1
|
Bartsch YC, Webb NE, Burgess E, Kang J, Lauffenburger DA, Julg BD. Combinatorial Fc modifications for complementary antibody functionality. MAbs 2025; 17:2465391. [PMID: 39950649 PMCID: PMC11834420 DOI: 10.1080/19420862.2025.2465391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/20/2025] Open
Abstract
Therapeutic monoclonal antibodies (mAbs) can be functionally enhanced via Fc engineering. To determine whether pairs of mAbs with different Fc modifications can be combined for functional complementarity, we investigated the in vitro activity of two HIV-1 mAb libraries, each equipped with 60 engineered Fc variants. Our findings demonstrate that the impact of Fc engineering on Fc functionality is dependent on the specific Fab clone. Notably, combinations of Fc variants of the same Fab specificity exhibited limited enhancement in functional breadth compared to combinations involving two distinct Fabs. This suggests that the strategic selection of complementary Fc modifications can enhance both functional activity and breadth. Furthermore, while some combinations of Fc variants displayed additive functional effects, others were detrimental, suggesting that the functional outcome of Fc mutations is not easily predicted. Collectively, these results provide preliminary evidence supporting the potential of complementary Fc modifications in mAb combinations. Future studies will be essential to identify the optimal Fc modifications that maximize in vivo efficacy.
Collapse
Affiliation(s)
- Yannic C. Bartsch
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts, USA
- Laboratory of Anti-Viral Antibody-Omics, TWINCORE-Institute for Experimental Infection Research, Helmholtz Center for Infection Research (HZI) and Medical School Hannover (MHH) and Cluster of Excellence RESIST (EXC 2155), Hannover, Germany
| | - Nicholas E. Webb
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Eleanor Burgess
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Jaewon Kang
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts, USA
| | | | - Boris D. Julg
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
2
|
Bick MV, Puig E, Beauparlant D, Nedellec R, Burton I, Ardaghi K, Zalunardo TR, Bastidas R, Li X, Guenaga J, Lee WH, Wyatt R, Zhu W, Crispin M, Ozorowski G, Ward AB, Burton DR, Hangartner L. Molecular parameters governing antibody FcγR signaling and effector functions in the context of HIV envelope. Cell Rep 2025; 44:115331. [PMID: 40158219 DOI: 10.1016/j.celrep.2025.115331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 10/29/2024] [Accepted: 01/28/2025] [Indexed: 04/02/2025] Open
Abstract
Antibody effector functions contribute to the immune response to pathogens and can influence the efficacy of antibodies as therapeutics. To date, however, there is limited information on the molecular parameters that govern fragment crystallizable (Fc) effector functions. In this study, using AI-assisted protein design, the influences of binding kinetics, epitope location, and stoichiometry of binding on cellular Fc effector functions were investigated using engineered HIV-1 envelope as a model antigen. For this antigen, stoichiometry of binding was found to be the primary molecular determinant of FcγRIIIa signaling, antibody-dependent cellular cytotoxicity, and antibody-dependent cellular phagocytosis, while epitope location and antibodybinding kinetics, at least in the ranges investigated, were of no substantial impact. These findings are of importance for informing the development of vaccination strategies against HIV-1 and, possibly, other viral pathogens.
Collapse
Affiliation(s)
- Michael V Bick
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA
| | - Eduard Puig
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA
| | - David Beauparlant
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA
| | - Rebecca Nedellec
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA
| | - Iszac Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA
| | - Keihvan Ardaghi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA
| | - Thea R Zalunardo
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA
| | - Raiza Bastidas
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA
| | - Xuduo Li
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA
| | - Javier Guenaga
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92109, USA
| | - Richard Wyatt
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wenwen Zhu
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92109, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrew B Ward
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92109, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Lars Hangartner
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
3
|
Martín Pérez C, Ruiz-Rius S, Ramírez-Morros A, Vidal M, Opi DH, Santamaria P, Blanco J, Vidal-Alaball J, Beeson JG, Molinos-Albert LM, Aguilar R, Ruiz-Comellas A, Moncunill G, Dobaño C. Post-vaccination IgG4 and IgG2 class switch associates with increased risk of SARS-CoV-2 infections. J Infect 2025; 90:106473. [PMID: 40113142 DOI: 10.1016/j.jinf.2025.106473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/28/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
OBJECTIVES Repeated COVID-19 mRNA vaccinations increase SARS-CoV-2 IgG4 antibodies, indicating extensive IgG class switching following the first booster dose. This shift in IgG subclasses raises concerns due to the limited ability of IgG4 to mediate Fc-dependent effector functions. METHODS To assess the impact of IgG4 induction on protective immunity, we analyzed longitudinal SARS-CoV-2 IgG subclasses, C1q and FcγR responses, and neutralizing activity in a well-characterized cohort of healthcare workers in Spain. RESULTS Elevated IgG4 levels and higher ratios of non-cytophilic to cytophilic antibodies after booster vaccination were significantly associated with an increased risk of breakthrough infections (IgG4 HR[10-fold increase]=1.8, 95% CI=1.2-2.7; non-cytophilic to cytophilic ratio HR[10-fold increase]=1.5, 95% CI=1.1-1.9). Moreover, an increased non-cytophilic to cytophilic antibody ratio correlated with reduced functionality, including neutralization. CONCLUSIONS These findings suggest a potential association between IgG4 induction by mRNA vaccination and a higher risk of breakthrough infection, warranting further investigation into vaccination strategies to ensure sustained protection.
Collapse
Affiliation(s)
- Carla Martín Pérez
- ISGlobal, Barcelona, Catalonia, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Sílvia Ruiz-Rius
- ISGlobal, Barcelona, Catalonia, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Anna Ramírez-Morros
- Unitat de Suport a la Recerca de la Catalunya Central, Fundació Institut Universitari per a la Recerca a l'Atenció Primària de Salut Jordi Gol i Gurina, Manresa, Spain
| | - Marta Vidal
- ISGlobal, Barcelona, Catalonia, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - D Herbert Opi
- Burnet Institute, Melbourne, Australia; Department of Infectious Diseases, University of Melbourne, Australia; School of Translational Medicine, Monash University, Australia
| | - Pere Santamaria
- Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain; Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Julià Blanco
- IrsiCaixa, Badalona, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Barcelona, Spain; Department of Medicine. Faculty of Medicine. Universitat de Vic-Central de Catalunya, UVic-UCC, Vic, Spain; Institut Germans Trias I Pujol, IGTP, Badalona, Spain
| | - Josep Vidal-Alaball
- Unitat de Suport a la Recerca de la Catalunya Central, Fundació Institut Universitari per a la Recerca a l'Atenció Primària de Salut Jordi Gol i Gurina, Manresa, Spain; Department of Medicine. Faculty of Medicine. Universitat de Vic-Central de Catalunya, UVic-UCC, Vic, Spain; Health Promotion in Rural Areas Research Group, Gerència d'Atenció Primària i a la Comunitat Catalunya Central, Institut Català de la Salut, Manresa, Spain
| | - James G Beeson
- Burnet Institute, Melbourne, Australia; Department of Infectious Diseases, University of Melbourne, Australia; School of Translational Medicine, Monash University, Australia
| | - Luis M Molinos-Albert
- ISGlobal, Barcelona, Catalonia, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Ruth Aguilar
- ISGlobal, Barcelona, Catalonia, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Anna Ruiz-Comellas
- Unitat de Suport a la Recerca de la Catalunya Central, Fundació Institut Universitari per a la Recerca a l'Atenció Primària de Salut Jordi Gol i Gurina, Manresa, Spain; Department of Medicine. Faculty of Medicine. Universitat de Vic-Central de Catalunya, UVic-UCC, Vic, Spain; Health Promotion in Rural Areas Research Group, Gerència d'Atenció Primària i a la Comunitat Catalunya Central, Institut Català de la Salut, Manresa, Spain; Centre d'Atenció Primària (CAP) Sant Joan de Vilatorrada, Gerència d'Atenció Primària i a la Comunitat Catalunya Central, Institut Català de la Salut, Spain
| | - Gemma Moncunill
- ISGlobal, Barcelona, Catalonia, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Barcelona, Spain.
| | - Carlota Dobaño
- ISGlobal, Barcelona, Catalonia, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Barcelona, Spain.
| |
Collapse
|
4
|
Alrubayyi A, Hassan AS, Hare J, Hsieh A, Gilmour J, Price MA, Kilembe W, Karita E, Ruzagira E, Esbjörnsson J, Sanders EJ, Peppa D, Rowland-Jones SL. An early functional adaptive NK cell signature drives optimal CD8 + T-cell activation and predicts sustained HIV-1 viral control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.17.643703. [PMID: 40166297 PMCID: PMC11956991 DOI: 10.1101/2025.03.17.643703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
A better understanding of the immune responses associated with future viral control in humans during acute HIV-1 infection (AHI) is critical to inform vaccines and immune-based therapeutics. Natural killer (NK) cells and CD8 + T-cells are pivotal in antiviral defence, yet the dynamics and complementary roles of these effector subsets during AHI with different HIV-1 subtypes remain poorly understood. Access to a unique patient cohort recruited during and post-peak HIV-1 viral load with different HIV-1 subtypes and followed up longitudinally in the absence of antiretroviral therapy up to six years post estimated date of infection (EDI) provided a rare opportunity to fill this knowledge gap. Our data show an early expansion of FcεRγ - CD57 + NK cells with classical adaptive traits concomitant with an enhanced capacity for antibody-dependent cellular cytotoxicity (ADCC) and reactivity against HIV-1 antigens. This distinctive NK cell profile was more abundant in donors with subtype A infection compared to non-subtype A, partially driven by elevated pro-inflammatory cytokine levels and changes in the epigenetic landscape. The accumulation of adaptive NK cells during the first month of infection contributed to the optimal activation of CD8 + T-cells, promoting virus-specific responses. Notably, individuals with higher levels of FcεRγ - CD57 + adaptive NK cells during the first month of infection were more likely to exhibit long-term viral control in the absence of ART. These findings underscore the critical role of early, high-magnitude adaptive NK cell responses in CD8 + T-cell activation and subsequent immune control. This work provides novel insights into the correlates of protective immunity against HIV-1 infection, with implications for preventative or therapeutic vaccine strategies aimed at promoting adaptive NK cell responses. One Sentence Summary Early expansion of adaptive NK cells during acute HIV-1 infection promotes long-term viral control.
Collapse
|
5
|
Neyrinck-Leglantier D, Tamagne M, Ben Rayana R, Many S, Pinheiro MK, Delorme AS, Andrieu M, Boilard E, Cognasse F, Hamzeh-Cognasse H, Perez-Patrigeon S, Lelievre JD, Pirenne F, Gallien S, Vingert B. Remodeling of immune system functions by extracellular vesicles. Front Immunol 2025; 16:1549107. [PMID: 40181981 PMCID: PMC11966064 DOI: 10.3389/fimmu.2025.1549107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/17/2025] [Indexed: 04/05/2025] Open
Abstract
Introduction The treatment of chronic viral infections can often bring viral replication under control. However, chronic immune activation persists and can lead to the development of comorbid conditions, such as cardiovascular disease and cancer. This is particularly true for people living with HIV (PLWH), who have significantly more extracellular vesicles from membrane budding, also called plasma microparticles (MPs), than healthy individuals (HDs), and a much more immunomodulatory phenotype. We hypothesized that the number and phenotypic heterogeneity of MPs can trigger a functional remodeling of immune responses in PLWH, preventing full immune restoration. Methods We investigated the rapid impact of three types of MPs - derived from membrane budding in platelets (CD41a+ PMPs), monocytes (CD14+ MMPs) and lymphocytes (CD3+ LMPs) in the plasma of PLWH or HDs-on four cell types (CD4+ and CD8+T lymphocytes, monocytes and DCs). Results These investigations of the short multiple interactions and functions of MPs with these cells revealed an increase in the secretion of cytokines such as IFNg, IL2, IL6, IL12, IL17 and TNFa by the immune cells studied following interactions with MPs. We show that this functional remodeling of immune cells depends not only on the number, but also on the phenotype of MPs. Conclusion These data suggest that the large numbers of MPs and their impact on functional remodeling in PLWH may be incompatible with the effective control of chronic infections, potentially leading to chronic immune activation and the onset of comorbid diseases.
Collapse
Affiliation(s)
- Deborah Neyrinck-Leglantier
- Univ Paris Est-Creteil (UPEC), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Mondor de la Recherche Biomédicale (IMRB), Creteil, France
- Etablissement Français du Sang (EFS), Ivry-sur-Seine, France
- Laboratory of Excellence, Biogénèse et Pathologies du Globule Rouge (GR-Ex), Paris, France
| | - Marie Tamagne
- Univ Paris Est-Creteil (UPEC), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Mondor de la Recherche Biomédicale (IMRB), Creteil, France
- Etablissement Français du Sang (EFS), Ivry-sur-Seine, France
- Laboratory of Excellence, Biogénèse et Pathologies du Globule Rouge (GR-Ex), Paris, France
| | - Raida Ben Rayana
- Service de Maladies Infectieuses et Immunologie Clinique, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), Créteil, France
| | - Souganya Many
- Institut Cochin, Inserm U1016, Centre National de la Recherche Scientifique (CNRS) UMR8104, Université Paris-Cité, Paris, France
| | - Marion Klea Pinheiro
- Univ Paris Est-Creteil (UPEC), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Mondor de la Recherche Biomédicale (IMRB), Creteil, France
- Etablissement Français du Sang (EFS), Ivry-sur-Seine, France
- Laboratory of Excellence, Biogénèse et Pathologies du Globule Rouge (GR-Ex), Paris, France
| | - Adèle Silane Delorme
- Univ Paris Est-Creteil (UPEC), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Mondor de la Recherche Biomédicale (IMRB), Creteil, France
- Etablissement Français du Sang (EFS), Ivry-sur-Seine, France
- Laboratory of Excellence, Biogénèse et Pathologies du Globule Rouge (GR-Ex), Paris, France
| | - Muriel Andrieu
- Institut Cochin, Inserm U1016, Centre National de la Recherche Scientifique (CNRS) UMR8104, Université Paris-Cité, Paris, France
| | - Eric Boilard
- Faculté de Médecine and Centre de Recherche ARThrite, Université Laval, Québec, QC, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
| | - Fabrice Cognasse
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Etienne, France
- Univ Jean Monnet, Mines Saint-Étienne, INSERM, U1059 Sainbiose, Saint-Étienne, France
| | - Hind Hamzeh-Cognasse
- Univ Jean Monnet, Mines Saint-Étienne, INSERM, U1059 Sainbiose, Saint-Étienne, France
| | | | - Jean-Daniel Lelievre
- Service de Maladies Infectieuses et Immunologie Clinique, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), Créteil, France
| | - France Pirenne
- Univ Paris Est-Creteil (UPEC), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Mondor de la Recherche Biomédicale (IMRB), Creteil, France
- Etablissement Français du Sang (EFS), Ivry-sur-Seine, France
- Laboratory of Excellence, Biogénèse et Pathologies du Globule Rouge (GR-Ex), Paris, France
| | - Sébastien Gallien
- Service de Maladies Infectieuses et Immunologie Clinique, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), Créteil, France
| | - Benoît Vingert
- Univ Paris Est-Creteil (UPEC), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Mondor de la Recherche Biomédicale (IMRB), Creteil, France
- Etablissement Français du Sang (EFS), Ivry-sur-Seine, France
- Laboratory of Excellence, Biogénèse et Pathologies du Globule Rouge (GR-Ex), Paris, France
| |
Collapse
|
6
|
Kannan D, Wang E, Deeks SG, Lewin SR, Chakraborty AK. Mechanism for evolution of diverse autologous antibodies upon broadly neutralizing antibody therapy of people with HIV. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.05.641732. [PMID: 40161612 PMCID: PMC11952291 DOI: 10.1101/2025.03.05.641732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Antiretroviral therapy (ART) inhibits Human Immunodeficiency Virus (HIV) replication to maintain undetectable viral loads in people living with HIV, but does not result in a cure. Due to the significant challenges of lifelong ART for many, there is strong interest in therapeutic strategies that result in cure. Recent clinical trials have shown that administration of broadly neutralizing antibodies (bnAbs) when there is some viremia can lead to ART-free viral control in some people; however, the underlying mechanisms are unclear. Our computational modeling shows that bnAbs administered in the presence of some viremia promote the evolution of autologous antibodies (aAbs) that target diverse epitopes of HIV spike proteins. This "net" of polyclonal aAbs could confer control since evasion of this response would require developing mutations in multiple epitopes. Our results provide a common mechanistic framework underlying recent clinical observations upon bnAb/ART therapy, and they should also motivate and inform new trials.
