1
|
Khanal S, Shin EJ, Yoo CJ, Kim J, Choi DY. Inosine exerts dopaminergic neuroprotective effects via mitigation of NLRP3 inflammasome activation. Neuropharmacology 2025; 266:110278. [PMID: 39725121 DOI: 10.1016/j.neuropharm.2024.110278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/15/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Neuroinflammation plays a crucial role in the pathogenesis of Parkinson's disease (PD). Transformation of pro-interleukin (IL)-1β into a mature IL-1β via active inflammasome may be related to the progression of PD. Therefore, the modification of inflammasome activity may be a potential therapeutic strategy for PD. Inosine has been shown to exert anti-inflammatory effects in various disease models. In this study, we evaluated inosine's inhibitory effects on the microglial NLRP3 inflammasome, which may be related to the dopaminergic neuroprotective effects of inosine. Inosine suppresses lipopolysaccharides (LPS)-induced NLRP3 inflammasome activation in BV-2 microglial cells dose dependently. When SH-SY5Y cells were treated with conditioned medium from BV-2 cells treated with LPS and inosine, an NLRP3 inhibitor, or a caspase-1 inhibitor, the viability of SH-SY5Y cells was reduced indicating that LPS-induced microglial inflammasome activation could contribute to neuronal death. Inosine's modulatory effect on NLRP3 inflammasome activity appears to rely on the adenosine A2A and A3 receptors activation, as A2A or A3 receptor antagonists reversed the amelioration of NLRP3 activation by inosine. In addition, inosine treatment attenuated intracellular and mitochondrial ROS production mediated by LPS and this effect might be related to attenuation of NLRP3 inflammasome activity, as the antioxidant, N-acetyl cysteine ameliorated LPS-induced activation of the inflammasome. Finally, we assessed the inosine's neuroprotective effects via inflammasome activity modulation in mice receiving an intranigral injection of LPS. Immunohistochemical analysis revealed that LPS caused a significant loss of nigral dopaminergic neurons, which was mitigated by inosine treatment. LPS increased NLRP3 expression in IBA1-positive microglial cells, which was attenuated by inosine injection. These findings indicate that inosine can rescue neurons from LPS-induced injury by ameliorating NLRP3 inflammasome activity. Therefore, inosine could be applied as an intervention for neuroinflammatory diseases such as Parkinson's disease.
Collapse
Affiliation(s)
- Shristi Khanal
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, Republic of Korea.
| | - Eun-Joo Shin
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon, Republic of Korea.
| | - Chang Jae Yoo
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea; Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Republic of Korea.
| | - Jaekwang Kim
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea.
| | - Dong-Young Choi
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, Republic of Korea.
| |
Collapse
|
2
|
Vida H, Sahar M, Nikdouz A, Arezoo H. Chemokines in neurodegenerative diseases. Immunol Cell Biol 2025; 103:275-292. [PMID: 39723647 DOI: 10.1111/imcb.12843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/09/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024]
Abstract
Neurodegeneration and neuroinflammation disorders are mainly the result of the deposition of various proteins, such as α-synuclein, amyloid-β and prions, which lead to the initiation and activation of inflammatory responses. Different chemokines are involved in the infiltration and movement of inflammatory leukocytes into the central nervous system (CNS) that express chemokine receptors. Dysregulation of several members of chemokines has been shown in the CNS, cerebrospinal fluid and peripheral blood of patients who have neurodegenerative disorders. Upon infiltration of various cells, they produce many inflammatory mediators such as cytokines. Besides them, some CNS-resident cells, such as neurons and astrocytes, are also involved in the pathogenesis of neurodegeneration by producing chemokines. In this review, we summarize the role of chemokines and their related receptors in the pathogenesis of neurodegeneration and neuroinflammation disorders, including multiple sclerosis, Parkinson's disease and Alzheimer's disease. Therapeutic strategies targeting chemokines or their related receptors are also discussed in this article.
Collapse
Affiliation(s)
- Hashemi Vida
- Medicinal Plants Research Center, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mehranfar Sahar
- Cellular and Molecular Medicine Research Institute, Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Department of Immunology and Genetics, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Urmia University of Medical Sciences, Urmia, Iran
| | - Amin Nikdouz
- Department of Translational Medicine, Universita degli Studi del Piemonte Orientale Amedeo Avogadro, Vercelli, Italy
| | - Hosseini Arezoo
- Cellular and Molecular Medicine Research Institute, Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Department of Immunology and Genetics, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
3
|
Wang C, Lv S, Zhao H, He G, Liang H, Chen K, Qu M, He Y, Ou C. Hypoxia-inducible factor-1 as targets for neuroprotection : from ferroptosis to Parkinson's disease. Neurol Sci 2025; 46:1111-1120. [PMID: 39466326 DOI: 10.1007/s10072-024-07832-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disease characterized by motor paralysis, tremor,and cognitive impairment. Risk factors such as brain hypoxia caused by aging and abnormal expression of HIF-1α areconsidered to be key to the development of PD, including α-synuclein accumulation and ferroptosis. However, therelationship between HIF-1α signaling and ferroptosis in PD has not been elucidated. The stable expression of HIF-1αinhibits the pathological development of PD. Aging aggravates PD pathology by promoting α-synuclein accumulationand oxidative stress. METHODS The literature on lipid peroxidation, oxidative stress, iron metabolism and other key factors in Parkinson'sdisease in recent years was reviewed through a variety of literature search channels, such as PubMed and Elsevier. RESULTS HIF-1α mediated ferroptosis through oxidative stress and GPX4-GSH system. HIF-1α mediates ferroptosisthrough Keap1-Nrf2-ARE, Grx3 and Grx4. HIF-1α mediates ferroptosis through iron metabolism. CONCLUSION This article reviews the oxygen-dependent regulatory mechanism of HIF-1α and its role in cerebralhypoxia homeostasis. Studies in the past decade have shown that Hif-1α mediated ferroptosis is important in PD.HIF-1α has a dual role, depending on the degree of cellular hypoxia and the environment. The equilibrium complexityneeds to be explained, and the role of ferroptosis needs to be investigated. The literature shows that the stabilizationof HIF-1α with PHD inhibitors and the combination of antioxidants and iron chelators are potential therapeuticdirections. In the future, the optimal use time and dose of inhibitors should be studied to improve the efficacy.
Collapse
Affiliation(s)
- Changyong Wang
- School of Public Health, Guilin Medical University, Guilin, Guangxi, 541199, China
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi, 541199, China
| | - Shanyu Lv
- School of Public Health, Guilin Medical University, Guilin, Guangxi, 541199, China
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi, 541199, China
| | - Hongyan Zhao
- School of Public Health, Guilin Medical University, Guilin, Guangxi, 541199, China
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi, 541199, China
| | - Guoguo He
- School of Public Health, Guilin Medical University, Guilin, Guangxi, 541199, China
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi, 541199, China
| | - Hongshuo Liang
- School of Public Health, Guilin Medical University, Guilin, Guangxi, 541199, China
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi, 541199, China
| | - Kemiao Chen
- School of Public Health, Guilin Medical University, Guilin, Guangxi, 541199, China
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi, 541199, China
| | - Minghai Qu
- School of Public Health, Guilin Medical University, Guilin, Guangxi, 541199, China
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi, 541199, China
| | - Yonghua He
- School of Public Health, Guilin Medical University, Guilin, Guangxi, 541199, China.
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi, 541199, China.
| | - Chaoyan Ou
- School of Public Health, Guilin Medical University, Guilin, Guangxi, 541199, China.
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi, 541199, China.
| |
Collapse
|
4
|
Kim JH, Huh E, Eo H, Kim JS, Kwon Y, Ju IG, Choi Y, Yoon HJ, Son SR, Jang DS, Hong SP, Park HJ, Oh MS. Tribuli Fructus alleviates 1-methyl-4-phenyl 1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease by suppressing neuroinflammation via JNK signaling. Metab Brain Dis 2024; 40:69. [PMID: 39699803 DOI: 10.1007/s11011-024-01498-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by the loss of dopaminergic neurons. In particular, neuroinflammation associated with phosphorylation of c-Jun N-terminal kinase (JNK) is likely to cause the death of dopaminergic neurons. Therefore, protecting dopaminergic neurons through anti-neuroinflammation is a promising therapeutic strategy for PD. This study investigated whether Tribuli Fructus (TF) could alleviate PD by inhibiting neuroinflammation. Mouse primary mixed glial culture cells from the mouse cortex were treated with lipopolysaccharide (LPS) to induce neuroinflammation, and 1 h later, cells were treated with TF. 1-methyl-4-phenyl 1,2,3,6-tetrahydropyridine (MPTP) was injected into C57BL/6J mice for 5 days, and TF was co and post-administered for 12 days. Our study showed that TF attenuated pro-inflammatory mediators and cytokines in LPS-stimulated primary mixed glial cultures. In the brains of MPTP-induced PD mouse model, TF inhibited the activation of microglia and astrocytes, protected dopaminergic neurons, and increased dopamine levels. TF alleviated MPTP-induced bradykinesia, a representative behavioral disorder in PD. In addition, the results in vitro and in vivo revealed that TF regulates the phosphorylation of JNK. Collectively, our data suggest that TF may be a new therapeutic candidate for PD by regulating JNK signaling.
Collapse
Affiliation(s)
- Jin Hee Kim
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 02447, Seoul, Republic of Korea
| | - Eugene Huh
- Department of Oriental Pharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Formulae Pharmacology, College of Korean Medicine, Gachon University, Seongnam, 1342, Republic of Korea
| | - Hyeyoon Eo
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 02447, Seoul, Republic of Korea
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Jin Se Kim
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 02447, Seoul, Republic of Korea
| | - Youngji Kwon
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 02447, Seoul, South Korea
| | - In Gyoung Ju
- Department of Oriental Pharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Yujin Choi
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 02447, Seoul, Republic of Korea
| | - Hae-Jee Yoon
- Department of Integrated Drug Development and Natural Products, Graduate School, Kyung Hee University, Seoul, 02447, Korea
| | - So-Ri Son
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 02447, Seoul, Republic of Korea
| | - Dae Sik Jang
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 02447, Seoul, Republic of Korea
| | - Seon-Pyo Hong
- Department of Oriental Pharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Integrated Drug Development and Natural Products, Graduate School, Kyung Hee University, Seoul, 02447, Korea
| | - Hi-Joon Park
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, 02447, Seoul, Republic of Korea
- Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, 02447, Seoul, Republic of Korea
| | - Myung Sook Oh
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 02447, Seoul, Republic of Korea.
- Department of Oriental Pharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 02447, Seoul, South Korea.
- Department of Integrated Drug Development and Natural Products, Graduate School, Kyung Hee University, Seoul, 02447, Korea.
| |
Collapse
|
5
|
Pacnejer AM, Butuca A, Dobrea CM, Arseniu AM, Frum A, Gligor FG, Arseniu R, Vonica RC, Vonica-Tincu AL, Oancea C, Mogosan C, Popa Ilie IR, Morgovan C, Dehelean CA. Neuropsychiatric Burden of SARS-CoV-2: A Review of Its Physiopathology, Underlying Mechanisms, and Management Strategies. Viruses 2024; 16:1811. [PMID: 39772122 PMCID: PMC11680421 DOI: 10.3390/v16121811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
The COVID-19 outbreak, caused by the SARS-CoV-2 virus, was linked to significant neurological and psychiatric manifestations. This review examines the physiopathological mechanisms underlying these neuropsychiatric outcomes and discusses current management strategies. Primarily a respiratory disease, COVID-19 frequently leads to neurological issues, including cephalalgia and migraines, loss of sensory perception, cerebrovascular accidents, and neurological impairment such as encephalopathy. Lasting neuropsychological effects have also been recorded in individuals following SARS-CoV-2 infection. These include anxiety, depression, and cognitive dysfunction, suggesting a lasting impact on mental health. The neuroinvasive potential of the virus, inflammatory responses, and the role of angiotensin-converting enzyme 2 (ACE2) in neuroinflammation are critical factors in neuropsychiatric COVID-19 manifestations. In addition, the review highlights the importance of monitoring biomarkers to assess Central Nervous System (CNS) involvement. Management strategies for these neuropsychiatric conditions include supportive therapy, antiepileptic drugs, antithrombotic therapy, and psychotropic drugs, emphasizing the need for a multidisciplinary approach. Understanding the long-term neuropsychiatric implications of COVID-19 is essential for developing effective treatment protocols and improving patient outcomes.
Collapse
Affiliation(s)
- Aliteia-Maria Pacnejer
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timişoara, Romania; (A.-M.P.); (C.A.D.)
