1
|
Sakuma S, Mine J, Uchida Y, Kumagai A, Takadate Y, Tsunekuni R, Nishiura H, Miyazawa K. Long-term immune responses induced by low-dose infection with high pathogenicity avian influenza viruses can protect mallards from reinfection with a heterologous strain. Arch Virol 2025; 170:33. [PMID: 39779578 PMCID: PMC11711648 DOI: 10.1007/s00705-024-06209-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025]
Abstract
Migratory water birds are considered to be carriers of high pathogenicity avian influenza viruses (HPAIVs). In Japan, mallards are often observed during winter, and HPAIV-infected mallards often shed viruses asymptomatically. In this study, we focused on mallards as potential carriers of HPAIVs and investigated whether individual wild mallards are repeatedly infected with HPAIVs and act as HPAIV carriers multiple times within a season. Mallards were experimentally infected with H5N1 and H5N8 HPAIVs that were isolated recently in Japan and phylogenetically belong to different hemagglutinin groups (G2a, G2b, and G2d). All of these strains are more infectious to mallards than to chickens, and the infected mallards shed enough virus to infect others, regardless of whether they exhibited clinical signs. Serum antibodies to the homologous antigen, induced by a single infection with a low virus dose (10 times the 50% mallard infectious dose), were maintained at detectable levels for 84 days. Immunity at 84 days post-inoculation fully protected the mallards from a challenge with the homologous strain, as demonstrated by a lack of viral shedding, and antibody levels did not increase significantly in most of these birds. Protection against heterologous challenge was also observed despite undetectable levels of antibodies to the challenge strain. Our findings suggest that repeated infections with homologous and heterologous HPAIV strains do not occur frequently in individual wild mallards within a season, particularly at low viral doses, and the frequency with which they act as carriers may be limited.
Collapse
Affiliation(s)
- Saki Sakuma
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Junki Mine
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Yuko Uchida
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Asuka Kumagai
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Yoshihiro Takadate
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Ryota Tsunekuni
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Hayate Nishiura
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Kohtaro Miyazawa
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan.
| |
Collapse
|
2
|
Stallknecht DE, Carter DL, Blake-Bradshaw AG, Masto NM, Highway CJ, Feddersen JC, Webby R, Cohen B, Sullivan JD, Poulson R. Influenza A Virus Antibodies in Ducks and Introduction of Highly Pathogenic Influenza A(H5N1) Virus, Tennessee, USA. Emerg Infect Dis 2024; 30:2647-2650. [PMID: 39592421 PMCID: PMC11616651 DOI: 10.3201/eid3012.241126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024] Open
Abstract
Testing of ducks in Tennessee, United States, before introduction of highly pathogenic influenza A(H5N1) virus demonstrated a high prevalence of antibodies to influenza A virus but very low prevalence of antibodies to H5 (25%) or H5 and N1 (13%) subtypes. Antibody prevalence increased after H5N1 introduction.
Collapse
|
3
|
Stallknecht DE, Carter DL, Sullivan-Brügger L, Link P, Ferraro E, McCarty C, Davis B, Knutsen L, Graham J, Poulson RL. Highly Pathogenic H5N1 Influenza A Virus (IAV) in Blue-Winged Teal in the Mississippi Flyway Is Following the Historic Seasonal Pattern of Low-Pathogenicity IAV in Ducks. Pathogens 2024; 13:1017. [PMID: 39599570 PMCID: PMC11597780 DOI: 10.3390/pathogens13111017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Highly pathogenic H5N1 (HP H5N1) influenza A virus (IAV) has been detected annually in North American ducks since its introduction during 2021, but it is unknown if this virus will follow the same seasonal and geographic patterns that have been observed with low-pathogenicity (LP) IAV in this reservoir. We monitored blue-winged teal in the Mississippi flyway prior to the detection of HP H5N1 and during two post-introduction migration cycles from spring 2022 to spring 2024, testing birds for infection and antibodies to IAV nucleoprotein (NP), hemagglutinin subtype H5, and neuraminidase subtype N1. Antigens representing clade 2.3.4.4b HP H5 and LP North American H5 were used for hemagglutination inhibition (HI) and virus neutralization (VN) tests for H5 antibodies. Virologic results were consistent with historic seasonal and geographic patterns reported for LP IAV with peak infections occurring in pre-migration staging areas in Minnesota during fall 2022. However, the high prevalence of the H5 subtype was exceptional compared to historic prevalence estimates at this same site and for the Mississippi flyway. HP H5N1 was detected on wintering areas in Louisiana and Texas during the fall of that same year and this was followed by an increase in estimated antibody prevalence to NP, H5, and N1 with no HP H5N1 detections during the wintering or spring migration periods of 2022/2023. HP H5N1 was not detected in Minnesota during fall 2023 but was detected from a single bird in Louisiana. However, a similar increase in antibody prevalence was observed during the winter and spring period of 2023 and 2024. Over the two migration cycles, there was a temporal shift in observed prevalence and relative titers against the H5 antigens with a higher proportion of ducks testing positive to the 2.3.4.4b H5 antigen and higher relative titer to that antigen compared to the representative LP North American H5 antigen. The seasonal and geographic patterns observed appear to be driven by population immunity during the migration cycle. Results support an initial high infection rate of HP H5N1 in blue-winged teal in the Mississippi flyway followed by a high prevalence of antibodies to NP, H5, and N1. Although prevalence was much reduced in the second migration cycle following introduction, it is not known if this pattern will persist in the longer term or affect historic patterns of subtype diversity in this reservoir.
Collapse
Affiliation(s)
- David E. Stallknecht
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Deborah L. Carter
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Lyndon Sullivan-Brügger
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Paul Link
- Louisiana Department of Wildlife and Fisheries, 5476 Grand Chenier Hwy, Grand Chenier, LA 70643, USA
| | - Emily Ferraro
- School of Renewable Resources, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Ciara McCarty
- Wetland Wildlife Populations and Research Group, Minnesota Department of Natural Resources, Bemidji, MN 56601, USA
| | - Bruce Davis
- Wetland Wildlife Populations and Research Group, Minnesota Department of Natural Resources, Bemidji, MN 56601, USA
| | - Lynda Knutsen
- Agassiz National Wildlife Refuge, U.S. Fish and Wildlife Service, Middle River, MN 56737, USA
| | - James Graham
- Agassiz National Wildlife Refuge, U.S. Fish and Wildlife Service, Middle River, MN 56737, USA
| | - Rebecca L. Poulson
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
4
|
Giacinti JA, Signore AV, Jones MEB, Bourque L, Lair S, Jardine C, Stevens B, Bollinger T, Goldsmith D, British Columbia Wildlife AIV Surveillance Program (BC WASP), Pybus M, Stasiak I, Davis R, Pople N, Nituch L, Brook RW, Ojkic D, Massé A, Dimitri-Masson G, Parsons GJ, Baker M, Yason C, Harms J, Jutha N, Neely J, Berhane Y, Lung O, French SK, Myers L, Provencher JF, Avery-Gomm S, Robertson GJ, Barychka T, Gurney KEB, Wight J, Rahman I, Hargan K, Lang AS, Montevecchi WA, Burt TV, Brown MGC, Pekarik C, Thompson T, McLaughlin A, Willie M, Wilson L, Flemming SA, Ross MV, Leafloor J, Baldwin F, Sharp C, Lewis H, Beaumont M, Hanson A, Ronconi RA, Reed E, Campbell M, Saunders M, Soos C. Avian influenza viruses in wild birds in Canada following incursions of highly pathogenic H5N1 virus from Eurasia in 2021-2022. mBio 2024; 15:e0320323. [PMID: 39012149 PMCID: PMC11323545 DOI: 10.1128/mbio.03203-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/24/2024] [Indexed: 07/17/2024] Open
Abstract
Following the detection of novel highly pathogenic avian influenza virus (HPAIV) H5N1 clade 2.3.4.4b in Newfoundland, Canada, in late 2021, avian influenza virus (AIV) surveillance in wild birds was scaled up across Canada. Herein, we present the results of Canada's Interagency Surveillance Program for Avian Influenza in Wild Birds during the first year (November 2021-November 2022) following the incursions of HPAIV from Eurasia. The key objectives of the surveillance program were to (i) identify the presence, distribution, and spread of HPAIV and other AIVs; (ii) identify wild bird morbidity and mortality associated with HPAIV; (iii) identify the range of wild bird species infected by HPAIV; and (iv) genetically characterize detected AIV. A total of 6,246 sick and dead wild birds were tested, of which 27.4% were HPAIV positive across 12 taxonomic orders and 80 species. Geographically, HPAIV detections occurred in all Canadian provinces and territories, with the highest numbers in the Atlantic and Central Flyways. Temporally, peak detections differed across flyways, though the national peak occurred in April 2022. In an additional 11,295 asymptomatic harvested or live-captured wild birds, 5.2% were HPAIV positive across 3 taxonomic orders and 19 species. Whole-genome sequencing identified HPAIV of Eurasian origin as most prevalent in the Atlantic Flyway, along with multiple reassortants of mixed Eurasian and North American origins distributed across Canada, with moderate structuring at the flyway scale. Wild birds were victims and reservoirs of HPAIV H5N1 2.3.4.4b, underscoring the importance of surveillance encompassing samples from sick and dead, as well as live and harvested birds, to provide insights into the dynamics and potential impacts of the HPAIV H5N1 outbreak. This dramatic shift in the presence and distribution of HPAIV in wild birds in Canada highlights a need for sustained investment in wild bird surveillance and collaboration across interagency partners. IMPORTANCE We present the results of Canada's Interagency Surveillance Program for Avian Influenza in Wild Birds in the year following the first detection of highly pathogenic avian influenza virus (HPAIV) H5N1 on the continent. The surveillance program tested over 17,000 wild birds, both sick and apparently healthy, which revealed spatiotemporal and taxonomic patterns in HPAIV prevalence and mortality across Canada. The significant shift in the presence and distribution of HPAIV in Canada's wild birds underscores the need for sustained investment in wild bird surveillance and collaboration across One Health partners.
