1
|
Shcherbakov DN, Isaeva AA, Mustaev EA. Treatment of Ebola Virus Disease: From Serotherapy to the Use of Monoclonal Antibodies. Antibodies (Basel) 2025; 14:22. [PMID: 40136471 PMCID: PMC11939263 DOI: 10.3390/antib14010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 03/27/2025] Open
Abstract
Ebola virus disease (EVD) is an acute illness with a high-case fatality rate (CFR) caused by an RNA virus belonging to the Filoviridae family. Over the past 50 years, regular EVD outbreaks have been reported. The West African EVD outbreak of 2013-2016 proved to be significantly more widespread and complex than previous ones, resulting in approximately 11,000 deaths. A coordinated international effort was required to bring the outbreak under control. One of the main challenges faced by clinicians and researchers combating EVD was the absence of vaccines and preventive treatments. Only recently have efforts led to the development of effective therapeutic options. Among these, monoclonal antibody-based drugs have emerged as the most promising agents for the urgent treatment of EVD. This article aims to review the key milestones in the development of antibody-based therapies for EVD, tracing the journey from the use of convalescent serum to the creation of effective monoclonal antibody-based drugs and their combinations.
Collapse
Affiliation(s)
- Dmitriy N. Shcherbakov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Koltsovo 630559, Russia;
| | - Anastasiya A. Isaeva
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Koltsovo 630559, Russia;
| | - Egor A. Mustaev
- Department of Natural Sciences, Novosibirsk State University, Pirogova st., 2, Novosibirsk 630090, Russia;
- Synchrotron Radiation Facility—Siberian Circular Photon Source “SKlF” Boreskov Institute of Catalysis of Siberian Branch of the Russian Academy of Sciences, Nikolskiy pr-t, 1, Koltsovo 630559, Russia
| |
Collapse
|
2
|
Brocato RL, Wu H, Kwilas SA, Principe LM, Josleyn M, Shamblin J, Chivukula P, Bausch C, Luke T, Sullivan EJ, Hooper JW. Preclinical evaluation of a fully human, quadrivalent-hantavirus polyclonal antibody derived from a non-human source. mBio 2024; 15:e0160024. [PMID: 39258903 PMCID: PMC11481879 DOI: 10.1128/mbio.01600-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/13/2024] [Indexed: 09/12/2024] Open
Abstract
Hantaviruses are rodent-borne viruses that cause severe disease in infected humans. In the New World, major hantaviruses include Andes virus (ANDV) and Sin Nombre virus (SNV) causing hantavirus pulmonary syndrome. In the Old World, major hantaviruses include Hantaan virus (HTNV) and Puumala virus (PUUV) causing hemorrhagic fever with renal syndrome. Here, we produced a pan-hantavirus therapeutic (SAB-163) comprised of fully human immunoglobulin purified from the plasma of transchromosomic bovines (TcB) vaccinated with hantavirus DNA plasmids coding for the major glycoproteins of ANDV, SNV, HTNV, and PUUV. SAB-163 has potent neutralizing antibodies (PRNT50 > 200,000) against the four targeted hantavirus and cross-neutralization against several other heterotypic hantaviruses. At a dosage of 10 mg/kg, SAB-163 is bioavailable in Syrian hamsters out to 70 days post-treatment with a half-life of 10-15 days. At this same dosage, SAB-163 administered 1 day before, or 5 days after exposure, protected all hamsters from lethal disease caused by ANDV. At a higher dose, partial but significant protection was achieved as late as day 6. SAB-163 also protected hamsters in the HTNV, PUUV, and SNV infection models when administered 1 day before or up to 3 days after challenge. This pan-hantavirus therapeutic is attractive because it is fully human, multi-targeted, safe, stable at 4°C, and effective in animal models. SAB-163 was evaluated for safety in GLP human tissue binding studies and a GLP rabbit toxicity study at 365 and 730 mg/kg and is investigational new drug enabled for phase 1 clinical trial(s). IMPORTANCE This candidate polyclonal human IgG product was produced using synthetic gene-based vaccines and transgenic cows. Having now gone through cGMP production, GLP safety testing, and efficacy testing in animals, SAB-163 is the world's most advanced anti-hantavirus antibody-based medical countermeasure, aside from convalescent human plasma. Importantly, SAB-163 targets the most prevalent hantaviruses on four continents.
Collapse
Affiliation(s)
- Rebecca L. Brocato
- Virology Division, USA Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland, USA
| | - Hua Wu
- SAB Biotherapeutics Inc., Sioux Falls, South Dakota, USA
| | - Steven A. Kwilas
- Virology Division, USA Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland, USA
| | - Lucia M. Principe
- Virology Division, USA Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland, USA
| | - Matthew Josleyn
- Virology Division, USA Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland, USA
| | - Joshua Shamblin
- Virology Division, USA Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland, USA
| | | | | | - Thomas Luke
- SAB Biotherapeutics Inc., Sioux Falls, South Dakota, USA
| | | | - Jay W. Hooper
- Virology Division, USA Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland, USA
| |
Collapse
|
3
|
Zhang HQ, Zhang QY, Yuan ZM, Zhang B. The potential epidemic threat of Ebola virus and the development of a preventive vaccine. JOURNAL OF BIOSAFETY AND BIOSECURITY 2023; 5:67-78. [DOI: 10.1016/j.jobb.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
|
4
|
Saied AA, Nascimento MSL, do Nascimento Rangel AH, Skowron K, Grudlewska‐Buda K, Dhama K, Shah J, Abdeen A, El‐Mayet FS, Ahmed H, Metwally AA. Transchromosomic bovines-derived broadly neutralizing antibodies as potent biotherapeutics to counter important emerging viral pathogens with a special focus on SARS-CoV-2, MERS-CoV, Ebola, Zika, HIV-1, and influenza A virus. J Med Virol 2022; 94:4599-4610. [PMID: 35655326 PMCID: PMC9347534 DOI: 10.1002/jmv.27907] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022]
Abstract
Historically, passive immunotherapy is an approved approach for protecting and treating humans against various diseases when other alternative therapeutic options are unavailable. Human polyclonal antibodies (hpAbs) can be made from convalescent human donor serum, although it is considered limited due to pandemics and the urgent requirement. Additionally, polyclonal antibodies (pAbs) could be generated from animals, but they may cause severe immunoreactivity and, once "humanized," may have lower neutralization efficiency. Transchromosomic bovines (TcBs) have been developed to address these concerns by creating robust neutralizing hpAbs, which are useful in preventing and/or curing human infections in response to hyperimmunization with vaccines holding adjuvants and/or immune stimulators over an extensive period. Unlike other animal-derived pAbs, potent hpAbs could be promptly produced from TcB in large amounts to assist against an outbreak scenario. Some of these highly efficacious TcB-derived antibodies have already neutralized and blocked diseases in clinical studies. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has numerous variants classified into variants of concern (VOCs), variants of interest (VOIs), and variants under monitoring. Although these variants possess different mutations, such as N501Y, E484K, K417N, K417T, L452R, T478K, and P681R, SAB-185 has shown broad neutralizing activity against VOCs, such as Alpha, Beta, Gamma, Delta, and Omicron variants, and VOIs, such as Epsilon, Iota, Kappa, and Lambda variants. This article highlights recent developments in the field of bovine-derived biotherapeutics, which are seen as a practical platform for developing safe and effective antivirals with broad activity, particularly considering emerging viral infections such as SARS-CoV-2, Ebola, Middle East respiratory syndrome coronavirus, Zika, human immunodeficiency virus type 1, and influenza A virus. Antibodies in the bovine serum or colostrum, which have been proved to be more protective than their human counterparts, are also reviewed.
