1
|
Zhang WL, Yu LP, Zhou W, Wang X, Du J. Exploring the oral bacteria-oral lichen planus connection: mechanisms, clinical implications and future directions. Arch Microbiol 2025; 207:143. [PMID: 40353891 DOI: 10.1007/s00203-025-04342-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/15/2025] [Accepted: 04/25/2025] [Indexed: 05/14/2025]
Abstract
Oral lichen planus (OLP) is a prevalent T-cell mediated inflammatory-immune disease with uncertain etiology. Recently, there is emerging evidence suggesting that oral bacteria may exert a prominent role in the onset and development of OLP. They might promote the initiation and progression of OLP by disrupting the oral epithelia, invading the lamina propria, stimulating pro-inflammatory cytokines production and inducing immune dysfunction. In this review, we will focus on the possible mechanisms of oral bacteria contributing to occurrence and development of OLP, and provide new insights into the bacteria-related diagnosis, prevention and treatment strategies for OLP.
Collapse
Affiliation(s)
- Wei-Long Zhang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Lian-Pin Yu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Wei Zhou
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xue Wang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Juan Du
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| |
Collapse
|
2
|
Yuan X, Wang J, Wang W, Song Y, Wu J, Du R. Microbiome alterations in primary Sjögren's syndrome: Regional dysbiosis and microbiome-targeted therapeutic strategies. Clin Immunol 2025; 273:110444. [PMID: 39947272 DOI: 10.1016/j.clim.2025.110444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/27/2025] [Accepted: 02/08/2025] [Indexed: 02/21/2025]
Abstract
Primary Sjögren's syndrome (pSS) is a complex autoimmune disease characterized by diverse clinical manifestations. While xerophthalmia and xerostomia are hallmark symptoms, the disease often involves multiple organ systems, including the kidneys, lungs, nervous system, and gastrointestinal tract, leading to systemic morbidity in severe cases. Despite extensive research, the precise pathogenesis of pSS remains unclear, likely involving infectious, hormonal, and genetic factors. Emerging evidence highlights the microbiome as a key contributor to autoimmune diseases, including pSS. Dysbiosis in the oral, ocular, gut, and genital microbiomes plays a critical role in disease onset, progression, and variability. This review summarizes current findings on microbiome alterations in pSS, emphasizing their role in pathogenesis and clinical features, and explores microbiome-targeted therapies. Understanding the role of the microbiome in pSS pathophysiology could advance disease management and inspire targeted therapeutic strategies.
Collapse
Affiliation(s)
- Xujing Yuan
- Department of Rheumatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Jun Wang
- Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Weiwei Wang
- Department of Rheumatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - You Song
- Department of Rheumatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Jiajia Wu
- Department of Rheumatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Rong Du
- Department of Rheumatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| |
Collapse
|
3
|
Nagi R, Kumar SS, Sheth M, Deshpande A, Khan J. Association between oral microbiome dysbiosis and Sjogren Syndrome. A systematic review of clinical studies. Arch Oral Biol 2025; 172:106167. [PMID: 39798503 DOI: 10.1016/j.archoralbio.2024.106167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/15/2025]
Abstract
OBJECTIVES This systematic review investigates the association of oral microbiome dysbiosis with Sjogren Syndrome (SS). MATERIALS AND METHODS Indexed databases (PubMed/Medline, EMBASE, OVID, Web of Science, and Scopus) were independently searched for relevant manuscripts published until August 2024. Clinical studies on oral microbial flora count and diversity in SS patients were included. Risk of bias across individual studies was performed using the Risk of Bias in Nonrandomized Studies of Interventions tool. RESULTS Out of the initial 295 studies, 15 clinical studies met the selection criteria. The protocols were similar across the studies but varied in diagnostic criteria for SS, salivary flow estimation methods, dental and periodontal status findings, and the type of oral microbes observed. Out of 15 studies, 14 showed an alteration in the oral microbiome and differences in microbial diversity in SS patients. Higher oral microbial counts of Prevotella, Viellonella, and Firmicutes in SS were reported, whereas a higher prevalence of caries-associated bacteria Streptococcus, Lactobacillus, and Viellonella was found in SS patients. Overall, the studies had a low risk of bias. CONCLUSIONS The findings of the present review have shown the existence of significant oral microbial dysbiosis and differences in microbial diversity in SS patients compared to healthy subjects. Future well-designed longitudinal studies are needed to validate the results.
Collapse
Affiliation(s)
- Ravleen Nagi
- Department of Orofacial Pain and TMJ Disorders, Eastman Institute for Oral Health, University of Rochester, NY, USA.
| | - Sanjana Santhosh Kumar
- Department of General Dentistry, Eastman Institute for Oral Health, University of Rochester, NY, USA.
| | - Megha Sheth
- Department of General Dentistry, Eastman Institute for Oral Health, University of Rochester, NY, USA.
| | - Ashwini Deshpande
- SRM Dental College, Bharathi Salai, Ramapuram, Chennai, Tamil Nadu, India
| | - Junad Khan
- Department of Orofacial Pain and TMJ Disorders, Eastman Institute for Oral Health, University of Rochester, NY, USA.
| |
Collapse
|
4
|
Nara M, Kurosawa M, Itsumi M, Morisaki H, Fukamachi H, Okahashi N, Suzuki N, Kuwata H. Experimental Murine Periodontitis Increases Salivary Gland IgA-Producing B Cells Following Oral Dysbiosis. Microbiol Immunol 2025; 69:114-127. [PMID: 39709535 PMCID: PMC11789210 DOI: 10.1111/1348-0421.13191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/23/2024]
Abstract
The oral microbiome is closely involved in the maintenance of host health and the development of systemic diseases. The salivary glands play an essential role in homeostasis in the oral cavity. Here, we investigated the effects of periodontal inflammation on salivary gland function and the oral microbiome. In experimental periodontitis model mice, an increase in IgA⁺ cells in the salivary glands were observed 1 week after treatment. Alteration of the oral microbiome was also induced in this model. Gene expression analysis of the salivary glands showed changes in the expression of genes related to B-cell maturation and plasma cell differentiation and an increase in the expression of genes related to macrophage activation upon experimental periodontitis induction. Furthermore, the relationship between disruption of oral microflora and salivary gland function was examined using a cohousing model in which experimental periodontitis model mice and untreated mice were reared in the same cage. We found that cohoused normal mice underwent alteration of the oral microbiome, with increases in IgA⁺ cells and macrophages in the salivary glands. In summary, our results suggest that, in the oral cavity, there is a close link between oral bacterial flora and immune cells in the salivary glands. Our results also show that localized inflammation disrupts the homeostasis in the oral cavity, inducing pathological conditions such as dysbiosis. Our study suggests the importance of the interaction among local oral inflammation, salivary gland function, and oral microflora, and provides new insights into the mechanisms by which oral health is maintained.
Collapse
Affiliation(s)
- Mai Nara
- Department of Conservative Dentistry, Division of EndodontologyShowa University Graduate School of DentistryOta‐kuTokyoJapan
- Department of Oral Microbiology and ImmunologyShowa University Graduate School of DentistryShinagawa‐kuTokyoJapan
| | - Mie Kurosawa
- Department of Oral Microbiology and ImmunologyShowa University Graduate School of DentistryShinagawa‐kuTokyoJapan
| | - Momoe Itsumi
- Department of Oral Microbiology and ImmunologyShowa University Graduate School of DentistryShinagawa‐kuTokyoJapan
| | - Hirobumi Morisaki
- Department of Oral Microbiology and ImmunologyShowa University Graduate School of DentistryShinagawa‐kuTokyoJapan
| | - Haruka Fukamachi
- Department of Oral Microbiology and ImmunologyShowa University Graduate School of DentistryShinagawa‐kuTokyoJapan
| | - Nobuo Okahashi
- Department of Oral Microbiology and ImmunologyShowa University Graduate School of DentistryShinagawa‐kuTokyoJapan
| | - Noriyuki Suzuki
- Department of Conservative Dentistry, Division of EndodontologyShowa University Graduate School of DentistryOta‐kuTokyoJapan
| | - Hirotaka Kuwata
- Department of Oral Microbiology and ImmunologyShowa University Graduate School of DentistryShinagawa‐kuTokyoJapan
| |
Collapse
|
5
|
Tseng YC, Liao KS, Lin WT, Li C, Chang CB, Hsu JW, Chan CP, Chen CM, Wang HP, Chien HC, Wang JT, Hsieh SC, Wu SF. A human oral commensal-mediated protection against Sjögren's syndrome with maintenance of T cell immune homeostasis and improved oral microbiota. NPJ Biofilms Microbiomes 2025; 11:18. [PMID: 39820778 PMCID: PMC11739518 DOI: 10.1038/s41522-025-00654-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025] Open
Abstract
Sjögren's syndrome (SS) is a prevalent systemic autoimmune disease with substantial impacts on women's health worldwide. Although oral Haemophilus parainfluenzae is reduced in SS, its significance remains unclear. This study aimed to elucidate the pathophysiological role of H. parainfluenzae in SS. Reduced salivary H. parainfluenzae levels in SS patients were confirmed through quantitative PCR. Oral H. parainfluenzae inoculation in NOD mice alleviated focal sialadenitis, improved salivary function, and reduced IFN-γ+CD3+ and IFN-γ+CD8+ T cells in salivary gland-draining lymph nodes, maintaining immune homeostasis against a biased type 1 response. Inoculation also enhanced salivary microbiota diversity, balanced the Firmicutes-to-Proteobacteria ratio, and reduced the overwhelming presence of Pseudomonas mendocina. In vitro, H. parainfluenzae-preconditioned A253 cells limited CD8 T cell expansion with reduced IFN-γ production. These findings suggest that H. parainfluenzae improves oral microbial diversity, promotes homeostatic T-cell immunity, and protects against SS, supporting its potential as a next-generation probiotic.
Collapse
Affiliation(s)
- Yu-Chao Tseng
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
- Department of Biomedical Sciences and Institute of Molecular Biology, National Chung Cheng University, Chiayi, Taiwan
| | - Kai-Sheng Liao
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Wei-Ting Lin
- Department Oral and Maxillofacial Surgery, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Chin Li
- Department of Biomedical Sciences and Institute of Molecular Biology, National Chung Cheng University, Chiayi, Taiwan
| | - Chia-Bin Chang
- Department of Urology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Jie-Wei Hsu
- Department of Biomedical Sciences and Institute of Molecular Biology, National Chung Cheng University, Chiayi, Taiwan
| | - Chin-Pui Chan
- Department of Biomedical Sciences and Institute of Molecular Biology, National Chung Cheng University, Chiayi, Taiwan
| | - Chun-Ming Chen
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Hon-Pin Wang
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Hsiu-Chuan Chien
- Department of Laboratory Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Jann-Tay Wang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Song-Chou Hsieh
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| | - Shu-Fen Wu
- Department of Biomedical Sciences and Institute of Molecular Biology, National Chung Cheng University, Chiayi, Taiwan.
- Epigenomics and Human Diseases Research Center, National Chung Cheng University, Chiayi, Taiwan.
| |
Collapse
|
6
|
Xu P, Shao R, Zhu P, Fei J, He Y. The Role of TRPV1/CGRP Pathway Activated by Prevotella melaninogenica in Pathogenesis of Oral Lichen Planus. Int J Mol Sci 2025; 26:662. [PMID: 39859376 PMCID: PMC11766222 DOI: 10.3390/ijms26020662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/06/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
The distinctive clinicopathologic characteristics of OLP indicated that both microbial dysbiosis and neurogenic inflammation may be jointly involved in its progression, and transient receptor potential vanilloid receptor-1 (TRPV1) may be a crucial element. The purpose of this study was to explore how TRPV1 mediated P. melaninogenica-induced inflammation. Meanwhile, we aimed to unravel how IL-36γ dysregulated the barrier function in oral keratinocytes. Here, the expression of TRPV1, calcitonin gene-related peptide (CGRP), and its receptor receptor activity-modifying protein 1 (RAMP1) in OLP patients were detected. Prevotella melaninogenica (P. melaninogenica) was used to build a mouse model of oral chronic inflammation. Normal human oral keratinocytes (NHOKs) stimulated by P. melaninogenica were used to examine TRPV1 activation and CGRP release. To investigate the effect of exogenous CGRP on Interleukin-36 gamma (IL-36γ) expression in NHOKs and bacterial viability, P. melaninogenica and NHOKs were treated with it, respectively. Recombinant IL-36γ protein was used to probe its regulation of oral epithelial barrier function. TRPV1, CGRP, and RAMP1 were substantially expressed in OLP. P. melaninogenica increased TRPV1 expression in mice and caused the release of CGRP and an increase in pro-inflammatory cytokines via activating TRPV1 in NHOKs. Blockade of TRPV1 suppressed P. melaninogenica-induced inflammation. CGRP boosted the production of IL-36γ released by NHOKs, resulting in lower expression of zonula occludens-1 (ZO-1). Also, CGRP can decrease the viability of P. melaninogenica. Together, these findings provide fresh insight into the vital role performed by P. melaninogenica-induced functional changes in oral epithelial cells and neurons in an intricate OLP inflammatory process.