Collapse
Affiliation(s)
- Jolene A. Giacinti
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Government of Canada, Winnipeg, Manitoba, Canada
| | - Anthony V. Signore
- Ecotoxicology and Wildlife Health Division, Science and Technology Branch, Environment and Climate Change Canada, Government of Canada, Ottawa, Ontario, Canada
| | - Megan E. B. Jones
- Canadian Wildlife Health Cooperative, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Laura Bourque
- Canadian Wildlife Health Cooperative, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Stéphane Lair
- Canadian Wildlife Health Cooperative, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada
| | - Claire Jardine
- Canadian Wildlife Health Cooperative, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Brian Stevens
- Canadian Wildlife Health Cooperative, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Trent Bollinger
- Canadian Wildlife Health Cooperative, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Dayna Goldsmith
- Canadian Wildlife Health Cooperative, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Margo Pybus
- Alberta Environment and Parks, Edmonton, Alberta, Canada
| | - Iga Stasiak
- Saskatchewan Ministry of Environment, Saskatoon, Saskatchewan, Canada
| | - Richard Davis
- Manitoba Department of Natural Resources and Northern Development, Wildlife Branch, Dauphin, Manitoba, Canada
| | - Neil Pople
- Veterinary Diagnostic Services, Manitoba Department of Agriculture, Winnipeg, Manitoba, Canada
| | - Larissa Nituch
- Wildlife Research and Monitoring Section, Ontario Ministry of Natural Resources and Forestry, Peterborough, Ontario, Canada
| | - Rodney W. Brook
- Wildlife Research and Monitoring Section, Ontario Ministry of Natural Resources and Forestry, Peterborough, Ontario, Canada
| | - Davor Ojkic
- Animal Health Laboratory, University of Guelph, Guelph, Ontario, Canada
| | - Ariane Massé
- Ministère de l’Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs du Québec, Québec City, Québec, Canada
| | - Gabrielle Dimitri-Masson
- Ministère de l’Agriculture, des Pêcheries et de l’Alimentation du Québec, Québec City, Québec, Canada
| | - Glen J. Parsons
- Wildlife Division, Nova Scotia Department of Natural Resources and Renewables, Kentville, Nova Scotia, Canada
| | - Meghan Baker
- Animal Health Division, Department of Fisheries, Forestry and Agriculture, Government of Newfoundland and Labrador, St. John’s, Newfoundland and Labrador, Canada
| | - Carmencita Yason
- AVC Diagnostic Services, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Jane Harms
- Animal Health Unit, Environment Yukon, Government of Yukon, Whitehorse, Yukon, Canada
| | - Naima Jutha
- Wildlife Management Division, Department of Environment and Climate Change, Government of the Northwest Territories, Yellowknife, Northwest Territories, Canada
| | - Jon Neely
- Wildlife Operations Division, Department of Environment, Government of Nunavut, Iqaluit, Nunavut, Canada
| | - Yohannes Berhane
- Ecotoxicology and Wildlife Health Division, Science and Technology Branch, Environment and Climate Change Canada, Government of Canada, Ottawa, Ontario, Canada
| | - Oliver Lung
- Ecotoxicology and Wildlife Health Division, Science and Technology Branch, Environment and Climate Change Canada, Government of Canada, Ottawa, Ontario, Canada
| | - Shannon K. French
- Animal Health Strategic Planning and Research, Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | - Lawrna Myers
- Animal Health Strategic Planning and Research, Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | - Jennifer F. Provencher
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Government of Canada, Winnipeg, Manitoba, Canada
| | - Stephanie Avery-Gomm
- Wildlife Research Division, Science and Technology Branch, Environment and Climate Change Canada, Government of Canada, Mount Pearl, Newfoundland and Labrador, Canada
| | - Gregory J. Robertson
- Wildlife Research Division, Science and Technology Branch, Environment and Climate Change Canada, Government of Canada, Mount Pearl, Newfoundland and Labrador, Canada
| | - Tatsiana Barychka
- Wildlife Research Division, Science and Technology Branch, Environment and Climate Change Canada, Government of Canada, Mount Pearl, Newfoundland and Labrador, Canada
| | - Kirsty E. B. Gurney
- Ecotoxicology and Wildlife Health Division, Science and Technology Branch, Environment and Climate Change Canada, Government of Canada, Saskatoon, Saskatchewan, Canada
| | - Jordan Wight
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Ishraq Rahman
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Kathryn Hargan
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Andrew S. Lang
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - William A. Montevecchi
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
- Department of Psychology, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Tori V. Burt
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
- Department of Psychology, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Michael G. C. Brown
- Wildlife Management and Regulatory Affairs Division, Canadian Wildlife Service, Environment and Climate Change Canada, Government of Canada, Gatineau, Québec, Canada
| | - Cynthia Pekarik
- Wildlife Management and Regulatory Affairs Division, Canadian Wildlife Service, Environment and Climate Change Canada, Government of Canada, Gatineau, Québec, Canada
| | - Trevor Thompson
- Wildlife Management and Regulatory Affairs Division, Canadian Wildlife Service, Environment and Climate Change Canada, Government of Canada, Gatineau, Québec, Canada
| | - Angela McLaughlin
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Government of Canada, Winnipeg, Manitoba, Canada
- Bioinformatics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Megan Willie
- Pacific Region Wildlife and Habitat Assessment Section, Canadian Wildlife Service, Environment and Climate Change Canada, Government of Canada, Delta, British Columbia, Canada
| | - Laurie Wilson
- Pacific Region Wildlife and Habitat Assessment Section, Canadian Wildlife Service, Environment and Climate Change Canada, Government of Canada, Delta, British Columbia, Canada
| | - Scott A. Flemming
- Pacific Region Wildlife and Habitat Assessment Section, Canadian Wildlife Service, Environment and Climate Change Canada, Government of Canada, Delta, British Columbia, Canada
| | - Megan V. Ross
- Pacific Region Wildlife and Habitat Assessment Section, Canadian Wildlife Service, Environment and Climate Change Canada, Government of Canada, Delta, British Columbia, Canada
| | - Jim Leafloor
- Prairie Region Wildlife and Habitat Assessment Section, Canadian Wildlife Service, Environment and Climate Change Canada, Government of Canada, Winnipeg, Manitoba, Canada
