1
|
Shen W, Zhao S, Lyu S, Zhang M, Guo Q, Lou B, Ma W, Zhan J, Liu L, Li L. Integrating transcriptomics and metabolomics revealed pathogenic mechanism of Chinese soft-shell turtle (Trionyx sinensis) infected with Trionyx sinensis hemorrhagic syndrome virus (TSHSV). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 166:105373. [PMID: 40258577 DOI: 10.1016/j.dci.2025.105373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 04/18/2025] [Accepted: 04/18/2025] [Indexed: 04/23/2025]
Abstract
Trionyx sinensis Hemorrhagic Syndrome Virus(TSHSV)seriously hinders the aquaculture of Chinese soft-shell turtle (Trionyx sinensis) due to its high mortality. However, the pathogenic mechanisms of TSHSV in T. sinensis are still unclear. In present study, transcriptomic and metabolomic analyses were performed on turtle livers following TSHSV infection. 734 up-regulated and 770 down-regulated differentially expressed genes (DEGs) were identified in different TSHSV challenge groups. These DEGs were categorized into 12 pathways related to virus infection and host immunity. Moreover, 27, 2679, and 4341 differentially expressed metabolites (DEMs) were identified in the D1, D3, and D5 groups, respectively. These DEMs were mapped into the pathways of energy metabolism, amino acid metabolism and fatty acid metabolism. Association analysis revealed TSHSV induced inflammatory responses, hepatocyte apoptosis, and ultimately led to liver tissue damage. Taurine supplementation promoted the survival rate of turtle after TSHSV infection and reduced the inflammatory response of liver by regulating the production of interferons, antioxidases, and the pro-inflammatory cytokine TNF-α. Collectively, our results provide comprehensive profiles of the transcriptome and metabolome in Chinese soft-shell turtle liver after TSHSV invasion, shedding light on the underlying pathogenic mechanism. The method of taurine supplementation might be a promising therapeutic strategy for protecting turtles from TSHSV.
Collapse
Affiliation(s)
- Weifeng Shen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Shuang Zhao
- Xiamen Meliomics Technology Co. Ltd., Xiamen, Fujian, China
| | - Sunjian Lyu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | | | - Qi Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Bao Lou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - WenJun Ma
- Zhejiang aquatic technology extension station, Hangzhou, Zhejiang, China
| | - Jingjing Zhan
- Xiamen Meliomics Technology Co. Ltd., Xiamen, Fujian, China
| | - Li Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China.
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
2
|
Bhandarkar V, Dinter T, Spranger S. Architects of immunity: How dendritic cells shape CD8 + T cell fate in cancer. Sci Immunol 2025; 10:eadf4726. [PMID: 39823318 PMCID: PMC11970844 DOI: 10.1126/sciimmunol.adf4726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 12/16/2024] [Indexed: 01/19/2025]
Abstract
Immune responses against cancer are dominated by T cell exhaustion and dysfunction. Recent advances have underscored the critical role of early priming interactions in establishing T cell fates. In this review, we explore the importance of dendritic cell (DC) signals in specifying CD8+ T cell fates in cancer, drawing on insights from acute and chronic viral infection models. We highlight the role of DCs in lymph nodes and tumors in maintaining stem-like CD8+ T cells, which are critical for durable antitumor immune responses. Understanding how CD8+ T cell fates are determined will enable the rational design of immunotherapies, particularly therapeutic cancer vaccines, that can modulate DC-T cell interactions to generate beneficial CD8+ T cell fates.
Collapse
Affiliation(s)
- Vidit Bhandarkar
- Koch Institute at MIT, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Teresa Dinter
- Koch Institute at MIT, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Stefani Spranger
- Koch Institute at MIT, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
3
|
Chhipa AS, Boscaro V, Gallicchio M, Patel S. The curious case of type I interferon signaling in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189204. [PMID: 39477031 DOI: 10.1016/j.bbcan.2024.189204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
Cytokines are the crucial signaling proteins that mediate the crosstalks between the cells of tumor microenvironment (TME). Interferon-1 (IFN-1) are the important cytokines that are widely known for their tumor suppressive roles comprising of cancer cell intrinsic and extrinsic mechanisms. Despite having known antitumor effects, IFN-1 are also reported to have tumor promoting functions under varying circumstances. This dichotomy in the functions of IFN-1 is largely attributed to the acute and chronic activation of IFN-1 signaling in TME. The chronic activation of IFN-1 signaling in tumor cells results in altered stimulation of downstream pathways that result in the expression of tumor promoting proteins, while the acute IFN-1 signaling activation maintains its tumor inhibiting functions. In the present review, we have discussed the anti- and pro-tumor actions of IFN-1 signaling under acute and chronic IFN-1 signaling activation. We have also discussed the downstream changes in signaling components that result in tumor supportive functions of a constitutive IFN-1 signaling. We have further discussed the possible strategies to overcome the detrimental effects of chronic IFN-1 pathway activation and to successfully employ IFN-1 for their beneficial anti-tumor effects.
Collapse
Affiliation(s)
- Abu Sufiyan Chhipa
- Department of Pharmacology, Institute of Pharmacy, Nirma University, 382481 Ahmedabad, India; Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy
| | - Valentina Boscaro
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy
| | | | - Snehal Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, 382481 Ahmedabad, India.
| |
Collapse
|
4
|
Song J, Zhang Y, Zhou C, Zhan J, Cheng X, Huang H, Mao S, Zong Z. The dawn of a new Era: mRNA vaccines in colorectal cancer immunotherapy. Int Immunopharmacol 2024; 132:112037. [PMID: 38599100 DOI: 10.1016/j.intimp.2024.112037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/24/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
Colorectal cancer (CRC) is a typical cancer that accounts for 10% of all new cancer cases annually and nearly 10% of all cancer deaths. Despite significant progress in current classical interventions for CRC, these traditional strategies could be invasive and with numerous adverse effects. The poor prognosis of CRC patients highlights the evident and pressing need for more efficient and targeted treatment. Novel strategies regarding mRNA vaccines for anti-tumor therapy have also been well-developed since the successful application for the prevention of COVID-19. mRNA vaccine technology won the 2023 Nobel Prize in Physiology or Medicine, signaling a new direction in human anti-cancer treatment: mRNA medicine. As a promising new immunotherapy in CRC and other multiple cancer treatments, the mRNA vaccine has higher specificity, better efficacy, and fewer side effects than traditional strategies. The present review outlines the basics of mRNA vaccines and their advantages over other vaccines and informs an available strategy for developing efficient mRNA vaccines for CRC precise treatment. In the future, more exploration of mRNA vaccines for CRC shall be attached, fostering innovation to address existing limitations.
Collapse
Affiliation(s)
- Jingjing Song
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No.1 MinDe Road, Nanchang 330006, Jiangxi, China; School of Ophthalmology and Optometry, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Yujun Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No.1 MinDe Road, Nanchang 330006, Jiangxi, China; Huankui Academy, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Chulin Zhou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No.1 MinDe Road, Nanchang 330006, Jiangxi, China; The Second Clinical Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Jianhao Zhan
- Huankui Academy, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Xifu Cheng
- School of Ophthalmology and Optometry, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Haoyu Huang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No.1 MinDe Road, Nanchang 330006, Jiangxi, China
| | - Shengxun Mao
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No.1 MinDe Road, Nanchang 330006, Jiangxi, China.
| | - Zhen Zong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No.1 MinDe Road, Nanchang 330006, Jiangxi, China.
| |
Collapse
|
5
|
Zannikou M, Fish EN, Platanias LC. Signaling by Type I Interferons in Immune Cells: Disease Consequences. Cancers (Basel) 2024; 16:1600. [PMID: 38672681 PMCID: PMC11049350 DOI: 10.3390/cancers16081600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
This review addresses interferon (IFN) signaling in immune cells and the tumor microenvironment (TME) and examines how this affects cancer progression. The data reveal that IFNs exert dual roles in cancers, dependent on the TME, exhibiting both anti-tumor activity and promoting cancer progression. We discuss the abnormal IFN signaling induced by cancerous cells that alters immune responses to permit their survival and proliferation.
Collapse
Affiliation(s)
- Markella Zannikou
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, 303 East Superior Ave., Chicago, IL 60611, USA
| | - Eleanor N. Fish
- Toronto General Hospital Research Institute, University Health Network, 67 College Street, Toronto, ON M5G 2M1, Canada;
- Department of Immunology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Leonidas C. Platanias
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, 303 East Superior Ave., Chicago, IL 60611, USA
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, 820 S. Damen Ave., Chicago, IL 60612, USA
| |
Collapse
|
6
|
Wang M, Chen S, He X, Yuan Y, Wei X. Targeting inflammation as cancer therapy. J Hematol Oncol 2024; 17:13. [PMID: 38520006 PMCID: PMC10960486 DOI: 10.1186/s13045-024-01528-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/07/2024] [Indexed: 03/25/2024] Open
Abstract
Inflammation has accompanied human beings since the emergence of wounds and infections. In the past decades, numerous efforts have been undertaken to explore the potential role of inflammation in cancer, from tumor development, invasion, and metastasis to the resistance of tumors to treatment. Inflammation-targeted agents not only demonstrate the potential to suppress cancer development, but also to improve the efficacy of other therapeutic modalities. In this review, we describe the highly dynamic and complex inflammatory tumor microenvironment, with discussion on key inflammation mediators in cancer including inflammatory cells, inflammatory cytokines, and their downstream intracellular pathways. In addition, we especially address the role of inflammation in cancer development and highlight the action mechanisms of inflammation-targeted therapies in antitumor response. Finally, we summarize the results from both preclinical and clinical studies up to date to illustrate the translation potential of inflammation-targeted therapies.
Collapse
Affiliation(s)
- Manni Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.17, Block3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Siyuan Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.17, Block3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xuemei He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.17, Block3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yong Yuan
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.17, Block3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
7
|
Yang C, Liu Z, Yang Y, Cocka LJ, Li Y, Zeng W, Shen H. Chronic viral infection impairs immune memory to a different pathogen. PLoS Pathog 2024; 20:e1012113. [PMID: 38547316 PMCID: PMC11003680 DOI: 10.1371/journal.ppat.1012113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/09/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024] Open
Abstract
Chronic viral infections cause T cell dysfunction in both animal models and human clinical settings, thereby affecting the ability of the host immune system to clear viral pathogens and develop proper virus-specific immune memory. However, the impact of chronic viral infections on the host's immune memory to other pathogens has not been well described. In this study, we immunized mice with recombinant Listeria monocytogenes expressing OVA (Lm-OVA) to generate immunity to Lm and allow analysis of OVA-specific memory T (Tm) cells. We then infected these mice with lymphocytic choriomeningitis virus (LCMV) strain Cl-13 which establishes a chronic infection. We found that chronically infected mice were unable to protect against Listeria re-challenge. OVA-specific Tm cells showed a progressive loss in total numbers and in their ability to produce effector cytokines in the context of chronic LCMV infection. Unlike virus-specific T cells, OVA-specific Tm cells from chronically infected mice did not up-regulate the expression of inhibitory receptors, a hallmark feature of exhaustion in virus-specific T cells. Finally, OVA-specific Tm cells failed to mount a robust recall response after bacteria re-challenge both in the chronically infected and adoptively transferred naïve hosts. These results show that previously established bacteria-specific Tm cells become functionally impaired in the setting of an unrelated bystander chronic viral infection, which may contribute to poor immunity against other pathogens in the host with chronic viral infection.
Collapse
Affiliation(s)
- Cheng Yang
- Department of Infectious Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Pennsylvania, Philadelphia, United States of America
| | - Zhicui Liu
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Pennsylvania, Philadelphia, United States of America
- Department of Dermatology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ying Yang
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Pennsylvania, Philadelphia, United States of America
- Hainan Academy of Medical Sciences, Hainan Medical University, Hainan, China
| | - Luis J. Cocka
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Pennsylvania, Philadelphia, United States of America
| | - Yongguo Li
- Department of Infectious Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weihong Zeng
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Pennsylvania, Philadelphia, United States of America
- Shanghai Key Laboratory of Embryo Original Diseases, the International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Shen
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Pennsylvania, Philadelphia, United States of America
| |
Collapse
|
8
|
Reghupaty SC, Kanwal S, Mendoza RG, Davis E, Li H, Lai Z, Dozmorov MG, Faison MO, Siddiqui RA, Sarkar D. Dysregulation of Type I Interferon (IFN-I) Signaling: A Potential Contributor to Racial Disparity in Hepatocellular Carcinoma (HCC). Cancers (Basel) 2023; 15:4283. [PMID: 37686559 PMCID: PMC10486472 DOI: 10.3390/cancers15174283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
African-American (AA)/Black hepatocellular carcinoma (HCC) patients have increased incidence and decreased survival rates compared to non-Hispanic (White) patients, the underlying molecular mechanism of which is not clear. Analysis of existing RNA-sequencing (RNA-seq) data in The Cancer Genome Atlas (TCGA) and in-house RNA-sequencing of 14 White and 18 AA/Black HCC patients revealed statistically significant activation of type I interferon (IFN-I) signaling pathway in AA/Black patients. A four-gene signature of IFN-stimulated genes (ISGs) showed increased expression in AA/Black HCC tumors versus White. HCC is a disease of chronic inflammation, and IFN-Is function as pro-inflammatory cytokines. We tested efficacy of ginger extract (GE), a dietary compound known for anti-inflammatory properties, on HCC cell lines derived from White (HepG2), AA/Black (Hep3B and O/20) and Asian (HuH-7) patients. GE exhibited a significantly lower IC50 on Hep3B and O/20 cells than on HepG2 and HuH-7 cells. The GE treatment inhibited the activation of downstream mediators of IFN-I signaling pathways and expression of ISGs in all four HCC cells. Our data suggest that ginger can potentially attenuate IFN-I-mediated signaling pathways in HCC, and cells from AA/Black HCC patients may be more sensitive to ginger. AA/Black HCC patients might benefit from a holistic diet containing ginger.