Collapse
Affiliation(s)
- Pan Xu
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Oral Mucosal Diseases, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China; (P.X.); (R.S.); (P.Z.)
| | - Ruru Shao
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Oral Mucosal Diseases, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China; (P.X.); (R.S.); (P.Z.)
| | - Pingyi Zhu
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Oral Mucosal Diseases, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China; (P.X.); (R.S.); (P.Z.)
| | - Jian Fei
- School of Life Science and Technology, Tongji University, Shanghai 200072, China
| | - Yuan He
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Oral Mucosal Diseases, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China; (P.X.); (R.S.); (P.Z.)
| |
Collapse
|
7
|
Zhang Q, Li X, Wang Z, Shen S, Wang J, Chen J, Shi X, Wang S, Cao J, Deng Y, Meng H, Ma L. A pilot study of the relationship between salivary microbial characteristics and endocrine and immune function in patients with burning mouth syndrome. Clin Oral Investig 2024; 29:11. [PMID: 39663251 DOI: 10.1007/s00784-024-06102-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/05/2024] [Indexed: 12/13/2024]
Abstract
OBJECTIVES To explore the potential role of oral bacteria in the pathogenesis of burning mouth syndrome (BMS). MATERIALS AND METHODS Fifteen patients with BMS and 15 healthy controls were enrolled in this study. The relative abundance and diversity of salivary bacterial strains were analyzed using metagenomic DNA sequencing. The functionality of non-redundant genes was obtained by comparing the mmseqs2 with the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. BMS relating salivary protein markers were detected using enzyme-linked immunosorbent assay (ELISA). RESULTS Partial least-squares discriminant analysis (PLS-DA) revealed that the salivary bacterial profiles of the BMS group (mean age: 38.9 ± 2.2 years) differed significantly from those of the control group (mean age: 34.1 ± 2.3 years) in terms of the abundance of dominant phyla, classes, orders, families, genera and species. Functional analysis revealed distinct endocrine and immune functions in the BMS group. The salivary cortisol and α-amylase levels were significantly higher, and salivary interleukn-6 levels were significantly lower in the BMS group than in the control group. Species contribution analysis of endocrine and immune functions revealed that Streptococcus mitis was an important contributor to endocrine and immune functions in the BMS group. CONCLUSIONS Salivary dysbiosis related to endocrine and immune functions may be a possible cause of BMS. CLINICAL RELEVANCE These findings could assist in the diagnosis and therapy of BMS. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Qianqian Zhang
- Department of Stomatology, Shenzhen University General Hospital, Shenzhen University, 1098 Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong, 518055, China
- Institute of Stomatological Research, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Xinghan Li
- Department of Stomatology, Shenzhen University General Hospital, Shenzhen University, 1098 Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong, 518055, China
- Institute of Stomatological Research, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Zhiyi Wang
- School of Stomatology, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Shijiao Shen
- School of Stomatology, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Junzhe Wang
- School of Stomatology, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Junyang Chen
- School of Medicine, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Xiaoran Shi
- School of Medicine, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Shichen Wang
- Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Jun Cao
- Department of Stomatology, Shenzhen University General Hospital, Shenzhen University, 1098 Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong, 518055, China
- Institute of Stomatological Research, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Yongqiang Deng
- Department of Stomatology, Shenzhen University General Hospital, Shenzhen University, 1098 Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong, 518055, China
- Institute of Stomatological Research, Shenzhen University, Shenzhen, Guangdong, 518055, China
- School of Stomatology, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - He Meng
- Department of Stomatology, Shenzhen University General Hospital, Shenzhen University, 1098 Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong, 518055, China.
- Institute of Stomatological Research, Shenzhen University, Shenzhen, Guangdong, 518055, China.
- School of Stomatology, Shenzhen University, Shenzhen, Guangdong, 518055, China.
| | - Lin Ma
- Department of Stomatology, Shenzhen University General Hospital, Shenzhen University, 1098 Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong, 518055, China.
- Institute of Stomatological Research, Shenzhen University, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
8
|
Ryu EP, Gautam Y, Proctor DM, Bhandari D, Tandukar S, Gupta M, Gautam GP, Relman DA, Shibl AA, Sherchand JB, Jha AR, Davenport ER. Nepali oral microbiomes reflect a gradient of lifestyles from traditional to industrialized. MICROBIOME 2024; 12:228. [PMID: 39497165 PMCID: PMC11533410 DOI: 10.1186/s40168-024-01941-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/27/2024] [Indexed: 11/06/2024]
Abstract
BACKGROUND Lifestyle plays an important role in shaping the gut microbiome. However, its contributions to the oral microbiome remain less clear, due to the confounding effects of geography and methodology in investigations of populations studied to date. Furthermore, while the oral microbiome seems to differ between foraging and industrialized populations, we lack insight into whether transitions to and away from agrarian lifestyles shape the oral microbiota. Given the growing interest in so-called "vanishing microbiomes" potentially being a risk factor for increased disease prevalence in industrialized populations, it is important that we distinguish lifestyle from geography in the study of microbiomes across populations. RESULTS Here, we investigate salivary microbiomes of 63 Nepali individuals representing a spectrum of lifestyles: foraging, subsistence farming (individuals that transitioned from foraging to farming within the last 50 years), agriculturalists (individuals that have transitioned to farming for at least 300 years), and industrialists (expatriates that immigrated to the USA within the last 20 years). We characterize the role of lifestyle in microbial diversity, identify microbes that differ between lifestyles, and pinpoint specific lifestyle factors that may be contributing to differences in the microbiomes across populations. Contrary to prevailing views, when geography is controlled for, oral microbiome alpha diversity does not differ significantly across lifestyles. Microbiome composition, however, follows the gradient of lifestyles from foraging through agrarianism to industrialism, supporting the notion that lifestyle indeed plays a role in the oral microbiome. Relative abundances of several individual taxa, including Streptobacillus and an unclassified Porphyromonadaceae genus, also mirror lifestyle. Finally, we identify specific lifestyle factors associated with microbiome composition across the gradient of lifestyles, including smoking and grain sources. CONCLUSION Our findings demonstrate that by studying populations within Nepal, we can isolate an important role of lifestyle in determining oral microbiome composition. In doing so, we highlight the potential contributions of several lifestyle factors, underlining the importance of carefully examining the oral microbiome across lifestyles to improve our understanding of global microbiomes. Video Abstract.
Collapse
Affiliation(s)
- Erica P Ryu
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Yoshina Gautam
- Genetic Heritage Group, Program in Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Diana M Proctor
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dinesh Bhandari
- Public Health Research Laboratory, Institute of Medicine, Maharajgunj, Kathmandu, Nepal
- School of Public Health, University of Adelaide, Adelaide, SA, Australia
| | - Sarmila Tandukar
- Public Health Research Laboratory, Institute of Medicine, Maharajgunj, Kathmandu, Nepal
- Organization for Public Health and Environment Management, Lalitpur, Bagmati, Nepal
| | - Meera Gupta
- Department of Biology, Pennsylvania State University, University Park, PA, USA
- Sidney Kimmel Medical College, Philadelphia, PA, UAE
| | | | - David A Relman
- Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
- Section of Infectious Diseases, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Ahmed A Shibl
- Genetic Heritage Group, Program in Biology, New York University Abu Dhabi, Abu Dhabi, UAE
- Center for Genomics and Systems Biology, and Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, UAE
| | | | - Aashish R Jha
- Genetic Heritage Group, Program in Biology, New York University Abu Dhabi, Abu Dhabi, UAE.
- Center for Genomics and Systems Biology, and Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, UAE.
| | - Emily R Davenport
- Department of Biology, Pennsylvania State University, University Park, PA, USA.
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
9
|
Hara A, Watanabe T, Minaga K, Yoshikawa T, Kurimoto M, Sekai I, Masuta Y, Takada R, Otsuka Y, Kamata K, Takamura S, Kudo M, Strober W. A positive cytokine/chemokine feedback loop establishes plasmacytoid DC-driven autoimmune pancreatitis in IgG4-related disease. JCI Insight 2024; 9:e167910. [PMID: 39264798 PMCID: PMC11529986 DOI: 10.1172/jci.insight.167910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 09/10/2024] [Indexed: 09/14/2024] Open
Abstract
The pathogenesis of the murine model of autoimmune pancreatitis associated with IgG4-related disease (AIP/IgG4-RD) induced by administration of polyinosinic-polycytidylic acid (poly[I:C]) is incompletely understood. While it is known that murine and human AIP/IgG4-RD is driven by plasmacytoid dendritic cells (pDCs) producing IFN-α, the origin of these cells and their relation to effector T cells is not known. Here, we show that murine AIP was initiated by TLR3-bearing conventional DCs in the uninflamed pancreas whose activation by the TLR3 ligand poly(I:C) caused IFN-α, CXCL9, and CXCL10 secretion. This, in turn, induced pancreatic recruitment of CXCR3+ T cells and these T cells, via their secretion of CCL25, facilitated migration of pDCs bearing CCR9 into the pancreas. This established a feedback loop anchored by the now dominant pDC production of IFN-α and the continued CXCR3+ T cell facilitation of pDC migration. Remarkably, the interaction between CXCR3+ T cells and pDCs also existed at the functional level since this interaction enhanced the production of CCL25 and IFN-α by CXCR3+ T cells and pDCs, respectively. Evidence presented here that a similar disease mechanism was present in human AIP/IgG4-RD creates new avenues of disease treatment.
Collapse
Affiliation(s)
- Akane Hara
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Tomohiro Watanabe
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Kosuke Minaga
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Tomoe Yoshikawa
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Masayuki Kurimoto
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Ikue Sekai
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Yasuhiro Masuta
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Ryutaro Takada
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Yasuo Otsuka
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Ken Kamata
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Shiki Takamura
- Laboratory for Immunological Memory, RIKEN IMS Center for Integrative Medical Science, Yokohama, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Warren Strober
- Mucosal Immunity Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| |
Collapse
|
10
|
Ryu EP, Gautam Y, Proctor DM, Bhandari D, Tandukar S, Gupta M, Gautam GP, Relman DA, Shibl AA, Sherchand JB, Jha AR, Davenport ER. Nepali oral microbiomes reflect a gradient of lifestyles from traditional to industrialized. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601557. [PMID: 39005279 PMCID: PMC11244963 DOI: 10.1101/2024.07.01.601557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Background Lifestyle plays an important role in shaping the gut microbiome. However, its contributions to the oral microbiome remains less clear, due to the confounding effects of geography and methodology in investigations of populations studied to date. Furthermore, while the oral microbiome seems to differ between foraging and industrialized populations, we lack insight into whether transitions to and away from agrarian lifestyles shape the oral microbiota. Given the growing interest in so-called 'vanishing microbiomes' potentially being a risk factor for increased disease prevalence in industrialized populations, it is important that we distinguish lifestyle from geography in the study of microbiomes across populations. Results Here, we investigate salivary microbiomes of 63 Nepali individuals representing a spectrum of lifestyles: foraging, subsistence farming (individuals that transitioned from foraging to farming within the last 50 years), agriculturalists (individuals that have transitioned to farming for at least 300 years), and industrialists (expatriates that immigrated to the United States within the last 20 years). We characterize the role of lifestyle in microbial diversity, identify microbes that differ between lifestyles, and pinpoint specific lifestyle factors that may be contributing to differences in the microbiomes across populations. Contrary to prevailing views, when geography is controlled for, oral microbiome alpha diversity does not differ significantly across lifestyles. Microbiome composition, however, follows the gradient of lifestyles from foraging through agrarianism to industrialism, supporting the notion that lifestyle indeed plays a role in the oral microbiome. Relative abundances of several individual taxa, including Streptobacillus and an unclassified Porphyromonadaceae genus, also mirror lifestyle. Finally, we identify specific lifestyle factors associated with microbiome composition across the gradient of lifestyles, including smoking and grain source. Conclusion Our findings demonstrate that by controlling for geography, we can isolate an important role for lifestyle in determining oral microbiome composition. In doing so, we highlight the potential contributions of several lifestyle factors, underlining the importance of carefully examining the oral microbiome across lifestyles to improve our understanding of global microbiomes.