Collapse
Affiliation(s)
- AbdulRahman A. Saied
- National Food Safety Authority (NFSA)AswanEgypt
- Ministry of Tourism and AntiquitiesAswanEgypt
| | - Manuela Sales Lima Nascimento
- Department of Microbiology and Parasitology, Biosciences CenterFederal University of Rio Grande do NorteNatalRio Grande do NorteBrazil
| | | | - Krzysztof Skowron
- Department of Microbiology, Nicolaus Copernicus University in ToruńL. Rydygier Collegium Medicum in BydgoszczBydgoszczPoland
| | - Katarzyna Grudlewska‐Buda
- Department of Microbiology, Nicolaus Copernicus University in ToruńL. Rydygier Collegium Medicum in BydgoszczBydgoszczPoland
| | - Kuldeep Dhama
- Division of PathologyICAR‐Indian Veterinary Research Institute (IVRI)IzatnagarUttar PradeshIndia
| | - Jaffer Shah
- Medical Research CenterKateb UniversityKabulAfghanistan
- New York State Department of HealthNew York CityNew YorkUSA
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary MedicineBenha UniversityToukhEgypt
| | - Fouad S. El‐Mayet
- Department of Virology, Faculty of Veterinary MedicineBenha UniversityToukhEgypt
| | - Hassan Ahmed
- Department of Physiology, Faculty of Veterinary MedicineSouth Valley UniversityQenaEgypt
| | - Asmaa A. Metwally
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary MedicineAswan UniversityAswanEgypt
| |
Collapse
|
5
|
Liu CH, Hu YT, Wong SH, Lin LT. Therapeutic Strategies against Ebola Virus Infection. Viruses 2022; 14:v14030579. [PMID: 35336986 PMCID: PMC8954160 DOI: 10.3390/v14030579] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 12/10/2022] Open
Abstract
Since the 2014–2016 epidemic, Ebola virus (EBOV) has spread to several countries and has become a major threat to global health. EBOV is a risk group 4 pathogen, which imposes significant obstacles for the development of countermeasures against the virus. Efforts have been made to develop anti-EBOV immunization and therapeutics, with three vaccines and two antibody-based therapeutics approved in recent years. Nonetheless, the high fatality of Ebola virus disease highlights the need to continuously develop antiviral strategies for the future management of EBOV outbreaks in conjunction with vaccination programs. This review aims to highlight potential EBOV therapeutics and their target(s) of inhibition, serving as a summary of the literature to inform readers of the novel candidates available in the continued search for EBOV antivirals.
Collapse
Affiliation(s)
- Ching-Hsuan Liu
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Yee-Tung Hu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Shu Hui Wong
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Correspondence:
| |
Collapse
|
6
|
Escaffre O, Juelich TL, Neef N, Massey S, Smith J, Brasel T, Smith JK, Kalveram B, Zhang L, Perez D, Ikegami T, Freiberg AN, Comer JE. STAT-1 Knockout Mice as a Model for Wild-Type Sudan Virus (SUDV). Viruses 2021; 13:v13071388. [PMID: 34372594 PMCID: PMC8310124 DOI: 10.3390/v13071388] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 12/03/2022] Open
Abstract
Currently there is no FDA-licensed vaccine or therapeutic against Sudan ebolavirus (SUDV) infections. The largest ever reported 2014–2016 West Africa outbreak, as well as the 2021 outbreak in the Democratic Republic of Congo, highlight the critical need for countermeasures against filovirus infections. A well-characterized small animal model that is susceptible to wild-type filoviruses would greatly add to the screening of antivirals and vaccines. Here, we infected signal transducer and activator of transcription-1 knock out (STAT-1 KO) mice with five different wildtype filoviruses to determine susceptibility. SUDV and Marburg virus (MARV) were the most virulent, and caused 100% or 80% lethality, respectively. Zaire ebolavirus (EBOV), Bundibugyo ebolavirus (BDBV), and Taï Forest ebolavirus (TAFV) caused 40%, 20%, and no mortality, respectively. Further characterization of SUDV in STAT-1 KO mice demonstrated lethality down to 3.1 × 101 pfu. Viral genomic material was detectable in serum as early as 1 to 2 days post-challenge. The onset of viremia was closely followed by significant changes in total white blood cells and proportion of neutrophils and lymphocytes, as well as by an influx of neutrophils in the liver and spleen. Concomitant significant fluctuations in blood glucose, albumin, globulin, and alanine aminotransferase were also noted, altogether consistent with other models of filovirus infection. Finally, favipiravir treatment fully protected STAT-1 KO mice from lethal SUDV challenge, suggesting that this may be an appropriate small animal model to screen anti-SUDV countermeasures.
Collapse
Affiliation(s)
- Olivier Escaffre
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (O.E.); (T.L.J.); (J.K.S.); (B.K.); (L.Z.); (T.I.)
| | - Terry L. Juelich
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (O.E.); (T.L.J.); (J.K.S.); (B.K.); (L.Z.); (T.I.)
| | - Natasha Neef
- XTR Toxicologic Pathology Services LLC, Sterling, VA 20165, USA;
| | - Shane Massey
- Office of Regulated Nonclinical Studies, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (S.M.); (J.S.); (T.B.)
| | - Jeanon Smith
- Office of Regulated Nonclinical Studies, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (S.M.); (J.S.); (T.B.)
| | - Trevor Brasel
- Office of Regulated Nonclinical Studies, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (S.M.); (J.S.); (T.B.)
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- The Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Jennifer K. Smith
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (O.E.); (T.L.J.); (J.K.S.); (B.K.); (L.Z.); (T.I.)
| | - Birte Kalveram
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (O.E.); (T.L.J.); (J.K.S.); (B.K.); (L.Z.); (T.I.)
| | - Lihong Zhang
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (O.E.); (T.L.J.); (J.K.S.); (B.K.); (L.Z.); (T.I.)
| | - David Perez
- Texas A&M University Division of Research, Texas A&M University, College Station, TX 77843, USA;
| | - Tetsuro Ikegami
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (O.E.); (T.L.J.); (J.K.S.); (B.K.); (L.Z.); (T.I.)
- The Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Alexander N. Freiberg
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (O.E.); (T.L.J.); (J.K.S.); (B.K.); (L.Z.); (T.I.)
