1
|
Wang H, You W, Zhu Z, Zhang Y, Hu C, Lu J, Huang Y, Peng R, Shan R, Li R, Chen Y, Qi F, Yan F, Zhan Q. Streptococcus lutetiensis inhibits CD8 + IL17A + TRM cells and leads to gastric cancer progression and poor prognosis. NPJ Precis Oncol 2025; 9:43. [PMID: 39924593 PMCID: PMC11808082 DOI: 10.1038/s41698-025-00810-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 01/13/2025] [Indexed: 02/11/2025] Open
Abstract
In many solid tumours, including gastric cancer (GC), the beginning and progression of the tumour are closely correlated with the tumour microbiome. Here, we show the changes in the gastric microbiota and their influence on immune regulation and the promotion of GC progression through 16s rRNA sequencing and single cell RNA sequencing. Streptococcus lutetiensis (S. lutetiensis) was found to be enriched in the tumour tissues of GC patients. Further analysis using single-cell sequencing and flow cytometry showed that S. lutetiensis notably affects the antitumour immunity by suppressing IL17 signalling and reducing the population of CD8+IL17A+ tissue-resident memory T (TRM) cells by activating Nrf2-mediated oxidative stress response. Mouse models confirm S. lutetiensis promotes GC progression by impairing immune responses in CD8+IL17A+TRM cells, suggesting it as a potential GC prognosis indicator and immunotherapy target, highlighting the microbiome's role in cancer progression.
Collapse
Affiliation(s)
- Huiyu Wang
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Centre, Nanjing Medical University, Wuxi, China
| | - Wenhua You
- Research Center of Surgery,Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Zining Zhu
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, 42 Baiziting Road, Nanjing, 210009, Jiangsu, China
| | - Yuhan Zhang
- Research Center of Surgery,Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Chupeng Hu
- Research Center of Surgery,Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Jinying Lu
- Research Center of Surgery,Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Yeding Huang
- Research Center of Surgery,Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Rui Peng
- Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Ruimin Shan
- Research Center of Surgery,Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Ran Li
- Research Center of Surgery,Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Yun Chen
- Research Center of Surgery,Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Department of Immunology, Nanjing Medical University, Nanjing, China.
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, China.
- Key Laboratory of Emergency and Trauma (Hainan Medical University), Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou, 571199, China.
| | - Fuzhen Qi
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, China.
| | - Feng Yan
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, 42 Baiziting Road, Nanjing, 210009, Jiangsu, China.
| | - Qiang Zhan
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Centre, Nanjing Medical University, Wuxi, China.
| |
Collapse
|
2
|
Luan J, Liu Y, Cao M, Guo X, Guo N. The pathogenic response of cytotoxic T‑lymphocytes, a common therapeutic target for cancer, has a direct impact on treatment outcomes (Review). Oncol Rep 2024; 52:98. [PMID: 38904200 PMCID: PMC11200153 DOI: 10.3892/or.2024.8757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/15/2024] [Indexed: 06/22/2024] Open
Abstract
Cytotoxic T lymphocytes (CTLs), also known as CD8+ T cells, participate in immune function by secreting various cytokines after recognizing specific antigens and class I major histocompatibility complex molecules associated with tumor cells, and thus have a key role in antitumor immunity. However, certain CD8+ T cells show low reactivity and thus cannot effectively remove tumor cells or viral antigens. Due to this heterogeneity, effective biomarkers representing these differences in CD8+ cells are needed. The identification of suitable biomarkers will also enhance the management of cancer treatment. Recent research has improved the understanding of CD8+ T lymphocytes in the tumor microenvironment and circulatory system. Treatment efficacy is impacted directly by the pathogenic response of CTLs, and thus, the use of adjuvant therapies to address these pathological changes, e.g., stimulating the increase in the proportion of reactive T cells or suppressing the proportion of terminally exhausted T cells, would be advantageous.
Collapse
Affiliation(s)
- Jing Luan
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Yuxin Liu
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Meng Cao
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Xianing Guo
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Na Guo
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| |
Collapse
|
3
|
Wang CM, Jan Wu YJ, Zheng JW, Huang LY, Tan KP, Chen JY. T cell expressions of aberrant gene signatures and Co-inhibitory receptors (Co-IRs) as predictors of renal damage and lupus disease activity. J Biomed Sci 2024; 31:41. [PMID: 38650001 PMCID: PMC11034032 DOI: 10.1186/s12929-024-01024-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/01/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is distinguished by an extensive range of clinical heterogeneity with unpredictable disease flares and organ damage. This research investigates the potential of aberrant signatures on T cell genes, soluble Co-IRs/ligands, and Co-IRs expression on T cells as biomarkers for lupus disease parameters. METHODS Comparative transcriptome profiling analysis of non-renal and end-stage renal disease (ESRD) phenotypes of SLE was performed using CD4 + and CD8 + cDNA microarrays of sorted T cells. Comparing the expression of Co-IRs on T cells and serum soluble mediators among healthy and SLE phenotypes. RESULTS SLE patients with ESRD were downregulated CD38, PLEK, interferon-γ, CX3CR1, FGFBP2, and SLCO4C1 transcripts on CD4 + and CD8 + T cells simultaneously and NKG7, FCRL6, GZMB/H, FcγRIII, ITGAM, Fas ligand, TBX21, LYN, granulysin, CCL4L1, CMKLR1, HLA-DRβ, KIR2DL3, and KLRD1 in CD8 T cells. Pathway enrichment and PPI network analyses revealed that the overwhelming majority of Differentially Expressed Genes (DEGs) have been affiliated with novel cytotoxic, antigen presentation, and chemokine-cell migration signature pathways. CD8 + GZMK + T cells that are varied in nature, including CD161 + Mucosal-associated invariant T (MAIT) cells and CD161- aged-associated T (Taa) cells and CD161-GZMK + GZMB + T cells might account for a higher level of GZMK in CD8 + T cells associated with ESRD. SLE patients have higher TIGIT + , PD1 + , and lower CD127 + cell percentages on CD4 + T cells, higher TIM3 + , TIGIT + , HLA-DR + cell frequency, and lower MFI expression of CD127, CD160 in CD8 T cells. Co-IRs expression in T cells was correlated with soluble PD-1, PDL-2, and TIM3 levels, as well as SLE disease activity, clinical phenotypes, and immune-therapy responses. CONCLUSION The signature of dysfunctional pathways defines a distinct immunity pattern in LN ESRD patients. Expression levels of Co-IRs in peripheral blood T cells and serum levels of soluble PD1/PDL-2/TIM3 can serve as biomarkers for evaluating clinical parameters and therapeutic responses.
Collapse
Affiliation(s)
- Chin-Man Wang
- Department of Rehabilitation, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No. 5, Fu-Shin St. Kwei-Shan, Taoyuan, Republic of China
| | - Yeong-Jian Jan Wu
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan, No. 5, Fu-Shin St. Kwei-Shan, Republic of China
| | - Jian-Wen Zheng
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan, No. 5, Fu-Shin St. Kwei-Shan, Republic of China
| | - Li Yu Huang
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan, No. 5, Fu-Shin St. Kwei-Shan, Republic of China
| | - Keng Poo Tan
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan, No. 5, Fu-Shin St. Kwei-Shan, Republic of China
| | - Ji-Yih Chen
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan, No. 5, Fu-Shin St. Kwei-Shan, Republic of China.
| |
Collapse
|
4
|
Mimura K, Ogata T, Nguyen PHD, Roy S, Kared H, Yuan YC, Fehlings M, Yoshimoto Y, Yoshida D, Nakajima S, Sato H, Machida N, Yamada T, Watanabe Y, Tamaki T, Fujikawa H, Inokuchi Y, Hayase S, Hanayama H, Saze Z, Katoh H, Takahashi F, Oshima T, Goel A, Nardin A, Suzuki Y, Kono K. Combination of oligo-fractionated irradiation with nivolumab can induce immune modulation in gastric cancer. J Immunother Cancer 2024; 12:e008385. [PMID: 38290769 PMCID: PMC10828861 DOI: 10.1136/jitc-2023-008385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Tumor-associated antigen (TAA)-specific CD8(+) T cells are essential for nivolumab therapy, and irradiation has been reported to have the potential to generate and activate TAA-specific CD8(+) T cells. However, mechanistic insights of T-cell response during combinatorial immunotherapy using radiotherapy and nivolumab are still largely unknown. METHODS Twenty patients included in this study were registered in the CIRCUIT trial (ClinicalTrials.gov, NCT03453164). All patients had multiple distant metastases and were intolerance or had progressed after primary and secondary chemotherapy without any immune checkpoint inhibitor. In the CIRCUIT trial, eligible patients were treated with a total of 22.5 Gy/5 fractions/5 days of radiotherapy to the largest or symptomatic lesion prior to receiving nivolumab every 2 weeks. In these 20 patients, T-cell responses during the combinatorial immunotherapy were monitored longitudinally by high-dimensional flow cytometry-based, multiplexed major histocompatibility complex multimer analysis using a total of 46 TAAs and 10 virus epitopes, repertoire analysis of T-cell receptor β-chain (TCRβ), together with circulating tumor DNA analysis to evaluate tumor mutational burden (TMB). RESULTS Although most TAA-specific CD8(+) T cells could be tracked longitudinally, several TAA-specific CD8(+) T cells were detected de novo after irradiation, but viral-specific CD8(+) T cells did not show obvious changes during treatment, indicating potential irradiation-driven antigen spreading. Irradiation was associated with phenotypical changes of TAA-specific CD8(+) T cells towards higher expression of killer cell lectin-like receptor subfamily G, member 1, human leukocyte antigen D-related antigen, T-cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain, CD160, and CD45RO together with lower expression of CD27 and CD127. Of importance, TAA-specific CD8(+) T cells in non-progressors frequently showed a phenotype of CD45RO(+)CD27(+)CD127(+) central memory T cells compared with those in progressors. TCRβ clonality (inverted Pielou's evenness) increased and TCRβ diversity (Pielou's evenness and Diversity Evenness score) decreased during treatment in progressors (p=0.029, p=0.029, p=0.012, respectively). TMB score was significantly lower in non-progressors after irradiation (p=0.023). CONCLUSION Oligo-fractionated irradiation induces an immune-modulating effect with potential antigen spreading and the combination of radiotherapy and nivolumab may be effective in a subset of patients with gastric cancer.
Collapse
Affiliation(s)
- Kosaku Mimura
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Takashi Ogata
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | | | - Souvick Roy
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Monrovia, California, USA
| | | | - Yate-Ching Yuan
- Division of Translational Bioinformatics, Center for Informatics, City of Hope National Medical Center, Duarte, California, USA
- Department of Computational Quantitative Medicine, City of Hope National Medical Center, Duarte, California, USA
| | | | - Yuya Yoshimoto
- Department of Radiation Oncology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Daisaku Yoshida
- Department of Radiation Oncology, Kanagawa Cancer Center, Yokohama, Japan
| | - Shotaro Nakajima
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hisashi Sato
- Department of Radiation Oncology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Nozomu Machida
- Department of Gastroenterology, Kanagawa Cancer Center, Yokohama, Japan
| | - Takanobu Yamada
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Yohei Watanabe
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Tomoaki Tamaki
- Department of Radiation Oncology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hirohito Fujikawa
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Yasuhiro Inokuchi
- Department of Gastroenterology, Kanagawa Cancer Center, Yokohama, Japan
| | - Suguru Hayase
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hiroyuki Hanayama
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Zenichiro Saze
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hiroyuki Katoh
- Department of Radiation Oncology, Kanagawa Cancer Center, Yokohama, Japan
| | - Fumiaki Takahashi
- Department of Information Science, Iwate Medical University, Yahaba, Japan
| | - Takashi Oshima
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Monrovia, California, USA
- City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | | | - Yoshiyuki Suzuki
- Department of Radiation Oncology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Koji Kono
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| |
Collapse
|
5
|
Ma G, Wu X, Qi C, Yu X, Zhang F. Development of macrophage-associated genes prognostic signature predicts clinical outcome and immune infiltration for sepsis. Sci Rep 2024; 14:2026. [PMID: 38263335 PMCID: PMC10805801 DOI: 10.1038/s41598-024-51536-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/06/2024] [Indexed: 01/25/2024] Open
Abstract
Sepsis is a major global health problem, causing a significant burden of disease and death worldwide. Risk stratification of sepsis patients, identification of severe patients and timely initiation of treatment can effectively improve the prognosis of sepsis patients. We procured gene expression datasets for sepsis (GSE54514, GSE65682, GSE95233) from the Gene Expression Omnibus and performed normalization to mitigate batch effects. Subsequently, we applied weighted gene co-expression network analysis to categorize genes into modules that exhibit correlation with macrophage activity. To pinpoint macrophage-associated genes (MAAGs), we executed differential expression analysis and single sample gene set enrichment analysis. We then established a prognostic model derived from four MAAGs that were significantly differentially expressed. Functional enrichment analysis and immune infiltration assessments were instrumental in deciphering the biological mechanisms involved. Furthermore, we employed principal component analysis and conducted survival outcome analyses to delineate molecular subgroups within sepsis. Four novel MAAGs-CD160, CX3CR1, DENND2D, and FAM43A-were validated and used to create a prognostic model. Subgroup classification revealed distinct molecular profiles and a correlation with 28-day survival outcomes. The MAAGs risk score was developed through univariate Cox, LASSO, and multivariate Cox analyses to predict patient prognosis. Validation of the risk score upheld its prognostic significance. Functional enrichment implicated ribonucleoprotein complex biogenesis, mitochondrial matrix, and transcription coregulator activity in sepsis, with an immune infiltration analysis indicating an association between MAAGs risk score and immune cell populations. The four MAAGs exhibited strong diagnostic capabilities for sepsis. The research successfully developed a MAAG-based prognostic model for sepsis, demonstrating that such genes can significantly stratify risk and reflect immune status. Although in-depth mechanistic studies are needed, these findings propose novel targets for therapy and provide a foundation for future precise clinical sepsis management.
Collapse
Affiliation(s)
- Guangxin Ma
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaolin Wu
- Cancer Institute, Qingdao University, Qingdao, 266071, China
| | - Cui Qi
- Qingdao Women and Children's Hospital, Qingdao, China
- Women and Children's Hospital, Qingdao University, Qingdao, China
| | - Xiaoning Yu
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Fengtao Zhang
- Department of Anesthesia, Dezhou Municipal Hospital, Dezhou, China.
| |
Collapse
|
6
|
Lee H, Joo J, Song J, Kim H, Kim YH, Park HR. Immunological link between periodontitis and type 2 diabetes deciphered by single-cell RNA analysis. Clin Transl Med 2023; 13:e1503. [PMID: 38082425 PMCID: PMC10713875 DOI: 10.1002/ctm2.1503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/19/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (DM) is a complex metabolic disorder that causes various complications, including periodontitis (PD). Although a bidirectional relationship has been reported between DM and PD, their immunological relationship remains poorly understood. Therefore, this study aimed to compare the immune response in patients with PD alone and in those with both PD and DM (PDDM) to expand our knowledge of the complicated connection between PD and DM. METHODS Peripheral blood mononuclear cells were collected from 11 healthy controls, 10 patients with PD without DM, and six patients with PDDM, followed by analysis using single-cell RNA sequencing. The differences among groups were then compared based on intracellular and intercellular perspectives. RESULTS Compared to the healthy state, classical monocytes exhibited the highest degree of transcriptional change, with elevated levels of pro-inflammatory cytokines in both PD and PDDM. DM diminished the effector function of CD8+ T and natural killer (NK) cells as well as completely modified the differentiation direction of these cells. Interestingly, a prominent pathway, RESISTIN, which is known to increase insulin resistance and susceptibility to diabetes, was found to be activated under both PD and PDDM conditions. In particular, CAP1+ classical monocytes from patients with PD and PDDM showed elevated nuclear factor kappa B-inducing kinase activity. CONCLUSIONS Overall, this study elucidates how the presence of DM contributes to the deterioration of T/NK cell immunity and the immunological basis connecting PD to DM.