| | - Frank Baldwin
- Prairie Region Wildlife and Habitat Assessment Section, Canadian Wildlife Service, Environment and Climate Change Canada, Government of Canada, Winnipeg, Manitoba, Canada
| | - Chris Sharp
- Ontario Region Wildlife and Habitat Assessment Section, Canadian Wildlife Service, Environment and Climate Change Canada, Government of Canada, Ottawa, Ontario, Canada
| | - Hannah Lewis
- Ontario Region Wildlife and Habitat Assessment Section, Canadian Wildlife Service, Environment and Climate Change Canada, Government of Canada, Ottawa, Ontario, Canada
| | - Matthieu Beaumont
- Quebec Region Wildlife and Habitat Assessment Section, Canadian Wildlife Service, Environment and Climate Change Canada, Government of Canada, Québec, Québec, Canada
| | - Al Hanson
- Atlantic Region Wildlife and Habitat Assessment Section, Canadian Wildlife Service, Environment and Climate Change Canada, Government of Canada, Sackville, New Brunswick, Canada
| | - Robert A. Ronconi
- Atlantic Region Wildlife and Habitat Assessment Section, Canadian Wildlife Service, Environment and Climate Change Canada, Government of Canada, Sackville, New Brunswick, Canada
| | - Eric Reed
- Northern Region Wildlife and Habitat Assessment Section, Canadian Wildlife Service, Environment and Climate Change Canada, Government of Canada, Yellowknife, Northwest Territories, Canada
| | - Margaret Campbell
- Northern Region Wildlife and Habitat Assessment Section, Canadian Wildlife Service, Environment and Climate Change Canada, Government of Canada, Whitehorse, Yukon, Canada
| | - Michelle Saunders
- Department of Lands and Natural Resources, Nunatsiavut Government, Nain, Newfoundland and Labrador, Canada
| | - Catherine Soos
- Ecotoxicology and Wildlife Health Division, Science and Technology Branch, Environment and Climate Change Canada, Government of Canada, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
5
|
Graziosi G, Lupini C, Gobbo F, Zecchin B, Quaglia G, Pedrazzoli S, Lizzi G, Dosa G, Martini G, Terregino C, Catelli E. Genetic Diversity of Avian Influenza Viruses Detected in Waterbirds in Northeast Italy Using Two Different Sampling Strategies. Animals (Basel) 2024; 14:1018. [PMID: 38612257 PMCID: PMC11010841 DOI: 10.3390/ani14071018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/11/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Avian influenza viruses (AIVs), which circulate endemically in wild aquatic birds, pose a significant threat to poultry and raise concerns for their zoonotic potential. From August 2021 to April 2022, a multi-site cross-sectional study involving active AIV epidemiological monitoring was conducted in wetlands of the Emilia-Romagna region, northern Italy, adjacent to densely populated poultry areas. A total of 129 cloacal swab samples (CSs) and 407 avian faecal droppings samples (FDs) were collected, with 7 CSs (5.4%) and 4 FDs (1%) testing positive for the AIV matrix gene through rRT-PCR. A COI-barcoding protocol was applied to recognize the species of origin of AIV-positive FDs. Multiple low-pathogenic AIV subtypes were identified, and five of these were isolated, including an H5N3, an H1N1, and three H9N2 in wild ducks. Following whole-genome sequencing, phylogenetic analyses of the hereby obtained strains showed close genetic relationships with AIVs detected in countries along the Black Sea/Mediterranean migratory flyway. Notably, none of the analyzed gene segments were genetically related to HPAI H5N1 viruses of clade 2.3.4.4b isolated from Italian poultry during the concurrent 2021-2022 epidemic. Overall, the detected AIV genetic diversity emphasizes the necessity for ongoing monitoring in wild hosts using diverse sampling strategies and whole-genome sequencing.
Collapse
Affiliation(s)
- Giulia Graziosi
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, BO, Italy; (C.L.); (G.Q.); (S.P.); (G.L.); (E.C.)
| | - Caterina Lupini
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, BO, Italy; (C.L.); (G.Q.); (S.P.); (G.L.); (E.C.)
| | - Federica Gobbo
- Comparative Biomedical Sciences Division, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, PD, Italy; (F.G.); (B.Z.); (C.T.)
| | - Bianca Zecchin
- Comparative Biomedical Sciences Division, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, PD, Italy; (F.G.); (B.Z.); (C.T.)
| | - Giulia Quaglia
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, BO, Italy; (C.L.); (G.Q.); (S.P.); (G.L.); (E.C.)
| | - Sara Pedrazzoli
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, BO, Italy; (C.L.); (G.Q.); (S.P.); (G.L.); (E.C.)
| | - Gabriele Lizzi
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, BO, Italy; (C.L.); (G.Q.); (S.P.); (G.L.); (E.C.)
| | - Geremia Dosa
- Veterinary Services, Local Health Unit of Imola (A.U.S.L. di Imola), 40026 Imola, BO, Italy; (G.D.); (G.M.)
| | - Gabriella Martini
- Veterinary Services, Local Health Unit of Imola (A.U.S.L. di Imola), 40026 Imola, BO, Italy; (G.D.); (G.M.)
| | - Calogero Terregino
- Comparative Biomedical Sciences Division, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, PD, Italy; (F.G.); (B.Z.); (C.T.)
| | - Elena Catelli
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, BO, Italy; (C.L.); (G.Q.); (S.P.); (G.L.); (E.C.)
| |
Collapse
|
6
|
Chen C, Yang M, Wang Y, Jiang D, Du Y, Cao K, Zhang X, Wu X, Chen M, You Y, Zhou W, Qi J, Yan R, Zhu C, Yang S. Intensity and drivers of subtypes interference between seasonal influenza viruses in mainland China: A modeling study. iScience 2024; 27:109323. [PMID: 38487011 PMCID: PMC10937832 DOI: 10.1016/j.isci.2024.109323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/18/2024] [Accepted: 02/20/2024] [Indexed: 03/17/2024] Open
Abstract
Subtype interference has a significant impact on the epidemiological patterns of seasonal influenza viruses (SIVs). We used attributable risk percent [the absolute value of the ratio of the effective reproduction number (Rₑ) of different subtypes minus one] to quantify interference intensity between A/H1N1 and A/H3N2, as well as B/Victoria and B/Yamagata. The interference intensity between A/H1N1 and A/H3N2 was higher in southern China 0.26 (IQR: 0.11-0.46) than in northern China 0.17 (IQR: 0.07-0.24). Similarly, interference intensity between B/Victoria and B/Yamagata was also higher in southern China 0.14 (IQR: 0.07-0.24) than in norther China 0.10 (IQR: 0.04-0.18). High relative humidity significantly increased subtype interference, with the highest relative risk reaching 20.59 (95% CI: 6.12-69.33) in southern China. Southern China exhibited higher levels of subtype interference, particularly between A/H1N1 and A/H3N2. Higher relative humidity has a more pronounced promoting effect on subtype interference.
