1
|
Park SY, Feng Z, Choi SH, Zhang X, Tang Y, Gasser GN, Richart D, Yuan F, Qiu J, Engelhardt JF, Yan Z. Recombinant Adeno-Associated Virus Vector Mediated Gene Editing in Proliferating and Polarized Cultures of Human Airway Epithelial Cells. Hum Gene Ther 2025. [PMID: 40359132 DOI: 10.1089/hum.2024.260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025] Open
Abstract
Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. While CRISPR-based CFTR editing approaches have shown proof-of-concept for functional rescue in primary airway basal cells, induced pluripotent stem cells, and organoid cultures derived from patients with CF, their efficacy remains suboptimal. Here, we developed the CuFiCas9(Y66S)eGFP reporter system by integrating spCas9 and a non-fluorescent Y66S eGFP mutant into CuFi-8 cells, an immortalized human airway epithelial cell line derived from a patient with CF with homozygous F508del mutations. These cells retain the basal cell phenotype in proliferating cultures and can differentiate into polarized airway epithelium at an air-liquid interface (ALI), enabling both visualized detection of gene editing and electrophysiological assessment of CFTR functional restoration. Using this system, recombinant adeno-associated virus (rAAV)-mediated homology-directed repair (HDR) was evaluated in proliferating cultures. A correction rate of 13.5 ± 0.8% was achieved in a population where 82.3 ± 5.6% of cells were productively transduced by AAV.eGFP630g2-CMVmCh, an rAAV editing vector with an mCherry reporter. Dual-editing of F508del CFTR and Y66S eGFP was explored using AAV.HR-eGFP630-F508(g03) to deliver two templates and single guide RNAs. eGFP+ (Y66S-corrected) cells and eGFP- (non-corrected) cells were sorted via fluorescence-activated cell sorting and differentiated at an ALI to assess the recovery of CFTR function. Despite a low F508 correction rate of 2.8%, ALI cultures derived from the eGFP- population exhibited 25.2% of the CFTR-specific transepithelial Cl- transport observed in CuFi-ALI cultures treated with CFTR modulators. Next-generation sequencing revealed frequent co-editing at both genomic loci, with sixfold higher F508 correction rate in the eGFP+ cells than eGFP- cells. In both populations, non-homology end joining predominated over HDR. This reporter system provides a valuable platform for optimizing editing efficiencies in proliferating airway basal cells, particularly for development of strategies to enhance HDR through modulation of DNA repair pathways.
Collapse
Affiliation(s)
- Soo Yeun Park
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Zehua Feng
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Soon H Choi
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Xiujuan Zhang
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Yinghua Tang
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Grace N Gasser
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Donovan Richart
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Feng Yuan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - John F Engelhardt
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Ziying Yan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
2
|
Wen Q, Yang R, Luo Q, Shi Q, Chen Z, Gao C, Du H, Mei G, Li S, Song Q, Han J. Molecular epidemiological characterization of human bocavirus (HBoV) in acute respiratory infection (ARI) patients in Yucheng, China. Front Public Health 2025; 13:1548907. [PMID: 40260169 PMCID: PMC12009866 DOI: 10.3389/fpubh.2025.1548907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/17/2025] [Indexed: 04/23/2025] Open
Abstract
Objective To investigate the epidemiological characteristics and genetic profile of human bocavirus (HBoV) among patients with acute respiratory infection (ARI) in Yucheng, Henan, China. Methods A total of 1,153 throat swabs were collected from ARI patients between March and June 2023. These samples were tested for 18 pathogens using quantitative chain reaction (qPCR). The VP1 gene were amplified and sequenced from HBoV-positive samples. The viral genetic characterization was analyzed by comparing the HBoV1 sequences with reference sequences. Results Of the 1,153 samples, the detection rate of HBoV positive was 6.85%, primarily detected in May 2023. The majority of HBoV positive cases were found in children under 5 years old. Clinical manifestations in HBoV-positive patients predominantly were fever and cough, with a clinical diagnosis of lower respiratory tract infection. Other viruses were also detected in 20% of HBoV-positive samples. All HBoV sequences identified in this study belonged to HBoV1, with the Ib sublineage being the predominant strain circulating in Yucheng during March-June 2023. Conclusion After the implementation of the optimized COVID-19 prevention and control strategy in December 2022, HBoV infection was prevalent in Yucheng, Henan in May-June 2023, mainly among children younger than 5 years old, especially those under 2 years old. The Ib sublineage of HBoV was the dominant circulating strain in Yucheng, Henan during March-June 2023.
Collapse
Affiliation(s)
- Qi Wen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Hebei Key Laboratory for Chronic Disease, College of Basic Medicine, North China University of Science and Technology, Tangshan, China
| | - Ronghua Yang
- Yucheng Center for Disease Control and Prevention, Shangqiu, China
| | - Qin Luo
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qiangqiang Shi
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ze Chen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chen Gao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Haijun Du
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Guoyong Mei
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shuying Li
- Hebei Key Laboratory for Chronic Disease, College of Basic Medicine, North China University of Science and Technology, Tangshan, China
| | - QinQin Song
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jun Han
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
3
|
Tang J, Chen S, Zhong Y, Deng Y, Huang D, Liu J, Zheng Y, Xu J, Xue B, Wang F, Zhou Y, Wang H, Yang Q, Chen X. Development of a reporter HBoV1 strain for antiviral drug screening and life cycle studies. Virol Sin 2025; 40:275-283. [PMID: 40147635 DOI: 10.1016/j.virs.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 03/21/2025] [Indexed: 03/29/2025] Open
Abstract
Human bocavirus 1 (HBoV1; family: Parvoviridae) causes a wide spectrum of respiratory diseases in children and gastroenteritis in adults. A lack of sensitive cell lines and efficient animal models hinders research on HBoV, including the development of anti-HBoV drugs or vaccines. Although the construction of a wild-type HBoV1 infectious clone has been reported, generating HBoV1 infectious clone carrying foreign reporter genes with suitable insertion sites in its genome while retaining replicative ability remains challenging. Here, HBoV1 infectious clones harboring the 11-amino-acid HiBiT tag at five distinct insertion sites were constructed and evaluated. Only the recombinant HBoV1 carrying the HiBiT tag in the N-terminus of the NS1 protein (HBoV1-HiBiTNS1) displayed comparable characteristics to wild-type HBoV1 as determined via the analysis of viral DNA copy number, NanoLuc activity, viral protein expression, and the formation of replication intermediates. Notably, the replication kinetics of HBoV1-HiBiTNS1 could be examined by monitoring NanoLuc activity, which was noted to be correlated with the viral DNA level. Additionally, we successfully applied HiBiT-tagged HBoV1 for the evaluation of antiviral drug activity and identified ivermectin (EC50 = 2.27 μM) as a potent anti-HBoV1 replication drug. Overall, our study demonstrated that the HBoV1-HiBiTNS1 reporter can serve as a convenient platform for screening candidate drugs targeting HBoV1 replication and may also be useful for investigating the life cycle of the virus.
Collapse
Affiliation(s)
- Jielin Tang
- Guangzhou National Laboratory, Guangzhou 510005, China; State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 511436, China.
| | - Sijie Chen
- Guangzhou National Laboratory, Guangzhou 510005, China; State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 511436, China
| | - Yi Zhong
- Guangzhou National Laboratory, Guangzhou 510005, China
| | - Yijun Deng
- Guangzhou National Laboratory, Guangzhou 510005, China; State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 511436, China
| | - Dan Huang
- Guangzhou National Laboratory, Guangzhou 510005, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Junjun Liu
- Guangzhou National Laboratory, Guangzhou 510005, China
| | - Yi Zheng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jiyuan Xu
- Guangzhou National Laboratory, Guangzhou 510005, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Bao Xue
- Guangzhou National Laboratory, Guangzhou 510005, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Fan Wang
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Yuan Zhou
- Guangzhou National Laboratory, Guangzhou 510005, China
| | - Hanzhong Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Qi Yang
- Guangzhou National Laboratory, Guangzhou 510005, China; State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 511436, China.
| | - Xinwen Chen
- Guangzhou National Laboratory, Guangzhou 510005, China; State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
4
|
Mohammadi M. Exploring evidence from cells to clinics: is human bocavirus a gastrointestinal pathogen or just a risk factor? Arch Virol 2025; 170:87. [PMID: 40126644 DOI: 10.1007/s00705-025-06265-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 01/08/2025] [Indexed: 03/26/2025]
Abstract
Human bocaviruses (HBoVs), first identified in 2005 and composed of genotypes 1-4, have been increasingly detected worldwide in pediatric patients with acute gastroenteritis. HBoV-1 has been primarily associated with respiratory symptoms, while HBoV2-4 are mostly found in gastrointestinal (GI) samples. Results from case-control studies are still controversial; however, epidemiological evidence has shown a significant association between HBoV-2 and gastroenteritis. This review will primarily focus on this association, with a brief discussion of evidence related to other HBoV genotypes. Pathological and molecular studies on the pathogenesis of HBoV, particularly in GI cells, are very scarce, possibly due to the difficulties of in vitro HBoV culture. Nonetheless, some relevant findings from colorectal cancer samples have yielded valuable insights regarding the behavior of HBoV in the GI system. In the present review, we provide an updated overview of the epidemiological evidence for an association of HBoV infection with acute gastroenteritis and focus on the cellular and molecular perspectives of HBoV pathogenicity. Finally, we look at the knowledge gaps about how HBoV affects the GI system and explore future directions.
Collapse
Affiliation(s)
- Mehrdad Mohammadi
- Department of Laboratory Technical Sciences Development, Gene Fanavaran Teb Azma Company, Isfahan, Iran.
| |
Collapse
|
5
|
Tang J, Chen S, Deng Y, Liu J, Huang D, Fu M, Xue B, Liu C, Wu C, Wang F, Zhou Y, Yang Q, Chen X. MA104 cell line is permissive for human bocavirus 1 infection. J Virol 2025; 99:e0153924. [PMID: 39846742 PMCID: PMC11852709 DOI: 10.1128/jvi.01539-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/13/2024] [Indexed: 01/24/2025] Open
Abstract
Human bocavirus 1 (HBoV1) has appeared as an emerging pathogen, causing mild to life-threatening respiratory tract infections, acute otitis media, and encephalitis in young children and immunocompromised individuals. The lack of cell lines suitable for culturing replicative viruses hinders research on HBoV1. Here, we characterized the susceptibility to HBoV1 of 29 human and 7 animal cell lines, and identified a permissive cell line, MA104. The complete HBoV1 life cycle was achieved in MA104 cells, including viral entry, complete replication, and infectious progeny virion production. Additionally, the suppression of the interferon pathway facilitated the viral genome replication in MA104 cells. RNA-sequencing showed that innate immunity, inflammation, the PI3K-Akt and MAPK signaling pathways, and the cellular membrane system were mobilized in response to HBoV1 infection. Overall, our study is the first to identify a cell line, MA104, that supports the complete HBoV1 life cycle, which will promote research on HBoV1 virology and pathogenesis and benefit drug and vaccine development.IMPORTANCEHBoV1 is an emerging pathogen that mainly causes respiratory tract infections, while the lack of cell lines suitable for culture replicative viruses hindered research on HBoV1. Here, we identify a permissive cell line for HBoV1 infection, MA104, and reveal that the complete life cycle of HBoV1 was supported in MA104 cells. Our findings provide a suitable cell model for the study of HBoV1 and explore its application for antiviral drug evaluation, which is vital for research on HBoV1 virology and pathogenesis, as well as for drug and vaccine development.
Collapse
Affiliation(s)
- Jielin Tang
- Guangzhou National Laboratory, Guangzhou, China
- Guangzhou Medical University, Guangzhou, China
| | - Sijie Chen
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yijun Deng
- Guangzhou National Laboratory, Guangzhou, China
- Guangzhou Medical University, Guangzhou, China
| | - Junjun Liu
- Guangzhou National Laboratory, Guangzhou, China
| | - Dan Huang
- Guangzhou National Laboratory, Guangzhou, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Muqing Fu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Bao Xue
- Guangzhou National Laboratory, Guangzhou, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Canyu Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Chunchen Wu
- Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Wang
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yuan Zhou
- Guangzhou National Laboratory, Guangzhou, China
| | - Qi Yang
- Guangzhou National Laboratory, Guangzhou, China
- Guangzhou Medical University, Guangzhou, China
| | - Xinwen Chen
- Guangzhou National Laboratory, Guangzhou, China
- Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
6
|
Qin S, Chen H, Tian C, Chen Z, Zuo L, Zhang X, Hao H, Huang F, Liu H, Sun X, Guan W. NS1-mediated DNMT1 degradation regulates human bocavirus 1 replication and RNA processing. PLoS Pathog 2024; 20:e1012682. [PMID: 39541416 PMCID: PMC11594422 DOI: 10.1371/journal.ppat.1012682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/26/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
Methylation of the DNA genome plays an important role in viral gene inactivation. However, the role of DNA methylation in human bocavirus (HBoV) remains unclear. In this study, the HBoV1 genomic DNA was found extensively methylated at the CHG and CHH sites. Inhibiting DNA methylation with 5-aza-2'-deoxycytidine (DAC) altered the methylation status and reduced viral DNA production, while enhanced the RNA splicing at D1 and D3 sites and the polyadenylation at the proximal polyadenylation site, (pA)p. Knockdown of DNA methyltransferase 1 (DNMT1) had the same effect on viral DNA synthesis and RNA processing as the DAC treatment, indicating that DNMT1 is the major host methyltransferase involved in viral DNA methylation. In addition, the nonstructural protein NS1 promoted DNMT1 degradation through the ubiquitin-proteasome pathway to regulate viral replication and RNA processing. Collectively, the results suggest that DNA methylation and DNMT1 facilitate HBoV replication and are essential for appropriate NS1 localization in the nucleus. DNMT1 degradation through NS1 promotes the virus RNA processing, leading to viral protein expression.