- The Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Correspondence: (A.N.F.); (J.E.C.)
| | - Jason E. Comer
- Office of Regulated Nonclinical Studies, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (S.M.); (J.S.); (T.B.)
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- The Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Institute of Translational Sciences, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Correspondence: (A.N.F.); (J.E.C.)
| |
Collapse
|
7
|
Perley CC, Brocato RL, Wu H, Bausch C, Karmali PP, Vega JB, Cohen MV, Somerville B, Kwilas SA, Principe LM, Shamblin J, Chivukula P, Sullivan E, Hooper JW. Anti-HFRS Human IgG Produced in Transchromosomic Bovines Has Potent Hantavirus Neutralizing Activity and Is Protective in Animal Models. Front Microbiol 2020; 11:832. [PMID: 32508764 PMCID: PMC7252588 DOI: 10.3389/fmicb.2020.00832] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 04/07/2020] [Indexed: 11/13/2022] Open
Abstract
We explored an emerging technology to produce anti-Hantaan virus (HTNV) and anti-Puumala virus (PUUV) neutralizing antibodies for use as pre- or post-exposure prophylactics. The technology involves hyperimmunization of transchomosomic bovines (TcB) engineered to express human polyclonal IgG antibodies with HTNV and PUUV DNA vaccines encoding GnGc glycoproteins. For the anti-HTNV product, TcB was hyperimmunized with HTNV DNA plus adjuvant or HTNV DNA formulated using lipid nanoparticles (LNP). The LNP-formulated vaccine yielded fivefold higher neutralizing antibody titers using 10-fold less DNA. Human IgG purified from the LNP-formulated animal (SAB-159), had anti-HTNV neutralizing antibody titers >100,000. SAB-159 was capable of neutralizing pseudovirions with monoclonal antibody escape mutations in Gn and Gc demonstrating neutralization escape resistance. SAB-159 protected hamsters from HTNV infection when administered pre- or post-exposure, and limited HTNV infection in a marmoset model. An LNP-formulated PUUV DNA vaccine generated purified anti-PUUV IgG, SAB-159P, with a neutralizing antibody titer >600,000. As little as 0.33 mg/kg of SAB-159P protected hamsters against PUUV infection for pre-exposure and 10 mg/kg SAB-159P protected PUUV-infected hamsters post-exposure. These data demonstrate that DNA vaccines combined with the TcB-based manufacturing platform can be used to rapidly produce potent, human, polyclonal, escape-resistant anti-HTNV, and anti-PUUV neutralizing antibodies that are protective in animal models.
Collapse
Affiliation(s)
- Casey C Perley
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Rebecca L Brocato
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Hua Wu
- SAB Biotherapeutics Inc., Sioux Falls, SD, United States
| | | | | | - Jerel B Vega
- Arcturus Therapeutics Inc., San Diego, CA, United States
| | - Melanie V Cohen
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Brandon Somerville
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Steven A Kwilas
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Lucia M Principe
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Joshua Shamblin
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | | | - Eddie Sullivan
- SAB Biotherapeutics Inc., Sioux Falls, SD, United States
| | - Jay W Hooper
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| |
Collapse
|
8
|
Clarke EC, Bradfute SB. The use of mice lacking type I or both type I and type II interferon responses in research on hemorrhagic fever viruses. Part 1: Potential effects on adaptive immunity and response to vaccination. Antiviral Res 2020; 174:104703. [DOI: 10.1016/j.antiviral.2019.104703] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/10/2019] [Accepted: 12/20/2019] [Indexed: 12/25/2022]
|
9
|
Fuentes S, Ravichandran S, Khurana S. Antibody Repertoire of Human Polyclonal Antibodies Against Ebola Virus Glycoprotein Generated After Deoxyribonucleic Acid and Protein Vaccination of Transchromosomal Bovines. J Infect Dis 2019; 218:S597-S602. [PMID: 29939294 PMCID: PMC7107430 DOI: 10.1093/infdis/jiy325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Several Ebola vaccines and therapeutics are under clinical development. However, limited knowledge exists on the quality of antibody response generated by different Ebola vaccines. In this study, antibody repertoire induced by vaccination of transchromosomal bovine (TcB) with Ebola virus (EBOV) glycoprotein ([GP]; recombinant GP [rGP]) encoded by either deoxyribonucleic acid (DNA) or nanoparticle-based vaccine platform was analyzed using EBOV genome fragment phage display library and surface plasmon resonance (SPR)-based real-time kinetics assay to measure antibody affinity maturation to both native and partially denatured Ebola GP as well as GP containing the receptor binding domain but lacking the mucin-like domain. Immunoglobulin (IgG) obtained from rGP nanoparticle-vaccinated TcB demonstrated ~4-fold higher binding affinity compared with DNA-vaccinated TcB-induced IgG against the native rGP’s. The rGP nanoparticle vaccine generated a more robust and diverse antibody immune response to the native EBOV-GP compared with the DNA vaccine, which may explain the protective efficacy observed for these antibody preparations.
Collapse
Affiliation(s)
- Sandra Fuentes
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Supriya Ravichandran
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
10
|
Rosenke K, Bounds CE, Hanley PW, Saturday G, Sullivan E, Wu H, Jiao JA, Feldmann H, Schmaljohn C, Safronetz D. Human Polyclonal Antibodies Produced by Transchromosomal Cattle Provide Partial Protection Against Lethal Zaire Ebolavirus Challenge in Rhesus Macaques. J Infect Dis 2019; 218:S658-S661. [PMID: 30053153 DOI: 10.1093/infdis/jiy430] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Antibody therapy has been used to treat a variety of diseases and the success of ZMapp and other monoclonal antibody-based therapies during the 2014-2016 West African Ebola outbreak has shown this countermeasure can be a successful therapy for Ebola hemorrhagic fever. This study utilized transchromosomal bovines (TcB) vaccinated with a DNA plasmid encoding Ebola virus glycoprotein sequence to produce human polyclonal antibodies directed against Ebola virus glycoprotein. When administered 1 day postinfection, these TcB polyclonal antibodies provided partial protection and resulted in a 50% survival rate following a lethal challenge of Ebola virus Makona in rhesus macaques.