Collapse
Affiliation(s)
- Can Chen
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Mengya Yang
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yu Wang
- College of Computer Science and Technology, Zhejiang University, Hangzhou 310058, China
| | - Daixi Jiang
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yuxia Du
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Kexin Cao
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaobao Zhang
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaoyue Wu
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Mengsha Chen
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yue You
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wenkai Zhou
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jiaxing Qi
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Rui Yan
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Changtai Zhu
- Department of Transfusion Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Shigui Yang
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
7
|
Islam A, Islam M, Dutta P, Rahman MA, Al Mamun A, Khan AKMD, Samad MA, Hassan MM, Rahman MZ, Shirin T. Association of biosecurity and hygiene practices with avian influenza A/H5 and A/H9 virus infections in turkey farms. Front Vet Sci 2024; 11:1319618. [PMID: 38550782 PMCID: PMC10976562 DOI: 10.3389/fvets.2024.1319618] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/19/2024] [Indexed: 11/12/2024] Open
Abstract
High pathogenicity avian influenza (HPAI) H5N1 outbreaks pose a significant threat to the health of livestock, wildlife, and humans. Avian influenza viruses (AIVs) are enzootic in poultry in many countries, including Bangladesh, necessitating improved farm biosecurity measures. However, the comprehension of biosecurity and hygiene practices, as well as the infection of AIV in turkey farms, are poorly understood in Bangladesh. Therefore, we conducted this study to determine the prevalence of AIV subtypes and their association with biosecurity and hygiene practices in turkey farms. We collected oropharyngeal and cloacal swabs from individual turkeys from 197 farms across 9 districts in Bangladesh from March to August 2019. We tested the swab samples for the AIV matrix gene (M gene) followed by H5, H7, and H9 subtypes using real-time reverse transcriptase-polymerase chain reaction (rRT-PCR). We found 24.68% (95% CI:21.54-28.04) of turkey samples were AIV positive, followed by 5.95% (95% CI: 4.33-7.97) for H5, 6.81% (95% CI: 5.06-8.93) for H9 subtype and no A/H7 was found. Using a generalized linear mixed model, we determined 10 significant risk factors associated with AIV circulation in turkey farms. We found that the absence of sick turkeys, the presence of footbaths, the absence of nearby poultry farms, concrete flooring, and the avoidance of mixing newly purchased turkeys with existing stock can substantially reduce the risk of AIV circulation in turkey farms (odds ratio ranging from 0.02 to 0.08). Furthermore, the absence of nearby live bird markets, limiting wild bird access, no visitor access, improved floor cleaning frequency, and equipment disinfection practices also had a substantial impact on lowering the AIV risk in the farms (odds ratio ranging from 0.10 to 0.13). The results of our study underscore the importance of implementing feasible and cost-effective biosecurity measures aimed at reducing AIV transmission in turkey farms. Particularly in resource-constrained environments such as Bangladesh, such findings might assist governmental entities in enhancing biosecurity protocols within their poultry sector, hence mitigating and potentially averting the transmission of AIV and spillover to humans.
Collapse
Affiliation(s)
- Ariful Islam
- EcoHealth Alliance, New York, NY, United States
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
| | - Monjurul Islam
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - Pronesh Dutta
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - Md Ashiqur Rahman
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - Abdullah Al Mamun
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - AKM Dawlat Khan
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - Mohammed Abdus Samad
- National Reference Laboratory for Avian Influenza, Bangladesh Livestock Research Institute (BLRI), Savar, Bangladesh
| | - Mohammad Mahmudul Hassan
- Queensland Alliance for One Health Sciences, School of Veterinary Science, University of Queensland, Gatton, QLD, Australia
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Mohammed Ziaur Rahman
- One Health Laboratory, International Centre for Diarrheal Diseases Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - Tahmina Shirin
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| |
Collapse
|
8
|
Wang M, Guo J, Zhang H, Sun X, Shen J, Guan M, Liu L, Liu W, Yu Z, Ren A, Li Y, Li X. Ecological and Genetic Landscapes of Global H12 Avian Influenza Viruses and Biological Characteristics of an H12N5 Virus Isolated from Wild Ducks in Eastern China. Transbound Emerg Dis 2024; 2024:9140418. [PMID: 40303124 PMCID: PMC12017136 DOI: 10.1155/2024/9140418] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/26/2024] [Accepted: 02/06/2024] [Indexed: 05/02/2025]
Abstract
Wild migratory birds are considered the central reservoirs of avian influenza viruses. H12 viruses are one of the 16 hemagglutinin (HA) subtypes of avian influenza viruses and are rarely reported because they are infrequently detected in birds. Consequently, the ecological and genetic profiles of H12 viruses and their adaptation in domestic birds and mammals remain unclear. Here, we found that H12N5 viruses were predominant in the nine identified H12NX subtypes, with the HA (H12) and neuraminidase (NA) (N5) genes showing combination bias in the categorized analysis of subtype combinations (H12 and N1-N9; H1-H12, H14, H15, and N5). These identified H12N5 viruses were primarily detected in birds of Anatidae and Scolopacidae in North America, excluding their possible characterization as chicken or mammalian viruses. The H12N5 viruses were divided into the North American lineage and Eurasian lineage according to their genetic differences, including the HA and NA surface genes and internal genes, although reassortment was observed between the two lineages. We isolated an Eurasian-lineage H12N5 virus from wild ducks in Eastern China, which was one of the 12 identified H12 viruses in China. Infectivity studies indicated that the H12N5 virus is poorly adapted to domestic ducks and chickens, although viral shedding could be detected in both inoculated and contact birds. Additionally, the naturally isolated H12N5 virus did not achieve good replication in mice. These results indicate that the rare subtype of H12 viruses was mainly pooled in wild migratory birds and has an established phylogeography, with low risks of spillover into domestic birds and mammals.
Collapse
Affiliation(s)
- Mengjing Wang
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Jing Guo
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Hong Zhang
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Xiaohong Sun
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Jinyan Shen
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Mengdi Guan
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Lili Liu
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Wenqiang Liu
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Zhijun Yu
- Poultry Institute, Shandong Academy of Agricultural Sciences, Shandong, China
| | - Anran Ren
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Yubao Li
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Xuyong Li
- College of Agronomy, Liaocheng University, Liaocheng, China
| |
Collapse
|
9
|
Kok A, Scheuer R, Bestebroer TM, Burke DF, Wilks SH, Spronken MI, de Meulder D, Lexmond P, Pronk M, Smith DJ, Herfst S, Fouchier RAM, Richard M. Characterization of A/H7 influenza virus global antigenic diversity and key determinants in the hemagglutinin globular head mediating A/H7N9 antigenic evolution. mBio 2023; 14:e0048823. [PMID: 37565755 PMCID: PMC10655666 DOI: 10.1128/mbio.00488-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/26/2023] [Indexed: 08/12/2023] Open
Abstract
IMPORTANCE A/H7 avian influenza viruses cause outbreaks in poultry globally, resulting in outbreaks with significant socio-economical impact and zoonotic risks. Occasionally, poultry vaccination programs have been implemented to reduce the burden of these viruses, which might result in an increased immune pressure accelerating antigenic evolution. In fact, evidence for antigenic diversification of A/H7 influenza viruses exists, posing challenges to pandemic preparedness and the design of vaccination strategies efficacious against drifted variants. Here, we performed a comprehensive analysis of the global antigenic diversity of A/H7 influenza viruses and identified the main substitutions in the hemagglutinin responsible for antigenic evolution in A/H7N9 viruses isolated between 2013 and 2019. The A/H7 antigenic map and knowledge of the molecular determinants of their antigenic evolution add value to A/H7 influenza virus surveillance programs, the design of vaccines and vaccination strategies, and pandemic preparedness.