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.D.); (A.M.A.); (A.F.); (F.G.G.); (R.C.V.); (A.L.V.-T.); (C.M.)
| | - Anca Butuca
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.D.); (A.M.A.); (A.F.); (F.G.G.); (R.C.V.); (A.L.V.-T.); (C.M.)
| | - Carmen Maximiliana Dobrea
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.D.); (A.M.A.); (A.F.); (F.G.G.); (R.C.V.); (A.L.V.-T.); (C.M.)
| | - Anca Maria Arseniu
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.D.); (A.M.A.); (A.F.); (F.G.G.); (R.C.V.); (A.L.V.-T.); (C.M.)
| | - Adina Frum
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.D.); (A.M.A.); (A.F.); (F.G.G.); (R.C.V.); (A.L.V.-T.); (C.M.)
| | - Felicia Gabriela Gligor
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.D.); (A.M.A.); (A.F.); (F.G.G.); (R.C.V.); (A.L.V.-T.); (C.M.)
| | - Rares Arseniu
- County Emergency Clinical Hospital “Pius Brînzeu”, 300723 Timișoara, Romania;
| | - Razvan Constantin Vonica
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.D.); (A.M.A.); (A.F.); (F.G.G.); (R.C.V.); (A.L.V.-T.); (C.M.)
| | - Andreea Loredana Vonica-Tincu
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.D.); (A.M.A.); (A.F.); (F.G.G.); (R.C.V.); (A.L.V.-T.); (C.M.)
| | - Cristian Oancea
- Department of Pulmonology, Center for Research and Innovation in Personalized Medicine of Respiratory Diseases, “Victor Babeş” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Cristina Mogosan
- Department of Pharmacology, Physiology and Pathophysiology, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400029 Cluj-Napoca, Romania;
| | - Ioana Rada Popa Ilie
- Department of Endocrinology, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 3-5 Louis Pasteur Street, 400349 Cluj-Napoca, Romania;
| | - Claudiu Morgovan
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.D.); (A.M.A.); (A.F.); (F.G.G.); (R.C.V.); (A.L.V.-T.); (C.M.)
| | - Cristina Adriana Dehelean
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timişoara, Romania; (A.-M.P.); (C.A.D.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
| |
Collapse
|
6
|
Trainor AR, MacDonald DS, Penney J. Microglia: roles and genetic risk in Parkinson's disease. Front Neurosci 2024; 18:1506358. [PMID: 39554849 PMCID: PMC11564156 DOI: 10.3389/fnins.2024.1506358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024] Open
Abstract
The prevalence of neurodegenerative disorders such as Parkinson's disease are increasing as world populations age. Despite this growing public health concern, the precise molecular and cellular mechanisms that culminate in neurodegeneration remain unclear. Effective treatment options for Parkinson's disease and other neurodegenerative disorders remain very limited, due in part to this uncertain disease etiology. One commonality across neurodegenerative diseases is sustained neuroinflammation, mediated in large part by microglia, the innate immune cells of the brain. Initially thought to simply react to neuron-derived pathology, genetic and functional studies in recent years suggest that microglia play a more active role in the neurodegenerative process than previously appreciated. Here, we review evidence for the roles of microglia in Parkinson's disease pathogenesis and progression, with a particular focus on microglial functions that are perturbed by disease associated genes and mutations.
Collapse
Affiliation(s)
| | | | - Jay Penney
- Department of Biomedical Sciences, AVC, University of Prince Edward Island, Charlottetown, PE, Canada
| |
Collapse
|
7
|
Roodveldt C, Bernardino L, Oztop-Cakmak O, Dragic M, Fladmark KE, Ertan S, Aktas B, Pita C, Ciglar L, Garraux G, Williams-Gray C, Pacheco R, Romero-Ramos M. The immune system in Parkinson's disease: what we know so far. Brain 2024; 147:3306-3324. [PMID: 38833182 PMCID: PMC11449148 DOI: 10.1093/brain/awae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 06/06/2024] Open
Abstract
Parkinson's disease is characterized neuropathologically by the degeneration of dopaminergic neurons in the ventral midbrain, the accumulation of α-synuclein (α-syn) aggregates in neurons and chronic neuroinflammation. In the past two decades, in vitro, ex vivo and in vivo studies have consistently shown the involvement of inflammatory responses mediated by microglia and astrocytes, which may be elicited by pathological α-syn or signals from affected neurons and other cell types, and are directly linked to neurodegeneration and disease development. Apart from the prominent immune alterations seen in the CNS, including the infiltration of T cells into the brain, more recent studies have demonstrated important changes in the peripheral immune profile within both the innate and adaptive compartments, particularly involving monocytes, CD4+ and CD8+ T cells. This review aims to integrate the consolidated understanding of immune-related processes underlying the pathogenesis of Parkinson's disease, focusing on both central and peripheral immune cells, neuron-glia crosstalk as well as the central-peripheral immune interaction during the development of Parkinson's disease. Our analysis seeks to provide a comprehensive view of the emerging knowledge of the mechanisms of immunity in Parkinson's disease and the implications of this for better understanding the overall pathogenesis of this disease.
Collapse
Affiliation(s)
- Cintia Roodveldt
- Centre for Molecular Biology and Regenerative Medicine-CABIMER, University of Seville-CSIC, Seville 41092, Spain
- Department of Medical Biochemistry, Molecular Biology and Immunology, Faculty of Medicine, University of Seville, Seville 41009, Spain
| | - Liliana Bernardino
- Health Sciences Research Center (CICS-UBI), Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal
| | - Ozgur Oztop-Cakmak
- Department of Neurology, Faculty of Medicine, Koç University, Istanbul 34010, Turkey
| | - Milorad Dragic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
- Department of Molecular Biology and Endocrinology, ‘VINČA’ Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Kari E Fladmark
- Department of Biological Science, University of Bergen, 5006 Bergen, Norway
| | - Sibel Ertan
- Department of Neurology, Faculty of Medicine, Koç University, Istanbul 34010, Turkey
| | - Busra Aktas
- Department of Molecular Biology and Genetics, Burdur Mehmet Akif Ersoy University, Burdur 15200, Turkey
| | - Carlos Pita
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Lucia Ciglar
- Center Health & Bioresources, Competence Unit Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, 1210 Vienna, Austria
| | - Gaetan Garraux
- Movere Group, Faculty of Medicine, GIGA Institute, University of Liège, Liège 4000, Belgium
| | | | - Rodrigo Pacheco
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Huechuraba 8580702, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia 7510156, Santiago, Chile
| | - Marina Romero-Ramos
- Department of Biomedicine & The Danish Research Institute of Translational Neuroscience—DANDRITE, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
8
|
Weindel CG, Ellzey LM, Coleman AK, Patrick KL, Watson RO. LRRK2 kinase activity restricts NRF2-dependent mitochondrial protection in microglia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602769. [PMID: 39026883 PMCID: PMC11257505 DOI: 10.1101/2024.07.09.602769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Mounting evidence supports a critical role for central nervous system (CNS) glial cells in neuroinflammation and neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's Disease (PD), Multiple Sclerosis (MS), as well as neurovascular ischemic stroke. Previously, we found that loss of the PD-associated gene leucine-rich repeat kinase 2 (Lrrk2) in macrophages, peripheral innate immune cells, induced mitochondrial stress and elevated basal expression of type I interferon (IFN) stimulated genes (ISGs) due to chronic mitochondrial DNA engagement with the cGAS/STING DNA sensing pathway. Here, we report that loss of LRRK2 results in a paradoxical response in microglial cells, a CNS-specific macrophage population. In primary murine microglia and microglial cell lines, loss of Lrrk2 reduces tonic IFN signaling leading to a reduction in ISG expression. Consistent with reduced type I IFN, mitochondria from Lrrk2 KO microglia are protected from stress and have elevated metabolism. These protective phenotypes involve upregulation of NRF2, an important transcription factor in the response to oxidative stress and are restricted by LRRK2 kinase activity. Collectively, these findings illustrate a dichotomous role for LRRK2 within different immune cell populations and give insight into the fundamental differences between immune regulation in the CNS and the periphery.
Collapse
Affiliation(s)
- Chi G Weindel
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Texas A&M School of Medicine, TX, 77807, USA
| | - Lily M Ellzey
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Texas A&M School of Medicine, TX, 77807, USA
| | - Aja K Coleman
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Texas A&M School of Medicine, TX, 77807, USA
| | - Kristin L Patrick
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Texas A&M School of Medicine, TX, 77807, USA
| | - Robert O Watson
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Texas A&M School of Medicine, TX, 77807, USA
| |
Collapse
|
9
|
Li Y, Yu C, Jiang X, Fu J, Sun N, Zhang D. The mechanistic view of non-coding RNAs as a regulator of inflammatory pathogenesis of Parkinson's disease. Pathol Res Pract 2024; 258:155349. [PMID: 38772115 DOI: 10.1016/j.prp.2024.155349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/17/2024] [Accepted: 05/10/2024] [Indexed: 05/23/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta, leading to motor and non-motor symptoms. Emerging evidence suggests that inflammation plays a crucial role in the pathogenesis of PD, with the NLRP3 inflammasome implicated as a key mediator. Nfon-coding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), have recently garnered attention for their regulatory roles in various biological processes, including inflammation. This review aims to provide a mechanistic insight into how ncRNAs function as regulators of inflammatory pathways in PD, with a specific focus on the NLRP3 inflammasome. We discuss the dysregulation of miRNAs and lncRNAs in PD pathogenesis and their impact on neuroinflammation through modulation of NLRP3 activation, cytokine production, and microglial activation. Additionally, we explore the crosstalk between ncRNAs, alpha-synuclein pathology, and mitochondrial dysfunction, further elucidating the intricate network underlying PD-associated inflammation. Understanding the mechanistic roles of ncRNAs in regulating inflammatory pathways may offer novel therapeutic targets for the treatment of PD and provide insights into the broader implications of ncRNA-mediated regulation in neuroinflammatory diseases.
Collapse
Affiliation(s)
- Yu'an Li
- Department of Neurosurgery, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Chunlei Yu
- Department of Neurosurgery, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Jia Fu
- Department of Neurosurgery, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Ning Sun
- Department of Neurosurgery, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Daquan Zhang
- Department of Neurosurgery, Jilin Province FAW General Hospital, Changchun 130000, China.
| |
Collapse
|
10
|
Benameur T, Porro C, Twfieg ME, Benameur N, Panaro MA, Filannino FM, Hasan A. Emerging Paradigms in Inflammatory Disease Management: Exploring Bioactive Compounds and the Gut Microbiota. Brain Sci 2023; 13:1226. [PMID: 37626582 PMCID: PMC10452544 DOI: 10.3390/brainsci13081226] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/06/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
The human gut microbiota is a complex ecosystem of mutualistic microorganisms that play a critical role in maintaining human health through their individual interactions and with the host. The normal gastrointestinal microbiota plays a specific physiological function in host immunomodulation, nutrient metabolism, vitamin synthesis, xenobiotic and drug metabolism, maintenance of structural and functional integrity of the gut mucosal barrier, and protection against various pathogens. Inflammation is the innate immune response of living tissues to injury and damage caused by infections, physical and chemical trauma, immunological factors, and genetic derangements. Most diseases are associated with an underlying inflammatory process, with inflammation mediated through the contribution of active immune cells. Current strategies to control inflammatory pathways include pharmaceutical drugs, lifestyle, and dietary changes. However, this remains insufficient. Bioactive compounds (BCs) are nutritional constituents found in small quantities in food and plant extracts that provide numerous health benefits beyond their nutritional value. BCs are known for their antioxidant, antimicrobial, anticarcinogenic, anti-metabolic syndrome, and anti-inflammatory properties. Bioactive compounds have been shown to reduce the destructive effect of inflammation on tissues by inhibiting or modulating the effects of inflammatory mediators, offering hope for patients suffering from chronic inflammatory disorders like atherosclerosis, arthritis, inflammatory bowel diseases, and neurodegenerative diseases. The aim of the present review is to summarise the role of natural bioactive compounds in modulating inflammation and protecting human health, for their safety to preserve gut microbiota and improve their physiology and behaviour.
Collapse
Affiliation(s)
- Tarek Benameur
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Mohammed-Elfatih Twfieg
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Nassima Benameur
- Faculty of Exact Sciences and Sciences of Nature and Life, Research Laboratory of Civil Engineering, Hydraulics, Sustainable Development and Environment (LARGHYDE), Mohamed Khider University, Biskra 07000, Algeria
| | - Maria Antonietta Panaro
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy
| | | | - Abeir Hasan
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
11
|
Hobson BD, Stanley AT, De Los Santos MB, Culbertson B, Mosharov EV, Sims PA, Sulzer D. Conserved and cell type-specific transcriptional responses to IFN-γ in the ventral midbrain. Brain Behav Immun 2023; 111:277-291. [PMID: 37100211 PMCID: PMC10460506 DOI: 10.1016/j.bbi.2023.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/28/2023] [Accepted: 04/23/2023] [Indexed: 04/28/2023] Open
Abstract
Dysregulated inflammation within the central nervous system (CNS) contributes to neuropathology in infectious, autoimmune, and neurodegenerative disease. With the exception of microglia, major histocompatibility complex (MHC) proteins are virtually undetectable in the mature, healthy central nervous system (CNS). Neurons have generally been considered incapable of antigen presentation, and although interferon gamma (IFN-γ) can elicit neuronal MHC class I (MHC-I) expression and antigen presentation in vitro, it has been unclear whether similar responses occur in vivo. Here we directly injected IFN-γ into the ventral midbrain of mature mice and analyzed gene expression profiles of specific CNS cell types. We found that IFN-γ upregulated MHC-I and associated mRNAs in ventral midbrain microglia, astrocytes, oligodendrocytes, and GABAergic, glutamatergic, and dopaminergic neurons. The core set of IFN-γ-induced genes and their response kinetics were similar in neurons and glia, but with a lower amplitude of expression in neurons. A diverse repertoire of genes was upregulated in glia, particularly microglia, which were the only cells to undergo cellular proliferation and express MHC classII (MHC-II) and associated genes. To determine if neurons respond directly via cell-autonomous IFN-γ receptor (IFNGR) signaling, we produced mutant mice with a deletion of the IFN-γ-binding domain of IFNGR1 in dopaminergic neurons, which resulted in a complete loss of dopaminergic neuronal responses to IFN-γ. Our results demonstrate that IFN-γ induces neuronal IFNGR signaling and upregulation of MHC-I and related genes in vivo, although the expression level is low compared to oligodendrocytes, astrocytes, and microglia.
