Environmental Futures Research Institute, Griffith University, Nathan, Queensland, Australia
| | - L. Huth
- Biosecurity Queensland, Department of Agriculture and Fisheries, Coopers Plains, Queensland, Australia
| | - D. G. Mayer
- Biosecurity Queensland, Department of Agriculture and Fisheries, Coopers Plains, Queensland, Australia
| | - M. E. Vidgen
- Biosecurity Queensland, Department of Agriculture and Fisheries, Coopers Plains, Queensland, Australia
| | - L. McMichael
- Biosecurity Queensland, Department of Agriculture and Fisheries, Coopers Plains, Queensland, Australia
| | - A. Broos
- Biosecurity Queensland, Department of Agriculture and Fisheries, Coopers Plains, Queensland, Australia
- Medical Research Council, University of Glasgow Centre for Virus Research, Glasgow, UK
| | - D. Melville
- Biosecurity Queensland, Department of Agriculture and Fisheries, Coopers Plains, Queensland, Australia
| | - J. Kristoffersen
- Biosecurity Queensland, Department of Agriculture and Fisheries, Coopers Plains, Queensland, Australia
| | - C. de Jong
- Biosecurity Queensland, Department of Agriculture and Fisheries, Coopers Plains, Queensland, Australia
| | - A. McLaughlin
- Biosecurity Queensland, Department of Agriculture and Fisheries, Coopers Plains, Queensland, Australia
| | - H. E. Field
- Biosecurity Queensland, Department of Agriculture and Fisheries, Coopers Plains, Queensland, Australia
- EcoHealth Alliance, New York, NY, USA
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| |
Collapse
|
21
|
Crockford CN, Dean AJ, Reid S, Dean JH. Conservation Values and Risk of Handling Bats: Implications for One Health Communication. ECOHEALTH 2018; 15:682-687. [PMID: 30088184 DOI: 10.1007/s10393-018-1356-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 05/28/2018] [Accepted: 06/12/2018] [Indexed: 05/12/2023]
Abstract
Flying-foxes provide critical ecosystem services, but their role as hosts to zoonotic pathogens may undermine conservation support. We surveyed 214 residents of Cairns, Australia, regarding their perceptions about health risks associated with flying-foxes and support for flying-fox conservation. Greater likelihood of handling a flying-fox was associated with lower knowledge about risks, greater conservation support, and environmental organization membership. Respondents less likely to seek medical attention after a minor scratch tended to be younger, unemployed and perceive lower risk. Individuals who support flying-fox conservation should be one group targeted in One Health communication integrating health and conservation messages.
Collapse
Affiliation(s)
- C N Crockford
- School of Public Health, Faculty of Medicine and Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4006, Australia
| | - A J Dean
- School of Communication and Arts, Faculty of Humanities and Social Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
- ARC Centre of Excellence for Environmental Decisions, School of Biological Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - S Reid
- School of Public Health, Faculty of Medicine and Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4006, Australia
| | - J H Dean
- School of Public Health, Faculty of Medicine and Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4006, Australia.
| |
Collapse
|
22
|
HEMATOLOGY, PLASMA BIOCHEMISTRY, AND URINALYSIS OF FREE-RANGING GREY-HEADED FLYING FOXES (PTEROPUS POLIOCEPHALUS) IN AUSTRALIA. J Zoo Wildl Med 2018; 49:591-598. [DOI: 10.1638/2017-0126.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
23
|
Kessler MK, Becker DJ, Peel AJ, Justice NV, Lunn T, Crowley DE, Jones DN, Eby P, Sánchez CA, Plowright RK. Changing resource landscapes and spillover of henipaviruses. Ann N Y Acad Sci 2018; 1429:78-99. [PMID: 30138535 DOI: 10.1111/nyas.13910] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/11/2018] [Accepted: 05/29/2018] [Indexed: 12/14/2022]
Abstract
Old World fruit bats (Chiroptera: Pteropodidae) provide critical pollination and seed dispersal services to forest ecosystems across Africa, Asia, and Australia. In each of these regions, pteropodids have been identified as natural reservoir hosts for henipaviruses. The genus Henipavirus includes Hendra virus and Nipah virus, which regularly spill over from bats to domestic animals and humans in Australia and Asia, and a suite of largely uncharacterized African henipaviruses. Rapid change in fruit bat habitat and associated shifts in their ecology and behavior are well documented, with evidence suggesting that altered diet, roosting habitat, and movement behaviors are increasing spillover risk of bat-borne viruses. We review the ways that changing resource landscapes affect the processes that culminate in cross-species transmission of henipaviruses, from reservoir host density and distribution to within-host immunity and recipient host exposure. We evaluate existing evidence and highlight gaps in knowledge that are limiting our understanding of the ecological drivers of henipavirus spillover. When considering spillover in the context of land-use change, we emphasize that it is especially important to disentangle the effects of habitat loss and resource provisioning on these processes, and to jointly consider changes in resource abundance, quality, and composition.