Collapse
Affiliation(s)
- Kyle Rosenke
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Callie E Bounds
- Joint Program Executive Office Chemical-Biological Defense, Medical Countermeasures Systems' Joint Vaccine Acquisition Program, Fort Detrick, Maryland
| | - Patrick W Hanley
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Greg Saturday
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | | | - Hua Wu
- SAB Biotherapeutics, Sioux Falls, South Dakota
| | - Jin-An Jiao
- SAB Biotherapeutics, Sioux Falls, South Dakota
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Connie Schmaljohn
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland
| | - David Safronetz
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana.,Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| |
Collapse
|
11
|
Banadyga L, Schiffman Z, He S, Qiu X. Virus inoculation and treatment regimens for evaluating anti-filovirus monoclonal antibody efficacy in vivo. BIOSAFETY AND HEALTH 2019; 1:6-13. [PMID: 32835206 PMCID: PMC7347303 DOI: 10.1016/j.bsheal.2019.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/07/2019] [Accepted: 02/21/2019] [Indexed: 01/05/2023] Open
Abstract
The development of monoclonal antibodies to treat disease caused by filoviruses, particularly Ebola virus, has risen steeply in recent years thanks to several key studies demonstrating their remarkable therapeutic potential. The increased drive to develop new and better monoclonal antibodies has necessarily seen an increase in animal model efficacy testing, which is critical to the pre-clinical development of any novel countermeasure. Primary and secondary efficacy testing against filoviruses typically makes use of one or more rodent models (mice, guinea pigs, and occasionally hamsters) or the more recently described ferret model, although the exact choice of model depends on the specific filovirus being evaluated. Indeed, no single small animal model exists for all filoviruses, and the use of any given model must consider the nature of that model as well as the nature of the therapeutic and the experimental objectives. Confirmatory evaluation, on the other hand, is performed in nonhuman primates (rhesus or cynomolgus macaques) regardless of the filovirus. In light of the number of different animal models that are currently used in monoclonal antibody efficacy testing, we sought to better understand how these efficacy tests are being performed by numerous different laboratories around the world. To this end, we review the animal models that are being used for antibody efficacy testing against filoviruses, and we highlight the challenge doses and routes of infection that are used. We also describe the various antibody treatment regimens, including antibody dose, route, and schedule of administration, that are used in these model systems. We do not identify any single best model or treatment regimen, and we do not advocate for field-wide protocol standardization. Instead, we hope to provide a comprehensive resource that will facilitate and enhance the continued pre-clinical development of novel monoclonal antibody therapeutics.
Collapse
Affiliation(s)
- Logan Banadyga
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Zachary Schiffman
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Shihua He
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Xiangguo Qiu
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
12
|
Wu H, Fan Z, Brandsrud M, Meng Q, Bobbitt M, Regouski M, Stott R, Sweat A, Crabtree J, Hogan RJ, Tripp RA, Wang Z, Polejaeva IA, Sullivan EJ. Generation of H7N9-specific human polyclonal antibodies from a transchromosomic goat (caprine) system. Sci Rep 2019; 9:366. [PMID: 30675003 PMCID: PMC6344498 DOI: 10.1038/s41598-018-36961-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/23/2018] [Indexed: 01/23/2023] Open
Abstract
To address the unmet needs for human polyclonal antibodies both as therapeutics and diagnostic reagents, building upon our previously established transchromosomic (Tc) cattle platform, we report herein the development of a Tc goat system expressing human polyclonal antibodies in their sera. In the Tc goat system, a human artificial chromosome (HAC) comprising the entire human immunoglobulin (Ig) gene repertoire in the germline configuration was introduced into the genetic makeup of the domestic goat. We achieved this by transferring the HAC into goat fetal fibroblast cells followed by somatic cell nuclear transfer for Tc goat production. Gene and protein expression analyses in the peripheral blood mononuclear cells (PBMC) and the sera, respectively, of Tc caprine demonstrated the successful expression of human Ig genes and antibodies. Furthermore, immunization of Tc caprine with inactivated influenza A (H7N9) viruses followed by H7N9 Hemagglutinin 1 (HA1) boosting elicited human antibodies with high neutralizing activities against H7N9 viruses in vitro. As a small ungulate, Tc caprine offers the advantages of low cost and quick establishment of herds, therefore complementing the Tc cattle platform in responses to a range of medical needs and diagnostic applications where small volumes of human antibody products are needed.
Collapse
Affiliation(s)
- Hua Wu
- SAB Biotherapeutics, Sioux Falls, SD, 57104, USA.,SAB Capra, LLC, Salt Lake City, UT, 84101, USA
| | - Zhiqiang Fan
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, 84322, USA
| | | | - Qinggang Meng
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, 84322, USA
| | | | - Misha Regouski
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, 84322, USA
| | - Rusty Stott
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, 84322, USA
| | - Alexis Sweat
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, 84322, USA
| | - Jackelyn Crabtree
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Robert J Hogan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Ralph A Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Zhongde Wang
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, 84322, USA.
| | - Irina A Polejaeva
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, 84322, USA.
| | - Eddie J Sullivan
- SAB Biotherapeutics, Sioux Falls, SD, 57104, USA. .,SAB Capra, LLC, Salt Lake City, UT, 84101, USA.
| |
Collapse
|
13
|
Human Polyclonal Antibodies Produced from Transchromosomal Bovine Provides Prophylactic and Therapeutic Protections Against Zika Virus Infection in STAT2 KO Syrian Hamsters. Viruses 2019; 11:v11020092. [PMID: 30678320 PMCID: PMC6410148 DOI: 10.3390/v11020092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/18/2019] [Accepted: 01/19/2019] [Indexed: 12/21/2022] Open
Abstract
Zika virus (ZIKV) infection can cause severe congenital diseases, such as microcephaly, ocular defects and arthrogryposis in fetuses, and Guillain–Barré syndrome in adults. Efficacious therapeutic treatments for infected patients, as well as prophylactic treatments to prevent new infections are needed for combating ZIKV infection. Here, we report that ZIKV-specific human polyclonal antibodies (SAB-155), elicited in transchromosomal bovine (TcB), provide significant protection from infection by ZIKV in STAT2 knockout (KO) golden Syrian hamsters both prophylactically and therapeutically. These antibodies also prevent testicular lesions in this hamster model. Our data indicate that antibody-mediated immunotherapy is effective in treating ZIKV infection. Because suitable quantities of highly potent human polyclonal antibodies can be quickly produced from the TcB system against ZIKV and have demonstrated therapeutic efficacy in a small animal model, they have the potential as an effective countermeasure against ZIKV infection.