Collapse
Affiliation(s)
- Benjamin D Hobson
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, United States; Medical Scientist Training Program, Columbia University Irving Medical Center, New York, NY 10032, United States; Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, United States; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, United States
| | - Adrien T Stanley
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, United States; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, United States
| | - Mark B De Los Santos
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, United States; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, United States
| | - Bruce Culbertson
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, United States; Medical Scientist Training Program, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Eugene V Mosharov
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, United States; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, United States
| | - Peter A Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, United States; Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, United States; Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY 10032, United States; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, United States.
| | - David Sulzer
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, United States; Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, United States; Department of Pharmacology, Columbia University Irving Medical Center, New York, NY 10032, United States; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, United States; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, United States.
| |
Collapse
|
12
|
Brown GC, Camacho M, Williams‐Gray CH. The Endotoxin Hypothesis of Parkinson's Disease. Mov Disord 2023; 38:1143-1155. [PMID: 37157885 PMCID: PMC10947365 DOI: 10.1002/mds.29432] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/10/2023] Open
Abstract
The endotoxin hypothesis of Parkinson's disease (PD) is the idea that lipopolysaccharide (LPS) endotoxins contribute to the pathogenesis of this disorder. LPS endotoxins are found in, and released from, the outer membrane of Gram-negative bacteria, for example in the gut. It is proposed that gut dysfunction in early PD leads to elevated LPS levels in the gut wall and blood, which promotes both α-synuclein aggregation in the enteric neurons and a peripheral inflammatory response. Communication to the brain via circulating LPS and cytokines in the blood and/or the gut-brain axis leads to neuroinflammation and spreading of α-synuclein pathology, exacerbating neurodegeneration in brainstem nuclei and loss of dopaminergic neurons in the substantia nigra, and manifesting in the clinical symptoms of PD. The evidence supporting this hypothesis includes: (1) gut dysfunction, permeability, and bacterial changes occur early in PD, (2) serum levels of LPS are increased in a proportion of PD patients, (3) LPS induces α-synuclein expression, aggregation, and neurotoxicity, (4) LPS causes activation of peripheral monocytes leading to inflammatory cytokine production, and (5) blood LPS causes brain inflammation and specific loss of midbrain dopaminergic neurons, mediated by microglia. If the hypothesis is correct, then treatment options might include: (1) changing the gut microbiome, (2) reducing gut permeability, (3) reducing circulating LPS levels, or (4) blocking the response of immune cells and microglia to LPS. However, the hypothesis has a number of limitations and requires further testing, in particular whether reducing LPS levels can reduce PD incidence, progression, or severity. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Guy C. Brown
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - Marta Camacho
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | | |
Collapse
|
13
|
Liu S, Xu S, Liu S, Chen H. Importance of DJ-1 in autophagy regulation and disease. Arch Biochem Biophys 2023:109672. [PMID: 37336341 DOI: 10.1016/j.abb.2023.109672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/28/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Autophagy is a highly conserved biological process that has evolved across evolution. It can be activated by various external stimuli including oxidative stress, amino acid starvation, infection, and hypoxia. Autophagy is the primary mechanism for preserving cellular homeostasis and is implicated in the regulation of metabolism, cell differentiation, tolerance to starvation conditions, and resistance to aging. As a multifunctional protein, DJ-1 is commonly expressed in vivo and is associated with a variety of biological processes. Its most widely studied role is its function as an oxidative stress sensor that inhibits the production of excessive reactive oxygen species (ROS) in the mitochondria and subsequently the cellular damage caused by oxidative stress. In recent years, many studies have identified DJ-1 as another important factor regulating autophagy; it regulates autophagy in various ways, most commonly by regulating the oxidative stress response. In particular, DJ-1-regulated autophagy is involved in cancer progression and plays a key role in alleviating neurodegenerative diseases(NDS) and defective reperfusion diseases. It could serve as a potential target for the regulation of autophagy and participate in disease treatment as a meaningful modality. Therefore, exploring DJ-1-regulated autophagy could provide new avenues for future disease treatment.
Collapse
Affiliation(s)
- Shiyi Liu
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, PR China; Second Clinical Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Sheng Xu
- Second Clinical Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Song Liu
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, PR China
| | - Heping Chen
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, PR China.
| |
Collapse
|
14
|
Cheataini F, Ballout N, Al Sagheer T. The effect of neuroinflammation on the cerebral metabolism at baseline and after neural stimulation in neurodegenerative diseases. J Neurosci Res 2023. [PMID: 37186320 DOI: 10.1002/jnr.25198] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 05/17/2023]
Abstract
Neuroinflammation is a reaction of nervous tissue to an attack caused by an infection, a toxin, or a neurodegenerative disease. It involves brain metabolism adaptation in order to meet the increased energy needs of glial cell activation, but the nature of these adaptations is still unknown. Increasing interest concerning neuroinflammation leads to the identification of its role in neurodegenerative diseases. Few reports studied the effect of metabolic alteration on neuroinflammation. Metabolic damage initiates a pro-inflammatory response by microglial activation. Moreover, the exact neuroinflammation effect on cerebral cell metabolism remains unknown. In this study, we reviewed systematically the neuroinflammation effect in animal models' brains. All articles showing the relationship of neuroinflammation with brain metabolism, or with neuronal stimulation in neurodegenerative diseases were considered. Moreover, this review examines also the mitochondrial damage effect in neurodegeneration diseases. Then, different biosensors are classified regarding their importance in the determination of metabolite change. Finally, some therapeutic drugs inhibiting neuroinflammation are cited. Neuroinflammation increases lymphocyte infiltration and cytokines' overproduction, altering cellular energy homeostasis. This review demonstrates the importance of neuroinflammation as a mediator of disease progression. Further, the spread of depolarization effects pro-inflammatory genes expression and microglial activation, which contribute to the degeneration of neurons, paving the road to better management and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Fatima Cheataini
- Neuroscience Research Center (NRC), Faculty of Medical Science, Lebanese University, Hadath, Beirut, Lebanon
| | - Nissrine Ballout
- Neuroscience Research Center (NRC), Faculty of Medical Science, Lebanese University, Hadath, Beirut, Lebanon
| | - Tareq Al Sagheer
- Neuroscience Research Center (NRC), Faculty of Medical Science, Lebanese University, Hadath, Beirut, Lebanon
| |
Collapse
|
15
|
Lind-Holm Mogensen F, Scafidi A, Poli A, Michelucci A. PARK7/DJ-1 in microglia: implications in Parkinson's disease and relevance as a therapeutic target. J Neuroinflammation 2023; 20:95. [PMID: 37072827 PMCID: PMC10111685 DOI: 10.1186/s12974-023-02776-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/11/2023] [Indexed: 04/20/2023] Open
Abstract
Microglia are the immune effector cells of the brain playing critical roles in immune surveillance and neuroprotection in healthy conditions, while they can sustain neuroinflammatory and neurotoxic processes in neurodegenerative diseases, including Parkinson's disease (PD). Although the precise triggers of PD remain obscure, causative genetic mutations, which aid in the identification of molecular pathways underlying the pathogenesis of idiopathic forms, represent 10% of the patients. Among the inherited forms, loss of function of PARK7, which encodes the protein DJ-1, results in autosomal recessive early-onset PD. Yet, although protection against oxidative stress is the most prominent task ascribed to DJ-1, the underlying mechanisms linking DJ-1 deficiency to the onset of PD are a current matter of investigation. This review provides an overview of the role of DJ-1 in neuroinflammation, with a special focus on its functions in microglia genetic programs and immunological traits. Furthermore, it discusses the relevance of targeting dysregulated pathways in microglia under DJ-1 deficiency and their importance as therapeutic targets in PD. Lastly, it addresses the prospect to consider DJ-1, detected in its oxidized form in idiopathic PD, as a biomarker and to take into account DJ-1-enhancing compounds as therapeutics dampening oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
- Frida Lind-Holm Mogensen
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
- Doctoral School of Science and Technology, University of Luxembourg, 7 Avenue Des Haut Forneuaux, L-4362, Esch-Sur-Alzette, Luxembourg
| | - Andrea Scafidi
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
- Doctoral School of Science and Technology, University of Luxembourg, 7 Avenue Des Haut Forneuaux, L-4362, Esch-Sur-Alzette, Luxembourg
| | - Aurélie Poli
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
| | - Alessandro Michelucci
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg.
| |
Collapse
|
16
|
Nikolopoulos D, Manolakou T, Polissidis A, Filia A, Bertsias G, Koutmani Y, Boumpas DT. Microglia activation in the presence of intact blood-brain barrier and disruption of hippocampal neurogenesis via IL-6 and IL-18 mediate early diffuse neuropsychiatric lupus. Ann Rheum Dis 2023; 82:646-657. [PMID: 36898766 PMCID: PMC10176423 DOI: 10.1136/ard-2022-223506] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/26/2023] [Indexed: 03/12/2023]
Abstract
INTRODUCTION Inflammatory mediators are detected in the cerebrospinal fluid of systemic lupus erythematosus patients with central nervous system involvement (NPSLE), yet the underlying cellular and molecular mechanisms leading to neuropsychiatric disease remain elusive. METHODS We performed a comprehensive phenotyping of NZB/W-F1 lupus-prone mice including tests for depression, anxiety and cognition. Immunofluorescence, flow cytometry, RNA-sequencing, qPCR, cytokine quantification and blood-brain barrier (BBB) permeability assays were applied in hippocampal tissue obtained in both prenephritic (3-month-old) and nephritic (6-month-old) lupus mice and matched control strains. Healthy adult hippocampal neural stem cells (hiNSCs) were exposed ex vivo to exogenous inflammatory cytokines to assess their effects on proliferation and apoptosis. RESULTS At the prenephritic stage, BBB is intact yet mice exhibit hippocampus-related behavioural deficits recapitulating the human diffuse neuropsychiatric disease. This phenotype is accounted by disrupted hippocampal neurogenesis with hiNSCs exhibiting increased proliferation combined with decreased differentiation and increased apoptosis in combination with microglia activation and increased secretion of proinflammatory cytokines and chemokines. Among these cytokines, IL-6 and IL-18 directly induce apoptosis of adult hiNSCs ex vivo. During the nephritic stage, BBB becomes disrupted which facilitates immune components of peripheral blood, particularly B-cells, to penetrate into the hippocampus further augmenting inflammation with locally increased levels of IL-6, IL-12, IL-18 and IL-23. Of note, an interferon gene signature was observed only at nephritic-stage. CONCLUSION An intact BBB with microglial activation disrupting the formation of new neurons within the hippocampus represent early events in NPSLE. Disturbances of the BBB and interferon signature are evident later in the course of the disease.
Collapse
Affiliation(s)
- Dionysis Nikolopoulos
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece .,School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodora Manolakou
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Anastasia Filia
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - George Bertsias
- Laboratory of Autoimmunity-Inflammation, Institute of Molecular Biology and Biotechnology, Heraklion, Greece.,Rheumatology, Clinical Immunology and Allergy Department, Medical School University of Crete, Heraklion, Greece
| | | | - Dimitrios T Boumpas
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece .,School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Medical School, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
17
|
Kumari S, Taliyan R, Dubey SK. Comprehensive Review on Potential Signaling Pathways Involving the Transfer of α-Synuclein from the Gut to the Brain That Leads to Parkinson's Disease. ACS Chem Neurosci 2023; 14:590-602. [PMID: 36724408 DOI: 10.1021/acschemneuro.2c00730] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Parkinson's disease is the second most prevalent neurological disease after Alzheimer's. Primarily, old age males are more affected than females. The aggregates of oligomeric forms of α-synuclein cause the loss of dopaminergic neurons in the substantia nigra pars compacta. Further, it leads to dopamine shortage in the striatum region. According to recent preclinical studies, environmental factors like pesticides, food supplements, pathogens, etc. enter the body through the mouth or nose and ultimately reach the gut. Further, these factors get accumulated in enteric nervous system which leads to misfolding of α-synuclein gene, and aggregation of this gene results in Lewy pathology in the gut and reaches to the brain through the vagus nerve. This evidence showed a strong bidirectional connection between the gut and the brain, which leads to gastrointestinal problems in Parkinson patients. Moreover, several studies reveal that patients with Parkinson experience more gastrointestinal issues in the early stages of the disease, such as constipation, increased motility, gut inflammation, etc. This review article focuses on the transmission of α-synuclein and the mechanisms involved in the link between the gut and the brain in Parkinson's disease. Also, this review explores the various pathways involved in Parkinson and current therapeutic approaches for the improvement of Parkinson's disease.
Collapse
Affiliation(s)
- Shobha Kumari
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science─Pilani, Pilani, 333031 Rajasthan, India
| | - Rajeev Taliyan
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science─Pilani, Pilani, 333031 Rajasthan, India
| | | |
Collapse
|
18
|
PARK7 is induced to protect against endotoxic acute kidney injury by suppressing NF-κB. Clin Sci (Lond) 2022; 136:1877-1891. [PMID: 36449316 DOI: 10.1042/cs20220493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/02/2022]
Abstract
Sepsis is a leading cause of acute kidney injury (AKI), and the pathogenesis of septic AKI remains largely unclear. Parkinson disease protein 7 (PARK7) is a protein of multiple functions that was recently implicated in septic AKI, but the underlying mechanism is unknown. In the present study, we determined the role of PARK7 in septic AKI and further explored the underlying mechanism in lipopolysaccharide (LPS)-induced endotoxic models. PARK7 was induced both in vivo and in vitro following LPS treatment. Compared with wild-type (WT) mice, Park7-deficient mice experienced aggravated kidney tissue damage and dysfunction, and enhanced tubular apoptosis and inflammation following LPS treatment. Consistently, LPS-induced apoptosis and inflammation in renal tubular cells in vitro were exacerbated by Park7 knockdown, whereas they were alleviated by PARK7 overexpression. Mechanistically, silencing Park7 facilitated nuclear translocation and phosphorylation of p65 (a key component of the nuclear factor kappa B [NF-κB] complex) during LPS treatment, whereas PARK7 overexpression partially prevented these changes. Moreover, we detected PARK7 interaction with p65 in the cytoplasm in renal tubular cells, which was enhanced by LPS treatment. Collectively, these findings suggest that PARK7 is induced to protect against septic AKI through suppressing NF-κB signaling.