Collapse
Affiliation(s)
- Hansong Lee
- Medical Research InstitutePusan National UniversityYangsanRepublic of Korea
| | - Ji‐Young Joo
- Department of PeriodontologySchool of Dentistry, Pusan National UniversityYangsanRepublic of Korea
| | - Jae‐Min Song
- Department of Oral and Maxillofacial SurgerySchool of Dentistry, Pusan National UniversityYangsanRepublic of Korea
| | - Hyun‐Joo Kim
- Department of PeriodontologyDental and Life Science Institute, School of Dentistry, Pusan National UniversityYangsanRepublic of Korea
- Department of Periodontology and Dental Research InstitutePusan National University Dental HospitalYangsanRepublic of Korea
- Periodontal Disease Signaling Network Research CenterSchool of Dentistry, Pusan National UniversityYangsanRepublic of Korea
| | - Yun Hak Kim
- Periodontal Disease Signaling Network Research CenterSchool of Dentistry, Pusan National UniversityYangsanRepublic of Korea
- Department of Biomedical Informatics, School of MedicinePusan National UniversityYangsanRepublic of Korea
- Department of AnatomySchool of Medicine, Pusan National UniversityYangsanRepublic of Korea
| | - Hae Ryoun Park
- Department of Periodontology and Dental Research InstitutePusan National University Dental HospitalYangsanRepublic of Korea
- Periodontal Disease Signaling Network Research CenterSchool of Dentistry, Pusan National UniversityYangsanRepublic of Korea
- Department of Oral PathologyDental and Life Science Institute, Pusan National UniversityYangsanRepublic of Korea
| |
Collapse
|
7
|
Battin C, Leitner J, Waidhofer-Söllner P, Grabmeier-Pfistershammer K, Olive D, Steinberger P. BTLA inhibition has a dominant role in the cis-complex of BTLA and HVEM. Front Immunol 2022; 13:956694. [PMID: 36081508 PMCID: PMC9446882 DOI: 10.3389/fimmu.2022.956694] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/08/2022] [Indexed: 12/03/2022] Open
Abstract
The engagement of the herpesvirus entry mediator (HVEM, TNFRSF14) by the B and T lymphocyte attenuator (BTLA) represents a unique interaction between an activating receptor of the TNFR-superfamily and an inhibitory receptor of the Ig-superfamily. BTLA and HVEM have both been implicated in the regulation of human T cell responses, but their role is complex and incompletely understood. Here, we have used T cell reporter systems to dissect the complex interplay of HVEM with BTLA and its additional ligands LIGHT and CD160. Co-expression with LIGHT or CD160, but not with BTLA, induced strong constitutive signaling via HVEM. In line with earlier reports, we observed that in cis interaction of BTLA and HVEM prevented HVEM co-stimulation by ligands on surrounding cells. Intriguingly, our data indicate that BTLA mediated inhibition is not impaired in this heterodimeric complex, suggesting a dominant role of BTLA co-inhibition. Stimulation of primary human T cells in presence of HVEM ligands indicated a weak costimulatory capacity of HVEM potentially owed to its in cis engagement by BTLA. Furthermore, experiments with T cell reporter cells and primary T cells demonstrate that HVEM antibodies can augment T cell responses by concomitantly acting as checkpoint inhibitors and co-stimulation agonists.
Collapse
Affiliation(s)
- Claire Battin
- Division of Immune Receptors and T Cell Activation, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Judith Leitner
- Division of Immune Receptors and T Cell Activation, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Petra Waidhofer-Söllner
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Daniel Olive
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068; Centre National de la Recherche Scientifique (CNRS), UMR7258; Institut Paoli-Calmettes, Aix-Marseille University, Marseille, France
| | - Peter Steinberger
- Division of Immune Receptors and T Cell Activation, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Active PD-L1 incorporation within HIV virions functionally impairs T follicular helper cells. PLoS Pathog 2022; 18:e1010673. [PMID: 35788752 PMCID: PMC9286290 DOI: 10.1371/journal.ppat.1010673] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/15/2022] [Accepted: 06/14/2022] [Indexed: 11/19/2022] Open
Abstract
The limited development of broadly neutralizing antibodies (BnAbs) during HIV infection is classically attributed to an inadequate B-cell help brought by functionally impaired T follicular helper (Tfh) cells. However, the determinants of Tfh-cell functional impairment and the signals contributing to this condition remain elusive. In the present study, we showed that PD-L1 is incorporated within HIV virions through an active mechanism involving p17 HIV matrix protein. We subsequently showed that in vitro produced PD-L1high but not PD-L1low HIV virions, significantly reduced Tfh-cell proliferation and IL-21 production, ultimately leading to a decreased of IgG1 secretion from GC B cells. Interestingly, Tfh-cell functions were fully restored in presence of anti-PD-L1/2 blocking mAbs treatment, demonstrating that the incorporated PD-L1 proteins were functionally active. Taken together, the present study unveils an immunovirological mechanism by which HIV specifically exploits the regulatory potential of PD-L1 to suppress the immune system during the course of HIV infection. During HIV infection, the development of effective BnAbs remains a rare phenomenon, occurring in only 15–20% of HIV-infected individuals after years of infection. Although multiple mechanisms may be involved, recent studies have suggested that functional impairment of Tfh cells, through immune checkpoint (IC)/IC-Ligand (IC-L) interactions, may lead to a decrease in B-cell help leading to low BnAbs production. Our laboratory recently showed that PD-L1 was predominantly expressed on lymph node (LN) migratory dendritic cells located predominantly in extra-follicular areas, implying that the source of IC-L contributing to Tfh-cell functional impairment may be independent of cellular expression of IC-L. These observations prompted us to investigate the potential contribution of IC-L incorporated within HIV virion envelope to Tfh-cell functional impairment. We subsequently demonstrated that PD-L1 was incorporated into a large fraction of HIV virions in the plasma of viremic HIV-infected individuals. Interestingly, PD-L1 remains active when incorporated into HIV virions envelope and could impaired Tfh-cell proliferation, resulting in decreased IgG1 production by B cells in vitro. These findings demonstrate an unsuspected mechanism contributing to the regulation of Tfh-cell function, which may contribute to the low production of BnAbs by B cells during HIV infection.
Collapse
|
9
|
Jameson G, Harmon C, Santiago RM, Houlihan DD, Gallagher TK, Lynch L, Robinson MW, O’Farrelly C. Human Hepatic CD56bright NK Cells Display a Tissue-Resident Transcriptional Profile and Enhanced Ability to Kill Allogenic CD8+ T Cells. Front Immunol 2022; 13:921212. [PMID: 35865550 PMCID: PMC9295839 DOI: 10.3389/fimmu.2022.921212] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/30/2022] [Indexed: 12/20/2022] Open
Abstract
Liver-resident CD56brightCD16- natural killer (NK) cells are enriched in the human liver and are phenotypically distinct from their blood counterparts. Although these cells are capable of rapid cytotoxic effector activity, their functional role remains unclear. We hypothesise that they may contribute to immune tolerance in the liver during transplantation. RNA sequencing was carried out on FACS sorted NK cell subpopulations from liver perfusates (n=5) and healthy blood controls (n=5). Liver-resident CD56brightCD16+/- NK cells upregulate genes associated with tissue residency. They also upregulate expression of CD160 and LY9, both of which encode immune receptors capable of activating NK cells. Co-expression of CD160 and Ly9 on liver-resident NK cells was validated using flow cytometry. Hepatic NK cell cytotoxicity against allogenic T cells was tested using an in vitro co-culture system of liver perfusate-derived NK cells and blood T cells (n=10-13). In co-culture experiments, hepatic NK cells but not blood NK cells induced significant allogenic T cell death (p=0.0306). Allogenic CD8+ T cells were more susceptible to hepatic NK cytotoxicity than CD4+ T cells (p<0.0001). Stimulation of hepatic CD56bright NK cells with an anti-CD160 agonist mAb enhanced this cytotoxic response (p=0.0382). Our results highlight a role for donor liver NK cells in regulating allogenic CD8+ T cell activation, which may be important in controlling recipient CD8+ T cell-mediated rejection post liver-transplant.
Collapse
Affiliation(s)
- Gráinne Jameson
- School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Cathal Harmon
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Rhyla Mae Santiago
- Department of Biology, Kathleen Lonsdale Institute of Human Health Research, Maynooth University, Maynooth, Ireland
| | | | - Tom K. Gallagher
- Hepatopancreaticobiliary Group, St. Vincent’s University Hospital, Dublin, Ireland
| | - Lydia Lynch
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Mark W. Robinson
- Department of Biology, Kathleen Lonsdale Institute of Human Health Research, Maynooth University, Maynooth, Ireland
- *Correspondence: Mark W. Robinson,
| | - Cliona O’Farrelly
- School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
10
|
Liu K, Cui JJ, Zhan Y, Ouyang QY, Lu QS, Yang DH, Li XP, Yin JY. Reprogramming the tumor microenvironment by genome editing for precision cancer therapy. Mol Cancer 2022; 21:98. [PMID: 35410257 PMCID: PMC8996591 DOI: 10.1186/s12943-022-01561-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) is essential for immune escape by tumor cells. It plays essential roles in tumor development and metastasis. The clinical outcomes of tumors are often closely related to individual differences in the patient TME. Therefore, reprogramming TME cells and their intercellular communication is an attractive and promising strategy for cancer therapy. TME cells consist of immune and nonimmune cells. These cells need to be manipulated precisely and safely to improve cancer therapy. Furthermore, it is encouraging that this field has rapidly developed in recent years with the advent and development of gene editing technologies. In this review, we briefly introduce gene editing technologies and systematically summarize their applications in the TME for precision cancer therapy, including the reprogramming of TME cells and their intercellular communication. TME cell reprogramming can regulate cell differentiation, proliferation, and function. Moreover, reprogramming the intercellular communication of TME cells can optimize immune infiltration and the specific recognition of tumor cells by immune cells. Thus, gene editing will pave the way for further breakthroughs in precision cancer therapy.
Collapse
|
11
|
Jeon D, McNeel DG. Toll-like receptor agonist combinations augment mouse T-cell anti-tumor immunity via IL-12- and interferon ß-mediated suppression of immune checkpoint receptor expression. Oncoimmunology 2022; 11:2054758. [PMID: 35340661 PMCID: PMC8942433 DOI: 10.1080/2162402x.2022.2054758] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/20/2022] Open
Abstract
We previously found that activated CD8+ T-cells increase expression of PD-1, which can be attenuated in the presence of specific Toll-like receptor (TLR) agonists, mediated by IL-12 secreted by professional antigen-presenting cells. While these CD8+ T-cells had greater anti-tumor activity, T-cells stimulated by different TLR had different gene expression profiles. Consequently, we sought to determine whether combinations of TLR agonists might further affect the expression of T-cell checkpoint receptors and improve T-cell anti-tumor immunity. Activation of CD8+ T-cells in the presence of specific TLR ligands resulted in decreased expression of PD-1, LAG-3, and CD160, notably with combinations of TLR1/2, TLR3, and TLR9 agonists. Immunization of E.G7-OVA or TRAMP-C1 tumor-bearing mice with peptide or DNA vaccines, co-administered with combination of TLR3 and TLR9 agonists, showed greater suppression of tumor growth. The anti-tumor effect of TLR1/2 and/or TLR9, but not TLR3, was abrogated in IL-12KO mice. RNA sequencing of TLR-conditioned CD8+ T-cells revealed IL-12 pathway activation, and type 1 IFN pathway activation following TLR3 stimulation. Our results provide a mechanistic rationale for the choice of optimal combinations of TLR ligands to use as adjuvants to improve the efficacy of anti-tumor vaccines.
Collapse
Affiliation(s)
- Donghwan Jeon
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | | |
Collapse
|
12
|
Martini V, Edmans M, Gubbins S, Jayaraman S, Paudyal B, Morgan S, McNee A, Morin T, Rijal P, Gerner W, Sewell AK, Inoue R, Bailey M, Connelley T, Charleston B, Townsend A, Beverley P, Tchilian E. Spatial, temporal and molecular dynamics of swine influenza virus-specific CD8 tissue resident memory T cells. Mucosal Immunol 2022; 15:428-442. [PMID: 35145208 PMCID: PMC9038527 DOI: 10.1038/s41385-021-00478-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/23/2021] [Accepted: 12/08/2021] [Indexed: 02/04/2023]
Abstract
For the first time we have defined naïve, central memory, effector memory and differentiated effector porcine CD8 T cells and analyzed their distribution in lymphoid and respiratory tissues after influenza infection or immunization, using peptide-MHC tetramers of three influenza nucleoprotein (NP) epitopes. The hierarchy of response to the three epitopes changes during the response in different tissues. Most NP-specific CD8 T cells in broncho-alveolar lavage (BAL) and lung are tissue resident memory cells (TRM) that express CD69 and downregulate CD45RA and CCR7. NP-specific cells isolated from BAL express genes characteristic of TRM, but gene expression differs at 7, 21 and 63 days post infection. In all tissues the frequency of NP-specific CD8 cells declines over 63 days almost to background levels but is best maintained in BAL. The kinetic of influenza specific memory CD8 T cell in this natural host species differs from that in small animal models.
Collapse
Affiliation(s)
- Veronica Martini
- The Pirbright Institute, Pirbright, UK.