Collapse
Affiliation(s)
- Deepti Kannan
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eric Wang
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Steven G. Deeks
- Department of Medicine, University of California, San Francisco, USA
| | - Sharon R. Lewin
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
| | - Arup K. Chakraborty
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
7
|
Rubio-Casillas A, Redwan EM, Uversky VN. More antibodies are not always better: Fc effector functions play a critical role in SARS-CoV-2 infection and protection. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2025; 213:413-447. [PMID: 40246351 DOI: 10.1016/bs.pmbts.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Traditional vaccinology has primarily focused on neutralizing antibody titers as the main correlate of vaccine efficacy, often overlooking the multifaceted roles of antibody Fc effector functions in orchestrating protective immune responses. Fc-mediated immune responses play a pivotal role in immune modulation and pathogen clearance. Emerging evidence from natural infections and vaccine studies highlights the critical contribution of Fc effector functions in determining the quality and durability of immunity. This work explores the limitations of current vaccine evaluation paradigms that prioritize neutralization over Fc effector mechanisms. It also describes findings from a study showing an unexpected role for SARS-CoV-2 anti-spike antibodies: both convalescent plasma and patient-derived monoclonal antibodies (mAbs) lead to maximum phagocytic capacity by monocytes at low concentrations, whereas at higher concentrations the phagocytic capacity was reduced. Given that the severity of COVID-19 disease and antibody titers are strongly positively correlated, this work challenges the paradigm that high antibodies offer better protection against severe disease. It is proposed that humoral and cellular responses elicited by vaccination should never be higher than those produced by natural infection. By integrating antibody Fc effector functions into vaccine development, a paradigm shift is proposed that emphasizes synergic antibody responses. Such an approach could transform vaccine efficacy assessment, enhance protection against dangerous pathogens, and drive innovation in vaccine design.
Collapse
Affiliation(s)
- Alberto Rubio-Casillas
- Autlan Regional Hospital, Jalisco Health Services, Autlan, Jalisco, Mexico; Biology Laboratory, Autlan Regional Preparatory School, University of Guadalajara, Autlan, Jalisco, Mexico.
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg El-Arab, Alexandria, Egypt
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States; USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
8
|
Deng Z, Yan H, Lambotte O, Moog C, Su B. HIV controllers: hope for a functional cure. Front Immunol 2025; 16:1540932. [PMID: 40070826 PMCID: PMC11893560 DOI: 10.3389/fimmu.2025.1540932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/07/2025] [Indexed: 03/14/2025] Open
Abstract
Elite controllers (ECs) and post-treatment controllers (PTCs) represent important models for achieving a functional cure for HIV. This review synthesizes findings from immunological, genetic, and virological studies to compare the mechanisms underlying HIV suppression in ECs and PTCs. Although ECs maintain viral control without antiretroviral therapy (ART), PTCs achieve suppression following ART discontinuation. Both groups rely on adaptive and innate immunity, host genetic factors, and characteristics of the HIV reservoir; however, they exhibit distinct immune responses and genetic profiles. These differences provide insights into strategies for sustained ART-free remission. Understanding the shared and unique mechanisms in ECs and PTCs can inform the development of novel therapeutic approaches, including immune-based therapies and genome editing, to achieve a functional cure for HIV-1.
Collapse
Affiliation(s)
- Zhuoya Deng
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Sino-French Joint Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Hongxia Yan
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Sino-French Joint Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Olivier Lambotte
- University Paris Saclay, AP-HP, Bicêtre Hospital, UMR1184 INSERM CEA, Le Kremlin Bicêtre, France
| | - Christiane Moog
- Sino-French Joint Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S 1109, Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Sino-French Joint Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Central Laboratory of Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Nohara J, Evangelous T, Berry M, Beck W, Mudrak S, Jha S, Reeves RK, Wiehe KJ, Pollara J, Tomaras GD, Bradley T, Ferrari G. Increased Chemokine Production is a Hallmark of Rhesus Macaque Natural Killer Cells Mediating Robust Anti-HIV Envelope-Specific Antibody-Dependent Cell-Mediated Cytotoxicity. Pathog Immun 2025; 10:49-79. [PMID: 39911143 PMCID: PMC11792536 DOI: 10.20411/pai.v10i1.734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 12/02/2024] [Indexed: 02/07/2025] Open
Abstract
Background Antibody-dependent cell-mediated cytotoxic (ADCC) response mediated by natural killer (NK) cells correlates with decreased infection risk in studies involving simian immunodeficiency virus (SIV)/simian-human immunodeficiency virus (SHIV), and human immunodeficiency virus (HIV) vaccine candidates. Currently, the heterogeneities of the functional subset of rhesus macaque natural killer (RMNK) cells are under-characterized. Method We engaged the RMNK cells with ADCC-mediating anti-HIV-1 monoclonal antibodies (ADCCAbs) or anti-CD16 antibodies and used CD107a expression as the surrogate marker for RMNK cells actively involved in ADCC. CD107a+ and CD107a- populations were analyzed individually using single-cell RNA sequencing. Results Subsets of CD107a+ RMNK cells produced more chemokines than the others, suggesting that these cells not only eliminate infected cells but also provide immunoregulatory signals and potentially curb HIV-1 replication. Crosslinking of Fc gamma receptor IIIa via anti-CD16 antibodies resulted in a significantly higher percentage of degranulating cells than via ADCCAbs. However, the magnitude of degranulation and chemokine production was reduced by 6- to 30-fold. Conclusion The quality and quantity of receptor engagement are important determinants of achieving an optimal level of the RMNK response.
Collapse
Affiliation(s)
- Junsuke Nohara
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC
- Department of Surgery, Duke University School of Medicine, Durham, NC
| | - Tyler Evangelous
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC
| | - Madison Berry
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC
| | - Whitney Beck
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC
| | - Sarah Mudrak
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC
- Department of Surgery, Duke University School of Medicine, Durham, NC
| | - Shalini Jha
- Department of Surgery, Duke University School of Medicine, Durham, NC
| | - R. Keith Reeves
- Department of Surgery, Duke University School of Medicine, Durham, NC
- Duke Research and Discovery at RTP, Duke University Health System, Durham, NC
- Center for Human Systems Immunology, Duke University, Durham, NC
- Department of Pathology, Duke University School of Medicine, Durham, NC
| | - Kevin J. Wiehe
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC
| | - Justin Pollara
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC
- Department of Surgery, Duke University School of Medicine, Durham, NC
- Center for Human Systems Immunology, Duke University, Durham, NC
| | - Georgia D. Tomaras
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC
- Department of Surgery, Duke University School of Medicine, Durham, NC
- Center for Human Systems Immunology, Duke University, Durham, NC
| | - Todd Bradley
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO
- Departments of Pediatrics and Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, MO
- Department of Pediatrics, UMKC School of Medicine, Kansas City, MO
| | - Guido Ferrari
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC
- Department of Surgery, Duke University School of Medicine, Durham, NC
- Center for Human Systems Immunology, Duke University, Durham, NC
| |
Collapse
|
10
|
Mouquet H. Humoral immunity in HIV-1 post-treatment controllers. Curr Opin HIV AIDS 2025; 20:80-85. [PMID: 39633540 DOI: 10.1097/coh.0000000000000893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
PURPOSE OF REVIEW Decoding the HIV-1 immune response, including its humoral arm, in post-treatment controllers (PTCs) is paramount to unveil immune correlates of viral control, which could help developing novel strategies towards HIV-1 remission. Here, we review novel findings on the humoral response to HIV-1 in PTCs. RECENT FINDINGS New data reveal the heterogeneity of humoral immune profiles in PTCs, principally influenced by viral exposure and dynamics. Stably aviremic PTCs, akin early ART-treated individuals, show minimal antibody B-cell response. Conversely, virally exposed PTCs develop functionally coordinated and effective humoral responses to HIV-1. They can produce antibodies cross-neutralizing heterologous HIV-1 viruses, including broadly neutralizing antibodies (bNAbs) exerting selective immune pressure. PTCs also elicit neutralizing antibodies against contemporaneous autologous viruses presumed to play a major role in sustaining viral suppression. SUMMARY The immune mechanisms underlying virologic control in PTCs likely involve various immune effectors. Notably, functional HIV-1 humoral responses can generate bNAbs and autologous neutralizing antibodies; however, their exact contribution to maintaining long-term control of plasma viremia and the precise mechanisms driving their induction require further investigation.
Collapse
Affiliation(s)
- Hugo Mouquet
- Institut Pasteur, Université Paris Cité, Humoral Immunology Unit, Paris, France
| |
Collapse
|
11
|
Zhu X, Luo Z, Leonard RA, Hamele CE, Spreng RL, Heaton NS. Administration of antigenically distinct influenza viral particle combinations as an influenza vaccine strategy. PLoS Pathog 2025; 21:e1012878. [PMID: 39841684 PMCID: PMC11753672 DOI: 10.1371/journal.ppat.1012878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/02/2025] [Indexed: 01/24/2025] Open
Abstract
One approach for developing a more universal influenza vaccine is to elicit strong immune responses against canonically immunosubdominant epitopes in the surface exposed viral glycoproteins. While standard vaccines typically induce responses directed primarily against mutable epitopes in the hemagglutinin (HA) head domain, there are generally limited or variable responses directed against epitopes in the relatively more conserved HA stalk domain and neuraminidase (NA) proteins. Here we describe a vaccine approach that utilizes a combination of wildtype (WT) influenza virus particles along with virus particles engineered to display a trimerized HA stalk in place of the full-length HA protein to elicit both responses simultaneously. After initially generating the "headless" HA-containing viral particles in the A/Hawaii/70/2019 (HI/19) genetic background and demonstrating the ability to elicit protective immune responses directed against the HA-stalk and NA, we co-formulated those virions with unmodified WT viral particles. The combination vaccine elicited "hybrid" and protective responses directed against the HA-head, HA-stalk, and NA proteins in both naïve and pre-immune mice and ferrets. Collectively, our results highlight a potentially generalizable method combining viral particles with differential antigenic compositions to elicit broader immune responses that may lead to more durable protection from influenza disease post-vaccination.
Collapse
Affiliation(s)
- Xinyu Zhu
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Zhaochen Luo
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Rebecca A. Leonard
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Cait E. Hamele
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Rachel L. Spreng
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Nicholas S. Heaton
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| |
Collapse
|
12
|
Yu F, Zhu Y, Li S, Hao L, Li N, Ye F, Jiang Z, Hu X. Dysfunction and regulatory interplay of T and B cells in chronic hepatitis B: immunotherapy and emerging antiviral strategies. Front Cell Infect Microbiol 2024; 14:1488527. [PMID: 39717542 PMCID: PMC11663751 DOI: 10.3389/fcimb.2024.1488527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/20/2024] [Indexed: 12/25/2024] Open
Abstract
In the context of chronic hepatitis B virus (HBV) infection, the continuous replication of HBV within host hepatocytes is a characteristic feature. Rather than directly causing hepatocyte destruction, this replication leads to immune dysfunction and establishes a state of T-B immune tolerance. Successful clearance of the HBV virus is dependent on the close collaboration between humoral and cellular immunity. Humoral immunity, mediated by B-cell subpopulations, and cellular immunity, dominated by T-cell subpopulations show varying degrees of dysfunction during chronic hepatitis B (CHB). Notably, not all T- and B-cells produce positive immune responses. This review examine the most recent developments in the mutual regulation of T-B cells during chronic HBV infection. Our focus is on the prevailing immunotherapeutic strategies, such as T cell engineering, HBV-related vaccines, PD-1 inhibitors, and Toll-like receptor agonists. While nucleos(t)ide analogues (NUCs) and interferons have notable limitations, including inadequate viral suppression, drug resistance, and adverse reactions, several HBV entry inhibitors have shown promising clinical efficacy. To overcome the challenges posed by NUCs or monotherapy, the combination of immunotherapy and novel antiviral agents presents a promising avenue for future CHB treatment and potential cure.
Collapse
Affiliation(s)
- Fei Yu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yue Zhu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shenghao Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Liyuan Hao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Na Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fanghang Ye
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhi Jiang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
13
|
Karthigeyan KP, Binuya C, Vuong K, Permar SR, Nelson AN. Research on Maternal Vaccination for HIV Prevention. Clin Perinatol 2024; 51:769-782. [PMID: 39487019 PMCID: PMC11531644 DOI: 10.1016/j.clp.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Despite increased uptake of antiretroviral therapy (ART) among pregnant people living with human immunodeficiency virus (HIV), vertical transmission remains the most important route of pediatric HIV acquisition. The numbers of HIV acquisitions in infancy have remained alarmingly stagnant in recent years. It is evident that additional strategies that can synergize with ART will be required to end the pediatric HIV epidemic. In this review, we discuss the potential for immune-based interventions that can be administered in conjunction with current ART-based strategies to the birthing parent for prevention of vertical transmission of HIV-1, and the potential challenges associated with each approach.