Collapse
|
19
|
Almeida C, Pongilio RP, Móvio MI, Higa GSV, Resende RR, Jiang J, Kinjo ER, Kihara AH. Distinct Cell-specific Roles of NOX2 and MyD88 in Epileptogenesis. Front Cell Dev Biol 2022; 10:926776. [PMID: 35859905 PMCID: PMC9289522 DOI: 10.3389/fcell.2022.926776] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/15/2022] [Indexed: 02/05/2023] Open
Abstract
It is well established that temporal lobe epilepsy (TLE) is often related to oxidative stress and neuroinflammation. Both processes subserve alterations observed in epileptogenesis and ultimately involve distinct classes of cells, including astrocytes, microglia, and specific neural subtypes. For this reason, molecules associated with oxidative stress response and neuroinflammation have been proposed as potential targets for therapeutic strategies. However, these molecules can participate in distinct intracellular pathways depending on the cell type. To illustrate this, we reviewed the potential role of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) and myeloid differentiation primary response 88 (MyD88) in astrocytes, microglia, and neurons in epileptogenesis. Furthermore, we presented approaches to study genes in different cells, employing single-cell RNA-sequencing (scRNAseq) transcriptomic analyses, transgenic technologies and viral serotypes carrying vectors with specific promoters. We discussed the importance of identifying particular roles of molecules depending on the cell type, endowing more effective therapeutic strategies to treat TLE.
Collapse
Affiliation(s)
- Cayo Almeida
- Laboratório de Neurogenética, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | | | - Marília Inês Móvio
- Laboratório de Neurogenética, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | | | - Rodrigo Ribeiro Resende
- Laboratório de Sinalização Celular e Nanobiotecnologia, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Erika Reime Kinjo
- Laboratório de Neurogenética, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | | |
Collapse
|
20
|
Garcia G, Fernandes A, Stein F, Brites D. Protective Signature of IFNγ-Stimulated Microglia Relies on miR-124-3p Regulation From the Secretome Released by Mutant APP Swedish Neuronal Cells. Front Pharmacol 2022; 13:833066. [PMID: 35620289 PMCID: PMC9127204 DOI: 10.3389/fphar.2022.833066] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/25/2022] [Indexed: 12/19/2022] Open
Abstract
Microglia-associated inflammation and miRNA dysregulation are key players in Alzheimer’s disease (AD) pathophysiology. Previously, we showed miR-124 upregulation in APP Swedish SH-SY5Y (SWE) and PSEN1 iPSC-derived neurons and its propagation by the secretome (soluble and exosomal fractions). After modulation with miR-124 mimic/inhibitor, we identified common responsive mechanisms between such models. We also reported miR-124 colocalization with microglia in AD patient hippocampi. Herein, we determined how miR-124 modulation in SWE cells influences microglia polarized subtypes in the context of inflammation. We used a coculture system without cell-to-cell contact formed by miR-124 modulated SWE cells and human CHME3 microglia stimulated with interferon-gamma (IFNγ-MG), in which we assessed their adopted gene/miRNA profile and proteomic signature. The increase of miR-124 in SWE cells/secretome (soluble and exosomal) was mimicked in IFNγ-MG. Treatment of SWE cells with the miR-124 inhibitor led to RAGE overexpression and loss of neuronal viability, while the mimic caused RAGE/HMGB1 downregulation and prevented mitochondria membrane potential loss. When accessing the paracrine effects on microglia, SWE miR-124 inhibitor favored their IFNγ-induced inflammatory signature (upregulated RAGE/HMGB1/iNOS/IL-1β; downregulated IL-10/ARG-1), while the mimic reduced microglia activation (downregulated TNF-α/iNOS) and deactivated extracellular MMP-2/MMP-9 levels. Microglia proteomics identified 113 responsive proteins to SWE miR-124 levels, including a subgroup of 17 proteins involved in immune function/inflammation and/or miR-124 targets. A total of 72 proteins were downregulated (e.g., MAP2K6) and 21 upregulated (e.g., PAWR) by the mimic, while the inhibitor also upregulated 21 proteins and downregulated 17 (e.g., TGFB1, PAWR, and EFEMP1). Other targets were associated with neurodevelopmental mechanisms, synaptic function, and vesicular trafficking. To examine the source of miR-124 variations in microglia, we silenced the RNase III endonuclease Dicer1 to block miRNA canonical biogenesis. Despite this suppression, the coculture with SWE cells/exosomes still raised microglial miR-124 levels, evidencing miR-124 transfer from neurons to microglia. This study is pioneer in elucidating that neuronal miR-124 reshapes microglia plasticity and in revealing the relevance of neuronal survival in mechanisms underlying inflammation in AD-associated neurodegeneration. These novel insights pave the way for the application of miRNA-based neuropharmacological strategies in AD whenever miRNA dysregulated levels are identified during patient stratification.
Collapse
Affiliation(s)
- Gonçalo Garcia
- Neuroinflammation, Signaling and Neuroregeneration Laboratory, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.,Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Adelaide Fernandes
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.,Central Nervous System, Blood and Peripheral Inflammation, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Frank Stein
- Proteomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Dora Brites
- Neuroinflammation, Signaling and Neuroregeneration Laboratory, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
21
|
Sanchez-Petidier M, Guerri C, Moreno-Manzano V. Toll-like receptors 2 and 4 differentially regulate the self-renewal and differentiation of spinal cord neural precursor cells. Stem Cell Res Ther 2022; 13:117. [PMID: 35314006 PMCID: PMC8935849 DOI: 10.1186/s13287-022-02798-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 03/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Toll-like receptors (TLRs) represent critical effectors in the host defense response against various pathogens; however, their known function during development has also highlighted a potential role in cell fate determination and neural differentiation. While glial cells and neural precursor cells (NPCs) of the spinal cord express both TLR2 and TLR4, their influence on self-renewal and cell differentiation remains incompletely described. METHODS TLR2, TLR4 knock-out and the wild type mice were employed for spinal cord tissue analysis and NPCs isolation at early post-natal stage. Sox2, FoxJ1 and Ki67 expression among others served to identify the undifferentiated and proliferative NPCs; GFAP, Olig2 and β-III-tubulin markers served to identify astrocytes, oligodendrocytes and neurons respectively after NPC spontaneous differentiation. Multiple comparisons were analyzed using one-way ANOVA, with appropriate corrections such as Tukey's post hoc tests used for comparisons. RESULTS We discovered that the deletion of TLR2 or TLR4 significantly reduced the number of Sox2-expressing NPCs in the neonatal mouse spinal cord. While TLR2-knockout NPCs displayed enhanced self-renewal, increased proliferation and apoptosis, and delayed neural differentiation, the absence of TLR4 promoted the neural differentiation of NPCs without affecting proliferation, producing long projecting neurons. TLR4 knock-out NPCs showed significantly higher expression of Neurogenin1, that would be involved in the activation of this neurogenic program by a ligand and microenvironment-independent mechanism. Interestingly, the absence of both TLR2 and TLR4, which induces also a significant reduction in the expression of TLR1, in NPCs impeded oligodendrocyte precursor cell maturation to a similar degree. CONCLUSIONS Our data suggest that Toll-like receptors are needed to maintain Sox2 positive neural progenitors in the spinal cord, however possess distinct regulatory roles in mouse neonatal spinal cord NPCs-while TLR2 and TLR4 play a similar role in oligodendrocytic differentiation, they differentially influence neural differentiation.
Collapse
Affiliation(s)
- Marina Sanchez-Petidier
- Neuronal and Tissue Regeneration Laboratory, Prince Felipe Research Institute, Valencia, Spain.,Neuropathology Laboratory, Prince Felipe Research Institute, Valencia, Spain
| | - Consuelo Guerri
- Neuropathology Laboratory, Prince Felipe Research Institute, Valencia, Spain.
| | - Victoria Moreno-Manzano
- Neuronal and Tissue Regeneration Laboratory, Prince Felipe Research Institute, Valencia, Spain.
| |
Collapse
|
22
|
Wegrzyn D, Zokol J, Faissner A. Vav3-Deficient Astrocytes Enhance the Dendritic Development of Hippocampal Neurons in an Indirect Co-culture System. Front Cell Neurosci 2022; 15:817277. [PMID: 35237130 PMCID: PMC8882586 DOI: 10.3389/fncel.2021.817277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/29/2021] [Indexed: 12/19/2022] Open
Abstract
Vav proteins belong to the class of guanine nucleotide exchange factors (GEFs) that catalyze the exchange of guanosine diphosphate (GDP) by guanosine triphosphate (GTP) on their target proteins. Here, especially the members of the small GTPase family, Ras homolog family member A (RhoA), Ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division control protein 42 homolog (Cdc42) can be brought into an activated state by the catalytic activity of Vav-GEFs. In the central nervous system (CNS) of rodents Vav3 shows the strongest expression pattern in comparison to Vav2 and Vav1, which is restricted to the hematopoietic system. Several studies revealed an important role of Vav3 for the elongation and branching of neurites. However, little is known about the function of Vav3 for other cell types of the CNS, like astrocytes. Therefore, the following study analyzed the effects of a Vav3 knockout on several astrocytic parameters as well as the influence of Vav3-deficient astrocytes on the dendritic development of cultured neurons. For this purpose, an indirect co-culture system of native hippocampal neurons and Vav3-deficient cortical astrocytes was used. Interestingly, neurons cultured in an indirect contact with Vav3-deficient astrocytes showed a significant increase in the dendritic complexity and length after 12 and 17 days in vitro (DIV). Furthermore, Vav3-deficient astrocytes showed an enhanced regeneration in the scratch wound heal assay as well as an altered profile of released cytokines with a complete lack of CXCL11, reduced levels of IL-6 and an increased release of CCL5. Based on these observations, we suppose that Vav3 plays an important role for the development of dendrites by regulating the expression and the release of neurotrophic factors and cytokines in astrocytes.
Collapse
|
23
|
Quincozes-Santos A, Santos CL, de Souza Almeida RR, da Silva A, Thomaz NK, Costa NLF, Weber FB, Schmitz I, Medeiros LS, Medeiros L, Dotto BS, Dias FRP, Sovrani V, Bobermin LD. Gliotoxicity and Glioprotection: the Dual Role of Glial Cells. Mol Neurobiol 2021; 58:6577-6592. [PMID: 34581988 PMCID: PMC8477366 DOI: 10.1007/s12035-021-02574-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/19/2021] [Indexed: 02/06/2023]
Abstract
Glial cells (astrocytes, oligodendrocytes and microglia) are critical for the central nervous system (CNS) in both physiological and pathological conditions. With this in mind, several studies have indicated that glial cells play key roles in the development and progression of CNS diseases. In this sense, gliotoxicity can be referred as the cellular, molecular, and neurochemical changes that can mediate toxic effects or ultimately lead to impairment of the ability of glial cells to protect neurons and/or other glial cells. On the other hand, glioprotection is associated with specific responses of glial cells, by which they can protect themselves as well as neurons, resulting in an overall improvement of the CNS functioning. In addition, gliotoxic events, including metabolic stresses, inflammation, excitotoxicity, and oxidative stress, as well as their related mechanisms, are strongly associated with the pathogenesis of neurological, psychiatric and infectious diseases. However, glioprotective molecules can prevent or improve these glial dysfunctions, representing glial cells-targeting therapies. Therefore, this review will provide a brief summary of types and functions of glial cells and point out cellular and molecular mechanisms associated with gliotoxicity and glioprotection, potential glioprotective molecules and their mechanisms, as well as gliotherapy. In summary, we expect to address the relevance of gliotoxicity and glioprotection in the CNS homeostasis and diseases.
Collapse
Affiliation(s)
- André Quincozes-Santos
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação Em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.
| | - Camila Leite Santos
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Rômulo Rodrigo de Souza Almeida
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Amanda da Silva
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Natalie K Thomaz
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Naithan Ludian Fernandes Costa
- Programa de Pós-Graduação Em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Fernanda Becker Weber
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Izaviany Schmitz
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Lara Scopel Medeiros
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Lívia Medeiros
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Bethina Segabinazzi Dotto
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Filipe Renato Pereira Dias
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Vanessa Sovrani
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Larissa Daniele Bobermin
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
24
|
Mahendru D, Jain A, Bansal S, Malik D, Dhir N, Sharma AR, Sarma P, Prakash A, Nahar U, Bhatia A, Bhattacharyya S, Medhi B. Neuroprotective effect of bone marrow-derived mesenchymal stem cell secretome in 6-OHDA-induced Parkinson's disease. Regen Med 2021; 16:915-930. [PMID: 34553608 DOI: 10.2217/rme-2021-0018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Aim: The aim of the study was to evaluate the neuroprotective effect of bone marrow stem cell secretome in the 6-hydroxydopamine (6-OHDA) model of Parkinson's disease. Materials & methods: Secretome prepared from mesenchymal stem cells of 3-month-old rats was injected daily for 7 days between days 7 and 14 after 6-OHDA administration. After 14 days, various neurobehavioral parameters were conducted. These behavioral parameters were further correlated with biochemical and molecular findings. Results & conclusion: Impaired neurobehavioral parameters and increased inflammatory, oxidative stress and apoptotic markers in the 6-OHDA group were significantly modulated by secretome-treated rats. In conclusion, mesenchymal stem cell-derived secretome could be further explored for the management of Parkinson's disease.