Collapse
Affiliation(s)
| | - Sadia Kanwal
- Food and Nutrition Science Laboratory, College of Agriculture, Virginia State University, Petersburg, VA 23806, USA; (S.K.); (H.L.)
| | - Rachel G. Mendoza
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Eva Davis
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Haiwen Li
- Food and Nutrition Science Laboratory, College of Agriculture, Virginia State University, Petersburg, VA 23806, USA; (S.K.); (H.L.)
| | - Zhao Lai
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA;
| | - Mikhail G. Dozmorov
- Department of Biostatistics and Pathology, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Milton Omar Faison
- Department of Biology, Virginia State University, Petersburg, VA 23806, USA;
| | - Rafat Ali Siddiqui
- Food and Nutrition Science Laboratory, College of Agriculture, Virginia State University, Petersburg, VA 23806, USA; (S.K.); (H.L.)
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Massey Cancer Center, VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
9
|
He X, Cao Y, Lu Y, Qi F, Wang H, Liao X, Xu G, Yang B, Ma J, Li D, Tang X, Zhang Z. Breakthrough infection evokes the nasopharyngeal innate immune responses established by SARS-CoV-2-inactivated vaccine. Front Immunol 2023; 14:1181121. [PMID: 37457721 PMCID: PMC10349640 DOI: 10.3389/fimmu.2023.1181121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/30/2023] [Indexed: 07/18/2023] Open
Abstract
Nasopharyngeal immune responses are vital for defense against SARS-CoV-2 infection. Although vaccination via muscle immunization has shown a high efficacy in reducing severity and death in COVID-19 infection, breakthrough infection frequently happens because of mutant variants and incompletely established mucosal immunity, especially in the upper respiratory tract. Here, we performed a single-cell RNA and T-cell receptor repertoire sequencing and delineated a high-resolution transcriptome landscape of nasopharyngeal mucosal immune and epithelial cells in vaccinated persons with breakthrough infection and non-vaccinated persons with natural infection as control. The epithelial cells showed anti-virus gene expression diversity and potentially recruited innate immune cells into the nasopharyngeal mucous of vaccinated patients. Upon infection, they released significant pro-inflammatory cytokines and chemokines by macrophages and monocytes and expressed antigen-presenting relevant genes by dendritic cells. Such immune responses of nasopharyngeal innate immune cells would facilitate the strengthened expression of cytotoxic genes in virus-specific T-cell or B-cell differentiation into antibody-secreting cells at the early stage of breakthrough infection through cell interaction between innate and adaptive immune cells. Notably, these alterations of nasopharyngeal immune cells in breakthrough infection depended on the activated Nuclear factor-κB (NF-κB) and NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) signaling rather than type I interferon responses due to the general reduction in interferon-stimulated gene expression. Our findings suggest that vaccination potentially strengthens innate immune barriers and virus-specific memory immune cell responses, which could be quickly activated to defend against variant breakthrough infection and maintain nasopharyngeal epithelial cell integrity. Thus, this study highlights the necessity of a boost via nasal mucous after intramuscular immunization.
Collapse
Affiliation(s)
- Xiaomeng He
- Institute of Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yingyin Cao
- Institute of Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yanmei Lu
- Institute of Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Furong Qi
- Institute of Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Haiyan Wang
- Institute of Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xuejiao Liao
- Institute of Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Gang Xu
- Institute of Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Biao Yang
- Institute of Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Junhua Ma
- Institute of Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Dapeng Li
- Institute of Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xian Tang
- Institute of Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Zheng Zhang
- Institute of Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Shenzhen Research Center for Communicable Disease Diagnosis and Treatment of Chinese Academy of Medical Science, Shenzhen, Guangdong, China
| |
Collapse
|
10
|
Chakraborty B, Byemerwa J, Krebs T, Lim F, Chang CY, McDonnell DP. Estrogen Receptor Signaling in the Immune System. Endocr Rev 2023; 44:117-141. [PMID: 35709009 DOI: 10.1210/endrev/bnac017] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Indexed: 01/14/2023]
Abstract
The immune system functions in a sexually dimorphic manner, with females exhibiting more robust immune responses than males. However, how female sex hormones affect immune function in normal homeostasis and in autoimmunity is poorly understood. In this review, we discuss how estrogens affect innate and adaptive immune cell activity and how dysregulation of estrogen signaling underlies the pathobiology of some autoimmune diseases and cancers. The potential roles of the major circulating estrogens, and each of the 3 estrogen receptors (ERα, ERβ, and G-protein coupled receptor) in the regulation of the activity of different immune cells are considered. This provides the framework for a discussion of the impact of ER modulators (aromatase inhibitors, selective estrogen receptor modulators, and selective estrogen receptor downregulators) on immunity. Synthesis of this information is timely given the considerable interest of late in defining the mechanistic basis of sex-biased responses/outcomes in patients with different cancers treated with immune checkpoint blockade. It will also be instructive with respect to the further development of ER modulators that modulate immunity in a therapeutically useful manner.
Collapse
Affiliation(s)
- Binita Chakraborty
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jovita Byemerwa
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Taylor Krebs
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA.,Known Medicine, Salt Lake City, UT 84108, USA
| | - Felicia Lim
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ching-Yi Chang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Donald P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
11
|
Mu W, Rezek V, Martin H, Carrillo MA, Tomer S, Hamid P, Lizarraga MA, Tibbe TD, Yang OO, Jamieson BD, Kitchen SG, Zhen A. Autophagy inducer rapamycin treatment reduces IFN-I-mediated Inflammation and improves anti-HIV-1 T cell response in vivo. JCI Insight 2022; 7:e159136. [PMID: 36509289 PMCID: PMC9746825 DOI: 10.1172/jci.insight.159136] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022] Open
Abstract
A hallmark of HIV-1 infection is chronic inflammation, even in patients treated with antiretroviral therapy (ART). Chronic inflammation drives HIV-1 pathogenesis, leading to loss of CD4+ T cells and exhaustion of antiviral immunity. Therefore, strategies to safely reduce systematic inflammation are needed to halt disease progression and restore defective immune responses. Autophagy is a cellular mechanism for disposal of damaged organelles and elimination of intracellular pathogens. Autophagy is pivotal for energy homeostasis and plays critical roles in regulating immunity. However, how it regulates inflammation and antiviral T cell responses during HIV infection is unclear. Here, we demonstrate that autophagy is directly linked to IFN-I signaling, which is a key driver of immune activation and T cell exhaustion during chronic HIV infection. Impairment of autophagy leads to spontaneous IFN-I signaling, and autophagy induction reduces IFN-I signaling in monocytic cells. Importantly, in HIV-1-infected humanized mice, autophagy inducer rapamycin treatment significantly reduced persistent IFN-I-mediated inflammation and improved antiviral T cell responses. Cotreatment of rapamycin with ART led to significantly reduced viral rebound after ART withdrawal. Taken together, our data suggest that therapeutically targeting autophagy is a promising approach to treat persistent inflammation and improve immune control of HIV replication.
Collapse
Affiliation(s)
- Wenli Mu
- Division of Hematology/Oncology, Department of Medicine and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Valerie Rezek
- Division of Hematology/Oncology, Department of Medicine and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Heather Martin
- Division of Hematology/Oncology, Department of Medicine and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Mayra A. Carrillo
- Division of Hematology/Oncology, Department of Medicine and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Shallu Tomer
- Division of Hematology/Oncology, Department of Medicine and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Philip Hamid
- Division of Hematology/Oncology, Department of Medicine and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Miguel A. Lizarraga
- Division of Hematology/Oncology, Department of Medicine and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Tristan D. Tibbe
- Statistic Core, Department of Medicine at UCLA, Los Angeles, California, USA
| | - Otto O. Yang
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Division of Infectious Disease and
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | | | - Scott G. Kitchen
- Division of Hematology/Oncology, Department of Medicine and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Anjie Zhen
- Division of Hematology/Oncology, Department of Medicine and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
12
|
Repáraz D, Ruiz M, Silva L, Aparicio B, Egea J, Guruceaga E, Ajona D, Senent Y, Conde E, Navarro F, Barace S, Alignani D, Hervás-Stubbs S, Lasarte JJ, Llopiz D, Sarobe P. Gemcitabine-mediated depletion of immunosuppressive dendritic cells enhances the efficacy of therapeutic vaccination. Front Immunol 2022; 13:991311. [PMID: 36300124 PMCID: PMC9589451 DOI: 10.3389/fimmu.2022.991311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Vaccination using optimized strategies may increase response rates to immune checkpoint inhibitors (ICI) in some tumors. To enhance vaccine potency and improve thus responses to ICI, we analyzed the gene expression profile of an immunosuppressive dendritic cell (DC) population induced during vaccination, with the goal of identifying druggable inhibitory mechanisms. RNAseq studies revealed targetable genes, but their inhibition did not result in improved vaccines. However, we proved that immunosuppressive DC had a monocytic origin. Thus, monocyte depletion by gemcitabine administration reduced the generation of these DC and increased vaccine-induced immunity, which rejected about 20% of LLC-OVA and B16-OVA tumors, which are non-responders to anti-PD-1. This improved efficacy was associated with higher tumor T-cell infiltration and overexpression of PD-1/PD-L1. Therefore, the combination of vaccine + gemcitabine with anti-PD-1 was superior to anti-PD-1 monotherapy in both models. B16-OVA tumors benefited from a synergistic effect, reaching 75% of tumor rejection, but higher levels of exhausted T-cells in LLC-OVA tumors co-expressing PD-1, LAG3 and TIM3 precluded similar levels of efficacy. Our results indicate that gemcitabine is a suitable combination therapy with vaccines aimed at enhancing PD-1 therapies by targeting vaccine-induced immunosuppressive DC.
Collapse
Affiliation(s)
- David Repáraz
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain
| | - Marta Ruiz
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain
| | - Leyre Silva
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain
| | - Belén Aparicio
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain
| | - Josune Egea
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain
| | - Elizabeth Guruceaga
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Daniel Ajona
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Yaiza Senent
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Enrique Conde
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Flor Navarro
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
| | - Sergio Barace
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
| | - Diego Alignani
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Sandra Hervás-Stubbs
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain
| | - Juan José Lasarte
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Diana Llopiz
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain
| | - Pablo Sarobe
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain
- *Correspondence: Pablo Sarobe,
| |
Collapse
|
13
|
Svanberg C, Nyström S, Govender M, Bhattacharya P, Che KF, Ellegård R, Shankar EM, Larsson M. HIV-1 induction of tolerogenic dendritic cells is mediated by cellular interaction with suppressive T cells. Front Immunol 2022; 13:790276. [PMID: 36032117 PMCID: PMC9399885 DOI: 10.3389/fimmu.2022.790276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
HIV-1 infection gives rise to a multi-layered immune impairment in most infected individuals. The chronic presence of HIV-1 during the priming and activation of T cells by dendritic cells (DCs) promotes the expansion of suppressive T cells in a contact-dependent manner. The mechanism behind the T cell side of this HIV-induced impairment is well studied, whereas little is known about the reverse effects exerted on the DCs. Herein we assessed the phenotype and transcriptome profile of mature DCs that have been in contact with suppressive T cells. The HIV exposed DCs from cocultures between DCs and T cells resulted in a more tolerogenic phenotype with increased expression of e.g., PDL1, Gal-9, HVEM, and B7H3, mediated by interaction with T cells. Transcriptomic analysis of the DCs separated from the DC-T cell coculture revealed a type I IFN response profile as well as an activation of pathways involved in T cell exhaustion. Taken together, our data indicate that the prolonged and strong type I IFN signaling in DCs, induced by the presence of HIV during DC-T cell cross talk, could play an important role in the induction of tolerogenic DCs and suppressed immune responses seen in HIV-1 infected individuals.