Collapse
Affiliation(s)
- Shuangkang Qin
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Honghe Chen
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Chuchu Tian
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Zhen Chen
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Li Zuo
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xueyan Zhang
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Haojie Hao
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- Hubei JiangXia Laboratory, Wuhan, Hubei, China
| | - Fang Huang
- Hubei JiangXia Laboratory, Wuhan, Hubei, China
| | - Haibin Liu
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- Hubei JiangXia Laboratory, Wuhan, Hubei, China
| | - Xiulian Sun
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Wuxiang Guan
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- Hubei JiangXia Laboratory, Wuhan, Hubei, China
| |
Collapse
|
7
|
Zhang K, De R, Xu Y, Han Z, Zhu R, Sun Y, Jia L, Chen D, Zhou Y, Guo Q, Yao Y, Liu S, Qu D, Qian Y, Zhao L. Diverse Head-to-Tail Sequences in the Circular Genome of Human Bocavirus Genotype 1 among Children with Acute Respiratory Infections Implied the Switch of Template Chain in the Rolling-Circle Replication Model. Pathogens 2024; 13:757. [PMID: 39338948 PMCID: PMC11435335 DOI: 10.3390/pathogens13090757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Head-to-tail sequences have been reported in human bocavirus (HBoV) 1-4. To reveal their features and functions, HBoV DNA was screened among respiratory specimens from pediatric patients with an acute respiratory infection (ARI) between April 2020 and December 2022, followed by HBoV genotyping. Head-to-tail sequences were detected using nested PCR, TA cloning, and Sanger sequencing, and these findings were confirmed by mNGS and amplicon sequencing. The secondary structure was predicted using the Mfold web server. The results indicated that head-to-tail sequences were detected in 42 specimens through TA cloning from 351 specimens positive for HBoV1 DNA, yielding 92 sequences into 32 types and 2 categories. Additionally, head-to-tail sequences were detected in 16 specimens by amplicon sequencing, yielding 60 sequences categorized into 23 types. The 374nt type, detected in 13 specimens, contains variants 374a and 374b, which differ in the unpaired loop regions of the palindrome or complementary reverse sequences, implying a switch of template chains during the replication process. The mNGS results in three specimens confirmed the presence of circular genome in copies below 1%. In conclusion, head-to-tail sequences of HBoV1 were common in children with ARI and were highly diverse in length and sequences. The variants may be generated by the switch of the template chain in the rolling-circle replication model.
Collapse
Affiliation(s)
- Kexiang Zhang
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing 100020, China; (K.Z.); (R.D.); (Y.X.); (Z.H.); (R.Z.); (Y.S.); (L.J.); (D.C.); (Y.Z.); (Q.G.); (Y.Y.); (Y.Q.)
- Graduate School of Peking Union Medical College, Beijing 100730, China
| | - Ri De
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing 100020, China; (K.Z.); (R.D.); (Y.X.); (Z.H.); (R.Z.); (Y.S.); (L.J.); (D.C.); (Y.Z.); (Q.G.); (Y.Y.); (Y.Q.)
| | - Yanpeng Xu
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing 100020, China; (K.Z.); (R.D.); (Y.X.); (Z.H.); (R.Z.); (Y.S.); (L.J.); (D.C.); (Y.Z.); (Q.G.); (Y.Y.); (Y.Q.)
| | - Zhenzhi Han
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing 100020, China; (K.Z.); (R.D.); (Y.X.); (Z.H.); (R.Z.); (Y.S.); (L.J.); (D.C.); (Y.Z.); (Q.G.); (Y.Y.); (Y.Q.)
| | - Runan Zhu
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing 100020, China; (K.Z.); (R.D.); (Y.X.); (Z.H.); (R.Z.); (Y.S.); (L.J.); (D.C.); (Y.Z.); (Q.G.); (Y.Y.); (Y.Q.)
| | - Yu Sun
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing 100020, China; (K.Z.); (R.D.); (Y.X.); (Z.H.); (R.Z.); (Y.S.); (L.J.); (D.C.); (Y.Z.); (Q.G.); (Y.Y.); (Y.Q.)
| | - Liping Jia
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing 100020, China; (K.Z.); (R.D.); (Y.X.); (Z.H.); (R.Z.); (Y.S.); (L.J.); (D.C.); (Y.Z.); (Q.G.); (Y.Y.); (Y.Q.)
| | - Dongmei Chen
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing 100020, China; (K.Z.); (R.D.); (Y.X.); (Z.H.); (R.Z.); (Y.S.); (L.J.); (D.C.); (Y.Z.); (Q.G.); (Y.Y.); (Y.Q.)
| | - Yutong Zhou
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing 100020, China; (K.Z.); (R.D.); (Y.X.); (Z.H.); (R.Z.); (Y.S.); (L.J.); (D.C.); (Y.Z.); (Q.G.); (Y.Y.); (Y.Q.)
| | - Qi Guo
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing 100020, China; (K.Z.); (R.D.); (Y.X.); (Z.H.); (R.Z.); (Y.S.); (L.J.); (D.C.); (Y.Z.); (Q.G.); (Y.Y.); (Y.Q.)
| | - Yao Yao
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing 100020, China; (K.Z.); (R.D.); (Y.X.); (Z.H.); (R.Z.); (Y.S.); (L.J.); (D.C.); (Y.Z.); (Q.G.); (Y.Y.); (Y.Q.)
| | - Shuang Liu
- Department of Intensive Care Unit, Affiliated Children’s Hospital, Capital Institute of Pediatrics, Beijing 100020, China; (S.L.); (D.Q.)
| | - Dong Qu
- Department of Intensive Care Unit, Affiliated Children’s Hospital, Capital Institute of Pediatrics, Beijing 100020, China; (S.L.); (D.Q.)
| | - Yuan Qian
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing 100020, China; (K.Z.); (R.D.); (Y.X.); (Z.H.); (R.Z.); (Y.S.); (L.J.); (D.C.); (Y.Z.); (Q.G.); (Y.Y.); (Y.Q.)
| | - Linqing Zhao
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing 100020, China; (K.Z.); (R.D.); (Y.X.); (Z.H.); (R.Z.); (Y.S.); (L.J.); (D.C.); (Y.Z.); (Q.G.); (Y.Y.); (Y.Q.)
- Graduate School of Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
8
|
Tătăranu E, Galos F, Anchidin-Norocel L, Axinte R, Filip F, Axinte S, Tătăranu A, Terteliu M, Diaconescu S. Life-Threatening Conditions in Children with Bocavirus Infection-Case Series and Mini Review of the Literature. Viruses 2024; 16:1347. [PMID: 39339824 PMCID: PMC11435620 DOI: 10.3390/v16091347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/09/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
In this study, we present four cases of Human Bocavirus (HBoV) infection in children aged between 1 month and 4 years. Among these cases, two siblings were hospitalized with similar symptoms. Among the four pediatric cases of patients with HBoV infection, three were associated with acute respiratory failure and spontaneous pneumothorax, and two of these presented with subcutaneous emphysema. The presented patients were young children, aged between 1 month and 4 years, two of whom were siblings, suggesting a possible intrafamilial transmission of HBoV1 infection. These cases highlight the importance of considering HBoV as a differential diagnosis in pediatric patients with respiratory and gastrointestinal symptoms. Early recognition and appropriate medical care are important in treating HBoV infection in young children.
Collapse
Affiliation(s)
- Elena Tătăranu
- “Sf. Ioan cel Nou” Emergency Hospital, 720237 Suceava, Romania (R.A.); (F.F.); (S.A.); (M.T.)
- Faculty of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Felicia Galos
- Marie Curie Emergency Children Hospital, 077120 Bucharest, Romania
- Department of Pediatrics, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Liliana Anchidin-Norocel
- Faculty of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Roxana Axinte
- “Sf. Ioan cel Nou” Emergency Hospital, 720237 Suceava, Romania (R.A.); (F.F.); (S.A.); (M.T.)
| | - Florin Filip
- “Sf. Ioan cel Nou” Emergency Hospital, 720237 Suceava, Romania (R.A.); (F.F.); (S.A.); (M.T.)
- Faculty of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Sorin Axinte
- “Sf. Ioan cel Nou” Emergency Hospital, 720237 Suceava, Romania (R.A.); (F.F.); (S.A.); (M.T.)
- Faculty of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Adrian Tătăranu
- “Sf. Ioan cel Nou” Emergency Hospital, 720237 Suceava, Romania (R.A.); (F.F.); (S.A.); (M.T.)
- Faculty of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Monica Terteliu
- “Sf. Ioan cel Nou” Emergency Hospital, 720237 Suceava, Romania (R.A.); (F.F.); (S.A.); (M.T.)
| | - Smaranda Diaconescu
- Faculty of Medicine, “Titu Maiorescu” University of Medicine, 031593 Bucharest, Romania
| |
Collapse
|
9
|
Liu M, Wei D, Zhang T, Xu Y, Guo W. Distinct clinical characteristics of bocavirus and Mycoplasma pneumoniae infection in children plastic bronchitis. Immun Inflamm Dis 2024; 12:e1373. [PMID: 39150240 PMCID: PMC11328112 DOI: 10.1002/iid3.1373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/03/2024] [Accepted: 07/30/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND This study investigated clinical and laboratory characteristics of human bocavirus type 1 (HBoV1)-plastic bronchiolitis (PB), Mycoplasma pneumoniae (MP)-associated plastic bronchitis (PB) and MP-NPB in children, highlighting inflammation, coagulation, and bronchoscopic needs. METHODS Data on preschool children with PB during HBoV1 or MP infection were collected, comparing MP-PB to severe Mycoplasma pneumoniae pneumonia. RESULT Compared with the MP-PB group, the HBoV1-PB group, with younger children, had significantly milder clinical symptoms but higher WBC counts (p = .028). The MP-PB group exhibited notably elevated Fibrinogen (p = .045) and d-dimer levels (p < .001). When contrasting the MP-PB with the MP-NPB group, children in MP-PB group still had higher levels of d-dimer and increased inflammatory indicators such as C-reactive protein, procalcitonin, lactate dehydrogenase, and interleukin-6, which were significantly elevated compared with the MP-NPB group. MP-PB showed a higher prevalence of plastic bronchial casts in lower lobes (p = .016) and a dominance of neutrophils in BALF cytology. Additionally, children in the MP-PB group tended to undergo a greater number of bronchoscopies. CONCLUSION This study identifies key differences in plastic bronchitis in children due to HBoV1 and MP, highlighting HBoV1's milder inflammation in younger kids and MP's link to severe inflammatory and coagulation responses, guiding clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Mengqi Liu
- Department of Respiratory, Tianjin Children's Hospital (Children's Hospital, Tianjin University), Tianjin Pediatric Research InstituteTianjin Key Laboratory of Birth Defects for Prevention and TreatmentTianjinChina
- Children's Clinical College of Tianjin Medical UniversityTianjinChina
| | - Diwei Wei
- Department of Respiratory, Tianjin Children's Hospital (Children's Hospital, Tianjin University), Tianjin Pediatric Research InstituteTianjin Key Laboratory of Birth Defects for Prevention and TreatmentTianjinChina
- Children's Clinical College of Tianjin Medical UniversityTianjinChina
| | - Tongqiang Zhang
- Department of Respiratory, Tianjin Children's Hospital (Children's Hospital, Tianjin University), Tianjin Pediatric Research InstituteTianjin Key Laboratory of Birth Defects for Prevention and TreatmentTianjinChina
| | - Yongsheng Xu
- Department of Respiratory, Tianjin Children's Hospital (Children's Hospital, Tianjin University), Tianjin Pediatric Research InstituteTianjin Key Laboratory of Birth Defects for Prevention and TreatmentTianjinChina
| | - Wei Guo
- Department of Respiratory, Tianjin Children's Hospital (Children's Hospital, Tianjin University), Tianjin Pediatric Research InstituteTianjin Key Laboratory of Birth Defects for Prevention and TreatmentTianjinChina
| |
Collapse
|
10
|
Ning K, Zhao J, Feng Z, Park SY, McFarlin S, Cheng F, Yan Z, Wang J, Qiu J. N6-methyladenosine modification of a parvovirus-encoded small noncoding RNA facilitates viral DNA replication through recruiting Y-family DNA polymerases. Proc Natl Acad Sci U S A 2024; 121:e2320782121. [PMID: 38875150 PMCID: PMC11194592 DOI: 10.1073/pnas.2320782121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/14/2024] [Indexed: 06/16/2024] Open
Abstract
Human bocavirus 1 (HBoV1) is a human parvovirus that causes lower respiratory tract infections in young children. It contains a single-stranded (ss) DNA genome of ~5.5 kb that encodes a small noncoding RNA of 140 nucleotides known as bocavirus-encoded small RNA (BocaSR), in addition to viral proteins. Here, we determined the secondary structure of BocaSR in vivo by using DMS-MaPseq. Our findings reveal that BocaSR undergoes N6-methyladenosine (m6A) modification at multiple sites, which is critical for viral DNA replication in both dividing HEK293 cells and nondividing cells of the human airway epithelium. Mechanistically, we found that m6A-modified BocaSR serves as a mediator for recruiting Y-family DNA repair DNA polymerase (Pol) η and Pol κ likely through a direct interaction between BocaSR and the viral DNA replication origin at the right terminus of the viral genome. Thus, this report represents direct involvement of a viral small noncoding RNA in viral DNA replication through m6A modification.
Collapse
Affiliation(s)
- Kang Ning
- Department of Microbiology, Molecular Genetics and Immunology, University of KansasMedical Center, Kansas City, KS66160
| | - Junxing Zhao
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS66045
- Section of Genetic Medicine, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL60637
| | - Zehua Feng
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA52242
| | - Soo Yeun Park
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA52242
| | - Shane McFarlin
- Department of Microbiology, Molecular Genetics and Immunology, University of KansasMedical Center, Kansas City, KS66160
| | - Fang Cheng
- Department of Microbiology, Molecular Genetics and Immunology, University of KansasMedical Center, Kansas City, KS66160
| | - Ziying Yan
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA52242
| | - Jingxin Wang
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS66045
- Section of Genetic Medicine, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL60637
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of KansasMedical Center, Kansas City, KS66160
| |
Collapse
|
11
|
Karaaslan C, Wirz O, Tan G, Globinska A, Boonpiyathad T, Hedman K, Vaselek S, Venermo MS, Jartti T, Akdis M, Akdis CA. B cell immune response to human bocaviruses. Clin Exp Allergy 2024; 54:388-401. [PMID: 38321724 DOI: 10.1111/cea.14453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 01/03/2024] [Accepted: 01/15/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND Human bocaviruses (HBoVs) have been demonstrated in respiratory and gastrointestinal infections; however, the immune response to them has not been studied in detail. In this study, we investigated the B cell immune responses to HBoV1 and HBoV2, representing two different species of bocaviruses in humans. METHODS We analyzed the effects of stimulations with HBoV1 and 2 virus-like particles (VLPs) and of co-stimulation with HBoV1-rhinovirus (RV) on cells of the immune system by flow cytometry, transcriptomics, and luminometric immune assays. RESULTS Human B cells, and particularly B regulatory cells (Breg cells), showed an increased immune response to HBoV1-VLPs stimulation. These immune responses were also supported by increased IL-1RA and PDL1 expressions in IL-10+ B cells from peripheral blood mononuclear cells (PBMCs) stimulated with HBoV1-VLPs. In addition, increased levels of IL-10 and IL-1RA were determined in the supernatants of PBMCs following HBoV1-VLPs stimulation. HBoV1-VLPs and RV co-stimulation increased the IL-10+ B cell population. Transcriptome analysis by next-generation RNA sequencing showed an increased expression of IL-10 signalling and Breg cell markers in PBMCs stimulated with HBoV1-VLPs. Furthermore, TGF-β and chemoattractants MIP-1α, MIP-1β and IP10 protein levels were high in the supernatants of PBMCs stimulated with HBoV1-VLPs. CONCLUSIONS The findings demonstrate that in Breg cells, IL-10 signalling pathways, and anti-inflammatory activity are induced by HBoV1, which can explain the often mild nature of the disease. In addition, the immune regulatory response induced by HBoV1-VLPs may indicate a potential immunomodulatory role of HBoV1 on the immune system and may represent an immune regulatory strategy.