Collapse
Affiliation(s)
| | - Daniel J Becker
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana.,The Center for the Ecology of Infectious Diseases, University of Georgia, Athens, Georgia
| | - Alison J Peel
- Environmental Futures Research Institute, Griffith University, Nathan, Queensland, Australia
| | - Nathan V Justice
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Tamika Lunn
- The Griffith School of Environment, Griffith University, Nathan, Queensland, Australia
| | - Daniel E Crowley
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Devin N Jones
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Peggy Eby
- The School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Cecilia A Sánchez
- The Center for the Ecology of Infectious Diseases, University of Georgia, Athens, Georgia.,The Odum School of Ecology, University of Georgia, Athens, Georgia
| | - Raina K Plowright
- Department of Ecology, Montana State University, Bozeman, Montana.,Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| |
Collapse
|
24
|
Schaer J, McMichael L, Gordon AN, Russell D, Matuschewski K, Perkins SL, Field H, Power M. Phylogeny of Hepatocystis parasites of Australian flying foxes reveals distinct parasite clade. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2018; 7:207-212. [PMID: 29988481 PMCID: PMC6024243 DOI: 10.1016/j.ijppaw.2018.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/31/2018] [Accepted: 06/05/2018] [Indexed: 12/25/2022]
Abstract
Hepatocystis parasites are close relatives of mammalian Plasmodium species and infect a range of primates and bats. Here, we present the phylogenetic relationships of Hepatocystis parasites of three Australian flying fox species. Multilocus phylogenetic analysis revealed that Hepatocystis parasites of Pteropus species from Australia and Asia form a distinct clade that is sister to all other Hepatocystis parasites of primates and bats from Africa and Asia. No patterns of host specificity were recovered within the Pteropus-specific parasite clade and the Hepatocystis sequences from all three Australian host species sampled fell into two divergent clades. First molecular phylogeny of Hepatocystis parasites in Australian flying foxes. Hepatocystis parasites of Pteropus form a distinct clade. Lack of host species specificity as distinct hallmark of Hepatocystis parasites.
Collapse
Affiliation(s)
- Juliane Schaer
- Department of Biological Sciences, Macquarie University, North Ryde, 2109, Australia.,Department of Molecular Parasitology, Institute of Biology, Humboldt University, 10117, Berlin, Germany
| | - Lee McMichael
- School of Veterinary Science, University of Queensland, Gatton Campus, Gatton, QLD, 4343, Australia
| | - Anita N Gordon
- Biosecurity Sciences Laboratory, Health and Food Science Precinct, 39 Kessels Rd, Coopers Plains, Queensland, 4108, Australia
| | - Daniel Russell
- Department of Biological Sciences, Macquarie University, North Ryde, 2109, Australia
| | - Kai Matuschewski
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, 10117, Berlin, Germany
| | - Susan L Perkins
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, 10024, USA
| | - Hume Field
- EcoHealth Alliance, New York, NY, 10001, USA
| | - Michelle Power
- Department of Biological Sciences, Macquarie University, North Ryde, 2109, Australia
| |
Collapse
|
25
|
Kohl C, Tachedjian M, Todd S, Monaghan P, Boyd V, Marsh GA, Crameri G, Field H, Kurth A, Smith I, Wang LF. Hervey virus: Study on co-circulation with Henipaviruses in Pteropid bats within their distribution range from Australia to Africa. PLoS One 2018; 13:e0191933. [PMID: 29390028 PMCID: PMC5794109 DOI: 10.1371/journal.pone.0191933] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 01/15/2018] [Indexed: 11/25/2022] Open
Abstract
In 2011, an unusually large number of independent Hendra virus outbreaks were recorded on horse properties in Queensland and New South Wales, Australia. Urine from bat colonies adjacent to the outbreak sites were sampled and screened for Hendra and other viruses. Several novel paramyxoviruses were also isolated at different locations. Here one of the novel viruses, named Hervey virus (HerPV), is fully characterized by genome sequencing, annotation, phylogeny and in vitro host range, and its serological cross-reactivity and neutralization patterns are examined. HerPV may have ecological and spatial and temporal patterns similar to Hendra virus and could serve as a sentinel virus for the surveillance of this highly pathogenic virus. The suitability of HerPV as potential sentinel virus is further assessed by determining the serological prevalence of HerPV antibodies in fruit-eating bats from Australia, Indonesia, Papua New Guinea, Tanzania and the Gulf of Guinea, indicating the presence of similar viruses in regions beyond the Australian border.