Collapse
Affiliation(s)
- Dhruv Mahendru
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research, Chandigarh, 160012, India
| | - Ashish Jain
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research, Chandigarh, 160012, India
| | - Seema Bansal
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research, Chandigarh, 160012, India
| | - Deepti Malik
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research, Chandigarh, 160012, India.,Department of Biochemistry, All India Institute of Medical Sciences, Bilaspur, 174001, India
| | - Neha Dhir
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research, Chandigarh, 160012, India
| | - Amit Raj Sharma
- Department of Neurology, Post Graduate Institute of Medical Education & Research, Chandigarh, 160012, India
| | - Phulen Sarma
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research, Chandigarh, 160012, India
| | - Ajay Prakash
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research, Chandigarh, 160012, India
| | - Uma Nahar
- Department of Histopathology, Post Graduate Institute of Medical Education & Research, Chandigarh, 160012, India
| | - Alka Bhatia
- Department of Experimental Medicine & Biotechnology, Post Graduate Institute of Medical Education & Research, Chandigarh, 160012, India
| | - Shalmoli Bhattacharyya
- Department of Biophysics, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research, Chandigarh, 160012, India
| |
Collapse
|
25
|
Huang M, Chen S. DJ-1 in neurodegenerative diseases: Pathogenesis and clinical application. Prog Neurobiol 2021; 204:102114. [PMID: 34174373 DOI: 10.1016/j.pneurobio.2021.102114] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/22/2021] [Accepted: 06/21/2021] [Indexed: 12/23/2022]
Abstract
Neurodegenerative diseases (NDs) are one of the major health threats to human characterized by selective and progressive neuronal loss. The mechanisms of NDs are still not fully understood. The study of genetic defects and disease-related proteins offers us a window into the mystery of it, and the extension of knowledge indicates that different NDs share similar features, mechanisms, and even genetic or protein abnormalities. Among these findings, PARK7 and its production DJ-1 protein, which was initially found implicated in PD, have also been found altered in other NDs. PARK7 mutations, altered expression and posttranslational modification (PTM) cause DJ-1 abnormalities, which in turn lead to downstream mechanisms shared by most NDs, such as mitochondrial dysfunction, oxidative stress, protein aggregation, autophagy defects, and so on. The knowledge of DJ-1 derived from PD researches might apply to other NDs in both basic research and clinical application, and might yield novel insights into and alternative approaches for dealing with NDs.
Collapse
Affiliation(s)
- Maoxin Huang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China; Lab for Translational Research of Neurodegenerative Diseases, Institute of Immunochemistry, Shanghai Tech University, 201210, Shanghai, China.
| |
Collapse
|
26
|
Magnusen AF, Hatton SL, Rani R, Pandey MK. Genetic Defects and Pro-inflammatory Cytokines in Parkinson's Disease. Front Neurol 2021; 12:636139. [PMID: 34239490 PMCID: PMC8259624 DOI: 10.3389/fneur.2021.636139] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) is a movement disorder attributed to the loss of dopaminergic (DA) neurons mainly in the substantia nigra pars compacta. Motor symptoms include resting tremor, rigidity, and bradykinesias, while non-motor symptoms include autonomic dysfunction, anxiety, and sleeping problems. Genetic mutations in a number of genes (e.g., LRRK2, GBA, SNCA, PARK2, PARK6, and PARK7) and the resultant abnormal activation of microglial cells are assumed to be the main reasons for the loss of DA neurons in PD with genetic causes. Additionally, immune cell infiltration and their participation in major histocompatibility complex I (MHCI) and/or MHCII-mediated processing and presentation of cytosolic or mitochondrial antigens activate the microglial cells and cause the massive generation of pro-inflammatory cytokines and chemokines, which are all critical for the propagation of brain inflammation and the neurodegeneration in PD with genetic and idiopathic causes. Despite knowing the involvement of several of such immune devices that trigger neuroinflammation and neurodegeneration in PD, the exact disease mechanism or the innovative biomarker that could detect disease severity in PD linked to LRRK2, GBA, SNCA, PARK2, PARK6, and PARK7 defects is largely unknown. The current review has explored data from genetics, immunology, and in vivo and ex vivo functional studies that demonstrate that certain genetic defects might contribute to microglial cell activation and massive generation of a number of pro-inflammatory cytokines and chemokines, which ultimately drive the brain inflammation and lead to neurodegeneration in PD. Understanding the detailed involvement of a variety of immune mediators, their source, and the target could provide a better understanding of the disease process. This information might be helpful in clinical diagnosis, monitoring of disease progression, and early identification of affected individuals.
Collapse
Affiliation(s)
- Albert Frank Magnusen
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Shelby Loraine Hatton
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Reena Rani
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Manoj Kumar Pandey
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Paediatrics of University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
27
|
Cytoprotective Mechanisms of DJ-1: Implications in Cardiac Pathophysiology. Molecules 2021; 26:molecules26133795. [PMID: 34206441 PMCID: PMC8270312 DOI: 10.3390/molecules26133795] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 11/17/2022] Open
Abstract
DJ-1 was originally identified as an oncogene product while mutations of the gene encoding DJ-1/PARK7 were later associated with a recessive form of Parkinson's disease. Its ubiquitous expression and diversity of function suggest that DJ-1 is also involved in mechanisms outside the central nervous system. In the last decade, the contribution of DJ-1 to the protection from ischemia-reperfusion injury has been recognized and its involvement in the pathophysiology of cardiovascular disease is attracting increasing attention. This review describes the current and gaps in our knowledge of DJ-1, focusing on its role in regulating cardiovascular function. In parallel, we present original data showing an association between increased DJ-1 expression and antiapoptotic and anti-inflammatory markers following cardiac and vascular surgical procedures. Future studies should address DJ-1's role as a plausible novel therapeutic target for cardiovascular disease.
Collapse
|
28
|
MacMahon Copas AN, McComish SF, Fletcher JM, Caldwell MA. The Pathogenesis of Parkinson's Disease: A Complex Interplay Between Astrocytes, Microglia, and T Lymphocytes? Front Neurol 2021; 12:666737. [PMID: 34122308 PMCID: PMC8189423 DOI: 10.3389/fneur.2021.666737] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD), the second most common neurodegenerative disease, is characterised by the motor symptoms of bradykinesia, rigidity and resting tremor and non-motor symptoms of sleep disturbances, constipation, and depression. Pathological hallmarks include neuroinflammation, degeneration of dopaminergic neurons in the substantia nigra pars compacta, and accumulation of misfolded α-synuclein proteins as intra-cytoplasmic Lewy bodies and neurites. Microglia and astrocytes are essential to maintaining homeostasis within the central nervous system (CNS), including providing protection through the process of gliosis. However, dysregulation of glial cells results in disruption of homeostasis leading to a chronic pro-inflammatory, deleterious environment, implicated in numerous CNS diseases. Recent evidence has demonstrated a role for peripheral immune cells, in particular T lymphocytes in the pathogenesis of PD. These cells infiltrate the CNS, and accumulate in the substantia nigra, where they secrete pro-inflammatory cytokines, stimulate surrounding immune cells, and induce dopaminergic neuronal cell death. Indeed, a greater understanding of the integrated network of communication that exists between glial cells and peripheral immune cells may increase our understanding of disease pathogenesis and hence provide novel therapeutic approaches.
Collapse
Affiliation(s)
- Adina N MacMahon Copas
- Department of Physiology, School of Medicine, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland.,Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Sarah F McComish
- Department of Physiology, School of Medicine, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland.,Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Jean M Fletcher
- Department of Physiology, School of Medicine, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland.,School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Maeve A Caldwell
- Department of Physiology, School of Medicine, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland.,Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
29
|
Badanjak K, Fixemer S, Smajić S, Skupin A, Grünewald A. The Contribution of Microglia to Neuroinflammation in Parkinson's Disease. Int J Mol Sci 2021; 22:4676. [PMID: 33925154 PMCID: PMC8125756 DOI: 10.3390/ijms22094676] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/19/2021] [Accepted: 04/24/2021] [Indexed: 12/12/2022] Open
Abstract
With the world's population ageing, the incidence of Parkinson's disease (PD) is on the rise. In recent years, inflammatory processes have emerged as prominent contributors to the pathology of PD. There is great evidence that microglia have a significant neuroprotective role, and that impaired and over activated microglial phenotypes are present in brains of PD patients. Thereby, PD progression is potentially driven by a vicious cycle between dying neurons and microglia through the instigation of oxidative stress, mitophagy and autophagy dysfunctions, a-synuclein accumulation, and pro-inflammatory cytokine release. Hence, investigating the involvement of microglia is of great importance for future research and treatment of PD. The purpose of this review is to highlight recent findings concerning the microglia-neuronal interplay in PD with a focus on human postmortem immunohistochemistry and single-cell studies, their relation to animal and iPSC-derived models, newly emerging technologies, and the resulting potential of new anti-inflammatory therapies for PD.
Collapse
Affiliation(s)
- Katja Badanjak
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Esch-sur-Alzette, Luxembourg; (K.B.); (S.F.); (S.S.); (A.S.)
| | - Sonja Fixemer
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Esch-sur-Alzette, Luxembourg; (K.B.); (S.F.); (S.S.); (A.S.)
- Luxembourg Centre for Neuropathology (LCNP), L-3555 Dudelange, Luxembourg
| | - Semra Smajić
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Esch-sur-Alzette, Luxembourg; (K.B.); (S.F.); (S.S.); (A.S.)
| | - Alexander Skupin
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Esch-sur-Alzette, Luxembourg; (K.B.); (S.F.); (S.S.); (A.S.)
- Department of Neuroscience, University California San Diego, La Jolla, CA 92093, USA
| | - Anne Grünewald
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Esch-sur-Alzette, Luxembourg; (K.B.); (S.F.); (S.S.); (A.S.)
- Institute of Neurogenetics, University of Lübeck, 23562 Lübeck, Germany
| |
Collapse
|
30
|
Noda M, Liu J, Long J. Neuroprotective and Preventative Effects of Molecular Hydrogen. Curr Pharm Des 2021; 27:585-591. [PMID: 33076798 DOI: 10.2174/1381612826666201019103020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/12/2020] [Indexed: 11/22/2022]
Abstract
One of the beneficial effects of molecular hydrogen (H2, hydrogen gas) is neuroprotection and prevention of neurological disorders. It is important and useful if taking H2 every day can prevent or ameliorate the progression of neurodegenerative disorders, such as Parkinson's disease or Alzheimer's disease, both lacking specific therapeutic drugs. There are several mechanisms of how H2 protects neuronal damage. Anti-oxidative, anti-inflammatory, and the regulation of the endocrine system via stomach-brain connection seem to play an important role. At the cellular and tissue level, H2 appears to prevent the production of reactive oxygen species (ROS), and not only hydroxy radical (•OH) but also superoxide. In Parkinson's disease model mice, chronic intake of H2 causes the release of ghrelin from the stomach. In Alzheimer's disease model mice, sex-different neuroprotection is observed by chronic intake of H2. In female mice, declines of estrogen and estrogen receptor-β (ERβ) are prevented by H2, upregulating brain-derived neurotrophic factor (BDNF) and its receptor, tyrosine kinase receptor B (TrkB). The question of how drinking H2 upregulates the release of ghrelin or attenuates the decline of estrogen remains to be investigated and the mechanism of how H2 modulates endocrine systems and the fundamental question of what or where is the target of H2 needs to be elucidated for a better understanding of the effects of H2.
Collapse
Affiliation(s)
- Mami Noda
- Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine and Center for Translational Medicine, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine and Center for Translational Medicine, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
31
|
Urrutia PJ, Bórquez DA, Núñez MT. Inflaming the Brain with Iron. Antioxidants (Basel) 2021; 10:antiox10010061. [PMID: 33419006 PMCID: PMC7825317 DOI: 10.3390/antiox10010061] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 02/06/2023] Open
Abstract
Iron accumulation and neuroinflammation are pathological conditions found in several neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD). Iron and inflammation are intertwined in a bidirectional relationship, where iron modifies the inflammatory phenotype of microglia and infiltrating macrophages, and in turn, these cells secrete diffusible mediators that reshape neuronal iron homeostasis and regulate iron entry into the brain. Secreted inflammatory mediators include cytokines and reactive oxygen/nitrogen species (ROS/RNS), notably hepcidin and nitric oxide (·NO). Hepcidin is a small cationic peptide with a central role in regulating systemic iron homeostasis. Also present in the cerebrospinal fluid (CSF), hepcidin can reduce iron export from neurons and decreases iron entry through the blood-brain barrier (BBB) by binding to the iron exporter ferroportin 1 (Fpn1). Likewise, ·NO selectively converts cytosolic aconitase (c-aconitase) into the iron regulatory protein 1 (IRP1), which regulates cellular iron homeostasis through its binding to iron response elements (IRE) located in the mRNAs of iron-related proteins. Nitric oxide-activated IRP1 can impair cellular iron homeostasis during neuroinflammation, triggering iron accumulation, especially in the mitochondria, leading to neuronal death. In this review, we will summarize findings that connect neuroinflammation and iron accumulation, which support their causal association in the neurodegenerative processes observed in AD and PD.