Collapse
Affiliation(s)
- Cagatay Karaaslan
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Molecular Biology Section, Biology Department, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Oliver Wirz
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Ge Tan
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Anna Globinska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Tadech Boonpiyathad
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Klaus Hedman
- Department of Virology, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital Diagnostics Center, Helsinki, Finland
| | - Slavica Vaselek
- Molecular Biology Section, Biology Department, Faculty of Science, Hacettepe University, Ankara, Turkey
| | | | - Tuomas Jartti
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Mubeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| |
Collapse
|
12
|
Soldwedel S, Demuth S, Schildgen O. T84 Monolayer Cell Cultures Support Productive HBoV and HSV-1 Replication and Enable In Vitro Co-Infection Studies. Viruses 2024; 16:773. [PMID: 38793654 PMCID: PMC11125666 DOI: 10.3390/v16050773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Based on several clinical observations it was hypothesized that herpesviruses may influence the replication of human bocaviruses, the second known parvoviruses that have been confirmed as human pathogens. While several cell lines support the growth of HSV-1, HBoV-1 was exclusively cultivated on air-liquid interface cultures, the latter being a rather complicated, slow, and low throughput system. One of the cell lines are T84 cells, which are derived from the lung metastasis of a colorectal tumor. In this study, we provide evidence that T84 also supports HBoV replication when cultivated as monolayers, while simultaneously being permissive for HSV-1. The cell culture model thus would enable co-infection studies of both viruses and is worth being optimized for high throughput studies with HBoV-1. Additionally, the study provides evidence for a supporting effect of HSV-1 on the replication and packaging of HBoV-1 progeny DNA into DNase-resistant viral particles.
Collapse
Affiliation(s)
- Swen Soldwedel
- Kliniken der Stadt Köln, Institut für Pathologie, 51109 Köln/Cologne, Germany
| | - Sabrina Demuth
- Kliniken der Stadt Köln, Institut für Pathologie, 51109 Köln/Cologne, Germany
| | - Oliver Schildgen
- Institut für Pathologie, Klinikum der Privaten Universität Witten/Herdecke, Ostmerheimer Str. 200, 51109 Köln/Cologne, Germany
| |
Collapse
|
13
|
Zhao Y, Liu W, Li Y, Ma J, Liu T, Cui H, Deng Y, Liao X, Wang Z. Human Bocavirus 1 NP1 acts as an ssDNA-binding protein to help AAV2 DNA replication and cooperates with RPA to regulate AAV2 capsid expression. J Virol 2024; 98:e0151523. [PMID: 38323812 PMCID: PMC10949510 DOI: 10.1128/jvi.01515-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/14/2024] [Indexed: 02/08/2024] Open
Abstract
Adeno-associated virus (AAV) requires co-infection with helper virus for efficient replication. We previously reported that Human Bocavirus 1 (HBoV1) genes, including NP1, NS2, and BocaSR, were critical for AAV2 replication. Here, we first demonstrate the essential roles of the NP1 protein in AAV2 DNA replication and protein expression. We show that NP1 binds to single-strand DNA (ssDNA) at least 30 nucleotides (nt) in length in a sequence-independent manner. Furthermore, NP1 colocalized with the BrdU-labeled AAV2 DNA replication center, and the loss of the ssDNA-binding ability of NP1 by site-directed mutation completely abolished AAV2 DNA replication. We used affinity-tagged NP1 protein to identify host cellular proteins associated with NP1 in cells cotransfected with the HBoV1 helper genes and AAV2 duplex genome. Of the identified proteins, we demonstrate that NP1 directly binds to the DBD-F domain of the RPA70 subunit with a high affinity through the residues 101-121. By reconstituting the heterotrimer protein RPA in vitro using gel filtration, we demonstrate that NP1 physically associates with RPA to form a heterologous complex characterized by typical fast-on/fast-off kinetics. Following a dominant-negative strategy, we found that NP1-RPA complex mainly plays a role in expressing AAV2 capsid protein by enhancing the transcriptional activity of the p40 promoter. Our study revealed a novel mechanism by which HBoV1 NP1 protein supports AAV2 DNA replication and capsid protein expression through its ssDNA-binding ability and direct interaction with RPA, respectively.IMPORTANCERecombinant adeno-associated virus (rAAV) vectors have been extensively used in clinical gene therapy strategies. However, a limitation of these gene therapy strategies is the efficient production of the required vectors, as AAV alone is replication-deficient in the host cells. HBoV1 provides the simplest AAV2 helper genes consisting of NP1, NS2, and BocaSR. An important question regarding the helper function of HBoV1 is whether it provides any direct function that supports AAV2 DNA replication and protein expression. Also of interest is how HBoV1 interplays with potential host factors to constitute a permissive environment for AAV2 replication. Our studies revealed that the multifunctional protein NP1 plays important roles in AAV2 DNA replication via its sequence-independent ssDNA-binding ability and in regulating AAV2 capsid protein expression by physically interacting with host protein RPA. Our findings present theoretical guidance for the future application of the HBoV1 helper genes in the rAAV vector production.
Collapse
Affiliation(s)
- Yanqun Zhao
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, Henan University, Kaifeng, Henan, China
| | - Wei Liu
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, Henan University, Kaifeng, Henan, China
| | - Yanjie Li
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, Henan University, Kaifeng, Henan, China
| | - Jing Ma
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, Henan University, Kaifeng, Henan, China
| | - Ting Liu
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, Henan University, Kaifeng, Henan, China
| | - Huichan Cui
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, Henan University, Kaifeng, Henan, China
| | - Yongheng Deng
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, Henan University, Kaifeng, Henan, China
| | - Xiaochen Liao
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, Henan University, Kaifeng, Henan, China
| | - Zekun Wang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, Henan University, Kaifeng, Henan, China
| |
Collapse
|
14
|
Dai J, Xu D, Yang C, Wang H, Chen D, Lin Z, Qiu S, Zhang L, Li X, Tian X, Liu Q, Cui Y, Zhou R, Liu W. Severe pneumonia and pathogenic damage in human airway epithelium caused by Coxsackievirus B4. Emerg Microbes Infect 2023; 12:2261560. [PMID: 37725516 PMCID: PMC10538465 DOI: 10.1080/22221751.2023.2261560] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/17/2023] [Indexed: 09/21/2023]
Abstract
Coxsackievirus B4 (CVB4) has one of the highest proportions of fatal outcomes of other enterovirus serotypes. However, the pathogenesis of severe respiratory disease caused by CVB4 infection remains unclear. In this study, 3 of 42 (7.2%, GZ-R6, GZ-R7 and GZ-R8) patients with severe pneumonia tested positive for CVB4 infection in southern China. Three full-length genomes of pneumonia-derived CVB4 were sequenced and annotated for the first time, showing their high nucleotide similarity and clustering within genotype V. To analyze the pathogenic damage caused by CVB4 in the lungs, a well-differentiated human airway epithelium (HAE) was established and infected with the pneumonia-derived CVB4 isolate GZ-R6. The outcome was compared with that of a severe hand-foot-mouth disease (HFMD)-derived CVB4 strain GZ-HFM01. Compared with HFMD-derived CVB4, pneumonia-derived CVB4 caused more intense and rapid disruption of HAE polarity, leading to tight-junction barrier disruption, loss of cilia, and airway epithelial cell hypertrophy. More pneumonia-derived CVB4 were released from the basolateral side of the HAE than HFMD-derived CVB4. Of the 18 cytokines tested, only IL-6 and IL-1b secretion significantly increased on bilateral sides of HAE during the early stage of pneumonia-derived CVB4 infection, while multiple cytokine secretions significantly increased in HFMD-derived CVB4-infected HAE. HFMD-derived CVB4 exhibited stronger neurovirulence in the human neuroblastoma cells SH-SY5Y than pneumonia-derived CVB4, which is consistent with the clinical manifestations of patients infected with these two viruses. This study has increased the depth of our knowledge of severe pneumonia infection caused by CVB4 and will benefit its prevention and treatment.
Collapse
Affiliation(s)
- Jing Dai
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Duo Xu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Chao Yang
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, People’s Republic of China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Huan Wang
- Scientific Research Center, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Dehui Chen
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Zhengshi Lin
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Shuyan Qiu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Li Zhang
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Xiao Li
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Xingui Tian
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Qian Liu
- Scientific Research Center, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Rong Zhou
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Wenkuan Liu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
15
|
Colazo Salbetti MB, Boggio GA, Moreno L, Adamo MP. Human bocavirus respiratory infection: Tracing the path from viral replication and virus-cell interactions to diagnostic methods. Rev Med Virol 2023; 33:e2482. [PMID: 37749807 DOI: 10.1002/rmv.2482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023]
Abstract
Human bocaviruses were first described between 2005 and 2010, identified in respiratory and enteric tract samples of children. Screening studies have shown worldwide distribution. Based on phylogenetic analysis, they were classified into four genotypes (HBoV1-4). From a clinical perspective, human bocavirus 1 (HBoV1) is considered the most relevant, since it can cause upper and lower acute respiratory tract infection, mainly in infants, including common cold, bronchiolitis, and pneumonia, as well as wheezing in susceptible patients. However, the specific processes leading to structural, biochemical, and functional changes resulting in the different clinical presentations have not been elucidated yet. This review surveys the interactions between the virus and target cells that can potentially explain disease-causing mechanisms. It also summarises the clinical phenotype of cases, stressing the role of HBoV1 as an aetiological agent of lower acute respiratory infection in infants, together with laboratory tests for detection and diagnosis. By exploring the current knowledge on the epidemiology of HBoV1, insights into the complex scenario of paediatric respiratory infections are presented, as well as the potential effects that changes in the circulation can have on the dynamics of respiratory agents, spotlighting the benefits of comprehensively increase insights into incidence, interrelationships with co-circulating agents and potential control of HBoV1.
Collapse
Affiliation(s)
- María Belén Colazo Salbetti
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Cordoba, Argentina
| | - Gabriel Amilcar Boggio
- Cátedra de Clínica Pediátrica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Cordoba, Argentina
| | - Laura Moreno
- Cátedra de Clínica Pediátrica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Cordoba, Argentina
| | - María Pilar Adamo
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Cordoba, Argentina
| |
Collapse
|
16
|
Boggio GA, Moreno LB, Salbetti MBC, Villarreal V, Torres E, Adamo MP. Clinical characterization of human bocavirus 1 infection in infants hospitalized in an intensive care unit for severe acute respiratory tract disease. Diagn Microbiol Infect Dis 2023; 107:116050. [PMID: 37597460 DOI: 10.1016/j.diagmicrobio.2023.116050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/07/2023] [Accepted: 07/28/2023] [Indexed: 08/21/2023]
Abstract
Acute respiratory infections represent the leading cause of morbimortality in children and viruses are the main etiological agents. Here we describe the clinical characteristics and evolution of infants admitted to intensive care unit with severe acute respiratory infection (SARI) due to Human Bocavirus 1 mono-infection in patients without previous comorbidity. We also compared them with respiratory syncytial virus (RSV) cases. Of 141 cases included (age 5.43 ± 4.54 months, 52% male), 80% had at least 1 virus detected. RSV was the most frequent in the series (71.6%) followed by HBoV1 (28%). Five cases of HBoV1 mono-detection were identified. Pediatric acute respiratory distress syndrome was present in both groups, HBoV1 and RSV. The clinical presentation and evolution of HBoV1 single infection was similar to RSV. HBoV1 should be included among the agents investigated in cases of SARI in infants.
Collapse
Affiliation(s)
- Gabriel Amilcar Boggio
- Cátedra de Clínica Pediátrica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Hospital de Niños de la Santísima Trinidad de Córdoba, Córdoba, Argentina.
| | - Laura Beatriz Moreno
- Cátedra de Clínica Pediátrica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Belén Colazo Salbetti
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | - Erica Torres
- Hospital de Niños de la Santísima Trinidad de Córdoba, Córdoba, Argentina
| | - María Pilar Adamo
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
17
|
Hao S, Ning K, Kuz CA, Xiong M, Zou W, Park SY, McFarlin S, Yan Z, Qiu J. SARS-CoV-2 infection of polarized human airway epithelium induces necroptosis that causes airway epithelial barrier dysfunction. J Med Virol 2023; 95:e29076. [PMID: 37671751 PMCID: PMC10754389 DOI: 10.1002/jmv.29076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause the ongoing pandemic of coronavirus disease 2019 (COVID19). One key feature associated with COVID-19 is excessive pro-inflammatory cytokine production that leads to severe acute respiratory distress syndrome. Although the cytokine storm induces inflammatory cell death in the host, which type of programmed cell death mechanism that occurs in various organs and cells remains elusive. Using an in vitro culture model of polarized human airway epithelium (HAE), we observed that necroptosis, but not apoptosis or pyroptosis, plays an essential role in the damage of the epithelial barrier of polarized HAE infected with SARS-CoV-2. Pharmacological inhibitors of necroptosis, necrostatin-2 and necrosulfonamide, efficiently prevented cell death and epithelial barrier dysfunction caused by SARS-CoV-2 infection. Moreover, the silencing of genes that are involved in necroptosis, RIPK1, RIPK3, and MLKL, ameliorated airway epithelial damage of the polarized HAE infected with SARS-CoV-2. This study, for the first time, confirms that SARS-CoV-2 infection triggers necroptosis that disrupts the barrier function of human airway epithelia in vitro.
Collapse
Affiliation(s)
- Siyuan Hao
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Kang Ning
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Cagla Aksu Kuz
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Min Xiong
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Wei Zou
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Soo Yeun Park
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242, USA
| | - Shane McFarlin
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Ziying Yan
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242, USA
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
18
|
Cerato JA, da Silva EF, Porto BN. Breaking Bad: Inflammasome Activation by Respiratory Viruses. BIOLOGY 2023; 12:943. [PMID: 37508374 PMCID: PMC10376673 DOI: 10.3390/biology12070943] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023]
Abstract
The nucleotide-binding domain leucine-rich repeat-containing receptor (NLR) family is a group of intracellular sensors activated in response to harmful stimuli, such as invading pathogens. Some NLR family members form large multiprotein complexes known as inflammasomes, acting as a platform for activating the caspase-1-induced canonical inflammatory pathway. The canonical inflammasome pathway triggers the secretion of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18 by the rapid rupture of the plasma cell membrane, subsequently causing an inflammatory cell death program known as pyroptosis, thereby halting viral replication and removing infected cells. Recent studies have highlighted the importance of inflammasome activation in the response against respiratory viral infections, such as influenza and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While inflammasome activity can contribute to the resolution of respiratory virus infections, dysregulated inflammasome activity can also exacerbate immunopathology, leading to tissue damage and hyperinflammation. In this review, we summarize how different respiratory viruses trigger inflammasome pathways and what harmful effects the inflammasome exerts along with its antiviral immune response during viral infection in the lungs. By understanding the crosstalk between invading pathogens and inflammasome regulation, new therapeutic strategies can be exploited to improve the outcomes of respiratory viral infections.