Collapse
Affiliation(s)
- Cecilia Svanberg
- Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Sofia Nyström
- Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Clinical Immunology and Transfusion Medicine, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Melissa Govender
- Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Pradyot Bhattacharya
- Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Karlhans F. Che
- Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Unit for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Rada Ellegård
- Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Division of Clinical Genetics, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Esaki M. Shankar
- Infection Biology, Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Marie Larsson
- Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- *Correspondence: Marie Larsson,
| |
Collapse
|
14
|
Boukhaled GM, Gadalla R, Elsaesser HJ, Abd-Rabbo D, Quevedo R, Yang SYC, Guo M, Wang BX, Noamani B, Gray D, Lau SCM, Taylor K, Aung K, Spreafico A, Hansen AR, Saibil SD, Hirano N, Guidos C, Pugh TJ, McGaha TL, Ohashi PS, Sacher AG, Butler MO, Brooks DG. Pre-encoded responsiveness to type I interferon in the peripheral immune system defines outcome of PD1 blockade therapy. Nat Immunol 2022; 23:1273-1283. [PMID: 35835962 DOI: 10.1038/s41590-022-01262-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 06/09/2022] [Indexed: 12/14/2022]
Abstract
Type I interferons (IFN-Is) are central regulators of anti-tumor immunity and responses to immunotherapy, but they also drive the feedback inhibition underlying therapeutic resistance. In the present study, we developed a mass cytometry approach to quantify IFN-I-stimulated protein expression across immune cells and used multi-omics to uncover pre-therapy cellular states encoding responsiveness to inflammation. Analyzing peripheral blood cells from multiple cancer types revealed that differential responsiveness to IFN-Is before anti-programmed cell death protein 1 (PD1) treatment was highly predictive of long-term survival after therapy. Unexpectedly, IFN-I hyporesponsiveness efficiently predicted long-term survival, whereas high responsiveness to IFN-I was strongly associated with treatment failure and diminished survival time. Peripheral IFN-I responsive states were not associated with tumor inflammation, identifying a disconnect between systemic immune potential and 'cold' or 'hot' tumor states. Mechanistically, IFN-I responsiveness was epigenetically imprinted before therapy, poising cells for differential inflammatory responses and dysfunctional T cell effector programs. Thus, we identify physiological cell states with clinical importance that can predict success and long-term survival of PD1-blocking immunotherapy.
Collapse
Affiliation(s)
- Giselle M Boukhaled
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.
| | - Ramy Gadalla
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Heidi J Elsaesser
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Diala Abd-Rabbo
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Rene Quevedo
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - S Y Cindy Yang
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Mengdi Guo
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Ben X Wang
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Babak Noamani
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Diana Gray
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Sally C M Lau
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, Ontario, Canada.,Department of Medical Oncology, Perlmutter Cancer Center, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Kirsty Taylor
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Kyaw Aung
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Anna Spreafico
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Aaron R Hansen
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Samuel D Saibil
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Naoto Hirano
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.,Division of Medical Oncology and Hematology, Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Cynthia Guidos
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada.,Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Trevor J Pugh
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Tracy L McGaha
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Pamela S Ohashi
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Adrian G Sacher
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada.,Division of Medical Oncology and Hematology, Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Marcus O Butler
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - David G Brooks
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada. .,Department of Immunology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
15
|
Zhao Y, Zhang J, Xue B, Zhang F, Xu Q, Ma H, Sha T, Peng L, Li F, Ding J. Serum levels of inhibitory costimulatory molecules and correlations with levels of innate immune cytokines in patients with pulmonary tuberculosis. J Int Med Res 2021; 49:3000605211036832. [PMID: 34463584 PMCID: PMC8414942 DOI: 10.1177/03000605211036832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Objective To analyze serum levels of inhibitory costimulatory molecules and their
correlations with innate immune cytokine levels in patients with pulmonary
tuberculosis (PTB). Methods Data for 280 PTB patients and 280 healthy individuals were collected. Serum
levels of immune molecules were measured using ELISA. Univariate,
multivariate, subgroup, matrix correlation, and receiver operating
characteristic curve analyses were performed. Results Host, environment, lifestyle, clinical features, and medical history all
influenced PTB. Serum levels of soluble programmed death ligand 1 (sPD-L1),
soluble T-cell immunoglobulin- and mucin-domain–containing molecule 3
(sTim-3), soluble galectin-9 (sGal-9), interleukin (IL)-4, and IL-33 were
significantly higher in patients with PTB, while levels of IL-12, IL-23,
IL-18, and interferon (IFN)-γ were significantly lower. Serum levels of
sTim-3 were higher in alcohol users. Levels of sTim-3 were negatively
correlated with those of IL-12. Levels of IL-12, IL-23, and IL-18 were
positively correlated with those of IFN-γ, while levels of IL-12 were
negatively correlated with those of IL-4. The areas under the curve of
sPD-L1, sTim-3, sGal-9, IL-12, IL-23, IL-18, IFN-γ, IL-4, and IL-33 for
identifying PTB were all >0.77. Conclusions Inhibitory costimulatory molecules may be targets for controlling PTB. Immune
molecules may be helpful for diagnosis of PTB.
Collapse
Affiliation(s)
- Yunjuan Zhao
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China.,Postdoctoral Workstation of Traditional Chinese Medicine Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Jia Zhang
- Postdoctoral Workstation of Traditional Chinese Medicine Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Bing Xue
- Shihezi University School of Medicine, Shihezi, China
| | - Fengbo Zhang
- Department of Clinical Laboratory Medicine, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Qian Xu
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Haimei Ma
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Tong Sha
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Lei Peng
- Department of Microbiology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | | | - Jianbing Ding
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
16
|
Musella M, Galassi C, Manduca N, Sistigu A. The Yin and Yang of Type I IFNs in Cancer Promotion and Immune Activation. BIOLOGY 2021; 10:856. [PMID: 34571733 PMCID: PMC8467547 DOI: 10.3390/biology10090856] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/22/2022]
Abstract
Type I Interferons (IFNs) are key regulators of natural and therapy-induced host defense against viral infection and cancer. Several years of remarkable progress in the field of oncoimmunology have revealed the dual nature of these cytokines. Hence, Type I IFNs may trigger anti-tumoral responses, while leading immune dysfunction and disease progression. This dichotomy relies on the duration and intensity of the transduced signaling, the nature of the unleashed IFN stimulated genes, and the subset of responding cells. Here, we discuss the role of Type I IFNs in the evolving relationship between the host immune system and cancer, as we offer a view of the therapeutic strategies that exploit and require an intact Type I IFN signaling, and the role of these cytokines in inducing adaptive resistance. A deep understanding of the complex, yet highly regulated, network of Type I IFN triggered molecular pathways will help find a timely and immune"logical" way to exploit these cytokines for anticancer therapy.
Collapse
Affiliation(s)
- Martina Musella
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (C.G.); (N.M.)
| | - Claudia Galassi
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (C.G.); (N.M.)
| | - Nicoletta Manduca
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (C.G.); (N.M.)
| | - Antonella Sistigu
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (C.G.); (N.M.)
- Tumor Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| |
Collapse
|
17
|
Wu X, Kang X, Zhang X, Xie W, Su Y, Liu X, Guo L, Guo E, Li F, Hu D, Qin X, Fu Y, Peng W, Jia J, Wang C. WEE1 inhibitor and ataxia telangiectasia and RAD3-related inhibitor trigger stimulator of interferon gene-dependent immune response and enhance tumor treatment efficacy through programmed death-ligand 1 blockade. Cancer Sci 2021; 112:4444-4456. [PMID: 34382294 PMCID: PMC8586668 DOI: 10.1111/cas.15108] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 11/28/2022] Open
Abstract
WEE1 plays an important role in the regulation of cell cycle G2/M checkpoints and DNA damage response (DDR). Inhibition of WEE1 can increase the instability of the genome and have anti–tumor effects in some solid tumors. However, it has certain limitations for multiple cancer cells from different lineages. Therefore, we consider the use of synthetic lethal interactions to enhance the therapeutic effect. Our experiments proved that WEE1 inhibitor (WEE1i) can activate the ataxia telangiectasia and RAD3‐related (ATR) pathway and that blockage of ATR dramatically sensitized the WEE1i‐induced cell death. The tumor‐selective synthetic lethality between bioavailable WEE1 and ATR inhibitors led to tumor remission in vivo. Mechanistically, the combination promoted the accumulation of cytosolic double‐strand DNA, which subsequently activated the stimulator of the interferon gene (STING) pathway and induced the production of type I interferon and CD8+ T cells, thereby inducing anti–tumor immunity. Furthermore, our study found that immune checkpoint programmed death‐ligand 1 is upregulated by the combination therapy, and blocking PD‐L1 further enhances the effect of the combination therapy. In summary, as an immunomodulator, the combination of WEE1i with ATR inhibitor (ATRi) and immune checkpoint blockers provides a potential new approach for cancer treatment.
Collapse
Affiliation(s)
- Xue Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyan Kang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxiao Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wan Xie
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Su
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lili Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ensong Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fuxia Li
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Dianxing Hu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu Qin
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Fu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenju Peng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiedong Jia
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Changyu Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Hangai S, Kimura Y, Taniguchi T, Yanai H. Signal-transducing innate receptors in tumor immunity. Cancer Sci 2021; 112:2578-2591. [PMID: 33570784 PMCID: PMC8253268 DOI: 10.1111/cas.14848] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/15/2022] Open
Abstract
The signal‐transducing innate receptors represent classes of pattern recognition receptors (PRRs) that play crucial roles in the first line of the host defense against infections by the recognition of pathogen‐derived molecules. Because of their poorly discriminative nature compared with antigen receptors of the adaptive immune system, they also recognize endogenous molecules and evoke immune responses without infection, resulting in the regulation of tumor immunity. Therefore, PRRs may be promising targets for effective cancer immunotherapy, either by activating or inhibiting them. Here, we summarize our current knowledge of signal‐transducing PRRs in the regulation of tumor immunity.
Collapse
Affiliation(s)
- Sho Hangai
- Department of Inflammology, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Yoshitaka Kimura
- Department of Inflammology, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Tadatsugu Taniguchi
- Department of Inflammology, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Hideyuki Yanai
- Department of Inflammology, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
19
|
Macleod BL, Elsaesser HJ, Snell LM, Dickson RJ, Guo M, Hezaveh K, Xu W, Kothari A, McGaha TL, Guidos CJ, Brooks DG. A network of immune and microbial modifications underlies viral persistence in the gastrointestinal tract. J Exp Med 2021; 217:152068. [PMID: 32880629 PMCID: PMC7953734 DOI: 10.1084/jem.20191473] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/04/2019] [Accepted: 01/21/2020] [Indexed: 12/22/2022] Open
Abstract
Many pathogens subvert intestinal immunity to persist within the gastrointestinal tract (GIT); yet, the underlying mechanisms that enable sanctuary specifically in this reservoir are unclear. Using mass cytometry and network analysis, we demonstrate that chronic LCMV infection of the GIT leads to dysregulated microbial composition, a cascade of metabolic alterations, increased susceptibility to GI disease, and a system-wide recalibration of immune composition that defines viral persistence. Chronic infection led to outgrowth of activated Tbet–expressing T reg cell populations unique to the GIT and the rapid erosion of pathogen-specific CD8 tissue-resident memory T cells. Mechanistically, T reg cells and coinhibitory receptors maintained long-term viral sanctuary within the GIT, and their targeting reactivated T cells and eliminated this viral reservoir. Thus, our data provide a high-dimensional definition of the mechanisms of immune regulation that chronic viruses implement to exploit the unique microenvironment of the GIT and identify T reg cells as key modulators of viral persistence in the intestinal tract.
