1
|
Ren H, Song R, Wang H, Zeng Q, Fu Y, Guo Y, Xie Y, Ge Y. Bibliometric and Visual Analysis of Alzheimer's Disease and Herpes Simplex Virus Type 1 Infection Between 1990 and 2024. J Multidiscip Healthc 2025; 18:2097-2109. [PMID: 40256111 PMCID: PMC12009126 DOI: 10.2147/jmdh.s514397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 04/10/2025] [Indexed: 04/22/2025] Open
Abstract
Background Recently, some studies suggested that Herpes simplex virus type 1 (HSV-1) infection is an important environmental factor for Alzheimer's disease(AD). The literature on research about HSV-1 infection and AD is emerging. This study used the bibliometric method to investigate the relationship between HSV-1 infection and AD. Methods We searched the Web of Science Core Collection for relevant literature on AD and HSV-1 from 1990 to 2024. Bibliometric and visualization analyses were performed using VOSviewer and CiteSpace. Results From 1990 to 2024, the number of publications showed an increasing trend. The United States made the largest contributions in productivity. The University of Manchester was the most productive organization. Professor Ruth F. Itzhaki was the most influential researcher. The Journal of Alzheimer's Disease had published the most articles. Research on the mechanisms by which HSV infection contributes to AD remains a hotspot in the field, and future studies may further focus on antiviral therapeutic strategies targeting HSV-1 infection. Conclusion Our analysis provides basic information about research in AD and HSV-1. The current research hotspots in this field mainly include the mechanism of AD caused by HSV-1, and antiviral drugs to treat or prevent AD.
Collapse
Affiliation(s)
- Hongling Ren
- The Department of Neurology, the second Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, 116023, People’s Republic of China
| | - Ruiyao Song
- The Department of Neurology, the second Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, 116023, People’s Republic of China
| | - Hairong Wang
- The Department of Neurology, the second Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, 116023, People’s Republic of China
| | - Qingyan Zeng
- The Department of Neurology, the second Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, 116023, People’s Republic of China
| | - Yu Fu
- The Department of Neurology, the second Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, 116023, People’s Republic of China
| | - Yunchu Guo
- The Department of Neurology, the second Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, 116023, People’s Republic of China
| | - Ying Xie
- The Department of Infection Control and Prevention, the second Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, 116023, People’s Republic of China
| | - Yusong Ge
- The Department of Neurology, the second Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, 116023, People’s Republic of China
| |
Collapse
|
2
|
Kayesh MEH, Kohara M, Tsukiyama-Kohara K. Effects of oxidative stress on viral infections: an overview. NPJ VIRUSES 2025; 3:27. [PMID: 40295852 PMCID: PMC11993764 DOI: 10.1038/s44298-025-00110-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/31/2025] [Indexed: 04/30/2025]
Abstract
Viral infections can trigger increased reactive oxygen species (ROS) production and a reduced antioxidant response in the host, leading to redox stress, inflammation, apoptosis, and ultimately, cell and tissue damage, which contribute to disease development. A better understanding of how ROS contributes to viral pathogenesis is critical for the development of novel therapeutic interventions. In this review, we discuss the current knowledge on ROS production and its effects across various viral infections, including severe acute respiratory syndrome-coronavirus-2, influenza A virus, dengue virus, Zika virus, hepatitis B virus, hepatitis C virus, and human immunodeficiency virus infections, to improve future therapeutic and preventive strategies for these infections.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Department of Microbiology and Public Health, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh.
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, 890-0065, Japan.
| |
Collapse
|
3
|
Rosales JJ, Brunner MB, Rodríguez M, Marin M, Maldonado EN, Pérez S. Reactive oxygen species favors Varicellovirus bovinealpha 5 (BoAHV-5) replication in neural cells. Mitochondrion 2025; 81:102005. [PMID: 39778729 DOI: 10.1016/j.mito.2025.102005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/24/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
Varicellovirus bovinealpha (BoAHV) 1 and 5 are closely related neurotropic alphaherpesviruses with distinct neuropathogenic potential. BoAHV-5 causes meningoencephalitis in calves whereas encephalitis by BoAHV-1 infection is sporadic. the mechanisms underlying the differences in tropism and clinical outcomes of the infections are not yet completely understood. Here, we used neuroblastoma SH-SY5Y cells as non-differentiated in comparison with the SH-SY5Y neuronal-like cells obtained after exposing SH-SY5Y undifferentiated cells to trans-retinoic acid. We aimed to establish whether there was a relationship between the production of reactive oxygen species (ROS) and the kinetics of virus replication. We demonstrated that ROS production after BoAHV infection was higher in differentiated cells. Generation of ROS was also dependent on the infecting BoAHV strain. Higher ROS levels were produced during BoAHV-5 infection concomitantly with enhanced viral replication. We propose that increased ROS production mechanistically contributes to the tissue damage and neuroinflammation induced by BoAHV-5 infection. Future studies will determine specific targets of ROS that mediate the effects on viral replication.
Collapse
Affiliation(s)
- Juan José Rosales
- Laboratorio de Virología, Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Campus Universitario, Tandil, Buenos Aires, Argentina; Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Facultad de Ciencias Veterinarias, Campus Universitario, Tandil, Buenos Aires, Argentina
| | - María Belén Brunner
- Laboratorio de Virología, Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Campus Universitario, Tandil, Buenos Aires, Argentina; Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Facultad de Ciencias Veterinarias, Campus Universitario, Tandil, Buenos Aires, Argentina
| | - Marcelo Rodríguez
- Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Facultad de Ciencias Veterinarias, Campus Universitario, Tandil, Buenos Aires, Argentina
| | - Maia Marin
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS Balcarce), INTA-CONICET, Balcarce, Buenos Aires, Argentina
| | - Eduardo Néstor Maldonado
- Department of Drug Discovery & Pharmaceutical Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Sandra Pérez
- Laboratorio de Virología, Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Campus Universitario, Tandil, Buenos Aires, Argentina; Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Facultad de Ciencias Veterinarias, Campus Universitario, Tandil, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Wagner LE, Melnyk O, Turner A, Duffett BE, Muralidharan C, Martinez-Irizarry MM, Arvin MC, Orr KS, Manduchi E, Kaestner KH, Brozinick JT, Linnemann AK. IFN-α Induces Heterogenous ROS Production in Human β-Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.639120. [PMID: 40027743 PMCID: PMC11870469 DOI: 10.1101/2025.02.19.639120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Type 1 diabetes (T1D) is a multifactorial disease involving genetic and environmental factors, including viral infection. We investigated the impact of interferon alpha (IFN-α), a cytokine produced during the immune response to viral infection or the presence of un-edited endogenous double-stranded RNAs, on human β-cell physiology. Intravital microscopy on transplanted human islets using a β-cell-selective reactive oxygen species (ROS) biosensor (RIP1-GRX1-roGFP2), revealed a subset of human β-cells that acutely produce ROS in response to IFN-α. Comparison to Integrated Islet Distribution Program (IIDP) phenotypic data revealed that healthier donors had more ROS accumulating cells. In vitro IFN-α treatment of human islets similarly elicited a heterogenous increase in superoxide production that originated in the mitochondria. To determine the unique molecular signature predisposing cells to IFN-α stimulated ROS production, we flow sorted human islets treated with IFN-α. RNA sequencing identified genes involved in inflammatory and immune response in the ROS-producing cells. Comparison with single cell RNA-Seq datasets available through the Human Pancreas Analysis Program (HPAP) showed that genes upregulated in ROS-producing cells are enriched in control β-cells rather than T1D donors. Combined, these data suggest that IFN-α stimulates mitochondrial ROS production in healthy human β-cells, potentially predicting a more efficient antiviral response.
Collapse
Affiliation(s)
- Leslie E. Wagner
- Departments of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Olha Melnyk
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Abigail Turner
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Bryce E. Duffett
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Charanya Muralidharan
- Departments of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
| | | | - Matthew C. Arvin
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Kara S. Orr
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
| | - Elisabetta Manduchi
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA
| | - Klaus H. Kaestner
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA
| | | | - Amelia K. Linnemann
- Departments of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
5
|
Piacentini R, Grassi C. Interleukin 1β receptor and synaptic dysfunction in recurrent brain infection with Herpes simplex virus type-1. Neural Regen Res 2025; 20:416-423. [PMID: 38819045 PMCID: PMC11317954 DOI: 10.4103/nrr.nrr-d-23-01690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/21/2024] [Accepted: 03/21/2024] [Indexed: 06/01/2024] Open
Abstract
Several experimental evidence suggests a link between brain Herpes simplex virus type-1 infection and the occurrence of Alzheimer's disease. However, the molecular mechanisms underlying this association are not completely understood. Among the molecular mediators of synaptic and cognitive dysfunction occurring after Herpes simplex virus type-1 infection and reactivation in the brain neuroinflammatory cytokines seem to occupy a central role. Here, we specifically reviewed literature reports dealing with the impact of neuroinflammation on synaptic dysfunction observed after recurrent Herpes simplex virus type-1 reactivation in the brain, highlighting the role of interleukins and, in particular, interleukin 1β as a possible target against Herpes simplex virus type-1-induced neuronal dysfunctions.
Collapse
Affiliation(s)
- Roberto Piacentini
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| |
Collapse
|
6
|
Yu L, Shen N, Ren J, Xin H, Cui Y. Resource distribution, pharmacological activity, toxicology and clinical drugs of β-Carboline alkaloids: An updated and systematic review. Fitoterapia 2025; 180:106326. [PMID: 39645053 DOI: 10.1016/j.fitote.2024.106326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/29/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
β-Carboline alkaloids are a broad class of indole alkaloids that were first isolated from Peganum harmala L., a traditional Chinese herbal remedy. β-Carboline alkaloids have been found to have many pharmacological activities, including anti-inflammatory, antioxidant, and anti-cancer properties. β-Carboline alkaloids have been studied, and nine therapeutic medications based on its structural skeleton have been utilized to treat a range of illnesses. These compounds' potent pharmacological action and high druggability have garnered a lot of interest. This review systematically summarized resource distribution, pharmacological activity, toxicology and clinical drugs of β-Carboline alkaloids. These alkaloids are mostly found in plants, particularly (Peganum harmala L.), although they are also present in food, bacteria, fungus, and animals. By inhibiting NF-κB, MAPKs, and PI3K-AKT multiple signal pathways, they demonstrate a wide range of pharmacological activities, including anti-inflammatory, oxidative, neurological, cancer, fungal, and leishmania pharmacological activity. Toxicology revealed that β-Carboline alkaloids can produce confusion, irritability, dyskinesia, nausea, vomiting, and audiovisual hallucinations in addition to stimulating the central nervous system and inhibiting metabolism. Clinical drugs based on β-Carboline alkaloids have been used for clinical treatment of arrhythmia, cerebrovascular diseases and dysfunction, hypertension, epilepsy, malaria and mydriasis diseases. It will prompt us to redefine β-Carboline alkaloids. For β-Carboline alkaloids that inspires pharmacological applications in medicine and the development of novel medications containing these alkaloids, it will be a useful resource.
Collapse
Affiliation(s)
- Lili Yu
- School of Medicine, Linyi University, Linyi 276000, Shandong, China
| | - Na Shen
- School of Medicine, Linyi University, Linyi 276000, Shandong, China
| | - Jiani Ren
- School of Medicine, Linyi University, Linyi 276000, Shandong, China
| | - Huawei Xin
- School of Medicine, Linyi University, Linyi 276000, Shandong, China.
| | - Yulei Cui
- School of Medicine, Linyi University, Linyi 276000, Shandong, China.
| |
Collapse
|
7
|
Monteiro R, Kumar Sivasubramanian M, Harrison KS, Plakkot B, Sadeghi H, Subramanian M, Jones C. Examination of neuro-inflammation and senescence in brainstem of aged mice latently infected with human alphaherpesvirus 1 (HSV-1). Virus Res 2024; 347:199420. [PMID: 38880336 PMCID: PMC11252931 DOI: 10.1016/j.virusres.2024.199420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Human alphaherpesvirus 1 (HSV-1) establishes life-long latency in sensory neurons in trigeminal ganglia (TG), brainstem neurons, and other CNS neurons. Two important segments of the brainstem were examined in this study: principal sensory nucleus of the spinal trigeminal tract (Pr5) because it receives direct afferent inputs from TG, and locus coeruleus (LC) because it is indirectly connected to Pr5 and LC sends axonal projections to cortical structures, which may facilitate viral spread from brainstem to the brain. The only viral gene abundantly expressed during latency is the latency associated transcript (LAT). Previous studies revealed 8-week old female C57Bl/6 mice infected with a LAT null mutant (dLAT2903) versus wild-type (wt) HSV-1 exhibit higher levels of senescence markers and inflammation in LC of females. New studies revealed 1-year old mice latently infected with wt HSV-1 or dLAT2903 contained differences in neuroinflammation and senescence in Pr5 and LC versus young mice. In summary, these studies confirm HSV-1 promotes neuro-inflammation in the brainstem, which may accelerate neurodegenerative disease.