Collapse
|
14
|
Luke T, Bennett RS, Gerhardt DM, Burdette T, Postnikova E, Mazur S, Honko AN, Oberlander N, Byrum R, Ragland D, St. Claire M, Janosko KB, Smith G, Glenn G, Hooper J, Dye J, Pal S, Bishop-Lilly KA, Hamilton T, Frey K, Bollinger L, Wada J, Wu H, Jiao JA, Olinger GG, Gunn B, Alter G, Khurana S, Hensley LE, Sullivan E, Jahrling PB. Fully Human Immunoglobulin G From Transchromosomic Bovines Treats Nonhuman Primates Infected With Ebola Virus Makona Isolate. J Infect Dis 2018; 218:S636-S648. [PMID: 30010950 PMCID: PMC6249570 DOI: 10.1093/infdis/jiy377] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Transchromosomic bovines (Tc-bovines) adaptively produce fully human polyclonal immunoglobulin (Ig)G antibodies after exposure to immunogenic antigen(s). The National Interagency Confederation for Biological Research and collaborators rapidly produced and then evaluated anti-Ebola virus IgG immunoglobulins (collectively termed SAB-139) purified from Tc-bovine plasma after sequential hyperimmunization with an Ebola virus Makona isolate glycoprotein nanoparticle vaccine. SAB-139 was characterized by several in vitro production, research, and clinical level assays using wild-type Makona-C05 or recombinant virus/antigens from different Ebola virus variants. SAB-139 potently activates natural killer cells, monocytes, and peripheral blood mononuclear cells and has high-binding avidity demonstrated by surface plasmon resonance. SAB-139 has similar concentrations of galactose-α-1,3-galactose carbohydrates compared with human-derived intravenous Ig, and the IgG1 subclass antibody is predominant. All rhesus macaques infected with Ebola virus/H.sapiens-tc/GIN/2014/Makona-C05 and treated with sufficient SAB-139 at 1 day (n = 6) or 3 days (n = 6) postinfection survived versus 0% of controls. This study demonstrates that Tc-bovines can produce pathogen-specific human Ig to prevent and/or treat patients when an emerging infectious disease either threatens to or becomes an epidemic.
Collapse
Affiliation(s)
- Thomas Luke
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, The Henry Jackson Foundation for the Advancement of Military Medicine, Silver Spring, Maryland
| | - Richard S Bennett
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - Dawn M Gerhardt
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - Tracey Burdette
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - Elena Postnikova
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - Steven Mazur
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - Anna N Honko
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - Nicholas Oberlander
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - Russell Byrum
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - Dan Ragland
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - Marisa St. Claire
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - Krisztina B Janosko
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | | | | | - Jay Hooper
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland
| | - John Dye
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland
| | - Subhamoy Pal
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, The Henry Jackson Foundation for the Advancement of Military Medicine, Silver Spring, Maryland
| | - Kimberly A Bishop-Lilly
- Biological Defense Research Directorate, Naval Medical Research Center, Ft. Detrick, Maryland
| | - Theron Hamilton
- Biological Defense Research Directorate, Naval Medical Research Center, Ft. Detrick, Maryland
| | - Kenneth Frey
- Biological Defense Research Directorate, Naval Medical Research Center, Ft. Detrick, Maryland
| | - Laura Bollinger
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - Jiro Wada
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - Hua Wu
- SAB Biotherapeutics Inc., Sioux Falls, South Dakota
| | - Jin-an Jiao
- SAB Biotherapeutics Inc., Sioux Falls, South Dakota
| | - Gene G Olinger
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - Bronwyn Gunn
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Boston
| | - Galit Alter
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Boston
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Lisa E Hensley
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | | | - Peter B Jahrling
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| |
Collapse
|
15
|
Haddock E, Feldmann H, Marzi A. Ebola Virus Infection in Commonly Used Laboratory Mouse Strains. J Infect Dis 2018; 218:S453-S457. [PMID: 29878128 PMCID: PMC6249562 DOI: 10.1093/infdis/jiy208] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The mouse model for Ebola virus (EBOV) is an established and often used animal model for countermeasure development. Although it has its limitations, it recapitulates certain key features of human EBOV disease and principally shows uniform lethality. However, in the recent past, several studies reported surviving animals when evaluating treatment or vaccine approaches. Therefore, we analyzed the severity of disease and lethality of mouse-adapted (MA-) EBOV infection in 6 different mouse strains. We identified outbred CD-1 mice to be the only strain tested resulting in uniform lethality when infected with different doses of MA-EBOV or reverse genetics-generated MA-EBOV. In contrast, infection of different inbred mouse strains resulted in partial survival depending on virus and dose. Of these inbred strains, 129 mice provided the most consistent model. Our study provides a helpful dataset when planning EBOV mouse studies for countermeasure efficacy testing and highlights the limitations of certain mouse strains as EBOV models.
Collapse
Affiliation(s)
- Elaine Haddock
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| |
Collapse
|
16
|
Herd immunity: hyperimmune globulins for the 21st century. THE LANCET INFECTIOUS DISEASES 2018; 18:361-363. [PMID: 29329956 PMCID: PMC7158990 DOI: 10.1016/s1473-3099(18)30003-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 11/25/2022]
|
17
|
Stein DR, Golden JW, Griffin BD, Warner BM, Ranadheera C, Scharikow L, Sloan A, Frost KL, Kobasa D, Booth SA, Josleyn M, Ballantyne J, Sullivan E, Jiao JA, Wu H, Wang Z, Hooper JW, Safronetz D. Human polyclonal antibodies produced in transchromosomal cattle prevent lethal Zika virus infection and testicular atrophy in mice. Antiviral Res 2017; 146:164-173. [PMID: 28893603 DOI: 10.1016/j.antiviral.2017.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/21/2017] [Accepted: 09/07/2017] [Indexed: 11/16/2022]
Abstract
Zika virus (ZIKV) is rapidly spreading throughout the Americas and is associated with significant fetal complications, most notably microcephaly. Treatment with polyclonal antibodies for pregnant women at risk of ZIKV-related complications could be a safe alternative to vaccination. We found that large quantities of human polyclonal antibodies could be rapidly produced in transchromosomal bovines (TcB) and successfully used to protect mice from lethal infection. Additionally, antibody treatment eliminated ZIKV induced tissue damage in immunologically privileged sites such as the brain and testes and protected against testicular atrophy. These data indicate that rapid development and deployment of human polyclonal antibodies could be a viable countermeasure against ZIKV.
Collapse
Affiliation(s)
- Derek R Stein
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Joseph W Golden
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Bryan D Griffin
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada; Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Bryce M Warner
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada; Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Charlene Ranadheera
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Leanne Scharikow
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Angela Sloan
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Kathy L Frost
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Darwyn Kobasa
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada; Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Stephanie A Booth
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada; Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Matthew Josleyn
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | | | | | | | - Hua Wu
- SAB Biotherapeutics, Sioux Falls, SD, USA
| | - Zhongde Wang
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Jay W Hooper
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - David Safronetz
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada; Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
18
|
Antibody Preparations from Human Transchromosomic Cows Exhibit Prophylactic and Therapeutic Efficacy against Venezuelan Equine Encephalitis Virus. J Virol 2017; 91:JVI.00226-17. [PMID: 28468884 DOI: 10.1128/jvi.00226-17] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/21/2017] [Indexed: 12/15/2022] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is a mosquito-borne RNA virus that causes low mortality but high morbidity rates in humans. In addition to natural outbreaks, there is the potential for exposure to VEEV via aerosolized virus particles. There are currently no FDA-licensed vaccines or antiviral therapies for VEEV. Passive immunotherapy is an approved method used to protect individuals against several pathogens and toxins. Human polyclonal antibodies (PAbs) are ideal, but this is dependent upon serum from convalescent human donors, which is in limited supply. Non-human-derived PAbs can have serious immunoreactivity complications, and when "humanized," these antibodies may exhibit reduced neutralization efficiency. To address these issues, transchromosomic (Tc) bovines have been created, which can produce potent neutralizing human antibodies in response to hyperimmunization. In these studies, we have immunized these bovines with different VEEV immunogens and evaluated the protective efficacy of purified preparations of the resultant human polyclonal antisera against low- and high-dose VEEV challenges. These studies demonstrate that prophylactic or therapeutic administration of the polyclonal antibody preparations (TcPAbs) can protect mice against lethal subcutaneous or aerosol challenge with VEEV. Furthermore, significant protection against unrelated coinfecting viral pathogens can be conferred by combining individual virus-specific TcPAb preparations.IMPORTANCE With the globalization and spread or potential aerosol release of emerging infectious diseases, it will be critical to develop platforms that are able to produce therapeutics in a short time frame. By using a transchromosomic (Tc) bovine platform, it is theoretically possible to produce antigen-specific highly neutralizing therapeutic polyclonal human antibody (TcPAb) preparations in 6 months or less. In this study, we demonstrate that Tc bovine-derived Venezuelan equine encephalitis virus (VEEV)-specific TcPAbs are highly effective against VEEV infection that mimics not only the natural route of infection but also infection via aerosol exposure. Additionally, we show that combinatorial TcPAb preparations can be used to treat coinfections with divergent pathogens, demonstrating that the Tc bovine platform could be beneficial in areas where multiple infectious diseases occur contemporaneously or in the case of multipathogen release.