Collapse
Affiliation(s)
- Krithika P Karthigeyan
- Department of Pediatrics, Weill Cornell Medicine, 413 East 69th Street, BB-869E, New York City, NY 10021, USA
| | - Christian Binuya
- Department of Pediatrics, Weill Cornell Medicine, 413 East 69th Street, BB-869E, New York City, NY 10021, USA
| | - Kenneth Vuong
- Department of Pediatrics, Weill Cornell Medicine, 413 East 69th Street, BB-869E, New York City, NY 10021, USA
| | - Sallie R Permar
- Department of Pediatrics, Weill Cornell Medicine, Drukier Institute for Children's Health, 413 East 69th Street, New York City, NY 10021, USA.
| | - Ashley N Nelson
- Department of Pediatrics, Weill Cornell Medicine, Drukier Institute for Children's Health, 413 East 69th Street, New York City, NY 10021, USA.
| |
Collapse
|
14
|
Grobben M, Bakker M, Schriek AI, Levels LJ, Umotoy JC, Tejjani K, van Breemen MJ, Lin RN, de Taeye SW, Ozorowski G, Kootstra NA, Ward AB, Kent SJ, Hogarth PM, Wines BD, Sanders RW, Chung AW, van Gils MJ. Polyfunctionality and breadth of HIV-1 antibodies are associated with delayed disease progression. PLoS Pathog 2024; 20:e1012739. [PMID: 39661636 PMCID: PMC11634010 DOI: 10.1371/journal.ppat.1012739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 11/09/2024] [Indexed: 12/13/2024] Open
Abstract
HIV-1 infection leads to chronic disease requiring life-long treatment and therefore alternative therapeutics, a cure and/or a protective vaccine are needed. Antibody-mediated effector functions could have a role in the fight against HIV-1. However, the properties underlying the potential beneficial effects of antibodies during HIV-1 infection are poorly understood. To identify a specific profile of antibody features associated with delayed disease progression, we studied antibody polyfunctionality during untreated HIV-1 infection in the well-documented Amsterdam Cohort Studies. Serum samples were analyzed from untreated individuals with HIV-1 at approximately 6 months (n = 166) and 3 years (n = 382) post-seroconversion (post-SC). A Luminex antibody Fc array was used to profile 15 different Fc features for serum antibodies against 20 different HIV-1 envelope glycoprotein antigens and the resulting data was also compared with data on neutralization breadth. We found that high HIV-1 specific IgG1 levels and low IgG2 and IgG4 levels at 3 years post-SC were associated with delayed disease progression. Moreover, delayed disease progression was associated with a broad and polyfunctional antibody response. Specifically, the capacity to interact with all Fc γ receptors (FcγRs) and C1q, and in particular with FcγRIIa, correlated positively with delayed disease progression. There were strong correlations between antibody Fc features and neutralization breadth and several antibody features that were associated with delayed disease progression were also associated with the development of broad and potent antibody neutralization. In summary, we identified a strong association between broad, polyfunctional antibodies and delayed disease progression. These findings contribute new information for the fight against HIV-1, especially for new antibody-based therapy and cure strategies.
Collapse
Affiliation(s)
- Marloes Grobben
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Margreet Bakker
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Angela I. Schriek
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Liesbeth J.J. Levels
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Jeffrey C. Umotoy
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Khadija Tejjani
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Mariëlle J. van Breemen
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Ryan N. Lin
- The Scripps Research Institute, Department of Structural Biology and Computational Biology, La Jolla, California, United States of America
| | - Steven W. de Taeye
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Gabriel Ozorowski
- The Scripps Research Institute, Department of Structural Biology and Computational Biology, La Jolla, California, United States of America
| | - Neeltje A. Kootstra
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
- Amsterdam UMC, location University of Amsterdam, Department of Experimental Immunology, Amsterdam, The Netherlands
| | - Andrew B. Ward
- The Scripps Research Institute, Department of Structural Biology and Computational Biology, La Jolla, California, United States of America
| | - Stephen J. Kent
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Department of Microbiology and Immunology, Melbourne, Australia
- Alfred Hospital and Central Clinical School, Monash University, Melbourne Sexual Health Centre and Department of Infectious Diseases, Melbourne, Australia
| | - P. Mark Hogarth
- Burnet Institute, Immune Therapies Group, Melbourne, Australia
- Central Clinical School, Monash University, Department of Immunology, Melbourne, Australia
| | - Bruce D. Wines
- Burnet Institute, Immune Therapies Group, Melbourne, Australia
- Central Clinical School, Monash University, Department of Immunology, Melbourne, Australia
| | - Rogier W. Sanders
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
- Weill Medical College of Cornell University, Department of Microbiology and Immunology, New York, New York, United States of America
| | - Amy W. Chung
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Department of Microbiology and Immunology, Melbourne, Australia
| | - Marit J. van Gils
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Huber A, Baas FS, van der Ven AJAM, Dos Santos JC. Innate Immune Cell Functions Contribute to Spontaneous HIV Control. Curr HIV/AIDS Rep 2024; 22:6. [PMID: 39614998 PMCID: PMC11608392 DOI: 10.1007/s11904-024-00713-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2024] [Indexed: 12/07/2024]
Abstract
PURPOSE OF REVIEW To review the role of innate immune cells in shaping the viral reservoir and maintenance of long-term viral control of spontaneous Elite and Viremic HIV controllers. RECENT FINDINGS HIV controllers exhibit a smaller and transcriptionally suppressed viral reservoir. Different studies report that early responses from innate cells play a pivotal role in this reservoir configuration. NK cells, particularly those with cytotoxic activity and polyfunctional monocytes, have been linked to viral control, and DCs may contribute through early viral sensing and activation of adaptive responses. In some cases, cytotoxic NK cells appeared before HIV-specific CD8 + T cells, underscoring their importance in early viral suppression. Innate immune cells, including NK cells, monocytes, DCs, and γδ T-cells, are crucial in shaping the viral reservoir in HIV controllers. Early, robust innate responses may help to maintain long-term viral suppression and offer insights into potential therapeutic approaches.
Collapse
Affiliation(s)
- Alisa Huber
- Department of Internal Medicine and Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA, Nijmegen, The Netherlands
| | - Floor S Baas
- Department of Internal Medicine and Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA, Nijmegen, The Netherlands
| | - Andre J A M van der Ven
- Department of Internal Medicine and Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA, Nijmegen, The Netherlands
| | - Jéssica C Dos Santos
- Department of Internal Medicine and Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
16
|
Naidoo KK, Altfeld M. The Role of Natural Killer Cells and Their Metabolism in HIV-1 Infection. Viruses 2024; 16:1584. [PMID: 39459918 PMCID: PMC11512232 DOI: 10.3390/v16101584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Natural killer (NK) cells are multifaceted innate effector cells that critically influence antiviral immunity, and several protective NK cell features that modulate HIV-1 acquisition and viral control have been described. Chronic HIV-1 infection leads to NK cell impairment that has been associated with metabolic dysregulations. Therapeutic approaches targeting cellular immune metabolism represent potential novel interventions to reverse defective NK cell function in people living with HIV.
Collapse
Affiliation(s)
- Kewreshini K. Naidoo
- Department of Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany
| | - Marcus Altfeld
- Department of Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany
- German Center for Infection Disease (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20251 Hamburg, Germany
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| |
Collapse
|
17
|
Grant-McAuley W, Morgenlander WR, Ruczinski I, Kammers K, Laeyendecker O, Hudelson SE, Thakar M, Piwowar-Manning E, Clarke W, Breaud A, Ayles H, Bock P, Moore A, Kosloff B, Shanaube K, Meehan SA, van Deventer A, Fidler S, Hayes R, Larman HB, Eshleman SH. Identification of antibody targets associated with lower HIV viral load and viremic control. PLoS One 2024; 19:e0305976. [PMID: 39288118 PMCID: PMC11407625 DOI: 10.1371/journal.pone.0305976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/09/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND High HIV viral loads (VL) are associated with increased morbidity, mortality, and on-going transmission. HIV controllers maintain low VLs in the absence of antiretroviral therapy (ART). We previously used a massively multiplexed antibody profiling assay (VirScan) to compare antibody profiles in HIV controllers and persons living with HIV (PWH) who were virally suppressed on ART. In this report, we used VirScan to evaluate whether antibody reactivity to specific HIV targets and broad reactivity across the HIV genome was associated with VL and controller status 1-2 years after infection. METHODS Samples were obtained from participants who acquired HIV infection in a community-randomized trial in Africa that evaluated an integrated strategy for HIV prevention (HPTN 071 PopART). Controller status was determined using VL and antiretroviral (ARV) drug data obtained at the seroconversion visit and 1 year later. Viremic controllers had VLs <2,000 copies/mL at both visits; non-controllers had VLs >2,000 copies/mL at both visits. Both groups had no ARV drugs detected at either visit. VirScan testing was performed at the second HIV-positive visit (1-2 years after HIV infection). RESULTS The study cohort included 13 viremic controllers and 64 non-controllers. We identified ten clusters of homologous peptides that had high levels of antibody reactivity (three in gag, three in env, two in integrase, one in protease, and one in vpu). Reactivity to 43 peptides (eight unique epitopes) in six of these clusters was associated with lower VL; reactivity to six of the eight epitopes was associated with HIV controller status. Higher aggregate antibody reactivity across the eight epitopes (more epitopes targeted, higher mean reactivity across all epitopes) and across the HIV genome was also associated with lower VL and controller status. CONCLUSIONS We identified HIV antibody targets associated with lower VL and HIV controller status 1-2 years after infection. Robust aggregate responses to these targets and broad antibody reactivity across the HIV genome were also associated with lower VL and controller status. These findings provide novel insights into the relationship between humoral immunity and viral containment that could help inform the design of antibody-based approaches for reducing HIV VL.
Collapse
Affiliation(s)
- Wendy Grant-McAuley
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - William R. Morgenlander
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Ingo Ruczinski
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Kai Kammers
- Quantitative Sciences Division, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Oliver Laeyendecker
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Sarah E. Hudelson
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Manjusha Thakar
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Estelle Piwowar-Manning
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - William Clarke
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Autumn Breaud
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Helen Ayles
- Zambart, University of Zambia School of Public Health, Lusaka, Zambia
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Peter Bock
- Desmond Tutu TB Center, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Ayana Moore
- FHI 360, Durham, North Carolina, United States of America
| | - Barry Kosloff
- Zambart, University of Zambia School of Public Health, Lusaka, Zambia
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Kwame Shanaube
- Zambart, University of Zambia School of Public Health, Lusaka, Zambia
| | - Sue-Ann Meehan
- Desmond Tutu TB Center, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Anneen van Deventer
- Desmond Tutu TB Center, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Sarah Fidler
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Richard Hayes
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - H. Benjamin Larman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Susan H. Eshleman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | | |
Collapse
|
18
|
Sánchez-Gaona N, Gallego-Cortés A, Astorga-Gamaza A, Rallón N, Benito JM, Ruiz-Mateos E, Curran A, Burgos J, Navarro J, Suanzes P, Falcó V, Genescà M, Buzon MJ. NKG2C and NKG2A coexpression defines a highly functional antiviral NK population in spontaneous HIV control. JCI Insight 2024; 9:e182660. [PMID: 39288262 PMCID: PMC11529982 DOI: 10.1172/jci.insight.182660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024] Open
Abstract
Elite controllers (ECs), a unique group of people with HIV (PWH), exhibit remarkable control of viral replication in the absence of antiretroviral therapy. In this study, we comprehensively characterized the NK cell repertoire in ECs after long-term viral control. Phenotypic profiling of NK cells revealed profound differences compared with other PWH, but marked similarities to uninfected individuals, with a distinctive prevalence of NKG2C+CD57+ memory-like NK cells. Functional analyses indicated that ECs had limited production of functional molecules upon NK stimulation and consequently reduced natural cytotoxicity against non-HIV target cells. Importantly, ECs showed an exceptional ability to kill primary HIV-infected cells by the antibody-dependent cell cytotoxicity adaptive mechanism, which was achieved by a specific memory-like NK population expressing CD16, NKG2A, NKG2C, CD57, and CXCR3. In-depth single-cell RNA-seq unveiled a unique transcriptional signature in these NK cells linked to increased cell metabolism, migration, chemotaxis, effector functions, cytokine secretion, and antiviral response. Our findings underscore a pivotal role of NK cells in the immune control of HIV and identify specific NK cells as emerging targets for immunotherapies.
Collapse
Affiliation(s)
- Nerea Sánchez-Gaona
- Infectious Diseases Department, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ana Gallego-Cortés
- Infectious Diseases Department, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Antonio Astorga-Gamaza
- Infectious Diseases Department, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Norma Rallón
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | - José Miguel Benito
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | - Ezequiel Ruiz-Mateos
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, Consejo Superior de Investigaciones Científicas (CSIC), University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | - Adrian Curran
- Infectious Diseases Department, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joaquin Burgos
- Infectious Diseases Department, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jordi Navarro
- Infectious Diseases Department, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Paula Suanzes
- Infectious Diseases Department, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Vicenç Falcó
- Infectious Diseases Department, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Meritxell Genescà
- Infectious Diseases Department, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria J. Buzon
- Infectious Diseases Department, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
19
|
Wang Q, Nag D, Baldwin SL, Coler RN, McNamara RP. Antibodies as key mediators of protection against Mycobacterium tuberculosis. Front Immunol 2024; 15:1430955. [PMID: 39286260 PMCID: PMC11402706 DOI: 10.3389/fimmu.2024.1430955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/13/2024] [Indexed: 09/19/2024] Open
Abstract
Tuberculosis (TB) is caused by infection with the bacterial pathogen Mycobacterium tuberculosis (M.tb) in the respiratory tract. There was an estimated 10.6 million people newly diagnosed with TB, and there were approximately 1.3 million deaths caused by TB in 2022. Although the global prevalence of TB has remained high for decades and is an annual leading cause of death attributed to infectious diseases, only one vaccine, Bacillus Calmette-Guérin (BCG), has been approved so far to prevent/attenuate TB disease. Correlates of protection or immunological mechanisms that are needed to control M.tb remain unknown. The protective role of antibodies after BCG vaccination has also remained largely unclear; however, recent studies have provided evidence for their involvement in protection against disease, as biomarkers for the state of infection, and as potential predictors of outcomes. Interestingly, the antibodies generated post-vaccination with BCG are linked to the activation of innate immune cascades, providing further evidence that antibody effector functions are critical for protection against respiratory pathogens such as M.tb. In this review, we aim to provide current knowledge of antibody application in TB diagnosis, prevention, and treatment. Particularly, this review will focus on 1) The role of antibodies in preventing M.tb infections through preventing Mtb adherence to epithelium, antibody-mediated phagocytosis, and antibody-mediated cellular cytotoxicity; 2) The M.tb-directed antibody response generated after vaccination and how humoral profiles with different glycosylation patterns of these antibodies are linked with protection against the disease state; and 3) How antibody-mediated immunity against M.tb can be further explored as early diagnosis biomarkers and different detection methods to combat the global M.tb burden. Broadening the paradigm of differentiated antibody profiling and antibody-based detection during TB disease progression offers new directions for diagnosis, treatment, and preventative strategies. This approach involves linking the aforementioned humoral responses with the disease state, progression, and clearance.