Collapse
Affiliation(s)
- Claudia Kohl
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens, Seestraße 10, Berlin, Germany
| | - Mary Tachedjian
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Shawn Todd
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Paul Monaghan
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Victoria Boyd
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Glenn A. Marsh
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Gary Crameri
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Hume Field
- Queensland Centre for Emerging Infectious Diseases, Department of Agriculture and Fisheries, Brisbane, Queensland, Australia
- EcoHealth Alliance, New York, United States of America
| | - Andreas Kurth
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens, Seestraße 10, Berlin, Germany
| | - Ina Smith
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
- * E-mail: (IS); (LFW)
| | - Lin-Fa Wang
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- * E-mail: (IS); (LFW)
| |
Collapse
|
26
|
PÁEZ DJ, GILES J, MCCALLUM H, FIELD H, JORDAN D, PEEL AJ, PLOWRIGHT RK. Conditions affecting the timing and magnitude of Hendra virus shedding across pteropodid bat populations in Australia. Epidemiol Infect 2017; 145:3143-3153. [PMID: 28942750 PMCID: PMC5783192 DOI: 10.1017/s0950268817002138] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 07/10/2017] [Accepted: 08/24/2017] [Indexed: 01/29/2023] Open
Abstract
Understanding infection dynamics in animal hosts is fundamental to managing spillover and emergence of zoonotic infections. Hendra virus is endemic in Australian pteropodid bat populations and can be lethal to horses and humans. However, we know little about the factors driving Hendra virus prevalence in resevoir bat populations, making spillover difficult to predict. We use Hendra virus prevalence data collected from 13 000 pooled bat urine samples across space and time to determine if pulses of prevalence are periodic and synchronized across sites. We also test whether site-specific precipitation and temperature affect the amplitude of the largest annual prevalence pulses. We found little evidence for a periodic signal in Hendra virus prevalence. Although the largest amplitude pulses tended to occur over winter, pulses could also occur in other seasons. We found that Hendra virus prevalence was weakly synchronized across sites over short distances, suggesting that prevalence is driven by local-scale effects. Finally, we found that drier conditions in previous seasons and the abundance of Pteropus alecto were positively correlated with the peak annual values of Hendra virus prevalence. Our results suggest that in addition to seasonal effects, bat density and local climatic conditions interact to drive Hendra virus infection dynamics.