Collapse
Affiliation(s)
- Adinda Kok
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Rachel Scheuer
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Theo M. Bestebroer
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - David F. Burke
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Samuel H. Wilks
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Monique I. Spronken
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Dennis de Meulder
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Pascal Lexmond
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Mark Pronk
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Derek J. Smith
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Sander Herfst
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ron A. M. Fouchier
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Mathilde Richard
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
10
|
Tang M, Dong W, Yuan S, Chen J, Lin J, Wu J, Zhang J, Yin Y, Zhang L. Comparison of respiratory pathogens in children with community-acquired pneumonia before and during the COVID-19 pandemic. BMC Pediatr 2023; 23:535. [PMID: 37891511 PMCID: PMC10605329 DOI: 10.1186/s12887-023-04246-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 08/11/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Multifaceted non-pharmaceutical interventions during the COVID-19 pandemic have not only reduced the transmission of SARS-CoV2, but have had an effect on the prevalence of other pathogens. This retrospective study aimed to compare and analyze the changes of respiratory pathogens in hospitalized children with community-acquired pneumonia. METHODS From January 2019 to December 2020, children with community-acquired pneumonia were selected from the Department of Respiratory Medicine, Shanghai Children's Medical Center. On the first day of hospitalization, sputum, throat swabs, venous blood samples from them were collected for detection of pathogens. RESULTS A total of 2596 children with community-acquired pneumonia were enrolled, including 1871 patients in 2019 and 725 in 2020. The detection rate in 2020 was lower than in 2019, whether single or multiple pathogens. Compared with 2019, the detection rate of virus, especially parainfluenza virus, influenza virus and respiratory syncytial virus, all decreased in 2020. On the contrary, the prevalence of human rhinovirus was much higher than that in 2019. In addition, the positivity rate for bacteria did not change much over the two years, which seemed to be less affected by COVID-19. And Mycoplasma pneumoniae which broke out in 2019 has been in low prevalence since March 2020 even following the reopening of school. CONCLUSIONS Strict public health interventions for COVID-19 in China have effectively suppressed the spread of not only SARS-CoV2 but parainfluenza virus, influenza virus and Mycoplasma pneumonia as well. However, it had a much more limited effect on bacteria and rhinovirus. Therefore, more epidemiological surveillance of respiratory pathogens will help improve early preventive measures.
Collapse
Affiliation(s)
- Mingyu Tang
- Department of Respiratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Rd, Shanghai, 200127, China
| | - Wenfang Dong
- Department of Respiratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Rd, Shanghai, 200127, China
| | - Shuhua Yuan
- Department of Respiratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Rd, Shanghai, 200127, China
| | - Jiande Chen
- Department of Respiratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Rd, Shanghai, 200127, China
| | - Jie Lin
- Department of Respiratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Rd, Shanghai, 200127, China
| | - Jinhong Wu
- Department of Respiratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Rd, Shanghai, 200127, China
| | - Jing Zhang
- Department of Respiratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Rd, Shanghai, 200127, China
| | - Yong Yin
- Department of Respiratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Rd, Shanghai, 200127, China.
| | - Lei Zhang
- Department of Respiratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Rd, Shanghai, 200127, China.
| |
Collapse
|
11
|
Kent CM, Bevins SN, Mullinax JM, Sullivan JD, Prosser DJ. Waterfowl show spatiotemporal trends in influenza A H5 and H7 infections but limited taxonomic variation. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2906. [PMID: 37522765 DOI: 10.1002/eap.2906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/31/2023] [Accepted: 06/21/2023] [Indexed: 08/01/2023]
Abstract
Influenza A viruses in wild birds pose threats to the poultry industry, wild birds, and human health under certain conditions. Of particular importance are wild waterfowl, which are the primary reservoir of low-pathogenicity influenza viruses that ultimately cause high-pathogenicity outbreaks in poultry farms. Despite much work on the drivers of influenza A virus prevalence, the underlying viral subtype dynamics are still mostly unexplored. Nevertheless, understanding these dynamics, particularly for the agriculturally significant H5 and H7 subtypes, is important for mitigating the risk of outbreaks in domestic poultry farms. Here, using an expansive surveillance database, we take a large-scale look at the spatial, temporal, and taxonomic drivers in the prevalence of these two subtypes among influenza A-positive wild waterfowl. We document spatiotemporal trends that are consistent with past work, particularly an uptick in H5 viruses in late autumn and H7 viruses in spring. Interestingly, despite large species differences in temporal trends in overall influenza A virus prevalence, we document only modest differences in the relative abundance of these two subtypes and little, if any, temporal differences among species. As such, it appears that differences in species' phenology, physiology, and behaviors that influence overall susceptibility to influenza A viruses play a much lesser role in relative susceptibility to different subtypes. Instead, species are likely to freely pass viruses among each other regardless of subtype. Importantly, despite the similarities among species documented here, individual species still may play important roles in moving viruses across large geographic areas or sustaining local outbreaks through their different migratory behaviors.
Collapse
Affiliation(s)
- Cody M Kent
- Department of Environmental Science and Technology, University of Maryland, College Park, Maryland, USA
- Department of Biology, Frostburg State University, Frostburg, Maryland, USA
| | - Sarah N Bevins
- US Department of Agriculture, Wildlife Services, National Wildlife Disease Program, Fort Collins, Colorado, USA
| | - Jennifer M Mullinax
- Department of Environmental Science and Technology, University of Maryland, College Park, Maryland, USA
| | - Jeffery D Sullivan
- US Geological Survey, Eastern Ecological Science Center, Laurel, Maryland, USA
| | - Diann J Prosser
- US Geological Survey, Eastern Ecological Science Center, Laurel, Maryland, USA
| |
Collapse
|
12
|
Takadate Y, Tsunekuni R, Kumagai A, Mine J, Kikutani Y, Sakuma S, Miyazawa K, Uchida Y. Different Infectivity and Transmissibility of H5N8 and H5N1 High Pathogenicity Avian Influenza Viruses Isolated from Chickens in Japan in the 2021/2022 Season. Viruses 2023; 15:265. [PMID: 36851480 PMCID: PMC9967648 DOI: 10.3390/v15020265] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
H5N8 and H5N1 high pathogenicity avian influenza viruses (HPAIVs) caused outbreaks in poultry farms in Japan from November 2021 to May 2022. Hemagglutinin genes of these viruses belong to clade 2.3.4.4B and can be divided phylogenetically into the following groups: 20A, 20E, and 21E. In this study, we compared the infectivity and transmissibility of HPAIVs from three groups of chickens. Representative strains from 20A, 20E, and 21E groups are A/chicken/Akita/7C/2021(H5N8)(Akita7C), A/chicken/Kagoshima/21A6T/2021(H5N1)(Kagoshima6T), and A/chicken/Iwate/21A7T/2022(H5N1)(Iwate7T), respectively. Fifty percent lethal dose of Akita7C in chickens (103.83 fifty percent egg infectious dose (EID50)) was up to seven times lower than those of Kagoshima6T and Iwate7T (104.50 and 104.68 EID50, respectively). Mean death times for Akita7C- and Kagoshima6T-infected chickens (3.45 and 3.30 days, respectively) were at least a day longer than that of Iwate7T (2.20 days). Viral titers of the trachea and cloaca of Iwate7T-infected chicken were the highest detected. The transmission rate of the Akita7C strain (100%) was markedly higher than those of the two strains (<50%). These data suggest that the infectivity and transmissibility of the Akita7C strain (H5N8) in chickens are higher than those of H5N1 viruses, providing fundamental information needed for formulating effective prevention and control strategies for HPAI outbreaks.
Collapse
Affiliation(s)
- Yoshihiro Takadate
- Emerging Virus Group, Division of Zoonosis Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki 305856, Japan
| | - Ryota Tsunekuni
- Emerging Virus Group, Division of Zoonosis Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki 305856, Japan
| | - Asuka Kumagai
- Emerging Virus Group, Division of Zoonosis Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki 305856, Japan
| | - Junki Mine
- Emerging Virus Group, Division of Zoonosis Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki 305856, Japan
| | - Yuto Kikutani
- National Veterinary Assay Laboratory, Ministry of Agriculture, Forestry and Fisheries, Tokyo 1858511, Japan
| | - Saki Sakuma
- Emerging Virus Group, Division of Zoonosis Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki 305856, Japan
| | - Kohtaro Miyazawa
- Emerging Virus Group, Division of Zoonosis Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki 305856, Japan
| | - Yuko Uchida
- Emerging Virus Group, Division of Zoonosis Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki 305856, Japan
| |
Collapse
|
13
|
Petherbridge G, Gadzhiev AA, Shestopalov АМ, Alekseev AY, Sharshov KA, Daudova MG. An early warning system for highly pathogenic viruses borne by waterbird species and related dynamics of climate change in the Caspian Sea region: Outlines of a concept. SOUTH OF RUSSIA: ECOLOGY, DEVELOPMENT 2022. [DOI: 10.18470/1992-1098-2022-2-233-263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Aim. Formulation of the outlines of the concept of ViEW (Viral Early Warning) which is intended as a long term system of multidisciplinary transboundary cooperation between specialist institutions of all five Caspian region states to research, regularly monitor and share data about the generation, transmission and epidemiology of avian‐borne pathogens and their vectors in the region, and the ways climate change may affect these processes.Material and Methods. The concept is based on the multidisciplinary experience of the authors in researching the processes incorporated in the ViEW concept and on an in‐depth survey of the literature involved.Results. The outlines of the ViEW concept are presented in this study for review and comment by interested parties and stakeholders.Conclusion. Review of activities and opinions of specialists and organizations with remits relating to the development, establishment and maintenance of ViEW, indicates that such a system is a necessity for global animal and human health because of the role that the Caspian region plays in the mass migration of species of waterbird known as vectors for avian influenza and the already evident impacts of climate change on their phenologies. Waterbirds frequenting the Caspian Sea littorals and their habitats together constitute a major potential global hotspot or High Risk region for the generation and transmission of highly pathogenic avian influenza viruses and other dangerous zoonotic diseases.