Collapse
Affiliation(s)
- Erica P. Ryu
- Department of Biology, Pennsylvania State University, University Park, PA
| | - Yoshina Gautam
- Genetic Heritage Group, Program in Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Diana M. Proctor
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Dinesh Bhandari
- Public Health Research Laboratory, Institute of Medicine, Maharajgunj, Kathmandu, Nepal
- School of Public Health, University of Adelaide, South Australia, Australia
| | - Sarmila Tandukar
- Public Health Research Laboratory, Institute of Medicine, Maharajgunj, Kathmandu, Nepal
- Organization for Public Health and Environment Management, Lalitpur, Bagmati, Nepal
| | - Meera Gupta
- Department of Biology, Pennsylvania State University, University Park, PA
| | | | - David A. Relman
- Departments of Medicine, and of Microbiology & Immunology, Stanford University, Stanford, CA
- Section of Infectious Diseases, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA
| | - Ahmed A. Shibl
- Genetic Heritage Group, Program in Biology, New York University Abu Dhabi, Abu Dhabi, UAE
- Center for Genomics and Systems Biology, and Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, UAE
| | | | - Aashish R. Jha
- Genetic Heritage Group, Program in Biology, New York University Abu Dhabi, Abu Dhabi, UAE
- Center for Genomics and Systems Biology, and Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Emily R. Davenport
- Department of Biology, Pennsylvania State University, University Park, PA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA
| |
Collapse
|
11
|
Xie Y, Fan Y, Su M, Wang Y, Zhang G. Characteristics of the oral microbiota in patients with primary Sjögren's syndrome. Clin Rheumatol 2024; 43:1939-1947. [PMID: 38602612 DOI: 10.1007/s10067-024-06958-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/28/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
OBJECTIVE Primary Sjögren's syndrome (pSS) is an autoimmune disease with unknown etiology that is considered to be related to environmental and genetic factors. The aim of this study was to clarify the oral microflora characteristics of pSS patients and to reveal the connection between oral bacterial composition and dental caries using a high-throughput sequencing technique. METHODS Thirty-five pSS patients and 20 healthy controls were enrolled in this study. We collected saliva and plaque samples from pSS patients and saliva samples from healthy controls. We used 16S ribosomal DNA (16S rDNA) high-throughput sequencing targeting the V3-V4 hypervariable region to determine the composition and structure of the microbiota in the three sample sets. Finally, bioinformatics analyses, including the diversity of the microbiota, species differences, and functional prediction were performed. RESULTS In the alpha diversity and beta diversity analysis, the Chao1 (P < 0.01), observed species (P < 0.01), and PD whole tree indices (P < 0.01) were significantly lower in the saliva and plaque samples of pSS patients than in the saliva samples of healthy controls, but the Shannon (P < 0.01) and Simpson indices (P < 0.01) were significantly higher in the healthy controls, and their total diversity significantly differed. In the main flora composition at the genus level (top 10), we identified Prevotella and Veillonella as more enriched in the saliva of pSS patients and Fusobacterium, Actinomyces, and Leptotrichia as more enriched in the plaque of pSS patients. Predictive functional analysis showed that the oral microbiota of pSS patients was related to translation, metabolism of cofactors and vitamins, and nucleotide metabolism. CONCLUSIONS The oral microbial ecology of patients with pSS is dysregulated, resulting in a decrease in overall diversity. Prevotella and Veillonella may be related to pSS, while Fusobacterium, Actinomyces, and Leptotrichia may be related to dental caries in pSS patients. Key Points • This study revealed differences in the oral microbial composition of patients with pSS compared to healthy controls. • We included a plaque group of pSS patients to identify the microbiota related to pSS and dental caries. • Prevotella and Veillonella may contribute to pSS, and Fusobacterium, Actinomyces, and Leptotrichia are associated with dental caries in pSS patients.
Collapse
Affiliation(s)
- Yiwen Xie
- Department of Stomatology, Shantou Central Hospital, Shantou, 515041, China.
| | - Yu Fan
- Department of Pathology, Shantou University Medical College, Shantou, 515041, China
| | - Miaotong Su
- Department of Pathology, Shantou University Medical College, Shantou, 515041, China
| | - Yukai Wang
- Department of Rheumatology and Immunology, Shantou Central Hospital, Shantou, 515041, China
| | - Guohong Zhang
- Department of Pathology, Shantou University Medical College, Shantou, 515041, China.
| |
Collapse
|
12
|
Xi Y, Yu M, Li X, Zeng X, Li J. The coming future: The role of the oral-microbiota-brain axis in aroma release and perception. Compr Rev Food Sci Food Saf 2024; 23:e13303. [PMID: 38343293 DOI: 10.1111/1541-4337.13303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 02/15/2024]
Abstract
The field of aroma release and perception during the oral process has been well studied. However, the traditional approaches have not fully explored the integration of oral biology, microbiology, and neurology to further understand aroma release and perception mechanisms. Herein, to address the existing challenges in this field, we introduce the oral-microbiota-brain axis (OMBA), an innovative framework that encapsulates the interactive relationships among saliva and the oral mucosa, the oral microbiota, and the brain in aroma release and perception. This review introduces the OMBA and highlights its role as a key interface facilitating the sensory experience of aroma. Based on a comprehensive literature survey, the specific roles of the oral mucosa, oral microbiota, saliva, and brain in the OMBA are discussed. This integrated approach reveals the importance of each component and the interconnected relationships within this axis in the overall process of aroma release and perception. Saliva and the oral mucosa play fundamental roles in aroma release and perception; the oral microbiota regulates aroma release and impacts olfactory perception; and the brain's intricate neural circuitry is central to the decoding and interpretation of aroma signals. The components of this axis are interdependent, and imbalances can disrupt aroma perception. The OMBA framework not only enhances our comprehension of aroma release and perception but also paves the way for innovative applications that could heighten sensory experiences.
Collapse
Affiliation(s)
- Yu Xi
- Laboratory of Green and Low-carbon Processing Technology for Plant-based Food of China National Light Industry Council, and Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Meihong Yu
- Laboratory of Green and Low-carbon Processing Technology for Plant-based Food of China National Light Industry Council, and Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Xuejie Li
- Laboratory of Green and Low-carbon Processing Technology for Plant-based Food of China National Light Industry Council, and Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Xiangquan Zeng
- Laboratory of Green and Low-carbon Processing Technology for Plant-based Food of China National Light Industry Council, and Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Jian Li
- Laboratory of Green and Low-carbon Processing Technology for Plant-based Food of China National Light Industry Council, and Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
13
|
Ria F, Delogu G, Ingrosso L, Sali M, Di Sante G. Secrets and lies of host-microbial interactions: MHC restriction and trans-regulation of T cell trafficking conceal the role of microbial agents on the edge between health and multifactorial/complex diseases. Cell Mol Life Sci 2024; 81:40. [PMID: 38216734 PMCID: PMC11071949 DOI: 10.1007/s00018-023-05040-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/04/2023] [Accepted: 11/06/2023] [Indexed: 01/14/2024]
Abstract
Here we critically discuss data supporting the view that microbial agents (pathogens, pathobionts or commensals alike) play a relevant role in the pathogenesis of multifactorial diseases, but their role is concealed by the rules presiding over T cell antigen recognition and trafficking. These rules make it difficult to associate univocally infectious agents to diseases' pathogenesis using the paradigm developed for canonical infectious diseases. (Cross-)recognition of a variable repertoire of epitopes leads to the possibility that distinct infectious agents can determine the same disease(s). There can be the need for sequential infection/colonization by two or more microorganisms to develop a given disease. Altered spreading of infectious agents can determine an unwanted activation of T cells towards a pro-inflammatory and trafficking phenotype, due to differences in the local microenvironment. Finally, trans-regulation of T cell trafficking allows infectious agents unrelated to the specificity of T cell to modify their homing to target organs, thereby driving flares of disease. The relevant role of microbial agents in largely prevalent diseases provides a conceptual basis for the evaluation of more specific therapeutic approaches, targeted to prevent (vaccine) or cure (antibiotics and/or Biologic Response Modifiers) multifactorial diseases.
Collapse
Affiliation(s)
- F Ria
- Department of Translational Medicine and Surgery, Section of General Pathology, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - G Delogu
- Mater Olbia Hospital, 07026, Olbia, Italy
- Department of Biotechnological, Basic, Intensivological and Perioperatory Sciences-Section of Microbiology, Università Cattolica del S Cuore, 00168, Rome, Italy
| | - L Ingrosso
- Department Infectious Diseases, Istituto Superiore di Sanità, 00161, Rome, Italy
- European Program for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - M Sali
- Department of Biotechnological, Basic, Intensivological and Perioperatory Sciences-Section of Microbiology, Università Cattolica del S Cuore, 00168, Rome, Italy
- Department of Laboratory and Infectivology Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - G Di Sante
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 60132, Perugia, Italy.
| |
Collapse
|
14
|
Felten R, Ye T, Schleiss C, Schwikowski B, Sibilia J, Monneaux F, Dumortier H, Jonsson R, Lessard C, Ng F, Takeuchi T, Mariette X, Gottenberg JE. Identification of new candidate drugs for primary Sjögren's syndrome using a drug repurposing transcriptomic approach. Rheumatology (Oxford) 2023; 62:3715-3723. [PMID: 36869684 PMCID: PMC10629788 DOI: 10.1093/rheumatology/kead096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/01/2023] [Accepted: 02/14/2023] [Indexed: 03/05/2023] Open
Abstract
OBJECTIVES To date, no immunomodulatory drug has demonstrated its efficacy in primary SS (pSS). We sought to analyse potential commonalities between pSS transcriptomic signatures and signatures of various drugs or specific knock-in or knock-down genes. METHODS Gene expression from peripheral blood samples of patients with pSS was compared with that of healthy controls in two cohorts and three public databases. In each of the five datasets, we analysed the 150 most up- and downregulated genes between pSS patients and controls with regard to the differentially expressed genes resulting from the biological action on nine cell lines of 2837 drugs, 2160 knock-in and 3799 knock-down genes in the Connectivity Map database. RESULTS We analysed 1008 peripheral blood transcriptomes from five independent studies (868 patients with pSS and 140 healthy controls). Eleven drugs could represent potential candidate drugs, with histone deacetylases and PI3K inhibitors among the most significantly associated. Twelve knock-in genes were associated with a pSS-like profile and 23 knock-down genes were associated with a pSS-revert profile. Most of those genes (28/35, 80%) were interferon-regulated. CONCLUSION This first drug repositioning transcriptomic approach in SS confirms the interest of targeting interferons and identifies histone deacetylases and PI3K inhibitors as potential therapeutic targets.
Collapse
Affiliation(s)
- Renaud Felten
- Service de Rhumatologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Laboratoire d’Immunologie, Immunopathologie et Chimie Thérapeutique, Institut de Biologie Moléculaire et Cellulaire (IBMC), CNRS UPR3572, Strasbourg, France
- RESO, Centre de Référence des Maladies Autoimmunes Systémiques Rares Est Sud-Ouest, Strasbourg, France
| | - Tao Ye
- IGBMC, CNRS UMR7104, Inserm U1258, Université de Strasbourg, Illkirch, France
| | - Cedric Schleiss
- Laboratoire d’Immunologie, Immunopathologie et Chimie Thérapeutique, Institut de Biologie Moléculaire et Cellulaire (IBMC), CNRS UPR3572, Strasbourg, France
| | - Benno Schwikowski
- Computational Systems Biomedicine Lab, Institut Pasteur, Paris, France
| | - Jean Sibilia
- Service de Rhumatologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- RESO, Centre de Référence des Maladies Autoimmunes Systémiques Rares Est Sud-Ouest, Strasbourg, France
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, Université de Strasbourg, Strasbourg, France
| | - Fanny Monneaux
- Laboratoire d’Immunologie, Immunopathologie et Chimie Thérapeutique, Institut de Biologie Moléculaire et Cellulaire (IBMC), CNRS UPR3572, Strasbourg, France
| | - Hélène Dumortier
- Laboratoire d’Immunologie, Immunopathologie et Chimie Thérapeutique, Institut de Biologie Moléculaire et Cellulaire (IBMC), CNRS UPR3572, Strasbourg, France
| | - Roland Jonsson
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Christopher Lessard
- Department of Pathology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Fai Ng
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
| | - Tsutomu Takeuchi
- Division of Rheumatology and Clinical Immunology, Keio University, Tokyo, Japan
| | - Xavier Mariette
- Service de Rhumatologie, Hôpital Bicètre, APHP, Université Paris-Saclay, Paris, France
| | - Jacques-Eric Gottenberg
- Service de Rhumatologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Laboratoire d’Immunologie, Immunopathologie et Chimie Thérapeutique, Institut de Biologie Moléculaire et Cellulaire (IBMC), CNRS UPR3572, Strasbourg, France
- RESO, Centre de Référence des Maladies Autoimmunes Systémiques Rares Est Sud-Ouest, Strasbourg, France
| |
Collapse
|
15
|
Bustos-Lobato L, Rus MJ, Saúco C, Simon-Soro A. Oral microbial biomap in the drought environment: Sjogren's syndrome. Mol Oral Microbiol 2023; 38:400-407. [PMID: 37767604 DOI: 10.1111/omi.12435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
Sjogren's syndrome (SS) is an autoimmune disease that affects primarily the salivary glands, making perturbations in the oral ecosystem and potential factors of salivary flow that influence the onset and development of the disease. The oral cavity contains diverse microorganisms that inhabit various niches such as the oral microbial "biomap." It does not seem specific enough to establish a characteristic microbiome, given the diversity of clinical manifestations, variable rates of salivary secretion, and influential risk factors in patients with SS. This review discusses the biogeography of the oral microbiome in patients with SS such as saliva, tongue, tooth, mucosa, and gum. The microorganisms that were more abundant in the different oral niches were Gram-positive species, suggesting a higher survival of cell wall bacteria in this arid oral environment. Reduced salivary flow appears not to be linked to the cause of dysbiosis alone but influences host-associated risk factors. However, much work remains to be done to establish the role of the microbiome in the etiopathogenesis of autoimmune diseases such as SS. Future studies of the microbiome in autoimmunity will shed light on the role of specific microorganisms that have never been linked before with SS.