Collapse
Affiliation(s)
- Pamela J. Urrutia
- Department of Biology, Faculty of Sciences, Universidad de Chile, 7800024 Santiago, Chile;
| | - Daniel A. Bórquez
- Center for Biomedical Research, Faculty of Medicine, Universidad Diego Portales, 8370007 Santiago, Chile;
| | - Marco Tulio Núñez
- Department of Biology, Faculty of Sciences, Universidad de Chile, 7800024 Santiago, Chile;
- Correspondence: ; Tel.: +56-2-29787360
| |
Collapse
|
32
|
Bhattacharyya D, Bhunia A. Gut-Brain axis in Parkinson's disease etiology: The role of lipopolysaccharide. Chem Phys Lipids 2020; 235:105029. [PMID: 33338469 DOI: 10.1016/j.chemphyslip.2020.105029] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/05/2020] [Accepted: 12/10/2020] [Indexed: 12/26/2022]
Abstract
Recent studies highlight the initiation of Parkinson's disease (PD) in the gastrointestinal tract, decades before the manifestations in the central nervous system (CNS). This gut-brain axis of neurodegenerative diseases defines the critical role played by the unique microbial composition of the "second brain" formed by the enteric nervous system (ENS). Compromise in the enteric wall can result in the translocation of gut-microbiota along with their metabolites into the system that can affect the homeostatic machinery. The released metabolites can associate with protein substrates affecting several biological pathways. Among these, the bacterial endotoxin from Gram-negative bacteria, i.e., Lipopolysaccharide (LPS), has been implicated to play a definite role in progressive neurodegeneration. The molecular interaction of the lipid metabolites can have a direct neuro-modulatory effect on homeostatic protein components that can be transported to the CNS via the vagus nerve. α-synuclein (α-syn) is one such partner protein, the molecular interactions with which modulate its overall fibrillation propensity in the system. LPS interaction has been shown to affect the protein's aggregation kinetics in an alternative inflammatory pathway of PD pathogenesis. Several other lipid contents from the bacterial membranes could also be responsible for the initiation of α-syn amyloidogenesis. The present review will focus on the intermolecular interactions of α-syn with bacterial lipid components, particularly LPS, with a definite clinical manifestation in PD pathogenesis. However, deconvolution of the sequence of interaction events from the ENS to its propagation in the CNS is not easy or obvious. Nevertheless, the characterization of these lipid-mediated structures is a step towards realizing the novel targets in the pre-emptive diagnoses of PD. This comprehensive description should prompt the correlation of potential risk of amyloidogenesis upon detection of specific paradigm shifts in the microbial composition of the gut.
Collapse
Affiliation(s)
- Dipita Bhattacharyya
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata, 700054, India
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata, 700054, India.
| |
Collapse
|
33
|
Kam TI, Hinkle JT, Dawson TM, Dawson VL. Microglia and astrocyte dysfunction in parkinson's disease. Neurobiol Dis 2020; 144:105028. [PMID: 32736085 PMCID: PMC7484088 DOI: 10.1016/j.nbd.2020.105028] [Citation(s) in RCA: 216] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 07/01/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
While glia are essential for regulating the homeostasis in the normal brain, their dysfunction contributes to neurodegeneration in many brain diseases, including Parkinson's disease (PD). Recent studies have identified that PD-associated genes are expressed in glial cells as well as neurons and have crucial roles in microglia and astrocytes. Here, we discuss the role of microglia and astrocytes dysfunction in relation to PD-linked mutations and their implications in PD pathogenesis. A better understanding of microglia and astrocyte functions in PD may provide insights into neurodegeneration and novel therapeutic approaches for PD.
Collapse
Affiliation(s)
- Tae-In Kam
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jared T Hinkle
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
34
|
Singh Y, Trautwein C, Dhariwal A, Salker MS, Alauddin M, Zizmare L, Pelzl L, Feger M, Admard J, Casadei N, Föller M, Pachauri V, Park DS, Mak TW, Frick JS, Wallwiener D, Brucker SY, Lang F, Riess O. DJ-1 (Park7) affects the gut microbiome, metabolites and the development of innate lymphoid cells (ILCs). Sci Rep 2020; 10:16131. [PMID: 32999308 PMCID: PMC7528091 DOI: 10.1038/s41598-020-72903-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 09/08/2020] [Indexed: 12/21/2022] Open
Abstract
The proper communication between gut and brain is pivotal for the maintenance of health and, dysregulation of the gut-brain axis can lead to several clinical disorders. In Parkinson’s disease (PD) 85% of all patients experienced constipation many years before showing any signs of motor phenotypes. For differential diagnosis and preventive treatment, there is an urgent need for the identification of biomarkers indicating early disease stages long before the disease phenotype manifests. DJ-1 is a chaperone protein involved in the protection against PD and genetic mutations in this protein have been shown to cause familial PD. However, how the deficiency of DJ-1 influences the risk of PD remains incompletely understood. In the present study, we provide evidence that DJ-1 is implicated in shaping the gut microbiome including; their metabolite production, inflammation and innate immune cells (ILCs) development. We revealed that deficiency of DJ-1 leads to a significant increase in two specific genera/species, namely Alistipes and Rikenella. In DJ-1 knock-out (DJ-1-/-) mice the production of fecal calprotectin and MCP-1 inflammatory proteins were elevated. Fecal and serum metabolic profile showed that malonate which influences the immune system was significantly more abundant in DJ-1−/− mice. DJ-1 appeared also to be involved in ILCs development. Further, inflammatory genes related to PD were augmented in the midbrain of DJ-1−/− mice. Our data suggest that metabolites and inflammation produced in the gut could be used as biomarkers for PD detection. Perhaps, these metabolites and inflammatory mediators could be involved in triggering inflammation resulting in PD pathology.
Collapse
Affiliation(s)
- Yogesh Singh
- Institute of Medical Genetics and Applied Genomics, Tübingen University, Calwerstraße 7, 72076, Tübingen, Germany. .,Research Institute of Women's Health, Tübingen University, Calwerstraße 7/6, 72076, Tübingen, Germany.
| | - Christoph Trautwein
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center (WSIC), Tübingen University, Röntgenweg 13, 72076, Tübingen, Germany
| | - Achal Dhariwal
- Department of Oral Biology, University of Oslo, Oslo, Norway
| | - Madhuri S Salker
- Research Institute of Women's Health, Tübingen University, Calwerstraße 7/6, 72076, Tübingen, Germany
| | - Md Alauddin
- Research Institute of Women's Health, Tübingen University, Calwerstraße 7/6, 72076, Tübingen, Germany
| | - Laimdota Zizmare
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center (WSIC), Tübingen University, Röntgenweg 13, 72076, Tübingen, Germany
| | - Lisann Pelzl
- Department of Vegetative Physiology, Tübingen University, Wilhelmstraße 56, 72076, Tübingen, Germany.,Clinical Transfusion Medicine Centre, Tübingen University, Otfried-Müller-Straße 4/1, 72076, Tübingen, Germany
| | - Martina Feger
- Department of Physiology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany
| | - Jakob Admard
- Institute of Medical Genetics and Applied Genomics, Tübingen University, Calwerstraße 7, 72076, Tübingen, Germany
| | - Nicolas Casadei
- Institute of Medical Genetics and Applied Genomics, Tübingen University, Calwerstraße 7, 72076, Tübingen, Germany
| | - Michael Föller
- Department of Physiology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany
| | - Vivek Pachauri
- Institute of Materials in Electrical Engineering 1, RWTH Aachen University, Aachen, Germany
| | - David S Park
- Health Research Innovation Centre, Hotchkiss Brain Institute, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - Tak W Mak
- Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, UHN, 620 University Ave, Toronto, M5G 2C1, Canada
| | - Julia-Stefanie Frick
- Institute for Medical Microbiology and Hygiene, Tübingen University, Elfriede-Aulhorn-Straße 6, 72076, Tübingen, Germany
| | - Diethelm Wallwiener
- Research Institute of Women's Health, Tübingen University, Calwerstraße 7/6, 72076, Tübingen, Germany
| | - Sara Y Brucker
- Research Institute of Women's Health, Tübingen University, Calwerstraße 7/6, 72076, Tübingen, Germany
| | - Florian Lang
- Department of Vegetative Physiology, Tübingen University, Wilhelmstraße 56, 72076, Tübingen, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, Tübingen University, Calwerstraße 7, 72076, Tübingen, Germany
| |
Collapse
|
35
|
Söderbom G. Status and future directions of clinical trials in Parkinson's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 154:153-188. [PMID: 32739003 DOI: 10.1016/bs.irn.2020.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Novel therapies are needed to treat Parkinson's disease (PD) in which the clinical unmet need is pressing. Currently, no clinically available therapeutic strategy can either retard or reverse PD or repair its pathological consequences. l-DOPA (levodopa) is still the gold standard therapy for motor symptoms yet symptomatic therapies for both motor and non-motor symptoms are improving. Many on-going, intervention trials cover a broad range of targets, including cell replacement and gene therapy approaches, quality of life improving technologies, and disease-modifying strategies (e.g., controlling aberrant α-synuclein accumulation and regulating cellular/neuronal bioenergetics). Notably, the repurposing of glucagon-like peptide-1 analogues with potential disease-modifying effects based on metabolic pathology associated with PD has been promising. Nevertheless, there is a clear need for improved therapeutic and diagnostic options, disease progression tracking and patient stratification capabilities to deliver personalized treatment and optimize trial design. This review discusses some of the risk factors and consequent pathology associated with PD and particularly the metabolic aspects of PD, novel therapies targeting these pathologies (e.g., mitochondrial and lysosomal dysfunction, oxidative stress, and inflammation/neuroinflammation), including the repurposing of metabolic therapies, and unmet needs as potential drivers for future clinical trials and research in PD.
Collapse
|
36
|
Wilton DK, Stevens B. The contribution of glial cells to Huntington's disease pathogenesis. Neurobiol Dis 2020; 143:104963. [PMID: 32593752 DOI: 10.1016/j.nbd.2020.104963] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/07/2020] [Accepted: 06/10/2020] [Indexed: 12/20/2022] Open
Abstract
Glial cells play critical roles in the normal development and function of neural circuits, but in many neurodegenerative diseases, they become dysregulated and may contribute to the development of brain pathology. In Huntington's disease (HD), glial cells both lose normal functions and gain neuropathic phenotypes. In addition, cell-autonomous dysfunction elicited by mutant huntingtin (mHTT) expression in specific glial cell types is sufficient to induce both pathology and Huntington's disease-related impairments in motor and cognitive performance, suggesting that these cells may drive the development of certain aspects of Huntington's disease pathogenesis. In support of this imaging studies in pre-symptomatic HD patients and work on mouse models have suggested that glial cell dysfunction occurs at a very early stage of the disease, prior to the onset of motor and cognitive deficits. Furthermore, selectively ablating mHTT from specific glial cells or correcting for HD-induced changes in their transcriptional profile rescues some HD-related phenotypes, demonstrating the potential of targeting these cells for therapeutic intervention. Here we review emerging research focused on understanding the involvement of different glial cell types in specific aspects of HD pathogenesis. This work is providing new insight into how HD impacts biological functions of glial cells in the healthy brain as well as how HD induced dysfunction in these cells might change the way they integrate into biological circuits.
Collapse
Affiliation(s)
- Daniel K Wilton
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Beth Stevens
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Stanley Center, Broad Institute, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
37
|
Teixeira FG, Vilaça-Faria H, Domingues AV, Campos J, Salgado AJ. Preclinical Comparison of Stem Cells Secretome and Levodopa Application in a 6-Hydroxydopamine Rat Model of Parkinson's Disease. Cells 2020; 9:cells9020315. [PMID: 32012897 PMCID: PMC7072263 DOI: 10.3390/cells9020315] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 12/18/2022] Open
Abstract
Parkinson's Disease (PD) is characterized by the massive loss of dopaminergic neurons, leading to the appearance of several motor impairments. Current pharmacological treatments, such as the use of levodopa, are yet unable to cure the disease. Therefore, there is a need for novel strategies, particularly those that can combine in an integrated manner neuroprotection and neuroregeneration properties. In vitro and in vivo models have recently revealed that the secretome of mesenchymal stem cells (MSCs) holds a promising potential for treating PD, given its effects on neural survival, proliferation, differentiation. In the present study, we aimed to access the impact of human bone marrow MSCs (hBM-MSCs) secretome in 6-hydroxydopamine (6-OHDA) PD model when compared to levodopa administration, by addressing animals' motor performance, and substantia nigra (SN), and striatum (STR) histological parameters by tyrosine hydroxylase (TH) expression. Results revealed that hBM-MSCs secretome per se appears to be a modulator of the dopaminergic system, enhancing TH-positive cells expression (e.g., dopaminergic neurons) and terminals both in the SN and STR when compared to the untreated group 6-OHDA. Such finding was positively correlated with a significant amelioration of the motor outcomes of 6-OHDA PD animals (assessed by the staircase test). Thus, the present findings support hBM-MSCs secretome administration as a potential therapeutic tool in treating PD, and although we suggest candidate molecules (Trx1, SEMA7A, UCHL1, PEDF, BDNF, Clusterin, SDF-1, CypA, CypB, Cys C, VEGF, DJ-1, Gal-1, GDNF, CDH2, IL-6, HSP27, PRDX1, UBE3A, MMP-2, and GDN) and possible mechanisms of hBM-MSCs secretome-mediated effects, further detailed studies are needed to carefully and clearly define which players may be responsible for its therapeutic actions. By doing so, it will be reasonable to presume that potential treatments that can, per se, or in combination modulate or slow PD may lead to a rational design of new therapeutic or adjuvant strategies for its functional modeling and repair.