Collapse
Affiliation(s)
- Raisa Monteiro
- Department of Physiological Sciences, Oklahoma State University, College of Veterinary Medicine, Stillwater, OK 74078, USA
| | - Mahesh Kumar Sivasubramanian
- Department of Physiological Sciences, Oklahoma State University, College of Veterinary Medicine, Stillwater, OK 74078, USA
| | - Kelly S Harrison
- Department of Veterinary Pathobiology, Oklahoma State University, College of Veterinary Medicine, Stillwater, OK 74078, USA
| | - Bhuvana Plakkot
- Department of Physiological Sciences, Oklahoma State University, College of Veterinary Medicine, Stillwater, OK 74078, USA
| | - Hafez Sadeghi
- Department of Veterinary Pathobiology, Oklahoma State University, College of Veterinary Medicine, Stillwater, OK 74078, USA
| | - Madhan Subramanian
- Department of Physiological Sciences, Oklahoma State University, College of Veterinary Medicine, Stillwater, OK 74078, USA.
| | - Clinton Jones
- Department of Veterinary Pathobiology, Oklahoma State University, College of Veterinary Medicine, Stillwater, OK 74078, USA.
| |
Collapse
|
8
|
Dik I, Dik B, Tufan Ö, Er A. Evaluation of potential antiviral activities of antimicrobial peptides in fish mucus. Fundam Clin Pharmacol 2024; 38:695-702. [PMID: 38378226 DOI: 10.1111/fcp.12996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/24/2024] [Accepted: 02/06/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND Fish skin mucus contains innate immune factors and acts as the first line of physical or chemical defense against pathogens. OBJECTIVE The primary aim of this study was to determine the antiviral activity of sea bream (SBr), rainbow trout (RT), and sea bass (SBa) fish skin mucus against herpes simplex virus (HSV)-1. In addition, it was aimed to associate possible antiviral activity with antimicrobial peptides (AMPs) such as cathelicidin, hepcidin, galectin 2, and C10ORF99, whose levels were determined in the mucus. METHODS The antiviral activity and oxidative/antioxidant status of mucus against HSV-1 virus was evaluated. In addition, AMPs, SOD, and CAT activities, and immunoglobulin M levels were also analyzed in mucus of fish. RESULTS Antiviral activity mucus of SBr, RT, and SBa against HSV-1 were determined as 2-4, 2-5, and 2-2, respectively. The higher antiviral activity of SBr and RT mucus compared to the mucus of SBa can be associated with higher AMP levels in them. CONCLUSION The skin mucus of SBr and RT may be nutritional supplement, adjuvant, and a new agent that can potentiate the effects of antimicrobial/antiviral agents.
Collapse
Affiliation(s)
- Irmak Dik
- Department of Virology, Faculty of Veterinary, Selcuk University, Konya, Turkey
| | - Burak Dik
- Department of Pharmacology and Toxicology, Faculty of Veterinary, Selcuk University, Konya, Turkey
| | - Öznur Tufan
- Department of Pharmacology and Toxicology, Faculty of Veterinary, Selcuk University, Konya, Turkey
| | - Ayşe Er
- Department of Pharmacology and Toxicology, Faculty of Veterinary, Selcuk University, Konya, Turkey
| |
Collapse
|
9
|
Kim B, Kim YS, Li W, Kwon EB, Chung HS, Go Y, Choi JG. Ginsenoside Rg5, a potent agonist of Nrf2, inhibits HSV-1 infection-induced neuroinflammation by inhibiting oxidative stress and NF-κB activation. J Ginseng Res 2024; 48:384-394. [PMID: 39036736 PMCID: PMC11258381 DOI: 10.1016/j.jgr.2024.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 07/23/2024] Open
Abstract
Background Herpes simplex virus type 1 (HSV-1), known to latently infect the host's trigeminal ganglion, can lead to severe herpes encephalitis or asymptomatic infection, potentially contributing to neurodegenerative diseases like Alzheimer's. The virus generates reactive oxygen species (ROS) that significantly impact viral replication and induce chronic inflammation through NF-κB activation. Nuclear factor E2-related factor 2 (Nrf2), an oxidative stress regulator, can prevent and treat HSV-1 infection by activating the passive defense response in the early stages of infection. Methods and results Our study investigated the antiviral effects of ginsenoside Rg5, an Nrf2 activator, on HSV-1 replication and several host cell signaling pathways. We found that HSV-1 infection inhibited Nrf2 activity in host cells, induced ROS/NF-κB signaling, and triggered inflammatory cytokines. However, treatment with ginsenoside Rg5 inhibited ROS/NF-κB signaling and reduced inflammatory cytokines through NRF2 induction. Interestingly, the Nrf2 inhibitor ML385 suppressed the expression of NAD(P)H quinone oxidoreductase 1(NQO1) and enhanced the expression of KEAP1 in HSV-1 infected cells. This led to the reversal of VP16 expression inhibition, a protein factor associated with HSV-1 infection, thereby promoting HSV-1 replication. Conclusion These findings suggest for the first time that ginsenoside Rg5 may serve as an antiviral against HSV-1 infection and could be a novel therapeutic agent for HSV-1-induced neuroinflammation.
Collapse
Affiliation(s)
- Buyun Kim
- Korean Medicine Application Center, Korea Institute of Oriental Medicine (KIOM), Dong-gu, Daegu, Republic of Korea
| | - Young Soo Kim
- Korean Medicine Application Center, Korea Institute of Oriental Medicine (KIOM), Dong-gu, Daegu, Republic of Korea
| | - Wei Li
- Korean Medicine Application Center, Korea Institute of Oriental Medicine (KIOM), Dong-gu, Daegu, Republic of Korea
| | - Eun-Bin Kwon
- Korean Medicine Application Center, Korea Institute of Oriental Medicine (KIOM), Dong-gu, Daegu, Republic of Korea
| | - Hwan-Suck Chung
- Korean Medicine Application Center, Korea Institute of Oriental Medicine (KIOM), Dong-gu, Daegu, Republic of Korea
| | - Younghoon Go
- Korean Medicine Application Center, Korea Institute of Oriental Medicine (KIOM), Dong-gu, Daegu, Republic of Korea
| | - Jang-Gi Choi
- Korean Medicine Application Center, Korea Institute of Oriental Medicine (KIOM), Dong-gu, Daegu, Republic of Korea
| |
Collapse
|
10
|
Lamontagne F, Paz-Trejo C, Zamorano Cuervo N, Grandvaux N. Redox signaling in cell fate: Beyond damage. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119722. [PMID: 38615720 DOI: 10.1016/j.bbamcr.2024.119722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/20/2024] [Accepted: 04/02/2024] [Indexed: 04/16/2024]
Abstract
This review explores the nuanced role of reactive oxygen species (ROS) in cell fate, challenging the traditional view that equates ROS with cellular damage. Through significant technological advancements in detecting localized redox states and identifying oxidized cysteines, a paradigm shift has emerged: from ROS as merely damaging agents to crucial players in redox signaling. We delve into the intricacies of redox mechanisms, which, although confined, exert profound influences on cellular physiological responses. Our analysis extends to both the positive and negative impacts of these mechanisms on cell death processes, including uncontrolled and programmed pathways. By unraveling these complex interactions, we argue against the oversimplified notion of a 'stress response', advocating for a more nuanced understanding of redox signaling. This review underscores the importance of localized redox states in determining cell fate, highlighting the sophistication and subtlety of ROS functions beyond mere damage.
Collapse
Affiliation(s)
- Felix Lamontagne
- CRCHUM - Centre de Recherche du Centre Hospitalier de l'Université de Montréal, 900 rue Saint Denis, Montréal H2X 0A9, Québec, Canada
| | - Cynthia Paz-Trejo
- CRCHUM - Centre de Recherche du Centre Hospitalier de l'Université de Montréal, 900 rue Saint Denis, Montréal H2X 0A9, Québec, Canada; Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal H3C 3J7, Québec, Canada
| | - Natalia Zamorano Cuervo
- CRCHUM - Centre de Recherche du Centre Hospitalier de l'Université de Montréal, 900 rue Saint Denis, Montréal H2X 0A9, Québec, Canada
| | - Nathalie Grandvaux
- CRCHUM - Centre de Recherche du Centre Hospitalier de l'Université de Montréal, 900 rue Saint Denis, Montréal H2X 0A9, Québec, Canada; Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal H3C 3J7, Québec, Canada.
| |
Collapse
|
11
|
Ding R, Xu H, Huang H, Cao R, Lv Y. Effects of Goose Astrovirus Type 2 Infection on Peripheral Blood Lymphocyte and Macrophage Activity In Vitro. Viral Immunol 2024; 37:139-148. [PMID: 38574260 DOI: 10.1089/vim.2023.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
Abstract
Goose astrovirus type 2 (GAstV-2) is a novel pathogen causing visceral gout in goslings; it not only causes necrosis of renal epithelial cells but also causes spleen damage, indicating that GAstV-2 induces immunosuppression in goslings. However, to date, the interaction between GAstV-2 and immune cells remains unclear. In this study, peripheral blood lymphocytes and macrophages were isolated from goslings without GAstV-2 infection and then inoculated in vitro with GAstV-2, and the virus localization in the lymphocytes and macrophages, proliferation and apoptosis of lymphocytes, and phagocytic activity, reactive oxygen species (ROS) and nitric oxide (NO) production, and cell polarity in macrophages were determined. The results showed that GAstV-2 was observed in the cytoplasm of CD4 and CD8 T cells and macrophages, indicating that GAstV-2 can infect both lymphocytes and macrophages. GAstV-2 infection reduced the lymphocyte proliferation induced by Concanavalin A and lipopolysaccharide stimulation and increased the lymphocyte apoptosis rate and mRNA expression of Fas, demonstrating that GAstV-2 causes damage to lymphocytes. Moreover, GAstV-2 infection enhanced phagocytic activity and production of ROS and NO and induced a proinflammatory phenotype in macrophages (M1 macrophages), indicating that macrophages play an antiviral role during GAstV-2 infection. In conclusion, these results demonstrate that GAstV-2 infection causes damages to lymphocytes, and host macrophages inhibit GAstV-2 invasion during infection.
Collapse
Affiliation(s)
- Rui Ding
- Department of Animal Pathology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Haoran Xu
- Department of Animal Pathology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Han Huang
- Department of Animal Pathology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ruibing Cao
- Department of Animal Pathology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yingjun Lv
- Department of Animal Pathology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
12
|
Kukulage DSK, Yapa Abeywardana M, Matarage Don NNJ, Hu RM, Shishikura K, Matthews ML, Ahn YH. Chemoproteomic strategy identified p120-catenin glutathionylation regulates E-cadherin degradation and cell migration. Cell Chem Biol 2023; 30:1542-1556.e9. [PMID: 37714153 PMCID: PMC10840712 DOI: 10.1016/j.chembiol.2023.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 05/30/2023] [Accepted: 08/15/2023] [Indexed: 09/17/2023]
Abstract
Identification of cysteines with high oxidation susceptibility is important for understanding redox-mediated biological processes. In this report, we report a chemical proteomic strategy that finds cysteines with high susceptibility to S-glutathionylation. Our proteomic strategy, named clickable glutathione-based isotope-coded affinity tag (G-ICAT), identified 1,518 glutathionylated cysteines while determining their relative levels of glutathionylated and reduced forms upon adding hydrogen peroxide. Among identified cysteines, we demonstrated that CTNND1 (p120) C692 has high susceptibility to glutathionylation. Also, p120 wild type (WT), compared to C692S, induces its dissociation from E-cadherin under oxidative stress, such as glucose depletion. p120 and E-cadherin dissociation correlated with E-cadherin destabilization via its proteasomal degradation. Lastly, we showed that p120 WT, compared to C692S, increases migration and invasion of MCF7 cells under glucose depletion, supporting a model that p120 C692 glutathionylation increases cell migration and invasion by destabilization of E-cadherin, a core player in cell-cell adhesion.