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
- Institute for Research in Biomedicine, Bellinzona, Switzerland.
| | | | | | | | | | | | | | - Théo Morin
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Pramila Rijal
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | | - Andrew K Sewell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Ryo Inoue
- Laboratory of Animal Science, Setsunan University, Osaka, Japan
| | - Mick Bailey
- Bristol Veterinary School, University of Bristol, Langford, UK
| | | | | | - Alain Townsend
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Peter Beverley
- National Heart and Lung Institute, St Mary's Campus, Imperial College, London, UK
| | | |
Collapse
|
13
|
Del Rio ML, Nguyen TH, Tesson L, Heslan JM, Gutierrez-Adan A, Fernandez-Gonzalez R, Gutierrez-Arroyo J, Buhler L, Pérez-Simón JA, Anegon I, Rodriguez-Barbosa JI. The impact of CD160 deficiency on alloreactive CD8 T cell responses and allograft rejection. Transl Res 2022; 239:103-123. [PMID: 34461306 DOI: 10.1016/j.trsl.2021.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/28/2021] [Accepted: 08/21/2021] [Indexed: 12/12/2022]
Abstract
CD160 is a member of the immunoglobulin superfamily with a pattern of expression mainly restricted to cytotoxic cells. To assess the functional relevance of the HVEM/CD160 signaling pathway in allogeneic cytotoxic responses, exon 2 of the CD160 gene was targeted by CRISPR/Cas9 to generate CD160 deficient mice. Next, we evaluated the impact of CD160 deficiency in the course of an alloreactive response. To that aim, parental donor WT (wild-type) or CD160 KO (knock-out) T cells were adoptively transferred into non-irradiated semiallogeneic F1 recipients, in which donor alloreactive CD160 KO CD4 T cells and CD8 T cells clonally expanded less vigorously than in WT T cell counterparts. This differential proliferative response rate at the early phase of T cell expansion influenced the course of CD8 T cell differentiation and the composition of the effector T cell pool that led to a significant decreased of the memory precursor effector cells (MPECs) / short-lived effector cells (SLECs) ratio in CD160 KO CD8 T cells compared to WT CD8 T cells. Despite these differences in T cell proliferation and differentiation, allogeneic MHC class I mismatched (bm1) skin allograft survival in CD160 KO recipients was comparable to that of WT recipients. However, the administration of CTLA-4.Ig showed an enhanced survival trend of bm1 skin allografts in CD160 KO with respect to WT recipients. Finally, CD160 deficient NK cells were as proficient as CD160 WT NK cells in rejecting allogeneic cellular allografts or MHC class I deficient tumor cells. CD160 may represent a CD28 alternative costimulatory molecule for the modulation of allogeneic CD8 T cell responses either in combination with costimulation blockade or by direct targeting of alloreactive CD8 T cells that upregulate CD160 expression in response to alloantigen stimulation.
Collapse
MESH Headings
- 4-1BB Ligand/metabolism
- Allografts
- Animals
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CRISPR-Cas Systems
- Cell Differentiation
- Female
- GPI-Linked Proteins/genetics
- GPI-Linked Proteins/immunology
- GPI-Linked Proteins/metabolism
- Gene Expression Regulation
- Genes, MHC Class I
- Graft Rejection/etiology
- Graft Rejection/immunology
- Killer Cells, Natural/immunology
- Lectins, C-Type/metabolism
- Mice, Inbred Strains
- Mice, Knockout
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- Receptors, Tumor Necrosis Factor, Member 14/metabolism
- Skin Transplantation
- Thymocytes/immunology
- Mice
Collapse
Affiliation(s)
- Maria-Luisa Del Rio
- Transplantation Immunobiology and Immunotherapy Section. Institute of Molecular Biology, Genomics and Proteomics, University of Leon, Leon, Spain; CIBERONC Consortium, Accion Estrategica en Salud, Grant # CB16/12/00480.
| | - Tuan H Nguyen
- INSERM UMR 1064, Center for Research in Transplantation and Immunology, Nantes, France; SFR Bonamy, GenoCellEdit Platform, CNRS UMS3556, Nantes, France
| | - Laurent Tesson
- INSERM UMR 1064, Center for Research in Transplantation and Immunology, Nantes, France; SFR Bonamy, GenoCellEdit Platform, CNRS UMS3556, Nantes, France
| | - Jean-Marie Heslan
- INSERM UMR 1064, Center for Research in Transplantation and Immunology, Nantes, France; SFR Bonamy, GenoCellEdit Platform, CNRS UMS3556, Nantes, France
| | - Alfonso Gutierrez-Adan
- Department of Animal Reproduction, National Institute of Agricultural Research (INIA), Madrid, Spain
| | - Raul Fernandez-Gonzalez
- Department of Animal Reproduction, National Institute of Agricultural Research (INIA), Madrid, Spain
| | - Julia Gutierrez-Arroyo
- Department of Animal Reproduction, National Institute of Agricultural Research (INIA), Madrid, Spain
| | - Leo Buhler
- Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - José-Antonio Pérez-Simón
- Department of Hematology, University Hospital Virgen del Rocio / Institute of Biomedicine (IBIS / CSIC / CIBERONC), Sevilla, Spain; CIBERONC Consortium, Accion Estrategica en Salud, Grant # CB16/12/00480
| | - Ignacio Anegon
- INSERM UMR 1064, Center for Research in Transplantation and Immunology, Nantes, France; SFR Bonamy, GenoCellEdit Platform, CNRS UMS3556, Nantes, France
| | - Jose-Ignacio Rodriguez-Barbosa
- Transplantation Immunobiology and Immunotherapy Section. Institute of Molecular Biology, Genomics and Proteomics, University of Leon, Leon, Spain; CIBERONC Consortium, Accion Estrategica en Salud, Grant # CB16/12/00480.
| |
Collapse
|
14
|
Shrestha R, Garrett-Thomson S, Liu W, Almo SC, Fiser A. Allosteric regulation of binding specificity of HVEM for CD160 and BTLA ligands upon G89F mutation. Curr Res Struct Biol 2021; 3:337-345. [PMID: 34917954 PMCID: PMC8666650 DOI: 10.1016/j.crstbi.2021.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/08/2021] [Accepted: 11/01/2021] [Indexed: 11/25/2022] Open
Abstract
Molecular interactions mediated by engagement of the Herpes virus entry mediator (HVEM) with members of TNF and Ig superfamily generate distinct signals in T cell activation pathways that modulate inflammatory and inhibitory responses. HVEM interacts with CD160 and B and T lymphocyte attenuator (BTLA), both members of the immunoglobulin (Ig) superfamily, which share a common binding site that is unique from that of LIGHT, a TNF ligand. BTLA or CD160 engagement with HVEM deliver inhibitory or stimulatory signals to the host immune response in a context dependent fashion, whereas HVEM engagement with LIGHT results in pro-inflammatory responses. We identified a mutation in human HVEM, G89F, which directly interferes with the human LIGHT interaction, but interestingly, also differentially modulates the binding of human BTLA and CD160 via an apparent allosteric mechanism involving recognition surfaces remote from the site of the mutation. Specifically, the G89F mutation enhances binding of CD160, while decreasing that of BTLA to HVEM in cell-based assays. Molecular dynamics simulations for wild-type and G89F mutant HVEM, bound to different sets of ligands, were performed to define the molecular basis of this unexpected allosteric effect. These results were leveraged to design additional human HVEM mutants with altered binding specificities.
Collapse
Affiliation(s)
- Rojan Shrestha
- Department of Systems and Computational Biology, USA
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Sarah Garrett-Thomson
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Weifeng Liu
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Steven C. Almo
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Andras Fiser
- Department of Systems and Computational Biology, USA
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| |
Collapse
|
15
|
Collaboration of a Detrimental HLA-B*35:01 Allele with HLA-A*24:02 in Coevolution of HIV-1 with T Cells Leading to Poorer Clinical Outcomes. J Virol 2021; 95:e0125921. [PMID: 34523962 PMCID: PMC8577379 DOI: 10.1128/jvi.01259-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Although mutant-specific T cells are elicited in some individuals infected with HIV-1 mutant viruses, the detailed characteristics of these T cells remain unknown. A recent study showed that the accumulation of strains expressing Nef135F, which were selected by HLA-A*24:02-restricted T cells, was associated with poor outcomes in individuals with the detrimental HLA-B*35:01 allele and that HLA-B*35:01-restricted NefYF9 (Nef135-143)-specific T cells failed to recognize target cells infected with Nef135F mutant viruses. Here, we investigated HLA-B*35:01-restricted T cells specific for the NefFF9 epitope incorporating the Nef135F mutation. Longitudinal T-cell receptor (TCR) clonotype analysis demonstrated that 3 types of HLA-B*35:01-restricted T cells (wild-type [WT] specific, mutant specific, and cross-reactive) with different T cell repertoires were elicited during the clinical course. HLA-B*35:01+ individuals possessing wild-type-specific T cells had a significantly lower plasma viral load (pVL) than those with mutant-specific and/or cross-reactive T cells, even though the latter T cells effectively recognized the mutant virus-infected cells. These results suggest that mutant-specific and cross-reactive T cells could only partially suppress HIV-1 replication in vivo. An ex vivo analysis of the T cells showed higher expression of PD-1 on cross-reactive T cells and lower expression of CD160/2B4 on the mutant-specific T cells than other T cells, implying that these inhibitory and stimulatory molecules are key to the reduced function of these T cells. In the present study, we demonstrate that mutant-specific and cross-reactive T cells do not contribute to the suppression of HIV-1 replication in HIV-1-infected individuals, even though they have the capacity to recognize mutant virus-infected cells. Thus, the collaboration of HLA-A*24:02 with the detrimental allele HLA-B*35:01 resulted in the coevolution of HIV-1 alongside virus-specific T cells, leading to poorer clinical outcomes. IMPORTANCE HIV-1 escape mutations are selected under pressure from HIV-1-specific CD8+ T cells. Accumulation of these mutations in circulating viruses impairs the control of HIV-1 by HIV-1-specific T cells. Although it is known that HIV-1-specific T cells recognizing mutant virus were elicited in some individuals infected with a mutant virus, the role of these T cells remains unclear. Accumulation of phenylalanine at HIV-1 Nef135 (Nef135F), which is selected by HLA-A*24:02-restricted T cells, led to poor clinical outcome in individuals carrying the detrimental HLA-B*35:01 allele. In the present study, we found that HLA-B*35:01-restricted mutant-specific and cross-reactive T cells were elicited in HLA-B*35:01+ individuals infected with the Nef135F mutant virus. These T cells could not effectively suppress HIV-1 replication in vivo even though they could recognize mutant virus-infected cells in vitro. Mutant-specific and cross-reactive T cells expressed lower levels of stimulatory molecules and higher levels of inhibitory molecules, respectively, suggesting a potential mechanism whereby these T cells fail to suppress HIV-1 replication in HIV-1-infected individuals.
Collapse
|
16
|
Features of repertoire diversity and gene expression in human cytotoxic T cells following allogeneic hematopoietic cell transplantation. Commun Biol 2021; 4:1177. [PMID: 34635773 PMCID: PMC8505416 DOI: 10.1038/s42003-021-02709-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 09/21/2021] [Indexed: 11/09/2022] Open
Abstract
Cytomegalovirus reactivation is still a critical concern following allogeneic hematopoietic cell transplantation, and cellular immune reconstitution of cytomegalovirus-specific cytotoxic T-cells is necessary for the long-term control of cytomegalovirus reactivation after allogeneic hematopoietic cell transplantation. Here we show the features of repertoire diversity and the gene expression profile of HLA-A24 cytomegalovirus-specific cytotoxic T-cells in actual recipients according to the cytomegalovirus reactivation pattern. A skewed preference for BV7 genes and sequential “G” amino acids motif is observed in complementarity-determining region-3 of T cell receptor-β. Increased binding scores are observed in T-cell clones with complementarity-determining region-3 of T cell receptor-β with a “(G)GG” motif. Single-cell RNA-sequence analyses demonstrate the homogenous distribution of the gene expression profile in individual cytomegalovirus-specific cytotoxic T-cells within each recipient. On the other hand, bulk RNA-sequence analyses reveal that gene expression profiles among patients are different according to the cytomegalovirus reactivation pattern, and are associated with cytokine production or cell division. These methods and results can help us to better understand immune reconstitution following hematopoietic cell transplantation, leading to future studies on the clinical application of adoptive T-cell therapies. Cytomegalovirus reactivation is an important concern after allogeneic stem cell transplantation (allo-HCT) or organ transplantation. Here, Hideki Nakasone et al. investigate changes in repertoire diversity and gene expression among clinically-transferred T cells to improve our understanding of immune reconstitution following allo-HCT.
Collapse
|
17
|
Choi H, Lee Y, Hur G, Lee SE, Cho HI, Sohn HJ, Cho BS, Kim HJ, Kim TG. γδ T cells cultured with artificial antigen-presenting cells and IL-2 show long-term proliferation and enhanced effector functions compared with γδ T cells cultured with only IL-2 after stimulation with zoledronic acid. Cytotherapy 2021; 23:908-917. [PMID: 34312069 DOI: 10.1016/j.jcyt.2021.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/18/2021] [Accepted: 06/01/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND AIMS Immunotherapeutic approaches using γδ T cells have emerged as the function of γδ T cells in tumor surveillance and clearance has been discovered. In vitro expansion methods of γ9δ2 T cells have been based on phosphoantigens and cytokines, but expansion methods using feeder cells to generate larger numbers of γδ T cells have also been studied recently. However, there are no studies that directly compare γδ T cells cultured with phosphoantigens with those cultured with feeder cells. Therefore, this study aimed to compare the expansion, characteristics and effector functions of γδ T cells stimulated with K562-based artificial antigen-presenting cells (aAPCs) (aAPC-γδ T cells) and γδ T cells stimulated with only zoledronic acid (ZA) (ZA-γδ T cells). METHODS Peripheral blood mononuclear cells were stimulated with ZA for 7 days, and aAPC-γδ T cells were stimulated weekly with K562-based aAPCs expressing CD32, CD80, CD83, 4-1BBL, CD40L and CD70, whereas ZA-γδ T cells were stimulated with only IL-2. Cultured γδ T cells were analyzed by flow cytometry for the expression of co-stimulatory molecules, activating receptors and checkpoint inhibitors. Differentially expressed gene (DEG) analysis was also performed to determine the difference in gene expression between aAPC-γδ T cells and ZA-γδ T cells. In vitro cytotoxicity assay was performed with calcein AM release assay, and in vivo anti-tumor effect was compared using a U937 xenograft model. RESULTS Fold expansion on day 21 was 690.7 ± 413.1 for ZA-γδ T cells and 1415.2 ± 1016.8 for aAPC- γδ T cells. Moreover, aAPC-γδ T cells showed continuous growth, whereas ZA-γδ T cells showed a decline in growth after day 21. The T-cell receptor Vγ9+δ2+ percentages (mean ± standard deviation) on day 21 were 90.0 ± 2.7% and 87.0 ± 4.5% for ZA-γδ T cells and aAPC-γδ T cells, respectively. CD25 and CD86 expression was significantly higher in aAPC-γδ T cells. In DEG analysis, aAPC-γδ T cells and ZA-γδ T cells formed distinct clusters, and aAPC-γδ T cells showed upregulation of genes associated with metabolism and cytokine pathways. In vitro cytotoxicity revealed superior anti-tumor effects of aAPC-γδ T cells compared with ZA-γδ T cells on Daudi, Raji and U937 cell lines. In addition, in the U937 xenograft model, aAPC-γδ T-cell treatment increased survival, and a higher frequency of aAPC-γδ T cells was shown in bone marrow compared with ZA-γδ T cells. CONCLUSIONS Overall, this study demonstrates that aAPC-γδ T cells show long-term proliferation, enhanced activation and anti-tumor effects compared with ZA-γδ T cells and provides a basis for using aAPC-γδ T cells in further studies, including clinical applications and genetic engineering of γδ T cells.