Collapse
Affiliation(s)
- Laura Bustos-Lobato
- Facultad de Odontología, Departamento de Estomatología, Universidad de Sevilla, Sevilla, Spain
| | - Maria J Rus
- Facultad de Odontología, Departamento de Estomatología, Universidad de Sevilla, Sevilla, Spain
| | - Carlos Saúco
- Facultad de Odontología, Departamento de Estomatología, Universidad de Sevilla, Sevilla, Spain
| | - Aurea Simon-Soro
- Facultad de Odontología, Departamento de Estomatología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
16
|
Acharya S, Lee A, Kim H, Kim HJ, Choi Y. Requirements for anti-aquaporin 5 autoantibody production in a mouse model. Mol Oral Microbiol 2023; 38:442-453. [PMID: 37718989 DOI: 10.1111/omi.12430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 09/19/2023]
Abstract
Several oral bacteria, including Prevotella melaninogenica (Pm), have aquaporin (AQP) proteins homologous to human AQP5, a major water channel protein targeted in Sjogren's syndrome. This study aimed to understand the antigenic characteristics that induce autoantibodies against an AQP5 "E" epitope (AQP5E) in a mouse model using C57BL/6 mice. Immunization with a PmE-L peptide derived from Pm AQP, which contains amino acid mismatches both at the B- and T-cell epitopes, efficiently induced anti-AQP5E autoantibodies accompanied by increased germinal center (GC) B and follicular helper T cells in the draining lymph nodes. However, PmE, a peptide lacking a T-cell epitope, and AQP5E-L, an AQP5-derived self-peptide, hardly induced either anti-AQP5E autoantibodies or GC responses. Surprisingly, OTII-AQP5E, a peptide that replaced the self T-cell epitope of AQP5E-L with an ovalbumin-derived foreign T-cell epitope, was not any better than AQP5E-L in the induction of anti-AQP5E autoantibodies and GC response, despite the substantial expansion of CD4+ T cells and production of anti-OTII-AQP5E antibodies. The complex of biotinylated PmE-L peptide and highly immunogenic streptavidin (SA) induced a strong extrafollicular B-cell response skewed toward the expansion of SA-specific B cells. However, the expansion of AQP5E-specific GC B cells was limited, resulting in the inefficient induction of anti-AQP5E autoantibodies. Collectively, our results have demonstrated that anti-AQP5E autoantibody production is only allowed when foreign B- and T-cell epitopes drive a strong GC response of AQP5E-specific B cells for affinity maturation. This study helps explain why cross-reactive anti-AQP5 autoantibodies are not produced during the immune response to Pm in most healthy people.
Collapse
Affiliation(s)
- Sabin Acharya
- Department of Immunology and Molecular Microbiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Ahreum Lee
- Department of Immunology and Molecular Microbiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Hyunjin Kim
- Department of Immunology and Molecular Microbiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Hyeong-Jin Kim
- Department of Immunology and Molecular Microbiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Youngnim Choi
- Department of Immunology and Molecular Microbiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
17
|
Mieliauskaitė D, Kontenis V. Insights into Microbiota in Sjögren's Syndrome. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1661. [PMID: 37763780 PMCID: PMC10535499 DOI: 10.3390/medicina59091661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/04/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023]
Abstract
Primary Sjögren's syndrome (pSS) is a heterogeneous chronic autoimmune disorder with multiple clinical manifestations that can develop into non-Hodgkin's lymphoma in mucosa-associated lymphoid tissue. The pathogenesis of Sjögren's syndrome (SS) is not completely understood, but it is assumed that pathogenesis of SS is multifactorial. The microbiota plays a notable role in the development of autoimmune disorders, including Sjögren's syndrome. Molecular mimicry, metabolite changes and epithelial tolerance breakdown are pathways that might help to clarify the potential contribution of the microbiota to SS pathogenesis. This review aims to provide an overview of recent studies describing microbiota changes and microbiota mechanisms associated with Sjögren's syndrome. Data on the microbiota in SS from PubMed, Web of Science, Scopus and the Cochrane Library databases are summarized. Overall, the microbiota makes a major contribution to the development of Sjögren's syndrome and progression. Future microbiota studies should improve the management of this heterogeneous autoimmune disease.
Collapse
Affiliation(s)
- Diana Mieliauskaitė
- State Research Institute Center for Innovative Medicine, Department of Experimental, Preventive and Clinical Medicine, Santariskių St. 5, LT-08405 Vilnius, Lithuania;
| | | |
Collapse
|
18
|
Mosaddad SA, Mahootchi P, Safari S, Rahimi H, Aghili SS. Interactions between systemic diseases and oral microbiota shifts in the aging community: A narrative review. J Basic Microbiol 2023. [PMID: 37173818 DOI: 10.1002/jobm.202300141] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/23/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023]
Abstract
As a gateway to general health and a diverse microbial habitat, the oral cavity is colonized by numerous microorganisms such as bacteria, fungi, viruses, and archaea. Oral microbiota plays an essential role in preserving oral health. Besides, the oral cavity also significantly contributes to systemic health. Physiological aging influences all body systems, including the oral microbial inhabitants. The cited effect can cause diseases by forming dysbiotic communities. Since it has been demonstrated that microbial dysbiosis could disturb the symbiosis state between the host and the resident microorganism, shifting the condition toward a more pathogenic one, this study investigated how the oral microbial shifts in aging could associate with the development or progression of systemic diseases in older adults. The current study focused on the interactions between variations in the oral microbiome and prevalent diseases in older adults, including diabetes mellitus, Sjögren's syndrome, rheumatoid arthritis, pulmonary diseases, cardiovascular diseases, oral candidiasis, Parkinson's disease, Alzheimer's disease, and glaucoma. Underlying diseases can dynamically modify the oral ecology and the composition of its resident oral microbiome. Clinical, experimental, and epidemiological research suggests the associations of systemic disorders with bacteremia and inflammation after oral microbial changes in older adults.
Collapse
Affiliation(s)
- Seyed Ali Mosaddad
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pegah Mahootchi
- Department of Oral and Maxillofacial Diseases, School of Dentistry, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Sajedeh Safari
- Department of Prosthodontics, Islamic Azad University, Tehran, Iran
| | - Hussein Rahimi
- Student Research Committee, School of Dentistry, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Seyedeh Sara Aghili
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
19
|
Huang X, Huang X, Huang Y, Zheng J, Lu Y, Mai Z, Zhao X, Cui L, Huang S. The oral microbiome in autoimmune diseases: friend or foe? J Transl Med 2023; 21:211. [PMID: 36949458 PMCID: PMC10031900 DOI: 10.1186/s12967-023-03995-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/15/2023] [Indexed: 03/24/2023] Open
Abstract
The human body is colonized by abundant and diverse microorganisms, collectively known as the microbiome. The oral cavity has more than 700 species of bacteria and consists of unique microbiome niches on mucosal surfaces, on tooth hard tissue, and in saliva. The homeostatic balance between the oral microbiota and the immune system plays an indispensable role in maintaining the well-being and health status of the human host. Growing evidence has demonstrated that oral microbiota dysbiosis is actively involved in regulating the initiation and progression of an array of autoimmune diseases.Oral microbiota dysbiosis is driven by multiple factors, such as host genetic factors, dietary habits, stress, smoking, administration of antibiotics, tissue injury and infection. The dysregulation in the oral microbiome plays a crucial role in triggering and promoting autoimmune diseases via several mechanisms, including microbial translocation, molecular mimicry, autoantigen overproduction, and amplification of autoimmune responses by cytokines. Good oral hygiene behaviors, low carbohydrate diets, healthy lifestyles, usage of prebiotics, probiotics or synbiotics, oral microbiota transplantation and nanomedicine-based therapeutics are promising avenues for maintaining a balanced oral microbiome and treating oral microbiota-mediated autoimmune diseases. Thus, a comprehensive understanding of the relationship between oral microbiota dysbiosis and autoimmune diseases is critical for providing novel insights into the development of oral microbiota-based therapeutic approaches for combating these refractory diseases.
Collapse
Affiliation(s)
- Xiaoyan Huang
- Department of Preventive Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, No.366 Jiangnan Da Dao Nan, Guangzhou, 510280, China
| | - Xiangyu Huang
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, No.366 Jiangnan Da Dao Nan, Guangzhou, 510280, China
| | - Yi Huang
- Department of Preventive Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, No.366 Jiangnan Da Dao Nan, Guangzhou, 510280, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Ye Lu
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, Guangzhou, 510280, China
| | - Zizhao Mai
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Xinyuan Zhao
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, No.366 Jiangnan Da Dao Nan, Guangzhou, 510280, China.
| | - Li Cui
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, Guangzhou, 510280, China.
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, CA, 90095, USA.
| | - Shaohong Huang
- Department of Preventive Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, No.366 Jiangnan Da Dao Nan, Guangzhou, 510280, China.
| |
Collapse
|
20
|
High-Throughput Sequencing of Oral Microbiota in Candida Carriage Sjögren's Syndrome Patients: A Pilot Cross-Sectional Study. J Clin Med 2023; 12:jcm12041559. [PMID: 36836095 PMCID: PMC9964208 DOI: 10.3390/jcm12041559] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND This study sought to characterize the saliva microbiota of Candida carriage Sjögren's syndrome (SS) patients compared to oral candidiasis and healthy patients by high-throughput sequencing. METHODS Fifteen patients were included, with five Candida carriage SS patients (decayed, missing, and filled teeth (DMFT) score 22), five oral candidiasis patients (DMFT score 17), and five caries active healthy patients (DMFT score 14). Bacterial 16S rRNA was extracted from rinsed whole saliva. PCR amplification generated DNA amplicons of the V3-V4 hypervariable region, which were sequenced on an Illumina HiSeq 2500 sequencing platform and compared and aligned to the SILVA database. Taxonomy abundance and community structure diversity was analyzed using Mothur software v1.40.0. RESULTS A total of 1016/1298/1085 operational taxonomic units (OTUs) were obtained from SS patients/oral candidiasis patient/healthy patients. Treponema, Lactobacillus, Streptococcus, Selenomonas, and Veillonella were the primary genera in the three groups. The most abundant significantly mutative taxonomy (OTU001) was Veillonella parvula. Microbial diversity (alpha diversity and beta diversity) was significantly increased in SS patients. ANOSIM analyses revealed significantly different microbial compositional heterogeneity in SS patients compared to oral candidiasis and healthy patients. CONCLUSION Microbial dysbiosis differs significantly in SS patients independent of oral Candida carriage and DMFT.
Collapse
|
21
|
Orliaguet M, Fong SB, Le Pottier L, Meuric V, Boisramé S, Bonnaure-Mallet M, Pers JO. Tolerance to intraoral biofilms and their effectiveness in improving mouth dryness and modifying oral microbiota in patients with primary Sjögren's syndrome: "Predelfi study". Front Microbiol 2023; 14:1071683. [PMID: 37293235 PMCID: PMC10245914 DOI: 10.3389/fmicb.2023.1071683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/10/2023] [Indexed: 09/29/2023] Open
Abstract
INTRODUCTION Primary Sjögren's syndrome (pSS) is a systemic autoimmune disease characterized by exocrine gland dysfunction. No therapeutic strategy is sufficient on its own for the management of dry mouth and therapeutic innovations are required. METHODS This Predelfi study was a single-center, prospective, comparative, randomized, double-blind, cross-over controlled study with the primary objective of assessing the tolerance to and effectiveness of two adhesive biofilms (containing prebiotics and, sodium alginate, respectively) in patients with pSS and hyposialia (#NCT04206826 in ClinicalTrials.gov). Secondary objectives were to obtain initial data regarding the clinical effectiveness of such biofilms in the improvement of signs and symptoms related to dry mouth and potential changes in the oral microbiota. Ten pSS patients with pSS were included (9 females and 1 male) with a mean age of 58.1 ± 14.0 years. RESULTS AND DISCUSSION Tolerance to the prebiotic and sodium alginate biofilms was assessed by the patients (visual analog scale [VAS] score 66.7 and 87.6, respectively) and the practitioner (90 and 100, respectively). The absolute changes in the VAS scores at the start and end of each treatment period highlighted an improvement in mouth dryness for the sodium alginate versus the prebiotic biofilm. The VAS scores for other parameters (mouth burning sensation; taste alteration; chewing; swallowing and speech difficulties) remained globally comparable between the two groups. Unstimulated salivary flow showed no changes regardless of the biofilm used. Regarding the oral microbiota, the sodium alginate biofilm increased the abundance of the Treponema genus, whereas the use of the prebiotic biofilm as the first treatment increased the abundance of the genera Veillonella and Prevotella. Nevertheless, the prebiotic biofilm appeared to stimulate "milder" genera with regard to periodontal infections. Furthermore, pre-treatment with the prebiotic biofilm prevented the emergence of the Treponema genus induced by subsequent treatment with the sodium alginate biofilm, suggesting a potential protective effect.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jacques-Olivier Pers
- Univ Brest, CHU de Brest, Brest, France
- LBAI, U1227, Univ Brest, Inserm, Brest, France
| |
Collapse
|
22
|
Li Y, Liu J, Guan T, Zhang Y, Cheng Q, Liu H, Liu C, Luo W, Chen H, Chen L, Zhao T. The submandibular and sublingual glands maintain oral microbial homeostasis through multiple antimicrobial proteins. Front Cell Infect Microbiol 2023; 12:1057327. [PMID: 36704102 PMCID: PMC9872150 DOI: 10.3389/fcimb.2022.1057327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/24/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction Oral microbial homeostasis is a key factor affecting oral health, and saliva plays a significant role in maintaining oral microbial homeostasis. The submandibular gland (SMG) and sublingual gland (SLG) together produce the most saliva at rest. Organic ingredients, including antimicrobial proteins, are rich and distinctive and depend on the type of acinar cells in the SMG and SLG. However, the functions of the SMG and SLG in maintaining oral microbial homeostasis have been difficult to identify and distinguish, given their unique anatomical structures. Methods In this study, we independently removed either the SMG or SLG from mouse models. SMGs were aseptically removed in three mice in the SMG-removal group, and SLGs were aseptically removed in three mice in the SLG-removal group. Three mice from the sham-operated group were only anesthetized and incised the skin. After one month, we analyzed their oral microbiome through 16S rRNA sequencing. And then, we analyzed each gland using proteomics and single-cell RNA sequencing. Results Our study revealed that the microbiome balance was significantly disturbed, with decreased bacterial richness, diversity, and uniformity in the groups with the SMG or SLG removed compared with the sham-operated group. We identified eight secreted proteins in the SMG and two in the SLG that could be involved in maintaining oral microbial homeostasis. Finally, we identified multiple types of cells in the SMG and SLG (including serous acinar, mucinous acinar, ductal epithelial, mesenchymal, and immune cells) that express potential microbiota homeostasis regulatory proteins. Our results suggest that both the SMG and SLG play crucial roles in maintaining oral microbial homeostasis via excretion. Furthermore, the contribution of the SMG in maintaining oral microbial homeostasis appears to be superior to that of the SLG. These findings also revealed the possible antimicrobial function of gland secreta. Discussion Our results suggest that control of oral microbial dysbiosis is necessary when the secretory function of the SMG or SLG is impaired. Our study could be the basis for further research on the prevention of oral diseases caused by microbial dysbiosis.