Collapse
Affiliation(s)
- Julia A. Cerato
- Department of Medical Microbiology and Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (J.A.C.); (E.F.d.S.)
| | - Emanuelle F. da Silva
- Department of Medical Microbiology and Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (J.A.C.); (E.F.d.S.)
| | - Barbara N. Porto
- Department of Medical Microbiology and Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (J.A.C.); (E.F.d.S.)
- Biology of Breathing Group, Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
19
|
Kwak G, Lee D, Suk JS. Advanced approaches to overcome biological barriers in respiratory and systemic routes of administration for enhanced nucleic acid delivery to the lung. Expert Opin Drug Deliv 2023; 20:1531-1552. [PMID: 37946533 PMCID: PMC10872418 DOI: 10.1080/17425247.2023.2282535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023]
Abstract
INTRODUCTION Numerous delivery strategies, primarily novel nucleic acid delivery carriers, have been developed and explored to enable therapeutically relevant lung gene therapy. However, its clinical translation is yet to be achieved despite over 30 years of efforts, which is attributed to the inability to overcome a series of biological barriers that hamper efficient nucleic acid transfer to target cells in the lung. AREAS COVERED This review is initiated with the fundamentals of nucleic acid therapy and a brief overview of previous and ongoing efforts on clinical translation of lung gene therapy. We then walk through the nature of biological barriers encountered by nucleic acid carriers administered via respiratory and/or systemic routes. Finally, we introduce advanced strategies developed to overcome those barriers to achieve therapeutically relevant nucleic acid delivery efficiency in the lung. EXPERT OPINION We are now stepping close to the clinical translation of lung gene therapy, thanks to the discovery of novel delivery strategies that overcome biological barriers via comprehensive preclinical studies. However, preclinical findings should be cautiously interpreted and validated to ultimately realize meaningful therapeutic outcomes with newly developed delivery strategies in humans. In particular, individual strategies should be selected, tailored, and implemented in a manner directly relevant to specific therapeutic applications and goals.
Collapse
Affiliation(s)
- Gijung Kwak
- Department of Neurosurgery and Medicine Institute for Neuroscience Discovery (UM-MIND), University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daiheon Lee
- Department of Neurosurgery and Medicine Institute for Neuroscience Discovery (UM-MIND), University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jung Soo Suk
- Department of Neurosurgery and Medicine Institute for Neuroscience Discovery (UM-MIND), University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
20
|
Capozza P, Buonavoglia A, Pratelli A, Martella V, Decaro N. Old and Novel Enteric Parvoviruses of Dogs. Pathogens 2023; 12:pathogens12050722. [PMID: 37242392 DOI: 10.3390/pathogens12050722] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Parvovirus infections have been well known for around 100 years in domestic carnivores. However, the use of molecular assays and metagenomic approaches for virus discovery and characterization has led to the detection of novel parvovirus species and/or variants in dogs. Although some evidence suggests that these emerging canine parvoviruses may act as primary causative agents or as synergistic pathogens in the diseases of domestic carnivores, several aspects regarding epidemiology and virus-host interaction remain to be elucidated.
Collapse
Affiliation(s)
- Paolo Capozza
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy
| | - Alessio Buonavoglia
- Department of Biomedical and Neuromotor Sciences, Dental School, Via Zamboni 33, 40126 Bologna, Italy
| | - Annamaria Pratelli
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy
| | - Vito Martella
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy
| | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy
| |
Collapse
|
21
|
Trapani S, Caporizzi A, Ricci S, Indolfi G. Human Bocavirus in Childhood: A True Respiratory Pathogen or a "Passenger" Virus? A Comprehensive Review. Microorganisms 2023; 11:1243. [PMID: 37317217 DOI: 10.3390/microorganisms11051243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 06/16/2023] Open
Abstract
Recently, human bocavirus (HBoV) has appeared as an emerging pathogen, with an increasing number of cases reported worldwide. HBoV is mainly associated with upper and lower respiratory tract infections in adults and children. However, its role as a respiratory pathogen is still not fully understood. It has been reported both as a co-infectious agent (predominantly with respiratory syncytial virus, rhinovirus, parainfluenza viruses, and adenovirus), and as an isolated viral pathogen during respiratory tract infections. It has also been found in asymptomatic subjects. The authors review the available literature on the epidemiology of HBoV, the underlying risk factors associated with infection, the virus's transmission, and its pathogenicity as a single pathogen and in co-infections, as well as the current hypothesis about the host's immune response. An update on different HBoV detection methods is provided, including the use of quantitative single or multiplex molecular methods (screening panels) on nasopharyngeal swabs or respiratory secretions, tissue biopsies, serum tests, and metagenomic next-generations sequencing in serum and respiratory secretions. The clinical features of infection, mainly regarding the respiratory tract but also, though rarely, the gastrointestinal one, are extensively described. Furthermore, a specific focus is dedicated to severe HBoV infections requiring hospitalization, oxygen therapy, and/or intensive care in the pediatric age; rare fatal cases have also been reported. Data on tissue viral persistence, reactivation, and reinfection are evaluated. A comparison of the clinical characteristics of single infection and viral or bacterial co-infections with high or low HBoV rates is carried out to establish the real burden of HBoV disease in the pediatric population.
Collapse
Affiliation(s)
- Sandra Trapani
- Department of Health Sciences, University of Florence, Viale Pieraccini, 24, 50139 Florence, Italy
- Pediatric Unit, Meyer Children's Hospital IRCCS, Viale Pieraccini, 24, 50139 Florence, Italy
| | - Alice Caporizzi
- Pediatric Unit, Meyer Children's Hospital IRCCS, Viale Pieraccini, 24, 50139 Florence, Italy
| | - Silvia Ricci
- Department of Health Sciences, University of Florence, Viale Pieraccini, 24, 50139 Florence, Italy
- Division of Immunology, Meyer Children's Hospital IRCCS, Viale Pieraccini, 24, 50139 Florence, Italy
| | - Giuseppe Indolfi
- Pediatric Unit, Meyer Children's Hospital IRCCS, Viale Pieraccini, 24, 50139 Florence, Italy
- NEUROFARBA Department, University of Florence, Viale Pieraccini, 24, 50139 Florence, Italy
| |
Collapse
|
22
|
Colazo Salbetti MB, Boggio GA, Abbiatti G, Montañez Sandoz A, Villarreal V, Torres E, Pedranti M, Zalazar JA, Moreno L, Adamo MP. Diagnosis and clinical significance of Human bocavirus 1 in children hospitalized for lower acute respiratory infection: molecular detection in respiratory secretions and serum. J Med Microbiol 2022; 71. [DOI: 10.1099/jmm.0.001595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Human bocavirus 1 (HBoV1) infection occurs with viral genome presence in respiratory secretions (RS) and serum, and therefore both samples can be used for diagnosis.
Gap statement. The diagnostic sensitivity of HBoV1 DNA detection in serum and the duration of DNAaemia in severe clinical cases have not been elucidated.
Aim. To determine HBoV1 DNA in serum and RS of paediatric patients hospitalized for lower acute respiratory infection (LARI) and to analyse the clinical–epidemiological features of positive cases.
Methodology. This was a prospective, transverse study. Physicians selected the clinical situations and obtained paired clinical samples (RS and serum) that were tested by PCR/qPCR for HBoV1. Positive cases were analysed considering time of specimen collection, co-detection, clinical manifestations and viral load; statistical significant level was set at α=0.05.
Results. HBoV1 was detected in 98 of 402 cases included (24 %); 18/98 (18 %) patients had the virus detectable in serum and 91/98 (93 %) in RS (P<0.001). Positivity rates were not significantly different in patients with RS and serum collected within or beyond 24 h of admission. Single HBoV1 infection was identified in 39/98 patients (40 %), three patients had HBoV1 in both clinical samples (3/39, 8 %) and 32 (32/39, 82 %) only in RS, 22 of them (69 %) with both clinical samples within 24 h of admission. Cough (P=0.001) and rhinitis (P=0.003) were significantly frequent among them and most patients were diagnosed with bronchiolitis (22/39, 56 %) and pneumonia (9/39, 23 %), which was more frequent compared to cases with co-infection (P=0.04). No significant differences were identified among patients with high, medium or low viral load of HBoV1 regarding rate of positivity in both clinical samples, the time of collection of RS and serum, co-detection, first episode of LARI, clinical manifestations, comorbidity or requirement for assisted ventilation. Intensive care unit (ICU) patients had a significantly higher frequency of detection (P<0.001) and co-detection (P=0.001) compared to patients on standard care.
Conclusions. HBoV1 is prevalent among infant patients hospitalized for LARI and including it in the standard testing can add to the aetiological diagnosis in these cases, especially for patients admitted to the ICU. HBoV1 detection in serum did not contribute significantly to the diagnosis as compared to detection in respiratory secretions.
Collapse
Affiliation(s)
- Maria Belen Colazo Salbetti
- Instituto de Virología “Dr. J. M. Vanella”, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Gabriel Amilcar Boggio
- Clínica Privada Vélez Sársfield, Córdoba, Argentina
- Hospital de Niños de la Santísima Trinidad de Córdoba, Argentina
- Cátedra de Clínica Pediátrica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Argentina
| | | | | | | | - Erika Torres
- Hospital de Niños de la Santísima Trinidad de Córdoba, Argentina
| | - Mauro Pedranti
- Instituto de Virología “Dr. J. M. Vanella”, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | - Laura Moreno
- Cátedra de Clínica Pediátrica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Argentina
| | - Maria Pilar Adamo
- Instituto de Virología “Dr. J. M. Vanella”, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
23
|
Sui H, Xu X, Su Y, Gong Z, Yao M, Liu X, Zhang T, Jiang Z, Bai T, Wang J, Zhang J, Xu C, Luo M. Gene therapy for cystic fibrosis: Challenges and prospects. Front Pharmacol 2022; 13:1015926. [PMID: 36304167 PMCID: PMC9592762 DOI: 10.3389/fphar.2022.1015926] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/29/2022] [Indexed: 11/25/2022] Open
Abstract
Cystic fibrosis (CF) is a life-threatening autosomal-recessive disease caused by mutations in a single gene encoding cystic fibrosis transmembrane conductance regulator (CFTR). CF effects multiple organs, and lung disease is the primary cause of mortality. The median age at death from CF is in the early forties. CF was one of the first diseases to be considered for gene therapy, and efforts focused on treating CF lung disease began shortly after the CFTR gene was identified in 1989. However, despite the quickly established proof-of-concept for CFTR gene transfer in vitro and in clinical trials in 1990s, to date, 36 CF gene therapy clinical trials involving ∼600 patients with CF have yet to achieve their desired outcomes. The long journey to pursue gene therapy as a cure for CF encountered more difficulties than originally anticipated, but immense progress has been made in the past decade in the developments of next generation airway transduction viral vectors and CF animal models that reproduced human CF disease phenotypes. In this review, we look back at the history for the lessons learned from previous clinical trials and summarize the recent advances in the research for CF gene therapy, including the emerging CRISPR-based gene editing strategies. We also discuss the airway transduction vectors, large animal CF models, the complexity of CF pathogenesis and heterogeneity of CFTR expression in airway epithelium, which are the major challenges to the implementation of a successful CF gene therapy, and highlight the future opportunities and prospects.
Collapse
Affiliation(s)
- Hongshu Sui
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
- *Correspondence: Hongshu Sui, ; Changlong Xu, ; Mingjiu Luo,
| | - Xinghua Xu
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Yanping Su
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Zhaoqing Gong
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Minhua Yao
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Xiaocui Liu
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Ting Zhang
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Ziyao Jiang
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Tianhao Bai
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Junzuo Wang
- The Affiliated Tai’an City Central Hospital of Qingdao University, Tai’an, Shandong, China
| | - Jingjun Zhang
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| | - Changlong Xu
- The Reproductive Medical Center of Nanning Second People’s Hospital, Nanning, China
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
- *Correspondence: Hongshu Sui, ; Changlong Xu, ; Mingjiu Luo,
| | - Mingjiu Luo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
- *Correspondence: Hongshu Sui, ; Changlong Xu, ; Mingjiu Luo,
| |
Collapse
|
24
|
Wang W, Guan R, Liu Z, Zhang F, Sun R, Liu S, Shi X, Su Z, Liang R, Hao K, Wang Z, Liu X. Epidemiologic and clinical characteristics of human bocavirus infection in children hospitalized for acute respiratory tract infection in Qingdao, China. Front Microbiol 2022; 13:935688. [PMID: 36033842 PMCID: PMC9399728 DOI: 10.3389/fmicb.2022.935688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Persistent infection and prolonged shedding of human bocavirus 1 (HBoV1) in children have been reported, and the role of HBoV1 as a sole causative pathogen in acute respiratory infection (ARI) is yet to be established. While the reported prevalence of HBoV infection varies due to different detection methods and sampling criteria, determining the viral and bacterial etiology of HBoV infection using multiplex real-time PCR is yet to be reported. Herein, we aimed to further explore the pathogenicity of HBoV in patients with ARI by screening the viral and bacterial infections in children with ARI in Qingdao and comparing the epidemiological, clinical characteristics, and etiological results. Human bocavirus was identified in 28.1% of the samples, and further sequencing analysis of the detected HBoV confirmed 96.4% as HBoV1. The rate of HBoV as a single viral infection was 75%, and the rate of coinfection with bacteria was 66.1%, suggesting the need for continued monitoring of HBoV in children with ARIs. Clinical characterization suggested that HBoV infection may affect the function of organs, such as the liver, kidney, and heart, and the blood acid–base balance. Additionally, it is essential to promote awareness about the importance of disinfection and sterilization of the hospital environment and standardizing operations. The interactions between HBoV and other pathogens remain to be investigated in further detail in the future.