Collapse
Affiliation(s)
| | | | | | - Ren-Ming Hu
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kyosuke Shishikura
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Megan L Matthews
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Young-Hoon Ahn
- Department of Chemistry, Drexel University, Philadelphia, PA 19104, USA.
| |
Collapse
|
13
|
Zhou R, Hu J, Qiu J, Lu S, Lin H, Huang R, Zhou S, Huang G, He J. Phenolic compound SG-1 from Balanophora harlandii and its derivatives exert anti-influenza A virus activity via activation of the Nrf2/HO-1 pathway. Biochem Pharmacol 2023; 210:115495. [PMID: 36918045 DOI: 10.1016/j.bcp.2023.115495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/14/2023]
Abstract
Influenza A virus (IAV) is one of the leading causes of respiratory illness and continues to cause pandemics around the world. Against this backdrop, drug resistance poses a challenge to existing antiviral drugs, and hence, there is an urgent need for developing new antiviral drugs. In this study, we obtained a phenolic compound SG-7, a derivative of natural compound 2-hydroxymethyl-1,4-hydroquinone, which exhibits inhibitory activity toward a panel of influenza viruses and has low cellular toxicity. Mechanistic studies have shown that SG-7 exerts its anti-IAV properties by acting on the virus itself and modulating host signaling pathways. Namely, SG-7 targets the HA2 subunit of hemagglutinin (HA) to block the fusion of viral-cellular membranes and inhibits IAV-induced oxidative stress and overexpression of pro-inflammatory factors by activating the Nrf2/HO-1 pathway and reducing NF-κB activation. In addition, SG-7 can enhance type I IFN antiviral response by inducing Nrf2 expression. Importantly, SG-7 showed the ability to inhibit viral replication in the lungs of IAV-infected mice and reduce their mortality. Therefore, SG-7 may be a promising lead compound for anti-influenza drug development.
Collapse
Affiliation(s)
- Runhong Zhou
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Jianan Hu
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Jingnan Qiu
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Shengsheng Lu
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Haixing Lin
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Ruifeng Huang
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Shaofen Zhou
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Guoqing Huang
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Jian He
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China.
| |
Collapse
|
14
|
Sutter J, Bruggeman PJ, Wigdahl B, Krebs FC, Miller V. Manipulation of Oxidative Stress Responses by Non-Thermal Plasma to Treat Herpes Simplex Virus Type 1 Infection and Disease. Int J Mol Sci 2023; 24:4673. [PMID: 36902102 PMCID: PMC10003306 DOI: 10.3390/ijms24054673] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a contagious pathogen with a large global footprint, due to its ability to cause lifelong infection in patients. Current antiviral therapies are effective in limiting viral replication in the epithelial cells to alleviate clinical symptoms, but ineffective in eliminating latent viral reservoirs in neurons. Much of HSV-1 pathogenesis is dependent on its ability to manipulate oxidative stress responses to craft a cellular environment that favors HSV-1 replication. However, to maintain redox homeostasis and to promote antiviral immune responses, the infected cell can upregulate reactive oxygen and nitrogen species (RONS) while having a tight control on antioxidant concentrations to prevent cellular damage. Non-thermal plasma (NTP), which we propose as a potential therapy alternative directed against HSV-1 infection, is a means to deliver RONS that affect redox homeostasis in the infected cell. This review emphasizes how NTP can be an effective therapy for HSV-1 infections through the direct antiviral activity of RONS and via immunomodulatory changes in the infected cells that will stimulate anti-HSV-1 adaptive immune responses. Overall, NTP application can control HSV-1 replication and address the challenges of latency by decreasing the size of the viral reservoir in the nervous system.
Collapse
Affiliation(s)
- Julia Sutter
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Peter J. Bruggeman
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Brian Wigdahl
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Fred C. Krebs
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Vandana Miller
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| |
Collapse
|
15
|
Abstract
Herpes simplex virus 1 (HSV-1) is a DNA virus belonging to the family Herpesviridae. HSV-1 infection causes severe neurological disease in the central nervous system (CNS), including encephalitis. Ferroptosis is a nonapoptotic form of programmed cell death that contributes to different neurological inflammatory diseases. However, whether HSV-1 induces ferroptosis in the CNS and the role of ferroptosis in viral pathogenesis remain unclear. Here, we demonstrate that HSV-1 induces ferroptosis, as hallmarks of ferroptosis, including Fe2+ overload, reactive oxygen species (ROS) accumulation, glutathione (GSH) depletion, lipid peroxidation, and mitochondrion shrinkage, are observed in HSV-1-infected cultured human astrocytes, microglia cells, and murine brains. Moreover, HSV-1 infection enhances the E3 ubiquitin ligase Keap1 (Kelch-like ECH-related protein 1)-mediated ubiquitination and degradation of nuclear factor E2-related factor 2 (Nrf2), a transcription factor that regulates the expression of antioxidative genes, thereby disturbing cellular redox homeostasis and promoting ferroptosis. Furthermore, HSV-1-induced ferroptosis is tightly associated with the process of viral encephalitis in a mouse model, and the ferroptosis-activated upregulation of prostaglandin-endoperoxide synthase 2 (PTGS2) and prostaglandin E2 (PGE2) plays an important role in HSV-1-caused inflammation and encephalitis. Importantly, the inhibition of ferroptosis by a ferroptosis inhibitor or a proteasome inhibitor to suppress Nrf2 degradation effectively alleviated HSV-1 encephalitis. Together, our findings demonstrate the interaction between HSV-1 infection and ferroptosis and provide novel insights into the pathogenesis of HSV-1 encephalitis. IMPORTANCE Ferroptosis is a nonapoptotic form of programmed cell death that contributes to different neurological inflammatory diseases. However, whether HSV-1 induces ferroptosis in the CNS and the role of ferroptosis in viral pathogenesis remain unclear. In the current study, we demonstrate that HSV-1 infection induces ferroptosis, as Fe2+ overload, ROS accumulation, GSH depletion, lipid peroxidation, and mitochondrion shrinkage, all of which are hallmarks of ferroptosis, are observed in human cultured astrocytes, microglia cells, and murine brains infected with HSV-1. Moreover, HSV-1 infection enhances Keap1-dependent Nrf2 ubiquitination and degradation, which results in substantial reductions in the expression levels of antiferroptotic genes downstream of Nrf2, thereby disturbing cellular redox homeostasis and promoting ferroptosis. Furthermore, HSV-1-induced ferroptosis is tightly associated with the process of viral encephalitis in a mouse model, and the ferroptosis-activated upregulation of PTGS2 and PGE2 plays an important role in HSV-1-caused inflammation and encephalitis. Importantly, the inhibition of ferroptosis by either a ferroptosis inhibitor or a proteasome inhibitor to suppress HSV-1-induced Nrf2 degradation effectively alleviates HSV-1-caused neuro-damage and inflammation in infected mice. Overall, our findings uncover the interaction between HSV-1 infection and ferroptosis, shed novel light on the physiological impacts of ferroptosis on the pathogenesis of HSV-1 infection and encephalitis, and provide a promising therapeutic strategy to treat this important infectious disease with a worldwide distribution.
Collapse
|
16
|
Checconi P, Coni C, Limongi D, Baldelli S, Ciccarone F, De Angelis M, Mengozzi M, Ghezzi P, Ciriolo MR, Nencioni L, Palamara AT. Influenza virus replication is affected by glutaredoxin1-mediated protein deglutathionylation. FASEB J 2023; 37:e22729. [PMID: 36583688 DOI: 10.1096/fj.202201239rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/31/2022]
Abstract
Several redox modifications have been described during viral infection, including influenza virus infection, but little is known about glutathionylation and this respiratory virus. Glutathionylation is a reversible, post-translational modification, in which protein cysteine forms transient disulfides with glutathione (GSH), catalyzed by cellular oxidoreductases and in particular by glutaredoxin (Grx). We show here that (i) influenza virus infection induces protein glutathionylation, including that of viral proteins such as hemagglutinin (HA); (ii) Grx1-mediated deglutathionylation is important for the viral life cycle, as its inhibition, either with an inhibitor of its enzymatic activity or by siRNA, decreases viral replication. Overall these data contribute to the characterization of the complex picture of redox regulation of the influenza virus replication cycle and could help to identify new targets to control respiratory viral infection.
Collapse
Affiliation(s)
- Paola Checconi
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Rome, Italy.,Laboratory of Microbiology of Chronic-Neurodegenerative Diseases, IRCCS San Raffaele Roma, Rome, Italy
| | - Cristiana Coni
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Rome, Italy.,Laboratory of Microbiology of Chronic-Neurodegenerative Diseases, IRCCS San Raffaele Roma, Rome, Italy
| | - Dolores Limongi
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Rome, Italy.,Laboratory of Microbiology of Chronic-Neurodegenerative Diseases, IRCCS San Raffaele Roma, Rome, Italy
| | - Sara Baldelli
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Rome, Italy.,Laboratory of Biochemistry of Aging, IRCCS San Raffaele Roma, Rome, Italy
| | - Fabio Ciccarone
- Laboratory of Biochemistry of Aging, IRCCS San Raffaele Roma, Rome, Italy.,Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Marta De Angelis
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Manuela Mengozzi
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, UK
| | - Pietro Ghezzi
- Department of Biomolecular Sciences, University of Urbino, Urbino, Italy
| | - Maria Rosa Ciriolo
- Laboratory of Biochemistry of Aging, IRCCS San Raffaele Roma, Rome, Italy.,Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Lucia Nencioni
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Anna Teresa Palamara
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy.,Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
17
|
Kukulage DSK, Matarage Don NNJ, Ahn YH. Emerging chemistry and biology in protein glutathionylation. Curr Opin Chem Biol 2022; 71:102221. [PMID: 36223700 PMCID: PMC9844265 DOI: 10.1016/j.cbpa.2022.102221] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 01/27/2023]
Abstract
Protein S-glutathionylation serves a regulatory role in proteins and modulates distinct biological processes implicated in health and diseases. Despite challenges in analyzing the dynamic and reversible nature of S-glutathionylation, recent chemical and biological methods have significantly advanced the field of S-glutathionylation, culminating in selective identification and detection, structural motif analysis, and functional studies of S-glutathionylation. This review will highlight emerging studies of protein glutathionylation, beginning by introducing biochemical tools that enable mass spectrometric identification and live-cell imaging of S-glutathionylation. Next, it will spotlight recent examples of S-glutathionylation regulating physiology and inflammation. Lastly, we will feature two emerging lines of glutathionylation research in cryptic cysteine glutathionylation and protein C-glutathionylation.
Collapse
Affiliation(s)
| | | | - Young-Hoon Ahn
- Department of Chemistry, Drexel University, Philadelphia, PA 19104, USA.
| |
Collapse
|
18
|
Bertran O, Martí D, Torras J, Turon P, Alemán C. Computer simulations on oxidative stress-induced reactions in SARS-CoV-2 spike glycoprotein: a multi-scale approach. Mol Divers 2022; 26:3143-3155. [PMID: 35179698 PMCID: PMC8854484 DOI: 10.1007/s11030-021-10373-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/21/2021] [Indexed: 11/30/2022]
Abstract
Oxidative stress, which occurs when an organism is exposed to an adverse stimulus that results in a misbalance of antioxidant and pro-oxidants species, is the common denominator of diseases considered as a risk factor for SARS-CoV-2 lethality. Indeed, reactive oxygen species caused by oxidative stress have been related to many virus pathogenicity. In this work, simulations have been performed on the receptor binding domain of SARS-CoV-2 spike glycoprotein to study what residues are more susceptible to be attacked by ·OH, which is one of the most reactive radicals associated to oxidative stress. The results indicate that isoleucine (ILE) probably plays a crucial role in modification processes driven by radicals. Accordingly, QM/MM-MD simulations have been conducted to study both the ·OH-mediated hydrogen abstraction of ILE residues and the induced modification of the resulting ILE radical through hydroxylation or nitrosylation reactions. All in all, in silico studies show the importance of the chemical environment triggered by oxidative stress on the modifications of the virus, which is expected to help for foreseeing the identification or development of antioxidants as therapeutic drugs.
Collapse
Affiliation(s)
- Oscar Bertran
- Departament de Física EETAC, Universitat Politècnica de Catalunya, c/Esteve Terrades, 7, 08860, Castelldefels, Spain.
| | - Didac Martí
- Departament d'Enginyeria Química (DEQ) and Barcelona Research Center in Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya (UPC), C/Eduard Maristany 10-14, 08019, Barcelona, Spain
| | - Juan Torras
- Departament d'Enginyeria Química (DEQ) and Barcelona Research Center in Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya (UPC), C/Eduard Maristany 10-14, 08019, Barcelona, Spain.
| | - Pau Turon
- B. Braun Surgical, S.A.U. Carretera de Terrasa 121, 08191, Rubí, Barcelona, Spain.
| | - Carlos Alemán
- Departament d'Enginyeria Química (DEQ) and Barcelona Research Center in Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya (UPC), C/Eduard Maristany 10-14, 08019, Barcelona, Spain.