Collapse
Affiliation(s)
- Haeyoun Choi
- Department of Microbiology, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea; Department of Biomedicine & Health Sciences, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea
| | - Yunkyung Lee
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea
| | - Gaeun Hur
- Department of Microbiology, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea; Department of Biomedicine & Health Sciences, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea
| | - Sang-Eun Lee
- R&D Division, ViGenCell Inc, Seoul, Republic of Korea
| | - Hyun-Il Cho
- R&D Division, ViGenCell Inc, Seoul, Republic of Korea
| | - Hyun-Jung Sohn
- Translational and Clinical Division, ViGenCell Inc, Seoul, Republic of Korea
| | - Byung Sik Cho
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea
| | - Hee-Je Kim
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea.
| | - Tai-Gyu Kim
- Department of Microbiology, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea; Department of Biomedicine & Health Sciences, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea; Catholic Hematopoietic Stem Cell Bank, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
18
|
Want MY, Karasik E, Gillard B, McGray AJR, Battaglia S. Inhibition of WHSC1 Allows for Reprogramming of the Immune Compartment in Prostate Cancer. Int J Mol Sci 2021; 22:ijms22168742. [PMID: 34445452 PMCID: PMC8395944 DOI: 10.3390/ijms22168742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 12/21/2022] Open
Abstract
Immunotherapy initially demonstrated promising results in prostate cancer (PCa), but the modest or negative results of many recent trials highlight the need to overcome the poor immunogenicity of this cancer. The design of effective therapies for PCa is challenged by the limited understanding of the interface between PCa cells and the immune system in mediating therapeutic resistance. Prompted by our recent observations that elevated WHSC1, a histone methyltransferase known to promote progression of numerous cancers, can silence antigen processing and presentation in PCa, we performed a single-cell analysis of the intratumoral immune dynamics following in vivo pharmacological inhibition of WHSC1 in mice grafted with TRAMP C2 cells. We observed an increase in cytotoxic T and NK cells accumulation and effector function, accompanied by a parallel remodeling of the myeloid compartment, as well as abundant shifts in key ligand–receptor signaling pathways highlighting changes in cell-to-cell communication driven by WHSC1 inhibition. This comprehensive profiling of both immune and molecular changes during the course of WHSC1 blockade deepens our fundamental understanding of how anti-tumor immune responses develop and can be enhanced therapeutically for PCa.
Collapse
Affiliation(s)
- Muzamil Y. Want
- Department of Immunology, Division of Translational Immuno Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.Y.W.); (A.J.R.M.)
| | - Ellen Karasik
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (E.K.); (B.G.)
| | - Bryan Gillard
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (E.K.); (B.G.)
| | - A. J. Robert McGray
- Department of Immunology, Division of Translational Immuno Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.Y.W.); (A.J.R.M.)
| | - Sebastiano Battaglia
- Department of Immunology, Division of Translational Immuno Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.Y.W.); (A.J.R.M.)
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Correspondence:
| |
Collapse
|
19
|
Piotrowska M, Spodzieja M, Kuncewicz K, Rodziewicz-Motowidło S, Orlikowska M. CD160 protein as a new therapeutic target in a battle against autoimmune, infectious and lifestyle diseases. Analysis of the structure, interactions and functions. Eur J Med Chem 2021; 224:113694. [PMID: 34273660 DOI: 10.1016/j.ejmech.2021.113694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/07/2021] [Indexed: 11/25/2022]
Abstract
The glycosylphosphatidylinositol-anchored transmembrane glycoprotein CD160 (cluster of differentiation 160) is a member of the immunoglobulin superfamily. Four isoforms, which differ by the presence or absence of an immunoglobulin-like domain and the mode of anchoring in the cell membrane, have been identified. CD160 has a significant impact on the proper functioning of the immune system by activating natural killer cells and inhibiting T cells. CD160 is a natural ligand for herpes virus entry mediator (HVEM), a member of the tumor necrosis factor superfamily. The CD160-HVEM complex is a rare example of direct interaction between the two different superfamilies. The interaction of these two proteins leads to the inhibition of CD4+ T cells which, in consequence, leads to the inhibition of the correct response of the immune system. Available research articles indicate that CD160 plays a role in various types of cancer, chronic viral diseases, malaria, paroxysmal nocturnal hemoglobinuria, atherosclerosis, autoimmune diseases, skin inflammation, acute liver damage and retinal vascular disease. We present here an overview of the CD160 protein, the general characteristics of the receptor and its isoforms, details of structural studies of CD160 and the CD160-HVEM complex, as well as a description of the role of this protein in selected human diseases.
Collapse
Affiliation(s)
- Marta Piotrowska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Marta Spodzieja
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Katarzyna Kuncewicz
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Sylwia Rodziewicz-Motowidło
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Marta Orlikowska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland.
| |
Collapse
|
20
|
Pando A, Fast L, Dubielecka PM, Chorzalska A, Wen S, Reagan J. Murine Leukemia-Derived Extracellular Vesicles Elicit Antitumor Immune Response. J Blood Med 2021; 12:277-285. [PMID: 34040472 PMCID: PMC8139718 DOI: 10.2147/jbm.s308861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/20/2021] [Indexed: 12/16/2022] Open
Abstract
Background Extracellular vesicles (EVs) are heterogeneous lipid bilayer particles secreted by cells. EVs contain proteins, RNA, DNA and other cargo that can have immunomodulatory effects. Cancer-derived EVs have been described as having immunomodulating effects in vivo with immunosuppressive and pro-tumor growth capabilities. However, cancer-derived EVs have also been harnessed and utilized for anti-cancer potential. Methods To assess the immunomodulatory effect of EVs produced by acute myeloid leukemia (AML) cells, we isolated vesicles secreted by the murine AML cell line, C1498, and investigated their effect on in vitro and in vivo immune responses. Results These leukemia-derived EVs were found to induce increased proliferation of CD3+ cells and enhanced cytolytic activity of CD3+ cells directed toward leukemic cells in vitro. Injection of leukemia-derived EVs into syngeneic naïve mice induced T cell responses in vivo and resulted in enhanced immune responses upon T cell re-stimulation in vitro. Conclusion These findings indicate that C1498-derived EVs have immunomodulatory effects on cell-mediated immune responses that could potentially be utilized to facilitate anti-leukemia immune responses.
Collapse
Affiliation(s)
- Alejandro Pando
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital and the Warren Alpert School of Medicine at Brown University, Providence, RI, USA
| | - Loren Fast
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital and the Warren Alpert School of Medicine at Brown University, Providence, RI, USA
| | - Patrycja M Dubielecka
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital and the Warren Alpert School of Medicine at Brown University, Providence, RI, USA
| | - Anna Chorzalska
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital and the Warren Alpert School of Medicine at Brown University, Providence, RI, USA
| | - Sicheng Wen
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital and the Warren Alpert School of Medicine at Brown University, Providence, RI, USA
| | - John Reagan
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital and the Warren Alpert School of Medicine at Brown University, Providence, RI, USA
| |
Collapse
|
21
|
Bozorgmehr N, Okoye I, Oyegbami O, Xu L, Fontaine A, Cox-Kennett N, Larratt LM, Hnatiuk M, Fagarasanu A, Brandwein J, Peters AC, Elahi S. Expanded antigen-experienced CD160 +CD8 +effector T cells exhibit impaired effector functions in chronic lymphocytic leukemia. J Immunother Cancer 2021; 9:jitc-2020-002189. [PMID: 33931471 PMCID: PMC8098955 DOI: 10.1136/jitc-2020-002189] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
Background T cell exhaustion compromises antitumor immunity, and a sustained elevation of co-inhibitory receptors is a hallmark of T cell exhaustion in solid tumors. Similarly, upregulation of co-inhibitory receptors has been reported in T cells in hematological cancers such as chronic lymphocytic leukemia (CLL). However, the role of CD160, a glycosylphosphatidylinositol-anchored protein, as one of these co-inhibitory receptors has been contradictory in T cell function. Therefore, we decided to elucidate how CD160 expression and/or co-expression with other co-inhibitory receptors influence T cell effector functions in patients with CLL. Methods We studied 56 patients with CLL and 25 age-matched and sex-matched healthy controls in this study. The expression of different co-inhibitory receptors was analyzed in T cells obtained from the peripheral blood or the bone marrow. Also, we quantified the properties of extracellular vesicles (EVs) in the plasma of patients with CLL versus healthy controls. Finally, we measured 29 different cytokines, chemokines or other biomarkers in the plasma specimens of patients with CLL and healthy controls. Results We found that CD160 was the most upregulated co-inhibitory receptor in patients with CLL. Its expression was associated with an exhausted T cell phenotype. CD160+CD8+ T cells were highly antigen-experienced/effector T cells, while CD160+CD4+ T cells were more heterogeneous. In particular, we identified EVs as a source of CD160 in the plasma of patients with CLL that can be taken up by T cells. Moreover, we observed a dominantly proinflammatory cytokine profile in the plasma of patients with CLL. In particular, interleukin-16 (IL-16) was highly elevated and correlated with the advanced clinical stage (Rai). Furthermore, we observed that the incubation of T cells with IL-16 results in the upregulation of CD160. Conclusions Our study provides a novel insight into the influence of CD160 expression/co-expression with other co-inhibitory receptors in T cell effector functions in patients with CLL. Besides, IL-16-mediated upregulation of CD160 expression in T cells highlights the importance of IL-16/CD160 as potential immunotherapy targets in patients with CLL. Therefore, our findings propose a significant role for CD160 in T cell exhaustion in patients with CLL.
Collapse
Affiliation(s)
- Najmeh Bozorgmehr
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Isobel Okoye
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Olaide Oyegbami
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Lai Xu
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Amelie Fontaine
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Nanette Cox-Kennett
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Loree M Larratt
- Division of Hematology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Mark Hnatiuk
- Division of Hematology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Andrei Fagarasanu
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Joseph Brandwein
- Division of Hematology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Anthea C Peters
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Shokrollah Elahi
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada .,Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.,Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, Edmonton, Alberta, Canada
| |
Collapse
|
22
|
Saheb Sharif-Askari N, Saheb Sharif-Askari F, Mdkhana B, Al Heialy S, Alsafar HS, Hamoudi R, Hamid Q, Halwani R. Enhanced expression of immune checkpoint receptors during SARS-CoV-2 viral infection. Mol Ther Methods Clin Dev 2021; 20:109-121. [PMID: 33200082 PMCID: PMC7658590 DOI: 10.1016/j.omtm.2020.11.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/04/2020] [Indexed: 12/17/2022]
Abstract
The immune system is tightly regulated by the activity of stimulatory and inhibitory immune receptors. This immune homeostasis is usually disturbed during chronic viral infection. Using publicly available transcriptomic datasets, we conducted in silico analyses to evaluate the expression pattern of 38 selected immune inhibitory receptors (IRs) associated with different myeloid and lymphoid immune cells during coronavirus disease 2019 (COVID-19) infection. Our analyses revealed a pattern of overall upregulation of IR mRNA during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. A large number of IRs expressed on both lymphoid and myeloid cells were upregulated in nasopharyngeal swabs (NPSs), while lymphoid-associated IRs were specifically upregulated in autopsies, reflecting severe, terminal stage COVID-19 disease. Eight genes (BTLA, LAG3, FCGR2B, PDCD1, CEACAM1, CTLA4, CD72, and SIGLEC7), shared by NPSs and autopsies, were more expressed in autopsies and were directly correlated with viral levels. Single-cell data from blood and bronchoalveolar samples also reflected the observed association between IR upregulation and disease severity. Moreover, compared to SARS-CoV-1, influenza, and respiratory syncytial virus infections, the number and intensities of upregulated IRs were higher in SARS-CoV-2 infections. In conclusion, the immunopathology and severity of COVID-19 could be attributed to dysregulation of different immune inhibitors. Targeting one or more of these immune inhibitors could represent an effective therapeutic approach for the treatment of COVID-19 early and late immune dysregulations.
Collapse
Affiliation(s)
- Narjes Saheb Sharif-Askari
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Fatemeh Saheb Sharif-Askari
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Bushra Mdkhana
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Saba Al Heialy
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Meakins-Christie Laboratories, Research Institute of the McGill University Healthy Center, McGill University, Montreal, QC, Canada
| | - Habiba S. Alsafar
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Genetics and Molecular Biology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Rifat Hamoudi
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Qutayba Hamid
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Meakins-Christie Laboratories, Research Institute of the McGill University Healthy Center, McGill University, Montreal, QC, Canada
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Rabih Halwani
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Prince Abdullah Ben Khaled Celiac Disease Research Chair, Department of Pediatrics, Faculty of Medicine, King Saud University, Saudi Arabia
| |
Collapse
|
23
|
Watkins EA, Antane JT, Roberts JL, Lorentz KM, Zuerndorfer S, Dunaif AC, Bailey LJ, Tremain AC, Nguyen M, De Loera RC, Wallace RP, Weathered RK, Kontos S, Hubbell JA. Persistent antigen exposure via the eryptotic pathway drives terminal T cell dysfunction. Sci Immunol 2021; 6:6/56/eabe1801. [PMID: 33637595 DOI: 10.1126/sciimmunol.abe1801] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/28/2021] [Indexed: 12/15/2022]
Abstract
Although most current treatments for autoimmunity involve broad immunosuppression, recent efforts have aimed to suppress T cells in an antigen-specific manner to minimize risk of infection. One such effort is through targeting antigen to the apoptotic pathway to increase presentation of the antigen of interest in a tolerogenic context. Erythrocytes present a rational candidate to target because of their high rate of eryptosis, which facilitates continual uptake by antigen-presenting cells in the spleen. Here, we develop an approach that binds antigens to erythrocytes to induce sustained T cell dysfunction. Transcriptomic and phenotypic analyses revealed signatures of self-tolerance and exhaustion, including up-regulation of PD-1, CTLA4, Lag3, and TOX. Antigen-specific T cells were incapable of responding to an adjuvanted antigenic challenge even months after antigen clearance. With this strategy, we prevented pathology in a mouse experimental autoimmune encephalomyelitis model. CD8+ T cell education occurred in the spleen and was dependent on cross-presenting Batf3+ dendritic cells. These results demonstrate that antigens associated with eryptotic erythrocytes induce lasting T cell dysfunction that could be protective in deactivating pathogenic T cells.