Collapse
Affiliation(s)
- Wenjing Wang
- Department of Epidemiology and Health Statistics, The College of Public Health of Qingdao University, Qingdao, China
| | - Renzheng Guan
- Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ziran Liu
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, China
| | - Feng Zhang
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, China
| | - Rui Sun
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, China
| | - Sitong Liu
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, China
| | - Xiaoyan Shi
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, China
| | - Zhilei Su
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, China
| | - Rongxiang Liang
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, China
| | - Kangyu Hao
- Department of Epidemiology and Health Statistics, The College of Public Health of Qingdao University, Qingdao, China
| | - Zhaoguo Wang
- Department of Epidemiology and Health Statistics, The College of Public Health of Qingdao University, Qingdao, China
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, China
- *Correspondence: Zhaoguo Wang
| | - Xianming Liu
- Department of Neurosurgery, Qingdao Municipal Hospital, Qingdao, China
- Xianming Liu
| |
Collapse
|
25
|
De R, Zhang KX, Wang F, Zhou YT, Sun Y, Chen DM, Zhu RN, Guo Q, Liu S, Qu D, Qian Y, Zhao LQ. Human bocavirus 1 is a genuine pathogen for acute respiratory tract infection in pediatric patients determined by nucleic acid, antigen, and serology tests. Front Microbiol 2022; 13:932858. [PMID: 35966673 PMCID: PMC9372409 DOI: 10.3389/fmicb.2022.932858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/28/2022] [Indexed: 11/24/2022] Open
Abstract
Background Human bocavirus 1 (HBoV1), first discovered in 2005, was positive in symptomatic and healthy children and co-detected with other respiratory viruses. It is a long journey to decisively demonstrate the unique viral pathogenic function of acute respiratory tract infection (ARTI) in pediatric patients. Methods Respiratory specimens collected from pediatric patients with ARTI from January 2017 to December 2021 were screened by a capillary electrophoresis-based multiplex PCR (CEMP) assay, then genotyped by PCR and sequencing for HBoV1. For the antigen test, a part of HBoV1 DNA positive nasopharyngeal aspirates (NPAs) was used as an antigen, while a rabbit anti-HBoV1 DR2 specific to HBoV1 was used as an antibody in the indirect-immunofluorescence assay (IFA). Finally, the levels of IgG specific to HBoV1 in acute and convalescent sera selected retrospectively from only HBoV1 DNA-positive patients were evaluated by IFA. Results Among 9,899 specimens, 681 were positive for HBoV1 DNA (6.88%, 681/9899), which included 336 positives only for HBoV1 (49.34%, 336/681) and 345 (50.66%, 345/681) positives also for other pathogens. In the antigen test, there were 37 among 47 NPAs determined as HBoV1 antigen-positive (78.72%, 37/47), including 18 (48.65%, 18/37) positives solely for HBoV1 DNA. Among 4 pediatric patients with both acute and convalescent sera, there was one positive for HBoV1 antigen (D8873) and 2 lack the antigen results (D1474 and D10792), which showed seroconversion with a ≥ 4-fold increase in IgG levels. Conclusions The combination results of nucleic acid, antigen, and serology tests answered that HBoV1 is a genuine pathogen for ARTI in pediatric patients.
Collapse
Affiliation(s)
- Ri De
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| | - Ke-Xiang Zhang
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| | - Fang Wang
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, China
| | - Yu-Tong Zhou
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, China
| | - Yu Sun
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, China
| | - Dong-Mei Chen
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, China
| | - Ru-Nan Zhu
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, China
| | - Qi Guo
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, China
| | - Shuang Liu
- Department of Intensive Care Unit, Affiliated Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Dong Qu
- Department of Intensive Care Unit, Affiliated Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Yuan Qian
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, China
| | - Lin-Qing Zhao
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
- *Correspondence: Lin-Qing Zhao
| |
Collapse
|
26
|
Mostafa-Hedeab G, Allayeh AK, Elhady HA, Eledrdery AY, Mraheil MA, Mostafa A. Viral Eco-Genomic Tools: Development and Implementation for Aquatic Biomonitoring. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:7707. [PMID: 35805367 PMCID: PMC9265447 DOI: 10.3390/ijerph19137707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 12/17/2022]
Abstract
Enteric viruses (EVs) occurrence within aquatic environments varies and leads to significant risk on public health of humans, animals, and diversity of aquatic taxa. Early and efficacious recognition of cultivable and fastidious EVs in aquatic systems are important to ensure the sanitary level of aquatic water and implement required treatment strategies. Herein, we provided a comprehensive overview of the conventional and up-to-date eco-genomic tools for aquatic biomonitoring of EVs, aiming to develop better water pollution monitoring tools. In combination with bioinformatics techniques, genetic tools including cloning sequencing analysis, DNA microarray, next-generation sequencing (NGS), and metagenomic sequencing technologies are implemented to make informed decisions about the global burden of waterborne EVs-associated diseases. The data presented in this review are helpful to recommend that: (1) Each viral pollution detection method has its own merits and demerits; therefore, it would be advantageous for viral pollution evaluation to be integrated as a complementary platform. (2) The total viral genome pool extracted from aquatic environmental samples is a real reflection of pollution status of the aquatic eco-systems; therefore, it is recommended to conduct regular sampling through the year to establish an updated monitoring system for EVs, and quantify viral peak concentrations, viral typing, and genotyping. (3) Despite that conventional detection methods are cheaper, it is highly recommended to implement molecular-based technologies to complement aquatic ecosystems biomonitoring due to numerous advantages including high-throughput capability. (4) Continuous implementation of the eco-genetic detection tools for monitoring the EVs in aquatic ecosystems is recommended.
Collapse
Affiliation(s)
- Gomaa Mostafa-Hedeab
- Pharmacology Department and Health Research Unit, Medical College, Jouf University, Skaka 11564, Saudi Arabia
| | - Abdou Kamal Allayeh
- Water Pollution Department, Virology Laboratory, National Research Centre, Dokki, Giza 12622, Egypt;
| | | | - Abozer Y. Eledrdery
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 11564, Saudi Arabia;
| | - Mobarak Abu Mraheil
- German Center for Infection Research (DZIF), Institute of Medical Microbiology, Justus-Liebig University, 35392 Giessen, Germany
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| |
Collapse
|
27
|
The small nonstructural protein NP1 of human bocavirus 1 directly interacts with Ku70 and RPA70 and facilitates viral DNA replication. PLoS Pathog 2022; 18:e1010578. [PMID: 35653410 PMCID: PMC9197078 DOI: 10.1371/journal.ppat.1010578] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/14/2022] [Accepted: 05/10/2022] [Indexed: 11/19/2022] Open
Abstract
Human bocavirus 1 (HBoV1), a member of the genus Bocaparvovirus of the family Parvoviridae, causes acute respiratory tract infections in young children. Well-differentiated pseudostratified human airway epithelium cultured at an air-liquid interface (HAE-ALI) is an ideal in vitro culture model to study HBoV1 infection. Unique to other parvoviruses, bocaparvoviruses express a small nonstructured protein NP1 of ~25 kDa from an open reading frame (ORF) in the center of the viral genome. NP1 plays an important role in viral DNA replication and pre-mRNA processing. In this study, we performed an affinity purification assay to identify HBoV1 NP1-inteacting proteins. We identified that Ku70 and RPA70 directly interact with the NP1 at a high binding affinity, characterized with an equilibrium dissociation constant (KD) of 95 nM and 122 nM, respectively. Furthermore, we mapped the key NP1-interacting domains of Ku70 at aa266-439 and of RPA70 at aa181-422. Following a dominant negative strategy, we revealed that the interactions of Ku70 and RPA70 with NP1 play a significant role in HBoV1 DNA replication not only in an in vitro viral DNA replication assay but also in HBoV1-infected HAE-ALI cultures. Collectively, our study revealed a novel mechanism by which HBoV1 NP1 enhances viral DNA replication through its direct interactions with Ku70 and RPA70.
Collapse
|
28
|
Xu M, Leskinen K, Gritti T, Groma V, Arola J, Lepistö A, Sipponen T, Saavalainen P, Söderlund-Venermo M. Prevalence, Cell Tropism, and Clinical Impact of Human Parvovirus Persistence in Adenomatous, Cancerous, Inflamed, and Healthy Intestinal Mucosa. Front Microbiol 2022; 13:914181. [PMID: 35685923 PMCID: PMC9171052 DOI: 10.3389/fmicb.2022.914181] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/25/2022] [Indexed: 11/18/2022] Open
Abstract
Parvoviruses are single-stranded DNA viruses, infecting many animals from insects to humans. Human parvovirus B19 (B19V) causes erythema infectiosum, arthropathy, anemia, and fetal death, and human bocavirus (HBoV) 1 causes respiratory tract infections, while HBoV2-4 are enteric. Parvoviral genomes can persist in diverse non-permissive tissues after acute infection, but the host-cell tropism and the impact of their tissue persistence are poorly studied. We searched for parvoviral DNA in a total of 427 intestinal biopsy specimens, as paired disease-affected and healthy mucosa, obtained from 130 patients with malignancy, ulcerative colitis (UC), or adenomas, and in similar intestinal segments from 55 healthy subjects. Only three (1.6%) individuals exhibited intestinal HBoV DNA (one each of HBoV1, 2, and 3). Conversely, B19V DNA persisted frequently in the intestine, with 50, 47, 31, and 27% detection rates in the patients with malignancy, UC, or adenomas, and in the healthy subjects, respectively. Intra-individually, B19V DNA persisted significantly more often in the healthy intestinal segments than in the inflamed colons of UC patients. The highest loads of B19V DNA were seen in the ileum and colon specimens of two healthy individuals. With dual-RNAscope in situ hybridization and immunohistochemistry assays, we located the B19V persistence sites of these intestines in mucosal B cells of lymphoid follicles and vascular endothelial cells. Viral messenger RNA transcription remained, however, undetected. RNA sequencing (RNA-seq) identified 272 differentially expressed cellular genes between B19V DNA-positive and -negative healthy ileum biopsy specimens. Pathway enrichment analysis revealed that B19V persistence activated the intestinal cell viability and inhibited apoptosis. Lifelong B19V DNA persistence thus modulates host gene expression, which may lead to clinical outcomes.
Collapse
Affiliation(s)
- Man Xu
- Department of Virology, University of Helsinki, Helsinki, Finland
| | - Katarzyna Leskinen
- Research Programs Unit, Department of Immunobiology, University of Helsinki, Helsinki, Finland
| | - Tommaso Gritti
- Department of Virology, University of Helsinki, Helsinki, Finland
| | - Valerija Groma
- Joint Laboratory of Electron Microscopy, Riga Stradin,s University, Riga, Latvia
| | - Johanna Arola
- Department of Pathology, University of Helsinki, Helsinki, Finland
- HUS Diagnostic Centre, Helsinki University Hospital, Helsinki, Finland
| | - Anna Lepistö
- Department of Colorectal Surgery, Helsinki University Hospital, Helsinki, Finland
- Applied Tumor Genomics, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Taina Sipponen
- HUCH Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| | - Päivi Saavalainen
- Research Programs Unit, Department of Immunobiology, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Maria Söderlund-Venermo
- Department of Virology, University of Helsinki, Helsinki, Finland
- *Correspondence: Maria Söderlund-Venermo,
| |
Collapse
|
29
|
Shao L, Ning K, Wang J, Cheng F, Wang S, Qiu J. The Large Nonstructural Protein (NS1) of Human Bocavirus 1 Directly Interacts with Ku70, Which Plays an Important Role in Virus Replication in Human Airway Epithelia. J Virol 2022; 96:e0184021. [PMID: 34878919 PMCID: PMC8865542 DOI: 10.1128/jvi.01840-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/22/2021] [Indexed: 12/16/2022] Open
Abstract
Human bocavirus 1 (HBoV1), an autonomous human parvovirus, causes acute respiratory tract infections in young children. HBoV1 infects well-differentiated (polarized) human airway epithelium cultured at an air-liquid interface (HAE-ALI). HBoV1 expresses a large nonstructural protein, NS1, that is essential for viral DNA replication. HBoV1 infection of polarized human airway epithelial cells induces a DNA damage response (DDR) that is critical to viral DNA replication involving DNA repair with error-free Y-family DNA polymerases. HBoV1 NS1 or the isoform NS1-70 per se induces a DDR. In this study, using the second-generation proximity-dependent biotin identification (BioID2) approach, we identified that Ku70 is associated with the NS1-BioID2 pulldown complex through a direct interaction with NS1. Biolayer interferometry (BLI) assay determined a high binding affinity of NS1 with Ku70, which has an equilibrium dissociation constant (KD) value of 0.16 μM and processes the strongest interaction at the C-terminal domain. The association of Ku70 with NS1 was also revealed during HBoV1 infection of HAE-ALI. Knockdown of Ku70 and overexpression of the C-terminal domain of Ku70 significantly decreased HBoV1 replication in HAE-ALI. Thus, our study provides, for the first time, a direct interaction of parvovirus large nonstructural protein NS1 with Ku70. IMPORTANCE Parvovirus infection induces a DNA damage response (DDR) that plays a pivotal role in viral DNA replication. The DDR includes activation of ATM (ataxia telangiectasia mutated), ATR (ATM- and RAD3-related), and DNA-PKcs (DNA-dependent protein kinase catalytic subunit). The large nonstructural protein (NS1) often plays a role in the induction of DDR; however, how the DDR is induced during parvovirus infection or simply by the NS1 is not well studied. Activation of DNA-PKcs has been shown as one of the key DDR pathways in DNA replication of HBoV1. We identified that HBoV1 NS1 directly interacts with Ku70, but not Ku80, of the Ku70/Ku80 heterodimer at high affinity. This interaction is also important for HBoV1 replication in HAE-ALI. We propose that the interaction of NS1 with Ku70 recruits the Ku70/Ku80 complex to the viral DNA replication center, which activates DNA-PKcs and facilitates viral DNA replication.
Collapse
Affiliation(s)
- Liting Shao
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Kang Ning
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jianke Wang
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Fang Cheng
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Shengqi Wang
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
30
|
Thirteen Nearly Complete Genome Sequences of Human Bocavirus 1 Isolated from Pediatric Inpatients in Fukushima, Japan. Microbiol Resour Announc 2022; 11:e0102721. [PMID: 35049344 PMCID: PMC8772594 DOI: 10.1128/mra.01027-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We report 13 genomic sequences of human bocavirus 1 isolated from pediatric inpatients in Fukushima, Japan, using an air-liquid interface culture of human bronchial tracheal epithelial cells. This work suggests the endemic circulation of a human bocavirus variant with a unique amino acid signature in Fukushima.
Collapse
|
31
|
Fakhiri J, Grimm D. Best of most possible worlds: Hybrid gene therapy vectors based on parvoviruses and heterologous viruses. Mol Ther 2021; 29:3359-3382. [PMID: 33831556 PMCID: PMC8636155 DOI: 10.1016/j.ymthe.2021.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 01/12/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Parvoviruses and especially the adeno-associated virus (AAV) species provide an exciting and versatile platform for the rational design or molecular evolution of human gene-therapy vectors, documented by literature from over half a century, hundreds of clinical trials, and the recent commercialization of multiple AAV gene therapeutics. For the last three decades, the power of these vectors has been further potentiated through various types of hybrid vectors created by intra- or inter-genus juxtaposition of viral DNA and protein cis elements or by synergistic complementation of parvoviral features with those of heterologous, prokaryotic, or eukaryotic viruses. Here, we provide an overview of the history and promise of this rapidly expanding field of hybrid parvoviral gene-therapy vectors, starting with early generations of chimeric particles composed of a recombinant AAV genome encapsidated in shells of synthetic AAVs or of adeno-, herpes-, baculo-, or protoparvoviruses. We then dedicate our attention to two newer, highly promising types of hybrid vectors created via (1) pseudotyping of AAV genomes with bocaviral serotypes and capsid mutants or (2) packaging of AAV DNA into, or tethering of entire vector particles to, bacteriophages. Finally, we conclude with an outlook summarizing critical requirements and improvements toward clinical translation of these original concepts.