Collapse
Affiliation(s)
- Qixin Wang
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, United States
| | - Deepika Nag
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Susan L. Baldwin
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Rhea N. Coler
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - Ryan P. McNamara
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, United States
| |
Collapse
|
20
|
Seki S, Parbie PK, Yamamoto H, Matano T. Virion-surface display of a chimeric immunoglobulin Fc domain facilitating uptake by antigen-presenting cells. J Biotechnol 2024; 391:57-63. [PMID: 38851397 DOI: 10.1016/j.jbiotec.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/20/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
Antigen-presenting cells (APCs) play an important role in virus infection control by bridging innate and adaptive immune responses. Macrophages and dendritic cells (DCs) possess various surface receptors to recognize/internalize antigens, and antibody binding can enhance pathogen-opsonizing uptake by these APCs via interaction of antibody fragment crystallizable (Fc) domains with Fc receptors, evoking profound pathogen control in certain settings. Here, we examined phagocytosis-enhancing potential of Fc domains directly oriented on a retroviral virion/virus-like particle (VLP) surface. We generated an expression vector coding a murine Fc fragment fused to the transmembrane region (TM) of a retroviral envelope protein, deriving expression of the Fc-TM fusion protein on the transfected cell surface and production of virions incorporating the chimeric Fc upon co-transfection. Incubation of Fc-displaying simian immunodeficiency virus (SIV) with murine J774 macrophages and bone marrow-derived DCs derived Fc receptor-dependent enhanced uptake, being visualized by imaging cytometry. Alternative preparation of a murine leukemia virus (MLV) backbone-based Fc-displaying VLP loading an influenza virus hemagglutinin (HA) antigen resulted in enhanced HA internalization by macrophages, stating antigen compatibility of the design. Results show that the Fc-TM fusion molecule can be displayed on certain viruses/VLPs and may be utilized as a molecular adjuvant to facilitate APC antigen uptake.
Collapse
Affiliation(s)
- Sayuri Seki
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Prince Kofi Parbie
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; Graduate School of Medical Sciences and Joint Research Center for Human Retrovirus Infection, Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto 860-0811, Japan
| | - Hiroyuki Yamamoto
- Graduate School of Medical Sciences and Joint Research Center for Human Retrovirus Infection, Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto 860-0811, Japan; AIDS Research Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama City, Tokyo 208-0011, Japan; Immunodeficiency Laboratory, Department of Biomedicine, University Hospital, 20 Hebelstrasse, Basel 4031, Switzerland.
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; Graduate School of Medical Sciences and Joint Research Center for Human Retrovirus Infection, Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto 860-0811, Japan; The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
21
|
Kim M, Vergara E, Tran A, Paul MJ, Kwon T, Ma JK, Jang Y, Reljic R. Marked enhancement of the immunogenicity of plant-expressed IgG-Fc fusion proteins by inclusion of cholera toxin non-toxic B subunit within the single polypeptide. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1402-1416. [PMID: 38163285 PMCID: PMC11022806 DOI: 10.1111/pbi.14275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/23/2023] [Accepted: 12/09/2023] [Indexed: 01/03/2024]
Abstract
Immunoglobulin G (IgG)-based fusion proteins have been widely exploited as a potential vaccine delivery platform but in the absence of exogenous adjuvants, the lack of robust immunity remains an obstacle. Here, we report on a key modification that overcomes that obstacle. Thus, we constructed an IgG-Fc vaccine platform for dengue, termed D-PCF, which in addition to a dengue antigen incorporates the cholera toxin non-toxic B subunit (CTB) as a molecular adjuvant, with all three proteins expressed as a single polypeptide. Following expression in Nicotiana benthamiana plants, the D-PCF assembled as polymeric structures of similar size to human IgM, a process driven by the pentamerization of CTB. A marked improvement of functional properties in vitro and immunogenicity in vivo over a previous iteration of the Fc-fusion protein without CTB [1] was demonstrated. These include enhanced antigen presenting cell binding, internalization and activation, complement activation, epithelial cell interactions and ganglioside binding, as well as more efficient polymerization within the expression host. Following immunization of mice with D-PCF by a combination of systemic and mucosal (intranasal) routes, we observed robust systemic and mucosal immune responses, as well as systemic T cell responses, significantly higher than those induced by a related Fc-fusion protein but without CTB. The induced antibodies could bind to the domain III of the dengue virus envelope protein from all four dengue serotypes. Finally, we also demonstrated feasibility of aerosolization of D-PCF as a prerequisite for vaccine delivery by the respiratory route.
Collapse
Affiliation(s)
- Mi‐Young Kim
- Department of Molecular BiologyJeonbuk National UniversityJeonjuRepublic of Korea
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
| | - Emil Vergara
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
| | - Andy Tran
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
| | - Matthew John Paul
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
| | | | - Julian K.C. Ma
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
| | - Yong‐Suk Jang
- Department of Molecular BiologyJeonbuk National UniversityJeonjuRepublic of Korea
| | - Rajko Reljic
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
| |
Collapse
|
22
|
Kutzler MA, Cusimano G, Joyner D, Konopka E, Muir R, Barnette P, Guderian M, Del Moral-Sánchez I, Derking R, Bijl T, Snitselaar J, Rotsides P, Woloszczuk K, Bell M, Canziani G, Chaiken I, Hessell A, Bartsch Y, Sanders R, Haddad E. The molecular immune modulator adenosine deaminase-1 enhances HIV specific humoral and cellular responses to a native-like HIV envelope trimer DNA vaccine. RESEARCH SQUARE 2024:rs.3.rs-4139764. [PMID: 38746176 PMCID: PMC11092827 DOI: 10.21203/rs.3.rs-4139764/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
There is currently no prophylactic vaccine available for human immunodeficiency virus (HIV). Research efforts have resulted in improved immunogens that mimic the native envelope (Env) glycoprotein structure. Recently, a novel triple tandem trimer (TTT) platform has been used to generate a plasmid encoding Env immunogen (pBG505-TTT) that expresses only as trimers, making it more suitable for nucleic acid vaccines. We have previously demonstrated that adenosine deaminase-1 (ADA-1) is critical to the T follicular helper (TFH) function and improves vaccine immune responses in vivo. In this study, we demonstrate that co-delivery of plasmid-encoded adenosine deaminase 1 (pADA) with pBG505-TTT enhances the magnitude, durability, isotype switching and functionality of HIV-specific antibodies in a dose-sparing manner. Co-delivery of the molecular immune modulator ADA-1 also enhances HIV-specific T cell polyfunctionality, activation, and degranulation as well as memory B cell responses. These data demonstrate that pADA enhances HIV-specific cellular and humoral immunity, making ADA-1 a promising immune modulator for HIV-targeting vaccines.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Tom Bijl
- Amsterdam University Medical Center
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Bowman KA, Kaplonek P, McNamara RP. Understanding Fc function for rational vaccine design against pathogens. mBio 2024; 15:e0303623. [PMID: 38112418 PMCID: PMC10790774 DOI: 10.1128/mbio.03036-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
Antibodies represent the primary correlate of immunity following most clinically approved vaccines. However, their mechanisms of action vary from pathogen to pathogen, ranging from neutralization, to opsonophagocytosis, to cytotoxicity. Antibody functions are regulated both by antigen specificity (Fab domain) and by the interaction of their Fc domain with distinct types of Fc receptors (FcRs) present in immune cells. Increasing evidence highlights the critical nature of Fc:FcR interactions in controlling pathogen spread and limiting the disease state. Moreover, variation in Fc-receptor engagement during the course of infection has been demonstrated across a range of pathogens, and this can be further influenced by prior exposure(s)/immunizations, age, pregnancy, and underlying health conditions. Fc:FcR functional variation occurs at the level of antibody isotype and subclass selection as well as post-translational modification of antibodies that shape Fc:FcR-interactions. These factors collectively support a model whereby the immune system actively harnesses and directs Fc:FcR interactions to fight disease. By defining the precise humoral mechanisms that control infections, as well as understanding how these functions can be actively tuned, it may be possible to open new paths for improving existing or novel vaccines.
Collapse
Affiliation(s)
- Kathryn A. Bowman
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Paulina Kaplonek
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Ryan P. McNamara
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
24
|
Damelang T, Brinkhaus M, van Osch TLJ, Schuurman J, Labrijn AF, Rispens T, Vidarsson G. Impact of structural modifications of IgG antibodies on effector functions. Front Immunol 2024; 14:1304365. [PMID: 38259472 PMCID: PMC10800522 DOI: 10.3389/fimmu.2023.1304365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Immunoglobulin G (IgG) antibodies are a critical component of the adaptive immune system, binding to and neutralizing pathogens and other foreign substances. Recent advances in molecular antibody biology and structural protein engineering enabled the modification of IgG antibodies to enhance their therapeutic potential. This review summarizes recent progress in both natural and engineered structural modifications of IgG antibodies, including allotypic variation, glycosylation, Fc engineering, and Fc gamma receptor binding optimization. We discuss the functional consequences of these modifications to highlight their potential for therapeutical applications.
Collapse
Affiliation(s)
- Timon Damelang
- Sanquin Research, Department of Experimental Immunohematology and Landsteiner Laboratory, Amsterdam, Netherlands
- Sanquin Research, Department of Immunopathology, Amsterdam, Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
- Department of Antibody Research & Technologies’, Genmab, Utrecht, Netherlands
| | - Maximilian Brinkhaus
- Sanquin Research, Department of Experimental Immunohematology and Landsteiner Laboratory, Amsterdam, Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Thijs L. J. van Osch
- Sanquin Research, Department of Experimental Immunohematology and Landsteiner Laboratory, Amsterdam, Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Janine Schuurman
- Department of Antibody Research & Technologies’, Genmab, Utrecht, Netherlands
| | - Aran F. Labrijn
- Department of Antibody Research & Technologies’, Genmab, Utrecht, Netherlands
| | - Theo Rispens
- Sanquin Research, Department of Immunopathology, Amsterdam, Netherlands
| | - Gestur Vidarsson
- Sanquin Research, Department of Experimental Immunohematology and Landsteiner Laboratory, Amsterdam, Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
25
|
Tuyishime M, Spreng RL, Hueber B, Nohara J, Goodman D, Chan C, Barfield R, Beck WE, Jha S, Asdell S, Wiehe K, He MM, Easterhoff D, Conley HE, Hoxie T, Gurley T, Jones C, Adhikary ND, Villinger F, Thomas R, Denny TN, Moody MA, Tomaras GD, Pollara J, Reeves RK, Ferrari G. Multivariate analysis of FcR-mediated NK cell functions identifies unique clustering among humans and rhesus macaques. Front Immunol 2023; 14:1260377. [PMID: 38124734 PMCID: PMC10732150 DOI: 10.3389/fimmu.2023.1260377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/04/2023] [Indexed: 12/23/2023] Open
Abstract
Rhesus macaques (RMs) are a common pre-clinical model used to test HIV vaccine efficacy and passive immunization strategies. Yet, it remains unclear to what extent the Fc-Fc receptor (FcR) interactions impacting antiviral activities of antibodies in RMs recapitulate those in humans. Here, we evaluated the FcR-related functionality of natural killer cells (NKs) from peripheral blood of uninfected humans and RMs to identify intra- and inter-species variation. NKs were screened for FcγRIIIa (human) and FcγRIII (RM) genotypes (FcγRIII(a)), receptor signaling, and antibody-dependent cellular cytotoxicity (ADCC), the latter mediated by a cocktail of monoclonal IgG1 antibodies with human or RM Fc. FcγRIII(a) genetic polymorphisms alone did not explain differences in NK effector functionality in either species cohort. Using the same parameters, hierarchical clustering separated each species into two clusters. Importantly, in principal components analyses, ADCC magnitude, NK contribution to ADCC, FcγRIII(a) cell-surface expression, and frequency of phosphorylated CD3ζ NK cells all contributed similarly to the first principal component within each species, demonstrating the importance of measuring multiple facets of NK cell function. Although ADCC potency was similar between species, we detected significant differences in frequencies of NK cells and pCD3ζ+ cells, level of cell-surface FcγRIII(a) expression, and NK-mediated ADCC (P<0.001), indicating that a combination of Fc-FcR parameters contribute to overall inter-species functional differences. These data strongly support the importance of multi-parameter analyses of Fc-FcR NK-mediated functions when evaluating efficacy of passive and active immunizations in pre- and clinical trials and identifying correlates of protection. The results also suggest that pre-screening animals for multiple FcR-mediated NK function would ensure even distribution of animals among treatment groups in future preclinical trials.