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain.
| |
Collapse
|
19
|
Herpes Simplex Virus Type 1 Preferentially Enhances Neuro-Inflammation and Senescence in Brainstem of Female Mice. J Virol 2022; 96:e0108122. [PMID: 35975996 PMCID: PMC9472638 DOI: 10.1128/jvi.01081-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Following acute infection, herpes simplex virus 1 (HSV-1) establishes lifelong latency in neurons. The latency associated transcript (LAT) is the only viral gene abundantly expressed during latency. Wild-type (WT) HSV-1 reactivates more efficiently than LAT mutants because LAT promotes establishment and maintenance of latency. While sensory neurons in trigeminal ganglia (TG) are important sites for latency, brainstem is also a site for latency and reactivation from latency. The principal sensory nucleus of the spinal trigeminal tract (Pr5) likely harbors latent HSV-1 because it receives afferent inputs from TG. The locus coeruleus (LC), an adjacent brainstem region, sends axonal projections to cortical structures and is indirectly linked to Pr5. Senescent cells accumulate in the nervous system during aging and accelerate neurodegenerative processes. Generally senescent cells undergo irreversible cell cycle arrest and produce inflammatory cytokines and chemokines. Based on these observations, we hypothesized HSV-1 influences senescence and inflammation in Pr5 and LC of latently infected mice. This hypothesis was tested using a mouse model of infection. Strikingly, female but not age-matched male mice latently infected with a LAT null mutant (dLAT2903) exhibited significantly higher levels of senescence markers and inflammation in LC, including cell cycle inhibitor p16, NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3), IL-1α, and IL-β. Conversely, Pr5 in female but not male mice latently infected with WT HSV-1 or dLAT2903 exhibited enhanced expression of important inflammatory markers. The predilection of HSV-1 to induce senescence and inflammation in key brainstem regions of female mice infers that enhanced neurodegeneration occurs. IMPORTANCE HSV-1 (herpes simplex virus 1), an important human pathogen, establishes lifelong latency in neurons in trigeminal ganglia and the central nervous system. In contrast to productive infection, the only viral transcript abundantly expressed in latently infected neurons is the latency associated transcript (LAT). The brainstem, including principal sensory nucleus of the spinal trigeminal tract (Pr5) and locus coeruleus (LC), may expedite HSV-1 spread from trigeminal ganglia to the brain. Enhanced senescence and expression of key inflammatory markers were detected in LC of female mice latently infected with a LAT null mutant (dLAT2903) relative to age-matched male or female mice latently infected with wild-type HSV-1. Conversely, wild-type HSV-1 and dLAT2903 induced higher levels of senescence and inflammatory markers in Pr5 of latently infected female mice. In summary, enhanced inflammation and senescence in LC and Pr5 of female mice latently infected with HSV-1 are predicted to accelerate neurodegeneration.
Collapse
|
20
|
Vaccinium bracteatum Thunb Extract Inhibits HSV-1 Infection by Regulating ER Stress and Apoptosis. Antioxidants (Basel) 2022; 11:antiox11091773. [PMID: 36139847 PMCID: PMC9495922 DOI: 10.3390/antiox11091773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/25/2022] [Accepted: 09/05/2022] [Indexed: 11/26/2022] Open
Abstract
Herpes simplex Type 1 (HSV-1) is a neurotropic virus that infects the peripheral and central nervous system. Usually, after primary infection in epithelial cells, HSV-1 migrates retrograde to the peripheral nervous system (PNS), where it establishes a latent infection. HSV-1 can remain latent in the nervous system, and its reactivation in the brain can rarely cause acute HSV-1 encephalitis, often a life-threatening condition, or asymptomatic reactivations that could lead to neuronal damage and ultimately neurodegenerative disorders. Acyclovir and related nucleoside analogs have been used as therapeutic agents for HSV-1 infection, but resistance to the drug can arise, and the protective effect of HSV-1 on brain cells is limited. Therefore, there is an urgent need for research into safe and effective new antiviral agents that can protect brain cells from the damage that is caused by HSV-1 infection. Vaccinium bracteatum Thunb. (VBT) is widely distributed in Korea and China, and has pharmacological actions such as anti-inflammatory, antioxidant, and antidiabetic activity. Studies on the antiviral effect of VBT on HSV-1 infection have not been reported so far. Therefore, we sought to determine the HSV-1 antiviral effect and molecular mechanism of VBT at the cellular level. We confirmed that VBT repressed the VP16 and IE genes in both Vero and SK-N-SH cells. We also found that the generation of HSV-1 virions was inhibited by VBT treatment. VBT inhibited the activities of the HSV-1-induced endoplasmic reticulum (ER) stressors PERK, ATF4, and CHOP. We confirmed that VBT inhibited the activity of apoptosis factors by regulating the expression of death receptor (DR) after HSV-1 infection. As HSV-1 is closely associated with brain diseases, the study of the antiviral drug effects and mechanism of VBT is meaningful. Further studies using animal models of infection will also be performed to determine the potential of VBT as an antiviral agent.
Collapse
|
21
|
Hakim DDL, Gurnida DA, Nuraeny N, Susilaningsih FS, Herawati DMD. Serological Evidence of Herpes Simplex Virus-1 (HSV-1) Infection among Humans from Bandung, West Java Province, Indonesia. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.10183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND: Toxoplasma gondii, Rubella virus, Cytomegalovirus, and herpes simplex virus (TORCH) infection is still a significant burden in developing countries since they potentially increase perinatal death and decrease life quality by causing congenital disorders. As part of TORCH and as one of the most common infections in humans, HSV Type 1 infection also should receive attention. HSV-1 infection induces an immediate reactive oxygen species (ROS) production, indicate that ROS plays beneficial effects in several biological functions, including innate immunity and antiviral responses. HSV-1 preferentially replicate and establish latency in different subtypes of sensory neurons and in neurons of the autonomic nervous system that are highly responsive to stress hormones, including cortisol.
AIM: The objective of the study was to detect the latent HSV-1 infection in adults population and its effect on ROS and cortisol levels.
PATIENTS AND METHODS: Subjects were enrolled with consecutive-sampling methods among the adults population age 18–40 years old, with no health complaints. We collected their blood to examined IgG HSV-1, ROS, and cortisol levels.
RESULTS: A total of 57 subjects with 27 subjects were reactive IgG HSV-1 (herpes group) and 30 subjects were non-reactive IgG HSV-1 (non herpes groups). Mean of cortisol and ROS was 223.2904 nmol/L and 2.23337 IU/mL, respectively. There was a very weak correlation between HSV-1 infection with ROS and cortisol.
CONCLUSION: There is a positive effect of latent HSV-1 infection in the adult population on cortisol ROS levels.
Collapse
|
22
|
Chen WC, Huang CH, Liu W, Lee JC. Sulforaphane suppresses dengue virus replication by inhibition of dengue protease and enhancement of antiviral interferon response through Nrf2-mediated heme oxygenase-1 induction. Antiviral Res 2022; 207:105400. [DOI: 10.1016/j.antiviral.2022.105400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 11/02/2022]
|
23
|
Gümüş H, Erat T, Öztürk İ, Demir A, Koyuncu I. Oxidative stress and decreased Nrf2 level in pediatric patients with COVID-19. J Med Virol 2022; 94:2259-2264. [PMID: 35128704 PMCID: PMC9088523 DOI: 10.1002/jmv.27640] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/06/2022] [Accepted: 01/30/2022] [Indexed: 11/11/2022]
Abstract
The aim of this study was to investigate the change in nuclear factor erythroid 2-related factor (Nrf2), which plays a critical role in cytoprotection against oxidative stress, in pediatric patients with coronavirus disease 2019 (COVID-19) infection positivity, and to evaluate the relationship between Nrf2 and oxidative balance. The study included 40 children with confirmed COVID-19 infection and 35 healthy children. The groups were compared in respect of Nrf2, total oxidant status (TOS), total antioxidant status (TAS), and oxidative stress index (OSI), in addition to clinical findings of fever, cough, shortness of breath, contact history, and demographic data of age and gender. The mean Nrf2 values and TAS levels were determined to be statistically significantly low (p < 0.001) and the TOS level and OSI were statistically significantly high in the children with COVID-19 compared to the control group. A significant positive correlation was determined between Nrf2 and TAS (p < 0.01); as the Nrf2 value increased, so the TAS value increased. A significant negative correlation was determined between Nrf2 and TOS and OSI (p < 0.01); as the Nrf2 value increased, there was determined to be a significant decrease in the TOS and OSI values. COVID-19 infection in pediatric patients causes a decrease in the Nrf2 level. By causing a decrease in the TAS level and an increase in the TOS and OSI levels, the decrease in Nrf2 may explain the tissue damage which can be caused by COVID-19.
Collapse
Affiliation(s)
- Hüseyin Gümüş
- Department of Pediatrics, Faculty of MedicineHarran UniversityŞanlıurfaTurkey
| | - Tuğba Erat
- Department of Pediatric Infectious DiseasesSanliurfa Training and Research HospitalŞanlıurfaTurkey
| | - İrfan Öztürk
- Department of Animal Science, Biometry Genetics Unit, Agricultural FacultyHarran UniversityŞanlıurfaTurkey
| | - Abit Demir
- Department of Pediatrics, Faculty of Medicine, Harran UniversityHarran UniversityŞanlıurfaTurkey
| | - Ismail Koyuncu
- Department of Medical BiochemistryFaculty of Medicine, Harran UniversityŞanlıurfaTurkey
| |
Collapse
|
24
|
Upregulation of nuclear factor E2-related factor 2 (Nrf2) represses the replication of herpes simplex virus type 1. Virol J 2022; 19:23. [PMID: 35101046 PMCID: PMC8802289 DOI: 10.1186/s12985-021-01733-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/18/2021] [Indexed: 12/29/2022] Open
Abstract
Background Nuclear factor E2-related factor 2 (Nrf2) is an important transcription factor which plays a pivotal role in detoxifying reactive oxygen species (ROS) and has been more recently shown to regulate inflammatory and antiviral responses. However, the role of Nrf2 in Herpes Simplex Virus type 1 (HSV-1) infection is still unclear. In this study, the interaction between the Nrf2 and HSV-1 replication was investigated. Methods The levels of oxidative stress was monitored by using 8-hydroxy-2'-deoxyguanosine (8-OHdG) ELISA kits, and the dynamic changes of Nrf2-antioxidant response element (Nrf2-ARE) pathway were detected by Western Blot. The effect of Nrf2-ARE pathway on the regulation of HSV-1 proliferation was analyzed by Western Blot, Real-Time PCR and TCID50 assay. Results HSV-1 infection induced oxidative stress. Nrf2 was activated, accompanied by the increase of its down-stream antioxidant enzyme heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase 1 (NQO1) in the early stage of HSV-1 infection. The proliferation of HSV-1 was inhibited by overexpression of Nrf2 or treatment with its activator tert-Butylhydroquinone (tBHQ). On the contrary, silencing of Nrf2 promotes virus replication. HO-1 is involved in the regulation of IFN response, leading to efficient anti-HSV-1 effects. Conclusion Our observations indicate that the Nrf2-ARE pathway activates a passive defensive response in the early stage of HSV-1 infection. Targeting the Nrf2 pathway demonstrates the potential for combating HSV-1 infection.
Collapse
|
25
|
Sharma A, Kontodimas K, Bosmann M. The MAVS Immune Recognition Pathway in Viral Infection and Sepsis. Antioxid Redox Signal 2021; 35:1376-1392. [PMID: 34348482 PMCID: PMC8817698 DOI: 10.1089/ars.2021.0167] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 07/29/2021] [Indexed: 02/03/2023]
Abstract
Significance: It is estimated that close to 50 million cases of sepsis result in over 11 million annual fatalities worldwide. The pathognomonic feature of sepsis is a dysregulated inflammatory response arising from viral, bacterial, or fungal infections. Immune recognition of pathogen-associated molecular patterns is a hallmark of the host immune defense to combat microbes and to prevent the progression to sepsis. Mitochondrial antiviral signaling protein (MAVS) is a ubiquitous adaptor protein located at the outer mitochondrial membrane, which is activated by the cytosolic pattern recognition receptors, retinoic acid-inducible gene I (RIG-I) and melanoma differentiation associated gene 5 (MDA5), following binding of viral RNA agonists. Recent Advances: Substantial progress has been made in deciphering the activation of the MAVS pathway with its interacting proteins, downstream signaling events (interferon [IFN] regulatory factors, nuclear factor kappa B), and context-dependent type I/III IFN response. Critical Issues: In the evolutionary race between pathogens and the host, viruses have developed immune evasion strategies for cleavage, degradation, or blockade of proteins in the MAVS pathway. For example, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) M protein and ORF9b protein antagonize MAVS signaling and a protective type I IFN response. Future Directions: The role of MAVS as a sensor for nonviral pathogens, host cell injury, and metabolic perturbations awaits better characterization in the future. New technical advances in multidimensional single-cell analysis and single-molecule methods will accelerate the rate of new discoveries. The ultimate goal is to manipulate MAVS activities in the form of immune-modulatory therapies to combat infections and sepsis. Antioxid. Redox Signal. 35, 1376-1392.