Collapse
Affiliation(s)
- Yanan Li
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China,Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China,Stomatological Hospital of Chongqing Medical University, Chongqing, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Jingming Liu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China,Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Tong Guan
- First Clinical College, Chongqing Medical University, Chongqing, China
| | - Yuxin Zhang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China,Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Qianyu Cheng
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China,Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Huikai Liu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China,Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Chang Liu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Wenping Luo
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Hong Chen
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China,Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Liang Chen
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China,Stomatological Hospital of Chongqing Medical University, Chongqing, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing, China,*Correspondence: Tianyu Zhao, ; Liang Chen,
| | - Tianyu Zhao
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China,Stomatological Hospital of Chongqing Medical University, Chongqing, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing, China,*Correspondence: Tianyu Zhao, ; Liang Chen,
| |
Collapse
|
23
|
Yoshikawa T, Minaga K, Hara A, Sekai I, Kurimoto M, Masuta Y, Otsuka Y, Takada R, Kamata K, Park AM, Takamura S, Kudo M, Watanabe T. Disruption of the intestinal barrier exacerbates experimental autoimmune pancreatitis by promoting the translocation of Staphylococcus sciuri into the pancreas. Int Immunol 2022; 34:621-634. [PMID: 36044992 DOI: 10.1093/intimm/dxac039] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/27/2022] [Indexed: 02/01/2023] Open
Abstract
Autoimmune pancreatitis (AIP) and IgG4-related disease (IgG4-RD) are new disease entities characterized by enhanced IgG4 antibody responses and involvement of multiple organs, including the pancreas and salivary glands. Although the immunopathogenesis of AIP and IgG4-RD is poorly understood, we previously reported that intestinal dysbiosis mediates experimental AIP through the activation of IFN-α- and IL-33-producing plasmacytoid dendritic cells (pDCs). Because intestinal dysbiosis is linked to intestinal barrier dysfunction, we explored whether the latter affects the development of AIP and autoimmune sialadenitis in MRL/MpJ mice treated with repeated injections of polyinosinic-polycytidylic acid [poly (I:C)]. Epithelial barrier disruption was induced by the administration of dextran sodium sulfate (DSS) in the drinking water. Mice co-treated with poly (I:C) and DSS, but not those treated with either agent alone, developed severe AIP, but not autoimmune sialadenitis, which was accompanied by the increased accumulation of IFN-α- and IL-33-producing pDCs. Sequencing of 16S ribosomal RNA revealed that Staphylococcus sciuri translocation from the gut to the pancreas was preferentially observed in mice with severe AIP co-treated with DSS and poly (I:C). The degree of experimental AIP, but not of autoimmune sialadenitis, was greater in germ-free mice mono-colonized with S. sciuri and treated with poly (I:C) than in germ-free mice treated with poly (I:C) alone, which was accompanied by the increased accumulation of IFN-α- and IL-33-producing pDCs. Taken together, these data suggest that intestinal barrier dysfunction exacerbates AIP through the activation of pDCs and translocation of S. sciuri into the pancreas.
Collapse
Affiliation(s)
- Tomoe Yoshikawa
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Kosuke Minaga
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Akane Hara
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Ikue Sekai
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Masayuki Kurimoto
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Yasuhiro Masuta
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Yasuo Otsuka
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Ryutaro Takada
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Ken Kamata
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Ah-Mee Park
- Department of Microbiology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Shiki Takamura
- Department of Immunology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Tomohiro Watanabe
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| |
Collapse
|
24
|
Bankvall M, Carda-Diéguez M, Mira A, Karlsson A, Hasséus B, Karlsson R, Robledo-Sierra J. Metataxonomic and metaproteomic profiling of the oral microbiome in oral lichen planus - a pilot study. J Oral Microbiol 2022; 15:2161726. [PMID: 36605405 PMCID: PMC9809343 DOI: 10.1080/20002297.2022.2161726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background A growing body of evidence demonstrates a different bacterial composition in the oral cavity of patients with oral lichen planus (OLP). Patients and methods Buccal swab samples were collected from affected and non-affected sites of six patients with reticular OLP and the healthy oral mucosa of six control subjects. 16S rRNA gene MiSeq sequencing and mass spectrometry-based proteomics were utilised to identify the metataxonomic and metaproteomic profiles of the oral microbiome in both groups. Results From the metataxonomic analysis, the most abundant species in the three subgroups were Streptococcus oralis and Pseudomonas aeruginosa, accounting for up to 70% of the total population. Principal Coordinates Analysis showed differential clustering of samples from the healthy and OLP groups. ANCOM-BC compositional analysis revealed multiple species (including P. aeruginosa and several species of Veillonella, Prevotella, Streptococcus and Neisseria) significantly over-represented in the control group and several (including Granulicatella elegans, Gemella haemolysans and G. parahaemolysans) in patients with OLP. The metaproteomic data were generally congruent and revealed that several Gemella haemolysans-belonging peptidases and other proteins with inflammatory and virulence potential were present in OLP lesions. Conclusion Our data suggest that several bacterial species are associated with OLP. Future studies with larger cohorts should be conducted to determine their role in the aetiology of OLP and evaluate their potential as disease biomarkers.
Collapse
Affiliation(s)
- Maria Bankvall
- Department of Dental Medicine, Karolinska Institute, Huddinge, Sweden
| | - Miguel Carda-Diéguez
- Department of Health and Genomics, Center for Advanced Research in Public Health, FISABIO Foundation, Valencia, Spain
| | - Alex Mira
- Department of Health and Genomics, Center for Advanced Research in Public Health, FISABIO Foundation, Valencia, Spain,School of Health and Welfare, Jönköping University, Jönköping, Sweden
| | | | - Bengt Hasséus
- Department of Oral Medicine and Pathology, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Roger Karlsson
- Clinical microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jairo Robledo-Sierra
- Nanoxis Consulting AB, Gothenburg, Sweden,Faculty of Dentistry, CES University, Medellin, Colombia,CONTACT Jairo Robledo-Sierra Faculty of Dentistry, CES University, Medellin, Colombia
| |
Collapse
|
25
|
Schulz S, Hofmann B, Grollmitz J, Friebe L, Kohnert M, Schaller HG, Reichert S. Campylobacter Species of the Oral Microbiota as Prognostic Factor for Cardiovascular Outcome after Coronary Artery Bypass Grafting Surgery. Biomedicines 2022; 10:biomedicines10081801. [PMID: 35892701 PMCID: PMC9332846 DOI: 10.3390/biomedicines10081801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/21/2022] Open
Abstract
Background: The oral microbiota has been implicated in a variety of systemic diseases, including cardiovascular (CV) disease. The main objective of this study (DRKS-ID: DRKS00015776) was to evaluate the prognostic importance of the oral microbiota for further CV events in patients undergoing coronary artery bypass grafting surgery (3-year follow-up). Methods: In this longitudinal cohort study, 102 CV patients were enrolled, of whom 95 completed the 3-year follow-up. The CV outcome was assessed using the major adverse cardiac and cerebrovascular events criteria. To evaluate subgingival colonization, 16S rRNA genes were amplified, targeting the V3/V4 region (Illumina MiSeq). Results: Regarding the specific number of operational taxonomic units (OTUs), no significant differences in CV outcome were determined (alpha diversity, Shannon index). In linear discriminant analyses and t-tests, the disease-specific differences in the beta diversity of the microbiota composition were evaluated. It was evident that bacteria species of the genus Campylobacter were significantly more prevalent in patients with a secondary CV event (p = 0.015). This hierarchical order also includes Campylobacter rectus, which is considered to be of comprehensive importance in both periodontal and CV diseases. Conclusions: Here, we proved that subgingival occurrence of Campylobacter species has prognostic relevance for cardiovascular outcomes in CV patients undergoing coronary artery bypass grafting.
Collapse
Affiliation(s)
- Susanne Schulz
- Department of Operative Dentistry and Periodontology, Martin-Luther-University Halle-Wittenberg, 06112 Halle, Germany; (J.G.); (L.F.); (M.K.); (H.-G.S.); (S.R.)
- Correspondence:
| | - Britt Hofmann
- Department of Cardiothoracic Surgery, Heart Centre of the University Clinics Halle (Saale), Martin-Luther-University Halle-Wittenberg, 06112 Halle, Germany;
| | - Julia Grollmitz
- Department of Operative Dentistry and Periodontology, Martin-Luther-University Halle-Wittenberg, 06112 Halle, Germany; (J.G.); (L.F.); (M.K.); (H.-G.S.); (S.R.)
| | - Lisa Friebe
- Department of Operative Dentistry and Periodontology, Martin-Luther-University Halle-Wittenberg, 06112 Halle, Germany; (J.G.); (L.F.); (M.K.); (H.-G.S.); (S.R.)
| | - Michael Kohnert
- Department of Operative Dentistry and Periodontology, Martin-Luther-University Halle-Wittenberg, 06112 Halle, Germany; (J.G.); (L.F.); (M.K.); (H.-G.S.); (S.R.)
- Department of Cardiothoracic Surgery, Heart Centre of the University Clinics Halle (Saale), Martin-Luther-University Halle-Wittenberg, 06112 Halle, Germany;
| | - Hans-Günter Schaller
- Department of Operative Dentistry and Periodontology, Martin-Luther-University Halle-Wittenberg, 06112 Halle, Germany; (J.G.); (L.F.); (M.K.); (H.-G.S.); (S.R.)
| | - Stefan Reichert
- Department of Operative Dentistry and Periodontology, Martin-Luther-University Halle-Wittenberg, 06112 Halle, Germany; (J.G.); (L.F.); (M.K.); (H.-G.S.); (S.R.)
| |
Collapse
|
26
|
Deng C, Xiao Q, Fei Y. A Glimpse Into the Microbiome of Sjögren’s Syndrome. Front Immunol 2022; 13:918619. [PMID: 35911741 PMCID: PMC9329934 DOI: 10.3389/fimmu.2022.918619] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Sjögren’s syndrome (SS) is a common chronic systemic autoimmune disease and its main characteristic is lymphoid infiltration of the exocrine glands, particularly the salivary and lacrimal glands, leading to sicca symptoms of the mouth and eyes. Growing evidence has shown that SS is also characterized by microbial perturbations like other autoimmune diseases. Significant alterations in diversity, composition, and function of the microbiota were observed in SS. The dysbiosis of the microbiome correlates with worse symptoms and higher disease severity, suggesting that dysbiosis may be of great importance in the pathogenesis of SS. In this review, we provide a general view of recent studies describing the microbiota alterations of SS, the possible pathways that may cause microbiota dysbiosis to trigger SS, and the existence of the gut-ocular/gut-oral axis in SS.
Collapse
|
27
|
van der Meulen TA, Vissink A, Bootsma H, Spijkervet FKL, Kroese FGM. Microbiome in Sjögren's syndrome: here we are. Ann Rheum Dis 2022; 81:e114. [PMID: 32699041 DOI: 10.1136/annrheumdis-2020-218213] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 11/04/2022]
Affiliation(s)
- Taco A van der Meulen
- Oral and Maxillofacial Surgery, Universitair Medisch Centrum Groningen, Groningen, The Netherlands
| | - Arjan Vissink
- Oral and Maxillofacial Surgery, Universitair Medisch Centrum Groningen, Groningen, The Netherlands
| | - Hendrika Bootsma
- Rheumatology and Clinical Immunology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Fred K L Spijkervet
- Oral and Maxillofacial Surgery, Universitair Medisch Centrum Groningen, Groningen, The Netherlands
| | - Frans G M Kroese
- Rheumatology and Clinical Immunology, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
28
|
Gao L, Cheng Z, Zhu F, Bi C, Shi Q, Chen X. The Oral Microbiome and Its Role in Systemic Autoimmune Diseases: A Systematic Review of Big Data Analysis. Front Big Data 2022; 5:927520. [PMID: 35844967 PMCID: PMC9277227 DOI: 10.3389/fdata.2022.927520] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/23/2022] [Indexed: 12/30/2022] Open
Abstract
Introduction Despite decades of research, systemic autoimmune diseases (SADs) continue to be a major global health concern and the etiology of these diseases is still not clear. To date, with the development of high-throughput techniques, increasing evidence indicated a key role of oral microbiome in the pathogenesis of SADs, and the alterations of oral microbiome may contribute to the disease emergence or evolution. This review is to present the latest knowledge on the relationship between the oral microbiome and SADs, focusing on the multiomics data generated from a large set of samples. Methodology By searching the PubMed and Embase databases, studies that investigated the oral microbiome of SADs, including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and Sjögren's syndrome (SS), were systematically reviewed according to the PRISMA guidelines. Results One thousand and thirty-eight studies were found, and 25 studies were included: three referred to SLE, 12 referred to RA, nine referred to SS, and one to both SLE and SS. The 16S rRNA sequencing was the most frequent technique used. HOMD was the most common database aligned to and QIIME was the most popular pipeline for downstream analysis. Alterations in bacterial composition and population have been found in the oral samples of patients with SAD compared with the healthy controls. Results regarding candidate pathogens were not always in accordance, but Selenomonas and Veillonella were found significantly increased in three SADs, and Streptococcus was significantly decreased in the SADs compared with controls. Conclusion A large amount of sequencing data was collected from patients with SAD and controls in this systematic review. Oral microbial dysbiosis had been identified in these SADs, although the dysbiosis features were different among studies. There was a lack of standardized study methodology for each study from the inclusion criteria, sample type, sequencing platform, and referred database to downstream analysis pipeline and cutoff. Besides the genomics, transcriptomics, proteomics, and metabolomics technology should be used to investigate the oral microbiome of patients with SADs and also the at-risk individuals of disease development, which may provide us with a better understanding of the etiology of SADs and promote the development of the novel therapies.