Collapse
Affiliation(s)
- Marina Tuyishime
- Department of Surgery, Duke University, Durham, NC, United States
| | - Rachel L. Spreng
- Duke Human Vaccine Institute, Durham, NC, United States
- Center for Human Systems Immunology, Durham, NC, United States
| | - Brady Hueber
- Center for Human Systems Immunology, Durham, NC, United States
| | - Junsuke Nohara
- Department of Surgery, Duke University, Durham, NC, United States
| | - Derrick Goodman
- Department of Surgery, Duke University, Durham, NC, United States
- Center for Human Systems Immunology, Durham, NC, United States
| | - Cliburn Chan
- Center for Human Systems Immunology, Durham, NC, United States
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, United States
| | - Richard Barfield
- Center for Human Systems Immunology, Durham, NC, United States
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, United States
| | - Whitney E. Beck
- Department of Surgery, Duke University, Durham, NC, United States
| | - Shalini Jha
- Department of Surgery, Duke University, Durham, NC, United States
| | - Stephanie Asdell
- Department of Surgery, Duke University, Durham, NC, United States
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Durham, NC, United States
- Department of Medicine, Duke University, Durham, NC, United States
| | - Max M. He
- Duke Human Vaccine Institute, Durham, NC, United States
| | | | | | - Taylor Hoxie
- Duke Human Vaccine Institute, Durham, NC, United States
| | | | | | - Nihar Deb Adhikary
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, United States
| | - Francois Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, United States
| | - Rasmi Thomas
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Thomas N. Denny
- Duke Human Vaccine Institute, Durham, NC, United States
- Department of Medicine, Duke University, Durham, NC, United States
| | - Michael Anthony Moody
- Duke Human Vaccine Institute, Durham, NC, United States
- Department of Pediatrics, Duke University, Durham, NC, United States
- Department of Integrative Immunobiology, Duke University, Durham, NC, United States
| | - Georgia D. Tomaras
- Department of Surgery, Duke University, Durham, NC, United States
- Duke Human Vaccine Institute, Durham, NC, United States
- Center for Human Systems Immunology, Durham, NC, United States
- Department of Integrative Immunobiology, Duke University, Durham, NC, United States
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
| | - Justin Pollara
- Department of Surgery, Duke University, Durham, NC, United States
- Duke Human Vaccine Institute, Durham, NC, United States
- Center for Human Systems Immunology, Durham, NC, United States
| | - R. Keith Reeves
- Department of Surgery, Duke University, Durham, NC, United States
- Center for Human Systems Immunology, Durham, NC, United States
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Guido Ferrari
- Department of Surgery, Duke University, Durham, NC, United States
- Duke Human Vaccine Institute, Durham, NC, United States
- Center for Human Systems Immunology, Durham, NC, United States
| |
Collapse
|
26
|
Gao C, Chen Q, Hao X, Wang Q. Immunomodulation of Antibody Glycosylation through the Placental Transfer. Int J Mol Sci 2023; 24:16772. [PMID: 38069094 PMCID: PMC10705935 DOI: 10.3390/ijms242316772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Establishing an immune balance between the mother and fetus during gestation is crucial, with the placenta acting as the epicenter of immune tolerance. The placental transfer of antibodies, mainly immunoglobulin G (IgG), is critical in protecting the developing fetus from infections. This review looks at how immunomodulation of antibody glycosylation occurs during placental transfer and how it affects fetal health. The passage of maternal IgG antibodies through the placental layers, including the syncytiotrophoblast, stroma, and fetal endothelium, is discussed. The effect of IgG subclass, glycosylation, concentration, maternal infections, and antigen specificity on antibody transfer efficiency is investigated. FcRn-mediated IgG transport, influenced by pH-dependent binding, is essential for placental transfer. Additionally, this review delves into the impact of glycosylation patterns on antibody functionality, considering both protective and pathological effects. Factors affecting the transfer of protective antibodies, such as maternal vaccination, are discussed along with reducing harmful antibodies. This in-depth examination of placental antibody transfer and glycosylation provides insights into improving neonatal immunity and mitigating the effects of maternal autoimmune and alloimmune conditions.
Collapse
Affiliation(s)
| | | | | | - Qiushi Wang
- Department of Blood Transfusion, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
27
|
van Pul L, Maurer I, Boeser-Nunnink BD, Harskamp AM, van Dort KA, Kootstra NA. A genetic variation in fucosyltransferase 8 accelerates HIV-1 disease progression indicating a role for N-glycan fucosylation. AIDS 2023; 37:1959-1969. [PMID: 37598360 PMCID: PMC10552802 DOI: 10.1097/qad.0000000000003689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/25/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023]
Abstract
OBJECTIVES Core fucosylation by fucosyltransferase 8 (FUT8) is an important posttranslational modification that impacts components of the immune system. Genetic variations in FUT8 can alter its function and could, therefore, play a role in the antiviral immune response and pathogenesis of HIV-1. This study analysed the effect of a single nucleotide polymorphism (SNP) in FUT8 on the clinical course of HIV-1 infection. DESIGN/METHODS The effect of SNPs in FUT8 on untreated HIV-1 disease outcome were analysed in a cohort of 304 people with HIV-1 (PWH) using survival analysis. Flow-cytometry was used to determine the effect of SNP on T-cell activation, differentiation and exhaustion/senescence. T-cell function was determined by proliferation assay and by measuring intracellular cytokine production. The effect of the SNP on HIV-1 replication was determined by in-vitro HIV-1 infections. Sensitivity of HIV-1 produced in PBMC with or without the SNP to broadly neutralizing antibodies was determined using a TZM-bl based neutralization assay. RESULTS Presence of the minor allele of SNP rs4131564 was associated with accelerated disease progression. The SNP had no effect on T-cell activation and T-cell differentiation in PWH. Additionally, no differences in T-cell functionality as determined by proliferation and cytokine production was observed. HIV-1 replication and neutralization sensitivity was also unaffected by the SNP in FUT8. CONCLUSION SNP rs4131564 in FUT8 showed a major impact on HIV-1 disease course underscoring a role for N-glycan fucosylation even though no clear effect on the immune system or HIV-1 could be determined in vitro .
Collapse
Affiliation(s)
- Lisa van Pul
- Amsterdam Institute for Infection and Immunity
- Department of Experimental Immunology, Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
| | - Irma Maurer
- Amsterdam Institute for Infection and Immunity
- Department of Experimental Immunology, Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
| | - Brigitte D.M. Boeser-Nunnink
- Amsterdam Institute for Infection and Immunity
- Department of Experimental Immunology, Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
| | - Agnes M. Harskamp
- Amsterdam Institute for Infection and Immunity
- Department of Experimental Immunology, Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
| | - Karel A. van Dort
- Amsterdam Institute for Infection and Immunity
- Department of Experimental Immunology, Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
| | - Neeltje A. Kootstra
- Amsterdam Institute for Infection and Immunity
- Department of Experimental Immunology, Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
28
|
Grant-McAuley W, Morgenlander W, Hudelson SE, Thakar M, Piwowar-Manning E, Clarke W, Breaud A, Blankson J, Wilson E, Ayles H, Bock P, Moore A, Kosloff B, Shanaube K, Meehan SA, van Deventer A, Fidler S, Hayes R, Ruczinski I, Kammers K, Laeyendecker O, Larman HB, Eshleman SH. Comprehensive profiling of pre-infection antibodies identifies HIV targets associated with viremic control and viral load. Front Immunol 2023; 14:1178520. [PMID: 37744365 PMCID: PMC10512082 DOI: 10.3389/fimmu.2023.1178520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/15/2023] [Indexed: 09/26/2023] Open
Abstract
Background High HIV viral load (VL) is associated with increased transmission risk and faster disease progression. HIV controllers achieve viral suppression without antiretroviral (ARV) treatment. We evaluated viremic control in a community-randomized trial with >48,000 participants. Methods A massively multiplexed antibody profiling system, VirScan, was used to quantify pre- and post-infection antibody reactivity to HIV peptides in 664 samples from 429 participants (13 controllers, 135 viremic non-controllers, 64 other non-controllers, 217 uninfected persons). Controllers had VLs <2,000 copies/mL with no ARV drugs detected at the first HIV-positive visit and one year later. Viremic non-controllers had VLs 2,000 copies/mL with no ARV drugs detected at the first HIV-positive visit. Other non-controllers had either ARV drugs detected at the first HIV-positive visit (n=47) or VLs <2,000 copies/mL with no ARV drugs detected at only one HIV-positive visit (n=17). Results We identified pre-infection HIV antibody reactivities that correlated with post-infection VL. Pre-infection reactivity to an epitope in the HR2 domain of gp41 was associated with controller status and lower VL. Pre-infection reactivity to an epitope in the C2 domain of gp120 was associated with non-controller status and higher VL. Different patterns of antibody reactivity were observed over time for these two epitopes. Conclusion These studies suggest that pre-infection HIV antibodies are associated with controller status and modulation of HIV VL. These findings may inform research on antibody-based interventions for HIV treatment.
Collapse
Affiliation(s)
- Wendy Grant-McAuley
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - William Morgenlander
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sarah E. Hudelson
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Manjusha Thakar
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Estelle Piwowar-Manning
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - William Clarke
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Autumn Breaud
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Joel Blankson
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ethan Wilson
- Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Helen Ayles
- Zambart, University of Zambia School of Public Health, Lusaka, Zambia
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Peter Bock
- Desmond Tutu TB Center, Department of Paediatrics and Child Health, Stellenbosch University, Western Cape, South Africa
| | | | - Barry Kosloff
- Zambart, University of Zambia School of Public Health, Lusaka, Zambia
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Kwame Shanaube
- Zambart, University of Zambia School of Public Health, Lusaka, Zambia
| | - Sue-Ann Meehan
- Desmond Tutu TB Center, Department of Paediatrics and Child Health, Stellenbosch University, Western Cape, South Africa
| | - Anneen van Deventer
- Desmond Tutu TB Center, Department of Paediatrics and Child Health, Stellenbosch University, Western Cape, South Africa
| | - Sarah Fidler
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Richard Hayes
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ingo Ruczinski
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Kai Kammers
- Quantitative Sciences Division, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Oliver Laeyendecker
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Baltimore, MD, United States
| | - H. Benjamin Larman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Susan H. Eshleman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
29
|
Purcell RA, Theisen RM, Arnold KB, Chung AW, Selva KJ. Polyfunctional antibodies: a path towards precision vaccines for vulnerable populations. Front Immunol 2023; 14:1183727. [PMID: 37600816 PMCID: PMC10433199 DOI: 10.3389/fimmu.2023.1183727] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/30/2023] [Indexed: 08/22/2023] Open
Abstract
Vaccine efficacy determined within the controlled environment of a clinical trial is usually substantially greater than real-world vaccine effectiveness. Typically, this results from reduced protection of immunologically vulnerable populations, such as children, elderly individuals and people with chronic comorbidities. Consequently, these high-risk groups are frequently recommended tailored immunisation schedules to boost responses. In addition, diverse groups of healthy adults may also be variably protected by the same vaccine regimen. Current population-based vaccination strategies that consider basic clinical parameters offer a glimpse into what may be achievable if more nuanced aspects of the immune response are considered in vaccine design. To date, vaccine development has been largely empirical. However, next-generation approaches require more rational strategies. We foresee a generation of precision vaccines that consider the mechanistic basis of vaccine response variations associated with both immunogenetic and baseline health differences. Recent efforts have highlighted the importance of balanced and diverse extra-neutralising antibody functions for vaccine-induced protection. However, in immunologically vulnerable populations, significant modulation of polyfunctional antibody responses that mediate both neutralisation and effector functions has been observed. Here, we review the current understanding of key genetic and inflammatory modulators of antibody polyfunctionality that affect vaccination outcomes and consider how this knowledge may be harnessed to tailor vaccine design for improved public health.
Collapse
Affiliation(s)
- Ruth A. Purcell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Robert M. Theisen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Kelly B. Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Amy W. Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Kevin J. Selva
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
30
|
Beyond neutralization: Fc-dependent antibody effector functions in SARS-CoV-2 infection. Nat Rev Immunol 2022:10.1038/s41577-022-00813-1. [PMID: 36536068 PMCID: PMC9761659 DOI: 10.1038/s41577-022-00813-1] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 12/23/2022]
Abstract
Neutralizing antibodies are known to have a crucial role in protecting against SARS-CoV-2 infection and have been suggested to be a useful correlate of protection for vaccine clinical trials and for population-level surveys. In addition to neutralizing virus directly, antibodies can also engage immune effectors through their Fc domains, including Fc receptor-expressing immune cells and complement. The outcome of these interactions depends on a range of factors, including antibody isotype-Fc receptor combinations, Fc receptor-bearing cell types and antibody post-translational modifications. A growing body of evidence has shown roles for these Fc-dependent antibody effector functions in determining the outcome of SARS-CoV-2 infection. However, measuring these functions is more complicated than assays that measure antibody binding and virus neutralization. Here, we examine recent data illuminating the roles of Fc-dependent antibody effector functions in the context of SARS-CoV-2 infection, and we discuss the implications of these data for the development of next-generation SARS-CoV-2 vaccines and therapeutics.
Collapse
|
31
|
Sungur CM, Wang Q, Ozantürk AN, Gao H, Schmitz AJ, Cella M, Yokoyama WM, Shan L. Human NK cells confer protection against HIV-1 infection in humanized mice. J Clin Invest 2022; 132:e162694. [PMID: 36282589 PMCID: PMC9753998 DOI: 10.1172/jci162694] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/04/2022] [Indexed: 12/24/2022] Open
Abstract
The role of NK cells against HIV-1 infections remains to be elucidated in vivo. While humanized mouse models potentially could be used to directly evaluate human NK cell responses during HIV-1 infection, improved functional development of human NK cells in these hosts is needed. Here, we report the humanized MISTRG-6-15 mouse model, in which NK cells were quick to expand and exhibit degranulation, cytotoxicity, and proinflammatory cytokine production in nonlymphoid organs upon HIV-1 infection but had reduced functionality in lymphoid organs. Although HIV-1 infection induced functional impairment of NK cells, antiretroviral therapy reinvigorated NK cells in response to HIV-1 rebound after analytic treatment interruption. Moreover, a broadly neutralizing antibody, PGT121, enhanced NK cell function in vivo, consistent with antibody-dependent cellular cytotoxicity. Monoclonal antibody depletion of NK cells resulted in higher viral loads in multiple nonlymphoid organs. Overall, our results in humanized MISTRG-6-15 mice demonstrated that NK cells provided direct anti-HIV-1 responses in vivo but were limited in their responses in lymphoid organs.