Collapse
Affiliation(s)
- D. J. PÁEZ
- Department of Microbiology and Immunology, Montana State University, Bozeman, USA
| | - J. GILES
- Griffith School of Environment, Griffith University, Queensland, Australia
- Environmental Futures Research Institute, Griffith University, Nathan, Queensland, Australia
| | - H. MCCALLUM
- Griffith School of Environment, Griffith University, Queensland, Australia
- Environmental Futures Research Institute, Griffith University, Nathan, Queensland, Australia
| | - H. FIELD
- EcoHealth Alliance, 460 West 34th Street – 17th Floor, New York, NY 10001, USA
| | - D. JORDAN
- New South Wales Department of Primary Industries, New South Wales, Australia
| | - A. J. PEEL
- Griffith School of Environment, Griffith University, Queensland, Australia
- Environmental Futures Research Institute, Griffith University, Nathan, Queensland, Australia
| | - R. K. PLOWRIGHT
- Department of Microbiology and Immunology, Montana State University, Bozeman, USA
| |
Collapse
|
27
|
Walsh MG, Wiethoelter A, Haseeb MA. The impact of human population pressure on flying fox niches and the potential consequences for Hendra virus spillover. Sci Rep 2017; 7:8226. [PMID: 28811483 PMCID: PMC5557840 DOI: 10.1038/s41598-017-08065-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/06/2017] [Indexed: 11/24/2022] Open
Abstract
Hendra virus (HeV) is an emerging pathogen of concern in Australia given its ability to spillover from its reservoir host, pteropid bats, to horses and further on to humans, and the severe clinical presentation typical in these latter incidental hosts. Specific human pressures over recent decades, such as expanding human populations, urbanization, and forest fragmentation, may have altered the ecological niche of Pteropus species acting as natural HeV reservoirs and may modulate spillover risk. This study explored the influence of inter-decadal net human local migration between 1970 and 2000 on changes in the habitat suitability to P. alecto and P. conspicillatus from 1980 to 2015 in eastern Australia. These ecological niches were modeled using boosted regression trees and subsequently fitted, along with additional landscape factors, to HeV spillovers to explore the spatial dependency of this zoonosis. The spatial model showed that the ecological niche of these two flying fox species, the human footprint, and proximity to woody savanna were each strongly associated with HeV spillover and together explained most of the spatial dependency exhibited by this zoonosis. These findings reinforce the potential for anthropogenic pressures to shape the landscape epidemiology of HeV spillover.
Collapse
Affiliation(s)
- Michael G Walsh
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia.
| | - Anke Wiethoelter
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - M A Haseeb
- Department of Epidemiology and Biostatistics, School of Public Health, State University of New York, Downstate Medical Center, Brooklyn, New York, USA.,Departments of Cell Biology, Pathology and Medicine, College of Medicine, State University of New York, Downstate Medical Center, Brooklyn, New York, USA
| |
Collapse
|
28
|
McMichael L, Edson D, Smith C, Mayer D, Smith I, Kopp S, Meers J, Field H. Physiological stress and Hendra virus in flying-foxes (Pteropus spp.), Australia. PLoS One 2017; 12:e0182171. [PMID: 28767708 PMCID: PMC5540484 DOI: 10.1371/journal.pone.0182171] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/13/2017] [Indexed: 11/19/2022] Open
Abstract
Pteropid bats (flying-foxes) are the natural reservoir of Hendra virus, an emergent paramyxovirus responsible for fatal infection in horses and humans in Australia. Pteropus alecto (the Black flying-fox) and the paraphyletic P. conspicillatus (the Spectacled flying-fox) appear to be the primary reservoir hosts. Previous studies have suggested that physiological and ecological factors may underpin infection dynamics in flying-foxes, and subsequent spillover to horses and in turn humans. We sought to examine temporal trends in urinary cortisol concentration in wild Australian flying-fox populations, to elucidate the putative relationship between Hendra virus infection and physiological stress. Pooled and individual urine samples were non-invasively collected from under roosting flying-foxes at two latitudinally disparate regions in the eastern Australian state of Queensland. Hendra virus detection, and (in individual urine samples) sex and species determination were PCR-based. Urinary cortisol measurement used a validated enzyme immunoassay. We found no direct correlation between increased urinary cortisol and Hendra virus excretion, but our findings do suggest a biologically plausible association between low winter temperatures and elevated cortisol levels in P. alecto in the lower latitude Southeast Queensland roosts. We hypothesize an indirect association between low winter temperatures and increased Hendra virus infection and excretion, mediated by the physiological cost of thermoregulation. Our findings and our approach are directly relevant to elaboration of the disease ecology of Nipah virus and other emerging henipaviruses in bats. More broadly, they inform investigation of emerging disease infection dynamics across the wildlife/livestock/human interface.