Collapse
Affiliation(s)
- Lu Gao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Oral Diseases, Hangzhou, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Zijian Cheng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Oral Diseases, Hangzhou, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Fudong Zhu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Oral Diseases, Hangzhou, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Chunsheng Bi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Oral Diseases, Hangzhou, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Qiongling Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Oral Diseases, Hangzhou, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Xiaoyan Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Oral Diseases, Hangzhou, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
- *Correspondence: Xiaoyan Chen
| |
Collapse
|
29
|
Könönen E, Fteita D, Gursoy UK, Gursoy M. Prevotella species as oral residents and infectious agents with potential impact on systemic conditions. J Oral Microbiol 2022; 14:2079814. [PMID: 36393976 PMCID: PMC9662046 DOI: 10.1080/20002297.2022.2079814] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/25/2022] [Accepted: 05/13/2022] [Indexed: 10/18/2022] Open
Abstract
Oral Prevotella are known as anaerobic commensals on oral mucosae and in dental plaques from early life onwards, including pigmented P. melaninogenica, P. nigrescens, and P. pallens and non-pigmented Prevotella species. Many Prevotella species contribute to oral inflammatory processes, being frequent findings in dysbiotic biofilms of periodontal diseases (P. intermedia, P. nigrescens), cariotic lesions (P. denticola, Alloprevotella (formerly Prevotella) tannerae), endodontic infections (P. baroniae, P. oris, P. multisaccharivorax), and other clinically relevant oral conditions. Over the years, several novel species have been recovered from the oral cavity without knowledge of their clinical relevance. Within this wide genus, virulence properties and other characteristics like biofilm formation seemingly vary in a species- and strain-dependent manner, as shown for the P. intermedia group organisms (P. aurantiaca, P. intermedia, P. nigrescens, and P. pallens). Oral Prevotella species are identified in various non-oral infections and chronic pathological conditions. Here, we have updated the knowledge of the genus Prevotella and the role of Prevotella species as residents and infectious agents of the oral cavity, as well as their detection in non-oral infections, but also gathered information on their potential link to cancers of the head and neck, and other systemic disorders.
Collapse
Affiliation(s)
- Eija Könönen
- Institute of Dentistry, University of Turku, Turku, Finland
| | - Dareen Fteita
- Institute of Dentistry, University of Turku, Turku, Finland
| | - Ulvi K. Gursoy
- Institute of Dentistry, University of Turku, Turku, Finland
| | - Mervi Gursoy
- Institute of Dentistry, University of Turku, Turku, Finland
| |
Collapse
|
30
|
Kim D, Jeong YJ, Lee Y, Choi J, Park YM, Kwon OC, Ji YW, Ahn SJ, Lee HK, Park MC, Lim JY. Correlation Between Salivary Microbiome of Parotid Glands and Clinical Features in Primary Sjögren's Syndrome and Non-Sjögren's Sicca Subjects. Front Immunol 2022; 13:874285. [PMID: 35603219 PMCID: PMC9114876 DOI: 10.3389/fimmu.2022.874285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Recent studies have demonstrated that the oral microbiome in patients with Sjögren’s syndrome (SS) is significantly different from that in healthy individuals. However, the potential role of the oral microbiome in SS pathogenesis has not been determined. In this study, stimulated intraductal saliva samples were collected from the parotid glands (PGs) of 23 SS and nine non-SS subjects through PG lavage and subjected to 16S ribosomal RNA amplicon sequencing. The correlation between the oral microbiome and clinical features, such as biological markers, clinical manifestations, and functional and radiological characteristics was investigated. The salivary microbial composition was examined using bioinformatic analysis to identify potential diagnostic biomarkers for SS. Oral microbial composition was significantly different between the anti-SSA-positive and SSA-negative groups. The microbial diversity in SS subjects was lower than that in non-SS sicca subjects. Furthermore, SS subjects with sialectasis exhibited decreased microbial diversity and Firmicutes abundance. The abundance of Bacteroidetes was positively correlated with the salivary flow rate. Bioinformatics analysis revealed several potential microbial biomarkers for SS at the genus level, such as decreased Lactobacillus abundance or increased Streptococcus abundance. These results suggest that microbiota composition is correlated with the clinical features of SS, especially the ductal structures and salivary flow, and that the oral microbiome is a potential diagnostic biomarker for SS.
Collapse
Affiliation(s)
- Donghyun Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Ye Jin Jeong
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Yerin Lee
- Yonsei University College of Medicine, Seoul, South Korea
| | - Jihoon Choi
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea.,Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Young Min Park
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea.,Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Oh Chan Kwon
- Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.,Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Yong Woo Ji
- Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.,Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Jun Ahn
- Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.,Department of Radiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyung Keun Lee
- Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.,Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Min-Chan Park
- Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.,Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae-Yol Lim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea.,Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
31
|
Xu P, Shao RR, Zhang S, Tan ZW, Guo YT, He Y. The mechanism on Prevotella melaninogenica promoting the inflammatory progression of oral lichen planus. Clin Exp Immunol 2022; 209:215-224. [PMID: 35605143 DOI: 10.1093/cei/uxac054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/25/2022] [Accepted: 05/21/2022] [Indexed: 11/14/2022] Open
Abstract
Oral lichen planus (OLP) is a common chronic inflammatory disease occurring in the oral mucosa. Bacteria is a key driver of mucosal immune response and can induce changes in gene expression and function of epithelial keratinocytes. IL-36γ can induce the expression of antimicrobial peptides, cytokines and chemokines, and is widely involved in many chronic inflammatory diseases. Our aim is to explore the role of IL-36γ in pathological process of OLP when Prevotella melaninogenica (P. melaninogenica) invades oral mucosa. The expression of IL-36γ in OLP lesions and mice was detected by immunohistochemistry. Recombinant human IL-36Gamma (rhIL-36γ) was used to treat oral keratinocytes and the expression levels of inflammatory cytokines were detected by qRT-PCR and ELISA. The expression of IL-36γ and TRPV1 was detected by western blotting following co-culturing P. melaninogenica with oral keratinocytes. The mRNA expression of IL-36γ was detected by qRT-PCR. From our results, IL-36γ was upregulated in OLP lesions. Exogenous rhIL-36γ promoted the expression of pro-inflammatory cytokines and antibacterial peptides in oral keratinocytes. The expression of IL-36γ was significantly increased following the stimulation of P. melaninogenica in oral keratinocytes and mice. TRPV1 activation was induced by P. melaninogenica and its activation enhanced the expression of IL-36γ. IL-36Ra could reduce the inflammation in OLP in vitro. In summary, overexpression of IL-36γ in OLP lesions could promote its pathogenesis by inducing inflammation. P. melaninogenica invasion of oral keratinocytes could induce the expression of IL-36γ by the activation of TRPV1, thereby regulating the interaction between bacteria and oral epithelial cells.
Collapse
Affiliation(s)
- Pan Xu
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School of Stomatology, Tongji University, Shanghai, China
| | - Ru-Ru Shao
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School of Stomatology, Tongji University, Shanghai, China
| | - Shi Zhang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School of Stomatology, Tongji University, Shanghai, China
| | - Zheng-Wu Tan
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School of Stomatology, Tongji University, Shanghai, China
| | - Yi-Ting Guo
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School of Stomatology, Tongji University, Shanghai, China
| | - Yuan He
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School of Stomatology, Tongji University, Shanghai, China
| |
Collapse
|
32
|
Lin B, Zhao F, Liu Y, Sun J, Feng J, Zhao L, Wang H, Chen H, Yan W, Guo X, Shi S, Li Z, Wang S, Lu Y, Zheng J, Wei Y. Alterations in Oral Microbiota of Differentiated Thyroid Carcinoma Patients With Xerostomia After Radioiodine Therapy. Front Endocrinol (Lausanne) 2022; 13:895970. [PMID: 36093087 PMCID: PMC9459331 DOI: 10.3389/fendo.2022.895970] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND AND AIMS Oral xerostomia remains one of the most common complications of differentiated thyroid carcinoma patients (DTC) after radioiodine therapy (RAI). Environmental factors in the etiology of xerostomia are largely unknown. We aimed to characterize the oral microbiota signatures and related biological functions associated with xerostomia and identify environmental factors affecting them. METHODS Saliva was collected from 30 DTC patients with xerostomia (XAs), 32 patients without xerostomia (indicated as non-XAs) following RAI after total thyroidectomy, and 40 healthy people (HCs) for 16S rRNA sequencing analysis. RESULTS The oral microbiota of XAs and non-XAs exhibited significant differences in α and β diversities and bacterial taxa. The abundance of porphyromonas, fusobacterium, and treponema_2 were significantly higher in XAs, while the abundance of the streptococcus was lower in the microbiota of non-XAs. Fusobacterium, and porphyromonas were negatively correlated with unstimulated/stimulated whole salivary secretion (USW)/(SWS), while fusobacterium, porphyromonas, and treponema_2 genera levels were positively associated with cumulative radioiodine dose. PICRUSt2 and BugBase suggested a significant difference in the expression of potentially_pathogenic, anaerobic, gram_negative, the arachidonic acid metabolism, and lipopolysaccharide (LPS) biosynthesis between XAs and non-XAs, possibly interdependent on radioiodine-induced inflammation. NetShift analysis revealed that porphyromonas genus might play as a key driver during the process of xerostomia. Five genera effectively distinguished XAs from non-XAs (AUC = 0.87). CONCLUSION Our study suggests for the first time that DTC patients with xerostomia after RAI display microbiota profiles and associated functional changes that may promote a pro-inflammatory environment. Dysbiosis of the oral microbiota may contribute to exacerbating the severity of xerostomia. Our results provide a research direction of the interaction mechanism between oral microbiota alteration and the progress of xerostomia.
Collapse
Affiliation(s)
- Baiqiang Lin
- Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fuya Zhao
- Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yang Liu
- Pancreatic and Gastrointestinal Surgery Division, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
- Ningbo Clinical Research Center for Digestive System Tumors, Ningbo, China
- Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiayu Sun
- Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- General Surgery, Zhujiang Hospital, SouthernMedical University, Guangzhou, China
| | - Jing Feng
- Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lei Zhao
- Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haoran Wang
- Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongye Chen
- Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Yan
- Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiao Guo
- Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shang Shi
- Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhiyong Li
- Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuang Wang
- Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu Lu
- Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jianjun Zheng
- Imaging Center, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
- Ningbo Clinical Medical Research Center of Imaging Medicine, Ningbo, China
- *Correspondence: Yunwei Wei, ; Jianjun Zheng,
| | - Yunwei Wei
- Pancreatic and Gastrointestinal Surgery Division, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
- Ningbo Clinical Research Center for Digestive System Tumors, Ningbo, China
- Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Yunwei Wei, ; Jianjun Zheng,
| |
Collapse
|
33
|
Chang SH, Park SH, Cho ML, Choi Y. Why Should We Consider Potential Roles of Oral Bacteria in the Pathogenesis of Sjögren Syndrome? Immune Netw 2022; 22:e32. [PMID: 36081525 PMCID: PMC9433196 DOI: 10.4110/in.2022.22.e32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 12/01/2022] Open
Abstract
Sjögren syndrome (SS) is a chronic autoimmune disorder that primarily targets the salivary and lacrimal glands. The pathology of these exocrine glands is characterized by periductal focal lymphocytic infiltrates, and both T cell-mediated tissue injury and autoantibodies that interfere with the secretion process underlie glandular hypofunction. In addition to these adaptive mechanisms, multiple innate immune pathways are dysregulated, particularly in the salivary gland epithelium. Our understanding of the pathogenetic mechanisms of SS has substantially improved during the past decade. In contrast to viral infection, bacterial infection has never been considered in the pathogenesis of SS. In this review, oral dysbiosis associated with SS and evidence for bacterial infection of the salivary glands in SS were reviewed. In addition, the potential contributions of bacterial infection to innate activation of ductal epithelial cells, plasmacytoid dendritic cells, and B cells and to the breach of tolerance via bystander activation of autoreactive T cells and molecular mimicry were discussed. The added roles of bacteria may extend our understanding of the pathogenetic mechanisms and therapeutic approaches for this autoimmune exocrinopathy.