Collapse
Affiliation(s)
| | | | - А. М. Shestopalov
- Research Institute of Virology, Federal Research Centre of Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences
| | - A. Yu. Alekseev
- Research Institute of Virology, Federal Research Centre of Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences
| | - K. A. Sharshov
- Research Institute of Virology, Federal Research Centre of Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences
| | | |
Collapse
|
14
|
Wilasang C, Suttirat P, Chadsuthi S, Wiratsudakul A, Modchang C. Competitive evolution of H1N1 and H3N2 influenza viruses in the United States: A mathematical modeling study. J Theor Biol 2022; 555:111292. [PMID: 36179800 DOI: 10.1016/j.jtbi.2022.111292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/17/2022] [Accepted: 09/21/2022] [Indexed: 01/14/2023]
Abstract
Seasonal influenza causes vast public health and economic impact globally. The prevention and control of the annual epidemics remain a challenge due to the antigenic evolution of the viruses. Here, we presented a novel modeling framework based on changes in amino acid sequences and relevant epidemiological data to retrospectively investigate the competitive evolution and transmission of H1N1 and H3N2 influenza viruses in the United States during October 2002 and April 2019. To do so, we estimated the time-varying disease transmission rate from the reported influenza cases and the time-varying antigenic change rate of the viruses from the changes in amino acid sequences. By incorporating the time-varying antigenic change rate into the transmission models, we found that the models could capture the evolutionary transmission dynamics of influenza viruses in the United States. Our modeling results also showed that the antigenic change of the virus plays an essential role in seasonal influenza dynamics.
Collapse
Affiliation(s)
- Chaiwat Wilasang
- Biophysics Group, Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Pikkanet Suttirat
- Biophysics Group, Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Sudarat Chadsuthi
- Department of Physics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Anuwat Wiratsudakul
- Department of Clinical Sciences and Public Health, and the Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Charin Modchang
- Biophysics Group, Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Centre of Excellence in Mathematics, MHESI, Bangkok 10400, Thailand; Thailand Center of Excellence in Physics, Ministry of Higher Education, Science, Research and Innovation, 328 Si Ayutthaya Road, Bangkok 10400, Thailand.
| |
Collapse
|
15
|
Wang H, Zheng Y, de Jonge MI, Wang R, Verhagen LM, Chen Y, Li L, Xu Z, Wang W. Lockdown measures during the COVID-19 pandemic strongly impacted the circulation of respiratory pathogens in Southern China. Sci Rep 2022; 12:16926. [PMID: 36209167 PMCID: PMC9547377 DOI: 10.1038/s41598-022-21430-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/27/2022] [Indexed: 12/29/2022] Open
Abstract
A range of public health measures have been implemented to suppress local transmission of coronavirus disease 2019 (COVID-19) in Shenzhen. We examined the effect of these measures on the prevalence of respiratory pathogens in children. Clinical and respiratory pathogen data were collected for routine care from hospitalized children with acute respiratory infections in Shenzhen Children's Hospital from July 2018 to January 2022. Nasopharyngeal swabs were collected and respiratory pathogens were detected using standardized clinical diagnostics as part of routine care. Data were analyzed to describe the effects of COVID-19 prevention procedures on other common pathogens. A total of 56,325 children under 14 years of age were hospitalized with an acute respiratory infection during the study period, 33,909 were tested from July 2018 to January 2020 (pre-lockdown), 1168 from February 2020 to May 2020 (lockdown) and 21,248 from July 2020 to January 2022 (post-lockdown). We observed a 37.3% decline of routine care in respiratory infection associated hospital admission in the 19 months' post-lockdown vs. the 19 months' pre-lockdown. There were 99.4%, 16.0% and 1.26% reductions measured for Mycoplasma pneumoniae, influenza virus A and adenovirus, respectively. However, a 118.7% and 75.8% rise was found for respiratory syncytial virus (RSV) and human para-influenza virus (HPIV) during the 19 months' post-lockdown in comparison to the pre-pandemic period. The detection of RSV especially increased in toddlers after the lockdown. Lockdown measures during the COVID-19 pandemic led to a significant reduction of Mycoplasma pneumoniae, influenza virus A and adenovirus infection. In contrast, RSV and HPIV infection increased.
Collapse
Affiliation(s)
- Heping Wang
- grid.452787.b0000 0004 1806 5224Shenzhen Children’s Hospital, No. 7019 Yitian Road, Futian District, Shenzhen, 518038 Guangdong China ,grid.10417.330000 0004 0444 9382Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yuejie Zheng
- grid.452787.b0000 0004 1806 5224Shenzhen Children’s Hospital, No. 7019 Yitian Road, Futian District, Shenzhen, 518038 Guangdong China
| | - Marien I. de Jonge
- grid.10417.330000 0004 0444 9382Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rongjun Wang
- grid.452787.b0000 0004 1806 5224Shenzhen Children’s Hospital, No. 7019 Yitian Road, Futian District, Shenzhen, 518038 Guangdong China
| | - Lilly M. Verhagen
- grid.10417.330000 0004 0444 9382Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands ,grid.461578.9Department of Pediatric Infectious Diseases and Immunology, Amalia Children’s Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yunsheng Chen
- grid.452787.b0000 0004 1806 5224Shenzhen Children’s Hospital, No. 7019 Yitian Road, Futian District, Shenzhen, 518038 Guangdong China
| | - Li Li
- grid.452787.b0000 0004 1806 5224Shenzhen Children’s Hospital, No. 7019 Yitian Road, Futian District, Shenzhen, 518038 Guangdong China
| | - Zhi Xu
- grid.459830.3Ningbo Health Gene Technologies Co., Ltd, Ningbo, Zhejiang China
| | - Wenjian Wang
- grid.452787.b0000 0004 1806 5224Shenzhen Children’s Hospital, No. 7019 Yitian Road, Futian District, Shenzhen, 518038 Guangdong China
| |
Collapse
|
16
|
Caliendo V, Leijten L, van de Bildt MWG, Poen MJ, Kok A, Bestebroer T, Richard M, Fouchier RAM, Kuiken T. Long-Term Protective Effect of Serial Infections with H5N8 Highly Pathogenic Avian Influenza Virus in Wild Ducks. J Virol 2022; 96:e0123322. [PMID: 36098512 PMCID: PMC9517725 DOI: 10.1128/jvi.01233-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/22/2022] [Indexed: 12/02/2022] Open
Abstract
Highly pathogenic avian influenza viruses (HPAIVs) of the Goose/Guangdong (Gs/Gd) lineage are an emerging threat to wild birds. In the 2016-2017 H5N8 outbreak, unexplained variability was observed in susceptible species, with some reports of infected birds dying in high numbers and other reports of apparently subclinical infections. This experimental study was devised to test the hypothesis that previous infection with a less-virulent HPAIV (i.e., 2014 H5N8) provides long-term immunity against subsequent infection with a more-virulent HPAIV (i.e., 2016 H5N8). Therefore, two species of wild ducks-the more-susceptible tufted duck (Aythya fuligula) and the more-resistant mallard (Anas platyrhynchos)-were serially inoculated, first with 2014 H5N8 and after 9 months with 2016 H5N8. For both species, a control group of birds was first sham inoculated and after 9 months inoculated with 2016 H5N8. Subsequent infection with the more-virulent 2016 H5N8 caused no clinical signs in tufted ducks that had previously been infected with 2014 H5N8 (n = 6) but caused one death in tufted ducks that had been sham inoculated (n = 7). In mallards, 2016 H5N8 infection caused significant body weight loss in previously sham-inoculated birds (n = 8) but not in previously infected birds (n = 7). IMPORTANCE This study showed that ducks infected with a less-virulent HPAIV developed immunity that was protective against a subsequent infection with a more-virulent HPAIV 9 months later. Following 2014 H5N8 infection, the proportion of birds with detectable influenza nucleoprotein antibody declined from 100% (8/8) in tufted ducks and 78% (7/9) in mallards after 1 month to 33% (2/6) in tufted ducks and 29% (2/7) in mallards after 9 months. This finding helps predict the expected impact that an HPAIV outbreak may have on wild bird populations, depending on whether they are immunologically naive or have survived previous infection with HPAIV.