Collapse
Affiliation(s)
- Arjun Sharma
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Konstantinos Kontodimas
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Markus Bosmann
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
26
|
Ahmed D, Humphrey A, Roy D, Sheridan ME, Versey Z, Jaworski A, Edwards A, Donner J, Abizaid A, Willmore W, Kumar A, Golshani A, Cassol E. HIF-1α Regulation of Cytokine Production following TLR3 Engagement in Murine Bone Marrow-Derived Macrophages Is Dependent on Viral Nucleic Acid Length and Glucose Availability. THE JOURNAL OF IMMUNOLOGY 2021; 207:2813-2827. [PMID: 34740958 DOI: 10.4049/jimmunol.2001282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 09/16/2021] [Indexed: 12/24/2022]
Abstract
Hypoxia-inducible factor-1α (HIF-1α) is an important regulator of glucose metabolism and inflammatory cytokine production in innate immune responses. Viruses modulate HIF-1α to support viral replication and the survival of infected cells, but it is unclear if this transcription factor also plays an important role in regulating antiviral immune responses. In this study, we found that short and long dsRNA differentially engage TLR3, inducing distinct levels of proinflammatory cytokine production (TNF-α and IL-6) in bone marrow-derived macrophages from C57BL/6 mice. These responses are associated with differential accumulation of HIF-1α, which augments NF-κB activation. Unlike TLR4 responses, increased HIF-1α following TLR3 engagement is not associated with significant alterations in glycolytic activity and was more pronounced in low glucose conditions. We also show that the mechanisms supporting HIF-1α stabilization may differ following stimulation with short versus long dsRNA and that pyruvate kinase M2 and mitochondrial reactive oxygen species play a central role in these processes. Collectively, this work suggests that HIF-1α may fine-tune proinflammatory cytokine production during early antiviral immune responses, particularly when there is limited glucose availability or under other conditions of stress. Our findings also suggest we may be able to regulate the magnitude of proinflammatory cytokine production during antiviral responses by targeting proteins or molecules that contribute to HIF-1α stabilization.
Collapse
Affiliation(s)
- Duale Ahmed
- Department of Biology, Carleton University, Ottawa, Ontario, Canada.,Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Allan Humphrey
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada.,Apoptosis Research Centre, The Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - David Roy
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | | | - Zoya Versey
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Allison Jaworski
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Alex Edwards
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - James Donner
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Alfonso Abizaid
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - William Willmore
- Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Ashok Kumar
- Department of Pathology, The Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada; and.,Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Ashkan Golshani
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Edana Cassol
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada;
| |
Collapse
|
27
|
Su L, Gao Y, Zhang M, Liu Z, Lin Q, Gong L, Guo J, Chen L, An T, Chen J. Andrographolide and Its Derivative Potassium Dehydrographolide Succinate Suppress PRRSV Replication in Primary and Established Cells via Differential Mechanisms of Action. Virol Sin 2021; 36:1626-1643. [PMID: 34704222 DOI: 10.1007/s12250-021-00455-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) continues to cause significant economic loss worldwide and remains a serious threat to the pork industry. Currently, vaccination strategies provide limited protection against PRRSV infection, and consequently, new antiviral strategies are urgently required. Andrographolide (Andro) and its derivative potassium dehydrographolide succinate (PDS) have been used clinically in China and other Asian countries as therapies for inflammation-related diseases, including bacterial and viral infections, for decades. Here, we demonstrate that Andro and PDS exhibit robust activity against PRRSV replication in Marc-145 cells and primary porcine alveolar macrophages (PAMs). The two compounds exhibited broad-spectrum inhibitory activities in vitro against clinically circulating type 2 PRRSV GD-HD, XH-GD, and NADC30-like HNhx strains in China. The EC50 values of Andro against three tested PRRSV strain infections in Marc-145 cells ranged from 11.7 to 15.3 μmol/L, with selectivity indexes ranging from 8.3 to 10.8, while the EC50 values of PDS ranged from 57.1 to 85.4 μmol/L, with selectivity indexes ranging from 344 to 515. Mechanistically, the anti-PRRSV activity of the two compounds is closely associated with their potent suppression on NF-κB activation and enhanced oxidative stress induced by PRRSV infection. Further mechanistic investigations revealed that PDS, but not Andro, is able to directly interact with PRRSV particles. Taken together, our findings suggest that Andro and PDS are promising PRRSV inhibitors in vitro and deserves further in vivo studies in swine.
Collapse
Affiliation(s)
- Lizhan Su
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yarou Gao
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Mingxin Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zexin Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Qisheng Lin
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Lang Gong
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jianying Guo
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Lixia Chen
- Department of Natural Products Chemistry, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Tongqing An
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| | - Jianxin Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China. .,Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
28
|
Kim B, Kim YS, Hwang YH, Yang HJ, Li W, Kwon EB, Kim TI, Go Y, Choi JG. Quercus acuta Thunb. (Fagaceae) and Its Component, Isoquercitrin, Inhibit HSV-1 Replication by Suppressing Virus-Induced ROS Production and NF-κB Activation. Antioxidants (Basel) 2021; 10:antiox10101638. [PMID: 34679772 PMCID: PMC8533069 DOI: 10.3390/antiox10101638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 01/07/2023] Open
Abstract
HSV-1 is a neurotropic virus that replicates lytically during acute infection and establishes latency in peripheral neurons. Currently, the clinically approved compounds for the prevention of HSV-1 infection include acyclovir and penciclovir; however, long-term use of the drug is associated with serious side effects, and drug-resistant strains often appear. Therefore, it is important to find a safe and novel antiviral agent for HSV-1 infection. Quercus acuta Thunb. (Fagaceae) (QA) is widely distributed as an ornamental and dietary plant in Korea, Taiwan, China, and Japan. Thus far, the effects of QA extract and its active ingredients are known to have antioxidant, antibacterial, and anti-inflammatory activity, but studies of possible antiviral effects have not been reported. We studied the antiviral effects and molecular mechanism of QA after HSV-1 infection at the cellular level. We confirmed that QA suppresses ROS expression after HSV-1 infection and also suppresses inflammatory cytokine expression through inhibition of NF-кB activity. In addition, we found that QA increases the phosphorylation activity of IRF3 through induction of TBK1 activity during HSV-1 infection. QA exhibits an antiviral effect, and we confirmed through UPLC-DAD-mass spectrometer (MS)/MS analysis that it contains five main components: catechin, chlorogenic acid, fraxin, isoquercitrin, and taxifolin. Of these, isoquercitrin was confirmed to exhibit an antiviral effect on SK-N-SH cells through ICP27 inhibition. Overall, our results suggest that QA is a novel inhibitor with antiviral effects against HSV-1 infection and may be used specifically to prevent and treat of herpes simplex virus encephalitis infection.
Collapse
|
29
|
Aykac K, Ozsurekci Y, Yayla BCC, Gurlevik SL, Oygar PD, Bolu NB, Tasar MA, Erdinc FS, Ertem GT, Neselioglu S, Erel O, Cengiz AB, Ceyhan M. Oxidant and antioxidant balance in patients with COVID-19. Pediatr Pulmonol 2021; 56:2803-2810. [PMID: 34265172 PMCID: PMC8441878 DOI: 10.1002/ppul.25549] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/30/2021] [Accepted: 06/08/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND A crucial balance exists between oxidant and antioxidant mechanisms in the functional immune system. We aimed to evaluate the contributions of balance between these systems to coronavirus disease 2019 (COVID-19), a devastating pandemic caused by viral infection. METHOD We analyzed serum oxidant and antioxidant stress parameters according to the clinical and demographic characteristics of children and adults with COVID-19 and compared them against the values of healthy controls. Serum native thiol (NT), total thiol (TT), disulfide, total antioxidant status, total oxidant status, and ischemia-modified albumin levels were evaluated and compared between groups. RESULTS A total of 79 children and 74 adults were evaluated in the present study, including 46 children and 40 adults with COVID-19, 33 healthy children, and 34 healthy adults. TT, NT, and disulfide levels were significantly lower in the adult COVID-19 group than in all other groups (p = .001, p = .001, and p = .005, respectively). Additionally, TT and NT levels were significantly lower in both pediatric and adult COVID-19 cases with severe disease course than mild/moderate course. TT and NT levels were identified as predictors for the diagnosis of the adult COVID-19 cases and as independent predictors for disease severity in both children and adults with COVID-19. CONCLUSION Parameters that reveal the oxidant and antioxidant capacity, including TT and NT, appear to be good candidates for the accurate prediction of the clinical course among patients with COVID-19.
Collapse
Affiliation(s)
- Kubra Aykac
- Department of Pediatric Infectious Diseases, Ankara Training and Research Hospital, University of Health Science, Ankara, Turkey
| | - Yasemin Ozsurekci
- Department of Pediatric Infectious Diseases, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Burcu Ceylan Cura Yayla
- Department of Pediatric Infectious Diseases, Ankara Training and Research Hospital, University of Health Science, Ankara, Turkey
| | - Sibel Lacinel Gurlevik
- Department of Pediatric Infectious Diseases, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Pembe Derin Oygar
- Department of Pediatric Infectious Diseases, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Nuriye Boduc Bolu
- Department of Pediatric Diseases, Ankara Training and Research Hospital, University of Health Science, Ankara, Turkey
| | - Medine Aysin Tasar
- Department of Pediatric Diseases, Ankara Training and Research Hospital, University of Health Science, Ankara, Turkey
| | - Fatma Sebnem Erdinc
- Department of Infectious Diseases, Ankara Training and Research Hospital, University of Health Science, Ankara, Turkey
| | - Gulay Tuncer Ertem
- Department of Infectious Diseases, Ankara Training and Research Hospital, University of Health Science, Ankara, Turkey
| | - Salim Neselioglu
- Department of Clinical Biochemistry, Yildirim Beyazit University Faculty of Medicine, Ankara, Turkey
| | - Ozcan Erel
- Department of Clinical Biochemistry, Yildirim Beyazit University Faculty of Medicine, Ankara, Turkey
| | - Ali Bülent Cengiz
- Department of Pediatric Infectious Diseases, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Mehmet Ceyhan
- Department of Pediatric Infectious Diseases, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
30
|
Antony F, Pundkar C, Sandey M, Jaiswal AK, Mishra A, Kumar A, Channappanavar R, Suryawanshi A. IFN-λ Regulates Neutrophil Biology to Suppress Inflammation in Herpes Simplex Virus-1-Induced Corneal Immunopathology. THE JOURNAL OF IMMUNOLOGY 2021; 206:1866-1877. [PMID: 33811102 DOI: 10.4049/jimmunol.2000979] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/08/2021] [Indexed: 12/13/2022]
Abstract
HSV-1 infection of the cornea causes a severe immunoinflammatory and vision-impairing condition called herpetic stromal keratitis (SK). The virus replication in corneal epithelium followed by neutrophil- and CD4+ T cell-mediated inflammation plays a dominant role in SK. Although previous studies demonstrate critical functions of type I IFNs (IFN-α/β) in HSV-1 infection, the role of recently discovered IFN-λ (type III IFN), specifically at the corneal mucosa, is poorly defined. Our study using a mouse model of SK pathogenesis shows that HSV-1 infection induces a robust IFN-λ response compared with type I IFN production at the corneal mucosal surface. However, the normal progression of SK indicates that the endogenous IFN responses are insufficient to suppress HSV-1-induced corneal pathology. Therefore, we examined the therapeutic efficacy of exogenous rIFN-λ during SK progression. Our results show that rIFN-λ therapy suppressed inflammatory cell infiltration in the cornea and significantly reduced the SK pathologic condition. Early rIFN-λ treatment significantly reduced neutrophil and macrophage infiltration, and IL-6, IL-1β, and CXCL-1 production in the cornea. Notably, the virucidal capacity of neutrophils and macrophages measured by reactive oxygen species generation was not affected. Similarly, ex vivo rIFN-λ treatment of HSV-1-stimulated bone marrow-derived neutrophils significantly promoted IFN-stimulated genes without affecting reactive oxygen species production. Collectively, our data demonstrate that exogenous topical rIFN-λ treatment during the development and progression of SK could represent a novel therapeutic approach to control HSV-1-induced inflammation and associated vision impairment.
Collapse
Affiliation(s)
- Ferrin Antony
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849
| | - Chetan Pundkar
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849
| | - Maninder Sandey
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849
| | - Anil K Jaiswal
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849
| | - Amarjit Mishra
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849
| | - Ashok Kumar
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, MI 48201; and
| | | | - Amol Suryawanshi
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849;
| |
Collapse
|
31
|
Faheem, Kumar BK, Sekhar KVGC, Kunjiappan S, Jamalis J, Balaña-Fouce R, Sankaranarayanan M. Recent Update on the Anti-infective Potential of β-carboline Analogs. Mini Rev Med Chem 2021; 21:398-425. [PMID: 33001013 DOI: 10.2174/1389557520666201001130114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 11/22/2022]
Abstract
β-Carboline, a naturally occurring indole alkaloid, holds a momentous spot in the field of medicinal chemistry due to its myriad of pharmacological actions like anticancer, antiviral, antibacterial, antifungal, antileishmanial, antimalarial, neuropharmacological, anti-inflammatory and antithrombotic among others. β-Carbolines exhibit their pharmacological activity via diverse mechanisms. This review provides a recent update (2015-2020) on the anti-infective potential of natural and synthetic β-carboline analogs focusing on its antibacterial, antifungal, antiviral, antimalarial, antileishmanial and antitrypanosomal properties. In cases where enough details are available, a note on its mechanism of action is also added.