Collapse
Affiliation(s)
- Lee McMichael
- University of Queensland, School of Veterinary Science, Gatton, Queensland, Australia
- Biosecurity Queensland, Department of Agriculture and Fisheries, Brisbane, Queensland, Australia
- * E-mail:
| | - Daniel Edson
- Biosecurity Queensland, Department of Agriculture and Fisheries, Brisbane, Queensland, Australia
- Department of Agriculture and Water Resources, Canberra, Australian Capital Territory, Australia
| | - Craig Smith
- Biosecurity Queensland, Department of Agriculture and Fisheries, Brisbane, Queensland, Australia
| | - David Mayer
- Department of Agriculture and Fisheries, Brisbane, Queensland, Australia
| | - Ina Smith
- Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Steven Kopp
- University of Queensland, School of Veterinary Science, Gatton, Queensland, Australia
| | - Joanne Meers
- University of Queensland, School of Veterinary Science, Gatton, Queensland, Australia
| | - Hume Field
- EcoHealth Alliance, New York, New York, United States of America
| |
Collapse
|
29
|
Abstract
Found on every continent except Antarctica, bats are one of the most abundant, diverse and geographically widespread vertebrates globally, making up approximately 20% of all known extant mammal species1,2. Noted for being the only mammal with the ability of powered flight, bats constitute the order Chiroptera (from the Ancient Greek meaning ‘hand wing’), which is further divided into two suborders: Megachiroptera known as megabats or flying foxes, and Microchiroptera comprising of echolocating microbats1,3.
Collapse
|
30
|
Plowright RK, Peel AJ, Streicker DG, Gilbert AT, McCallum H, Wood J, Baker ML, Restif O. Transmission or Within-Host Dynamics Driving Pulses of Zoonotic Viruses in Reservoir-Host Populations. PLoS Negl Trop Dis 2016; 10:e0004796. [PMID: 27489944 PMCID: PMC4973921 DOI: 10.1371/journal.pntd.0004796] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Progress in combatting zoonoses that emerge from wildlife is often constrained by limited knowledge of the biology of pathogens within reservoir hosts. We focus on the host–pathogen dynamics of four emerging viruses associated with bats: Hendra, Nipah, Ebola, and Marburg viruses. Spillover of bat infections to humans and domestic animals often coincides with pulses of viral excretion within bat populations, but the mechanisms driving such pulses are unclear. Three hypotheses dominate current research on these emerging bat infections. First, pulses of viral excretion could reflect seasonal epidemic cycles driven by natural variations in population densities and contact rates among hosts. If lifelong immunity follows recovery, viruses may disappear locally but persist globally through migration; in either case, new outbreaks occur once births replenish the susceptible pool. Second, epidemic cycles could be the result of waning immunity within bats, allowing local circulation of viruses through oscillating herd immunity. Third, pulses could be generated by episodic shedding from persistently infected bats through a combination of physiological and ecological factors. The three scenarios can yield similar patterns in epidemiological surveys, but strategies to predict or manage spillover risk resulting from each scenario will be different. We outline an agenda for research on viruses emerging from bats that would allow for differentiation among the scenarios and inform development of evidence-based interventions to limit threats to human and animal health. These concepts and methods are applicable to a wide range of pathogens that affect humans, domestic animals, and wildlife.