Collapse
Affiliation(s)
- Valentina Caliendo
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Lonneke Leijten
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Marjolein J. Poen
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Adinda Kok
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Theo Bestebroer
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mathilde Richard
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ron A. M. Fouchier
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Thijs Kuiken
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
17
|
Wille M, Tolf C, Latorre-Margalef N, Fouchier RAM, Halpin RA, Wentworth DE, Ragwani J, Pybus OG, Olsen B, Waldenström J. Evolutionary features of a prolific subtype of avian influenza A virus in European waterfowl. Virus Evol 2022; 8:veac074. [PMID: 36128050 PMCID: PMC9477075 DOI: 10.1093/ve/veac074] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/12/2022] [Accepted: 08/25/2022] [Indexed: 11/26/2022] Open
Abstract
Avian influenza A virus (AIV) is ubiquitous in waterfowl and is detected annually at high prevalence in waterfowl during the Northern Hemisphere autumn. Some AIV subtypes are globally common in waterfowl, such as H3N8, H4N6, and H6N2, and are detected in the same populations at a high frequency, annually. In order to investigate genetic features associated to the long-term maintenance of common subtypes in migratory ducks, we sequenced 248 H4 viruses isolated across 8 years (2002-9) from mallards (Anas platyrhynchos) sampled in southeast Sweden. Phylogenetic analyses showed that both H4 and N6 sequences fell into three distinct lineages, structured by year of isolation. Specifically, across the 8 years of the study, we observed lineage replacement, whereby a different HA lineage circulated in the population each year. Analysis of deduced amino acid sequences of the HA lineages illustrated key differences in regions of the globular head of hemagglutinin that overlap with established antigenic sites in homologous hemagglutinin H3, suggesting the possibility of antigenic differences among these HA lineages. Beyond HA, lineage replacement was common to all segments, such that novel genome constellations were detected across years. A dominant genome constellation would rapidly amplify in the duck population, followed by unlinking of gene segments as a result of reassortment within 2-3 weeks following introduction. These data help reveal the evolutionary dynamics exhibited by AIV on both annual and decadal scales in an important reservoir host.
Collapse
Affiliation(s)
- Michelle Wille
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Universitetsplatsen 1, Kalmar SE-39231, Sweden
| | - Conny Tolf
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Universitetsplatsen 1, Kalmar SE-39231, Sweden
| | - Neus Latorre-Margalef
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Universitetsplatsen 1, Kalmar SE-39231, Sweden
| | - Ron A M Fouchier
- Department of Virology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | | | | | - Jayna Ragwani
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3SY, UK
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3SY, UK
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, London AL9 7TA, UK
| | - Björn Olsen
- Section of Infectious Diseases, Department of Medical Sciences, Uppsala University, Uppsala SE751 85, Sweden
| | - Jonas Waldenström
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Universitetsplatsen 1, Kalmar SE-39231, Sweden
| |
Collapse
|
18
|
Spatiotemporal changes in influenza A virus prevalence among wild waterfowl inhabiting the continental United States throughout the annual cycle. Sci Rep 2022; 12:13083. [PMID: 35906292 PMCID: PMC9338306 DOI: 10.1038/s41598-022-17396-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/25/2022] [Indexed: 11/08/2022] Open
Abstract
Avian influenza viruses can pose serious risks to agricultural production, human health, and wildlife. An understanding of viruses in wild reservoir species across time and space is important to informing surveillance programs, risk models, and potential population impacts for vulnerable species. Although it is recognized that influenza A virus prevalence peaks in reservoir waterfowl in late summer through autumn, temporal and spatial variation across species has not been fully characterized. We combined two large influenza databases for North America and applied spatiotemporal models to explore patterns in prevalence throughout the annual cycle and across the continental United States for 30 waterfowl species. Peaks in prevalence in late summer through autumn were pronounced for dabbling ducks in the genera Anas and Spatula, but not Mareca. Spatially, areas of high prevalence appeared to be related to regional duck density, with highest predicted prevalence found across the upper Midwest during early fall, though further study is needed. We documented elevated prevalence in late winter and early spring, particularly in the Mississippi Alluvial Valley. Our results suggest that spatiotemporal variation in prevalence outside autumn staging areas may also represent a dynamic parameter to be considered in IAV ecology and associated risks.
Collapse
|
19
|
Stallknecht DE, Fojtik A, Carter DL, Crum-Bradley JA, Perez DR, Poulson RL. Naturally Acquired Antibodies to Influenza A Virus in Fall-Migrating North American Mallards. Vet Sci 2022; 9:214. [PMID: 35622742 PMCID: PMC9148056 DOI: 10.3390/vetsci9050214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/15/2022] [Accepted: 04/23/2022] [Indexed: 01/27/2023] Open
Abstract
Although waterfowl are the primary reservoir for multiple subtypes of influenza A virus (IAV), our understanding of population immunity in naturally infected waterfowl is poorly understood. Population immunity may be an important driver of seasonal subtype predominance in waterfowl populations and may affect the potential for establishment of introduced IAV such as the Eurasian-like A/Goose/Guangdong/1/1996 lineage in these populations. Here, we examine the prevalence of naturally acquired antibodies to nucleoprotein (NP), hemagglutinin (H3, H4, H5), and neuraminidase (N1, N2, N6, N8) in early migrating mallards (Anas platyrhynchos) sampled in Northwest Minnesota during staging and early fall migration in September 2014, 2015, 2017, and 2018. Serologic results were compared to historic and contemporary virus isolation results from these same study sites. The prevalence of antibodies to NP ranged from 60.8−76.1% in hatch-year (HY) birds and from 86.0−92.7% in after-hatch-year (AHY, >1-year-old) mallards indicating a high level of previous infection with IAV early in the fall migration season. Neutralizing antibodies were detected against H3, H4, and H5 in all years as were antibodies to N1, N2, N6, and N8. A high proportion of NP seropositive ducks tested positive for antibodies to multiple HA and NA subtypes, and this was more common in the AHY age class. Antibody prevalence to the HA and NA subtypes included in this study were consistent with the predominance of H4N6 in these populations during all years and reflected a broadening of the antibody response with age. Additional work is needed to document the longevity of these immune responses, if and how they correlate with protection against IAV transmission, infection, and disease, and if, as detected in this study, they adequately describe the true extent of exposure to IAV or specific HA or NA subtypes.
Collapse
Affiliation(s)
- David E. Stallknecht
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, 589 D.W. Brooks Drive, Athens, GA 30602, USA; (D.E.S.); (A.F.); (D.L.C.); (J.A.C.-B.)
| | - Alinde Fojtik
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, 589 D.W. Brooks Drive, Athens, GA 30602, USA; (D.E.S.); (A.F.); (D.L.C.); (J.A.C.-B.)
| | - Deborah L. Carter
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, 589 D.W. Brooks Drive, Athens, GA 30602, USA; (D.E.S.); (A.F.); (D.L.C.); (J.A.C.-B.)
| | - Jo Anne Crum-Bradley
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, 589 D.W. Brooks Drive, Athens, GA 30602, USA; (D.E.S.); (A.F.); (D.L.C.); (J.A.C.-B.)