Collapse
Affiliation(s)
- Elyse A Watkins
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Jennifer T Antane
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Jaeda L Roberts
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | | | | | - Anya C Dunaif
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | | | - Andrew C Tremain
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.,Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Mindy Nguyen
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Roberto C De Loera
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Rachel P Wallace
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Rachel K Weathered
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | | | - Jeffrey A Hubbell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA. .,Committee on Immunology, University of Chicago, Chicago, IL 60637, USA.,Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
24
|
Rutishauser RL, Deguit CDT, Hiatt J, Blaeschke F, Roth TL, Wang L, Raymond KA, Starke CE, Mudd JC, Chen W, Smullin C, Matus-Nicodemos R, Hoh R, Krone M, Hecht FM, Pilcher CD, Martin JN, Koup RA, Douek DC, Brenchley JM, Sékaly RP, Pillai SK, Marson A, Deeks SG, McCune JM, Hunt PW. TCF-1 regulates HIV-specific CD8+ T cell expansion capacity. JCI Insight 2021; 6:136648. [PMID: 33351785 PMCID: PMC7934879 DOI: 10.1172/jci.insight.136648] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022] Open
Abstract
Although many HIV cure strategies seek to expand HIV-specific CD8+ T cells to control the virus, all are likely to fail if cellular exhaustion is not prevented. A loss in stem-like memory properties (i.e., the ability to proliferate and generate secondary effector cells) is a key feature of exhaustion; little is known, however, about how these properties are regulated in human virus-specific CD8+ T cells. We found that virus-specific CD8+ T cells from humans and nonhuman primates naturally controlling HIV/SIV infection express more of the transcription factor TCF-1 than noncontrollers. HIV-specific CD8+ T cell TCF-1 expression correlated with memory marker expression and expansion capacity and declined with antigenic stimulation. CRISPR-Cas9 editing of TCF-1 in human primary T cells demonstrated a direct role in regulating expansion capacity. Collectively, these data suggest that TCF-1 contributes to the regulation of the stem-like memory property of secondary expansion capacity of HIV-specific CD8+ T cells, and they provide a rationale for exploring the enhancement of this pathway in T cell-based therapeutic strategies for HIV.
Collapse
Affiliation(s)
| | - Christian Deo T. Deguit
- Department of Medicine, UCSF, San Francisco, California, USA
- Institute of Human Genetics, University of the Philippines-National Institutes of Health, Manila, Philippines
| | - Joseph Hiatt
- Department of Microbiology and Immunology
- Medical Scientist Training Program
- Biomedical Sciences Graduate Program, and
| | - Franziska Blaeschke
- Department of Microbiology and Immunology
- Diabetes Center, UCSF, San Francisco, California, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, California, USA
| | - Theodore L. Roth
- Department of Microbiology and Immunology
- Medical Scientist Training Program
- Biomedical Sciences Graduate Program, and
| | - Lynn Wang
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Kyle A. Raymond
- Vitalant Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, UCSF, California, USA
| | | | - Joseph C. Mudd
- Barrier Immunity Section, Laboratory of Viral Diseases and
| | - Wenxuan Chen
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Carolyn Smullin
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Rodrigo Matus-Nicodemos
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Rebecca Hoh
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Melissa Krone
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, California, USA
| | | | | | - Jeffrey N. Martin
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, California, USA
| | - Richard A. Koup
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases , NIH, Bethesda, Maryland, USA
| | - Daniel C. Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | | | | | - Satish K. Pillai
- Vitalant Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, UCSF, California, USA
| | - Alexander Marson
- Department of Medicine, UCSF, San Francisco, California, USA
- Department of Microbiology and Immunology
- Diabetes Center, UCSF, San Francisco, California, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
- UCSF Hellen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
| | - Steven G. Deeks
- Department of Medicine, UCSF, San Francisco, California, USA
| | | | - Peter W. Hunt
- Department of Medicine, UCSF, San Francisco, California, USA
| |
Collapse
|
25
|
Shrestha R, Garrett-Thomson SC, Liu W, Almo SC, Fiser A. Redesigning HVEM Interface for Selective Binding to LIGHT, BTLA, and CD160. Structure 2020; 28:1197-1205.e2. [PMID: 32795404 DOI: 10.1016/j.str.2020.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/01/2020] [Accepted: 07/23/2020] [Indexed: 10/23/2022]
Abstract
Herpes virus entry mediator (HVEM) regulates positive and negative signals for T cell activation through co-signaling pathways. Dysfunction of the HVEM co-signaling network is associated with multiple pathologies related to autoimmunity, infectious disease, and cancer, making the associated molecules biologically and therapeutically attractive targets. HVEM interacts with three ligands from two different superfamilies using two different binding interfaces. The engagement with ligands CD160 and B- and T-lymphocyte attenuator (BTLA), members of immunoglobulin superfamily, is associated with inhibitory signals, whereas inflammatory responses are regulated through the interaction with LIGHT from the TNF superfamily. We computationally redesigned the HVEM recognition interfaces using a residue-specific pharmacophore approach, ProtLID, to achieve switchable-binding specificity. In subsequent cell-based binding assays the new interfaces, designed with only single or double mutations, exhibited selective binding to only one or two out of the three cognate ligands.
Collapse
Affiliation(s)
- Rojan Shrestha
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Sarah C Garrett-Thomson
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Weifeng Liu
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | - Andras Fiser
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
26
|
Shen Y, Teng Y, Lv Y, Zhao Y, Qiu Y, Chen W, Wang L, Wang Y, Mao F, Cheng P, Ma D, Zhuang Y, Zou Q, Peng L. PD-1 does not mark tumor-infiltrating CD8+ T cell dysfunction in human gastric cancer. J Immunother Cancer 2020; 8:e000422. [PMID: 32753468 PMCID: PMC7406116 DOI: 10.1136/jitc-2019-000422] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Overexpression of programmed cell death protein 1 (PD-1) is linked to CD8+ T cell dysfunction and contributes to tumor immune escape. However, the prevalence and functional regulations of PD-1 expression on CD8+ T cells in human gastric cancer (GC) remain largely unknown. METHODS Flow cytometry was performed to analyze the level, phenotype, functional and clinical relevance of PD-1+CD8+ T cells in GC patients. Peripheral blood CD8+ T cells were purified and subsequently exposed to culture supernatants from digested primary GC tumor tissues (TSN) in vitro for PD-1 expression and functional assays. Tumor responses to adoptively transferred TSN-stimulated CD8+ T cells or to the TSN-stimulated CD8+ T cell transfer combined with an anti-PD-1 antibody injection were measured in an in vivo xenograft mouse model. RESULTS GC patients' tumors showed a significantly increased PD-1+CD8+ T cell infiltration. However, these GC-infiltrating PD-1+CD8+ T cells showed equivalent function to their PD-1-CD8+ counterparts and they did not predict tumor progression. High level of transforming growth factor-β1 (TGF-β1) in tumors was positively correlated with PD-1+CD8+ T cell infiltration, and in vitro GC-derived TGF-β1 induced PD-1 expression on CD8+ T cells via Smad3 signaling, whereas Smad2 signaling was involved in GC-derived TGF-β1-mediated CD8+ T cell dysfunction. Furthermore, GC-derived TGF-β1-mediated CD8+ T cell dysfunction contributed to tumor growth in vivo that could not be attenuated by PD-1 blockade. CONCLUSIONS Our data highlight that GC-derived TGF-β1 promotes PD-1 independent CD8+ T cell dysfunction. Therefore, restoring CD8+ T cell function by a combinational PD-1 and TGF-β1 blockade might benefit future GC immunotherapy.
Collapse
Affiliation(s)
- Yang Shen
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
- Department of oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, China
| | - Yongsheng Teng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Yipin Lv
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Yongliang Zhao
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yuan Qiu
- Department of General Surgery of Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Weisan Chen
- La Trobe Institute for Molecular Science, School of Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Lina Wang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Ying Wang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Fangyuan Mao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Ping Cheng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Daiyuan Ma
- Department of oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, China
| | - Yuan Zhuang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Liusheng Peng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| |
Collapse
|
27
|
Vigano S, Bobisse S, Coukos G, Perreau M, Harari A. Cancer and HIV-1 Infection: Patterns of Chronic Antigen Exposure. Front Immunol 2020; 11:1350. [PMID: 32714330 PMCID: PMC7344140 DOI: 10.3389/fimmu.2020.01350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022] Open
Abstract
The main role of the human immune system is to eliminate cells presenting foreign antigens and abnormal patterns, while maintaining self-tolerance. However, when facing highly variable pathogens or antigens very similar to self-antigens, this system can fail in completely eliminating the anomalies, leading to the establishment of chronic pathologies. Prototypical examples of immune system defeat are cancer and Human Immunodeficiency Virus-1 (HIV-1) infection. In both conditions, the immune system is persistently exposed to antigens leading to systemic inflammation, lack of generation of long-term memory and exhaustion of effector cells. This triggers a negative feedback loop where effector cells are unable to resolve the pathology and cannot be replaced due to the lack of a pool of undifferentiated, self-renewing memory T cells. In addition, in an attempt to reduce tissue damage due to chronic inflammation, antigen presenting cells and myeloid components of the immune system activate systemic regulatory and tolerogenic programs. Beside these homologies shared between cancer and HIV-1 infection, the immune system can be shaped differently depending on the type and distribution of the eliciting antigens with ultimate consequences at the phenotypic and functional level of immune exhaustion. T cell differentiation, functionality, cytotoxic potential and proliferation reserve, immune-cell polarization, upregulation of negative regulators (immune checkpoint molecules) are indeed directly linked to the quantitative and qualitative differences in priming and recalling conditions. Better understanding of distinct mechanisms and functional consequences underlying disease-specific immune cell dysfunction will contribute to further improve and personalize immunotherapy. In the present review, we describe relevant players of immune cell exhaustion in cancer and HIV-1 infection, and enumerate the best-defined hallmarks of T cell dysfunction. Moreover, we highlight shared and divergent aspects of T cell exhaustion and T cell activation to the best of current knowledge.
Collapse
Affiliation(s)
- Selena Vigano
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Sara Bobisse
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - George Coukos
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Matthieu Perreau
- Service of Immunology and Allergy, University Hospital of Lausanne, Lausanne, Switzerland
| | - Alexandre Harari
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| |
Collapse
|
28
|
Liu S, Zhang W, Liu K, Wang Y. CD160 expression on CD8 + T cells is associated with active effector responses but limited activation potential in pancreatic cancer. Cancer Immunol Immunother 2020; 69:789-797. [PMID: 32055919 DOI: 10.1007/s00262-020-02500-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 01/23/2020] [Indexed: 12/22/2022]
Abstract
CD160 is an Ig-like glycoprotein expressed by the majority of circulating natural killer cells and γδ T cells. Whether CD160 could regulate CD8+ T-cell functions remains unknown. In this study, we investigated the effects of CD160 on CD8+ T cells in pancreatic cancer. First, we found that the frequency of PD-1+ cells was comparable between CD160+ and CD160-CD8+ T cells, with the former presenting significantly higher PD-1 expression level. In contrast, the frequency of TIM-3+ cells was higher among CD160+ cells but the expression level was comparable between CD160+ and CD160-CD8+ T cells. The IFN-γ and IL-2-expressing CD8+ T cells, directly ex vivo, were highly enriched in the CD160+ subset. However, when CD160+ and CD160-CD8+ T cells were stimulated, the proliferation levels of CD160+ and CD160- cells were initially comparable, but were significantly lower in CD160+CD8+ T cells than in CD160-CD8+ T cells later on. The IFN-γ and IL-2 transcription levels were initially higher in CD160+CD8+ T cells, but eventually reduced in CD160+CD8+ T cells compared to CD160-CD8+ T cells. Also, CD160+CD8+ T cells presented lower cytotoxic capacity than CD160-CD8+ T cells. Interestingly, we observed that tumor-infiltrating CD8+ T cells were significantly enriched with the CD160+ subset in pancreatic cancer patients. In addition, patients with higher frequencies of tumor CD160+CD8+ T cells presented lower survival. Overall, these data demonstrated that tumor-infiltrating CD8+ T cells were enriched with the CD160+ subset in pancreatic cancer, with active effector responses directly ex vivo but limited potential for further activation.
Collapse
Affiliation(s)
- Songyang Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, 71 Xinmin Avenue, Changchun, 130021, Jilin, China
| | - Wei Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, 71 Xinmin Avenue, Changchun, 130021, Jilin, China
| | - Kai Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, 71 Xinmin Avenue, Changchun, 130021, Jilin, China
| | - Yingchao Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, 71 Xinmin Avenue, Changchun, 130021, Jilin, China.
| |
Collapse
|
29
|
Abstract
A disease of more than 39.6 million people worldwide, HIV-1 infection has no curative therapy. To date, one man has achieved a sterile cure, with millions more hoping to avoid the potential pitfalls of lifelong antiretroviral therapy and other HIV-related disorders, including neurocognitive decline. Recent developments in immunotherapies and gene therapies provide renewed hope in advancing efforts toward a sterilizing or functional cure. On the horizon is research concentrated in multiple separate but potentially complementary domains: vaccine research, viral transcript editing, T-cell effector response targeting including checkpoint inhibitors, and gene editing. Here, we review the concept of targeting the HIV-1 tissue reservoirs, with an emphasis on the central nervous system, and describe relevant new work in functional cure research and strategies for HIV-1 eradication.
Collapse
|
30
|
Hope JL, Spantidea PI, Kiernan CH, Stairiker CJ, Rijsbergen LC, van Meurs M, Brouwers-Haspels I, Mueller YM, Nelson DJ, Bradley LM, Aerts JGJV, Katsikis PD. Microenvironment-Dependent Gradient of CTL Exhaustion in the AE17sOVA Murine Mesothelioma Tumor Model. Front Immunol 2020; 10:3074. [PMID: 31998326 PMCID: PMC6968785 DOI: 10.3389/fimmu.2019.03074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/16/2019] [Indexed: 01/26/2023] Open
Abstract
The immune system, and in particular, cytotoxic CD8+ T cells (CTLs), plays a vital part in the prevention and elimination of tumors. In many patients, however, CTL-mediated tumor killing ultimately fails in the clearance of cancer cells resulting in disease progression, in large part due to the progression of effector CTL into exhausted CTL. While there have been major breakthroughs in the development of CTL-mediated “reinvigoration”-driven immunotherapies such as checkpoint blockade therapy, there remains a need to better understand the drivers behind the development of T cell exhaustion. Our study highlights the unique differences in T cell exhaustion development in tumor-specific CTL which arises over time in a mouse model of mesothelioma. Importantly, we also show that peripheral tumor-specific T cells have a unique expression profile compared to exhausted tumor-infiltrating CTL at a late-stage of tumor progression in mice. Together, these data suggest that greater emphasis should be placed on understanding contributions of individual microenvironments in the development of T cell exhaustion.