Collapse
|
19
|
Lee SS, Phy K, Peden K, Sheng-Fowler L. Development of a micro-neutralization assay for ebolaviruses using a replication-competent vesicular stomatitis hybrid virus and a quantitative PCR readout. Vaccine 2017; 35:5481-5486. [PMID: 28427845 DOI: 10.1016/j.vaccine.2017.03.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 03/01/2017] [Accepted: 03/08/2017] [Indexed: 01/11/2023]
Abstract
Development of vaccines against highly pathogenic viruses that could also be used as agents of bioterrorism is both a public health issue and a national security priority. Methods that can quantify neutralizing antibodies will likely be crucial in demonstrating vaccine effectiveness, as most licensed viral vaccines are effective due to their capacity to elicit neutralizing antibodies. Assays to determine whether antibodies are neutralizing traditionally involve infectious virus, and the assay most commonly used is the plaque-reduction neutralization test (PRNT). However, when the virus is highly pathogenic, this assay must be done under the appropriate level of containment; for tier one select agents, such as Ebola virus (EBOV), it is performed under Biological Safety Level 4 (BSL-4) conditions. Developing high-throughput neutralization assays for these viruses that can be done in standard BSL-2 laboratories should facilitate vaccine development. Our approach is to use a replication-competent hybrid virus whose genome carries the envelope gene from the pathogenic virus on the genetic backbone of a non-pathogenic virus, such as vesicular stomatitis virus (VSV). We have generated hybrid VSVs carrying the envelope genes for several species of ebolavirus. The readout for infectivity is a one-step reverse transcriptase quantitative PCR (RT-qPCR), an approach that we have used for other viruses that allows robustness and adaptability to automation. Using this method, we have shown that neutralization can be assessed within 6-16h after infection. Importantly, the titers obtained in our assay with two characterized antibodies were in agreement with titers obtained in other assays. Finally, although in this paper we describe the VSV platform to quantify neutralizing antibodies to ebolaviruses, the platform should be directly applicable to any virus whose envelope is compatible with VSV biology.
Collapse
Affiliation(s)
- Stella S Lee
- Laboratory of DNA Viruses, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, United States
| | - Kathryn Phy
- Laboratory of DNA Viruses, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, United States
| | - Keith Peden
- Laboratory of DNA Viruses, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, United States.
| | - Li Sheng-Fowler
- Laboratory of DNA Viruses, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, United States
| |
Collapse
|
20
|
Luke T, Wu H, Zhao J, Channappanavar R, Coleman CM, Jiao JA, Matsushita H, Liu Y, Postnikova EN, Ork BL, Glenn G, Flyer D, Defang G, Raviprakash K, Kochel T, Wang J, Nie W, Smith G, Hensley LE, Olinger GG, Kuhn JH, Holbrook MR, Johnson RF, Perlman S, Sullivan E, Frieman MB. Human polyclonal immunoglobulin G from transchromosomic bovines inhibits MERS-CoV in vivo. Sci Transl Med 2016; 8:326ra21. [PMID: 26888429 DOI: 10.1126/scitranslmed.aaf1061] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
As of 13 November 2015, 1618 laboratory-confirmed human cases of Middle East respiratory syndrome coronavirus (MERS-CoV) infection, including 579 deaths, had been reported to the World Health Organization. No specific preventive or therapeutic agent of proven value against MERS-CoV is currently available. Public Health England and the International Severe Acute Respiratory and Emerging Infection Consortium identified passive immunotherapy with neutralizing antibodies as a treatment approach that warrants priority study. Two experimental MERS-CoV vaccines were used to vaccinate two groups of transchromosomic (Tc) bovines that were genetically modified to produce large quantities of fully human polyclonal immunoglobulin G (IgG) antibodies. Vaccination with a clade A γ-irradiated whole killed virion vaccine (Jordan strain) or a clade B spike protein nanoparticle vaccine (Al-Hasa strain) resulted in Tc bovine sera with high enzyme-linked immunosorbent assay (ELISA) and neutralizing antibody titers in vitro. Two purified Tc bovine human IgG immunoglobulins (Tc hIgG), SAB-300 (produced after Jordan strain vaccination) and SAB-301 (produced after Al-Hasa strain vaccination), also had high ELISA and neutralizing antibody titers without antibody-dependent enhancement in vitro. SAB-301 was selected for in vivo and preclinical studies. Administration of single doses of SAB-301 12 hours before or 24 and 48 hours after MERS-CoV infection (Erasmus Medical Center 2012 strain) of Ad5-hDPP4 receptor-transduced mice rapidly resulted in viral lung titers near or below the limit of detection. Tc bovines, combined with the ability to quickly produce Tc hIgG and develop in vitro assays and animal model(s), potentially offer a platform to rapidly produce a therapeutic to prevent and/or treat MERS-CoV infection and/or other emerging infectious diseases.