Collapse
Affiliation(s)
- Faheem
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Vidya Vihar, Pilani-333031, Rajasthan, India
| | - Banoth Karan Kumar
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Vidya Vihar, Pilani-333031, Rajasthan, India
| | - Kondapalli Venkata Gowri Chandra Sekhar
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, R.R. Dist. Hyderabad, 500078, Telangana, India
| | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil 626126, India
| | - Joazaizulfazli Jamalis
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor 81310, Malaysia
| | | | - Murugesan Sankaranarayanan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Vidya Vihar, Pilani-333031, Rajasthan, India
| |
Collapse
|
32
|
Bohálová N, Cantara A, Bartas M, Kaura P, Šťastný J, Pečinka P, Fojta M, Mergny JL, Brázda V. Analyses of viral genomes for G-quadruplex forming sequences reveal their correlation with the type of infection. Biochimie 2021; 186:13-27. [PMID: 33839192 DOI: 10.1016/j.biochi.2021.03.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022]
Abstract
G-quadruplexes contribute to the regulation of key molecular processes. Their utilization for antiviral therapy is an emerging field of contemporary research. Here we present comprehensive analyses of the presence and localization of putative G-quadruplex forming sequences (PQS) in all viral genomes currently available in the NCBI database (including subviral agents). The G4Hunter algorithm was applied to a pool of 11,000 accessible viral genomes representing 350 Mbp in total. PQS frequencies differ across evolutionary groups of viruses, and are enriched in repeats, replication origins, 5'UTRs and 3'UTRs. Importantly, PQS presence and localization is connected to viral lifecycles and corresponds to the type of viral infection rather than to nucleic acid type; while viruses routinely causing persistent infections in Metazoa hosts are enriched for PQS, viruses causing acute infections are significantly depleted for PQS. The unique localization of PQS identifies the importance of G-quadruplex-based regulation of viral replication and life cycle, providing a tool for potential therapeutic targeting.
Collapse
Affiliation(s)
- Natália Bohálová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno, 612 65, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Alessio Cantara
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno, 612 65, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Martin Bartas
- Department of Biology and Ecology/Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Ostrava, 710 00, Czech Republic
| | - Patrik Kaura
- Brno University of Technology, Faculty of Mechanical Engineering, Technická 2896/2, 616 69, Brno, Czech Republic
| | - Jiří Šťastný
- Brno University of Technology, Faculty of Mechanical Engineering, Technická 2896/2, 616 69, Brno, Czech Republic; Department of Informatics, Mendel University in Brno, Zemědělská 1, Brno, 613 00, Czech Republic
| | - Petr Pečinka
- Department of Biology and Ecology/Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Ostrava, 710 00, Czech Republic
| | - Miroslav Fojta
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno, 612 65, Czech Republic
| | - Jean-Louis Mergny
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno, 612 65, Czech Republic; Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128, Palaiseau, France
| | - Václav Brázda
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno, 612 65, Czech Republic.
| |
Collapse
|
33
|
Miao Y, Han P, Hua D, Zhou R, Guan Z, Lv Q, Dai X. Cold atmospheric plasma increases IBRV titer in MDBK cells by orchestrating the host cell network. Virulence 2021; 12:679-689. [PMID: 33554733 PMCID: PMC7889027 DOI: 10.1080/21505594.2021.1883933] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Enhancing virus multiplication could assist in the rapid production of vaccines against viral diseases. Cold atmospheric plasma (CAP), a physical approach relying on reactive oxygen species to achieve the desirable cellular outcome, was shown to be effective in enhancing virus propagation, where bovine rhinotrachieitis virus and Madin-Darby Bovine Kidney cells were used as the modeling virus and cell line, respectively. CAP was shown to create synergies with virus infection in arresting host cells at the G2/M stage, decreasing cell membrane potential, increasing intracellular calcium level, and inducing selective autophagy. In addition, CAP was demonstrated to suppress virus-triggered immunogenic signaling as evaluated by IRF7 expression. We presented evidences on CAP-triggered maximization of host resources toward virus multiplication that is advantageous for viral vaccine production, and opened a novel regime for applying CAP in the sector of medical care and health.
Collapse
Affiliation(s)
- Yujie Miao
- Wuxi School of Medicine, Jiangnan University , Wuxi, China
| | - Peiyu Han
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University , Wuxi, China
| | - Dong Hua
- Affiliated Hospital of Jiangnan University , Wuxi China
| | - Renwu Zhou
- School of Chemical and Biomolecular Engineering, University of Sydney , Sydney, Australia
| | - Zhengbing Guan
- Wuxi School of Medicine, Jiangnan University , Wuxi, China
| | - Qing Lv
- Affiliated Hospital of Jiangnan University , Wuxi China
| | - Xiaofeng Dai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University , Wuxi, China
| |
Collapse
|
34
|
Shanmugam N, Baker MODG, Sanz-Hernandez M, Sierecki E, Gambin Y, Steain M, Pham CLL, Sunde M. Herpes simplex virus encoded ICP6 protein forms functional amyloid assemblies with necroptosis-associated host proteins. Biophys Chem 2021; 269:106524. [PMID: 33348174 DOI: 10.1016/j.bpc.2020.106524] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/31/2022]
Abstract
The viral protein ICP6, encoded by herpes simplex virus 1 (HSV-1), harbours a RIP-homotypic interaction motif (RHIM), that plays a role in viral inhibition of host cell death pathways. Other members of the Herpesviridae family also encode RHIM-containing proteins that interfere with host-cell death pathways, including the M45 protein from murine cytomegalovirus, and ORF20 protein from varicella zoster virus. We have used amyloid assembly assays, electron microscopy and single molecule fluorescence spectroscopy to show that the ICP6 RHIM is amyloidogenic and can interact with host RHIM-containing proteins to form heteromeric amyloid complexes, in a manner similar to that of M45 and ORF20 RHIMs. The core tetrad sequence of the ICP6 RHIM is important for both amyloid formation and interaction with host RHIM-containing proteins. Notably, we show that the amyloid forming capacity of the ICP6 RHIM is affected by the redox environment. We propose that the formation of an intramolecular disulfide bond within ICP6 triggers the formation of amyloid assemblies that are distinct from previously characterised viral amyloids M45 and ORF20. Formation of viral-host heteromeric amyloid assemblies may underlie a general mechanism of viral adaptation against host immune machineries.
Collapse
Affiliation(s)
- Nirukshan Shanmugam
- Discipline of Pharmacology, School of Medical Sciences, University of Sydney, NSW 2006, Australia
| | - Max O D G Baker
- Discipline of Pharmacology, School of Medical Sciences, University of Sydney, NSW 2006, Australia
| | - Maximo Sanz-Hernandez
- Department of Life Sciences, Imperial College London, South Kensington, SW7 2AZ London, United Kingdom
| | - Emma Sierecki
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney 2052, NSW, Australia
| | - Yann Gambin
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney 2052, NSW, Australia
| | - Megan Steain
- Immunology and Infectious Diseases, School of Medical Sciences, University of Sydney, NSW 2006, Australia
| | - Chi L L Pham
- Discipline of Pharmacology, School of Medical Sciences, University of Sydney, NSW 2006, Australia
| | - Margaret Sunde
- Discipline of Pharmacology, School of Medical Sciences, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
35
|
Kim TI, Kwon EB, Oh YC, Go Y, Choi JG. Mori ramulus and its Major Component Morusin Inhibit Herpes Simplex Virus Type 1 Replication and the Virus-Induced Reactive Oxygen Species. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 49:163-179. [PMID: 33371809 DOI: 10.1142/s0192415x21500099] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Herpes simplex virus type 1 (HSV-1) is ubiquitous in many populations despite the use of acyclovir or related nucleoside analogs for treating infection. Drug resistance impairs the treatment of HSV-infected individuals who have immune deficits, underscoring the need for new safe and effective antiviral agents. Mori ramulus (the young twig of Morus alba L.) has long been used to treat diseases in Korea, Japan, and China. Recent studies have reported multiple pharmacological activities of Mori ramulus and its constituent morusin, but their effects on HSV-1 remain unknown. Here, we found that treatment with Mori ramulus ethanol extract (MRE) significantly reduced the replication of fluorescently labeled HSV-1 in Vero cells and inhibited the expression of HSV-1 envelope glycoprotein D (gD) and tegument protein VP16. MRE, furthermore, blocked HSV-1-induced production of reactive oxygen species (ROS), and this mediated the inhibition of viral replication. We identified morusin as the active antiviral component of MRE and found that morusin post-treatment was sufficient to inhibit viral gD and VP16 in addition to HSV-1-induced ROS production. Therefore, the inhibition of HSV-1-induced ROS may explain the antiviral activity of MRE against HSV-1. MRE or its component morusin may be potentially developed for anti-HSV-1 agents.
Collapse
Affiliation(s)
- Tae In Kim
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Dong-gu, Daegu 701-300, Republic of Korea
| | - Eun-Bin Kwon
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Dong-gu, Daegu 701-300, Republic of Korea
| | - You-Chang Oh
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Dong-gu, Daegu 701-300, Republic of Korea
| | - Younghoon Go
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Dong-gu, Daegu 701-300, Republic of Korea
| | - Jang-Gi Choi
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Dong-gu, Daegu 701-300, Republic of Korea
| |
Collapse
|
36
|
Luo Z, Kuang XP, Zhou QQ, Yan CY, Li W, Gong HB, Kurihara H, Li WX, Li YF, He RR. Inhibitory effects of baicalein against herpes simplex virus type 1. Acta Pharm Sin B 2020; 10:2323-2338. [PMID: 33354504 PMCID: PMC7745058 DOI: 10.1016/j.apsb.2020.06.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/10/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a ubiquitous and widespread human pathogen, which gives rise to a range of diseases, including cold sores, corneal blindness, and encephalitis. Currently, the use of nucleoside analogs, such as acyclovir and penciclovir, in treating HSV-1 infection often presents limitation due to their side effects and low efficacy for drug-resistance strains. Therefore, new anti-herpetic drugs and strategies should be urgently developed. Here, we reported that baicalein, a naturally derived compound widely used in Asian countries, strongly inhibited HSV-1 replication in several models. Baicalein was effective against the replication of both HSV-1/F and HSV-1/Blue (an acyclovir-resistant strain) in vitro. In the ocular inoculation mice model, baicalein markedly reduced in vivo HSV-1/F replication, receded inflammatory storm and attenuated histological changes in the cornea. Consistently, baicalein was found to reduce the mortality of mice, viral loads both in nose and trigeminal ganglia in HSV-1 intranasal infection model. Moreover, an ex vivo HSV-1-EGFP infection model established in isolated murine epidermal sheets confirmed that baicalein suppressed HSV-1 replication. Further investigations unraveled that dual mechanisms, inactivating viral particles and inhibiting IκB kinase beta (IKK-β) phosphorylation, were involved in the anti-HSV-1 effect of baicalein. Collectively, our findings identified baicalein as a promising therapy candidate against the infection of HSV-1, especially acyclovir-resistant strain. Baicalein is highly effective against HSV-1infection ex vivo and in vivo. Inactivation of viral particles and suppression of NF-κB activation were involved in the anti-viral effect of baicalein. Hence, our work offers experimental basis for baicalein as a potential drug in treating HSV-1 associated diseases.