Collapse
Affiliation(s)
- Jennifer L Hope
- Department of Immunology, Erasmus MC University Medical Center, Rotterdam, Netherlands.,Cancer Immunology and Tumor Microenvironment Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Panagiota I Spantidea
- Department of Immunology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Caoimhe H Kiernan
- Department of Immunology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | | | - Laurine C Rijsbergen
- Department of Immunology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Marjan van Meurs
- Department of Immunology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Inge Brouwers-Haspels
- Department of Immunology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Yvonne M Mueller
- Department of Immunology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Delia J Nelson
- Immunology and Cancer Group, School of Biomedical Sciences, Curtin University, Perth, WA, Australia
| | - Linda M Bradley
- Cancer Immunology and Tumor Microenvironment Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Joachim G J V Aerts
- Department of Pulmonary Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Peter D Katsikis
- Department of Immunology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
31
|
Hargadon KM. Tumor microenvironmental influences on dendritic cell and T cell function: A focus on clinically relevant immunologic and metabolic checkpoints. Clin Transl Med 2020; 10:374-411. [PMID: 32508018 PMCID: PMC7240858 DOI: 10.1002/ctm2.37] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer immunotherapy is fast becoming one of the most promising means of treating malignant disease. Cancer vaccines, adoptive cell transfer therapies, and immune checkpoint blockade have all shown varying levels of success in the clinical management of several cancer types in recent years. However, despite the clinical benefits often achieved by these regimens, an ongoing problem for many patients is the inherent or acquired resistance of their cancer to immunotherapy. It is now appreciated that dendritic cells and T lymphocytes both play key roles in antitumor immune responses and that the tumor microenvironment presents a number of barriers to the function of these cells that can ultimately limit the success of immunotherapy. In particular, the engagement of several immunologic and metabolic checkpoints within the hostile tumor microenvironment can severely compromise the antitumor functions of these important immune populations. This review highlights work from both preclinical and clinical studies that has shaped our understanding of the tumor microenvironment and its influence on dendritic cell and T cell function. It focuses on clinically relevant targeted and immunotherapeutic strategies that have emerged from these studies in an effort to prevent or overcome immune subversion within the tumor microenvironment. Emphasis is also placed on the potential of next-generation combinatorial regimens that target metabolic and immunologic impediments to dendritic cell and T lymphocyte function as strategies to improve antitumor immune reactivity and the clinical outcome of cancer immunotherapy going forward.
Collapse
Affiliation(s)
- Kristian M. Hargadon
- Hargadon LaboratoryDepartment of BiologyHampden‐Sydney CollegeHampden‐SydneyVirginiaUSA
| |
Collapse
|
32
|
Giel-Moloney M, Esteban M, Oakes BH, Vaine M, Asbach B, Wagner R, Mize GJ, Spies AG, McElrath J, Perreau M, Roger T, Ives A, Calandra T, Weiss D, Perdiguero B, Kibler KV, Jacobs B, Ding S, Tomaras GD, Montefiori DC, Ferrari G, Yates NL, Roederer M, Kao SF, Foulds KE, Mayer BT, Bennett C, Gottardo R, Parrington M, Tartaglia J, Phogat S, Pantaleo G, Kleanthous H, Pugachev KV. Recombinant HIV-1 vaccine candidates based on replication-defective flavivirus vector. Sci Rep 2019; 9:20005. [PMID: 31882800 PMCID: PMC6934588 DOI: 10.1038/s41598-019-56550-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/13/2019] [Indexed: 12/21/2022] Open
Abstract
Multiple approaches utilizing viral and DNA vectors have shown promise in the development of an effective vaccine against HIV. In this study, an alternative replication-defective flavivirus vector, RepliVax (RV), was evaluated for the delivery of HIV-1 immunogens. Recombinant RV-HIV viruses were engineered to stably express clade C virus Gag and Env (gp120TM) proteins and propagated in Vero helper cells. RV-based vectors enabled efficient expression and correct maturation of Gag and gp120TM proteins, were apathogenic in a sensitive suckling mouse neurovirulence test, and were similar in immunogenicity to recombinant poxvirus NYVAC-HIV vectors in homologous or heterologous prime-boost combinations in mice. In a pilot NHP study, immunogenicity of RV-HIV viruses used as a prime or boost for DNA or NYVAC candidates was compared to a DNA prime/NYVAC boost benchmark scheme when administered together with adjuvanted gp120 protein. Similar neutralizing antibody titers, binding IgG titers measured against a broad panel of Env and Gag antigens, and ADCC responses were observed in the groups throughout the course of the study, and T cell responses were elicited. The entire data demonstrate that RV vectors have the potential as novel HIV-1 vaccine components for use in combination with other promising candidates to develop new effective vaccination strategies.
Collapse
Affiliation(s)
| | - M Esteban
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - B H Oakes
- Sanofi Pasteur, Cambridge, MA, 02139, USA
| | - M Vaine
- Sanofi Pasteur, Cambridge, MA, 02139, USA
| | - B Asbach
- University of Regensburg (UREG), Institute of Medical Microbiology and Hygiene, 93053, Regensburg, Germany
| | - R Wagner
- University of Regensburg (UREG), Institute of Medical Microbiology and Hygiene, 93053, Regensburg, Germany
- University Hospital Regensburg, Institute of Clinical Microbiology and Hygiene, 93053, Regensburg, Germany
| | - G J Mize
- Fred Hutchinson Cancer Research Center (FHCRC), Seattle, WA, 98109, USA
| | - A G Spies
- Fred Hutchinson Cancer Research Center (FHCRC), Seattle, WA, 98109, USA
| | - J McElrath
- Fred Hutchinson Cancer Research Center (FHCRC), Seattle, WA, 98109, USA
| | - M Perreau
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, 1011, Lausanne, Switzerland
| | - T Roger
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, 1011, Lausanne, Switzerland
| | - A Ives
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, 1011, Lausanne, Switzerland
| | - T Calandra
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, 1011, Lausanne, Switzerland
| | - D Weiss
- Bioqual Inc, Rockville, Maryland, 20850, USA
| | - B Perdiguero
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - K V Kibler
- Arizona State University (ASU), Tucson, AZ, 85745, USA
| | - B Jacobs
- Arizona State University (ASU), Tucson, AZ, 85745, USA
| | - S Ding
- EuroVacc, Amsterdam, The Netherlands
| | - G D Tomaras
- Duke University Medical Center, Durham, North Carolina, 27710, USA
| | - D C Montefiori
- Duke University Medical Center, Durham, North Carolina, 27710, USA
| | - G Ferrari
- Duke University Medical Center, Durham, North Carolina, 27710, USA
| | - N L Yates
- Duke University Medical Center, Durham, North Carolina, 27710, USA
| | - M Roederer
- Vaccine Research Center, NIAID, NIH, Bethesda, MD, 20892, USA
| | - S F Kao
- Vaccine Research Center, NIAID, NIH, Bethesda, MD, 20892, USA
| | - K E Foulds
- Vaccine Research Center, NIAID, NIH, Bethesda, MD, 20892, USA
| | - B T Mayer
- Fred Hutchinson Cancer Research Center (FHCRC), Seattle, WA, 98109, USA
| | - C Bennett
- Fred Hutchinson Cancer Research Center (FHCRC), Seattle, WA, 98109, USA
| | - R Gottardo
- Fred Hutchinson Cancer Research Center (FHCRC), Seattle, WA, 98109, USA
| | | | | | - S Phogat
- Sanofi Pasteur, Cambridge, MA, 02139, USA
| | - G Pantaleo
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, 1011, Lausanne, Switzerland
| | | | | |
Collapse
|
33
|
Proliferation-competent Tcf1+ CD8 T cells in dysfunctional populations are CD4 T cell help independent. Proc Natl Acad Sci U S A 2019; 116:20070-20076. [PMID: 31530725 PMCID: PMC6778176 DOI: 10.1073/pnas.1902701116] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
T cell maintenance in chronic infection and cancer follows a hierarchical order. Short-lived effector CD8 T cells are constitutively replaced from a proliferation-competent Tcf1-expressing progenitor population. This occurs spontaneously at low levels and increases in magnitude upon blocking PD-1 signaling. We explore how CD4 T cell help controls transition and survival of the progenitors and their progeny by utilizing single-cell RNA sequencing. Unexpectedly, absence of CD4 help caused reductions in cell numbers only among terminally differentiated cells while proliferation-competent progenitor cells remained unaffected with regard to their numbers and their overall phenotype. In fact, upon restoration of a functional CD4 compartment, the progenitors began to regenerate the effector CD8 T cells. Thus, unlike memory T cells for which secondary expansion requires CD4 T cell help, this is not a necessity for proliferation-competent progenitor cells in dysfunctional populations. Our data therefore reveals that proliferation-competent cells in dysfunctional populations show a previously unrecognized uncoupling of CD4 T cell help that is otherwise required by conventional memory T cells.
Collapse
|
34
|
CD160 serves as a negative regulator of NKT cells in acute hepatic injury. Nat Commun 2019; 10:3258. [PMID: 31332204 PMCID: PMC6646315 DOI: 10.1038/s41467-019-10320-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 04/28/2019] [Indexed: 12/18/2022] Open
Abstract
CD160 and BTLA both bind to herpes virus entry mediator. Although a negative regulatory function of BTLA in natural killer T (NKT) cell activation has been reported, whether CD160 is also involved is unclear. By analyzing CD160-/- mice and mixed bone marrow chimeras, we show that CD160 is not essential for NKT cell development. However, CD160-/- mice exhibit severe liver injury after in vivo challenge with α-galactosylceramide (α-GalCer). Moreover, CD160-/- mice are more susceptible to Concanavalin A challenge, and display elevated serum AST and ALT levels, hyperactivation of NKT cells, and enhanced IFN-γ, TNF, and IL-4 production. Lastly, inhibition of BTLA by anti-BTLA mAb aggravates α-GalCer-induced hepatic injury in CD160-/- mice, suggesting that both CD160 and BTLA serve as non-overlapping negative regulators of NKT cells. Our data thus implicate CD160 as a co-inhibitory receptor that delivers antigen-dependent signals in NKT cells to dampen cytokine production during early innate immune activation.
Collapse
|
35
|
HIV Infection Functionally Impairs Mycobacterium tuberculosis-Specific CD4 and CD8 T-Cell Responses. J Virol 2019; 93:JVI.01728-18. [PMID: 30541853 PMCID: PMC6384080 DOI: 10.1128/jvi.01728-18] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/28/2018] [Indexed: 12/29/2022] Open
Abstract
Human immunodeficiency virus (HIV) infection is the major risk factor predisposing for Mycobacterium tuberculosis progression from latent tuberculosis infection (LTBI) to tuberculosis disease (TB). Since long-term-treated aviremic HIV-infected individuals remained at higher risk of developing TB than HIV-uninfected individuals, we hypothesized that progression from LTBI to pulmonary TB (PTB) might be due not only to CD4 T-cell depletion but also to M. tuberculosis-specific CD4 T-cell functional impairment. To test this hypothesis, M. tuberculosis-specific T-cell frequencies and cytokine profiles were investigated in untreated Tanzanian individuals suffering from LTBI (n = 20) or PTB (n = 67) and compared to those of untreated M. tuberculosis/HIV-coinfected individuals suffering from LTBI (n = 15) or PTB (n = 10). We showed that HIV infection significantly reduced the proportion of Th2 (interleukin 4 [IL-4]/IL-5/IL-13) producing M. tuberculosis-specific CD4 T cells and IL-2-producing M. tuberculosis-specific CD4 and CD8 T cells in individuals with LTBI or PTB (P < 0.05). Interestingly, the loss of IL-2 production was associated with a significant increase of PD-1 expression on M. tuberculosis-specific CD4 and CD8 T cells (P < 0.05), while the loss of Th2 cytokine production was associated with a significant reduction of Gata-3 expression in memory CD4 T cells (P < 0.05). Finally, we showed that the serum levels of IL-1α, IL-6, C-reactive protein (CRP), IL-23, and IP-10 were significantly reduced in M. tuberculosis/HIV-coinfected individuals with PTB compared to those in HIV-negative individuals with PTB (P < 0.05), suggesting that HIV infection significantly suppresses M. tuberculosis-induced systemic proinflammatory cytokine responses. Taken together, this study suggests that in addition to depleting M. tuberculosis-specific CD4 T cells, HIV infection significantly impairs functionally favorable M. tuberculosis-specific CD4 T-cell responses in Tanzanian individuals with LTBI or PTB.IMPORTANCE Mycobacterium tuberculosis and human immunodeficiency virus (HIV) infections are coendemic in several regions of the world, and M. tuberculosis/HIV-coinfected individuals are more susceptible to progression to tuberculosis disease. We therefore hypothesized that HIV infection would potentially impair M. tuberculosis-specific protective immunity in individuals suffering from latent tuberculosis infection (LTBI) or active pulmonary tuberculosis (PTB). In this study, we demonstrated that M. tuberculosis/HIV-coinfected individuals have fewer circulating M. tuberculosis-specific CD4 T cells and that those that remained were functionally impaired in both LTBI and PTB settings. In addition, we showed that HIV infection significantly interferes with M. tuberculosis-induced systemic proinflammatory cytokine/chemokine responses. Taken together, these data suggest that HIV infection impairs functionally favorable M. tuberculosis-specific immunity.
Collapse
|
36
|
Cheng Y, Zhu YO, Becht E, Aw P, Chen J, Poidinger M, de Sessions PF, Hibberd ML, Bertoletti A, Lim SG, Newell EW. Multifactorial heterogeneity of virus-specific T cells and association with the progression of human chronic hepatitis B infection. Sci Immunol 2019; 4:4/32/eaau6905. [DOI: 10.1126/sciimmunol.aau6905] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 01/02/2019] [Indexed: 12/11/2022]
Abstract
Associations between chronic antigen stimulation, T cell dysfunction, and the expression of various inhibitory receptors are well characterized in several mouse and human systems. During chronic hepatitis B virus (HBV) infection (CHB), T cell responses are blunted with low frequencies of virus-specific T cells observed, making these parameters difficult to study. Here, using mass cytometry and a highly multiplexed combinatorial peptide–major histocompatibility complex (pMHC) tetramer strategy that allows for the detection of rare antigen-specific T cells, we simultaneously probed 484 unique HLA-A*1101–restricted epitopes spanning the entire HBV genome on T cells from patients at various stages of CHB. Numerous HBV-specific T cell populations were detected, validated, and profiled. T cells specific for two epitopes (HBVpol387and HBVcore169) displayed differing and complex heterogeneities that were associated with the disease progression, and the expression of inhibitory receptors on these cells was not linearly related with their extent of T cell dysfunction. For HBVcore169-specific CD8+T cells, we found cellular markers associated with long-term memory, polyfunctionality, and the presence of several previously unidentified public TCR clones that correlated with viral control. Using high-dimensional trajectory analysis of these cellular phenotypes, a pseudo-time metric was constructed that fit with the status of viral infection in corresponding patients. This was validated in a longitudinal cohort of patients undergoing antiviral therapy. Our study uncovers complex relationships of inhibitory receptors between the profiles of antigen-specific T cells and the status of CHB with implications for new strategies of therapeutic intervention.