Collapse
Affiliation(s)
- Thomas Luke
- Viral and Rickettsial Diseases Department, Navy Medical Research Center, The Henry Jackson Foundation for the Advancement of Military Medicine, Silver Spring, MD 20910, USA.
| | - Hua Wu
- SAB Biotherapeutics Inc., Sioux Falls, SD 57104, USA
| | - Jincun Zhao
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA. State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | | | - Christopher M Coleman
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | - Jin-An Jiao
- SAB Biotherapeutics Inc., Sioux Falls, SD 57104, USA
| | | | - Ye Liu
- Novavax Inc., Gaithersburg, MD 20878, USA
| | - Elena N Postnikova
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Britini L Ork
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | | | | | - Gabriel Defang
- Department of Virology, Naval Medical Research Unit-3, Cairo FPO AP 09835, Egypt
| | | | - Tadeusz Kochel
- Viral and Rickettsial Diseases Department, Navy Medical Research Center, Silver Spring, MD 20910, USA.
| | - Jonathan Wang
- Thermo Fisher Scientific, South San Francisco, CA 94080, USA
| | - Wensheng Nie
- Thermo Fisher Scientific, South San Francisco, CA 94080, USA
| | - Gale Smith
- Novavax Inc., Gaithersburg, MD 20878, USA
| | - Lisa E Hensley
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Gene G Olinger
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Michael R Holbrook
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Reed F Johnson
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Stanley Perlman
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA
| | | | - Matthew B Frieman
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
21
|
Reynard O, Jacquot F, Evanno G, Mai HL, Salama A, Martinet B, Duvaux O, Bach JM, Conchon S, Judor JP, Perota A, Lagutina I, Duchi R, Lazzari G, Le Berre L, Perreault H, Lheriteau E, Raoul H, Volchkov V, Galli C, Soulillou JP. Anti-EBOV GP IgGs Lacking α1-3-Galactose and Neu5Gc Prolong Survival and Decrease Blood Viral Load in EBOV-Infected Guinea Pigs. PLoS One 2016; 11:e0156775. [PMID: 27280712 PMCID: PMC4900587 DOI: 10.1371/journal.pone.0156775] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/19/2016] [Indexed: 01/13/2023] Open
Abstract
Polyclonal xenogenic IgGs, although having been used in the prevention and cure of severe infectious diseases, are highly immunogenic, which may restrict their usage in new applications such as Ebola hemorrhagic fever. IgG glycans display powerful xenogeneic antigens in humans, for example α1–3 Galactose and the glycolyl form of neuraminic acid Neu5Gc, and IgGs deprived of these key sugar epitopes may represent an advantage for passive immunotherapy. In this paper, we explored whether low immunogenicity IgGs had a protective effect on a guinea pig model of Ebola virus (EBOV) infection. For this purpose, a double knock-out pig lacking α1–3 Galactose and Neu5Gc was immunized against virus-like particles displaying surface EBOV glycoprotein GP. Following purification from serum, hyper-immune polyclonal IgGs were obtained, exhibiting an anti-EBOV GP titer of 1:100,000 and a virus neutralizing titer of 1:100. Guinea pigs were injected intramuscularly with purified IgGs on day 0 and day 3 post-EBOV infection. Compared to control animals treated with IgGs from non-immunized double KO pigs, the anti-EBOV IgGs-treated animals exhibited a significantly prolonged survival and a decreased virus load in blood on day 3. The data obtained indicated that IgGs lacking α1–3 Galactose and Neu5Gc, two highly immunogenic epitopes in humans, have a protective effect upon EBOV infection.
Collapse
Affiliation(s)
- Olivier Reynard
- Molecular Basis of Viral Pathogenicity, CIRI, INSERM U1111—CNRS UMR5308, Université de Lyon, Université Claude Bernard Lyon 1, Ecole Normale supérieure de Lyon, Lyon, France
| | | | | | - Hoa Le Mai
- INSERM, UMR 1064, Nantes, France
- CHU de Nantes, ITUN, Nantes, France
- Université de Nantes, Nantes, France
| | | | - Bernard Martinet
- INSERM, UMR 1064, Nantes, France
- CHU de Nantes, ITUN, Nantes, France
- Université de Nantes, Nantes, France
| | | | - Jean-Marie Bach
- Xenothera, Nantes, France
- IECM, EA4644 Université de Nantes, ONIRIS, USC1383 INRA, Nantes, France
| | - Sophie Conchon
- INSERM, UMR 1064, Nantes, France
- CHU de Nantes, ITUN, Nantes, France
- Université de Nantes, Nantes, France
| | - Jean-Paul Judor
- INSERM, UMR 1064, Nantes, France
- CHU de Nantes, ITUN, Nantes, France
- Université de Nantes, Nantes, France
| | - Andrea Perota
- Avantea, Laboratory of Reproductive Technologies, Cremona, Italy
| | - Irina Lagutina
- Avantea, Laboratory of Reproductive Technologies, Cremona, Italy
| | - Roberto Duchi
- Avantea, Laboratory of Reproductive Technologies, Cremona, Italy
| | - Giovanna Lazzari
- Avantea, Laboratory of Reproductive Technologies, Cremona, Italy
- Avantea Foundation, Cremona, Italy
| | - Ludmilla Le Berre
- INSERM, UMR 1064, Nantes, France
- CHU de Nantes, ITUN, Nantes, France
- Université de Nantes, Nantes, France
| | | | | | - Hervé Raoul
- Inserm-Jean Mérieux BSL4 Laboratory, US003 Inserm, Lyon, France
- * E-mail: (JPS); (VV); ; (HR)
| | - Viktor Volchkov
- Molecular Basis of Viral Pathogenicity, CIRI, INSERM U1111—CNRS UMR5308, Université de Lyon, Université Claude Bernard Lyon 1, Ecole Normale supérieure de Lyon, Lyon, France
- * E-mail: (JPS); (VV); ; (HR)
| | - Cesare Galli
- Avantea, Laboratory of Reproductive Technologies, Cremona, Italy
- Avantea Foundation, Cremona, Italy
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, Italy
- * E-mail: (JPS); (VV); ; (HR)
| | - Jean-Paul Soulillou
- Xenothera, Nantes, France
- Université de Nantes, Nantes, France
- * E-mail: (JPS); (VV); ; (HR)
| |
Collapse
|
22
|
Howell KA, Qiu X, Brannan JM, Bryan C, Davidson E, Holtsberg FW, Wec AZ, Shulenin S, Biggins JE, Douglas R, Enterlein SG, Turner HL, Pallesen J, Murin CD, He S, Kroeker A, Vu H, Herbert AS, Fusco ML, Nyakatura EK, Lai JR, Keck ZY, Foung SKH, Saphire EO, Zeitlin L, Ward AB, Chandran K, Doranz BJ, Kobinger GP, Dye JM, Aman MJ. Antibody Treatment of Ebola and Sudan Virus Infection via a Uniquely Exposed Epitope within the Glycoprotein Receptor-Binding Site. Cell Rep 2016; 15:1514-1526. [PMID: 27160900 PMCID: PMC4871745 DOI: 10.1016/j.celrep.2016.04.026] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/07/2016] [Accepted: 04/03/2016] [Indexed: 12/02/2022] Open
Abstract
Previous efforts to identify cross-neutralizing antibodies to the receptor-binding site (RBS) of ebolavirus glycoproteins have been unsuccessful, largely because the RBS is occluded on the viral surface. We report a monoclonal antibody (FVM04) that targets a uniquely exposed epitope within the RBS; cross-neutralizes Ebola (EBOV), Sudan (SUDV), and, to a lesser extent, Bundibugyo viruses; and shows protection against EBOV and SUDV in mice and guinea pigs. The antibody cocktail ZMapp™ is remarkably effective against EBOV (Zaire) but does not cross-neutralize other ebolaviruses. By replacing one of the ZMapp™ components with FVM04, we retained the anti-EBOV efficacy while extending the breadth of protection to SUDV, thereby generating a cross-protective antibody cocktail. In addition, we report several mutations at the base of the ebolavirus glycoprotein that enhance the binding of FVM04 and other cross-reactive antibodies. These findings have important implications for pan-ebolavirus vaccine development and defining broadly protective antibody cocktails.