Collapse
Affiliation(s)
- Fábio G. Teixeira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (H.V.-F.); (J.C.)
- ICVS/3B’s Associate Lab, PT Government Associated Lab, 4806-909 Braga/Guimarães, Portugal
- Correspondence: (F.G.T.); (A.J.S.); Tel.: +351-253-60-48-71 (F.G.T.); +351-253-60-49-47 (A.J.S.)
| | - Helena Vilaça-Faria
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (H.V.-F.); (J.C.)
- ICVS/3B’s Associate Lab, PT Government Associated Lab, 4806-909 Braga/Guimarães, Portugal
| | - Ana V. Domingues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (H.V.-F.); (J.C.)
- ICVS/3B’s Associate Lab, PT Government Associated Lab, 4806-909 Braga/Guimarães, Portugal
| | - Jonas Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (H.V.-F.); (J.C.)
- ICVS/3B’s Associate Lab, PT Government Associated Lab, 4806-909 Braga/Guimarães, Portugal
| | - António J. Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (H.V.-F.); (J.C.)
- ICVS/3B’s Associate Lab, PT Government Associated Lab, 4806-909 Braga/Guimarães, Portugal
- Correspondence: (F.G.T.); (A.J.S.); Tel.: +351-253-60-48-71 (F.G.T.); +351-253-60-49-47 (A.J.S.)
| |
Collapse
|
38
|
Liu JQ, Chu SF, Zhou X, Zhang DY, Chen NH. Role of chemokines in Parkinson's disease. Brain Res Bull 2019; 152:11-18. [PMID: 31136787 DOI: 10.1016/j.brainresbull.2019.05.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 05/17/2019] [Accepted: 05/23/2019] [Indexed: 01/10/2023]
Abstract
Parkinson's disease (PD) is a chronic progressive neurodegenerative disorder with an increasing incidence year by year, particularly as the population ages. The most common neuropathologic manifestation in patients with Parkinson's disease is dopamine neurons degeneration and loss in substantia nigra of middle brain. The main neurochemistry problem is the lack of the neurotransmitter dopamine. Clinically, PD patients may also have higher levels of glutamate, gamma-aminobutyric acid, acetylcholine and other neurotransmitters. At present, many data have shown that some chemokines are involved in regulating the release and transmission of neurotransmitters, and the growth and development of related neurons. In recent years, most of the studies relative to PD is based on immune and inflammatory mechanisms, and chemokines is also the focus on this mechanism. Chemokines are a class of cytokines that have definite chemotaxis effects on the different target cells. They might be involved in the pathogenesis of PD by inducing neuronal apoptosis and microglia activation. Clinical data has shown that the levels of chemokines in plasma and cerebrospinal fluid of PD patients have corresponding changes compared with the healthy persons. This review summarizes recent studies on chemokines and their receptors in Parkinson's disease: (i) to explore the role of chemokines in Parkinson's disease; (ii) to provide new indicators for clinical diagnosis of PD; (iii) to provide new targets for drug research and development in the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Jia-Qi Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing 211198, China
| | - Shi-Feng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xin Zhou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Da-Yong Zhang
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing 211198, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
39
|
Lipopolysaccharide-Induced Neuroinflammation as a Bridge to Understand Neurodegeneration. Int J Mol Sci 2019; 20:ijms20092293. [PMID: 31075861 PMCID: PMC6539529 DOI: 10.3390/ijms20092293] [Citation(s) in RCA: 330] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/03/2019] [Accepted: 05/05/2019] [Indexed: 12/19/2022] Open
Abstract
A large body of experimental evidence suggests that neuroinflammation is a key pathological event triggering and perpetuating the neurodegenerative process associated with many neurological diseases. Therefore, different stimuli, such as lipopolysaccharide (LPS), are used to model neuroinflammation associated with neurodegeneration. By acting at its receptors, LPS activates various intracellular molecules, which alter the expression of a plethora of inflammatory mediators. These factors, in turn, initiate or contribute to the development of neurodegenerative processes. Therefore, LPS is an important tool for the study of neuroinflammation associated with neurodegenerative diseases. However, the serotype, route of administration, and number of injections of this toxin induce varied pathological responses. Thus, here, we review the use of LPS in various models of neurodegeneration as well as discuss the neuroinflammatory mechanisms induced by this toxin that could underpin the pathological events linked to the neurodegenerative process.
Collapse
|
40
|
Fuzzati-Armentero MT, Cerri S, Blandini F. Peripheral-Central Neuroimmune Crosstalk in Parkinson's Disease: What Do Patients and Animal Models Tell Us? Front Neurol 2019; 10:232. [PMID: 30941089 PMCID: PMC6433876 DOI: 10.3389/fneur.2019.00232] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/22/2019] [Indexed: 12/11/2022] Open
Abstract
The brain is no longer considered an immune privileged organ and neuroinflammation has long been associated with Parkinson's disease. Accumulating evidence demonstrates that innate and adaptive responses take place in the CNS. The extent to which peripheral immune alterations impacts on the CNS, or vice and versa, is, however, still a matter of debate. Gaining a better knowledge of the molecular and cellular immune dysfunctions present in these two compartments and clarifying their mutual interactions is a fundamental step in understanding and preventing Parkinson's disease (PD) pathogenesis. This review provides an overview of the current knowledge on inflammatory processes evidenced both in PD patients and in toxin-induced animal models of the disease. It discusses differences and similarities between human and animal studies in the context of neuroinflammation and immune responses and how they have guided therapeutic strategies to slow down disease progression. Future longitudinal studies are necessary and can help gain a better understanding on peripheral-central nervous system crosstalk to improve therapeutic strategies for PD.
Collapse
|
41
|
Activation of microglia synergistically enhances neurodegeneration caused by MPP + in human SH-SY5Y cells. Eur J Pharmacol 2019; 850:64-74. [PMID: 30684467 DOI: 10.1016/j.ejphar.2019.01.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/17/2019] [Accepted: 01/23/2019] [Indexed: 01/21/2023]
Abstract
While MPP+ may not directly activate microglia, the initial neuronal damage inflicted by the toxin may trigger microglia, possibly leading to synergistic pro-apoptotic interaction between neuro-inflammation and toxin-induced neurotoxicity, which may further aggravate neurodegeneration. However, what molecular targets are synergistically up or downregulated during this interaction is not well understood. Here, we addressed this by co-culturing fully differentiated human SH-SY5Y cells treated with parkinsonian toxin 1-Methyl-4-phenylpyridinium (MPP+), with endotoxin-activated microglial cell line EOC 20 to determine how this interaction affects pro-apoptotic (p38, JNK, and bax:bcl2 ratios) and pro-survival (NF-κB, MEK1) signaling at both mRNA and protein levels. Concurrent MPP+ and endotoxin-treatment aggravated a decrease in SH-SY5Y cell viability and caused strong synergistic increases in the bax:bcl2 ratio, but also NF-κB and JNK signaling. These effects were attenuated by microglia inhibitor minocycline. Altogether, these data provide further molecular insights into the important role or even conditional requirement of microglia activation in the progressive neurodegenerative nature of PD.
Collapse
|
42
|
Lim R, Barker G, Lappas M. PARK7 regulates inflammation-induced pro-labour mediators in myometrial and amnion cells. Reproduction 2018; 155:207-218. [PMID: 29358306 DOI: 10.1530/rep-17-0604] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/13/2017] [Accepted: 12/04/2017] [Indexed: 01/18/2023]
Abstract
Preterm birth is a prevalent cause of neonatal deaths worldwide. Inflammation has been implicated in spontaneous preterm birth involved in the processes of uterine contractility and membrane rupture. Parkinson protein 7 (PARK7) has been found to play an inflammatory role in non-gestational tissues. The aims of this study were to determine the expression of PARK7 in myometrium and fetal membranes with respect to term labour onset and to elucidate the effect of PARK7 silencing in primary myometrium and amnion cells on pro-inflammatory and pro-labour mediators. PARK7 mRNA expression was higher in term myometrium and fetal membranes from women in labour compared to non-labouring samples and in amnion from preterm deliveries with chorioamnionitis. In human primary myometrial cells transfected with PARK7 siRNA (siPARK7), there was a significant decrease in IL1B, TNF, fsl-1 and poly(I:C)-induced expression of pro-inflammatory cytokine IL6, chemokines (CXCL8, CCL2), adhesion molecule ICAM1, prostaglandin PGF2α and its receptor PTGFR. Similarly, amnion cells transfected with siPARK7 displayed a decrease in IL1B-induced expression of IL6, CXCL8 and ICAM1. In myometrial cells transfected with siPARK7, there was a significant reduction of NF-κB RELA transcriptional activity when stimulated with fsl-1, flagellin and poly(I:C), but not with IL1B or TNF. Collectively, our novel data describe a role for PARK7 in regulating inflammation-induced pro-inflammatory and pro-labour mediators in human myometrial and amnion cells.
Collapse
Affiliation(s)
- Ratana Lim
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of MelbourneMelbourne, Victoria, Australia.,Mercy Perinatal Research CentreMercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Gillian Barker
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of MelbourneMelbourne, Victoria, Australia.,Mercy Perinatal Research CentreMercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of MelbourneMelbourne, Victoria, Australia .,Mercy Perinatal Research CentreMercy Hospital for Women, Heidelberg, Victoria, Australia
| |
Collapse
|
43
|
Troncoso-Escudero P, Parra A, Nassif M, Vidal RL. Outside in: Unraveling the Role of Neuroinflammation in the Progression of Parkinson's Disease. Front Neurol 2018; 9:860. [PMID: 30459700 PMCID: PMC6232883 DOI: 10.3389/fneur.2018.00860] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/24/2018] [Indexed: 12/20/2022] Open
Abstract
Neuroinflammation is one of the most important processes involved in the pathogenesis of Parkinson's disease (PD). The current concept of neuroinflammation comprises an inflammation process, which occurs in the central nervous system due to molecules released from brain-resident and/or blood-derived immune cells. Furthermore, the evidence of the contribution of systemic delivered molecules to the disease pathogenesis, such as the gut microbiota composition, has been increasing during the last years. Under physiological conditions, microglia and astrocytes support the well-being and well-function of the brain through diverse functions, including neurotrophic factor secretion in both intact and injured brain. On the other hand, genes that cause PD are expressed in astrocytes and microglia, shifting their neuroprotective role to a pathogenic one, contributing to disease onset and progression. In addition, growth factors are a subset of molecules that promote cellular survival, differentiation and maturation, which are critical signaling factors promoting the communication between cells, including neurons and blood-derived immune cells. We summarize the potential targeting of astrocytes and microglia and the systemic contribution of the gut microbiota in neuroinflammation process archived in PD.
Collapse
Affiliation(s)
- Paulina Troncoso-Escudero
- Faculty of Sciences, Center for Integrative Biology, Universidad Mayor, Santiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | - Alejandra Parra
- Faculty of Sciences, Center for Integrative Biology, Universidad Mayor, Santiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | - Melissa Nassif
- Faculty of Sciences, Center for Integrative Biology, Universidad Mayor, Santiago, Chile
| | - Rene L Vidal
- Faculty of Sciences, Center for Integrative Biology, Universidad Mayor, Santiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile.,Neurounion Biomedical Foundation, Santiago, Chile
| |
Collapse
|
44
|
Bhat SA, Sood A, Shukla R, Hanif K. AT2R Activation Prevents Microglia Pro-inflammatory Activation in a NOX-Dependent Manner: Inhibition of PKC Activation and p47phox Phosphorylation by PP2A. Mol Neurobiol 2018; 56:3005-3023. [DOI: 10.1007/s12035-018-1272-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 07/19/2018] [Indexed: 12/22/2022]
|
45
|
Kostuk EW, Cai J, Iacovitti L. Regional microglia are transcriptionally distinct but similarly exacerbate neurodegeneration in a culture model of Parkinson's disease. J Neuroinflammation 2018; 15:139. [PMID: 29751760 PMCID: PMC5948771 DOI: 10.1186/s12974-018-1181-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/27/2018] [Indexed: 01/08/2023] Open
Abstract
Background Parkinson’s disease (PD) is characterized by selective degeneration of dopaminergic (DA) neurons of the substantia nigra pars compacta (SN) while neighboring ventral tegmental area (VTA) DA neurons are relatively spared. Mechanisms underlying the selective protection of the VTA and susceptibility of the SN are still mostly unknown. Here, we demonstrate the importance of balance between astrocytes and microglia in the susceptibility of SN DA neurons to the PD mimetic toxin 1-methyl-4-phenylpyridinium (MPP+). Methods Previously established methods were used to isolate astrocytes and microglia from the cortex (CTX), SN, and VTA, as well as embryonic midbrain DA neurons from the SN and VTA. The transcriptional profile of isolated microglia was examined for 21 canonical pro- and anti-inflammatory cytokines by qRT-PCR with and without MPP+ exposure. Homo- and heterotypic co-cultures of neurons and astrocytes were established, and the effect of altering the ratio of astrocytes and microglia in vitro on the susceptibility of midbrain DA neurons to the PD mimetic toxin MPP+ was investigated. Results We found that regionally isolated microglia (SN, VTA, CTX) exhibit basal differences in their cytokine profiles and that activation of these microglia with MPP+ results in differential cytokine upregulation. The addition of microglia to cultures of SN neurons and astrocytes was not sufficient to cause neurodegeneration; however, when challenged with MPP+, all regionally isolated microglia resulted in exacerbation of MPP+ toxicity which was alleviated by inhibition of microglial activation. Furthermore, we demonstrated that isolated VTA, but not SN, astrocytes were able to mediate protection of both SN and VTA DA neurons even in the presence of exacerbatory microglia; however, this protection could be reversed by increasing the numbers of microglia present. Conclusion These results suggest that the balance of astrocytes and microglia within the midbrain is a key factor underlying the selective vulnerability of SN DA neurons seen in PD pathogenesis and that VTA astrocytes mediate protection of DA neurons which can be countered by greater numbers of deleterious microglia. Electronic supplementary material The online version of this article (10.1186/s12974-018-1181-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eric Wildon Kostuk
- Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University, Room 320, Bluemle Life Sciences Building, 233 S. 10th Street, Philadelphia, PA, 19107, USA
| | - Jingli Cai
- Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University, Room 320, Bluemle Life Sciences Building, 233 S. 10th Street, Philadelphia, PA, 19107, USA
| | - Lorraine Iacovitti
- Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University, Room 320, Bluemle Life Sciences Building, 233 S. 10th Street, Philadelphia, PA, 19107, USA. .,Department of Neurology, Farber Institute for Neurosciences, Thomas Jefferson University, Room 320, Bluemle Life Sciences Building, 233 S. 10th Street, Philadelphia, PA, 19107, USA. .,Department of Neurosurgery, Farber Institute for Neurosciences, Thomas Jefferson University, Room 320, Bluemle Life Sciences Building, 233 S. 10th Street, Philadelphia, PA, 19107, USA.