Collapse
|
37
|
Martinez M, Moon EK. CAR T Cells for Solid Tumors: New Strategies for Finding, Infiltrating, and Surviving in the Tumor Microenvironment. Front Immunol 2019; 10:128. [PMID: 30804938 PMCID: PMC6370640 DOI: 10.3389/fimmu.2019.00128] [Citation(s) in RCA: 593] [Impact Index Per Article: 98.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/16/2019] [Indexed: 12/26/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cells, T cells that have been genetically engineered to express a receptor that recognizes a specific antigen, have given rise to breakthroughs in treating hematological malignancies. However, their success in treating solid tumors has been limited. The unique challenges posed to CAR T cell therapy by solid tumors can be described in three steps: finding, entering, and surviving in the tumor. The use of dual CAR designs that recognize multiple antigens at once and local administration of CAR T cells are both strategies that have been used to overcome the hurdle of localization to the tumor. Additionally, the immunosuppressive tumor microenvironment has implications for T cell function in terms of differentiation and exhaustion, and combining CARs with checkpoint blockade or depletion of other suppressive factors in the microenvironment has shown very promising results to mitigate the phenomenon of T cell exhaustion. Finally, identifying and overcoming mechanisms associated with dysfunction in CAR T cells is of vital importance to generating CAR T cells that can proliferate and successfully eliminate tumor cells. The structure and costimulatory domains chosen for the CAR may play an important role in the overall function of CAR T cells in the TME, and “armored” CARs that secrete cytokines and third- and fourth-generation CARs with multiple costimulatory domains offer ways to enhance CAR T cell function.
Collapse
Affiliation(s)
- Marina Martinez
- Perelman School of Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, United States
| | - Edmund Kyung Moon
- Perelman School of Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
38
|
A structural model of the immune checkpoint CD160-HVEM complex derived from HDX-mass spectrometry and molecular modeling. Oncotarget 2019; 10:536-550. [PMID: 30728903 PMCID: PMC6355189 DOI: 10.18632/oncotarget.26570] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 12/10/2018] [Indexed: 11/25/2022] Open
Abstract
CD160 is a T cell coinhibitory molecule that interacts with the herpes virus entry mediator (HVEM) on antigen-presenting cells to provide an inhibitory signal to T cells. To date, the structure of CD160 and its complex with HVEM are unknown. Here, we have identified the fragments of CD160 interacting with HVEM using ELISA tests, hydrogen/deuterium studies, affinity chromatography and mass spectrometry (MS). By combining hydrogen/deuterium exchange and mass spectrometry (HDX-MS) we obtained key information about the tertiary structure of CD160, predicting the 3D structure of the CD160–HVEM complex. Our results provide insights into the molecular architecture of this complex, serving as a useful basis for designing inhibitors for future immunotherapies.
Collapse
|
39
|
Signal Transduction Via Co-stimulatory and Co-inhibitory Receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1189:85-133. [PMID: 31758532 DOI: 10.1007/978-981-32-9717-3_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
T-cell receptor (TCR)-mediated antigen-specific stimulation is essential for initiating T-cell activation. However, signaling through the TCR alone is not sufficient for inducing an effective response. In addition to TCR-mediated signaling, signaling through antigen-independent co-stimulatory or co-inhibitory receptors is critically important not only for the full activation and functional differentiation of T cells but also for the termination and suppression of T-cell responses. Many studies have investigated the signaling pathways underlying the function of each molecular component. Co-stimulatory and co-inhibitory receptors have no kinase activity, but their cytoplasmic region contains unique functional motifs and potential phosphorylation sites. Engagement of co-stimulatory receptors leads to recruitment of specific binding partners, such as adaptor molecules, kinases, and phosphatases, via recognition of a specific motif. Consequently, each co-stimulatory receptor transduces a unique pattern of signaling pathways. This review focuses on our current understanding of the intracellular signaling pathways provided by co-stimulatory and co-inhibitory molecules, including B7:CD28 family members, immunoglobulin, and members of the tumor necrosis factor receptor superfamily.
Collapse
|
40
|
Muscate F, Stetter N, Schramm C, Schulze Zur Wiesch J, Bosurgi L, Jacobs T. HVEM and CD160: Regulators of Immunopathology During Malaria Blood-Stage. Front Immunol 2018; 9:2611. [PMID: 30483269 PMCID: PMC6243049 DOI: 10.3389/fimmu.2018.02611] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/23/2018] [Indexed: 12/29/2022] Open
Abstract
CD8+ T cells are key players during infection with the malaria parasite Plasmodium berghei ANKA (PbA). While they cannot provide protection against blood-stage parasites, they can cause immunopathology, thus leading to the severe manifestation of cerebral malaria. Hence, the tight control of CD8+ T cell function is key in order to prevent fatal outcomes. One major mechanism to control CD8+ T cell activation, proliferation and effector function is the integration of co-inhibitory and co-stimulatory signals. In this study, we show that one such pathway, the HVEM-CD160 axis, significantly impacts CD8+ T cell regulation and thereby the incidence of cerebral malaria. Here, we show that the co-stimulatory molecule HVEM is indeed required to maintain CD8+ T effector populations during infection. Additionally, by generating a CD160-/- mouse line, we observe that the HVEM ligand CD160 counterbalances stimulatory signals in highly activated and cytotoxic CD8+ T effector cells, thereby restricting immunopathology. Importantly, CD160 is also induced on cytotoxic CD8+ T cells during acute Plasmodium falciparum malaria in humans. In conclusion, CD160 is specifically expressed on highly activated CD8+ T effector cells that are harmful during the blood-stage of malaria.
Collapse
Affiliation(s)
- Franziska Muscate
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Nadine Stetter
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Christoph Schramm
- 1st Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.,Martin Zeitz Centre for Rare Diseases, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | | | - Lidia Bosurgi
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,1st Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Jacobs
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
41
|
Sun H, Xu J, Huang Q, Huang M, Li K, Qu K, Wen H, Lin R, Zheng M, Wei H, Xiao W, Sun R, Tian Z, Sun C. Reduced CD160 Expression Contributes to Impaired NK-cell Function and Poor Clinical Outcomes in Patients with HCC. Cancer Res 2018; 78:6581-6593. [PMID: 30232222 DOI: 10.1158/0008-5472.can-18-1049] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 08/09/2018] [Accepted: 09/10/2018] [Indexed: 11/16/2022]
Abstract
: We previously reported that deficiencies in natural killer (NK)-cell number and function play an important role in the progression of hepatocellular carcinoma (HCC). However, the mechanisms underlying this phenomenon remain obscure. In this study, we analyzed the expression of CD160 on intrahepatic NK cells by evaluating peritumoral and intratumoral tissues of 279 patients with HCC and 20 healthy livers. We observed reduced expression of CD160 on intratumoral NK cells, and patients with lower CD160 cell densities within tumors exhibited worse disease and a higher recurrence rate. High-resolution microarray and gene set enrichment analysis of flow cytometry-sorted primary intrahepatic CD160+ and CD160- NK cells of healthy livers indicated that human CD160+ NK cells exhibited functional activation, high IFNγ production, and NK-mediated immunity. In addition, global transcriptomic analysis of sorted peritumoral and intratumoral CD160+ NK cells revealed that intratumoral CD160+ NK cells are more exhausted than peritumoral CD160+ NK cells and produce less IFNγ. High levels of TGFβ1 interfered with production of IFNγ by CD160+ NK cells, blocking of which specifically restored IFNγ production in CD160+ NK cells to normal levels. These findings indicate that reduced numbers of CD160+ NK cells, together with the functional impairment of CD160+ NK cells by TGFβ1, contribute to tumor immune escape. In addition, restoring the expression of CD160 and blocking TGFβ1 appear a promising therapeutic strategy against liver cancer. SIGNIFICANCE: These findings show that reduced number and function of CD160+ NK cells in the tumor microenvironment contributes to immune escape of HCC; blocking TGFβ1 restores IFNγ production of CD160+ NK cells.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/23/6581/F1.large.jpg.
Collapse
Affiliation(s)
- Haoyu Sun
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Jing Xu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Qiang Huang
- Organ Transplant Center & Immunology Laboratory, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Mei Huang
- Organ Transplant Center & Immunology Laboratory, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Kun Li
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Kun Qu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Hao Wen
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Renyong Lin
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Meijuan Zheng
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Haiming Wei
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Weihua Xiao
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Rui Sun
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China.,Xinjiang Key Laboratory of Echinococcosis, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Zhigang Tian
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China. .,Institute of Immunology, University of Science and Technology of China, Hefei, China.,Xinjiang Key Laboratory of Echinococcosis, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Cheng Sun
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China. .,Institute of Immunology, University of Science and Technology of China, Hefei, China.,Xinjiang Key Laboratory of Echinococcosis, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
42
|
Pérez-Antón E, Egui A, Thomas MC, Puerta CJ, González JM, Cuéllar A, Segovia M, López MC. Impact of benznidazole treatment on the functional response of Trypanosoma cruzi antigen-specific CD4+CD8+ T cells in chronic Chagas disease patients. PLoS Negl Trop Dis 2018; 12:e0006480. [PMID: 29750791 PMCID: PMC5965897 DOI: 10.1371/journal.pntd.0006480] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 05/23/2018] [Accepted: 04/27/2018] [Indexed: 01/23/2023] Open
Abstract
Background Chagas disease is caused by Trypanosoma cruzi. The persistence of the parasite is associated with the disease chronicity and the impairment of the cellular immune response. It has been reported that the CD4+CD8+ T cell population expands in chronic Chagas disease patients. Few studies have focused on this subset of cells, and very little is known about the impact of antiparasitic treatment on this population. Methodology Thirty-eight chronic Chagas disease patients (20 asymptomatic and 18 symptomatic) and twelve healthy controls were enrolled in this study. Peripheral blood mononuclear cells were stimulated with soluble T. cruzi antigens to analyze the production of cytokines and cytotoxic molecules by CD4+CD8+ T cells before and after benznidazole treatment. Additionally, expression and co-expression of five inhibitory receptors in these patients after treatment were studied using a multiparameter flow cytometry technique. Principal findings The frequency of CD4+CD8+ T cells was higher in chronic Chagas disease patients compared with healthy donors. Furthermore, a higher ratio of CD4+CD8low/CD4+CD8high subpopulations was observed in chronic Chagas disease patients than in healthy donors. Additionally, CD4+CD8+ T cells from these patients expressed and co-expressed higher levels of inhibitory receptors in direct proportion to the severity of the pathology. Benznidazole treatment reduced the frequency of CD4+CD8+ T cells and decreased the ratio of CD4+CD8low/CD4+CD8high subpopulations. The co-expression level of the inhibitory receptor was reduced after treatment simultaneously with the enhancement of the multifunctional capacity of CD4+CD8+ T cells. After treatment, an increase in the frequency of T. cruzi antigen-specific CD4+CD8+ T cells expressing IL-2 and TNF-α was also observed. Conclusions CD4+CD8+ T cells could play an important role in the control of T. cruzi infection since they were able to produce effector molecules for parasite control. Benznidazole treatment partially reversed the exhaustion process caused by T. cruzi infection in these cells with an improvement in the functional response of the T. cruzi antigen-specific CD4+CD8+ T cells. Chagas disease is a neglected tropical disease caused by the intracellular parasite Trypanosoma cruzi. The persistence of the parasite leads to deterioration of the host immune response, which is known as an exhaustion process. This process affects T cell populations, leading to increased expression of inhibitory receptors that leads to a dysfunctional ability to respond to the parasite. CD4+CD8+ T cells form a poorly studied population of T cells in the context of Chagas disease. In this study, as in others previously reported, an increase in the frequency of these cells was observed in chronic Chagas disease patients. In addition, CD4+CD8+ T cells from chronic Chagas disease patients underwent stronger exhaustion processes with more severe disease pathology. A higher level of expression and co-expression of inhibitory receptors was observed in these cells in symptomatic compared with asymptomatic patients. Furthermore, we evaluated whether antiparasitic treatment affected the population of CD4+CD8+ T cells. Our results showed that after treatment, the functional capacity of these cells against the parasite improved. Concomitantly, a partial reversion of this exhaustion process occurred since the co-expression of inhibitory receptors decreased in CD4+CD8+ T cells from chronic patients after treatment.
Collapse
Affiliation(s)
- Elena Pérez-Antón
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas; Granada, Spain
| | - Adriana Egui
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas; Granada, Spain
| | - M. Carmen Thomas
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas; Granada, Spain
| | - Concepción J. Puerta
- Laboratorio de Parasitología Molecular, Pontificia Universidad Javeriana; Bogotá, Colombia
| | - John Mario González
- Grupo de Ciencias Básicas Médicas, Facultad de Medicina, Universidad de los Andes; Bogotá, Colombia
| | - Adriana Cuéllar
- Grupo de Inmunobiología y Biología Celular, Pontificia Universidad Javeriana; Bogotá, Colombia
| | - Manuel Segovia
- Unidad Regional de Medicina Tropical, Hospital Virgen de la Arrixaca; Murcia, Spain
| | - Manuel Carlos López
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas; Granada, Spain
- * E-mail:
| |
Collapse
|
43
|
Wang X, Walter M, Urak R, Weng L, Huynh C, Lim L, Wong CW, Chang WC, Thomas SH, Sanchez JF, Yang L, Brown CE, Pichiorri F, Htut M, Krishnan AY, Forman SJ. Lenalidomide Enhances the Function of CS1 Chimeric Antigen Receptor-Redirected T Cells Against Multiple Myeloma. Clin Cancer Res 2018; 24:106-119. [PMID: 29061640 PMCID: PMC5991104 DOI: 10.1158/1078-0432.ccr-17-0344] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 06/12/2017] [Accepted: 10/16/2017] [Indexed: 12/11/2022]
Abstract
Purpose: Multiple myeloma remains an incurable malignancy of plasma cells despite considerable advances in treatment. The purpose of the study was to develop novel chimeric antigen receptors (CAR) for the treatment of multiple myeloma and explore combinatorial therapy using CAR T cells and immunomodulatory drugs such as lenalidomide for increasing treatment efficacy.Experimental Design: We redirected central memory T cells to express second-generation CAR-specific for CS1 and adoptively transferred them into multiple myeloma tumor-bearing mice to test their anti-multiple myeloma activity. CS1 CAR T cells were transduced and expanded in the presence of lenalidomide in vitro The phenotype and effector function of CS1 CAR T cells treated with and without lenalidomide were compared. Finally, CS1 CAR T cells and lenalidomide were administered to treat multiple myeloma-bearing mice as combinatorial therapy.Results: CS1 CAR T cells exhibited efficient antitumor activity when adoptively transferred into mice. Mechanistic studies indicated that the addition of lenalidomide during CS1 CAR T-cell expansion in vitro enhanced the immune functions of CS1 CAR T cells, including cytotoxicity, memory maintenance, Th1 cytokine production, and immune synapse formation. Furthermore, lenalidomide enhanced the antitumor activity and persistence of adoptively transferred CS1 CAR T cells in vivoConclusions: The study demonstrates that lenalidomide improves the anti-multiple myeloma properties of CS1-directed CAR T cells and provides a basis for a planned clinical trial using the combination of lenalidomide with engineered T cells against CS1 in relapsed myeloma. Clin Cancer Res; 24(1); 106-19. ©2017 AACR.