Collapse
Affiliation(s)
- Raina K. Plowright
- Montana State University, Department of Microbiology and Immunology, Bozeman, Montana, United States of America
- Center for Infectious Disease Dynamics, Pennsylvania State University, State College, Pennsylvania, United States of America
- * E-mail:
| | - Alison J. Peel
- Environmental Futures Research Institute, Griffith University, Brisbane, Queensland, Australia
| | - Daniel G. Streicker
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Amy T. Gilbert
- USDA/APHIS/WS National Wildlife Research Center, Fort Collins, Colorado, United States of America
| | - Hamish McCallum
- Griffith School of Environment, Griffith University, Brisbane, Queensland, Australia
| | - James Wood
- Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Michelle L. Baker
- CSIRO Health and Biosecurity Business Unit, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Olivier Restif
- Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
31
|
Hendra Virus Infection Dynamics in the Grey-Headed Flying Fox (Pteropus poliocephalus) at the Southern-Most Extent of Its Range: Further Evidence This Species Does Not Readily Transmit the Virus to Horses. PLoS One 2016; 11:e0155252. [PMID: 27304985 PMCID: PMC4909227 DOI: 10.1371/journal.pone.0155252] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/26/2016] [Indexed: 12/14/2022] Open
Abstract
Hendra virus (HeV) is an important emergent virus in Australia known to infect horses and humans in certain regions of the east coast. Whilst pteropid bats (“flying foxes”) are considered the natural reservoir of HeV, which of the four mainland species is the principal reservoir has been a source of ongoing debate, particularly as shared roosting is common. To help resolve this, we sampled a colony consisting of just one of these species, the grey-headed flying fox, (Pteropus poliocephalus), at the southernmost extent of its range. Using the pooled urine sampling technique at approximately weekly intervals over a two year period, we determined the prevalence of HeV and related paramyxoviruses using a novel multiplex (Luminex) platform. Whilst all the pooled urine samples were negative for HeV nucleic acid, we successfully identified four other paramyxoviruses, including Cedar virus; a henipavirus closely related to HeV. Collection of serum from individually caught bats from the colony showed that antibodies to HeV, as estimated by a serological Luminex assay, were present in between 14.6% and 44.5% of animals. The wide range of the estimate reflects uncertainties in interpreting intermediate results. Interpreting the study in the context of HeV studies from states to the north, we add support for an arising consensus that it is the black flying fox and not the grey-headed flying fox that is the principal source of HeV in spillover events to horses.
Collapse
|
32
|
Abstract
Hendra virus causes acute and highly fatal infection in horses and humans. Pteropid bats (flying-foxes) are the natural host of the virus, with age and species being risk factors for infection. Urine is the primary route of excretion in flying-foxes, with viral RNA more frequently detected in Pteropus alecto and P. conspicillatus than other species. Infection prevalence in flying-foxes can vary between and within years, with a winter peak of excretion occurring in some regions. Vertical transmission and recrudescing infection has been reported in flying-foxes, but horizontal transmission is evidently the primary mode of transmission. The most parsimonious mode of flying-fox to horse transmission is equine contact (oro-nasal, conjunctival) with infected flying-fox urine, either directly, or via urine-contaminated pasture or surfaces. Horse to horse transmission is inefficient, requiring direct contact with infected body fluids. Flying-fox to human transmission has not been recorded; all human cases have been associated with close and direct contact with infected horses. Canine cases (subclinical) have also been limited to equine case properties. Notwithstanding the recent availability of an effective vaccine for horses, a comprehensive understanding of Hendra virus ecology and transmission is essential to limit inter-species transmission.
Collapse
|
33
|
Field H, Jordan D, Edson D, Morris S, Melville D, Parry-Jones K, Broos A, Divljan A, McMichael L, Davis R, Kung N, Kirkland P, Smith C. Spatiotemporal Aspects of Hendra Virus Infection in Pteropid Bats (Flying-Foxes) in Eastern Australia. PLoS One 2015; 10:e0144055. [PMID: 26625128 PMCID: PMC4666458 DOI: 10.1371/journal.pone.0144055] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 11/12/2015] [Indexed: 11/19/2022] Open
Abstract
Hendra virus (HeV) causes highly lethal disease in horses and humans in the eastern Australian states of Queensland (QLD) and New South Wales (NSW), with multiple equine cases now reported on an annual basis. Infection and excretion dynamics in pteropid bats (flying-foxes), the recognised natural reservoir, are incompletely understood. We sought to identify key spatial and temporal factors associated with excretion in flying-foxes over a 2300 km latitudinal gradient from northern QLD to southern NSW which encompassed all known equine case locations. The aim was to strengthen knowledge of Hendra virus ecology in flying-foxes to improve spillover risk prediction and exposure risk mitigation strategies, and thus better protect horses and humans. Monthly pooled urine samples were collected from under roosting flying-foxes over a three-year period and screened for HeV RNA by quantitative RT-PCR. A generalised linear model was employed to investigate spatiotemporal associations with HeV detection in 13,968 samples from 27 roosts. There was a non-linear relationship between mean HeV excretion prevalence and five latitudinal regions, with excretion moderate in northern and central QLD, highest in southern QLD/northern NSW, moderate in central NSW, and negligible in southern NSW. Highest HeV positivity occurred where black or spectacled flying-foxes were present; nil or very low positivity rates occurred in exclusive grey-headed flying-fox roosts. Similarly, little red flying-foxes are evidently not a significant source of virus, as their periodic extreme increase in numbers at some roosts was not associated with any concurrent increase in HeV detection. There was a consistent, strong winter seasonality to excretion in the southern QLD/northern NSW and central NSW regions. This new information allows risk management strategies to be refined and targeted, mindful of the potential for spatial risk profiles to shift over time with changes in flying-fox species distribution.