Collapse
Affiliation(s)
- Julia Fakhiri
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, Heidelberg, Germany; BioQuant, University of Heidelberg, Heidelberg, Germany
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, Heidelberg, Germany; BioQuant, University of Heidelberg, Heidelberg, Germany; German Center for Infection Research (DZIF) and German Center for Cardiovascular Research (DZHK), Partner site Heidelberg, Heidelberg, Germany.
| |
Collapse
|
32
|
Jager MC, Tomlinson JE, Lopez-Astacio RA, Parrish CR, Van de Walle GR. Small but mighty: old and new parvoviruses of veterinary significance. Virol J 2021; 18:210. [PMID: 34689822 PMCID: PMC8542416 DOI: 10.1186/s12985-021-01677-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
In line with the Latin expression "sed parva forti" meaning "small but mighty," the family Parvoviridae contains many of the smallest known viruses, some of which result in fatal or debilitating infections. In recent years, advances in metagenomic viral discovery techniques have dramatically increased the identification of novel parvoviruses in both diseased and healthy individuals. While some of these discoveries have solved etiologic mysteries of well-described diseases in animals, many of the newly discovered parvoviruses appear to cause mild or no disease, or disease associations remain to be established. With the increased use of animal parvoviruses as vectors for gene therapy and oncolytic treatments in humans, it becomes all the more important to understand the diversity, pathogenic potential, and evolution of this diverse family of viruses. In this review, we discuss parvoviruses infecting vertebrate animals, with a special focus on pathogens of veterinary significance and viruses discovered within the last four years.
Collapse
Affiliation(s)
- Mason C Jager
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Joy E Tomlinson
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Robert A Lopez-Astacio
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Colin R Parrish
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
33
|
You FF, Zhang MY, Wu F, Li QS, Chen Q. Human bocavirus 2 detected in Rattus norvegicus feces in China. Arch Virol 2021; 167:171-175. [PMID: 34671852 DOI: 10.1007/s00705-021-05274-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 09/02/2021] [Indexed: 11/11/2022]
Abstract
Bocaviruses are typical zoonotic pathogens with a wide range of hosts. Here, we report the detection of human bocavirus (HBoV) in Rattus norvegicus captured in China and the results of sequencing and phylogenetic analysis based on the partial VP1 region and the entire viral genome. A total of 357 fecal samples from rats were collected in 2015-2017 and analyzed for HBoV using PCR. The detection rate of HBoV was 0.84% (3/357). Phylogenetic analysis revealed that this virus is genetically closely related to HBoV-2. R. norvegicus may be a carrier of HBoV, and its impact on public health merits attention.
Collapse
Affiliation(s)
- Fang-Fei You
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Min-Yi Zhang
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Fei Wu
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Qiu-Shuang Li
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Qing Chen
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China.
| |
Collapse
|
34
|
Ljubin-Sternak S, Slović A, Mijač M, Jurković M, Forčić D, Ivković-Jureković I, Tot T, Vraneš J. Prevalence and Molecular Characterization of Human Bocavirus Detected in Croatian Children with Respiratory Infection. Viruses 2021; 13:v13091728. [PMID: 34578309 PMCID: PMC8473146 DOI: 10.3390/v13091728] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/16/2022] Open
Abstract
Human bocavirus (HBoV) 1 is considered an important respiratory pathogen, while the role of HBoV2-4 in clinical disease remains somewhat controversial. Since, they are characterized by a rapid evolution, worldwide surveillance of HBoVs’ genetics is necessary. This study explored the prevalence of HBoV genotypes in pediatric patients with respiratory tract infection in Croatia and studied their phylogeny. Using multiplex PCR for 15 respiratory viruses, we investigated 957 respiratory samples of children up to 18 years of age with respiratory tract infection obtained from May 2017 to March 2021 at two different hospitals in Croatia. Amplification of HBoV near-complete genome or three overlapping fragments was performed, sequenced, and their phylogenetic inferences constructed. HBoV was detected in 7.6% children with a median age of 1.36 years. Co-infection was observed in 82.2% samples. Sequencing was successfully performed on 29 HBoV positive samples, and all belonged to HBoV1. Croatian HBoV1 sequences are closely related to strains isolated worldwide, and no phylogenetic grouping based on mono- or co-infection cases or year of isolation was observed. Calculated rates of evolution for HBoV1 were 10−4 and 10−5 substitutions per site and year. Recombination was not detected among sequences from this study.
Collapse
Affiliation(s)
- Sunčanica Ljubin-Sternak
- Molecular Microbiology Department, Dr. Andrija Štampar Teaching Institute of Public Health, 10000 Zagreb, Croatia; (M.M.); (J.V.)
- Medical Microbiology Department, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Correspondence:
| | - Anamarija Slović
- Center of Excellence for Virus Immunology and Vaccines, Center for Research and Knowledge Transfer in Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (A.S.); (M.J.); (D.F.)
| | - Maja Mijač
- Molecular Microbiology Department, Dr. Andrija Štampar Teaching Institute of Public Health, 10000 Zagreb, Croatia; (M.M.); (J.V.)
- Medical Microbiology Department, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Mirna Jurković
- Center of Excellence for Virus Immunology and Vaccines, Center for Research and Knowledge Transfer in Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (A.S.); (M.J.); (D.F.)
| | - Dubravko Forčić
- Center of Excellence for Virus Immunology and Vaccines, Center for Research and Knowledge Transfer in Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (A.S.); (M.J.); (D.F.)
| | - Irena Ivković-Jureković
- Department of Pulmonology, Allergy, Immunology and Rheumatology, Children’s Hospital Zagreb, 10000 Zagreb, Croatia;
- Faculty for Dental Medicine and Healthcare/School of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Tatjana Tot
- Microbiology Department, General hospital Karlovac, Karlovac, 47000 Karlovac, Croatia;
| | - Jasmina Vraneš
- Molecular Microbiology Department, Dr. Andrija Štampar Teaching Institute of Public Health, 10000 Zagreb, Croatia; (M.M.); (J.V.)
- Medical Microbiology Department, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| |
Collapse
|
35
|
Hairpin transfer-independent Parvovirus DNA Replication Produces Infectious Virus. J Virol 2021; 95:e0110821. [PMID: 34346761 DOI: 10.1128/jvi.01108-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Parvoviruses package a linear single-stranded DNA genome with hairpin structures at both ends. It has been thought that terminal hairpin sequences are indispensable for viral DNA replication. Here, we provide evidence that the hairpin-deleted duplex genomes of human bocavirus 1 (HBoV1) replicate in human embryonic kidney (HEK) 293 cells. We propose an alternative model for HBoV1 DNA replication in which the leading strand can initiate strand-displacement without "hairpin-transfer." The transfection of the HBoV1 duplex genomes that retain a minimal replication origin at the right-end (OriR), but with extensive deletions in the right-end hairpin (REH), generated viruses in HEK293 cells at a level 10-20 times lower than the wild-type (WT) duplex genome. Importantly, these viruses that have a genome with various deletions after the OriR, but not the one retaining only the OriR, replicated in polarized human airway epithelia. We discovered that the 18-nt sequence (nt 5,403-5,420) beyond the OriR was sufficient to confer virus replication in polarized human airway epithelia, although its progeny virus production was ∼5 times lower than that of the WT virus. Thus, our study demonstrates that hairpin transfer-independent productive parvovirus DNA replication can occur. Importance Hairpin transfer-independent parvovirus replication was modeled with human bocavirus 1 (HBoV1) duplex genomes whose 5' hairpin structure was ablated by various deletions. In HEK293 cells, these duplex viral genomes with ablated 5'/hairpin sequence replicated efficiently and generated viruses that productively infected polarized human airway epithelium. Thus, for the first time, we reveal a previously unknown phenomenon that the productive parvovirus DNA replication does not depend on the hairpin sequence at REH to initiate "rolling hairpin" DNA replication. Notably, the intermediates of viral DNA replication, as revealed two-dimensional electrophoresis, from transfections of hairpin sequence-deleted duplex genome and full-length genome in HEK293 cells, as well as from virus infection of polarized human airway epithelia are similar. Thus, the establishment of the hairpin transfer-independent parvoviral DNA replication deepens our understanding in viral DNA replication and may have implications in development of parvovirus-based viral vectors with alternative properties.
Collapse
|
36
|
Clementi N, Ghosh S, De Santis M, Castelli M, Criscuolo E, Zanoni I, Clementi M, Mancini N. Viral Respiratory Pathogens and Lung Injury. Clin Microbiol Rev 2021; 34:e00103-20. [PMID: 33789928 PMCID: PMC8142519 DOI: 10.1128/cmr.00103-20] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Several viruses target the human respiratory tract, causing different clinical manifestations spanning from mild upper airway involvement to life-threatening acute respiratory distress syndrome (ARDS). As dramatically evident in the ongoing SARS-CoV-2 pandemic, the clinical picture is not always easily predictable due to the combined effect of direct viral and indirect patient-specific immune-mediated damage. In this review, we discuss the main RNA (orthomyxoviruses, paramyxoviruses, and coronaviruses) and DNA (adenoviruses, herpesviruses, and bocaviruses) viruses with respiratory tropism and their mechanisms of direct and indirect cell damage. We analyze the thin line existing between a protective immune response, capable of limiting viral replication, and an unbalanced, dysregulated immune activation often leading to the most severe complication. Our comprehension of the molecular mechanisms involved is increasing and this should pave the way for the development and clinical use of new tailored immune-based antiviral strategies.
Collapse
Affiliation(s)
- Nicola Clementi
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sreya Ghosh
- Harvard Medical School, Boston Children's Hospital, Division of Immunology, Boston, Massachusetts, USA
| | - Maria De Santis
- Department of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
| | - Matteo Castelli
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
| | - Elena Criscuolo
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
| | - Ivan Zanoni
- Harvard Medical School, Boston Children's Hospital, Division of Immunology, Boston, Massachusetts, USA
- Harvard Medical School, Boston Children's Hospital, Division of Gastroenterology, Boston, Massachusetts, USA
| | - Massimo Clementi
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nicasio Mancini
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
37
|
Shao L, Shen W, Wang S, Qiu J. Recent Advances in Molecular Biology of Human Bocavirus 1 and Its Applications. Front Microbiol 2021; 12:696604. [PMID: 34220786 PMCID: PMC8242256 DOI: 10.3389/fmicb.2021.696604] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 05/12/2021] [Indexed: 11/25/2022] Open
Abstract
Human bocavirus 1 (HBoV1) was discovered in human nasopharyngeal specimens in 2005. It is an autonomous human parvovirus and causes acute respiratory tract infections in young children. HBoV1 infects well differentiated or polarized human airway epithelial cells in vitro. Unique among all parvoviruses, HBoV1 expresses 6 non-structural proteins, NS1, NS1-70, NS2, NS3, NS4, and NP1, and a viral non-coding RNA (BocaSR), and three structural proteins VP1, VP2, and VP3. The BocaSR is the first identified RNA polymerase III (Pol III) transcribed viral non-coding RNA in small DNA viruses. It plays an important role in regulation of viral gene expression and a direct role in viral DNA replication in the nucleus. HBoV1 genome replication in the polarized/non-dividing airway epithelial cells depends on the DNA damage and DNA repair pathways and involves error-free Y-family DNA repair DNA polymerase (Pol) η and Pol κ. Importantly, HBoV1 is a helper virus for the replication of dependoparvovirus, adeno-associated virus (AAV), in polarized human airway epithelial cells, and HBoV1 gene products support wild-type AAV replication and recombinant AAV (rAAV) production in human embryonic kidney (HEK) 293 cells. More importantly, the HBoV1 capsid is able to pseudopackage an rAAV2 or rHBoV1 genome, producing the rAAV2/HBoV1 or rHBoV1 vector. The HBoV1 capsid based rAAV vector has a high tropism for human airway epithelia. A deeper understanding in HBoV1 replication and gene expression will help find a better way to produce the rAAV vector and to increase the efficacy of gene delivery using the rAAV2/HBoV1 or rHBoV1 vector, in particular, to human airways. This review summarizes the recent advances in gene expression and replication of HBoV1, as well as the use of HBoV1 as a parvoviral vector for gene delivery.
Collapse
Affiliation(s)
- Liting Shao
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Weiran Shen
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Shengqi Wang
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
38
|
Yan Z, Deng X, Qiu J. Human Bocavirus 1 Infection of Well-Differentiated Human Airway Epithelium. ACTA ACUST UNITED AC 2021; 58:e107. [PMID: 32639683 DOI: 10.1002/cpmc.107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Human bocavirus 1 (HBoV1) is a small DNA virus that belongs to the Bocaparvovirus genus of the Parvoviridae family. HBoV1 is a common respiratory pathogen that causes mild to life-threatening acute respiratory tract infections in children and immunocompromised individuals, infecting both the upper and lower respiratory tracts. HBoV1 infection causes death of airway epithelial cells, resulting in airway injury and inflammation. In vitro, HBoV1 only infects well-differentiated (polarized) human airway epithelium cultured at an air-liquid interface (HAE-ALI), but not any dividing human cells. A full-length HBoV1 genome of 5543 nucleotides has been cloned from DNA extracted from a human nasopharyngeal swab into a plasmid called HBoV1 infectious clone pIHBoV1. Transfection of pIHBoV1 replicates efficiently in human embryonic kidney 293 (HEK293) cells and produces virions that are highly infectious. This article describes protocols for production of HBoV1 in HEK293 cells, generation of HAE-ALI cultures, and infection with HBoV1 in HAE-ALI. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Human bocavirus 1 production in HEK293 cells Support Protocol 1: HEK293 cell culture and transfection Support Protocol 2: Quantification of human bocavirus 1 using real-time quantitative PCR Basic Protocol 2: Differentiation of human airway cells at an air-liquid interface Support Protocol 3: Expansion of human airway epithelial cell line CuFi-8 Support Protocol 4: Expansion of human airway basal cells Support Protocol 5: Coating of plastic dishes and permeable membranes of inserts Support Protocol 6: Transepithelial electrical resistance measurement Basic Protocol 3: Human bocavirus 1 infection in human airway epithelium cultured at an air-liquid interface Support Protocol 7: Isolation of infected human airway epithelium cells from inserts Basic Protocol 4: Transduction of airway basal cells with lentiviral vector.