Collapse
Key Words
- Anti-HSV-1
- Baicalein
- CC50, 50% cytotoxic concentration
- DCFH-DA, 2′,7′-dichlorofluorescin diacetate
- EC50, 50% effective concentration
- GB, glycoprotein B
- HSV-1 infection
- HSV-1, herpes simplex virus types 1
- ICP, infected cell polypeptide
- IKK-β phosphorylation
- IKK-β, IκB kinase beta
- IL-1β, interleukin 1 beta
- IL-6, interleukin 6
- IκB-α, inhibitor of NF-κB alpha
- LPS, lipopolysaccharides
- MOI, multiplicity of infection
- NAC, N-acetyl-l-cysteine
- NF-κB activation
- NF-κB, nuclear factor kappa-B
- PFU, plaque-forming units
- PGA1, prostaglandin A1
- ROS, reactive oxygen species
- SI, selectivity index
- TG, trigeminal ganglia
- TNF-α, tumor necrosis factor alpha
- Viral inactivation
- dpi, days post-infection
- p-IKK-β, phosphorylated-IKK beta
- p-IκB-α, phosphorylated-IκB alpha
Collapse
|
37
|
Tang Y, Li Y, Sun J, Pan H, Yao F, Jiao X. Selection of an Optimal Combination Panel to Better Triage COVID-19 Hospitalized Patients. J Inflamm Res 2020; 13:773-787. [PMID: 33149652 PMCID: PMC7602889 DOI: 10.2147/jir.s273193] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/09/2020] [Indexed: 02/05/2023] Open
Abstract
PURPOSE It is difficult to predict the prognosis of COVID-19 patients at the disease onset. This study was designed to add new biomarkers into conventional inflammatory panels to build an optimal combination panel, to better triage patients and predict their outcomes. PATIENTS AND METHODS Biochemical parameters representing multi-organ functions, cytokines, acute-phase proteins, and other inflammatory markers were measured in COVID-19 patients on hospital admission. Receiver operating characteristic (ROC) curves, logistic regression, event-free survival (EFS), and Cox analyses were performed to screen and compare the predictive capabilities of the new panel in patients with different illness severity and outcome. RESULTS This study included 120 patients with COVID-19, consisting of 32 critical, 28 severe, and 60 mild/moderate patients. Initial levels of the selected biomarkers showed a significant difference in the three groups, all of which influenced patient outcome and EFS to varying degrees. Cox proportional hazard model revealed that procalcitonin (PCT) and interleukin 10 (IL-10) were independent risk factors, while superoxide dismutase (SOD) was an independent protective factor influencing EFS. In discriminating the critical and mild patients, a panel combining PCT, IL-6, and neutrophil (NEUT) yielded the best diagnostic performance with an AUC of 0.99, the sensitivity of 90.60% and specificity of 100%. In distinguishing between severe and mild patients, SOD's AUC of 0.89 was higher than any other single biomarker. In differentiating the critical and severe patients, the combination of white blood cell count (WBC), PCT, IL-6, IL-10, and SOD achieved the highest AUC of 0.95 with a sensitivity of 75.00% and specificity of 100%. CONCLUSION The optimal combination panel has a substantial potential to better triage COVID-19 patients on admission. Better triage of patients will benefit the rational use of medical resources.
Collapse
Affiliation(s)
- Yueting Tang
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Yirong Li
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Jiayu Sun
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Huaqin Pan
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Fen Yao
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Xiaoyang Jiao
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| |
Collapse
|
38
|
Buday K, Conrad M. Emerging roles for non-selenium containing ER-resident glutathione peroxidases in cell signaling and disease. Biol Chem 2020; 402:271-287. [PMID: 33055310 DOI: 10.1515/hsz-2020-0286] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/08/2020] [Indexed: 12/16/2022]
Abstract
Maintenance of cellular redox control is pivotal for normal cellular functions and cell fate decisions including cell death. Among the key cellular redox systems in mammals, the glutathione peroxidase (GPX) family of proteins is the largest conferring multifaceted functions and affecting virtually all cellular processes. The endoplasmic reticulum (ER)-resident GPXs, designated as GPX7 and GPX8, are the most recently added members of this family of enzymes. Recent studies have provided exciting insights how both enzymes support critical processes of the ER including oxidative protein folding, maintenance of ER redox control by eliminating H2O2, and preventing palmitic acid-induced lipotoxicity. Consequently, numerous pathological conditions, such as neurodegeneration, cancer and metabolic diseases have been linked with altered GPX7 and GPX8 expression. Studies in mice have demonstrated that loss of GPX7 leads to increased differentiation of preadipocytes, increased tumorigenesis and shortened lifespan. By contrast, GPX8 deficiency in mice results in enhanced caspase-4/11 activation and increased endotoxic shock in colitis model. With the increasing recognition that both types of enzymes are dysregulated in various tumor entities in man, we deem a review of the emerging roles played by GPX7 and GPX8 in health and disease development timely and appropriate.
Collapse
Affiliation(s)
- Katalin Buday
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764Neuherberg, Germany
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764Neuherberg, Germany.,National Research Medical University, Laboratory of Experimental Oncology, Ostrovityanova 1, 117997Moscow, Russia
| |
Collapse
|
39
|
Tao L, Lemoff A, Wang G, Zarek C, Lowe A, Yan N, Reese TA. Reactive oxygen species oxidize STING and suppress interferon production. eLife 2020; 9:e57837. [PMID: 32886065 PMCID: PMC7473769 DOI: 10.7554/elife.57837] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen species (ROS) are by-products of cellular respiration that can promote oxidative stress and damage cellular proteins and lipids. One canonical role of ROS is to defend the cell against invading bacterial and viral pathogens. Curiously, some viruses, including herpesviruses, thrive despite the induction of ROS, suggesting that ROS are beneficial for the virus. However, the underlying mechanisms remain unclear. Here, we found that ROS impaired interferon response during murine herpesvirus infection and that the inhibition occurred downstream of cytoplasmic DNA sensing. We further demonstrated that ROS suppressed the type I interferon response by oxidizing Cysteine 147 on murine stimulator of interferon genes (STING), an ER-associated protein that mediates interferon response after cytoplasmic DNA sensing. This inhibited STING polymerization and activation of downstream signaling events. These data indicate that redox regulation of Cysteine 147 of mouse STING, which is equivalent to Cysteine 148 of human STING, controls interferon production. Together, our findings reveal that ROS orchestrates anti-viral immune responses, which can be exploited by viruses to evade cellular defenses.
Collapse
Affiliation(s)
- Lili Tao
- Department of Immunology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Andrew Lemoff
- Department of Biochemistry, University of Texas Southwestern Medical CenterDallasUnited States
| | - Guoxun Wang
- Department of Immunology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Christina Zarek
- Department of Immunology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Alexandria Lowe
- Department of Immunology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Nan Yan
- Department of Immunology, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Microbiology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Tiffany A Reese
- Department of Immunology, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Microbiology, University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
40
|
Silva CR, Melo BMS, Silva JR, Lopes AH, Pereira JA, Cecilio NT, Berlink J, Souza GG, Lucas G, Vogl T, Cunha FQ, Alves-Filho JC, Cunha TM. S100A9 plays a pivotal role in a mouse model of herpetic neuralgia via TLR4/TNF pathway. Brain Behav Immun 2020; 88:353-362. [PMID: 32243898 DOI: 10.1016/j.bbi.2020.03.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/18/2020] [Accepted: 03/29/2020] [Indexed: 02/01/2023] Open
Abstract
Herpetic neuralgia is a painful condition following herpes zoster disease, which results from Varicella-zoster virus reactivation in the dorsal or trigeminal sensory ganglia. Nevertheless, the pathophysiological mechanisms involved in herpetic neuralgia are not well understood. Recently, we identified, that neuroimmune-glia interactions in the sensory ganglion is a critical mechanism for the development of herpetic neuralgia. Here, we investigate the contribution of S100A9, a well-known pro-inflammatory molecule produced by myeloid cells, for the development of herpetic neuralgia using a murine model of HSV-1 infection. We found that cutaneous HSV-1 infection results in an increase of S100A9 expression in the Dorsal Root Ganglia (DRGs). Infiltrating neutrophils into the DRGs were the main source of S100A9 post HSV-1 infection. Functionally, genetic or pharmacological inhibition of S100A9 impairs the development of HSV-1 infection-induced mechanical pain hypersensitivity. Finally, we found that the pronociceptive role of S100A9 in herpetic neuralgia depends on the TLR4/TNF pathway. These results unraveled previously unknown mechanisms involved in the pathophysiology of herpetic neuralgia and indicate that S100A9 might be an important target for novel therapies aiming acute herpetic neuralgia.
Collapse
Affiliation(s)
- Cássia R Silva
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; Graduated Program in Genetics and Biochemistry, Biotechnology Institute, Federal University of Uberlândia, 38408-100 Uberlândia MG, Brazil
| | - Bruno M S Melo
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Jaqueline R Silva
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Alexandre H Lopes
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Janaina A Pereira
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Nerry T Cecilio
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Jonilson Berlink
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; Center for Biological and Health Sciences, Federal University of Western Bahia, Barreiras, Bahia, Brazil
| | - Giovani G Souza
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Guilherme Lucas
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Thomas Vogl
- Institute of Immunology, University of Münster, D-48149 Münster, Germany
| | - Fernando Q Cunha
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - José C Alves-Filho
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Thiago M Cunha
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
41
|
Menanteau–Ledouble S, Gotesman M, Razzazi‐Fazeli E, Bergmann SM, El‐Matbouli M. Elucidation of putative binding partners for the protein encoded by ORF149 of cyprinid herpesvirus 3 in goldfish (Carassius auratus). JOURNAL OF FISH DISEASES 2020; 43:707-710. [PMID: 32323354 PMCID: PMC7318325 DOI: 10.1111/jfd.13171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 05/02/2023]
Affiliation(s)
- Simon Menanteau–Ledouble
- Clinical Division of Fish MedicineDepartment for Farm Animals and Veterinary Public HealthUniversity of Veterinary MedicineViennaAustria
| | - Michael Gotesman
- Department of BiologyNew York City College of Technology of the City University of New YorkBrooklynNYUSA
- Protein DivisionIbex Biosciences LLCCumberlandMDUSA
| | | | - Sven M. Bergmann
- Federal Research Institute for Animal HealthFriedrich‐Loeffler InstitutGreifswald‐Insel RiemsGermany
| | - Mansour El‐Matbouli
- Clinical Division of Fish MedicineDepartment for Farm Animals and Veterinary Public HealthUniversity of Veterinary MedicineViennaAustria
| |
Collapse
|
42
|
Firpo MR, Mounce BC. Diverse Functions of Polyamines in Virus Infection. Biomolecules 2020; 10:E628. [PMID: 32325677 PMCID: PMC7226272 DOI: 10.3390/biom10040628] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/10/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022] Open
Abstract
As obligate intracellular parasites, viruses rely on host cells for the building blocks of progeny viruses. Metabolites such as amino acids, nucleotides, and lipids are central to viral proteins, genomes, and envelopes, and the availability of these molecules can restrict or promote infection. Polyamines, comprised of putrescine, spermidine, and spermine in mammalian cells, are also critical for virus infection. Polyamines are small, positively charged molecules that function in transcription, translation, and cell cycling. Initial work on the function of polyamines in bacteriophage infection illuminated these molecules as critical to virus infection. In the decades since early virus-polyamine descriptions, work on diverse viruses continues to highlight a role for polyamines in viral processes, including genome packaging and viral enzymatic activity. On the host side, polyamines function in the response to virus infection. Thus, viruses and hosts compete for polyamines, which are a critical resource for both. Pharmacologically targeting polyamines, tipping the balance to favor the host and restrict virus replication, holds significant promise as a broad-spectrum antiviral strategy.
Collapse
Affiliation(s)
| | - Bryan C. Mounce
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA;
| |
Collapse
|
43
|
Thioredoxin 2 Negatively Regulates Innate Immunity to RNA Viruses by Disrupting the Assembly of the Virus-Induced Signaling Adaptor Complex. J Virol 2020; 94:JVI.01756-19. [PMID: 31915282 DOI: 10.1128/jvi.01756-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/18/2019] [Indexed: 12/24/2022] Open
Abstract
The virus-induced signaling adaptor (VISA) complex plays a critical role in the innate immune response to RNA viruses. However, the mechanism of VISA complex formation remains unclear. Here, we demonstrate that thioredoxin 2 (TRX2) interacts with VISA at mitochondria both in vivo and in vitro Knockdown and knockout of TRX2 enhanced the formation of the VISA-associated complex, as well as virus-triggered activation of interferon regulatory factor 3 (IRF3) and transcription of the interferon beta 1 (IFNB1) gene. TRX2 inhibits the formation of VISA aggregates by repressing reactive oxygen species (ROS) production, thereby disrupting the assembly of the VISA complex. Furthermore, our data suggest that the C93 residue of TRX2 is essential for inhibition of VISA aggregation, whereas the C283 residue of VISA is required for VISA aggregation. Collectively, these findings uncover a novel mechanism of TRX2 that negatively regulates VISA complex formation.IMPORTANCE The VISA-associated complex plays pivotal roles in inducing type I interferons (IFNs) and eliciting the innate antiviral response. Many host proteins are identified as VISA-associated-complex proteins, but how VISA complex formation is regulated by host proteins remains enigmatic. We identified the TRX2 protein as an important regulator of VISA complex formation. Knockout of TRX2 increases virus- or poly(I·C)-triggered induction of type I IFNs at the VISA level. Mechanistically, TRX2 inhibits the production of ROS at its C93 site, which impairs VISA aggregates at its C283 site, and subsequently impedes the assembly of the VISA complex. Our findings suggest that TRX2 plays an important role in the regulation of VISA complex assembly.