Collapse
Affiliation(s)
- Katie A Howell
- Integrated BioTherapeutics, Inc., Gaithersburg, MD 20878, USA
| | - Xiangguo Qiu
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; Deparment of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Jennifer M Brannan
- U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | | | | | | | - Anna Z Wec
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Sergey Shulenin
- Integrated BioTherapeutics, Inc., Gaithersburg, MD 20878, USA
| | - Julia E Biggins
- Integrated BioTherapeutics, Inc., Gaithersburg, MD 20878, USA
| | - Robin Douglas
- Integrated BioTherapeutics, Inc., Gaithersburg, MD 20878, USA
| | | | - Hannah L Turner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jesper Pallesen
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Charles D Murin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Shihua He
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; Deparment of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Andrea Kroeker
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; Deparment of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Hong Vu
- Integrated BioTherapeutics, Inc., Gaithersburg, MD 20878, USA
| | - Andrew S Herbert
- U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | - Marnie L Fusco
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Elisabeth K Nyakatura
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jonathan R Lai
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Zhen-Yong Keck
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Steven K H Foung
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Erica Ollmann Saphire
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Gary P Kobinger
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; Deparment of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - John M Dye
- U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | - M Javad Aman
- Integrated BioTherapeutics, Inc., Gaithersburg, MD 20878, USA.
| |
Collapse
|
23
|
Glycoprotein-Specific Antibodies Produced by DNA Vaccination Protect Guinea Pigs from Lethal Argentine and Venezuelan Hemorrhagic Fever. J Virol 2016; 90:3515-29. [PMID: 26792737 DOI: 10.1128/jvi.02969-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 12/23/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Several members of the Arenaviridae can cause acute febrile diseases in humans, often resulting in lethality. The use of convalescent-phase human plasma is an effective treatment in humans infected with arenaviruses, particularly species found in South America. Despite this, little work has focused on developing potent and defined immunotherapeutics against arenaviruses. In the present study, we produced arenavirus neutralizing antibodies by DNA vaccination of rabbits with plasmids encoding the full-length glycoprotein precursors of Junín virus (JUNV), Machupo virus (MACV), and Guanarito virus (GTOV). Geometric mean neutralizing antibody titers, as measured by the 50% plaque reduction neutralization test (PRNT(50)), exceeded 5,000 against homologous viruses. Antisera against each targeted virus exhibited limited cross-species binding and, to a lesser extent, cross-neutralization. Anti-JUNV glycoprotein rabbit antiserum protected Hartley guinea pigs from lethal intraperitoneal infection with JUNV strain Romero when the antiserum was administered 2 days after challenge and provided some protection (∼30%) when administered 4 days after challenge. Treatment starting on day 6 did not protect animals. We further formulated an IgG antibody cocktail by combining anti-JUNV, -MACV, and -GTOV antibodies produced in DNA-vaccinated rabbits. This cocktail protected 100% of guinea pigs against JUNV and GTOV lethal disease. We then expanded on this cocktail approach by simultaneously vaccinating rabbits with a combination of plasmids encoding glycoproteins from JUNV, MACV, GTOV, and Sabia virus (SABV). Sera collected from rabbits vaccinated with the combination vaccine neutralized all four targets. These findings support the concept of using a DNA vaccine approach to generate a potent pan-arenavirus immunotherapeutic. IMPORTANCE Arenaviruses are an important family of emerging viruses. In infected humans, convalescent-phase plasma containing neutralizing antibodies can mitigate the severity of disease caused by arenaviruses, particularly species found in South America. Because of variations in potency of the human-derived product, limited availability, and safety concerns, this treatment option has essentially been abandoned. Accordingly, despite this approach being an effective postinfection treatment option, research on novel approaches to produce potent polyclonal antibody-based therapies have been deficient. Here we show that DNA-based vaccine technology can be used to make potently neutralizing antibodies in rabbits that exclusively target the glycoproteins of several human-pathogenic arenaviruses found in South America, including JUNV, MACV, GTOV, and SABV. These antibodies protected guinea pigs from lethal disease when given post-virus challenge. We also generated a purified antibody cocktail with antibodies targeting three arenaviruses and demonstrated protective efficacy against all three targets. Our findings demonstrate that use of the DNA vaccine technology could be used to produce candidate antiarenavirus neutralizing antibody-based products.
Collapse
|
24
|
Frei JC, Nyakatura EK, Zak SE, Bakken RR, Chandran K, Dye JM, Lai JR. Bispecific Antibody Affords Complete Post-Exposure Protection of Mice from Both Ebola (Zaire) and Sudan Viruses. Sci Rep 2016; 6:19193. [PMID: 26758505 PMCID: PMC4725817 DOI: 10.1038/srep19193] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/07/2015] [Indexed: 12/23/2022] Open
Abstract
Filoviruses (Ebola and Marburg) cause severe hemorrhagic fever. There are five species of ebolavirus; among these, the Ebola (Zaire) and Sudan viruses (EBOV and SUDV, respectively) are highly pathogenic and have both caused recurring, large outbreaks. However, the EBOV and SUDV glycoprotein (GP) sequences are 45% divergent and thus antigenically distinct. Few antibodies with cross-neutralizing properties have been described to date. We used antibody engineering to develop novel bispecific antibodies (Bis-mAbs) that are cross-reactive toward base epitopes on GP from EBOV and SUDV. These Bis-mAbs exhibit potent neutralization against EBOV and SUDV GP pseudotyped viruses as well as authentic pathogens, and confer a high degree (in one case 100%) post-exposure protection of mice from both viruses. Our studies show that a single agent that targets the GP base epitopes is sufficient for protection in mice; such agents could be included in panfilovirus therapeutic antibody cocktails.
Collapse
Affiliation(s)
- Julia C Frei
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461
| | - Elisabeth K Nyakatura
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461
| | - Samantha E Zak
- Virology Division, United States Army Medical Research Institute of Infectious Disease, 1425 Porter Street, Fort Detrick, MD 21702
| | - Russell R Bakken
- Virology Division, United States Army Medical Research Institute of Infectious Disease, 1425 Porter Street, Fort Detrick, MD 21702
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461
| | - John M Dye
- Virology Division, United States Army Medical Research Institute of Infectious Disease, 1425 Porter Street, Fort Detrick, MD 21702
| | - Jonathan R Lai
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461
| |
Collapse
|