Collapse
Affiliation(s)
- Ziying Yan
- Department of Anatomy, University of Iowa, Iowa City, Iowa
| | - Xuefeng Deng
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
39
|
Wen SH, Lin L, Yu G, Xu CF, Zhang HL, Zheng YM. Pseudomembranous laryngotracheobronchitis due to coinfection with human bocavirus 1 and Mycoplasma pneumoniae: a case report. Transl Pediatr 2021; 10:673-678. [PMID: 33880337 PMCID: PMC8041609 DOI: 10.21037/tp-20-278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Pseudomembranous laryngotracheobronchitis is rarely reported yet potentially life-threatening infectious cause of airway obstruction in children. The causative organisms of this condition are often considered to promote bacterial superinfection following viral infection. We report a case of pseudomembranous laryngotracheobronchitis in a patient caused by human bocavirus 1 and Mycoplasma pneumoniae (M. pneumoniae). A 2-year-old child was admitted to our hospital presenting with cough, hoarseness, and labored breathing. Computed tomography of the chest revealed atelectasis of the right middle lobe of the lung with bronchostenosis and occlusion. Laryngeal edema, pseudomembrane formation and ulceration of the trachea were found during bronchoscopy. Chronic inflammation of the mucosa and local cellulose exudation with acute and chronic inflammatory cell infiltration were confirmed by hematoxylin-eosin staining. Human bocavirus 1 and M. pneumoniae were detected in the bronchoalveolar lavage fluid by next-generation sequencing. The patient tested positive for IgM antibodies against M. pneumoniae. Bronchoscopy was performed three times to clear the secretions in the airway, and azithromycin, ceftriaxone, methylprednisolone, budesonide inhalation, and ambroxol were administered as treatment. The patient's condition improved and she was discharged 21 days after admission. Clinicians should be aware of the potential involvement of human bocavirus 1 and M. pneumoniae in pseudomembranous laryngotracheobronchitis for accurate diagnosis and timely antibiotic administration, and to lower mortality and morbidity rates.
Collapse
Affiliation(s)
- Shun-Hang Wen
- Department of Children's Respiratory Disease, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Li Lin
- Department of Children's Respiratory Disease, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Gang Yu
- Department of Children's Respiratory Disease, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Chang-Fu Xu
- Department of Children's Respiratory Disease, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hai-Lin Zhang
- Department of Children's Respiratory Disease, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yang-Ming Zheng
- Department of Children's Respiratory Disease, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
40
|
Abstract
The apical junctional complexes (AJCs) of airway epithelial cells are a key component of the innate immune system by creating barriers to pathogens, inhaled allergens, and environmental particles. AJCs form between adjacent cells and consist of tight junctions (TJs) and adherens junctions (AJs). Respiratory viruses have been shown to target various components of the AJCs, leading to airway epithelial barrier dysfunction by different mechanisms. Virus-induced epithelial permeability may allow for allergens and bacterial pathogens to subsequently invade. In this review, we discuss the pathophysiologic mechanisms leading to disruption of AJCs and the potential ensuing ramifications. We focus on the following viruses that affect the pulmonary system: respiratory syncytial virus, rhinovirus, influenza viruses, immunodeficiency virus, and other viruses such as coxsackievirus, adenovirus, coronaviruses, measles, parainfluenza virus, bocavirus, and vaccinia virus. Understanding the mechanisms by which viruses target the AJC and impair barrier function may help design therapeutic innovations to treat these infections.
Collapse
Affiliation(s)
- Debra T Linfield
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Andjela Raduka
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA
| | - Mahyar Aghapour
- Institute of Medical Microbiology, Otto-von-Guericke University, Magdeburg, Germany
| | - Fariba Rezaee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA.,Center for Pediatric Pulmonary Medicine, Cleveland, Ohio, USA
| |
Collapse
|
41
|
Yu JC, Mietzsch M, Singh A, Jimenez Ybargollin A, Kailasan S, Chipman P, Bhattacharya N, Fakhiri J, Grimm D, Kapoor A, Kučinskaitė-Kodzė I, Žvirblienė A, Söderlund-Venermo M, McKenna R, Agbandje-McKenna M. Characterization of the GBoV1 Capsid and Its Antibody Interactions. Viruses 2021; 13:v13020330. [PMID: 33672786 PMCID: PMC7924616 DOI: 10.3390/v13020330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 12/14/2022] Open
Abstract
Human bocavirus 1 (HBoV1) has gained attention as a gene delivery vector with its ability to infect polarized human airway epithelia and 5.5 kb genome packaging capacity. Gorilla bocavirus 1 (GBoV1) VP3 shares 86% amino acid sequence identity with HBoV1 but has better transduction efficiency in several human cell types. Here, we report the capsid structure of GBoV1 determined to 2.76 Å resolution using cryo-electron microscopy (cryo-EM) and its interaction with mouse monoclonal antibodies (mAbs) and human sera. GBoV1 shares capsid surface morphologies with other parvoviruses, with a channel at the 5-fold symmetry axis, protrusions surrounding the 3-fold axis and a depression at the 2-fold axis. A 2/5-fold wall separates the 2-fold and 5-fold axes. Compared to HBoV1, differences are localized to the 3-fold protrusions. Consistently, native dot immunoblots and cryo-EM showed cross-reactivity and binding, respectively, by a 5-fold targeted HBoV1 mAb, 15C6. Surprisingly, recognition was observed for one out of three 3-fold targeted mAbs, 12C1, indicating some structural similarity at this region. In addition, GBoV1, tested against 40 human sera, showed the similar rates of seropositivity as HBoV1. Immunogenic reactivity against parvoviral vectors is a significant barrier to efficient gene delivery. This study is a step towards optimizing bocaparvovirus vectors with antibody escape properties.
Collapse
Affiliation(s)
- Jennifer Chun Yu
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (J.C.Y.); (M.M.); (A.S.); (A.J.Y.); (S.K.); (P.C.); (R.M.)
| | - Mario Mietzsch
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (J.C.Y.); (M.M.); (A.S.); (A.J.Y.); (S.K.); (P.C.); (R.M.)
| | - Amriti Singh
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (J.C.Y.); (M.M.); (A.S.); (A.J.Y.); (S.K.); (P.C.); (R.M.)
| | - Alberto Jimenez Ybargollin
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (J.C.Y.); (M.M.); (A.S.); (A.J.Y.); (S.K.); (P.C.); (R.M.)
| | - Shweta Kailasan
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (J.C.Y.); (M.M.); (A.S.); (A.J.Y.); (S.K.); (P.C.); (R.M.)
| | - Paul Chipman
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (J.C.Y.); (M.M.); (A.S.); (A.J.Y.); (S.K.); (P.C.); (R.M.)
| | - Nilakshee Bhattacharya
- Biological Science Imaging Resource, Department of Biological Sciences, Florida State University, Tallahassee, FL 32306, USA;
| | - Julia Fakhiri
- Department of Infectious Diseases/Virology, Medical Faculty, BioQuant, University of Heidelberg, 69120 Heidelberg, Germany; (J.F.); (D.G.)
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Medical Faculty, BioQuant, University of Heidelberg, 69120 Heidelberg, Germany; (J.F.); (D.G.)
| | - Amit Kapoor
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43220, USA;
| | - Indrė Kučinskaitė-Kodzė
- Department of Immunology and Cell Biology of the Institute of Biotechnology of Vilnius University, 10257 Vilnius, Lithuania; (I.K.-K.); (A.Ž.)
| | - Aurelija Žvirblienė
- Department of Immunology and Cell Biology of the Institute of Biotechnology of Vilnius University, 10257 Vilnius, Lithuania; (I.K.-K.); (A.Ž.)
| | | | - Robert McKenna
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (J.C.Y.); (M.M.); (A.S.); (A.J.Y.); (S.K.); (P.C.); (R.M.)
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (J.C.Y.); (M.M.); (A.S.); (A.J.Y.); (S.K.); (P.C.); (R.M.)
- Correspondence:
| |
Collapse
|
42
|
Xu M, Perdomo MF, Mattola S, Pyöriä L, Toppinen M, Qiu J, Vihinen-Ranta M, Hedman K, Nokso-Koivisto J, Aaltonen LM, Söderlund-Venermo M. Persistence of Human Bocavirus 1 in Tonsillar Germinal Centers and Antibody-Dependent Enhancement of Infection. mBio 2021; 12:e03132-20. [PMID: 33531399 PMCID: PMC7858059 DOI: 10.1128/mbio.03132-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 12/11/2022] Open
Abstract
Human bocavirus 1 (HBoV1), a nonenveloped single-stranded DNA parvovirus, causes mild to life-threatening respiratory tract infections, acute otitis media, and encephalitis in young children. HBoV1 often persists in nasopharyngeal secretions for months, hampering diagnosis. It has also been shown to persist in pediatric palatine and adenoid tonsils, which suggests that lymphoid organs are reservoirs for virus spread; however, the tissue site and host cells remain unknown. Our aim was to determine, in healthy nonviremic children with preexisting HBoV1 immunity, the adenotonsillar persistence site(s), host cell types, and virus activity. We discovered that HBoV1 DNA persists in lymphoid germinal centers (GCs), but not in the corresponding tonsillar epithelium, and that the cell types harboring the virus are mainly naive, activated, and memory B cells and monocytes. Both viral DNA strands and both sides of the genome were detected, as well as infrequent mRNA. Moreover, we showed, in B-cell and monocyte cultures and ex vivo tonsillar B cells, that the cellular uptake of HBoV1 occurs via the Fc receptor (FcγRII) through antibody-dependent enhancement (ADE). This resulted in viral mRNA transcription, known to occur exclusively from double-stranded DNA in the nucleus, however, with no detectable productive replication. Confocal imaging with fluorescent virus-like particles moreover disclosed endocytosis. To which extent the active HBoV1 GC persistence has a role in chronic inflammation or B-cell maturation disturbances, and whether the virus can be reactivated, will be interesting topics for forthcoming studies.IMPORTANCE Human bocavirus 1 (HBoV1), a common pediatric respiratory pathogen, can persist in airway secretions for months hampering diagnosis. It also persists in tonsils, providing potential reservoirs for airway shedding, with the exact location, host cell types, and virus activity unknown. Our study provides new insights into tonsillar HBoV1 persistence. We observed HBoV1 persistence exclusively in germinal centers where immune maturation occurs, and the main host cells were B cells and monocytes. In cultured cell lines and primary tonsillar B cells, we showed the virus uptake to be significantly enhanced by HBoV1-specific antibodies, mediated by the cellular IgG receptor, leading to viral mRNA synthesis, but without detectable productive replication. Possible implications of such active viral persistence could be tonsillar inflammation, disturbances in immune maturation, reactivation, or cell death with release of virus DNA, explaining the long-lasting HBoV1 airway shedding.
Collapse
Affiliation(s)
- Man Xu
- Department of Virology, University of Helsinki, Helsinki, Finland
| | | | - Salla Mattola
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
- Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Lari Pyöriä
- Department of Virology, University of Helsinki, Helsinki, Finland
| | - Mari Toppinen
- Department of Virology, University of Helsinki, Helsinki, Finland
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Maija Vihinen-Ranta
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
- Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Klaus Hedman
- Department of Virology, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital, Helsinki, Finland
| | - Johanna Nokso-Koivisto
- Department of Otorhinolaryngology-Head and Neck Surgery, Helsinki University Hospital, Helsinki, Finland
- University of Helsinki, Helsinki, Finland
| | - Leena-Maija Aaltonen
- Department of Otorhinolaryngology-Head and Neck Surgery, Helsinki University Hospital, Helsinki, Finland
- University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
43
|
Hao S, Ning K, Kuz CA, Vorhies K, Yan Z, Qiu J. Long-Term Modeling of SARS-CoV-2 Infection of In Vitro Cultured Polarized Human Airway Epithelium. mBio 2020; 11:e02852-20. [PMID: 33158999 PMCID: PMC7649230 DOI: 10.1128/mbio.02852-20] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 12/28/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replicates throughout human airways. The polarized human airway epithelium (HAE) cultured at an airway-liquid interface (HAE-ALI) is an in vitro model mimicking the in vivo human mucociliary airway epithelium and supports the replication of SARS-CoV-2. Prior studies characterized only short-period SARS-CoV-2 infection in HAE. In this study, continuously monitoring the SARS-CoV-2 infection in HAE-ALI cultures for a long period of up to 51 days revealed that SARS-CoV-2 infection was long lasting with recurrent replication peaks appearing between an interval of approximately 7 to 10 days, which was consistent in all the tested HAE-ALI cultures derived from 4 lung bronchi of independent donors. We also identified that SARS-CoV-2 does not infect HAE from the basolateral side, and the dominant SARS-CoV-2 permissive epithelial cells are ciliated cells and goblet cells, whereas virus replication in basal cells and club cells was not detected. Notably, virus infection immediately damaged the HAE, which is demonstrated by dispersed zonula occludens-1 (ZO-1) expression without clear tight junctions and partial loss of cilia. Importantly, we identified that SARS-CoV-2 productive infection of HAE requires a high viral load of >2.5 × 105 virions per cm2 of epithelium. Thus, our studies highlight the importance of a high viral load and that epithelial renewal initiates and maintains a recurrent infection of HAE with SARS-CoV-2.IMPORTANCE The pandemic of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to >35 million confirmed cases and >1 million fatalities worldwide. SARS-CoV-2 mainly replicates in human airway epithelia in COVID-19 patients. In this study, we used in vitro cultures of polarized human bronchial airway epithelium to model SARS-CoV-2 replication for a period of 21 to 51 days. We discovered that in vitro airway epithelial cultures endure a long-lasting SARS-CoV-2 propagation with recurrent peaks of progeny virus release at an interval of approximately 7 to 10 days. Our study also revealed that SARS-CoV-2 infection causes airway epithelia damage with disruption of tight junction function and loss of cilia. Importantly, SARS-CoV-2 exhibits a polarity of infection in airway epithelium only from the apical membrane; it infects ciliated and goblet cells but not basal and club cells. Furthermore, the productive infection of SARS-CoV-2 requires a high viral load of over 2.5 × 105 virions per cm2 of epithelium. Our study highlights that the proliferation of airway basal cells and regeneration of airway epithelium may contribute to the recurrent infections.
Collapse
Affiliation(s)
- Siyuan Hao
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Kang Ning
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Cagla Aksu Kuz
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Kai Vorhies
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, USA
| | - Ziying Yan
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, USA
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
44
|
Liu W, Zhang Y, Ma J, Jiang N, Fan Y, Zhou Y, Cain K, Yi M, Jia K, Wen H, Liu W, Guan W, Zeng L. Determination of a novel parvovirus pathogen associated with massive mortality in adult tilapia. PLoS Pathog 2020; 16:e1008765. [PMID: 32970777 PMCID: PMC7588064 DOI: 10.1371/journal.ppat.1008765] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 10/26/2020] [Accepted: 06/30/2020] [Indexed: 11/28/2022] Open
Abstract
Tilapia is one of the most important economic and fastest-growing species in aquaculture worldwide. In 2015, an epidemic associated with severe mortality occurred in adult tilapia in Hubei, China. The causative pathogen was identified as Tilapia parvovirus (TiPV) by virus isolation, electron microscopy, experimental challenge, In situ hybridization (ISH), indirect immunofluorescence (IFA), and viral gene sequencing. Electron microscopy revealed large numbers of parvovirus particles in the organs of diseased fish, including kidney, spleen, liver, heart, brain, gill, intestine, etc. The virions were spherical in shape, non-enveloped and approximately 30nm in diameter. The TiPV was isolated and propagated in tilapia brain cells (TiB) and induced a typical cytopathic effect (CPE) after 3 days post-infection (dpi). This virus was used to experimentally infect adult tilapia and clinical disease symptoms similar to those observed naturally were replicated. Additionally, the results of ISH and IFA showed positive signals in kidney and spleen tissues from TiPV-infected fish. To identify TiPV-specific sequences, the near complete genome of TiPV was obtained and determined to be 4269 bp in size. Phylogenetic analysis of the NS1 sequence revealed that TiPV is a novel parvovirus, forms a separate branch in proposed genus Chapparvovirus of Parvoviridae. Results presented here confirm that TiPV is a novel parvovirus pathogen that can cause massive mortality in adult tilapia. This provides a basis for the further studies to define the epidemiology, pathology, diagnosis, prevention and treatment of this emerging viral disease. A novel parvovirus isolated from adult tilapia causes substantial morbidity and mortality. Using a SISPA-PCR and RACE, we identified and characterized 4269 nucleotides of this parvovirus. Tentatively named Tilapia parvovirus (TiPV), this is to our knowledge the first putative member of the family Parvoviridae shown to infect a teleost host. We found that a nucleotide sequence similarity search by BLASTX had no significant matches with other viruses, while amino acid sequence comparison indicated approximately 34.6% ~ 50.0% amino acids (aa) homology with other parvoviruses. Similarities between the genomes of parvoviruses infecting hosts in different phyla or divisions indicate a need to update previously suggested hypotheses on the origins of parvovirus. Our findings may represent new avenues to explain viral evolution and suggest a need to further study parvovirus pathogenesis.