Collapse
|
44
|
Chen H, Zhang J, Dai Y, Xu J. Nerve growth factor inhibits TLR3-induced inflammatory cascades in human corneal epithelial cells. JOURNAL OF INFLAMMATION-LONDON 2019; 16:27. [PMID: 31889912 PMCID: PMC6933932 DOI: 10.1186/s12950-019-0232-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/18/2019] [Indexed: 12/14/2022]
Abstract
Background In herpes simplex epithelial keratitis, excessive TLR3-induced cellular responses after virus infection evoke inflammatory cascades that might be destructive to the host cornea. Nerve growth factor (NGF), a pluripotent neurotrophic factor with immune regulatory effect, was proved to be effective in Herpes simplex keratitis (HSK) treatment, although the detailed mechanisms remain unclear. This study aims to investigate the effects of NGF on modulating inflammatory responses triggered by TLR3 activation in human corneal epithelial cells (HCECs) in vitro. Methods HCECs were stimulated with TLR3 agonist, poly(I:C), in the absence or presence of NGF. Cell viability and cytotoxicity were measured by a CCK-8 assay and LDH release assay, respectively. The activation of NF-κB signaling pathway was examined using immunofluorescence staining and western blotting. Levels of proinflammatory cytokines were determined by ELISA or RT-qPCR. ROS generation and 8-OHdG positive cells were examined by a fluorometric analysis. Results It was shown that NGF significantly inhibited the generation of proinflammatory cytokines in HCECs triggered by TLR3 activation (P < 0.05), probably via suppressing NF-κB activation. NGF also impeded the upstream signal to initiate NF-κB activation by scavenging ROS by approximately 50% (P < 0.05). In addition, 8-OHdG positive cells were substantially attenuated by NGF treatment (P < 0.01). Conclusions Taken together, this study indicates that NGF could inhibit TLR3-induced inflammatory cascades in HCECs, suggesting NGF as a potential therapeutic agent for HSK.
Collapse
Affiliation(s)
- Huiyu Chen
- Department of Ophthalmology and Visual Science, Eye & ENT Hospital, NHC Key Laboratory of myopia (Fudan University); Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai Medical College of Fudan University, Shanghai, 200031 China
| | - Jing Zhang
- Department of Ophthalmology and Visual Science, Eye & ENT Hospital, NHC Key Laboratory of myopia (Fudan University); Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai Medical College of Fudan University, Shanghai, 200031 China
| | - Yiqin Dai
- Department of Ophthalmology and Visual Science, Eye & ENT Hospital, NHC Key Laboratory of myopia (Fudan University); Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai Medical College of Fudan University, Shanghai, 200031 China
| | - Jianjiang Xu
- Department of Ophthalmology and Visual Science, Eye & ENT Hospital, NHC Key Laboratory of myopia (Fudan University); Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai Medical College of Fudan University, Shanghai, 200031 China
| |
Collapse
|
45
|
Ahmed D, Roy D, Jaworski A, Edwards A, Abizaid A, Kumar A, Golshani A, Cassol E. Differential remodeling of the electron transport chain is required to support TLR3 and TLR4 signaling and cytokine production in macrophages. Sci Rep 2019; 9:18801. [PMID: 31827178 PMCID: PMC6906364 DOI: 10.1038/s41598-019-55295-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/25/2019] [Indexed: 12/31/2022] Open
Abstract
Increasing evidence suggests that mitochondria play a critical role in driving innate immune responses against bacteria and viruses. However, it is unclear if differential reprogramming of mitochondrial function contributes to the fine tuning of pathogen specific immune responses. Here, we found that TLR3 and TLR4 engagement on murine bone marrow derived macrophages was associated with differential remodeling of electron transport chain complex expression. This remodeling was associated with differential accumulation of mitochondrial and cytosolic ROS, which were required to support ligand specific inflammatory and antiviral cytokine production. We also found that the magnitude of TLR3, but not TLR4, responses were modulated by glucose availability. Under conditions of low glucose, TLR3 engagement was associated with increased ETC complex III expression, increased mitochondrial and cytosolic ROS and increased inflammatory and antiviral cytokine production. This amplification was selectively reversed by targeting superoxide production from the outer Q-binding site of the ETC complex III. These results suggest that ligand specific modulation of the ETC may act as a rheostat that fine tunes innate immune responses via mitochondrial ROS production. Modulation of these processes may represent a novel mechanism to modulate the nature as well as the magnitude of antiviral vs. inflammatory immune responses.
Collapse
Affiliation(s)
- Duale Ahmed
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - David Roy
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Allison Jaworski
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Alexander Edwards
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Alfonso Abizaid
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Ashok Kumar
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,The Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Ashkan Golshani
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Edana Cassol
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada.
| |
Collapse
|
46
|
Chia SB, Elko EA, Aboushousha R, Manuel AM, van de Wetering C, Druso JE, van der Velden J, Seward DJ, Anathy V, Irvin CG, Lam YW, van der Vliet A, Janssen-Heininger YMW. Dysregulation of the glutaredoxin/ S-glutathionylation redox axis in lung diseases. Am J Physiol Cell Physiol 2019; 318:C304-C327. [PMID: 31693398 DOI: 10.1152/ajpcell.00410.2019] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glutathione is a major redox buffer, reaching millimolar concentrations within cells and high micromolar concentrations in airways. While glutathione has been traditionally known as an antioxidant defense mechanism that protects the lung tissue from oxidative stress, glutathione more recently has become recognized for its ability to become covalently conjugated to reactive cysteines within proteins, a modification known as S-glutathionylation (or S-glutathiolation or protein mixed disulfide). S-glutathionylation has the potential to change the structure and function of the target protein, owing to its size (the addition of three amino acids) and charge (glutamic acid). S-glutathionylation also protects proteins from irreversible oxidation, allowing them to be enzymatically regenerated. Numerous enzymes have been identified to catalyze the glutathionylation/deglutathionylation reactions, including glutathione S-transferases and glutaredoxins. Although protein S-glutathionylation has been implicated in numerous biological processes, S-glutathionylated proteomes have largely remained unknown. In this paper, we focus on the pathways that regulate GSH homeostasis, S-glutathionylated proteins, and glutaredoxins, and we review methods required toward identification of glutathionylated proteomes. Finally, we present the latest findings on the role of glutathionylation/glutaredoxins in various lung diseases: idiopathic pulmonary fibrosis, asthma, and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Shi B Chia
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Evan A Elko
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Reem Aboushousha
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Allison M Manuel
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Cheryl van de Wetering
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Joseph E Druso
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Jos van der Velden
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - David J Seward
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Vikas Anathy
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Charles G Irvin
- Department of Medicine, University of Vermont, Burlington, Vermont
| | - Ying-Wai Lam
- Department of Biology, University of Vermont, Burlington, Vermont
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | | |
Collapse
|
47
|
Bovine Herpesvirus 1 Productive Infection Led to Inactivation of Nrf2 Signaling through Diverse Approaches. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4957878. [PMID: 31687081 PMCID: PMC6800938 DOI: 10.1155/2019/4957878] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/20/2019] [Accepted: 08/03/2019] [Indexed: 01/09/2023]
Abstract
Bovine herpesvirus type 1 (BoHV-1) is a significant cofactor for bovine respiratory disease complex (BRDC), the most important inflammatory disease in cattle. BoHV-1 infection in cell cultures induces overproduction of pathogenic reactive oxygen species (ROS) and the depletion of nuclear factor erythroid 2 p45-related factor 2 (Nrf2), a master transcriptional factor regulating a panel of antioxidant and cellular defense genes in response to oxidative stress. In this study, we reported that the virus productive infection in MDBK cells at the later stage significantly decreased the expression levels of heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase-1 (NQO1) proteins, the canonical downstream targets regulated by Nrf2, inhibited Nrf2 acetylation, reduced the accumulation of Nrf2 proteins in the nucleus, and relocalized nuclear Nrf2 proteins to form dot-like staining patterns in confocal microscope assay. The differential expression of Kelch-like ECH associated protein 1 (KEAP1) and DJ-1 proteins as well as the decreased association between KEAP1 and DJ-1 promoted Nrf2 degradation through the ubiquitin proteasome pathway. These data indicated that the BoHV-1 infection may significantly suppress the Nrf2 signaling pathway. Moreover, we found that there was an association between Nrf2 and LaminA/C, H3K9ac, and H3K18ac, and the binding ratios were altered following the virus infection. Taken together, for the first time, we provided evidence showing that BoHV-1 infection inhibited the Nrf2 signaling pathway by complicated mechanisms including promoting Nrf2 degradation, relocalization of nuclear Nrf2, and inhibition of Nrf2 acetylation.
Collapse
|
48
|
Gunderstofte C, Iversen MB, Peri S, Thielke A, Balachandran S, Holm CK, Olagnier D. Nrf2 Negatively Regulates Type I Interferon Responses and Increases Susceptibility to Herpes Genital Infection in Mice. Front Immunol 2019; 10:2101. [PMID: 31555293 PMCID: PMC6742979 DOI: 10.3389/fimmu.2019.02101] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/20/2019] [Indexed: 12/21/2022] Open
Abstract
Herpes simplex virus-2 (HSV-2) is a leading cause of sexually transmitted infections for which no effective vaccines or prophylactic treatment currently exist. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor involved in the detoxification of reactive oxygen species (ROS) and has been more recently shown to regulate inflammatory and antiviral responses. Here, we evaluated the importance of Nrf2 in the control of HSV-2 genital infection, and its role in the regulation of HSV-induced innate antiviral immunity. Comparison of antiviral gene expression profile by RNA-sequencing analysis of wild type and Nrf2-mutant (Nrf2 AY/AY ) murine macrophages showed an upregulation at the basal level of the type I interferon-associated gene network. The same basal increased antiviral profile was also observed in the spleen of Nrf2 -/- mice. Interestingly, the lack of Nrf2 in murine cells was sufficient to increase the responsiveness to HSV-derived dsDNA and protect cells from HSV-2 infection in vitro. Surprisingly, there was no indication of an alteration in STING expression in murine cells as previously reported in cells of human origin. Additionally, genetic activation of Nrf2 in Keap1 -/- mouse embryonic fibroblasts increased HSV-2 infectivity and replication. Finally, using an in vivo vaginal herpes infection model, we showed that Nrf2 controlled early innate immune responses to HSV-2 without affecting STING expression levels. Nrf2 -/- mice exhibited reduced viral replication that was associated with higher level of type I interferons in vaginal washes. Nrf2 -/- mice also displayed reduced weight loss, lower disease scores, and higher survival rates than wild type animals. Collectively, these data identify Nrf2 as a negative regulator of the interferon-driven antiviral response to HSV-2 without impairing STING mRNA and protein expression levels in murine cells.
Collapse
Affiliation(s)
- Camilla Gunderstofte
- Department of Biomedicine, Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark
| | - Marie Beck Iversen
- Department of Biomedicine, Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark
| | - Suraj Peri
- Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Anne Thielke
- Department of Biomedicine, Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark
| | | | - Christian Kanstrup Holm
- Department of Biomedicine, Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark
| | - David Olagnier
- Department of Biomedicine, Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
49
|
Mitkevich VA, Petrushanko IY, Makarov AA. RNases Disrupt the Adaptive Potential of Malignant Cells: Perspectives for Therapy. Front Pharmacol 2019; 10:922. [PMID: 31474868 PMCID: PMC6707412 DOI: 10.3389/fphar.2019.00922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/22/2019] [Indexed: 01/11/2023] Open
Abstract
Exogenous RNases are selectively toxic to tumor cells. The reasons for this selectivity are not quite clear and should be searched for in the properties that distinguish malignant from normal cells. During onco-transformation, cells acquire properties allowing them to adapt to the altered microenvironment, such as resistance to hypoxia, changes in intracellular pH, disruption of ion transport, reduced adhesion and increased mobility, and production of specific exosomes. These adaptation mechanisms distinguish malignant cells from normal ones and give them a competitive advantage, ensuring survival and spread in the organism. Here, we analyze if the directed cytotoxic effect of exogenous RNases is linked to the disruption of the adaptive potential of tumor cells and how it can be used in anticancer therapy.
Collapse
Affiliation(s)
| | - Irina Yu Petrushanko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
50
|
Role of Glutathionylation in Infection and Inflammation. Nutrients 2019; 11:nu11081952. [PMID: 31434242 PMCID: PMC6723385 DOI: 10.3390/nu11081952] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/09/2019] [Accepted: 08/16/2019] [Indexed: 12/31/2022] Open
Abstract
Glutathionylation, that is, the formation of mixed disulfides between protein cysteines and glutathione (GSH) cysteines, is a reversible post-translational modification catalyzed by different cellular oxidoreductases, by which the redox state of the cell modulates protein function. So far, most studies on the identification of glutathionylated proteins have focused on cellular proteins, including proteins involved in host response to infection, but there is a growing number of reports showing that microbial proteins also undergo glutathionylation, with modification of their characteristics and functions. In the present review, we highlight the signaling role of GSH through glutathionylation, particularly focusing on microbial (viral and bacterial) glutathionylated proteins (GSSPs) and host GSSPs involved in the immune/inflammatory response to infection; moreover, we discuss the biological role of the process in microbial infections and related host responses.
Collapse
|