Collapse
Affiliation(s)
- Bethany L Macleod
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Heidi J Elsaesser
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Laura M Snell
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Russell J Dickson
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Mengdi Guo
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Kebria Hezaveh
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Wenxi Xu
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Akash Kothari
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Tracy L McGaha
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Cynthia J Guidos
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada.,Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - David G Brooks
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
20
|
Fernandez-Sendin M, Di Trani CA, Bella A, Vasquez M, Ardaiz N, Gomar C, Arrizabalaga L, Ciordia S, Corrales FJ, Aranda F, Berraondo P. Long-Term Liver Expression of an Apolipoprotein A-I Mimetic Peptide Attenuates Interferon-Alpha-Induced Inflammation and Promotes Antiviral Activity. Front Immunol 2021; 11:620283. [PMID: 33708194 PMCID: PMC7940203 DOI: 10.3389/fimmu.2020.620283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/29/2020] [Indexed: 01/25/2023] Open
Abstract
Apolipoprotein A-I mimetic peptides are amphipathic alpha-helix peptides that display similar functions to apolipoprotein A-I. Preclinical and clinical studies have demonstrated the safety and efficacy of apolipoprotein A-I mimetic peptides in multiple indications associated with inflammatory processes. In this study, we evaluated the effect of the long-term expression of L37pA in the liver by an adeno-associated virus (AAV-L37pA) on the expression of an adeno-associated virus encoding interferon-alpha (AAV-IFNα). Long-term IFNα expression in the liver leads to lethal hematological toxicity one month after AAV administration. Concomitant administration of AAV-L37pA prevented the lethal toxicity since the IFNα expression was reduced one month after AAV administration. To identify the mechanism of action of L37pA, a genomic and proteomic analysis was performed 15 days after AAV administration when a similar level of IFNα and interferon-stimulated genes were observed in mice treated with AAV-IFNα alone and in mice treated with AAV-IFNα and AAV-L37pA. The coexpression of the apolipoprotein A-I mimetic peptide L37pA with IFNα modulated the gene expression program of IFNα, inducing a significant reduction in inflammatory pathways affecting pathogen-associated molecular patterns receptor, dendritic cells, NK cells and Th1 immune response. The proteomic analysis confirmed the impact of the L37pA activity on several inflammatory pathways and indicated an activation of LXR/RXR and PPPARα/γ nuclear receptors. Thus, long-term expression of L37pA induces an anti-inflammatory effect in the liver that allows silencing of IFNα expression mediated by an adeno-associated virus.
Collapse
Affiliation(s)
- Myriam Fernandez-Sendin
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Claudia Augusta Di Trani
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Angela Bella
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Marcos Vasquez
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Nuria Ardaiz
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Celia Gomar
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Leire Arrizabalaga
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Sergio Ciordia
- Functional Proteomics Laboratory, National Center for Biotechnology, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Fernando J. Corrales
- Functional Proteomics Laboratory, National Center for Biotechnology, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Fernando Aranda
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
21
|
Mehrotra A, D'Angelo JA, Romney-Vanterpool A, Chu T, Bertoletti A, Janssen HLA, Gehring AJ. IFN-α Suppresses Myeloid Cytokine Production, Impairing IL-12 Production and the Ability to Support T-Cell Proliferation. J Infect Dis 2021; 222:148-157. [PMID: 32049318 DOI: 10.1093/infdis/jiaa064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/07/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Interferon-α (IFN-α) can suppress production of T-cell polarizing cytokines or induce inhibitory antigen-presenting cells that suppress T-cell activation. Previous studies showed that IFN-α therapy fails to boost virus-specific T-cell immunity in patients with chronic hepatitis B virus infection. Our aim was to determine whether IFN-α exposure alters human antigen-presenting cell function in vivo. METHODS We investigated the immunomodulatory effects using peripheral blood mononuclear cells from healthy donors exposed to IFN-α and chronic hepatitis B (CHB) patients starting IFN-α therapy. RESULTS IFN-α increased HLA-DR, CD80, CD86, and PD-L1 expression on healthy donor monocytes. In contrast to the activated phenotype, IFN-α inhibited Toll-like receptor-induced cytokine production and monocyte-induced T-cell proliferation. In CHB patients, peg-IFN treatment induced an interferon-stimulated gene signature in monocytes and increased HLA-DR, CD80, CD86, and PD-L1 expression. As early as 3 days after CHB patients started treatment, IFN-α inhibited monocyte cytokine production and T-cell stimulation ex vivo. IFN-α-mediated inhibition of IL-12 production, rather than inhibitory receptor expression, was responsible for inhibition of T-cell proliferation. Addition of IL-12 restored T-cell proliferation to baseline levels. CONCLUSIONS Understanding how professional antigen-presenting cells respond to immunomodulation is important for both new innate and adaptive-targeted immunotherapies. CLINICAL TRIALS REGISTRATION NCT00962871.
Collapse
Affiliation(s)
- Aman Mehrotra
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - June Ann D'Angelo
- Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Amanda Romney-Vanterpool
- Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Tom Chu
- Safety Science, Genentech, San Francisco, California, USA
| | - Antonio Bertoletti
- Program of Emerging Viral Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore.,Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore, Singapore
| | - Harry L A Janssen
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Adam J Gehring
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.,Department of Immunology, University of Toronto, Toronto, Canada
| |
Collapse
|
22
|
Early innate and adaptive immune perturbations determine long-term severity of chronic virus and Mycobacterium tuberculosis coinfection. Immunity 2021; 54:526-541.e7. [PMID: 33515487 DOI: 10.1016/j.immuni.2021.01.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 11/13/2020] [Accepted: 01/11/2021] [Indexed: 01/01/2023]
Abstract
Chronic viral infections increase severity of Mycobacterium tuberculosis (Mtb) coinfection. Here, we examined how chronic viral infections alter the pulmonary microenvironment to foster coinfection and worsen disease severity. We developed a coordinated system of chronic virus and Mtb infection that induced central clinical manifestations of coinfection, including increased Mtb burden, extra-pulmonary dissemination, and heightened mortality. These disease states were not due to chronic virus-induced immunosuppression or exhaustion; rather, increased amounts of the cytokine TNFα initially arrested pulmonary Mtb growth, impeding dendritic cell mediated antigen transportation to the lymph node and subverting immune-surveillance, allowing bacterial sanctuary. The cryptic Mtb replication delayed CD4 T cell priming, redirecting T helper (Th) 1 toward Th17 differentiation and increasing pulmonary neutrophilia, which diminished long-term survival. Temporally restoring CD4 T cell induction overcame these diverse disease sequelae to enhance Mtb control. Thus, Mtb co-opts TNFα from the chronic inflammatory environment to subvert immune-surveillance, avert early immune function, and foster long-term coinfection.
Collapse
|
23
|
Boukhaled GM, Harding S, Brooks DG. Opposing Roles of Type I Interferons in Cancer Immunity. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2021; 16:167-198. [PMID: 33264572 DOI: 10.1146/annurev-pathol-031920-093932] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The immune system is tasked with identifying malignant cells to eliminate or prevent cancer spread. This involves a complex orchestration of many immune cell types that together recognize different aspects of tumor transformation and growth. In response, tumors have developed mechanisms to circumvent immune attack. Type I interferons (IFN-Is) are a class of proinflammatory cytokines produced in response to viruses and other environmental stressors. IFN-Is are also emerging as essential drivers of antitumor immunity, potently stimulating the ability of immune cells to eliminate tumor cells. However, a more complicated role for IFN-Is has arisen, as prolonged stimulation can promote feedback inhibitory mechanisms that contribute to immune exhaustion and other deleterious effects that directly or indirectly permit cancer cells to escape immune clearance. We review the fundamental and opposing functions of IFN-Is that modulate tumor growth and impact immune function and ultimately how these functions can be harnessed for the design of new cancer therapies.
Collapse
Affiliation(s)
- Giselle M Boukhaled
- Princess Margaret Cancer Centre, University Health Network Toronto, Ontario M5G 2M9, Canada; .,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Shane Harding
- Princess Margaret Cancer Centre, University Health Network Toronto, Ontario M5G 2M9, Canada; .,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Departments of Medical Biophysics and Radiation Oncology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - David G Brooks
- Princess Margaret Cancer Centre, University Health Network Toronto, Ontario M5G 2M9, Canada; .,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
24
|
Llopiz D, Ruiz M, Silva L, Repáraz D, Aparicio B, Egea J, Lasarte JJ, Redin E, Calvo A, Angel M, Berzofsky JA, Stroncek D, Sarobe P. Inhibition of adjuvant-induced TAM receptors potentiates cancer vaccine immunogenicity and therapeutic efficacy. Cancer Lett 2020; 499:279-289. [PMID: 33232788 DOI: 10.1016/j.canlet.2020.11.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/05/2020] [Accepted: 11/16/2020] [Indexed: 01/19/2023]
Abstract
Analyzing immunomodulatory elements operating during antitumor vaccination in prostate cancer patients and murine models we identified IL-10-producing DC as a subset with poorer immunogenicity and clinical efficacy. Inhibitory TAM receptors MER and AXL were upregulated on murine IL-10+ DC. Thus, we analyzed conditions inducing these molecules and the potential benefit of their blockade during vaccination. MER and AXL upregulation was more efficiently induced by a vaccine containing Imiquimod than by a poly(I:C)-containing vaccine. Interestingly, MER expression was found on monocyte-derived DC, and was dependent on IL-10. TAM blockade improved Imiquimod-induced DC activation in vitro and in vivo, resulting in increased vaccine-induced T-cell responses, which were further reinforced by concomitant IL-10 inhibition. In different tumor models, a triple therapy (including vaccination, TAM inhibition and IL-10 blockade) provided the strongest therapeutic effect, associated with enhanced T-cell immunity and enhanced CD8+ T cell tumor infiltration. Finally, MER levels in DC used for vaccination in cancer patients correlated with IL-10 expression, showing an inverse association with vaccine-induced clinical response. These results suggest that TAM receptors upregulated during vaccination may constitute an additional target in combinatorial therapeutic vaccination strategies.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Animals
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/immunology
- Cell Line, Tumor
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/immunology
- Humans
- Imiquimod/administration & dosage
- Immunogenicity, Vaccine/drug effects
- Immunotherapy/methods
- Interleukin-10/metabolism
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Male
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Melanoma, Experimental/therapy
- Mice
- Mice, Transgenic
- Poly I-C/administration & dosage
- Prostatic Neoplasms/immunology
- Prostatic Neoplasms/pathology
- Prostatic Neoplasms/therapy
- Proto-Oncogene Proteins/antagonists & inhibitors
- Proto-Oncogene Proteins/genetics
- Pyrimidines
- Quinolines
- Receptor Protein-Tyrosine Kinases/antagonists & inhibitors
- Receptor Protein-Tyrosine Kinases/genetics
- Up-Regulation/drug effects
- Up-Regulation/immunology
- c-Mer Tyrosine Kinase/antagonists & inhibitors
- c-Mer Tyrosine Kinase/genetics
- Axl Receptor Tyrosine Kinase
Collapse
Affiliation(s)
- Diana Llopiz
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Marta Ruiz
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Leyre Silva
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - David Repáraz
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Belén Aparicio
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Josune Egea
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Juan J Lasarte
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Esther Redin
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain; CIBERONC, ISCIII, Madrid, Spain; Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain
| | - Alfonso Calvo
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain; CIBERONC, ISCIII, Madrid, Spain; Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain
| | - Matthew Angel
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA; Center for Cancer Research Collaborative Bioinformatics Resource, Leidos Biomedical Research, Inc., FNLCR, Frederick, MD, USA
| | - Jay A Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - David Stroncek
- Center for Cellular Engineering, Department of Transfusion Medicine, NIH Clinical Center, Bethesda, MD, USA
| | - Pablo Sarobe
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain.
| |
Collapse
|
25
|
Barnstorf I, Welten SPM, Borsa M, Baumann NS, Pallmer K, Joller N, Spörri R, Oxenius A. Chronic viral infections impinge on naive bystander CD8 T cells. Immun Inflamm Dis 2020; 8:249-257. [PMID: 32220007 PMCID: PMC7416038 DOI: 10.1002/iid3.300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/06/2020] [Accepted: 03/13/2020] [Indexed: 11/09/2022] Open
Abstract
INTRODUCTION Epidemiological data suggest that persistent viral infections impair immune homeostasis and immune responsiveness. Previous studies showed that chronic virus infections negatively impact bystander T-cell differentiation and memory formation but there is limited knowledge of how chronic virus infections impinge on heterologous naive T-cell populations. METHODS We used adoptive transfer of naive CD8 T cells with defined nonviral specificity into hosts, which were subsequently chronically infected with lymphocytic choriomeningitis virus, followed by analyses of numeric, phenotypic, and functional changes provoked in the chronically infected host. RESULTS We demonstrate that chronic virus infections have a profound effect on the number and phenotype of naive bystander CD8 T cells. Moreover, primary expansion upon antigen encounter was severely compromised in chronically infected hosts. However, when naive bystander CD8 T cells were transferred from the chronically infected mice into naive hosts, they regained their expansion potential. Conversely, when chronically infected hosts were supplied with additional antigen-presenting cells (APCs), primary expansion of the naive CD8 T cells was restored to levels of the uninfected hosts. CONCLUSIONS Our results document numeric, phenotypic, and functional adaptation of bystander naive CD8 T cells during nonrelated chronic viral infection. Their functional impairment was only evident in the chronically infected host, indicating that T-cell extrinsic factors, in particular the quality of priming APCs, are responsible for the impaired function of naive bystander T cells in the chronically infected hosts.