Collapse
Affiliation(s)
- Wenzhi Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, China
| | - Yecheng Zhang
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jie Ma
- Department of Fish and Wildlife Sciences and the Aquaculture Research Institute, University of Idaho, Moscow, Idaho, United States of America
| | - Nan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, China
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, China
| | - Kenneth Cain
- Department of Fish and Wildlife Sciences and the Aquaculture Research Institute, University of Idaho, Moscow, Idaho, United States of America
| | - Meisheng Yi
- Collaborative Innovation Center, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China
| | - Kuntong Jia
- Collaborative Innovation Center, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China
| | - Hua Wen
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, China
| | - Wei Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, China
| | - Wuxiang Guan
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- * E-mail: ; (WG); (LZ)
| | - Lingbing Zeng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, China
- * E-mail: ; (WG); (LZ)
| |
Collapse
|
45
|
Hao S, Ning K, Kuz CA, Vorhies K, Yan Z, Qiu J. Long Period Modeling SARS-CoV-2 Infection of in Vitro Cultured Polarized Human Airway Epithelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32869024 DOI: 10.1101/2020.08.27.271130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replicates throughout human airways. The polarized human airway epithelium (HAE) cultured at an airway-liquid interface (HAE-ALI) is an in vitro model mimicking the in vivo human mucociliary airway epithelium and supports the replication of SARS-CoV-2. However, previous studies only characterized short-period SARS-CoV-2 infection in HAE. In this study, continuously monitoring the SARS-CoV-2 infection in HAE-ALI cultures for a long period of up to 51 days revealed that SARS-CoV-2 infection was long lasting with recurrent replication peaks appearing between an interval of approximately 7-10 days, which was consistent in all the tested HAE-ALI cultures derived from 4 lung bronchi of independent donors. We also identified that SARS-CoV-2 does not infect HAE from the basolateral side, and the dominant SARS-CoV-2 permissive epithelial cells are ciliated cells and goblet cells, whereas virus replication in basal cells and club cells was not detectable. Notably, virus infection immediately damaged the HAE, which is demonstrated by dispersed Zonula occludens-1 (ZO-1) expression without clear tight junctions and partial loss of cilia. Importantly, we identified that SARS-CoV-2 productive infection of HAE requires a high viral load of 2.5 × 10 5 virions per cm 2 of epithelium. Thus, our studies highlight the importance of a high viral load and that epithelial renewal initiates and maintains a recurrent infection of HAE with SARS-CoV-2.
Collapse
|
46
|
Wang T, Dong H, Jiang W, Li Y, Sun H, Huang L, Wang M, Zhu C, Ji W, Wang Y, Hao C, Chen Z, Yan Y. Viral etiology and atopic characteristics in high-risk asthmatic children hospitalized for lower respiratory tract infection. Transl Pediatr 2020; 9:541-550. [PMID: 32953552 PMCID: PMC7475309 DOI: 10.21037/tp-20-165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Viral etiology and atopic characteristics, e.g., allergens and fractional exhaled nitric oxide (FeNO), play essential roles in asthma development. This study aimed to investigate associations among them in children at high risk of developing asthma to guide reliable diagnosis and treatment of wheezing. METHODS From April 2016 to August 2017, 135 children aged <3 years identified as being at high risk of asthma and hospitalized for lower respiratory tract infection (LRTI) with wheezing were recruited as research subjects (observation group). Real-time fluorescent polymerase chain reaction (PCR) was used to explore their etiology. Samples were also evaluated with Phadiatop (Pharmacia Diagnostics AB, Uppsala, Sweden). Additionally, 200 non-asthmatic, non-allergic, healthy children who were screened and followed up in the Echocardiography clinic during the study period were recruited as a healthy control group for FeNO measurement, and the observation group also underwent FeNO measurement. RESULTS Among the observation group, viruses were positively detected in 49.63%. The most often detected virus was human rhinovirus (HRV; 25.19%). Compared with children aged <12 months, those aged 1-3 years were more susceptible to HRV infection and had lower sensitivity rates for inhalant allergens and higher T-IgE. The virus-detected group had a higher sensitivity rate for inhalant allergens compared with the virus-undetected group. FeNO in the observation group was lower than that in the healthy control group. The second-wheezing group had higher sensitivity rates for dust mites and fungi and higher T-IgE levels compared with the first-wheezing group. CONCLUSIONS HRV was the most common viral pathogen present during an asthmatic attack in infants and young children at elevated risk of asthma. Allergy is a risk factor for both initial wheezing and repeated wheezing. Inhalant allergen-sensitive children are more susceptible than others to viral infection.
Collapse
Affiliation(s)
- Ting Wang
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Heting Dong
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Wujun Jiang
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Yan Li
- Department of Infectious Diseases, Children's Hospital of Soochow University, Suzhou, China
| | - Huiming Sun
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Li Huang
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Meijuan Wang
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Canhong Zhu
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Wei Ji
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Yuqing Wang
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Chuangli Hao
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Zhengrong Chen
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Yongdong Yan
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
47
|
Liu WK, Xu D, Xu Y, Qiu SY, Zhang L, Wu HK, Zhou R. Protein profile of well-differentiated versus un-differentiated human bronchial/tracheal epithelial cells. Heliyon 2020; 6:e04243. [PMID: 32613119 PMCID: PMC7322050 DOI: 10.1016/j.heliyon.2020.e04243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/07/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023] Open
Abstract
Un-differentiated (UD) and well-differentiated (WD) normal human primary bronchial/tracheal epithelial cells are important respiratory cell models. Mature, WD cells which can be derived by culturing UD cells at an air-liquid interface represent a good surrogate for in vivo human airway epithelium. The overall protein profile of WD cells is poorly understood; therefore, the current study evaluated the proteomic characteristics of WD and UD cells using label-free LC-MS/MS and LC-PRM/MS. A total of 3,579 proteins were identified in WD and UD cells. Of these, 198 proteins were identified as differentially expressed, with 121 proteins upregulated and 77 proteins downregulated in WD cells compared with UD cells. Differentially expressed proteins were mostly enriched in categories related to epithelial structure formation, cell cycle, and immunity. Fifteen KEGG pathways and protein interaction networks were enriched and identified. The current study provides a global protein profile of WD cells, and contributes to understanding the function of human airway epithelium.
Collapse
Affiliation(s)
- Wen-Kuan Liu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, Guangdong, 510210, China
| | - Duo Xu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, Guangdong, 510210, China
| | - Yun Xu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, Guangdong, 510210, China
| | - Shu-Yan Qiu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, Guangdong, 510210, China
| | - Li Zhang
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, Guangdong, 510210, China
| | - Hong-Kai Wu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, Guangdong, 510210, China
| | - Rong Zhou
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, Guangdong, 510210, China
| |
Collapse
|
48
|
Impact of Natural or Synthetic Singletons in the Capsid of Human Bocavirus 1 on Particle Infectivity and Immunoreactivity. J Virol 2020; 94:JVI.00170-20. [PMID: 32213611 DOI: 10.1128/jvi.00170-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/16/2020] [Indexed: 02/07/2023] Open
Abstract
Human bocavirus 1 (HBoV1) is a parvovirus that gathers increasing attention due to its pleiotropic role as a pathogen and emerging vector for human gene therapy. Curiously, albeit a large variety of HBoV1 capsid variants has been isolated from human samples, only one has been studied as a gene transfer vector to date. Here, we analyzed a cohort of HBoV1-positive samples and managed to PCR amplify and sequence 29 distinct HBoV1 capsid variants. These differed from the originally reported HBoV1 reference strain in 32 nucleotides or four amino acids, including a frequent change of threonine to serine at position 590. Interestingly, this T590S mutation was associated with lower viral loads in infected patients. Analysis of the time course of infection in two patients for up to 15 weeks revealed a gradual accumulation of T590S, concurrent with drops in viral loads. Surprisingly, in a recombinant vector context, T590S was beneficial and significantly increased titers compared to that of T590 variants but had no major impact on their transduction ability or immunoreactivity. Additional targeted mutations in the HBoV1 capsid identified several residues that are critical for transduction, capsid assembly, or DNA packaging. Our new findings on the phylogeny, infectivity, and immunoreactivity of HBoV1 capsid variants improve our understanding of bocaviral biology and suggest strategies to enhance HBoV1 gene transfer vectors.IMPORTANCE The family of Parvoviridae comprises a wide variety of members that exhibit a unique biology and that are concurrently highly interesting as a scaffold for the development of human gene therapy vectors. A most notable example is human bocavirus 1 (HBoV1), which we and others have recently harnessed to cross-package and deliver recombinant genomes derived from another parvovirus, the adeno-associated virus (AAV). Here, we expanded the repertoire of known HBoV1 variants by cloning 29 distinct HBoV1 capsid sequences from primary human samples and by analyzing their properties as AAV/HBoV1 gene transfer vectors. This led to our discovery of a mutational hot spot at HBoV1 capsid position 590 that accumulated in two patients during natural infection and that lowers viral loads but increases vector yields. Thereby, our study expands our current understanding of HBoV1 biology in infected human subjects and concomitantly provides avenues to improve AAV/HBoV1 gene transfer vectors.
Collapse
|
49
|
Wang J, Li N, Li Z, Liu L, He Y, Meng J, Li S, Wang J. Identification of a novel bocaparvovirus in a wild squirrel in Kunming, Yunnan Province, China. Arch Virol 2020; 165:1469-1474. [PMID: 32388598 DOI: 10.1007/s00705-020-04613-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 03/07/2020] [Indexed: 11/26/2022]
Abstract
In December 2017, a squirrel (Callosciurus phayrei) died 2 days after capture in Kunming, and its intestinal tract, heart, liver, spleen, lung, and kidney were subjected to metagenomics analysis. Reassembly and verification by reverse transcription PCR of contigs generated by next-generation sequencing yielded a 5176-nt sequence, which was designated "squirrel bocaparvovirus" (SQBOV). Phylogenetic trees based on the aa sequences of NS1, NP1, and VP1 showed that SQBOV formed an independent branch in the bocaparvovirus phylogenetic tree. The amino acid sequence identity of the NS1 of SQBOV to those of other bocaparvoviruses was below the threshold of 85% that is used to demarcate species within the genus, indicating that it should be considered a member of a new bocaparvovirus species. To our knowledge, this is the first report of a bocaparvovirus in squirrels. Our findings will enable further studies of viral diversity in rodents and of the genetic diversity and host range of bocaparvoviruses.
Collapse
Affiliation(s)
- Jiali Wang
- Yunnan Province Hospital of Infection Disease, Kunming, 650301, Yunnan, China
| | - Nan Li
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, 650224, Yunnan, China
| | - Zhao Li
- The Agricultural Technology Service Center of Qu Shui Town, Jiangcheng County, Yunnan, 665907, China
| | - Lin Liu
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou Institute of Systems Medicine, Suzhou, 215123, China
| | - Yuwen He
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, 650224, Yunnan, China
| | - Jinxin Meng
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, 650224, Yunnan, China
| | - Shunxiang Li
- Yuxi Center for Disease Control and Prevention, Yixu, 653000, Yunnan, China.
| | - Jinglin Wang
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, 650224, Yunnan, China.
| |
Collapse
|
50
|
Establishment of a Recombinant AAV2/HBoV1 Vector Production System in Insect Cells. Genes (Basel) 2020; 11:genes11040439. [PMID: 32316599 PMCID: PMC7231168 DOI: 10.3390/genes11040439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/10/2020] [Accepted: 04/15/2020] [Indexed: 12/13/2022] Open
Abstract
We have previously developed an rAAV2/HBoV1 vector in which a recombinant adeno-associated virus 2 (rAAV2) genome is pseudopackaged into a human bocavirus 1 (HBoV1) capsid. Recently, the production of rAAV2/HBoV1 in human embryonic kidney (HEK) 293 cells has been greatly improved in the absence of any HBoV1 nonstructural proteins (NS). This NS-free production system yields over 16-fold more vectors than the original production system that necessitates NS expression. The production of rAAV with infection of baculovirus expression vector (BEV) in the suspension culture of Sf9 insect cells is highly efficient and scalable. Since the replication of the rAAV2 genome in the BEV system is well established, we aimed to develop a BEV system to produce the rAAV2/HBoV1 vector in Sf9 cells. We optimized the usage of translation initiation signals of the HBoV1 capsid proteins (Cap), and constructed a BEV Bac-AAV2Rep-HBoV1Cap, which expresses the AAV2 Rep78 and Rep52 as well as the HBoV1 VP1, VP2, and VP3 at the appropriate ratios. We found that it is sufficient as a trans helper to the production of rAAV2/HBoV1 in Sf9 cells that were co-infected with the transfer Bac-AAV2ITR-GFP-luc that carried a 5.4-kb oversized rAAV2 genome with dual reporters. Further study found that incorporation of an HBoV1 small NS, NP1, in the system maximized the viral DNA replication and thus the rAAV2/HBoV1 vector production at a level similar to that of the rAAV2 vector in Sf9 cells. However, the transduction potency of the rAAV2/HBoV1 vector produced from BEV-infected Sf9 cells was 5-7-fold lower in polarized human airway epithelia than that packaged in HEK293 cells. Transmission electron microscopy analysis found that the vector produced in Sf9 cells had a high percentage of empty capsids, suggesting the pseudopackage of the rAAV2 genome in HBoV1 capsid is not as efficient as in the capsids of AAV2. Nevertheless, our study demonstrated that the rAAV2/HBoV1 can be produced in insect cells with BEVs at a comparable yield to rAAV, and that the highly efficient expression of the HBoV1 capsid proteins warrants further optimization.
Collapse
|