Collapse
Affiliation(s)
- Sung-Ho Chang
- Department of Immunology and Molecular Microbiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Sung-Hwan Park
- Divison of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Mi-La Cho
- Department of Medical Life Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Youngnim Choi
- Department of Immunology and Molecular Microbiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
34
|
Ren Y, Cui G, Gao Y. Research progress on inflammatory mechanism of primary Sjögren syndrome. Zhejiang Da Xue Xue Bao Yi Xue Ban 2021; 50:783-794. [PMID: 35347914 PMCID: PMC8931614 DOI: 10.3724/zdxbyxb-2021-0072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/30/2021] [Indexed: 06/14/2023]
Abstract
Primary Sjögren syndrome is an autoimmune disease, in which a large number of lymphocytes infiltrate the exocrine glands and cause gland dysfunction. Its pathogenesis is related to the chronic inflammation of the exocrine glands caused by genetic factors, immunodeficiency or viral infection. Long-term inflammation leads to accelerated apoptosis of epithelial cells, disordered gland structure, increased expression of proinflammatory cytokine such as CXC subfamily ligand (CXCL) 12, CXCL13, B cell-activating factor (BAF), interleukin (IL)-6, interferon (IFN)-γ and tumor necrosis factor (TNF)-α in submandibular gland. With the action of antigen-presenting cells such as dendritic cells and macrophages, lymphocytes (mainly B cells) are induced to mature in secondary lymphoid organs and migrate to the submandibular gland to promotes the formation of germinal centers and the synthesis of autoantibodies. Meanwhile, innate lymphocytes, vascular endothelial cells and mucosa-associated constant T cells as important immune cells, also participated in the inflammatory response of the submandibular gland in primary Sjögren syndrome through different mechanisms. This process involves the activation of multiple signal pathways such as JAK/STAT, MAPK/ERK, PI3K/AKT/mTOR, PD-1/PD-L1, TLR/MyD88/NF-κB, BAF/BAF-R and IFN. These signaling pathways interact with each other and are intricately complex, causing lymphocytes to continuously activate and invade the submandibular glands. This article reviews the latest literature to clarify the mechanism of submandibular gland inflammation in primary Sjögren syndrome, and to provide insights for further research.
Collapse
|
35
|
Lee A, Yoo DK, Lee Y, Jeon S, Jung S, Noh J, Ju S, Hwang S, Kim HH, Kwon S, Chung J, Choi Y. Induction of Anti-Aquaporin 5 Autoantibody Production by Immunization with a Peptide Derived from the Aquaporin of Prevotella melaninogenica Leads to Reduced Salivary Flow in Mice. Immune Netw 2021; 21:e34. [PMID: 34796038 PMCID: PMC8568913 DOI: 10.4110/in.2021.21.e34] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/19/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
Sjögren's syndrome (SS) is an autoimmune disease characterized by dryness of the mouth and eyes. The glandular dysfunction in SS involves not only T cell-mediated destruction of the glands but also autoantibodies against the type 3 muscarinic acetylcholine receptor or aquaporin 5 (AQP5) that interfere with the secretion process. Studies on the breakage of tolerance and induction of autoantibodies to these autoantigens could benefit SS patients. To break tolerance, we utilized a PmE-L peptide derived from the AQP5-homologous aquaporin of Prevotella melaninogenica (PmAqp) that contained both a B cell "E" epitope and a T cell epitope. Repeated subcutaneous immunization of C57BL/6 mice with the PmE-L peptide efficiently induced the production of Abs against the "E" epitope of mouse/human AQP5 (AQP5E), and we aimed to characterize the antigen specificity, the sequences of AQP5E-specific B cell receptors, and salivary gland phenotypes of these mice. Sera containing anti-AQP5E IgG not only stained mouse Aqp5 expressed in the submandibular glands but also detected PmApq and PmE-L by immunoblotting, suggesting molecular mimicry. Characterization of the AQP5E-specific autoantibodies selected from the screening of phage display Ab libraries and mapping of the B cell receptor repertoires revealed that the AQP5E-specific B cells acquired the ability to bind to the Ag through cumulative somatic hypermutation. Importantly, animals with anti-AQP5E Abs had decreased salivary flow rates without immune cell infiltration into the salivary glands. This model will be useful for investigating the role of anti-AQP5 autoantibodies in glandular dysfunction in SS and testing new therapeutics targeting autoantibody production.
Collapse
Affiliation(s)
- Ahreum Lee
- Department of Immunology and Molecular Microbiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Korea
| | - Duck Kyun Yoo
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Yonghee Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea
| | - Sumin Jeon
- Department of Immunology and Molecular Microbiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Korea
| | - Suhan Jung
- Department of Cell and Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Korea
| | - Jinsung Noh
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea
| | - Soyeon Ju
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Siwon Hwang
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Hong Hee Kim
- Department of Cell and Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Korea
| | - Sunghoon Kwon
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea.,Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Korea.,BK21+ Creative Research Engineer Development for IT, Seoul National University, Seoul 08826, Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea.,Institutes of Entrepreneurial BioConvergence, Seoul National University, Seoul 08826, Korea
| | - Junho Chung
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Youngnim Choi
- Department of Immunology and Molecular Microbiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Korea
| |
Collapse
|
36
|
Min HK, Kim SH, Park Y, Lee KA, Kwok SK, Lee SH, Kim HR. Ultrasonographic characteristics of major salivary glands in anti-centromere antibody-positive primary Sjögren's syndrome. PLoS One 2021; 16:e0259519. [PMID: 34731207 PMCID: PMC8565722 DOI: 10.1371/journal.pone.0259519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/20/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose To investigate salivary gland ultrasonography (SGUS) findings in primary Sjögren’s syndrome (pSS) patients positive for the anti-centromere antibody (ACA) and compare these with those in ACA-negative pSS patients. Methods We analyzed demographic, clinical, laboratory, and SGUS data of pSS patients who fulfilled the 2002 American-European Consensus Group classification criteria for pSS. SGUS findings of four major salivary glands (bilateral parotid and submandibular glands) were scored in five categories and compared between ACA-positive and ACA-negative pSS patients. Linear regression analysis was performed to elucidate the factors associated with SGUS score. Results In total, 121 pSS patients were enrolled (19, ACA-positive). The ACA-positive patients were older (67.0 vs 58.0 years, P = 0.028), whereas anti-Ro/SSA and anti-La/SSB positivity was more prevalent in the ACA-negative group (89.2% vs 21.1%, P < 0.001, and 47.1% vs 10.5%, P = 0.007, respectively). The total SGUS and hypoechoic area scores were lower in ACA-positive patients (16.0 vs 23.0, P = 0.027, and 4.0 vs 7.0, P = 0.004, respectively). In univariate regression analysis, being positive for unstimulated salivary flow rate (USFR < 1.5 ml/15 min), anti-Ro/SSA, and rheumatoid factor were positively associated whereas ACA positivity was negatively associated with the SGUS score. In multivariate regression analysis, being positive for USFR, anti-Ro/SSA, and rheumatoid factor showed significant association with the SGUS score. Conclusions ACA-positive pSS patients showed a lower SGUS score than ACA-negative patients, which was especially prominent in the hypoechoic area component.
Collapse
Affiliation(s)
- Hong Ki Min
- Division of Rheumatology, Department of Internal Medicine, Konkuk University Medical Center, Seoul, Republic of Korea
| | - Se-Hee Kim
- Division of Rheumatology, Department of Internal Medicine, Konkuk University Medical Center, Seoul, Republic of Korea
| | - Youngjae Park
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyung-Ann Lee
- Division of Rheumatology, Department of Internal Medicine, Soonchunhyang University Seoul hospital, Seoul, Republic of Korea
| | - Seung-Ki Kwok
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sang-Heon Lee
- Division of Rheumatology, Department of Internal Medicine, Research Institute of Medical Science, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Hae-Rim Kim
- Division of Rheumatology, Department of Internal Medicine, Research Institute of Medical Science, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
37
|
Herrala M, Turunen S, Hanhineva K, Lehtonen M, Mikkonen JJW, Seitsalo H, Lappalainen R, Tjäderhane L, Niemelä RK, Salo T, Myllymaa S, Kullaa AM, Kärkkäinen O. Low-Dose Doxycycline Treatment Normalizes Levels of Some Salivary Metabolites Associated with Oral Microbiota in Patients with Primary Sjögren's Syndrome. Metabolites 2021; 11:metabo11090595. [PMID: 34564411 PMCID: PMC8470364 DOI: 10.3390/metabo11090595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 12/14/2022] Open
Abstract
Saliva is a complex oral fluid, and plays a major role in oral health. Primary Sjögren’s syndrome (pSS), as an autoimmune disease that typically causes hyposalivation. In the present study, salivary metabolites were studied from stimulated saliva samples (n = 15) of female patients with pSS in a group treated with low-dose doxycycline (LDD), saliva samples (n = 10) of non-treated female patients with pSS, and saliva samples (n = 14) of healthy age-matched females as controls. Saliva samples were analyzed with liquid chromatography mass spectrometry (LC-MS) based on the non-targeted metabolomics method. The saliva metabolite profile differed between pSS patients and the healthy control (HC). In the pSS patients, the LDD treatment normalized saliva levels of several metabolites, including tyrosine glutamine dipeptide, phenylalanine isoleucine dipeptide, valine leucine dipeptide, phenylalanine, pantothenic acid (vitamin B5), urocanic acid, and salivary lipid cholesteryl palmitic acid (CE 16:0), to levels seen in the saliva samples of the HC. In conclusion, the data showed that pSS is associated with an altered saliva metabolite profile compared to the HC and that the LLD treatment normalized levels of several metabolites associated with dysbiosis of oral microbiota in pSS patients. The role of the saliva metabolome in pSS pathology needs to be further studied to clarify if saliva metabolite levels can be used to predict or monitor the progress and treatment of pSS.
Collapse
Affiliation(s)
- Maria Herrala
- Research Group of Oral Health Sciences, Faculty of Medicine, Oulu University Hospital, University of Oulu, 90220 Oulu, Finland;
- Institute of Dentistry, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland;
- Medical Research Center Oulu, Oulu University Hospital, University of Oulu, 90014 Oulu, Finland;
- Correspondence: ; Fax: +358-8-537-5560
| | - Soile Turunen
- School of Pharmacy, University of Eastern Finland, 70210 Kuopio, Finland; (S.T.); (M.L.); (O.K.)
| | - Kati Hanhineva
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70211 Kuopio, Finland;
- Department of Life Technologies, Food Chemistry and Food Development Unit, University of Turku, 20014 Turku, Finland
| | - Marko Lehtonen
- School of Pharmacy, University of Eastern Finland, 70210 Kuopio, Finland; (S.T.); (M.L.); (O.K.)
| | - Jopi J. W. Mikkonen
- Institute of Dentistry, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland;
- Department of Applied Physics, University of Eastern Finland, 70211 Kuopio, Finland; (R.L.); (S.M.)
| | | | - Reijo Lappalainen
- Department of Applied Physics, University of Eastern Finland, 70211 Kuopio, Finland; (R.L.); (S.M.)
| | - Leo Tjäderhane
- Medical Research Center Oulu, Oulu University Hospital, University of Oulu, 90014 Oulu, Finland;
- Department of Oral and Maxillofacial Diseases, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland;
| | - Raija K. Niemelä
- Department of Rheumatology, Oulu University Hospital, 90220 Oulu, Finland;
| | - Tuula Salo
- Department of Oral and Maxillofacial Diseases, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland;
- Translational Immunology Research Program (TRIMM), University of Helsinki, 00014 Helsinki, Finland
- Department of Pathology, Faculty of Medicine, University of Helsinki, Helsinki University Hospital, 00014 Helsinki, Finland
- Cancer and Translational Medicine Research Unit, University of Oulu, 90014 Oulu, Finland
| | - Sami Myllymaa
- Department of Applied Physics, University of Eastern Finland, 70211 Kuopio, Finland; (R.L.); (S.M.)
- Diagnostic Imaging Center, Kuopio University Hospital, 70029 Kuopio, Finland
| | - Arja M. Kullaa
- Research Group of Oral Health Sciences, Faculty of Medicine, Oulu University Hospital, University of Oulu, 90220 Oulu, Finland;
- Institute of Dentistry, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland;
- Educational Dental Clinic, Kuopio University Hospital, 90220 Kuopio, Finland
| | - Olli Kärkkäinen
- School of Pharmacy, University of Eastern Finland, 70210 Kuopio, Finland; (S.T.); (M.L.); (O.K.)
| |
Collapse
|
38
|
Doaré E, Héry-Arnaud G, Devauchelle-Pensec V, Alegria GC. Healthy Patients Are Not the Best Controls for Microbiome-Based Clinical Studies: Example of Sjögren's Syndrome in a Systematic Review. Front Immunol 2021; 12:699011. [PMID: 34394092 PMCID: PMC8358393 DOI: 10.3389/fimmu.2021.699011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/13/2021] [Indexed: 01/03/2023] Open
Abstract
Introduction It has been hypothesized that gut and oral dysbiosis may contribute to the development of primary Sjögren's syndrome (pSS). The aim of this systematic review was to assemble available data regarding the oral and gut microbiota in pSS and to compare them to data from healthy individuals and patients with dry symptoms without a diagnosis of Sjögren's syndrome or lupus disease to identify dysbiosis and discuss the results. Methodology Using the PRISMA guidelines, we systematically reviewed studies that compared the oral and gut microbiota of Sjögren's patients and controls. The PubMed database and Google Scholar were searched. Results Two-hundred and eighty-nine studies were found, and 18 studies were included: 13 referred to the oral microbiota, 4 referred to the gut microbiota, and 1 referred to both anatomical sites. The most frequent controls were healthy volunteers and patients with sicca symptoms. The most common analysis method used was 16S-targeted metagenomics. The results were mostly heterogeneous, and the results regarding diversity were not always in accordance. Dysbiosis in pSS was not confirmed, and reduced salivary secretion seems to explain more microbial changes than the underlying disease. Conclusion These heterogeneous results might be explained by the lack of a standardized methodology at each step of the process and highlight the need for guidelines. Our review provides evidence that sicca patients seem to be more relevant than healthy subjects as a control group.