Collapse
Affiliation(s)
- Isabel Barnstorf
- Institute of Microbiology, Department of BiologyETH ZürichZürichSwitzerland
| | | | - Mariana Borsa
- Institute of Microbiology, Department of BiologyETH ZürichZürichSwitzerland
| | - Nicolas S. Baumann
- Institute of Microbiology, Department of BiologyETH ZürichZürichSwitzerland
| | - Katharina Pallmer
- Institute of Microbiology, Department of BiologyETH ZürichZürichSwitzerland
| | - Nicole Joller
- Institute of Experimental ImmunologyUniversity of ZürichZürichSwitzerland
| | - Roman Spörri
- Institute of Microbiology, Department of BiologyETH ZürichZürichSwitzerland
| | - Annette Oxenius
- Institute of Microbiology, Department of BiologyETH ZürichZürichSwitzerland
| |
Collapse
|
26
|
Elsaesser HJ, Mohtashami M, Osokine I, Snell LM, Cunningham CR, Boukhaled GM, McGavern DB, Zúñiga-Pflücker JC, Brooks DG. Chronic virus infection drives CD8 T cell-mediated thymic destruction and impaired negative selection. Proc Natl Acad Sci U S A 2020; 117:5420-5429. [PMID: 32094187 PMCID: PMC7071912 DOI: 10.1073/pnas.1913776117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chronic infection provokes alterations in inflammatory and suppressive pathways that potentially affect the function and integrity of multiple tissues, impacting both ongoing immune control and restorative immune therapies. Here we demonstrate that chronic lymphocytic choriomeningitis virus infection rapidly triggers severe thymic depletion, mediated by CD8 T cell-intrinsic type I interferon (IFN) and signal transducer and activator of transcription 2 (Stat2) signaling. Occurring temporal to T cell exhaustion, thymic cellularity reconstituted despite ongoing viral replication, with a rapid secondary thymic depletion following immune restoration by anti-programmed death-ligand 1 (PDL1) blockade. Therapeutic hematopoietic stem cell transplant (HSCT) during chronic infection generated new antiviral CD8 T cells, despite sustained virus replication in the thymus, indicating an impairment in negative selection. Consequently, low amounts of high-affinity self-reactive T cells also escaped the thymus following HSCT during chronic infection. Thus, by altering the stringency and partially impairing negative selection, the host generates new virus-specific T cells to replenish the fight against the chronic infection, but also has the potentially dangerous effect of enabling the escape of self-reactive T cells.
Collapse
Affiliation(s)
- Heidi J Elsaesser
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Mahmood Mohtashami
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8 Canada
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Ivan Osokine
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Laura M Snell
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Cameron R Cunningham
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Giselle M Boukhaled
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Dorian B McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20824
| | - Juan Carlos Zúñiga-Pflücker
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 2M9, Canada
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8 Canada
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - David G Brooks
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 2M9, Canada;
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8 Canada
| |
Collapse
|
27
|
Loss of Resistance to Mousepox during Chronic Lymphocytic Choriomeningitis Virus Infection Is Associated with Impaired T-Cell Responses and Can Be Rescued by Immunization. J Virol 2020; 94:JVI.01832-19. [PMID: 31826990 DOI: 10.1128/jvi.01832-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/29/2019] [Indexed: 01/21/2023] Open
Abstract
It is well established that chronic viral infections can cause immune suppression, resulting in increased susceptibility to other infectious diseases. However, the effects of chronic viral infection on T-cell responses and vaccination against highly pathogenic viruses are not well understood. We have recently shown that C57BL/6 (B6) mice lose their natural resistance to wild-type (WT) ectromelia virus (ECTV) when chronically infected with lymphocytic choriomeningitis virus (LCMV) clone 13 (CL13). Here we compared the T-cell response to ECTV in previously immunologically naive mice that were chronically infected with CL13 or that were convalescent from acute infection with the Armstrong (Arm) strain of LCMV. Our results show that mice that were chronically infected with CL13 but not those that had recovered from Arm infection have highly defective ECTV-specific CD8+ and CD4+ T-cell responses to WT ECTV. These defects are at least partly due to the chronic infection environment. In contrast to mice infected with WT ECTV, mice chronically infected with CL13 survived without signs of disease when infected with ECTV-Δ036, a mutant ECTV strain that is highly attenuated. Strikingly, mice chronically infected with CL13 mounted a strong CD8+ T-cell response to ECTV-Δ036 and survived without signs of disease after a subsequent challenge with WT ECTV. Our work suggests that enhanced susceptibility to acute viral infections in chronically infected individuals can be partly due to poor T-cell responses but that sufficient T-cell function can be recovered and resistance to acute infection can be restored by immunization with highly attenuated vaccines.IMPORTANCE Chronic viral infections may result in immunosuppression and enhanced susceptibility to infections with other pathogens. For example, we have recently shown that mice chronically infected with lymphocytic choriomeningitis virus (LCMV) clone 13 (CL13) are highly susceptible to mousepox, a disease that is caused by ectromelia virus and that is the mouse homolog of human smallpox. Here we show chronic CL13 infection severely disrupts the expansion, proliferation, activation, and cytotoxicity of T cells in response due at least in part to the suppressive effects of the chronic infection milieu. Notably, despite this profound immunodeficiency, mice chronically infected with CL13 could be protected by vaccination with a highly attenuated variant of ECTV. These results demonstrate that protective vaccination of immunosuppressed individuals is possible, provided that proper immunization tools are used.
Collapse
|
28
|
Shin KS, Jeon I, Kim BS, Kim IK, Park YJ, Koh CH, Song B, Lee JM, Lim J, Bae EA, Seo H, Ban YH, Ha SJ, Kang CY. Monocyte-Derived Dendritic Cells Dictate the Memory Differentiation of CD8 + T Cells During Acute Infection. Front Immunol 2019; 10:1887. [PMID: 31474983 PMCID: PMC6706816 DOI: 10.3389/fimmu.2019.01887] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/25/2019] [Indexed: 11/13/2022] Open
Abstract
Monocyte-derived dendritic cells (moDCs) have been shown to robustly expand during infection; however, their roles in anti-infectious immunity remain unclear. Here, we found that moDCs were dramatically increased in the secondary lymphoid organs during acute LCMV infection in an interferon-γ (IFN-γ)-dependent manner. We also found that priming by moDCs enhanced the differentiation of memory CD8+ T cells compared to differentiation primed by conventional dendritic cells (cDCs) through upregulation of Eomesodermin (Eomes) and T cell factor-1 (TCF-1) expression in CD8+ T cells. Consequently, impaired memory formation of CD8+ T cells in mice that had reduced numbers of moDCs led to defective clearance of pathogens upon rechallenge. Mechanistically, attenuated interleukin-2 (IL-2) signaling in CD8+ T cells primed by moDCs was responsible for the enhanced memory programming of CD8+ T cells. Therefore, our findings unveil a specialization of the antigen-presenting cell subsets in the fate determination of CD8+ T cells during infection and pave the way for the development of a novel therapeutic intervention on infection.
Collapse
Affiliation(s)
- Kwang-Soo Shin
- Laboratory of Immunology, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Insu Jeon
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Byung-Seok Kim
- Laboratory of Immune Regulation, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Il-Kyu Kim
- Laboratory of Immunology, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Young-Jun Park
- Laboratory of Immune Regulation, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Choong-Hyun Koh
- Laboratory of Immunology, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Boyeong Song
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Jeong-Mi Lee
- Laboratory of Immunology, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Jiyoung Lim
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Eun-Ah Bae
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Hyungseok Seo
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Young Ho Ban
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Chang-Yuil Kang
- Laboratory of Immunology, College of Pharmacy, Seoul National University, Seoul, South Korea.,Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| |
Collapse
|
29
|
Martin-Gayo E, Yu XG. Role of Dendritic Cells in Natural Immune Control of HIV-1 Infection. Front Immunol 2019; 10:1306. [PMID: 31244850 PMCID: PMC6563724 DOI: 10.3389/fimmu.2019.01306] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/22/2019] [Indexed: 01/14/2023] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells that link innate and adaptive immunity and are critical for the induction of protective immune responses against pathogens. Proportions of these cells are markedly decreased in the blood of untreated HIV-1-infected individuals, suggesting they might be intrinsically involved in HIV-1 pathogenesis. However, despite several decades of active research, the precise role and contribution of these cells to protective or detrimental host responses against HIV-1 are still remarkably unclear. Recent studies have shown that DCs possess a fine-tuned machinery to recognize HIV-1 replication products through a variety of innate pathogen sensing mechanisms, which may be instrumental for generating both cellular and humoral protective immune responses in persons who naturally control HIV-1 replication. Yet, dysregulated and abnormal activation of DCs might also contribute to sustained inflammation and immune activation accelerating disease progression during chronic progressive infection. Emerging data also suggest that DCs can influence the induction of potent broadly-neutralizing antibodies, and may, for this reason, have to be considered as important components of future HIV-1 vaccination strategies. Apart from their involvement in antiviral host immunity, at least a subgroup of DCs seem intrinsically susceptible to HIV-1 infection and may serve as a viral target cell population. Indeed recent studies suggest that specific DC subpopulations residing in the genital mucosa are preferentially infected by HIV-1 and play an active role in sexual transmission; therefore, DCs may contribute to viral dissemination and possible persistence of the viral reservoirs through either direct or indirect mechanisms. Here, we analyze the distinct and partially opposing roles of DCs during HIV-1 disease pathogenesis, with a focus on implications of DC biology natural immune control and HIV cure research efforts.
Collapse
Affiliation(s)
- Enrique Martin-Gayo
- Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Xu G Yu
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
30
|
Type I interferon signaling, regulation and gene stimulation in chronic virus infection. Semin Immunol 2019; 43:101277. [PMID: 31155227 DOI: 10.1016/j.smim.2019.05.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 05/21/2019] [Accepted: 05/24/2019] [Indexed: 12/12/2022]
Abstract
Type I Interferons (IFN-I) mediate numerous immune interactions during viral infections, from the establishment of an antiviral state to invoking and regulating innate and adaptive immune cells that eliminate infection. While continuous IFN-I signaling plays critical roles in limiting virus replication during both acute and chronic infections, sustained IFN-I signaling also leads to chronic immune activation, inflammation and, consequently, immune exhaustion and dysfunction. Thus, an understanding of the balance between the desirable and deleterious effects of chronic IFN-I signaling will inform our quest for IFN-based therapies for chronic viral infections as well as other chronic diseases, including cancer. As such the factors involved in induction, propagation and regulation of IFN-I signaling, from the initial sensing of viral nucleotides within the cell to regulatory downstream signaling factors and resulting IFN-stimulated genes (ISGs) have received significant research attention. This review summarizes recent work on IFN-I signaling in chronic infections, and provides an update on therapeutic approaches being considered to counter such infections.
Collapse
|
31
|
Salvagno C, Ciampricotti M, Tuit S, Hau CS, van Weverwijk A, Coffelt SB, Kersten K, Vrijland K, Kos K, Ulas T, Song JY, Ooi CH, Rüttinger D, Cassier PA, Jonkers J, Schultze JL, Ries CH, de Visser KE. Therapeutic targeting of macrophages enhances chemotherapy efficacy by unleashing type I interferon response. Nat Cell Biol 2019; 21:511-521. [PMID: 30886344 PMCID: PMC6451630 DOI: 10.1038/s41556-019-0298-1] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/13/2019] [Indexed: 12/18/2022]
Abstract
Recent studies have revealed a role for macrophages and neutrophils in limiting chemotherapy efficacy; however, the mechanisms underlying the therapeutic benefit of myeloid-targeting agents in combination with chemotherapy are incompletely understood. Here, we show that targeting tumour-associated macrophages by colony-stimulating factor-1 receptor (CSF-1R) blockade in the K14cre;Cdh1F/F;Trp53F/F transgenic mouse model for breast cancer stimulates intratumoural type I interferon (IFN) signalling, which enhances the anticancer efficacy of platinum-based chemotherapeutics. Notably, anti-CSF-1R treatment also increased intratumoural expression of type I IFN-stimulated genes in patients with cancer, confirming that CSF-1R blockade is a powerful strategy to trigger an intratumoural type I IFN response. By inducing an inflamed, type I IFN-enriched tumour microenvironment and by further targeting immunosuppressive neutrophils during cisplatin therapy, antitumour immunity was activated in this poorly immunogenic breast cancer mouse model. These data illustrate the importance of breaching multiple layers of immunosuppression during cytotoxic therapy to successfully engage antitumour immunity in breast cancer.