Collapse
Affiliation(s)
| | - Qiankun Wang
- Division of Infectious Diseases, Department of Medicine
| | | | - Hongbo Gao
- Division of Infectious Diseases, Department of Medicine
| | | | | | - Wayne M. Yokoyama
- Division of Rheumatology, Department of Medicine
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Liang Shan
- Division of Infectious Diseases, Department of Medicine
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
32
|
Barrows BM, Krebs SJ, Jian N, Zemil M, Slike BM, Dussupt V, Tran U, Mendez-Rivera L, Chang D, O’Sullivan AM, Mann B, Sanders-Buell E, Shubin Z, Creegan M, Paquin-Proulx D, Ehrenberg P, Laurence-Chenine A, Srithanaviboonchai K, Thomas R, Eller MA, Ferrari G, Robb M, Rao V, Tovanabutra S, Polonis VR, Wieczorek L. Fc receptor engagement of HIV-1 Env-specific antibodies in mothers and infants predicts reduced vertical transmission. Front Immunol 2022; 13:1051501. [PMID: 36578481 PMCID: PMC9791209 DOI: 10.3389/fimmu.2022.1051501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022] Open
Abstract
Introduction Infants acquire maternal antibodies by Fc receptor transcytosis across the placenta during pregnancy. Fc receptors are expressed on immune cells and are important for activation of effector cell functions. Methods In this study, we evaluated Fc receptor engagement and ADCC activity of plasma binding antibodies from human immunodeficiency virus-1 (HIV) -infected mothers and to identify factors that may contribute to protection from HIV vertical transmission. Results HIV-specific binding and Fc receptor engagement of plasma antibodies varied between mothers by transmission status and infants by infection status. Non-transmitting (NT) mothers and HIV-uninfected infants had antibodies with higher neonatal Fc receptor (FcRn) and FcγR engagement, as compared to transmitting (T) mothers and HIV+ infants, respectively. A significant inverse correlation between plasma antibody FcRn and FcγR engagement was observed for T mothers, but not NT mothers. Conversely, a significant direct correlation was observed between plasma antibody FcRn and FcγR engagement for HIV- infants, but not for HIV+ infants. Consequently, we observed significantly higher plasma antibody ADCC potency and breadth in HIV- infants, as compared to HIV+ infants. However, no differences in overall ADCC potency and breadth were observed between mothers. FcRn-engagement of HIV-specific antibodies in both mothers and infants predicted a lack of vertical transmission of HIV. Discussion This study indicates that HIV-uninfected infants acquire HIV-specific antibodies with greater Fc receptor engagement and thus, greater ADCC capacity.
Collapse
Affiliation(s)
- Brittani M. Barrows
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Department of Biology, The Catholic University of America, Washington, DC, United States
| | - Shelly J. Krebs
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Ningbo Jian
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Michelle Zemil
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Bonnie M. Slike
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Vincent Dussupt
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Ursula Tran
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Letzibeth Mendez-Rivera
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - David Chang
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Anne Marie O’Sullivan
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Brendan Mann
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Eric Sanders-Buell
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Zhanna Shubin
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Matt Creegan
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Dominic Paquin-Proulx
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Philip Ehrenberg
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Agnes Laurence-Chenine
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | | | - Rasmi Thomas
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Michael A. Eller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Guido Ferrari
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Merlin Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Venigalla Rao
- Department of Biology, The Catholic University of America, Washington, DC, United States
| | - Sodsai Tovanabutra
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Victoria R. Polonis
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Lindsay Wieczorek
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| |
Collapse
|
33
|
Zohar T, Atyeo C, Wolf CR, Logue JK, Shuey K, Franko N, Choi RY, Wald A, Koelle DM, Chu HY, Lauffenburger DA, Alter G. A multifaceted high-throughput assay for probing antigen-specific antibody-mediated primary monocyte phagocytosis and downstream functions. J Immunol Methods 2022; 510:113328. [PMID: 35934070 DOI: 10.1016/j.jim.2022.113328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/13/2022] [Accepted: 08/01/2022] [Indexed: 01/18/2023]
Abstract
Monocytes are highly versatile innate immune cells responsible for pathogen clearance, innate immune coordination, and induction of adaptive immunity. Monocytes can directly and indirectly integrate pathogen-destructive instructions and contribute to disease control via pathogen uptake, presentation, or the release of cytokines. Indirect pathogen-specific instructions are conferred via Fc-receptor signaling and triggered by antibody opsonized material. Given the tremendous variation in polyclonal humoral immunity, defining the specific antibody-responses able to arm monocytes most effectively remains incompletely understood. While monocyte cell line-based assays have been used previously, cell lines may not faithfully recapitulate the full biology of monocytes. Thus, here we describe a multifaceted antigen-specific method for probing antibody-dependent primary monocyte phagocytosis (ADMP) and secondary responses. The assay not only reliably captures phagocytic uptake of immune complexes, but also detects unique changes in surface markers and cytokine secretions profiles, poorly detected by monocytic cell lines. The assay captures divergent polyclonal-monocyte recruiting activity across subjects with varying SARS-CoV-2 disease severity and also revealed biological nuances in Fc-mutant monoclonal antibody activity related to differences in Fc-receptor binding. Thus, the ADMP assay is a flexible assay able to provide key insights into the role of humoral immunity in driving monocyte phenotypic transitions and downstream functions across many diseases.
Collapse
Affiliation(s)
- Tomer Zohar
- Ragon Institute of MGH, MIT, and Harvard, MA, Cambridge, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Caroline Atyeo
- Ragon Institute of MGH, MIT, and Harvard, MA, Cambridge, USA
| | - Caitlin R Wolf
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Jennifer K Logue
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Kiel Shuey
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Nicholas Franko
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Anna Wald
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA; Department of Epidemiology, University of Washington School of Medicine, Seattle, WA, USA; Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA; Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - David M Koelle
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA; Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA; Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA; Benaroya Research Institute, Seattle, WA, USA
| | - Helen Y Chu
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, MA, Cambridge, USA.
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW The quest for HIV-1 cure could take advantage of the study of rare individuals that control viral replication spontaneously (elite controllers) or after an initial course of antiretroviral therapy (posttreatment controllers, PTCs). In this review, we will compare back-to-back the immunological and virological features underlying viral suppression in elite controllers and PTCs, and explore their possible contributions to the HIV-1 cure research. RECENT FINDINGS HIV-1 control in elite controllers shows hallmarks of an effective antiviral response, favored by genetic background and possibly associated to residual immune activation. The immune pressure in elite controllers might select against actively transcribing intact proviruses, allowing the persistence of a small and poorly inducible reservoir. Evidence on PTCs is less abundant but preliminary data suggest that antiviral immune responses may be less pronounced. Therefore, these patients may rely on distinct mechanisms, not completely elucidated to date, suppressing HIV-1 transcription and replication. SUMMARY PTCs and elite controllers may control HIV replication using distinct pathways, the elucidation of which may contribute to design future interventional strategies aiming to achieve a functional cure.
Collapse
|
35
|
Nordstrom JL, Ferrari G, Margolis DM. Bispecific antibody-derived molecules to target persistent HIV infection. J Virus Erad 2022; 8:100083. [PMID: 36111287 PMCID: PMC9468498 DOI: 10.1016/j.jve.2022.100083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/13/2022] [Accepted: 08/18/2022] [Indexed: 11/20/2022] Open
Abstract
HIV infection persists despite durable and potent antiviral therapy. To target persistent HIV infection, one major strategy aims to induce HIV provirus expression using latency reversing agents and then eliminate these reservoir cells via immune responses enhanced by treatment with antibody-derived bispecific molecules. The specificities of anti-HIV-1 envelope monoclonal antibodies have been incorporated into bispecific molecules that can recognize infected cells and recruit cytotoxic immune cells to eliminate them. This concept seeks to engineer a unique and potent effector response based on the opportunity to target conserved viral epitopes on infected cells, and recruit broad populations of immune effector cells that are not limited by major histocompatibility complex restrictions or other programmed specificity constraints. This article provides a review of bispecific DART® molecules and other dual-specificity antibody-based molecules that function by co-engaging CD3-expressing T cells or CD16A-expressing NK cells with HIV-1-infected cells.
Collapse
Affiliation(s)
| | - Guido Ferrari
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - David M. Margolis
- UNC HIV Cure Center and Departments of Medicine, Microbiology and Immunology, and Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
36
|
Board NL, Moskovljevic M, Wu F, Siliciano RF, Siliciano JD. Engaging innate immunity in HIV-1 cure strategies. Nat Rev Immunol 2022; 22:499-512. [PMID: 34824401 DOI: 10.1038/s41577-021-00649-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2021] [Indexed: 12/12/2022]
Abstract
Combination antiretroviral therapy (ART) can block multiple stages of the HIV-1 life cycle to prevent progression to AIDS in people living with HIV-1. However, owing to the persistence of a reservoir of latently infected CD4+ T cells, life-long ART is necessary to prevent viral rebound. One strategy currently under consideration for curing HIV-1 infection is known as 'shock and kill'. This strategy uses latency-reversing agents to induce expression of HIV-1 genes, allowing for infected cells to be cleared by cytolytic immune cells. The role of innate immunity in HIV-1 pathogenesis is best understood in the context of acute infection. Here, we suggest that innate immunity can also be used to improve the efficacy of HIV-1 cure strategies, with a particular focus on dendritic cells (DCs) and natural killer cells. We discuss novel latency-reversing agents targeting DCs as well as DC-based strategies to enhance the clearance of infected cells by CD8+ T cells and strategies to improve the killing activity of natural killer cells.
Collapse
Affiliation(s)
- Nathan L Board
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Milica Moskovljevic
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fengting Wu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Howard Hughes Medical Institute, Baltimore, MD, USA.
| | - Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
37
|
Berendam SJ, Nelson AN, Yagnik B, Goswami R, Styles TM, Neja MA, Phan CT, Dankwa S, Byrd AU, Garrido C, Amara RR, Chahroudi A, Permar SR, Fouda GG. Challenges and Opportunities of Therapies Targeting Early Life Immunity for Pediatric HIV Cure. Front Immunol 2022; 13:885272. [PMID: 35911681 PMCID: PMC9325996 DOI: 10.3389/fimmu.2022.885272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/16/2022] [Indexed: 11/26/2022] Open
Abstract
Early initiation of antiretroviral therapy (ART) significantly improves clinical outcomes and reduces mortality of infants/children living with HIV. However, the ability of infected cells to establish latent viral reservoirs shortly after infection and to persist during long-term ART remains a major barrier to cure. In addition, while early ART treatment of infants living with HIV can limit the size of the virus reservoir, it can also blunt HIV-specific immune responses and does not mediate clearance of latently infected viral reservoirs. Thus, adjunctive immune-based therapies that are geared towards limiting the establishment of the virus reservoir and/or mediating the clearance of persistent reservoirs are of interest for their potential to achieve viral remission in the setting of pediatric HIV. Because of the differences between the early life and adult immune systems, these interventions may need to be tailored to the pediatric settings. Understanding the attributes and specificities of the early life immune milieu that are likely to impact the virus reservoir is important to guide the development of pediatric-specific immune-based interventions towards viral remission and cure. In this review, we compare the immune profiles of pediatric and adult HIV elite controllers, discuss the characteristics of cellular and anatomic HIV reservoirs in pediatric populations, and highlight the potential values of current cure strategies using immune-based therapies for long-term viral remission in the absence of ART in children living with HIV.
Collapse
Affiliation(s)
- Stella J. Berendam
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States,Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States,*Correspondence: Stella J. Berendam, ; Genevieve G. Fouda,
| | - Ashley N. Nelson
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States,Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States
| | - Bhrugu Yagnik
- Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Ria Goswami
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States
| | - Tiffany M. Styles
- Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Margaret A. Neja
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Caroline T. Phan
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Sedem Dankwa
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States
| | - Alliyah U. Byrd
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Carolina Garrido
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Rama R. Amara
- Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States,Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta and Emory University, Atlanta, GA, United States
| | - Sallie R. Permar
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States
| | - Genevieve G. Fouda
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States,Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States,*Correspondence: Stella J. Berendam, ; Genevieve G. Fouda,
| |
Collapse
|
38
|
An Abnormal Inflammatory Pattern Associated with Long-Term Non-Progression of HIV Infection Impacts Negatively on Bone Quality. J Clin Med 2022; 11:jcm11102927. [PMID: 35629055 PMCID: PMC9147546 DOI: 10.3390/jcm11102927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/02/2022] [Accepted: 05/19/2022] [Indexed: 01/27/2023] Open
Abstract
Introduction. Long-term non-progressors (LTNPs) are HIV-infected individuals (HIV+) whose viral replication is controlled. However, these individuals experience complications associated with HIV, among them, bone remodeling impairment. This study aims to perform a comprehensive bone health assessment and its association with the inflammatory status of HIV+ LTNPs. A cross-sectional study was conducted comparing bone strength components (bone mineral density and bone tissue quality) between age-, sex-, and comorbidities-matched groups of HIV+ LTNPs, HIV+ progressors, and HIV-negative individuals. A panel of bone turnover and inflammatory biomarkers was measured in fasting plasma using ELISA. Bone tissue quality was assessed by bone microindentation, a technique that directly measures the bone resistance to fracture and yields a dimensionless quantifiable parameter called bone material strength (BMSi). Thirty patients were included: ten LTNPs, ten HIV+ progressors, and ten HIV-negative individuals. LTNPs showed an abnormal pattern of immune activation that was represented by significantly lower levels of anti-inflammatory cytokine IL-10 (p = 0.03), pro-inflammatory cytokine IL-8 (p = 0.01), and TNF-α (p < 0.001) with respect to the other groups. Regarding bone health, LTNPs presented lower BMSi, and thus, worse bone tissue quality than HIV-negative individuals (83 (78−85) vs. 90 (89−93), respectively; p = 0.003), and also lower BMSi than HIV+ progressors (83 (78−85) vs. 86 (85−89), respectively; p = 0.022). A trend was found of lower BMSi in HIV+ progressors with respect to the HIV-negative individuals (86 (85−89) vs. 90 (89−93), respectively; p = 0.083). No differences were detected in bone mineral density between groups. In conclusion, LTNPs showed a different inflammatory profile, along with worse bone tissue quality, when compared to HIV+ progressors and HIV-negative individuals. This may contribute to increasing evidence that HIV infection itself has a deleterious effect on bone tissue, likely through a persistent altered inflammation status.
Collapse
|
39
|
Bernard NF, Kant S, Kiani Z, Tremblay C, Dupuy FP. Natural Killer Cells in Antibody Independent and Antibody Dependent HIV Control. Front Immunol 2022; 13:879124. [PMID: 35720328 PMCID: PMC9205404 DOI: 10.3389/fimmu.2022.879124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/21/2022] [Indexed: 11/15/2022] Open
Abstract
Infection with the human immunodeficiency virus (HIV), when left untreated, typically leads to disease progression towards acquired immunodeficiency syndrome. Some people living with HIV (PLWH) control their virus to levels below the limit of detection of standard viral load assays, without treatment. As such, they represent examples of a functional HIV cure. These individuals, called Elite Controllers (ECs), are rare, making up <1% of PLWH. Genome wide association studies mapped genes in the major histocompatibility complex (MHC) class I region as important in HIV control. ECs have potent virus specific CD8+ T cell responses often restricted by protective MHC class I antigens. Natural Killer (NK) cells are innate immune cells whose activation state depends on the integration of activating and inhibitory signals arising from cell surface receptors interacting with their ligands on neighboring cells. Inhibitory NK cell receptors also use a subset of MHC class I antigens as ligands. This interaction educates NK cells, priming them to respond to HIV infected cell with reduced MHC class I antigen expression levels. NK cells can also be activated through the crosslinking of the activating NK cell receptor, CD16, which binds the fragment crystallizable portion of immunoglobulin G. This mode of activation confers NK cells with specificity to HIV infected cells when the antigen binding portion of CD16 bound immunoglobulin G recognizes HIV Envelope on infected cells. Here, we review the role of NK cells in antibody independent and antibody dependent HIV control.