Collapse
Affiliation(s)
- Hume Field
- Queensland Centre for Emerging Infectious Diseases, Biosecurity Queensland, Department of Agriculture and Fisheries, Brisbane, Queensland, Australia
- EcoHealth Alliance, New York, New York, United States of America
- * E-mail: (HF); (DJ)
| | - David Jordan
- Wollongbar Primary Industries Institute, Department of Primary Industries, Wollongbar, New South Wales, Australia
- * E-mail: (HF); (DJ)
| | - Daniel Edson
- Queensland Centre for Emerging Infectious Diseases, Biosecurity Queensland, Department of Agriculture and Fisheries, Brisbane, Queensland, Australia
- Department of Agriculture, Canberra, Australian Capital Territory, Australia
| | - Stephen Morris
- Wollongbar Primary Industries Institute, Department of Primary Industries, Wollongbar, New South Wales, Australia
| | - Debra Melville
- Queensland Centre for Emerging Infectious Diseases, Biosecurity Queensland, Department of Agriculture and Fisheries, Brisbane, Queensland, Australia
| | - Kerryn Parry-Jones
- Institute of Wildlife Research, School of Biological Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Alice Broos
- Queensland Centre for Emerging Infectious Diseases, Biosecurity Queensland, Department of Agriculture and Fisheries, Brisbane, Queensland, Australia
| | - Anja Divljan
- Institute of Wildlife Research, School of Biological Sciences, University of Sydney, Sydney, New South Wales, Australia
- Australian Museum, Sydney, New South Wales, Australia
| | - Lee McMichael
- Queensland Centre for Emerging Infectious Diseases, Biosecurity Queensland, Department of Agriculture and Fisheries, Brisbane, Queensland, Australia
- School of Veterinary Science, University of Queensland, Gatton, Queensland, Australia
| | - Rodney Davis
- Elizabeth Macarthur Agricultural Institute, Department of Primary Industries, Menangle, New South Wales, Australia
| | - Nina Kung
- Queensland Centre for Emerging Infectious Diseases, Biosecurity Queensland, Department of Agriculture and Fisheries, Brisbane, Queensland, Australia
- Biosecurity Queensland, Department of Agriculture and Fisheries, Brisbane, Queensland, Australia
| | - Peter Kirkland
- Elizabeth Macarthur Agricultural Institute, Department of Primary Industries, Menangle, New South Wales, Australia
| | - Craig Smith
- Queensland Centre for Emerging Infectious Diseases, Biosecurity Queensland, Department of Agriculture and Fisheries, Brisbane, Queensland, Australia
| |
Collapse
|
34
|
Edson D, Field H, McMichael L, Vidgen M, Goldspink L, Broos A, Melville D, Kristoffersen J, de Jong C, McLaughlin A, Davis R, Kung N, Jordan D, Kirkland P, Smith C. Routes of Hendra Virus Excretion in Naturally-Infected Flying-Foxes: Implications for Viral Transmission and Spillover Risk. PLoS One 2015; 10:e0140670. [PMID: 26469523 PMCID: PMC4607162 DOI: 10.1371/journal.pone.0140670] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/29/2015] [Indexed: 11/19/2022] Open
Abstract
Pteropid bats or flying-foxes (Chiroptera: Pteropodidae) are the natural host of Hendra virus (HeV) which sporadically causes fatal disease in horses and humans in eastern Australia. While there is strong evidence that urine is an important infectious medium that likely drives bat to bat transmission and bat to horse transmission, there is uncertainty about the relative importance of alternative routes of excretion such as nasal and oral secretions, and faeces. Identifying the potential routes of HeV excretion in flying-foxes is important to effectively mitigate equine exposure risk at the bat-horse interface, and in determining transmission rates in host-pathogen models. The aim of this study was to identify the major routes of HeV excretion in naturally infected flying-foxes, and secondarily, to identify between-species variation in excretion prevalence. A total of 2840 flying-foxes from three of the four Australian mainland species (Pteropus alecto, P. poliocephalus and P. scapulatus) were captured and sampled at multiple