Collapse
Affiliation(s)
- Camilla Salvagno
- Division of Tumor Biology & Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Metamia Ciampricotti
- Division of Tumor Biology & Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Molecular Pharmacology Program and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sander Tuit
- Genomics and Immunoregulation, LIMES-Institute, University of Bonn, Bonn, Germany.,Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Cheei-Sing Hau
- Division of Tumor Biology & Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Antoinette van Weverwijk
- Division of Tumor Biology & Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Seth B Coffelt
- Division of Tumor Biology & Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Cancer Research UK Beatson Institute and Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Kelly Kersten
- Division of Tumor Biology & Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Kim Vrijland
- Division of Tumor Biology & Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Kevin Kos
- Division of Tumor Biology & Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Thomas Ulas
- Genomics and Immunoregulation, LIMES-Institute, University of Bonn, Bonn, Germany
| | - Ji-Ying Song
- Division of Experimental Animal Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Chia-Huey Ooi
- Roche Innovation Center Basel, Roche Pharma Research and Early Development, Basel, Switzerland
| | - Dominik Rüttinger
- Roche Innovation Center Munich, Roche Pharma Research and Early Development, Penzberg, Germany
| | | | - Jos Jonkers
- Division of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Joachim L Schultze
- Genomics and Immunoregulation, LIMES-Institute, University of Bonn, Bonn, Germany.,Platform for Single Cell Genomics and Epigenomics (PRECISE) at the German Center for Neurodegenerative Diseases and the University of Bonn, Bonn, Germany
| | - Carola H Ries
- Roche Innovation Center Munich, Roche Pharma Research and Early Development, Penzberg, Germany
| | - Karin E de Visser
- Division of Tumor Biology & Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
32
|
Norton TD, Zhen A, Tada T, Kim J, Kitchen S, Landau NR. Lentiviral Vector-Based Dendritic Cell Vaccine Suppresses HIV Replication in Humanized Mice. Mol Ther 2019; 27:960-973. [PMID: 30962161 DOI: 10.1016/j.ymthe.2019.03.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 12/28/2022] Open
Abstract
HIV-1-infected individuals are treated with lifelong antiretroviral drugs to control the infection. A means to strengthen the antiviral T cell response might allow them to control viral loads without antiretroviral drugs. We report the development of a lentiviral vector-based dendritic cell (DC) vaccine in which HIV-1 antigen is co-expressed with CD40 ligand (CD40L) and a soluble, high-affinity programmed cell death 1 (PD-1) dimer. CD40L activates the DCs, whereas PD-1 binds programmed death ligand 1 (PD-L1) to prevent checkpoint activation and strengthen the cytotoxic T lymphocyte (CTL) response. The injection of humanized mice with DCs transduced with vector expressing CD40L and the HIV-1 SL9 epitope induced antigen-specific T cell proliferation and memory differentiation. Upon HIV-1 challenge of vaccinated mice, viral load was suppressed by 2 logs for 6 weeks. Introduction of the soluble PD-1 dimer into a vector that expressed full-length HIV-1 proteins accelerated the antiviral response. The results support development of this approach as a therapeutic vaccine that might allow HIV-1-infected individuals to control virus replication without antiretroviral therapy.
Collapse
Affiliation(s)
- Thomas D Norton
- Department of Medicine, Division of Infectious Diseases, NYU Langone Medical Center, New York, NY 10016, USA; Department of Microbiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Anjie Zhen
- Department of Medicine, Division of Hematology and Oncology, The David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Takuya Tada
- Department of Medicine, Division of Infectious Diseases, NYU Langone Medical Center, New York, NY 10016, USA
| | - Jennifer Kim
- Department of Medicine, Division of Hematology and Oncology, The David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Scott Kitchen
- Department of Medicine, Division of Hematology and Oncology, The David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | - Nathaniel R Landau
- Department of Microbiology, NYU Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
33
|
Kahan SM, Zajac AJ. Immune Exhaustion: Past Lessons and New Insights from Lymphocytic Choriomeningitis Virus. Viruses 2019; 11:E156. [PMID: 30781904 PMCID: PMC6410286 DOI: 10.3390/v11020156] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/08/2019] [Accepted: 02/09/2019] [Indexed: 12/16/2022] Open
Abstract
Lymphocytic choriomeningitis virus (LCMV) is a paradigm-forming experimental system with a remarkable track record of contributing to the discovery of many of the fundamental concepts of modern immunology. The ability of LCMV to establish a chronic infection in immunocompetent adult mice was instrumental for identifying T cell exhaustion and this system has been invaluable for uncovering the complexity, regulators, and consequences of this state. These findings have been directly relevant for understanding why ineffective T cell responses commonly arise during many chronic infections including HIV and HCV, as well as during tumor outgrowth. The principal feature of exhausted T cells is the inability to elaborate the array of effector functions necessary to contain the underlying infection or tumor. Using LCMV to determine how to prevent and reverse T cell exhaustion has highlighted the potential of checkpoint blockade therapies, most notably PD-1 inhibition strategies, for improving cellular immunity under conditions of antigen persistence. Here, we discuss the discovery, properties, and regulators of exhausted T cells and highlight how LCMV has been at the forefront of advancing our understanding of these ineffective responses.
Collapse
Affiliation(s)
- Shannon M Kahan
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Allan J Zajac
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
34
|
Rojas OL, Pröbstel AK, Porfilio EA, Wang AA, Charabati M, Sun T, Lee DSW, Galicia G, Ramaglia V, Ward LA, Leung LYT, Najafi G, Khaleghi K, Garcillán B, Li A, Besla R, Naouar I, Cao EY, Chiaranunt P, Burrows K, Robinson HG, Allanach JR, Yam J, Luck H, Campbell DJ, Allman D, Brooks DG, Tomura M, Baumann R, Zamvil SS, Bar-Or A, Horwitz MS, Winer DA, Mortha A, Mackay F, Prat A, Osborne LC, Robbins C, Baranzini SE, Gommerman JL. Recirculating Intestinal IgA-Producing Cells Regulate Neuroinflammation via IL-10. Cell 2019; 176:610-624.e18. [PMID: 30612739 DOI: 10.1016/j.cell.2018.11.035] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 09/28/2018] [Accepted: 11/21/2018] [Indexed: 01/29/2023]
Abstract
Plasma cells (PC) are found in the CNS of multiple sclerosis (MS) patients, yet their source and role in MS remains unclear. We find that some PC in the CNS of mice with experimental autoimmune encephalomyelitis (EAE) originate in the gut and produce immunoglobulin A (IgA). Moreover, we show that IgA+ PC are dramatically reduced in the gut during EAE, and likewise, a reduction in IgA-bound fecal bacteria is seen in MS patients during disease relapse. Removal of plasmablast (PB) plus PC resulted in exacerbated EAE that was normalized by the introduction of gut-derived IgA+ PC. Furthermore, mice with an over-abundance of IgA+ PB and/or PC were specifically resistant to the effector stage of EAE, and expression of interleukin (IL)-10 by PB plus PC was necessary and sufficient to confer resistance. Our data show that IgA+ PB and/or PC mobilized from the gut play an unexpected role in suppressing neuroinflammation.
Collapse
Affiliation(s)
- Olga L Rojas
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anne-Katrin Pröbstel
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Elisa A Porfilio
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Angela A Wang
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Marc Charabati
- Neuroimmunology Unit, CRCHUM and Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC H2X 0A9, Canada
| | - Tian Sun
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Dennis S W Lee
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Georgina Galicia
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Valeria Ramaglia
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Lesley A Ward
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Leslie Y T Leung
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ghazal Najafi
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Khashayar Khaleghi
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Beatriz Garcillán
- University of Melbourne, School of Biomedical Sciences, Parkville, VIC 3010, Australia
| | - Angela Li
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada; Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Rickvinder Besla
- Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada; Department of Laboratory and Medicine Pathology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ikbel Naouar
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Eric Y Cao
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Pailin Chiaranunt
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Kyle Burrows
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Hannah G Robinson
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jessica R Allanach
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jennifer Yam
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Helen Luck
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada; Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Daniel J Campbell
- Benaroya Research Institute and Department of Immunology University of Washington School of Medicine, Seattle, WA 98101, USA
| | - David Allman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David G Brooks
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Michio Tomura
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka Prefecture 584-8540, Japan
| | - Ryan Baumann
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Scott S Zamvil
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Program in Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Amit Bar-Or
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marc S Horwitz
- Department of Laboratory and Medicine Pathology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Daniel A Winer
- Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada; Department of Laboratory and Medicine Pathology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Arthur Mortha
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Fabienne Mackay
- University of Melbourne, School of Biomedical Sciences, Parkville, VIC 3010, Australia
| | - Alexandre Prat
- Neuroimmunology Unit, CRCHUM and Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC H2X 0A9, Canada
| | - Lisa C Osborne
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Clinton Robbins
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada; Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada; Department of Laboratory and Medicine Pathology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sergio E Baranzini
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA; Graduate Program in Bioinformatics, University of California, San Francisco, San Francisco, CA 94143, USA
| | | |
Collapse
|
35
|
Snell LM, MacLeod BL, Law JC, Osokine I, Elsaesser HJ, Hezaveh K, Dickson RJ, Gavin MA, Guidos CJ, McGaha TL, Brooks DG. CD8 + T Cell Priming in Established Chronic Viral Infection Preferentially Directs Differentiation of Memory-like Cells for Sustained Immunity. Immunity 2018; 49:678-694.e5. [PMID: 30314757 DOI: 10.1016/j.immuni.2018.08.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 06/13/2018] [Accepted: 08/01/2018] [Indexed: 10/28/2022]
Abstract
CD8+ T cell exhaustion impedes control of chronic viral infection; yet how new T cell responses are mounted during chronic infection is unclear. Unlike T cells primed at the onset of infection that rapidly differentiate into effectors and exhaust, we demonstrate that virus-specific CD8+ T cells primed after establishment of chronic LCMV infection preferentially generate memory-like transcription factor TCF1+ cells that were transcriptionally and proteomically distinct, less exhausted, and more responsive to immunotherapy. Mechanistically, adaptations of antigen-presenting cells and diminished T cell signaling intensity promoted differentiation of the memory-like subset at the expense of rapid effector cell differentiation, which was now highly dependent on IL-21-mediated CD4+ T cell help for its functional generation. Chronic viral infection similarly redirected de novo differentiation of tumor-specific CD8+ T cells, ultimately preventing cancer control. Thus, targeting these T cell stimulatory pathways could enable strategies to control chronic infection, tumors, and enhance immunotherapeutic efficacy.
Collapse
Affiliation(s)
- Laura M Snell
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2M9 Canada
| | - Bethany L MacLeod
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2M9 Canada
| | - Jaclyn C Law
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2M9 Canada; Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8 Canada
| | - Ivan Osokine
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095 USA
| | - Heidi J Elsaesser
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2M9 Canada
| | - Kebria Hezaveh
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2M9 Canada
| | - Russell J Dickson
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2M9 Canada
| | - Marc A Gavin
- Translational Research Program, Benaroya Research Institute, Seattle, WA, 98101 USA
| | - Cynthia J Guidos
- Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8 Canada; Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, Toronto, ON, M5G 0A4 Canada
| | - Tracy L McGaha
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2M9 Canada; Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8 Canada
| | - David G Brooks
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2M9 Canada; Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8 Canada.
| |
Collapse
|
36
|
Llopiz D, Ruiz M, Silva L, Sarobe P. Enhancement of Antitumor Vaccination by Targeting Dendritic Cell-Related IL-10. Front Immunol 2018; 9:1923. [PMID: 30233565 PMCID: PMC6129595 DOI: 10.3389/fimmu.2018.01923] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/06/2018] [Indexed: 12/24/2022] Open
Abstract
Understanding mechanisms associated to dendritic cell (DC) functions has allowed developing new antitumor therapeutic vaccination strategies. However, these vaccines have demonstrated limited clinical results. Although the low immunogenicity of tumor antigens used and the presence of tumor-associated suppressive factors may in part account for these results, intrinsic vaccine-related factors may also be involved. Vaccines modulate DC functions by inducing activating and inhibitory signals that determine ensuing T cell responses. In this mini review, we focus on IL-10, inhibitory cytokine induced in DC upon vaccination, which defines a suppressive cell subset, discussing its implications as a potential target in combined vaccination immunotherapies.