Collapse
Affiliation(s)
- Nicole F. Bernard
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
- Infectious Diseases, Immunology and Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Clinical Immunology, McGill University Health Centre, Montreal, QC, Canada
- *Correspondence: Nicole F. Bernard,
| | - Sanket Kant
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
- Infectious Diseases, Immunology and Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Zahra Kiani
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
- Infectious Diseases, Immunology and Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Cécile Tremblay
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC, Canada
- Department of Microbiology Infectiology and Immunology, University of Montreal, Montreal, QC, Canada
| | - Franck P. Dupuy
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Infectious Diseases, Immunology and Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
40
|
Dhande JR, Bagul RD, Thakar MR. HIV-gp140-Specific Antibodies Generated From Indian Long-Term Non-Progressors Mediate Potent ADCC Activity and Effectively Lyse Reactivated HIV Reservoir. Front Immunol 2022; 13:844610. [PMID: 35309295 PMCID: PMC8924355 DOI: 10.3389/fimmu.2022.844610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Strategies to reduce the human immunodeficiency virus (HIV) reservoir are urgently required. The antibody-dependent cellular cytotoxicity (ADCC)-mediating anti-HIV antibodies have shown an association with HIV control. We assessed if such antibodies can be generated in vitro and whether the generated antibodies can facilitate the reduction of reactivated HIV reservoir. We isolated HIV-1-gp140-specific memory B cells from HIV-1-infected long-term non-progressors (LTNPs) with or without plasma ADCC and cultured them to generate anti-HIV antibodies. The ability of the generated antibodies to mediate ADCC and facilitate NK cell-mediated lysis of reactivated HIV reservoir was assessed by the rapid fluorometric antibody-dependent cellular cytotoxicity assay and a flow-based novel latency reduction assay, respectively. All LTNPs showed the presence of gp140-specific memory B cells [median: 0.79% (0.54%–1.225%)], which were successfully differentiated into plasma cells [median 72.0% (68.7–82.2%)] in an in-vitro culture and secreted antibodies [median OD: 0.253 (0.205–0.274)]. The HIV-gp140-specific antibodies were generated from 11/13 LTNPs irrespective of their plasma ADCC status. The generated antibodies from LTNPs with plasma ADCC showed higher ADCC potency (median: 37.6%, IQR: 32.95%–51%) and higher reduction in reactivated HIV reservoir (median: 62.5%, IQR: 58.71%–64.92%) as compared with the antibodies generated from LTNPs without plasma ADCC (ADCC: median: 8.85%, IQR: 8%–9.7%; and % p24 reduction median: 13.84, IQR: 9.863%–17.81%). The potency of these antibodies to reduce latent reservoir was two-fold higher than the respective plasma ADCC. The study showed that the potent ADCC-mediating antibodies could be generated from memory B cells of the LTNPs with plasma ADCC activity. These antibodies also showed potent ability to facilitate NK cell-mediated lysis of reactivated HIV reservoirs. It also indicated that memory B cells from individuals with plasma ADCC activity should be preferentially used for such antibody generation. The important role of these antibodies in the reduction of latent reservoirs needs to be further evaluated as a useful strategy to obtain a functional cure for HIV infection.
Collapse
|
41
|
Tipoe T, Fidler S, Frater J. An exploration of how broadly neutralizing antibodies might induce HIV remission: the 'vaccinal' effect. Curr Opin HIV AIDS 2022; 17:162-170. [PMID: 35439790 DOI: 10.1097/coh.0000000000000731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Broadly neutralizing antibodies (bNAbs) are a potential new therapeutic strategy to treat HIV infection. This review explores possible mechanisms of action of bNAbs and summarizes the current evidence supporting their immunomodulatory properties, which might lead to sustained virological remission - the 'vaccinal effect'. RECENT FINDINGS Antiretroviral therapy (ART) is required to confer lasting HIV suppression; stopping ART almost invariably leads to HIV recrudescence from a persistent pool of virally infected cells - the HIV reservoir. HIV-specific broadly neutralizing antibodies (bNAbs) may confer viral control after ART cessation predominantly through blockade of viral entry into uninfected target cells. In some human and animal studies, HIV bNAbs also conferred lasting viral suppression after therapeutic bNAb plasma levels had declined. Immune-modulatory mechanisms have been postulated to underlie this observation - the 'vaccinal effect'. Hypothesized mechanisms include the formation of immune complexes between bNAbs and HIV envelope protein, thereby enhancing antigen presentation and uptake by immune cells, with boosted adaptive immune responses subsequently controlling the HIV reservoir. SUMMARY There is emerging evidence for potent antiviral efficacy of bNAb therapy. Whether bNAbs can induce sustained viral suppression after dropping below therapeutic levels remains controversial. Mechanistic data from on-going and future clinical trials will help answer these questions.
Collapse
Affiliation(s)
- Timothy Tipoe
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford
| | - Sarah Fidler
- Department of Infectious Disease, Faculty of Medicine, Imperial College London
- Department of GU and HIV Medicine, St Mary's Hospital, Imperial College Healthcare NHS Trust, London
- NIHR Imperial College Biomedical Research, UK
| | - John Frater
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford
- NIHR Oxford Biomedical Research Centre, Oxford
| |
Collapse
|
42
|
Sugawara S, Reeves RK, Jost S. Learning to Be Elite: Lessons From HIV-1 Controllers and Animal Models on Trained Innate Immunity and Virus Suppression. Front Immunol 2022; 13:858383. [PMID: 35572502 PMCID: PMC9094575 DOI: 10.3389/fimmu.2022.858383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/18/2022] [Indexed: 12/23/2022] Open
Abstract
Although antiretroviral therapy (ART) has drastically changed the lives of people living with human immunodeficiency virus-1 (HIV-1), long-term treatment has been associated with a vast array of comorbidities. Therefore, a cure for HIV-1 remains the best option to globally eradicate HIV-1/acquired immunodeficiency syndrome (AIDS). However, development of strategies to achieve complete eradication of HIV-1 has been extremely challenging. Thus, the control of HIV-1 replication by the host immune system, namely functional cure, has long been studied as an alternative approach for HIV-1 cure. HIV-1 elite controllers (ECs) are rare individuals who naturally maintain undetectable HIV-1 replication levels in the absence of ART and whose immune repertoire might be a desirable blueprint for a functional cure. While the role(s) played by distinct human leukocyte antigen (HLA) expression and CD8+ T cell responses expressing cognate ligands in controlling HIV-1 has been widely characterized in ECs, the innate immune phenotype has been decidedly understudied. Comparably, in animal models such as HIV-1-infected humanized mice and simian Immunodeficiency Virus (SIV)-infected non-human primates (NHP), viremic control is known to be associated with specific major histocompatibility complex (MHC) alleles and CD8+ T cell activity, but the innate immune response remains incompletely characterized. Notably, recent work demonstrating the existence of trained innate immunity may provide new complementary approaches to achieve an HIV-1 cure. Herein, we review the known characteristics of innate immune responses in ECs and available animal models, identify gaps of knowledge regarding responses by adaptive or trained innate immune cells, and speculate on potential strategies to induce EC-like responses in HIV-1 non-controllers.
Collapse
|
43
|
Spatola M, Loos C, Cizmeci D, Webb N, Gorman MJ, Rossignol E, Shin S, Yuan D, Fontana L, Mukerji SS, Lauffenburger DA, Gabuzda D, Alter G. Functional compartmentalization of antibodies in the central nervous system during chronic HIV infection. J Infect Dis 2022; 226:738-750. [PMID: 35417540 PMCID: PMC9441210 DOI: 10.1093/infdis/jiac138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 04/07/2022] [Indexed: 11/30/2022] Open
Abstract
The central nervous system (CNS) has emerged as a critical HIV reservoir. Thus, interventions aimed at controlling and eliminating HIV must include CNS-targeted strategies. Given the inaccessibility of the brain, efforts have focused on cerebrospinal fluid (CSF), aimed at defining biomarkers of HIV-disease in the CNS, including HIV-specific antibodies. However, how antibodies traffic between the blood and CNS, and whether specific antibody profiles track with HIV-associated neurocognitive disorders (HAND) remains unclear. Here, we comprehensively profiled HIV-specific antibodies across plasma and CSF from 20 antiretroviral therapy (ART) naive or treated persons with HIV. CSF was populated by IgG1 and IgG3 antibodies, with reduced Fc-effector profiles. While ART improved plasma antibody functional coordination, CSF profiles were unaffected by ART and were unrelated to HAND severity. These data point to a functional sieving of antibodies across the blood-brain barrier, providing previously unappreciated insights for the development of next-generation therapeutics targeting the CNS reservoir.
Collapse
Affiliation(s)
| | - Carolin Loos
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA.,Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Deniz Cizmeci
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA.,Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nicholas Webb
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | | | - Evan Rossignol
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Sally Shin
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Dansu Yuan
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Laura Fontana
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | | | | | | | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| |
Collapse
|
44
|
Molinos-Albert LM, Lorin V, Monceaux V, Orr S, Essat A, Dufloo J, Schwartz O, Rouzioux C, Meyer L, Hocqueloux L, Sáez-Cirión A, Mouquet H, Prazuck T, Dieuleveult BD, Bani-Sadr F, Hentzien M, Berger JL, Kmiec I, Pichancourt G, Nasri S, Hittinger G, Lambry V, Beauey AC, Pialoux G, Palacios C, Siguier M, Adda A, Foucoin J, Weiss L, Karmochkine M, Meghadecha M, Ptak M, Salmon-Ceron D, Blanche P, Piétri MP, Molina JM, Taulera O, Lascoux-Combe C, Ponscarme D, Bertaut JD, Makhloufi D, Godinot M, Artizzu V, Yazdanpanah Y, Matheron S, Godard C, Julia Z, Bernard L, Bastides F, Bourgault O, Jacomet C, Goncalves E, Meybeck A, Huleux T, Cornavin P, Debab Y, Théron D, Miailhes P, Cotte L, Pailhes S, Ogoudjobi S, Viard JP, Dulucq MJ, Bodard L, Churaqui F, Guimard T, Laine L. Transient viral exposure drives functionally-coordinated humoral immune responses in HIV-1 post-treatment controllers. Nat Commun 2022; 13:1944. [PMID: 35410989 PMCID: PMC9001681 DOI: 10.1038/s41467-022-29511-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 03/21/2022] [Indexed: 12/11/2022] Open
Abstract
AbstractHIV-1 post-treatment controllers are rare individuals controlling HIV-1 infection for years after antiretroviral therapy interruption. Identification of immune correlates of control in post-treatment controllers could aid in designing effective HIV-1 vaccine and remission strategies. Here, we perform comprehensive immunoprofiling of the humoral response to HIV-1 in long-term post-treatment controllers. Global multivariate analyses combining clinico-virological and humoral immune data reveal distinct profiles in post-treatment controllers experiencing transient viremic episodes off therapy compared to those stably aviremic. Virally-exposed post-treatment controllers display stronger HIV-1 humoral responses, and develop more frequently Env-specific memory B cells and cross-neutralizing antibodies. Both are linked to short viremic exposures, which are also accompanied by an increase in blood atypical memory B cells and activated subsets of circulating follicular helper T cells. Still, most humoral immune variables only correlate with Th2-like circulating follicular helper T cells. Thus, post-treatment controllers form a heterogeneous group with two distinct viral behaviours and associated immune signatures. Post-treatment controllers stably aviremic present “silent” humoral profiles, while those virally-exposed develop functionally robust HIV-specific B-cell and antibody responses, which may participate in controlling infection.
Collapse
|
45
|
Klingler J, Paul N, Laumond G, Schmidt S, Mayr LM, Decoville T, Lambotte O, Autran B, Bahram S, Moog C. Distinct antibody profiles in HLA-B∗57+, HLA-B∗57- HIV controllers and chronic progressors. AIDS 2022; 36:487-499. [PMID: 34581307 PMCID: PMC8876439 DOI: 10.1097/qad.0000000000003080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/24/2021] [Accepted: 09/06/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Spontaneous control of HIV replication without treatment in HIV-1 controllers (HICs) was associated with the development of an efficient T-cell response. In addition, increasing data suggest that the humoral response participates in viral clearance. DESIGN In-depth characterization of Ab response in HICs may help to define new parameters associated with this control. METHODS We assessed the levels of total and HIV-specific IgA and IgG subtypes induction and their functional potencies - that is, neutralization, phagocytosis, antibody-dependent cellular cytotoxicity (ADCC), according to the individual's major histocompatibility complex class I (HLA)-B∗57 status, and compared it with nontreated chronic progressors. RESULTS We found that despite an undetectable viral load, HICs displayed HIV-specific IgG levels similar to those of chronic progressors. Interestingly, our compelling multifunctional analysis demonstrates that the functional Ab profile, by itself, allowed to discriminate HLA-B∗57+ HICs from HLA-B∗57- HICs and chronic progressors. CONCLUSION These results show that HICs display a particular HIV-specific antibody (Ab) profile that may participate in HIV control and emphasize the relevance of multifunctional Ab response analysis in future Ab-driven vaccine studies.