roost locations in the eastern states of Queensland and New South Wales between 2012 and 2014. A range of biological samples (urine and serum, and urogenital, nasal, oral and rectal swabs) were collected from anaesthetized bats, and tested for HeV RNA using a qRT-PCR assay targeting the M gene. Forty-two P. alecto (n = 1410) had HeV RNA detected in at least one sample, and yielded a total of 78 positive samples, at an overall detection rate of 1.76% across all samples tested in this species (78/4436). The rate of detection, and the amount of viral RNA, was highest in urine samples (>serum, packed haemocytes >faecal >nasal >oral), identifying urine as the most plausible source of infection for flying-foxes and for horses. Detection in a urine sample was more efficient than detection in urogenital swabs, identifying the former as the preferred diagnostic sample. The detection of HeV RNA in serum is consistent with haematogenous spread, and with hypothesised latency and recrudesence in flying-foxes. There were no detections in P. poliocephalus (n = 1168 animals; n = 2958 samples) or P. scapulatus (n = 262 animals; n = 985 samples), suggesting (consistent with other recent studies) that these species are epidemiologically less important than P. alecto in HeV infection dynamics. The study is unprecedented in terms of the individual animal approach, the large sample size, and the use of a molecular assay to directly determine infection status. These features provide a high level of confidence in the veracity of our findings, and a sound basis from which to more precisely target equine risk mitigation strategies.
Collapse
Affiliation(s)
- Daniel Edson
- Queensland Centre for Emerging Infectious Diseases, Department of Agriculture and Fisheries, Coopers Plains, Queensland, Australia
- * E-mail:
| | - Hume Field
- Queensland Centre for Emerging Infectious Diseases, Department of Agriculture and Fisheries, Coopers Plains, Queensland, Australia
- EcoHealth Alliance, New York, New York, United States of America
| | - Lee McMichael
- Queensland Centre for Emerging Infectious Diseases, Department of Agriculture and Fisheries, Coopers Plains, Queensland, Australia
| | - Miranda Vidgen
- Queensland Centre for Emerging Infectious Diseases, Department of Agriculture and Fisheries, Coopers Plains, Queensland, Australia
| | - Lauren Goldspink
- Queensland Centre for Emerging Infectious Diseases, Department of Agriculture and Fisheries, Coopers Plains, Queensland, Australia
| | - Alice Broos
- Queensland Centre for Emerging Infectious Diseases, Department of Agriculture and Fisheries, Coopers Plains, Queensland, Australia
| | - Deb Melville
- Queensland Centre for Emerging Infectious Diseases, Department of Agriculture and Fisheries, Coopers Plains, Queensland, Australia
| | - Joanna Kristoffersen
- Queensland Centre for Emerging Infectious Diseases, Department of Agriculture and Fisheries, Coopers Plains, Queensland, Australia
| | - Carol de Jong
- Queensland Centre for Emerging Infectious Diseases, Department of Agriculture and Fisheries, Coopers Plains, Queensland, Australia
| | - Amanda McLaughlin
- Queensland Centre for Emerging Infectious Diseases, Department of Agriculture and Fisheries, Coopers Plains, Queensland, Australia
| | - Rodney Davis
- Elizabeth Macarthur Agricultural Institute, New South Wales Department of Primary Industries, Menangle, NSW, Australia
| | - Nina Kung
- Queensland Centre for Emerging Infectious Diseases, Department of Agriculture and Fisheries, Coopers Plains, Queensland, Australia
| | - David Jordan
- Wollongbar Primary Industries Institute, New South Wales Department of Primary Industries, Wollongbar, NSW, Australia
| | - Peter Kirkland
- Elizabeth Macarthur Agricultural Institute, New South Wales Department of Primary Industries, Menangle, NSW, Australia
| | - Craig Smith
- Queensland Centre for Emerging Infectious Diseases, Department of Agriculture and Fisheries, Coopers Plains, Queensland, Australia
| |
Collapse
|