Collapse
Affiliation(s)
- Diana Llopiz
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Marta Ruiz
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Leyre Silva
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Pablo Sarobe
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| |
Collapse
|
37
|
Rsad2 is necessary for mouse dendritic cell maturation via the IRF7-mediated signaling pathway. Cell Death Dis 2018; 9:823. [PMID: 30068989 PMCID: PMC6070531 DOI: 10.1038/s41419-018-0889-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 07/17/2018] [Accepted: 07/17/2018] [Indexed: 01/19/2023]
Abstract
Dendritic cells (DCs) are the most potent professional antigen presenting cells and inducers of T cell-mediated immunity. However, few specific markers of mature DCs (mDC) have been reported. A previous microarray analysis revealed expression of mDC-specific genes and identified Rsad2 (radical S-adenosyl methionine domain containing 2) as a candidate specific marker for DC maturation. Mouse bone marrow-derived DCs were transfected with Rsad2 siRNA and examined by flow cytometry, ELISA, western, and confocal microscopy. C57BL/6 mice received intravenously B16F10 cells to establish a pulmonary metastasis model. Tumor-bearing mice then received subcutaneously two injections of mDCs or Rsad2 knockdown DCs. The cytotoxic T lymphocyte (CTL) population was examined from splenocytes of DC-vaccinated mice by flow cytometry. Rsad2 was induced at high levels in LPS-stimulated mDCs and mDC function was markedly attenuated under conditions of Rsad2 knockdown. Moreover, Rsad2 was necessary for mDC maturation via the IRF7-mediated signaling pathway. The importance of Rsad2 was confirmed in an Rsad2 knockdown lung metastasis mouse model in which mDCs lost their antitumor efficacy. Data on the CTL population further supported the results as above. Taken together, Rsad2 was an obvious and specific marker necessary for DC maturation and these findings will be clearly helpful for further understanding of DC biology.
Collapse
|
38
|
Suffredini DA, Lee JM, Peer CJ, Pratt D, Kleiner DE, Elinoff JM, Solomon MA. Pulmonary tumor thrombotic microangiopathy and pulmonary veno-occlusive disease in a woman with cervical cancer treated with cediranib and durvalumab. BMC Pulm Med 2018; 18:112. [PMID: 29996818 PMCID: PMC6042377 DOI: 10.1186/s12890-018-0681-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 06/27/2018] [Indexed: 11/16/2022] Open
Abstract
Background Pulmonary tumor thrombotic microangiopathy (PTTM) is a rare cause of pulmonary hypertension that is associated with malignancies and is marked by the presence of non-occlusive tumor emboli and fibrocellular intimal proliferation of small pulmonary arteries leading to increased pulmonary vascular resistance and right heart failure. The diagnosis of PTTM is challenging to make pre-mortem and guidelines on treatment are lacking. Case presentation A 45-year-old woman with advanced squamous cell carcinoma of the cervix developed symptoms of dyspnea and evidence of right heart failure during a phase I clinical trial with cediranib and durvalumab. After an extensive evaluation, pre-capillary pulmonary hypertension was confirmed by right heart catheterization. Vasodilator therapy was initiated but resulted in the development of symptomatic hypoxemia and was discontinued. Despite continued supportive care, she continued to decline and was transitioned to hospice care. At autopsy, the cause of her right heart failure was found to be due to PTTM with features of pulmonary veno-occlusive disease (PVOD). Conclusion PTTM and PVOD are important diagnoses to consider in patients with a malignancy and the development of right heart failure and may be manifestations of a spectrum of similar disease processes.
Collapse
Affiliation(s)
- Dante A Suffredini
- Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, MD, USA.
| | - Jung-Min Lee
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Cody J Peer
- Clinical Pharmacology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Drew Pratt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - David E Kleiner
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Jason M Elinoff
- Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Michael A Solomon
- Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, MD, USA.,Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, USA
| |
Collapse
|
39
|
Urata S, Kenyon E, Nayak D, Cubitt B, Kurosaki Y, Yasuda J, de la Torre JC, McGavern DB. BST-2 controls T cell proliferation and exhaustion by shaping the early distribution of a persistent viral infection. PLoS Pathog 2018; 14:e1007172. [PMID: 30028868 PMCID: PMC6080785 DOI: 10.1371/journal.ppat.1007172] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 08/07/2018] [Accepted: 06/20/2018] [Indexed: 12/27/2022] Open
Abstract
The interferon inducible protein, BST-2 (or, tetherin), plays an important role in the innate antiviral defense system by inhibiting the release of many enveloped viruses. Consequently, viruses have evolved strategies to counteract the anti-viral activity of this protein. While the mechanisms by which BST-2 prevents viral dissemination have been defined, less is known about how this protein shapes the early viral distribution and immunological defense against pathogens during the establishment of persistence. Using the lymphocytic choriomeningitis virus (LCMV) model of infection, we sought insights into how the in vitro antiviral activity of this protein compared to the immunological defense mounted in vivo. We observed that BST-2 modestly reduced production of virion particles from cultured cells, which was associated with the ability of BST-2 to interfere with the virus budding process mediated by the LCMV Z protein. Moreover, LCMV does not encode a BST-2 antagonist, and viral propagation was not significantly restricted in cells that constitutively expressed BST-2. In contrast to this very modest effect in cultured cells, BST-2 played a crucial role in controlling LCMV in vivo. In BST-2 deficient mice, a persistent strain of LCMV was no longer confined to the splenic marginal zone at early times post-infection, which resulted in an altered distribution of LCMV-specific T cells, reduced T cell proliferation / function, delayed viral control in the serum, and persistence in the brain. These data demonstrate that BST-2 is important in shaping the anatomical distribution and adaptive immune response against a persistent viral infection in vivo.
Collapse
Affiliation(s)
- Shuzo Urata
- National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki, Japan
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- Department of Immunology and Microbial Science IMM-6, The Scripps Research Institute, La Jolla, California, United States of America
| | - Elizabeth Kenyon
- Viral Immunology & Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Debasis Nayak
- Viral Immunology & Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
- Center for Bioscience and Biomedical Engineering, Indian Institute of Technology Indore, India
| | - Beatrice Cubitt
- Department of Immunology and Microbial Science IMM-6, The Scripps Research Institute, La Jolla, California, United States of America
| | - Yohei Kurosaki
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Jiro Yasuda
- National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki, Japan
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Juan C. de la Torre
- Department of Immunology and Microbial Science IMM-6, The Scripps Research Institute, La Jolla, California, United States of America
| | - Dorian B. McGavern
- Viral Immunology & Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
40
|
Scagnolari C, Antonelli G. Type I interferon and HIV: Subtle balance between antiviral activity, immunopathogenesis and the microbiome. Cytokine Growth Factor Rev 2018; 40:19-31. [PMID: 29576284 PMCID: PMC7108411 DOI: 10.1016/j.cytogfr.2018.03.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/23/2018] [Accepted: 03/08/2018] [Indexed: 02/06/2023]
Abstract
Type I interferon (IFN) response initially limits HIV-1 spread and may delay disease progression by stimulating several immune system components. Nonetheless, persistent exposure to type I IFN in the chronic phase of HIV-1 infection is associated with desensitization and/or detrimental immune activation, thereby hindering immune recovery and fostering viral persistence. This review provides a basis for understanding the complexity and function of IFN pleiotropic activity in HIV-1 infection. In particular, the dichotomous role of the IFN response in HIV-1 immunopathogenesis will be discussed, highlighting recent advances in the dynamic modulation of IFN production in acute versus chronic infection, expression signatures of IFN subtypes, and viral and host factors affecting the magnitude of IFN response during HIV-1 infection. Lastly, the review gives a forward-looking perspective on the interplay between microbiome compositions and IFN response.
Collapse
Affiliation(s)
- Carolina Scagnolari
- Department of Molecular Medicine, Laboratory of Virology Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy.
| | - Guido Antonelli
- Department of Molecular Medicine, Laboratory of Virology Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| |
Collapse
|
41
|
Zuo C, Sheng X, Ma M, Xia M, Ouyang L. ISG15 in the tumorigenesis and treatment of cancer: An emerging role in malignancies of the digestive system. Oncotarget 2018; 7:74393-74409. [PMID: 27626310 PMCID: PMC5342061 DOI: 10.18632/oncotarget.11911] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/01/2016] [Indexed: 02/07/2023] Open
Abstract
The interferon-stimulated gene 15 ubiquitin-like modifier (ISG15) encodes an IFN-inducible, ubiquitin-like protein. The ISG15 protein forms conjugates with numerous cellular proteins that are involved in a multitude of cellular functions, including interferon-induced immune responses and the regulation of cellular protein turnover. The expression of ISG15 and ISG15-mediated conjugation has been implicated in a wide range of human tumors and cancer cell lines, but the roles of ISG15 in tumorigenesis and responses to anticancer treatments remain largely unknown. In this review, we discuss the findings of recent studies with regard to the role of ISG15 pathways in cancers of the digestive system.
Collapse
Affiliation(s)
- Chaohui Zuo
- Department of Gastroduodenal and Pancreatic Surgery, Translation Medicine Research Center of Liver Cancer, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Graduate School, University of South China, Hengyang, Hunan, China
| | - Xinyi Sheng
- Graduate School, University of South China, Hengyang, Hunan, China
| | - Min Ma
- Department of Gastroduodenal and Pancreatic Surgery, Translation Medicine Research Center of Liver Cancer, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Man Xia
- Laboratory of Digestive Oncology, Hunan Province Cancer Institute, Changsha, Hunan, China
| | - Linda Ouyang
- Laboratory of Digestive Oncology, Hunan Province Cancer Institute, Changsha, Hunan, China
| |
Collapse
|
42
|
Llopiz D, Ruiz M, Infante S, Villanueva L, Silva L, Hervas-Stubbs S, Alignani D, Guruceaga E, Lasarte JJ, Sarobe P. IL-10 expression defines an immunosuppressive dendritic cell population induced by antitumor therapeutic vaccination. Oncotarget 2018; 8:2659-2671. [PMID: 27926522 PMCID: PMC5356831 DOI: 10.18632/oncotarget.13736] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/22/2016] [Indexed: 01/05/2023] Open
Abstract
Vaccination induces immunostimulatory signals that are often accompanied by regulatory mechanisms such as IL-10, which control T-cell activation and inhibit vaccine-dependent antitumor therapeutic effect. Here we characterized IL-10-producing cells in different tumor models treated with therapeutic vaccines. Although several cell subsets produced IL-10 irrespective of treatment, an early vaccine-dependent induction of IL-10 was detected in dendritic cells (DC). IL-10 production defined a DC population characterized by a poorly mature phenotype, lower expression of T-cell stimulating molecules and upregulation of PD-L1. These IL-10+ DC showed impaired in vitro T-cell stimulatory capacity, which was rescued by incubation with IL-10R and PD-L1-inhibiting antibodies. In vivo IL-10 blockade during vaccination decreased the proportion of IL-10+ DC and improved their maturation, without modifying PD-L1 expression. Similarly, PD-L1 blockade did not affect IL- 10 expression. Interestingly, vaccination combined with simultaneous blockade of IL-10 and PD-L1 induced stronger immune responses, resulting in a higher therapeutic efficacy in tumor-bearing mice. These results show that vaccine-induced immunoregulatory IL- 10+ DC impair priming of antitumor immunity, suggesting that therapeutic vaccination protocols may benefit from combined targeting of inhibitory molecules expressed by this DC subset.
Collapse
Affiliation(s)
- Diana Llopiz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Marta Ruiz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Stefany Infante
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Lorea Villanueva
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Leyre Silva
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Sandra Hervas-Stubbs
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Diego Alignani
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain.,Cytometry Unit, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Elizabeth Guruceaga
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain.,Bioinformatics Unit, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Juan J Lasarte
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Pablo Sarobe
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| |
Collapse
|
43
|
Snell LM, Osokine I, Yamada DH, De la Fuente JR, Elsaesser HJ, Brooks DG. Overcoming CD4 Th1 Cell Fate Restrictions to Sustain Antiviral CD8 T Cells and Control Persistent Virus Infection. Cell Rep 2018; 16:3286-3296. [PMID: 27653690 DOI: 10.1016/j.celrep.2016.08.065] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/11/2016] [Accepted: 08/19/2016] [Indexed: 12/24/2022] Open
Abstract
Viral persistence specifically inhibits CD4 Th1 responses and promotes Tfh immunity, but the mechanisms that suppress Th1 cells and the disease consequences of their loss are unclear. Here, we demonstrate that the loss of CD4 Th1 cells specifically leads to progressive CD8 T cell decline and dysfunction during viral persistence. Therapeutically reconstituting CD4 Th1 cells restored CD4 T cell polyfunctionality, enhanced antiviral CD8 T cell numbers and function, and enabled viral control. Mechanistically, combined interaction of PD-L1 and IL-10 by suppressive dendritic cell subsets inhibited new CD4 Th1 cells in both acute and persistent virus infection, demonstrating an unrecognized suppressive function for PD-L1 in virus infection. Thus, the loss of CD4 Th1 cells is a key event leading to progressive CD8 T cell demise during viral persistence with important implications for restoring antiviral CD8 T cell immunity to control persistent viral infection.