Collapse
Affiliation(s)
- Elise Doaré
- Rheumatology Department, Reference Centre of Rare Autoimmune Diseases, Cavale Blanche Hospital and Brest University, INSERM UMR 1227, Brest, France
| | - Geneviève Héry-Arnaud
- UMR1078, Génétique, Génomique Fonctionnelle Et Biotechnologies, INSERM, Université de Brest, EFS, IBSAM, Brest, France.,Centre Brestois d'Analyse du Microbiote, Hôpital La Cavale Blanche, CHRU de Brest, Brest, France
| | - Valérie Devauchelle-Pensec
- Rheumatology Department, Reference Centre of Rare Autoimmune Diseases, Cavale Blanche Hospital and Brest University, INSERM UMR 1227, Brest, France
| | - Guillermo Carvajal Alegria
- Rheumatology Department, Reference Centre of Rare Autoimmune Diseases, Cavale Blanche Hospital and Brest University, INSERM UMR 1227, Brest, France
| |
Collapse
|
39
|
Chen H, Li Q, Li M, Liu S, Yao C, Wang Z, Zhao Z, Liu P, Yang F, Li X, Wang J, Zeng Y, Tong X. Microbial characteristics across different tongue coating types in a healthy population. J Oral Microbiol 2021; 13:1946316. [PMID: 34367522 PMCID: PMC8317956 DOI: 10.1080/20002297.2021.1946316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background The physical appearance of tongue coatings is vital for traditional Chinese medicine (TCM) to diagnose health and disease status. The microbiota of different tongue coatings could also influence coating formation and be further associated with specific diseases. Previous studies have focused on bacteria from different tongue coatings in the context of specific diseases, but the normal variations in healthy individuals remain unknown.Aim: We examined the tongue microbiota by metagenomics in 94 healthy individuals classified into eight different tongue types.Results: The overall composition of the tongue coating microbiome is not drastically different among different coating types, similar to the findings of previous studies in healthy populations. Further analysis revealed microbiota characteristics of each coating type, and many of the key bacteria are reported to be implicated in diseases. Moreover, further inclusion of diabetic patients revealed disease-specific enrichment of Capnocytophaga, even though the same tongue coatings were studied.Conclusions: This work revealed the characteristic compositions of distinctive tongue coatings in a healthy population, which serves as a basis for understanding the tongue coating formation mechanism and provides a valuable reference to further investigate disease-specific tongue coating bacterial markers.
Collapse
Affiliation(s)
- Hairong Chen
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Qingwei Li
- Departments of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Li
- Departments of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Sheng Liu
- Departments of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chensi Yao
- Departments of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zixiong Wang
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhuoya Zhao
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ping Liu
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Fan Yang
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xinjian Li
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jun Wang
- CAS Key Laboratory of Pathogenic Microbiology & Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yixin Zeng
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaolin Tong
- Departments of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
40
|
MAIT Cells and Microbiota in Multiple Sclerosis and Other Autoimmune Diseases. Microorganisms 2021; 9:microorganisms9061132. [PMID: 34074025 PMCID: PMC8225125 DOI: 10.3390/microorganisms9061132] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
The functions of mucosal-associated invariant T (MAIT) cells in homeostatic conditions include the interaction with the microbiota and its products, the protection of body barriers, and the mounting of a tissue-repair response to injuries or infections. Dysfunction of MAIT cells and dysbiosis occur in common chronic diseases of inflammatory, metabolic, and tumor nature. This review is aimed at analyzing the changes of MAIT cells, as well as of the microbiota, in multiple sclerosis and other autoimmune disorders. Common features of dysbiosis in these conditions are the reduced richness of microbial species and the unbalance between pro-inflammatory and immune regulatory components of the gut microbiota. The literature concerning MAIT cells in these disorders is rather complex, and sometimes not consistent. In multiple sclerosis and other autoimmune conditions, several studies have been done, or are in progress, to find correlations between intestinal permeability, dysbiosis, MAIT cell responses, and clinical biomarkers in treated and treatment-naïve patients. The final aims are to explain what activates MAIT cells in diseases not primarily infective, which interactions with the microbiota are potentially pathogenic, and their dynamics related to disease course and disease-modifying treatments.
Collapse
|
41
|
Tseng YC, Yang HY, Lin WT, Chang CB, Chien HC, Wang HP, Chen CM, Wang JT, Li C, Wu SF, Hsieh SC. Salivary dysbiosis in Sjögren's syndrome and a commensal-mediated immunomodulatory effect of salivary gland epithelial cells. NPJ Biofilms Microbiomes 2021; 7:21. [PMID: 33707430 PMCID: PMC7952914 DOI: 10.1038/s41522-021-00192-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 01/28/2021] [Indexed: 12/17/2022] Open
Abstract
Salivary gland epithelial cells (SGECs) have been implicated in the pathogenesis of Sjögren's syndrome due to aberrant antigen-presentation function. This study examined the hypothesis that oral dysbiosis modulates the antigen-presentation function of SGECs, which regulates CD4 T cell proliferation in primary Sjögren's syndrome (pSS). Saliva samples from 8 pSS patients and 16 healthy subjects were analyzed for bacterial 16S ribosomal DNA. As a result, 39 differentially abundant taxa were identified. Among them, the phylum Proteobacteria comprised 21 taxa, and this phylum was mostly enriched in the healthy controls. The proteobacterium Haemophilus parainfluenzae was enriched in the healthy controls, with the greatest effect size at the species level. Treatment of A253 cells in vitro with H. parainfluenzae upregulated PD-L1 expression, and H. parainfluenzae-pretreated A253 cells suppressed CD4 T cell proliferation. The suppression was partially reversed by PD-L1 blockade. Among low-grade xerostomia patients, salivary abundance of H. parainfluenzae decreased in pSS patients compared to that in non-pSS sicca patients. Our findings suggest that H. parainfluenzae may be an immunomodulatory commensal bacterium in pSS.
Collapse
Affiliation(s)
- Yu-Chao Tseng
- Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan.,Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan.,Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, Chiayi, Taiwan.,Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Hsin-Yi Yang
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Wei-Ting Lin
- Department Oral and Maxillofacial Surgery, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Chia-Bin Chang
- Department of Urology, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, Taiwan
| | - Hsiu-Chuan Chien
- Department of Laboratory Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Hon-Pin Wang
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Chun-Ming Chen
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Jann-Tay Wang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chin Li
- Department of Biomedical Sciences, Institute of Molecular Biology, and Institute of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan.
| | - Shu-Fen Wu
- Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, Chiayi, Taiwan. .,Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan. .,Department of Biomedical Sciences, Institute of Molecular Biology, and Institute of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan.
| | - Song-Chou Hsieh
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
42
|
Chatzis L, Vlachoyiannopoulos PG, Tzioufas AG, Goules AV. New frontiers in precision medicine for Sjogren's syndrome. Expert Rev Clin Immunol 2021; 17:127-141. [PMID: 33478279 DOI: 10.1080/1744666x.2021.1879641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Sjögren's syndrome is a unique systemic autoimmune disease, placed in the center of systemic autoimmunity and at the crossroads of autoimmunity and lymphoproliferation. The diverse clinical picture of the disease, the inefficacy of current biologic treatments, and the co-existence with lymphoma conferring to the patients' morbidity and mortality force the scientific community to review disease pathogenesis and reveal the major implicated cellular and molecular elements.Areas covered: Biomarkers for early diagnosis, prediction, stratification, monitoring, and targeted treatments can serve as a tool to interlink and switch from the clinical phenotyping of the disease into a more sophisticated classification based on the underlying critical molecular pathways and endotypes. Such a transition may define the establishment of the so-called precision medicine era in which patients' management will be based on grouping according to pathogenetically related biomarkers. In the current work, literature on Sjogren's syndrome covering several research fields including clinical, translational, and basic research has been reviewed.Expert opinion: The perspectives of clinical and translational research are anticipated to define phenotypic clustering of high-risk pSS patients and link the clinical picture of the disease with fundamental molecular mechanisms and molecules implicated in pathogenesis.
Collapse
Affiliation(s)
- Loukas Chatzis
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Athanasios G Tzioufas
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas V Goules
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
43
|
Schulz S, Reichert S, Grollmitz J, Friebe L, Kohnert M, Hofmann B, Schaller HG, Klawonn F, Shi R. The role of Saccharibacteria (TM7) in the subginival microbiome as a predictor for secondary cardiovascular events. Int J Cardiol 2021; 331:255-261. [PMID: 33529661 DOI: 10.1016/j.ijcard.2021.01.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/27/2020] [Accepted: 01/24/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND The composition of the subgingival microbiota is of great importance in both oral and systemic diseases. However, a possible association of the oral microbiome and cardiovascular (CV) outcome has not yet been considered in a complex model. The primary objective of the study (DRKS-ID: DRKS00015776) was to assess differences in complex subgingival bacterial composition, depending on the CV outcome in patients undergoing Coronary Artery Bypass Grafting Surgery (CABG). MATERIAL AND METHODS We conducted a longitudinal cohort study enrolling 102 CV patients. After a one-year follow-up, the postoperative outcome was evaluated applying MACCE (Major Adverse Cardiac and Cerebrovascular Events) criteria. The complex oral microbiome was evaluated depending on CV outcome. The mathematical data processing included Qiime 2 software workflow and DADA2 pipeline as well as Human Oral Microbiome Database (HOMD) and Greengenes database classification. For identifying biomarkers distinguishing patients suffering from secondary CV events, the Cox Proportional Hazard Model for survival analysis was applied. RESULTS In total, 19,418 Operational Taxonomic Units (OTU) were mapped according to the HOMD and Greengenes database. No significant differences in alpha and beta diversity were linked to CV outcomes (Shannon index; Principal Coordinates Analysis). No biomarker predicting secondary CV events were identified applying the area under the receiver operating characteristic curve (AUC) model. However, in survival analysis, one biomarker of Saccharibacteria phylum (class: TM7-3, order: CW040, family: F16) was associated with the incidence of a secondary CV event (p = 0.016). CONCLUSIONS For the first time, a subgingival biomarker has been identified that supports a cardiovascular prognosis in CV patients undergoing coronary artery bypass grafting.
Collapse
Affiliation(s)
- Susanne Schulz
- Department of Operative Dentistry and Periodontology, Martin-Luther-University Halle-Wittenberg, Germany.
| | - Stefan Reichert
- Department of Operative Dentistry and Periodontology, Martin-Luther-University Halle-Wittenberg, Germany
| | - Julia Grollmitz
- Department of Operative Dentistry and Periodontology, Martin-Luther-University Halle-Wittenberg, Germany
| | - Lisa Friebe
- Department of Operative Dentistry and Periodontology, Martin-Luther-University Halle-Wittenberg, Germany
| | - Michael Kohnert
- Department of Operative Dentistry and Periodontology, Martin-Luther-University Halle-Wittenberg, Germany
| | - Britt Hofmann
- Department of Cardiothoracic Surgery, Heart Centre of the University Clinics Halle (Saale), Martin-Luther-University Halle-Wittenberg, Germany
| | - Hans-Günter Schaller
- Department of Operative Dentistry and Periodontology, Martin-Luther-University Halle-Wittenberg, Germany
| | - Frank Klawonn
- Biostatistics, Helmholtz Centre for Infection Research, Braunschweig, Germany; Department of Computer Science, Ostfalia University of Applied Sciences, Wolfenbüttel, Germany
| | - Ruibing Shi
- Biostatistics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
44
|
Lee J, Alam J, Choi E, Ko YK, Lee A, Choi Y. Association of a dysbiotic oral microbiota with the development of focal lymphocytic sialadenitis in IκB-ζ-deficient mice. NPJ Biofilms Microbiomes 2020; 6:49. [PMID: 33127905 PMCID: PMC7599236 DOI: 10.1038/s41522-020-00158-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/07/2020] [Indexed: 01/12/2023] Open
Abstract
Mice lacking IκB-ζ, a protein encoded by the Nfkbiz gene, spontaneously develop a Sjögren’s syndrome-like disease involving the lachrymal glands, but no salivary gland symptoms have been reported. We found that Nfkbiz−/− female mice presented a significantly reduced salivary flow rate, focal lymphocytic sialadenitis (FLS), and a dysbiotic oral microbiota at week 24. To dissect the contributions of genetic and environmental factors to the salivary gland phenotype, Nfkbiz+/+ and Nfkbiz−/− mice were cohoused after weaning and evaluated at week 20. Cohousing alleviated the salivary gland phenotype of Nfkbiz−/− mice but did not induce any disease phenotype in Nfkbiz+/+ mice. Additionally, the oral microbiota in the cohoused mice was synchronized toward that in Nfkbiz+/+ mice. In conclusion, IκB-ζ-deficient mice developed hyposalivation and FLS, in which a dysbiotic oral microbiota played an important role. This finding suggests that the dysbiotic oral microbiota could be a therapeutic target.
Collapse
Affiliation(s)
- Junho Lee
- Department of Immunology and Molecular Microbiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea.,Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jehan Alam
- Department of Immunology and Molecular Microbiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea.,Department of Ophthalmology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Eunji Choi
- Department of Immunology and Molecular Microbiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Yeon Kyeong Ko
- Department of Immunology and Molecular Microbiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Ahreum Lee
- Department of Immunology and Molecular Microbiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Youngnim Choi
- Department of Immunology and Molecular Microbiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea.
| |
Collapse
|