Collapse
Affiliation(s)
- Jéromine Klingler
- INSERM UMR_S 1109, Centre de Recherche en Immunologie et Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), LabEx Transplantex, Université de Strasbourg, Strasbourg
| | - Nicodème Paul
- INSERM UMR_S 1109, Centre de Recherche en Immunologie et Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), LabEx Transplantex, Université de Strasbourg, Strasbourg
| | - Géraldine Laumond
- INSERM UMR_S 1109, Centre de Recherche en Immunologie et Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), LabEx Transplantex, Université de Strasbourg, Strasbourg
| | - Sylvie Schmidt
- INSERM UMR_S 1109, Centre de Recherche en Immunologie et Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), LabEx Transplantex, Université de Strasbourg, Strasbourg
| | - Luzia M. Mayr
- INSERM UMR_S 1109, Centre de Recherche en Immunologie et Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), LabEx Transplantex, Université de Strasbourg, Strasbourg
| | - Thomas Decoville
- INSERM UMR_S 1109, Centre de Recherche en Immunologie et Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), LabEx Transplantex, Université de Strasbourg, Strasbourg
- Vaccine Research Institute (VRI), Créteil
| | - Olivier Lambotte
- Université Paris Sud
- INSERM UMR-1184, Center for Immunology of Viral Infections and Autoimmune Diseases, Le Kremlin Bicêtre
- CEA, DSV/iMETI, Division of Immuno-Virology, IDMIT, Fontenay-aux-Roses
- AP-HP, Service de Méecine Interne-Immunologie Clinique, Hôpitaux Universitaires Paris Sud, Le Kremlin Bicêtre
| | - Brigitte Autran
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U1135, Center for Immunology and Microbial Infections – CIMI-Paris
- AP-HP, Hôpital Pitié-Salpêtière, Department of Immunology, Paris, France
| | - Seiamak Bahram
- INSERM UMR_S 1109, Centre de Recherche en Immunologie et Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), LabEx Transplantex, Université de Strasbourg, Strasbourg
| | - Christiane Moog
- INSERM UMR_S 1109, Centre de Recherche en Immunologie et Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), LabEx Transplantex, Université de Strasbourg, Strasbourg
- Vaccine Research Institute (VRI), Créteil
| |
Collapse
|
46
|
Abstract
Natural killer (NK) cells play an important role in innate immune responses to viral infections. Here, we review recent insights into the role of NK cells in viral infections, with particular emphasis on human studies. We first discuss NK cells in the context of acute viral infections, with flavivirus and influenza virus infections as examples. Questions related to activation of NK cells, homing to infected tissues and the role of tissue-resident NK cells in acute viral infections are also addressed. Next, we discuss NK cells in the context of chronic viral infections with hepatitis C virus and HIV-1. Also covered is the role of adaptive-like NK cell expansions as well as the appearance of CD56- NK cells in the course of chronic infection. Specific emphasis is then placed in viral infections in patients with primary immunodeficiencies affecting NK cells. Not least, studies in this area have revealed an important role for NK cells in controlling several herpesvirus infections. Finally, we address new data with respect to the activation of NK cells and NK cell function in humans infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) giving rise to coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| | - Benedikt Strunz
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
47
|
Wojcik I, Schmidt DE, de Neef LA, Rab MAE, Meek B, de Weerdt O, Wuhrer M, van der Schoot CE, Zwaginga JJ, de Haas M, Falck D, Vidarsson G. A functional spleen contributes to afucosylated IgG in humans. Sci Rep 2021; 11:24045. [PMID: 34911982 PMCID: PMC8674363 DOI: 10.1038/s41598-021-03196-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
As a lymphoid organ, the spleen hosts a wide range of immune cell populations, which not only remove blood-borne antigens, but also generate and regulate antigen-specific immune responses. In particular, the splenic microenvironment has been demonstrated to play a prominent role in adaptive immune responses to enveloped viral infections and alloantigens. During both types of immunizations, antigen-specific immunoglobulins G (IgGs) have been characterized by the reduced amount of fucose present on N-linked glycans of the fragment crystallizable (Fc) region. These glycans are essential for mediating the induction of immune effector functions. Therefore, we hypothesized that a spleen may modulate humoral responses and serve as a preferential site for afucosylated IgG responses, which potentially play a role in immune thrombocytopenia (ITP) pathogenesis. To determine the role of the spleen in IgG-Fc glycosylation, we performed IgG subclass-specific liquid chromatography-mass spectrometry (LC-MS) analysis of Fc glycosylation in a large cohort of individuals splenectomized due to trauma, due to ITP, or spherocytosis. IgG-Fc fucosylation was consistently increased after splenectomy, while no effects for IgG-Fc galactosylation and sialylation were observed. An increase in IgG1- and IgG2/3-Fc fucosylation level upon splenectomy has been reported here for the first time, suggesting that immune responses occurring in the spleen may be particularly prone to generate afucosylated IgG responses. Surprisingly, the level of total IgG-Fc fucosylation was decreased in ITP patients compared to healthy controls. Overall, our results suggest a yet unrecognized role of the spleen in either the induction or maintenance of afucosylated IgG responses by B cells.
Collapse
Affiliation(s)
- Iwona Wojcik
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands.
- Glycoscience Research Laboratory, Genos Ltd., Zagreb, Croatia.
| | - David E Schmidt
- Department of Experimental Immunohematology, Sanquin, Amsterdam, The Netherlands
| | - Lisa A de Neef
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Minke A E Rab
- Department of Central Diagnostic Laboratory-Research, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Hematology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Bob Meek
- Department of Medical Microbiology and Immunology, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - Okke de Weerdt
- Department of Internal Medicine, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - C Ellen van der Schoot
- Department of Experimental Immunohematology, Sanquin, Amsterdam, The Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jaap J Zwaginga
- Center for Clinical Transfusion Research, Sanquin Research, Leiden, The Netherlands
- Department of Immune Hematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Masja de Haas
- Center for Clinical Transfusion Research, Sanquin Research, Leiden, The Netherlands
- Department of Immune Hematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
- Department of Immunohematology Diagnostics, Sanquin, Amsterdam, The Netherlands
| | - David Falck
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin, Amsterdam, The Netherlands.
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
48
|
Mitchell JL, Pollara J, Dietze K, Edwards RW, Nohara J, N'guessan KF, Zemil M, Buranapraditkun S, Takata H, Li Y, Muir R, Kroon E, Pinyakorn S, Jha S, Manasnayakorn S, Chottanapund S, Thantiworasit P, Prueksakaew P, Ratnaratorn N, Nuntapinit B, Fox L, Tovanabutra S, Paquin-Proulx D, Wieczorek L, Polonis VR, Maldarelli F, Haddad EK, Phanuphak P, Sacdalan CP, Rolland M, Phanuphak N, Ananworanich J, Vasan S, Ferrari G, Trautmann L. Anti-HIV antibody development up to one year after antiretroviral therapy initiation in acute HIV infection. J Clin Invest 2021; 132:150937. [PMID: 34762600 PMCID: PMC8718150 DOI: 10.1172/jci150937] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
Early initiation of antiretroviral therapy (ART) in acute HIV infection (AHI) is effective at limiting seeding of the HIV viral reservoir, but little is known about how the resultant decreased antigen load affects long-term Ab development after ART. We report here that Env-specific plasma antibody (Ab) levels and Ab-dependent cellular cytotoxicity (ADCC) increased during the first 24 weeks of ART and correlated with Ab levels persisting after 48 weeks of ART. Participants treated in AHI stage 1 had lower Env-specific Ab levels and ADCC activity on ART than did those treated later. Importantly, participants who initiated ART after peak viremia in AHI developed elevated cross-clade ADCC responses that were detectable 1 year after ART initiation, even though clinically undetectable viremia was reached by 24 weeks. These data suggest that there is more germinal center (GC) activity in the later stages of AHI and that Ab development continues in the absence of detectable viremia during the first year of suppressive ART. The development of therapeutic interventions that can enhance earlier development of GCs in AHI and Abs after ART initiation could provide important protection against the viral reservoir that is seeded in individuals treated early in the disease.
Collapse
Affiliation(s)
- Julie L Mitchell
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, United States of America
| | - Justin Pollara
- Department of Surgery, Duke University Medical Center, Durham, United States of America
| | - Kenneth Dietze
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, United States of America
| | - R Whitney Edwards
- Department of Surgery, Duke University Medical Center, Durham, United States of America
| | - Junsuke Nohara
- Department of Surgery, Duke University Medical Center, Durham, United States of America
| | - Kombo F N'guessan
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, United States of America
| | - Michelle Zemil
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, United States of America
| | - Supranee Buranapraditkun
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, United States of America
| | - Hiroshi Takata
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, United States of America
| | - Yifan Li
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, United States of America
| | - Roshell Muir
- Demartment of Medicine, Division of Infectious Diseases & HIV Medicine, Drexel University, Philadelphia, United States of America
| | - Eugene Kroon
- Institute of HIV Research and Innovation, Bangkok, Thailand
| | - Suteeraporn Pinyakorn
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, United States of America
| | - Shalini Jha
- Department of Surgery, Duke University Madical Center, Durham, United States of America
| | - Sopark Manasnayakorn
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Suthat Chottanapund
- Department of Surgery, Bamrasnaradura Infectious Disease Institute, Nonthaburi, Thailand
| | - Pattarawat Thantiworasit
- Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Bangkok, Thailand
| | | | | | - Bessara Nuntapinit
- Armed Forces Research Institute of Medical Sciences in Bangkok, Bangkok, Thailand
| | - Lawrence Fox
- Division of AIDS, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, United States of America
| | - Sodsai Tovanabutra
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, United States of America
| | - Dominic Paquin-Proulx
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, United States of America
| | - Lindsay Wieczorek
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, United States of America
| | - Victoria R Polonis
- Department of Vaccine Research, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, United States of America
| | - Frank Maldarelli
- HIV Dynamics and Replication Program, NCI/NIH, Frederick, United States of America
| | - Elias K Haddad
- Demartment of Medicine, Division of Infectious Diseases & HIV Medicine, Drexel University College of Medicine, Philadelphia, United States of America
| | | | | | - Morgane Rolland
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, United States of America
| | | | | | - Sandhya Vasan
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, United States of America
| | - Guido Ferrari
- Department of Surgery, Duke University Medical Center, Durham, United States of America
| | - Lydie Trautmann
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, United States of America
| |
Collapse
|
49
|
Gunn BM, Bai S. Building a better antibody through the Fc: advances and challenges in harnessing antibody Fc effector functions for antiviral protection. Hum Vaccin Immunother 2021; 17:4328-4344. [PMID: 34613865 PMCID: PMC8827636 DOI: 10.1080/21645515.2021.1976580] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 12/15/2022] Open
Abstract
Antibodies can provide antiviral protection through neutralization and recruitment of innate effector functions through the Fc domain. While neutralization has long been appreciated for its role in antibody-mediated protection, a growing body of work indicates that the antibody Fc domain also significantly contributes to antiviral protection. Recruitment of innate immune cells such as natural killer cells, neutrophils, monocytes, macrophages, dendritic cells and the complement system by antibodies can lead to direct restriction of viral infection as well as promoting long-term antiviral immunity. Monoclonal antibody therapeutics against viruses are increasingly incorporating Fc-enhancing features to take advantage of the Fc domain, uncovering a surprising breadth of mechanisms through which antibodies can control viral infection. Here, we review the recent advances in our understanding of antibody-mediated innate immune effector functions in protection from viral infection and review the current approaches and challenges to effectively leverage innate immune cells via antibodies.
Collapse
Affiliation(s)
- Bronwyn M. Gunn
- Paul G. Allen School of Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Shuangyi Bai
- Paul G. Allen School of Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| |
Collapse
|
50
|
Cheng HD, Dowell KG, Bailey-Kellogg C, Goods BA, Love JC, Ferrari G, Alter G, Gach J, Forthal DN, Lewis GK, Greene K, Gao H, Montefiori DC, Ackerman ME. Diverse antiviral IgG effector activities are predicted by unique biophysical antibody features. Retrovirology 2021; 18:35. [PMID: 34717659 PMCID: PMC8557579 DOI: 10.1186/s12977-021-00579-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/20/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The critical role of antibody Fc-mediated effector functions in immune defense has been widely reported in various viral infections. These effector functions confer cellular responses through engagement with innate immune cells. The precise mechanism(s) by which immunoglobulin G (IgG) Fc domain and cognate receptors may afford protection are poorly understood, however, in the context of HIV/SHIV infections. Many different in vitro assays have been developed and utilized to measure effector functions, but the extent to which these assays capture distinct antibody activities has not been fully elucidated. RESULTS In this study, six Fc-mediated effector function assays and two biophysical antibody profiling assays were performed on a common set of samples from HIV-1 infected and vaccinated subjects. Biophysical antibody profiles supported robust prediction of diverse IgG effector functions across distinct Fc-mediated effector function assays. While a number of assays showed correlated activities, supervised machine learning models indicated unique antibody features as primary contributing factors to the associated effector functions. Additional experiments established the mechanistic relevance of relationships discovered using this unbiased approach. CONCLUSIONS In sum, this study provides better resolution on the diversity and complexity of effector function assays, offering a clearer perspective into this family of antibody mechanisms of action to inform future HIV-1 treatment and vaccination strategies.
Collapse
Affiliation(s)
- Hao D. Cheng
- grid.254880.30000 0001 2179 2404Thayer School of Engineering, Dartmouth College, Hanover, NH USA ,grid.254880.30000 0001 2179 2404Molecular and Cellular Biology Program, Dartmouth College, 14 Engineering Dr., Hanover, NH 03755 USA
| | - Karen G. Dowell
- grid.254880.30000 0001 2179 2404Department of Computer Science, Dartmouth College, Hanover, 03755 USA
| | - Chris Bailey-Kellogg
- grid.254880.30000 0001 2179 2404Department of Computer Science, Dartmouth College, Hanover, 03755 USA
| | - Brittany A. Goods
- grid.116068.80000 0001 2341 2786Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA ,grid.116068.80000 0001 2341 2786Department of Biological Engineering, Koch Institute at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - J. Christopher Love
- grid.116068.80000 0001 2341 2786Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA ,grid.116068.80000 0001 2341 2786Department of Biological Engineering, Koch Institute at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Guido Ferrari
- grid.189509.c0000000100241216Department of Surgery, Duke University Medical Center, Durham, NC 27710 USA ,grid.189509.c0000000100241216Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27719 USA
| | - Galit Alter
- grid.461656.60000 0004 0489 3491Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139 USA
| | - Johannes Gach
- grid.266093.80000 0001 0668 7243Division of Infectious Diseases, Irvine School of Medicine, University California, Irvine, CA 92697 USA
| | - Donald N. Forthal
- grid.266093.80000 0001 0668 7243Division of Infectious Diseases, Irvine School of Medicine, University California, Irvine, CA 92697 USA
| | - George K. Lewis
- grid.411024.20000 0001 2175 4264Division of Vaccine Research, Institute of Human Virology, University Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Kelli Greene
- grid.189509.c0000000100241216Department of Surgery, Duke University Medical Center, Durham, NC 27710 USA
| | - Hongmei Gao
- grid.189509.c0000000100241216Department of Surgery, Duke University Medical Center, Durham, NC 27710 USA
| | - David C. Montefiori
- grid.189509.c0000000100241216Department of Surgery, Duke University Medical Center, Durham, NC 27710 USA ,grid.189509.c0000000100241216Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27719 USA
| | - Margaret E. Ackerman
- grid.254880.30000 0001 2179 2404Thayer School of Engineering, Dartmouth College, Hanover, NH USA ,grid.254880.30000 0001 2179 2404Molecular and Cellular Biology Program, Dartmouth College, 14 Engineering Dr., Hanover, NH 03755 USA
| |
Collapse
|