Collapse
Affiliation(s)
- Laura M Snell
- Princess Margaret Cancer Center, Immune Therapy Program, University Health Network, Toronto, ON M5G 2M9, Canada; Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ivan Osokine
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Douglas H Yamada
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Justin Rafael De la Fuente
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Heidi J Elsaesser
- Princess Margaret Cancer Center, Immune Therapy Program, University Health Network, Toronto, ON M5G 2M9, Canada
| | - David G Brooks
- Princess Margaret Cancer Center, Immune Therapy Program, University Health Network, Toronto, ON M5G 2M9, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
44
|
Martin-Gayo E, Cole MB, Kolb KE, Ouyang Z, Cronin J, Kazer SW, Ordovas-Montanes J, Lichterfeld M, Walker BD, Yosef N, Shalek AK, Yu XG. A Reproducibility-Based Computational Framework Identifies an Inducible, Enhanced Antiviral State in Dendritic Cells from HIV-1 Elite Controllers. Genome Biol 2018; 19:10. [PMID: 29378643 PMCID: PMC5789701 DOI: 10.1186/s13059-017-1385-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 12/23/2017] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Human immunity relies on the coordinated responses of many cellular subsets and functional states. Inter-individual variations in cellular composition and communication could thus potentially alter host protection. Here, we explore this hypothesis by applying single-cell RNA-sequencing to examine viral responses among the dendritic cells (DCs) of three elite controllers (ECs) of HIV-1 infection. RESULTS To overcome the potentially confounding effects of donor-to-donor variability, we present a generally applicable computational framework for identifying reproducible patterns in gene expression across donors who share a unifying classification. Applying it, we discover a highly functional antiviral DC state in ECs whose fractional abundance after in vitro exposure to HIV-1 correlates with higher CD4+ T cell counts and lower HIV-1 viral loads, and that effectively primes polyfunctional T cell responses in vitro. By integrating information from existing genomic databases into our reproducibility-based analysis, we identify and validate select immunomodulators that increase the fractional abundance of this state in primary peripheral blood mononuclear cells from healthy individuals in vitro. CONCLUSIONS Overall, our results demonstrate how single-cell approaches can reveal previously unappreciated, yet important, immune behaviors and empower rational frameworks for modulating systems-level immune responses that may prove therapeutically and prophylactically useful.
Collapse
Affiliation(s)
| | - Michael B Cole
- Department of Physics, University of California, Berkeley, CA, USA
| | - Kellie E Kolb
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.,Institute for Medical Engineering & Science (IMES) and Department of Chemistry, MIT, Cambridge, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Zhengyu Ouyang
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | | | - Samuel W Kazer
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.,Institute for Medical Engineering & Science (IMES) and Department of Chemistry, MIT, Cambridge, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jose Ordovas-Montanes
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.,Institute for Medical Engineering & Science (IMES) and Department of Chemistry, MIT, Cambridge, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.,Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
| | - Bruce D Walker
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Nir Yosef
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA. .,Electrical Engineering & Computer Sciences, UC Berkeley, Berkeley, CA, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.
| | - Alex K Shalek
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA. .,Institute for Medical Engineering & Science (IMES) and Department of Chemistry, MIT, Cambridge, MA, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Xu G Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA. .,Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
45
|
Sustained IFN-I Expression during Established Persistent Viral Infection: A "Bad Seed" for Protective Immunity. Viruses 2017; 10:v10010012. [PMID: 29301196 PMCID: PMC5795425 DOI: 10.3390/v10010012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 12/22/2017] [Accepted: 12/27/2017] [Indexed: 12/11/2022] Open
Abstract
Type I interferons (IFN-I) are one of the primary immune defenses against viruses. Similar to all other molecular mechanisms that are central to eliciting protective immune responses, IFN-I expression is subject to homeostatic controls that regulate cytokine levels upon clearing the infection. However, in the case of established persistent viral infection, sustained elevation of IFN-I expression bears deleterious effects to the host and is today considered as the major driver of inflammation and immunosuppression. In fact, numerous emerging studies place sustained IFN-I expression as a common nexus in the pathogenesis of multiple chronic diseases including persistent infections with the human immunodeficiency virus type 1 (HIV-1), simian immunodeficiency virus (SIV), as well as the rodent-borne lymphocytic choriomeningitis virus clone 13 (LCMV clone 13). In this review, we highlight recent studies illustrating the molecular dysregulation and resultant cellular dysfunction in both innate and adaptive immune responses driven by sustained IFN-I expression. Here, we place particular emphasis on the efficacy of IFN-I receptor (IFNR) blockade towards improving immune responses against viral infections given the emerging therapeutic approach of blocking IFNR using neutralizing antibodies (Abs) in chronically infected patients.
Collapse
|
46
|
Chang YH, Wang KC, Chu KL, Clouthier DL, Tran AT, Torres Perez MS, Zhou AC, Abdul-Sater AA, Watts TH. Dichotomous Expression of TNF Superfamily Ligands on Antigen-Presenting Cells Controls Post-priming Anti-viral CD4 + T Cell Immunity. Immunity 2017; 47:943-958.e9. [PMID: 29150240 DOI: 10.1016/j.immuni.2017.10.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 05/29/2017] [Accepted: 10/26/2017] [Indexed: 02/07/2023]
Abstract
T cell antigen-presenting cell (APC) interactions early during chronic viral infection are crucial for determining viral set point and disease outcome, but how and when different APC subtypes contribute to these outcomes is unclear. The TNF receptor superfamily (TNFRSF) member GITR is important for CD4+ T cell accumulation and control of chronic lymphocytic choriomeningitis virus (LCMV). We found that type I interferon (IFN-I) induced TNFSF ligands GITRL, 4-1BBL, OX40L, and CD70 predominantly on monocyte-derived APCs and CD80 and CD86 predominantly on classical dendritic cells (cDCs). Mice with hypofunctional GITRL in Lyz2+ cells had decreased LCMV-specific CD4+ T cell accumulation and increased viral load. GITR signals in CD4+ T cells occurred after priming to upregulate OX40, CD25, and chemokine receptor CX3CR1. Thus IFN-I (signal 3) induced a post-priming checkpoint (signal 4) for CD4+ T cell accumulation, revealing a division of labor between cDCs and monocyte-derived APCs in regulating T cell expansion.
Collapse
Affiliation(s)
- Yu-Han Chang
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Kuan Chung Wang
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Kuan-Lun Chu
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Derek L Clouthier
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anh T Tran
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | | | - Angela C Zhou
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ali A Abdul-Sater
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Tania H Watts
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
47
|
Wang B, Kang W, Zuo J, Kang W, Sun Y. The Significance of Type-I Interferons in the Pathogenesis and Therapy of Human Immunodeficiency Virus 1 Infection. Front Immunol 2017; 8:1431. [PMID: 29163506 PMCID: PMC5671973 DOI: 10.3389/fimmu.2017.01431] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/13/2017] [Indexed: 01/25/2023] Open
Abstract
Type-I interferons (IFN-I) are a widely expressed family that could promote antivirus immunity in the process of pathogens invasion. In a human immunodeficiency virus 1 (HIV-1)-infected individual, the production of IFN-I can be detected as early as the acute phase and will persist throughout the course of infection. However, sustained stimulation of immune system by IFN-I also contributes greatly to host-mediated immunopathology and diseases progression. Although the protective effects of IFN-I in the acute phase of HIV-1 infection have been observed, more studies recently focus on their detrimental role in the chronic stage. Inhibition of IFN-I signaling may reverse HIV-1-induced immune hyperactivation and furthermore reduce HIV-1 reservoirs, which suggest this strategy may provide a potential way to enhance the therapeutic effect of antiretroviral therapy. Therefore, we review the role of IFN-I in HIV-1 progression, their effects on different immunocytes, and therapeutic prospects targeting the IFN-I system.
Collapse
Affiliation(s)
- Bowen Wang
- Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wen Kang
- Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jiahui Zuo
- Clinical Laboratory, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wenzhen Kang
- Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yongtao Sun
- Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
48
|
Snell LM, McGaha TL, Brooks DG. Type I Interferon in Chronic Virus Infection and Cancer. Trends Immunol 2017; 38:542-557. [PMID: 28579323 DOI: 10.1016/j.it.2017.05.005] [Citation(s) in RCA: 338] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 12/16/2022]
Abstract
Type I interferons (IFN-Is) are emerging as key drivers of inflammation and immunosuppression in chronic infection. Control of these infections requires IFN-I signaling; however, prolonged IFN-I signaling can lead to immune dysfunction. IFN-Is are also emerging as double-edged swords in cancer, providing necessary inflammatory signals, while initiating feedback suppression in both immune and cancer cells. Here, we review the proinflammatory and suppressive mechanisms potentiated by IFN-Is during chronic virus infections and discuss the similar, newly emerging dichotomy in cancer. We then discuss how this understanding is leading to new therapeutic concepts and immunotherapy combinations. We propose that, by modulating the immune response at its foundation, it may be possible to widely reshape immunity to control these chronic diseases.
Collapse
Affiliation(s)
- Laura M Snell
- Princess Margaret Cancer Center, Tumor Immunotherapy Program, University Health Network, Toronto, ONT, M5G 2M9, Canada
| | - Tracy L McGaha
- Princess Margaret Cancer Center, Tumor Immunotherapy Program, University Health Network, Toronto, ONT, M5G 2M9, Canada; Department of Immunology, University of Toronto, Toronto, ONT, M5S 1A8, Canada.
| | - David G Brooks
- Princess Margaret Cancer Center, Tumor Immunotherapy Program, University Health Network, Toronto, ONT, M5G 2M9, Canada; Department of Immunology, University of Toronto, Toronto, ONT, M5S 1A8, Canada.
| |
Collapse
|
49
|
Mourik BC, Lubberts E, de Steenwinkel JEM, Ottenhoff THM, Leenen PJM. Interactions between Type 1 Interferons and the Th17 Response in Tuberculosis: Lessons Learned from Autoimmune Diseases. Front Immunol 2017; 8:294. [PMID: 28424682 PMCID: PMC5380685 DOI: 10.3389/fimmu.2017.00294] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/01/2017] [Indexed: 01/04/2023] Open
Abstract
The classical paradigm of tuberculosis (TB) immunity, with a central protective role for Th1 responses and IFN-γ-stimulated cellular responses, has been challenged by unsatisfactory results of vaccine strategies aimed at enhancing Th1 immunity. Moreover, preclinical TB models have shown that increasing IFN-γ responses in the lungs is more damaging to the host than to the pathogen. Type 1 interferon signaling and altered Th17 responses have also been associated with active TB, but their functional roles in TB pathogenesis remain to be established. These two host responses have been studied in more detail in autoimmune diseases (AID) and show functional interactions that are of potential interest in TB immunity. In this review, we first identify the role of type 1 interferons and Th17 immunity in TB, followed by an overview of interactions between these responses observed in systemic AID. We discuss (i) the effects of GM-CSF-secreting Th17.1 cells and type 1 interferons on CCR2+ monocytes; (ii) convergence of IL-17 and type 1 interferon signaling on stimulating B-cell activating factor production and the central role of neutrophils in this process; and (iii) synergy between IL-17 and type 1 interferons in the generation and function of tertiary lymphoid structures and the associated follicular helper T-cell responses. Evaluation of these autoimmune-related pathways in TB pathogenesis provides a new perspective on recent developments in TB research.
Collapse
Affiliation(s)
- Bas C Mourik
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Erik Lubberts
- Department of Rheumatology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jurriaan E M de Steenwinkel
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Pieter J M Leenen
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
50
|
De Beuckelaer A, Grooten J, De Koker S. Type I Interferons Modulate CD8 + T Cell Immunity to mRNA Vaccines. Trends Mol Med 2017; 23:216-226. [PMID: 28185789 DOI: 10.1016/j.molmed.2017.01.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/03/2017] [Accepted: 01/13/2017] [Indexed: 12/24/2022]
Abstract
mRNA vaccines have emerged as potent tools to elicit antitumor T cell immunity. They are characterized by a strong induction of type I interferons (IFNs), potent inflammatory cytokines affecting T cell differentiation and survival. Recent reports have attributed opposing roles for type I IFNs in modulating CD8+ T cell immunity to mRNA vaccines, from profoundly stimulatory to strongly inhibitory. The mechanisms behind this duality are unclear. Disentangling the factors governing the beneficial or detrimental impact of type I IFNs on CD8+ T cell responses is vital to the design of mRNA vaccines of increased potency. In light of recent advancements regarding the complex role of type I IFNs in regulating CD8+ T cell immunity to infectious diseases, we posit that the dual outcome of type I IFNs on CD8+ T cell responses to mRNA vaccination is determined by the timing and intensity of type I IFN induction relative to T cell receptor (TCR) activation.
Collapse
Affiliation(s)
- Ans De Beuckelaer
- Laboratory of Molecular Immunology, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Johan Grooten
- Laboratory of Molecular Immunology, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| | - Stefaan De Koker
- Laboratory of Molecular Immunology, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Cytokine Receptor Laboratory, Department of Biochemistry, Ghent University, Ghent, Belgium
| |
Collapse
|