Collapse
MESH Headings
- Angiogenesis Inhibitors/pharmacology
- Animals
- Cell Line, Tumor
- Cytotoxicity, Immunologic/drug effects
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Immunologic Factors/pharmacology
- Immunological Synapses/immunology
- Immunotherapy, Adoptive
- Lenalidomide/pharmacology
- Mice
- Multiple Myeloma/immunology
- Multiple Myeloma/metabolism
- Multiple Myeloma/pathology
- Multiple Myeloma/therapy
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Signaling Lymphocytic Activation Molecule Family/genetics
- Signaling Lymphocytic Activation Molecule Family/immunology
- T-Cell Antigen Receptor Specificity/drug effects
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Xiuli Wang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California.
| | - Miriam Walter
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Ryan Urak
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Lihong Weng
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Christian Huynh
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Laura Lim
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - ChingLam W Wong
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Wen-Chung Chang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Sandra H Thomas
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - James F Sanchez
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
- Judy and Bernard Briskin Center for Multiple Myeloma, City of Hope, Duarte, California
| | - Lu Yang
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, California
| | - Christine E Brown
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Flavia Pichiorri
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
- Judy and Bernard Briskin Center for Multiple Myeloma, City of Hope, Duarte, California
| | - Myo Htut
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
- Judy and Bernard Briskin Center for Multiple Myeloma, City of Hope, Duarte, California
| | - Amrita Y Krishnan
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
- Judy and Bernard Briskin Center for Multiple Myeloma, City of Hope, Duarte, California
| | - Stephen J Forman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| |
Collapse
|
44
|
Differential Inhibitory Receptor Expression on T Cells Delineates Functional Capacities in Chronic Viral Infection. J Virol 2017; 91:JVI.01263-17. [PMID: 28904197 DOI: 10.1128/jvi.01263-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 08/24/2017] [Indexed: 12/23/2022] Open
Abstract
Inhibitory receptors have been extensively described for their importance in regulating immune responses in chronic infections and cancers. Blocking the function of inhibitory receptors such as PD-1, CTLA-4, 2B4, Tim-3, and LAG-3 has shown promise for augmenting CD8 T cell activity and boosting pathogen-specific immunity. However, the prevalence of inhibitory receptors on CD4 T cells and their relative influence on CD4 T cell functionality in chronic HIV infection remains poorly described. We therefore determined and compared inhibitory receptor expression patterns of 2B4, CTLA-4, LAG-3, PD-1, and Tim-3 on virus-specific CD4 and CD8 T cells in relation to their functional T cell profile. In chronic HIV infection, inhibitory receptor distribution differed markedly between cytokine-producing T cell subsets with, gamma interferon (IFN-γ)- and tumor necrosis factor alpha (TNF-α)-producing cells displaying the highest and lowest prevalence of inhibitory receptors, respectively. Blockade of inhibitory receptors differentially affected cytokine production by cells in response to staphylococcal enterotoxin B stimulation. CTLA-4 blockade increased IFN-γ and CD40L production, while PD-1 blockade strongly augmented IFN-γ, interleukin-2 (IL-2), and TNF-α production. In a Friend retrovirus infection model, CTLA-4 blockade in particular was able to improve control of viral replication. Together, these results show that inhibitory receptor distribution on HIV-specific CD4 T cells varies markedly with respect to the functional subset of CD4 T cells being analyzed. Furthermore, the differential effects of receptor blockade suggest novel methods of immune response modulation, which could be important in the context of HIV vaccination or therapeutic strategies.IMPORTANCE Inhibitory receptors are important for limiting damage by the immune system during acute infections. In chronic infections, however, their expression limits immune system responsiveness. Studies have shown that blocking inhibitory receptors augments CD8 T cell functionality in HIV infection, but their influence on CD4 T cells remains unclear. We assessed the expression of inhibitory receptors on HIV-specific CD4 T cells and their relationship with T cell functionality. We uncovered differences in inhibitory receptor expression depending on the CD4 T cell function. We also found differences in functionality of CD4 T cells following blocking of different inhibitory receptors, and we confirmed our results in a Friend virus retroviral model of infection in mice. Our results show that inhibitory receptor expression on CD4 T cells is linked to CD4 T cell functionality and could be sculpted by blockade of specific inhibitory receptors. These data reveal exciting possibilities for the development of novel treatments and immunotherapeutics.
Collapse
|
45
|
Shehata HM, Murphy AJ, Lee MKS, Gardiner CM, Crowe SM, Sanjabi S, Finlay DK, Palmer CS. Sugar or Fat?-Metabolic Requirements for Immunity to Viral Infections. Front Immunol 2017; 8:1311. [PMID: 29085369 PMCID: PMC5649203 DOI: 10.3389/fimmu.2017.01311] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 09/28/2017] [Indexed: 12/20/2022] Open
Abstract
The realization that an intricate link exists between the metabolic state of immune cells and the nature of the elicited immune responses has brought a dramatic evolution to the field of immunology. We will focus on how metabolic reprogramming through the use of glycolysis and fatty-acid oxidation (sugar or fat) regulates the capacity of immune cells to mount robust and effective immune responses. We will also discuss how fine-tuning sugar and fat metabolism may be exploited as a novel immunotherapeutic strategy to fight viral infections or improve vaccine efficacy.
Collapse
Affiliation(s)
- Hesham M Shehata
- Virology and Immunology, Gladstone Institutes, San Francisco, CA, United States
| | - Andrew J Murphy
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Man Kit Sam Lee
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Clair M Gardiner
- School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland
| | - Suzanne M Crowe
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia
| | - Shomyseh Sanjabi
- Virology and Immunology, Gladstone Institutes, San Francisco, CA, United States
| | - David K Finlay
- School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland
| | - Clovis Steve Palmer
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia.,Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
46
|
Perreau M, Banga R, Pantaleo G. Targeted Immune Interventions for an HIV-1 Cure. Trends Mol Med 2017; 23:945-961. [DOI: 10.1016/j.molmed.2017.08.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/09/2017] [Accepted: 08/14/2017] [Indexed: 01/13/2023]
|
47
|
Ward-Kavanagh LK, Lin WW, Šedý JR, Ware CF. The TNF Receptor Superfamily in Co-stimulating and Co-inhibitory Responses. Immunity 2017; 44:1005-19. [PMID: 27192566 DOI: 10.1016/j.immuni.2016.04.019] [Citation(s) in RCA: 314] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Indexed: 02/08/2023]
Abstract
Cytokines related to tumor necrosis factor (TNF) provide a communication network essential for coordinating multiple cell types into an effective host defense system against pathogens and malignant cells. The pathways controlled by the TNF superfamily differentiate both innate and adaptive immune cells and modulate stromal cells into microenvironments conducive to host defenses. Members of the TNF receptor superfamily activate diverse cellular functions from the production of type 1 interferons to the modulation of survival of antigen-activated T cells. Here, we focus attention on the subset of TNF superfamily receptors encoded in the immune response locus in chromosomal region 1p36. Recent studies have revealed that these receptors use diverse mechanisms to either co-stimulate or restrict immune responses. Translation of the fundamental mechanisms of TNF superfamily is leading to the design of therapeutics that can alter pathogenic processes in several autoimmune diseases or promote immunity to tumors.
Collapse
Affiliation(s)
- Lindsay K Ward-Kavanagh
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Wai Wai Lin
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - John R Šedý
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Carl F Ware
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
48
|
Programmed Cell Death 1 (PD-1) and Cytotoxic T Lymphocyte-Associated Antigen 4 (CTLA-4) in Viral Hepatitis. Int J Mol Sci 2017; 18:ijms18071517. [PMID: 28703774 PMCID: PMC5536007 DOI: 10.3390/ijms18071517] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/03/2017] [Accepted: 07/04/2017] [Indexed: 12/21/2022] Open
Abstract
Virus-specific cluster of differentiation 8 (CD8+) cytotoxic T cells (CTL) recognize viral antigens presented on major histocompatibility complex (MHC) class I chains on infected hepatocytes, with help from CD4+ T cells. However, this CTL response is frequently weak or undetectable in patients with chronic hepatitis B virus (HBV) and hepatitis C virus (HCV) infection. Programmed cell death 1 (PD-1) and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) are receptors in the CD28 family of costimulatory molecules, providing inhibitory signals to T cells. The overexpressions of PD-1 and CTLA-4 in patients with viral infection have been shown to associate with functional impairment of virus-specific T cells. In acute viral hepatitis, PD-1 and CTLA-4 are up-regulated during the symptomatic phase, and then down-regulated after recovery. These findings suggest that PD-1 and CTLA-4 have protective effects as inhibitory molecules to suppress cytotoxic T cells which induce harmful destruction of viral infected hepatocytes in self-limited viral hepatitis. In chronic viral hepatitis, the extended upregulations of PD-1 and CTLA-4 are associated with T cell exhaustion and persistent viral infection, suggesting positive correlations between expression of immune inhibitory factors and the chronicity of viral disease. In this review, we summarize recent literature relating to PD-1, CTLA-4, and other inhibitory receptors in antigen-specific T cell exhaustion in viral hepatitis, including hepatitis A, B, C, and others.
Collapse
|
49
|
Tauriainen J, Scharf L, Frederiksen J, Naji A, Ljunggren HG, Sönnerborg A, Lund O, Reyes-Terán G, Hecht FM, Deeks SG, Betts MR, Buggert M, Karlsson AC. Perturbed CD8 + T cell TIGIT/CD226/PVR axis despite early initiation of antiretroviral treatment in HIV infected individuals. Sci Rep 2017; 7:40354. [PMID: 28084312 PMCID: PMC5233961 DOI: 10.1038/srep40354] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/05/2016] [Indexed: 12/05/2022] Open
Abstract
HIV-specific CD8+ T cells demonstrate an exhausted phenotype associated with increased expression of inhibitory receptors, decreased functional capacity, and a skewed transcriptional profile, which are only partially restored by antiretroviral treatment (ART). Expression levels of the inhibitory receptor, T cell immunoglobulin and ITIM domain (TIGIT), the co-stimulatory receptor CD226 and their ligand PVR are altered in viral infections and cancer. However, the extent to which the TIGIT/CD226/PVR-axis is affected by HIV-infection has not been characterized. Here, we report that TIGIT expression increased over time despite early initiation of ART. HIV-specific CD8+ T cells were almost exclusively TIGIT+, had an inverse expression of the transcription factors T-bet and Eomes and co-expressed PD-1, CD160 and 2B4. HIV-specific TIGIThi cells were negatively correlated with polyfunctionality and displayed a diminished expression of CD226. Furthermore, expression of PVR was increased on CD4+ T cells, especially T follicular helper (Tfh) cells, in HIV-infected lymph nodes. These results depict a skewing of the TIGIT/CD226 axis from CD226 co-stimulation towards TIGIT-mediated inhibition of CD8+ T cells, despite early ART. These findings highlight the importance of the TIGIT/CD226/PVR axis as an immune checkpoint barrier that could hinder future “cure” strategies requiring potent HIV-specific CD8+ T cells.
Collapse
Affiliation(s)
- Johanna Tauriainen
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Lydia Scharf
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Juliet Frederiksen
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Ali Naji
- Division of Transplantation, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anders Sönnerborg
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden.,Unit of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Ole Lund
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Gustavo Reyes-Terán
- Centre for Infectious Diseases Research, National Institute of Respiratory Diseases, Mexico City, Mexico
| | - Frederick M Hecht
- Department of Medicine, University of California, San Francisco Positive Health Program, San Francisco General Hospital, San Francisco, CA, United States of America
| | - Steven G Deeks
- Department of Medicine, University of California, San Francisco Positive Health Program, San Francisco General Hospital, San Francisco, CA, United States of America
| | - Michael R Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Marcus Buggert
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Annika C Karlsson
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
50
|
Zelle-Rieser C, Thangavadivel S, Biedermann R, Brunner A, Stoitzner P, Willenbacher E, Greil R, Jöhrer K. T cells in multiple myeloma display features of exhaustion and senescence at the tumor site. J Hematol Oncol 2016; 9:116. [PMID: 27809856 PMCID: PMC5093947 DOI: 10.1186/s13045-016-0345-3] [Citation(s) in RCA: 226] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/18/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Multiple myeloma is an incurable plasma cell malignancy that is mostly restricted to the bone marrow. Cancer-induced dysfunction of cytotoxic T cells at the tumor site may be responsible for immune evasion and therapeutical failure of immunotherapies. Therefore, enhanced knowledge about the actual status of T cells in myeloma bone marrow is urgently needed. Here, we assessed the expression of inhibitory molecules PD-1, CTLA-4, 2B4, CD160, senescence marker CD57, and CD28 on T cells of naive and treated myeloma patients in the bone marrow and peripheral blood and collected data on T cell subset distribution in both compartments. In addition, T cell function concerning proliferation and expression of T-bet, IL-2, IFNγ, and CD107a was investigated after in vitro stimulation by CD3/CD28. Finally, data was compared to healthy, age-matched donor T cells from both compartments. METHODS Multicolor flow cytometry was utilized for the analyses of surface molecules, intracellular staining of cytokines was also performed by flow cytometry, and proliferation was assessed by 3H-thymidine incorporation. Statistical analyses were performed utilizing unpaired T test and Mann-Whitney U test. RESULTS We observed enhanced T cell exhaustion and senescence especially at the tumor site. CD8+ T cells expressed several molecules associated with T cell exhaustion (PD-1, CTLA-4, 2B4, CD160) and T cell senescence (CD57, lack of CD28). This phenotype was associated with lower proliferative capacity and impaired function. Despite a high expression of the transcription factor T-bet, CD8+ T cells from the tumor site failed to produce IFNγ after CD3/CD28 in vitro restimulation and displayed a reduced ability to degranulate in response to T cell stimuli. Notably, the percentage of senescent CD57+CD28- CD8+ T cells was significantly lower in treated myeloma patients when compared to untreated patients. CONCLUSIONS T cells from the bone marrow of myeloma patients were more severely impaired than peripheral T cells. While our data suggest that terminally differentiated cells are preferentially deleted by therapy, immune-checkpoint molecules were still present on T cells supporting the potential of checkpoint inhibitors to reactivate T cells in myeloma patients in combination therapies. However, additional avenues to restore anti-myeloma T cell responses are urgently needed.
Collapse
Affiliation(s)
| | | | - Rainer Biedermann
- Department of Orthopedic Surgery, Medical University of Innsbruck, Anichstraße 35, Innsbruck, Austria
| | - Andrea Brunner
- Department of Pathology, Medical University of Innsbruck, Müllerstraße 44, Innsbruck, Austria
| | - Patrizia Stoitzner
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Anichstraße 35, Innsbruck, Austria
| | - Ella Willenbacher
- Department of Internal Medicine V, Medical University of Innsbruck, Anichstraße 35, Innsbruck, Austria
| | - Richard Greil
- Tyrolean Cancer Research Institute, Innrain 66, 6020, Innsbruck, Austria.,Salzburg Cancer Research Institute (SCRI), Müllner Hauptstraße 48, 5020, Salzburg, Austria.,Third Medical Department at The Paracelsus Medical University Salzburg, Müllner Hauptstraße 48, Salzburg, Austria
| | - Karin Jöhrer
- Tyrolean Cancer Research Institute, Innrain 66, 6020, Innsbruck, Austria.
| |
Collapse
|