| |
Collapse
|
46
|
Nash Y, Schmukler E, Trudler D, Pinkas-Kramarski R, Frenkel D. DJ-1 deficiency impairs autophagy and reduces alpha-synuclein phagocytosis by microglia. J Neurochem 2017; 143:584-594. [PMID: 28921554 DOI: 10.1111/jnc.14222] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 08/26/2017] [Accepted: 09/11/2017] [Indexed: 01/06/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder, of which 1% of the hereditary cases are linked to mutations in DJ-1, an oxidative stress sensor. The pathological hallmark of PD is intercellular inclusions termed Lewy Bodies, composed mainly of α-Synuclein (α-Syn) protein. Recent findings have shown that α-Syn can be transmitted from cell to cell, suggesting an important role of microglia, as the main scavenger cells of the brain, in clearing α-Syn. We previously reported that the knock down (KD) of DJ-1 in microglia increased cells' neurotoxicity to dopaminergic neurons. Here, we discovered that α-Syn significantly induced elevated secretion of the proinflammatory cytokines IL-6 and IL-1β and a significant dose-dependent elevation in the production of nitric oxide in DJ-1 KD microglia, compared to control microglia. We further investigated the ability of DJ-1 KD microglia to uptake and degrade soluble α-Syn, and discovered that DJ-1 KD reduces cell-surface lipid raft expression in microglia and impairs their ability to uptake soluble α-Syn. Autophagy is an important mechanism for degradation of intracellular proteins and organelles. We discovered that DJ-1 KD microglia exhibit an impaired autophagy-dependent degradation of p62 and LC3 proteins, and that manipulation of autophagy had less effect on α-Syn uptake and clearance in DJ-1 KD microglia, compared to control microglia. Further studies of the link between DJ-1, α-Syn uptake and autophagy may provide useful insights into the role of microglia in the etiology of the PD.
Collapse
Affiliation(s)
- Yuval Nash
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Eran Schmukler
- Department of Neurobiology George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Dorit Trudler
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Department of Neurobiology George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ronit Pinkas-Kramarski
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Department of Neurobiology George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Dan Frenkel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Department of Neurobiology George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
47
|
Shen Y, Guo X, Han C, Wan F, Ma K, Guo S, Wang L, Xia Y, Liu L, Lin Z, Huang J, Xiong N, Wang T. The implication of neuronimmunoendocrine (NIE) modulatory network in the pathophysiologic process of Parkinson's disease. Cell Mol Life Sci 2017; 74:3741-3768. [PMID: 28623510 PMCID: PMC11107509 DOI: 10.1007/s00018-017-2549-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 05/23/2017] [Accepted: 05/29/2017] [Indexed: 01/11/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder implicitly marked by the substantia nigra dopaminergic neuron degeneration and explicitly characterized by the motor and non-motor symptom complexes. Apart from the nigrostriatal dopamine depletion, the immune and endocrine study findings are also frequently reported, which, in fact, have helped to broaden the symptom spectrum and better explain the pathogenesis and progression of PD. Nevertheless, based on the neural, immune, and endocrine findings presented above, it is still difficult to fully recapitulate the pathophysiologic process of PD. Therefore, here, in this review, we have proposed the neuroimmunoendocrine (NIE) modulatory network in PD, aiming to achieve a more comprehensive interpretation of the pathogenesis and progression of this disease. As a matter of fact, in addition to the classical motor symptoms, NIE modulatory network can also underlie the non-motor symptoms such as gastrointestinal, neuropsychiatric, circadian rhythm, and sleep disorders in PD. Moreover, the dopamine (DA)-melatonin imbalance in the retino-diencephalic/mesencephalic-pineal axis also provides an alternative explanation for the motor complications in the process of DA replacement therapy. In conclusion, the NIE network can be expected to deepen our understanding and facilitate the multi-dimensional management and therapy of PD in future clinical practice.
Collapse
Affiliation(s)
- Yan Shen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Xingfang Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Chao Han
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Fang Wan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Kai Ma
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Shiyi Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Luxi Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Yun Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Ling Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Zhicheng Lin
- Division of Alcohol and Drug Abuse, Department of Psychiatry, and Mailman Neuroscience Research Center, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
| | - Jinsha Huang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China.
| |
Collapse
|
48
|
Klein RS, Garber C, Howard N. Infectious immunity in the central nervous system and brain function. Nat Immunol 2017; 18:132-141. [PMID: 28092376 DOI: 10.1038/ni.3656] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/02/2016] [Indexed: 11/09/2022]
Abstract
Inflammation is emerging as a critical mechanism underlying neurological disorders of various etiologies, yet its role in altering brain function as a consequence of neuroinfectious disease remains unclear. Although acute alterations in mental status due to inflammation are a hallmark of central nervous system (CNS) infections with neurotropic pathogens, post-infectious neurologic dysfunction has traditionally been attributed to irreversible damage caused by the pathogens themselves. More recently, studies indicate that pathogen eradication within the CNS may require immune responses that interfere with neural cell function and communication without affecting their survival. In this Review we explore inflammatory processes underlying neurological impairments caused by CNS infection and discuss their potential links to established mechanisms of psychiatric and neurodegenerative diseases.
Collapse
Affiliation(s)
- Robyn S Klein
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Charise Garber
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nicole Howard
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
49
|
Akinnawo OO, Anyasor GN, Osilesi O. Aqueous fraction of Alstonia boonei de Wild leaves suppressed inflammatory responses in carrageenan and formaldehyde induced arthritic rats. Biomed Pharmacother 2016; 86:95-101. [PMID: 27974282 DOI: 10.1016/j.biopha.2016.11.145] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 11/23/2016] [Accepted: 11/30/2016] [Indexed: 12/15/2022] Open
Abstract
Alstonia boonie de Wild is an ethnomedical plant used as therapy against inflammatory disorders. This study evaluated the most active anti-inflammatory and anti-oxidant fraction of A. boonei leaves using in vitro and in vivo models. Quantitative phytochemical analysis, anti-protein denaturation and hypotonicity-induced hemolysis of human red blood cell membrane (HRBC), radical scavenging activity assays, carrageenan and formaldehyde-induced inflammation models were carried out. Results showed that aqueous and ethyl acetate fractions of 70% methanol extract of A. boonie leaves contained high quantities of total phenolic and flavonoid compounds compared with hexane and butanol fractions. Aqueous fraction of A. boonie leaves significantly (P<0.05) inhibited heat-induced protein denaturation, stabilized hypotonicity-induced hemolysis of HRBC, scavenged DPPH, NO and H2O2 radicals in a concentration-dependent manner compared with other fractions in vitro. In addition, orally administered 50-250-mg/kg body weight (b.w.) aqueous fraction of A. boonei leaves suppressed carrageenan-induced rat paw edema thickness by 74.32%, 79.22% and 89.86% respectively at 6th h in a dose-dependent manner comparable with animals treated with standard diclofenac sodium (88.69%) in vivo. Furthermore, investigation of formaldehyde-induced inflammation in rats showed that 50-250 mg/kg b.w. aqueous fraction of A. boonei reduced plasma alanine aminotransferase and aspartate aminotransferase activities. Aqueous fraction of A. boonei also suppressed eosinophils, monocytes and basophils, total white blood cell, total platelet, neutrophil and lymphocyte counts and modulated plasma lipid profile compared with control group. Aqueous fraction of A. boonei leaves exhibited substantial active anti-inflammatory and antioxidant activities. Hence, an aqueous fraction of A. boonei leaves could be channeled towards pharmaceutical drug development. In addition, this study provided scientific insight to account for the traditional use of A. boonei leaves in ethnomedical practice.
Collapse
Affiliation(s)
- Omowumi O Akinnawo
- Department of Biochemistry, Benjamin S. Carson (Snr.) School of Medicine, Babcock University, Ilishan-Remo, Ogun State, PMB, 21244 Ikeja, Nigeria.
| | - God'swill N Anyasor
- Department of Biochemistry, Benjamin S. Carson (Snr.) School of Medicine, Babcock University, Ilishan-Remo, Ogun State, PMB, 21244 Ikeja, Nigeria.
| | - Odutola Osilesi
- Department of Biochemistry, Benjamin S. Carson (Snr.) School of Medicine, Babcock University, Ilishan-Remo, Ogun State, PMB, 21244 Ikeja, Nigeria.
| |
Collapse
|
50
|
Kleiderman S, Gutbier S, Ugur Tufekci K, Ortega F, Sá JV, Teixeira AP, Brito C, Glaab E, Berninger B, Alves PM, Leist M. Conversion of Nonproliferating Astrocytes into Neurogenic Neural Stem Cells: Control by FGF2 and Interferon-γ. Stem Cells 2016; 34:2861-2874. [PMID: 27603577 DOI: 10.1002/stem.2483] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/24/2016] [Accepted: 07/29/2016] [Indexed: 01/05/2023]
Abstract
Conversion of astrocytes to neurons, via de-differentiation to neural stem cells (NSC), may be a new approach to treat neurodegenerative diseases and brain injuries. The signaling factors affecting such a cell conversion are poorly understood, and they are hard to identify in complex disease models or conventional cell cultures. To address this question, we developed a serum-free, strictly controlled culture system of pure and homogeneous "astrocytes generated from murine embryonic stem cells (ESC)." These stem cell derived astrocytes (mAGES), as well as standard primary astrocytes resumed proliferation upon addition of FGF. The signaling of FGF receptor tyrosine kinase converted GFAP-positive mAGES to nestin-positive NSC. ERK phosphorylation was necessary, but not sufficient, for cell cycle re-entry, as EGF triggered no de-differentiation. The NSC obtained by de-differentiation of mAGES were similar to those obtained directly by differentiation of ESC, as evidenced by standard phenotyping, and also by transcriptome mapping, metabolic profiling, and by differentiation to neurons or astrocytes. The de-differentiation was negatively affected by inflammatory mediators, and in particular, interferon-γ strongly impaired the formation of NSC from mAGES by a pathway involving phosphorylation of STAT1, but not the generation of nitric oxide. Thus, two antagonistic signaling pathways were identified here that affect fate conversion of astrocytes independent of genetic manipulation. The complex interplay of the respective signaling molecules that promote/inhibit astrocyte de-differentiation may explain why astrocytes do not readily form neural stem cells in most diseases. Increased knowledge of such factors may provide therapeutic opportunities to favor such conversions. Stem Cells 2016;34:2861-2874.
Collapse
Affiliation(s)
- Susanne Kleiderman
- Department of Biology, The Doerenkamp-Zbinden Chair of in-vitro Toxicology and Biomedicine/Alternatives to Animal Experimentation, University of Konstanz, Konstanz, Germany
| | - Simon Gutbier
- Department of Biology, The Doerenkamp-Zbinden Chair of in-vitro Toxicology and Biomedicine/Alternatives to Animal Experimentation, University of Konstanz, Konstanz, Germany
| | - Kemal Ugur Tufekci
- Department of Biology, The Doerenkamp-Zbinden Chair of in-vitro Toxicology and Biomedicine/Alternatives to Animal Experimentation, University of Konstanz, Konstanz, Germany
- Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University, Inciralti, Izmir, Turkey
| | - Felipe Ortega
- Institute/Department of Physiological Chemistry, Research Group Adult Neurogenesis and Cellular Reprogramming, Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- Department of Biochemistry and Molecular Biology, Biochemistry and Molecular Biology Department, Faculty of Veterinary Medicine, Complutense University, Avenue Puerta de Hierro, Institute of Neurochemistry (IUIN), Spain and Health Research Institute of the Hospital Clinico San Carlos (IdISSC), Madrid, Spain
| | - João V Sá
- IBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Ana P Teixeira
- IBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Catarina Brito
- IBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Enrico Glaab
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Benedikt Berninger
- Institute/Department of Physiological Chemistry, Research Group Adult Neurogenesis and Cellular Reprogramming, Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Paula M Alves
- IBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Marcel Leist
- Department of Biology, The Doerenkamp-Zbinden Chair of in-vitro Toxicology and Biomedicine/Alternatives to Animal Experimentation, University of Konstanz, Konstanz, Germany
| |
Collapse
|