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, 953 College Station Road, Athens, GA 30602, USA;
| | - Daniel R. Perez
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, 953 College Station Road, Athens, GA 30602, USA;
| | - Rebecca L. Poulson
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, 589 D.W. Brooks Drive, Athens, GA 30602, USA; (D.E.S.); (A.F.); (D.L.C.); (J.A.C.-B.)
| |
Collapse
|
20
|
Ineson KM, Hill NJ, Clark DE, MacKenzie KG, Whitney JJ, Laskaris Y, Ronconi RA, Ellis JC, Giroux JF, Lair S, Stevens S, Puryear WB, Runstadler JA. Age and season predict influenza A virus dynamics in urban gulls: consequences for natural hosts in unnatural landscapes. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2497. [PMID: 34783416 DOI: 10.1002/eap.2497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/01/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Gulls are ubiquitous in urban areas due to a growing reliance on anthropogenic feeding sites, which has led to changes in their abundance, distribution, and migration ecology, with implications for disease transmission. Gulls offer a valuable model for testing hypotheses regarding the dynamics of influenza A virus (IAV) - for which gulls are a natural reservoir in urban areas. We sampled sympatric populations of Ring-billed (Larus delawarensis), Herring (L. argentatus), and Great Black-backed Gulls (L. marinus) along the densely populated Atlantic rim of North America to understand how IAV transmission is influenced by drivers such as annual cycle, host species, age, habitat type, and their interplay. We found that horizontal transmission, rather than vertical transmission, played an outsized role in the amplification of IAV due to the convergence of gulls from different breeding grounds and age classes. We detected overlapping effects of age and season in our prevalence model, identifying juveniles during autumn as the primary drivers of the seasonal epidemic in gulls. Gulls accumulated immunity over their lifespan, however short-term fluctuations in seroprevalence were observed, suggesting that migration may impose limits on the immune system to maintain circulating antibodies. We found that gulls in coastal urban habitats had higher viral prevalence than gulls captured inland, correlating with higher richness of waterbird species along the coast, a mechanism supported by our movement data. The peak in viral prevalence in newly fledged gulls that are capable of long-distance movement has important implications for the spread of pathogens to novel hosts during the migratory season as well as for human health as gulls increasingly utilize urban habitats.
Collapse
Affiliation(s)
- Katherine M Ineson
- Department of Natural Resources & the Environment, University of New Hampshire, Durham, New Hampshire, 03824, USA
| | - Nichola J Hill
- Department of Biology, University of Massachusetts, Boston, Massachusetts, 02125, USA
| | - Daniel E Clark
- Division of Water Supply Protection, Massachusetts Department of Conservation and Recreation, West Boylston, Massachusetts, 01583, USA
| | - Kenneth G MacKenzie
- Division of Water Supply Protection, Massachusetts Department of Conservation and Recreation, West Boylston, Massachusetts, 01583, USA
| | - Jillian J Whitney
- Division of Water Supply Protection, Massachusetts Department of Conservation and Recreation, West Boylston, Massachusetts, 01583, USA
| | - Yianni Laskaris
- US Fish and Wildlife Service, Galloway, New Jersey, 08205, USA
| | - Robert A Ronconi
- Canadian Wildlife Service, Environment and Climate Change Canada, Dartmouth, Nova Scotia, B2Y 2N6, Canada
| | - Julie C Ellis
- Department of Pathobiology, Wildlife Futures Program, University of Pennsylvania School of Veterinary Medicine, Kennett Square, Pennsylvania, 19348, USA
| | - Jean-François Giroux
- Département des sciences biologiques, Université du Québec à Montréal, Montréal, Québec, H3C 3P8, Canada
| | - Stéphane Lair
- Centre québécois sur la santé des animaux sauvages/Canadian Wildlife Health Cooperative, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, J2S 2M2, Canada
| | - Skyler Stevens
- Division of Mathematics, Physical, and Natural Sciences, University of New Mexico, Gallup, New Mexico, 87301, USA
| | - Wendy B Puryear
- Department of Infectious Disease and Global Health, Tufts University, North Grafton, Massachusetts, 01536, USA
| | - Jonathan A Runstadler
- Department of Infectious Disease and Global Health, Tufts University, North Grafton, Massachusetts, 01536, USA
| |
Collapse
|
21
|
Ramey AM, Hill NJ, DeLiberto TJ, Gibbs SEJ, Camille Hopkins M, Lang AS, Poulson RL, Prosser DJ, Sleeman JM, Stallknecht DE, Wan X. Highly pathogenic avian influenza is an emerging disease threat to wild birds in North America. J Wildl Manage 2022. [DOI: 10.1002/jwmg.22171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Andrew M. Ramey
- U.S. Geological Survey Alaska Science Center 4210 University Drive Anchorage AK 99508 USA
| | - Nichola J. Hill
- Department of Infectious Disease & Global Health, Cummings School of Veterinary Medicine Tufts University 200 Westboro Road North Grafton MA 01536 USA
| | - Thomas J. DeLiberto
- National Wildlife Disease Program, Wildlife Services, Animal and Plant Health Inspection Service U.S. Department of Agriculture 4101 LaPorte Avenue Fort Collins CO 80521 USA
| | - Samantha E. J. Gibbs
- Wildlife Health Office Natural Resource Program Center, National Wildlife Refuge System, U.S. Fish and Wildlife Service 16450 NW 31st Place Chiefland FL 32626 USA
| | - M. Camille Hopkins
- U.S. Geological Survey Ecosystems Mission Area 12201 Sunrise Valley Drive, MS 300 (Room 4A100F) Reston VA 20192 USA
| | - Andrew S. Lang
- Department of Biology Memorial University of Newfoundland 232 Elizabeth Avenue St. John's Newfoundland A1B 3X9 Canada
| | - Rebecca L. Poulson
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine University of Georgia 589 D.W. Brooks Drive Athens GA 30602 USA
| | - Diann J. Prosser
- U.S. Geological Survey Eastern Ecological Science Center at the Patuxent Research Refuge 12100 Beech Forest Road Laurel MD 20708 USA
| | - Jonathan M. Sleeman
- U.S. Geological Survey National Wildlife Health Center 6006 Schroeder Road Madison WI 53711 USA
| | - David E. Stallknecht
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine University of Georgia 589 D.W. Brooks Drive Athens GA 30602 USA
| | - Xiu‐Feng Wan
- Center for Influenza and Emerging Infectious Diseases (CIEID), Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, Department of Electronic Engineering and Computer Science University of Missouri Columbia MO 65211 USA
| |
Collapse
|
22
|
Li L, Wang H, Liu A, Wang R, Zhi T, Zheng Y, Bao Y, Chen Y, Wang W. Comparison of 11 respiratory pathogens among hospitalized children before and during the COVID-19 epidemic in Shenzhen, China. Virol J 2021; 18:202. [PMID: 34627307 PMCID: PMC8501916 DOI: 10.1186/s12985-021-01669-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/20/2021] [Indexed: 12/16/2022] Open
Abstract
Background The effect of SARS-CoV-2 on existing respiratory pathogens in circulation remains uncertain. This study aimed to assess the impact of SARS-CoV-2 on the prevalence of respiratory pathogens among hospitalized children. Methods This study enrolled hospitalized children with acute respiratory infections in Shenzhen Children’s Hospital from September to December 2019 (before the COVID-19 epidemic) and those from September to December 2020 (during the COVID-19 epidemic). Nasopharyngeal swabs were collected, and respiratory pathogens were detected using multiplex PCR. The absolute case number and detection rates of 11 pathogens were collected and analyzed. Results A total of 5696 children with respiratory tract infection received multiplex PCR examination for respiratory pathogens: 2298 from September to December 2019 and 3398 from September to December 2020. At least one pathogen was detected in 1850 (80.5%) patients in 2019, and in 2380 (70.0%) patients in 2020; the detection rate in 2020 was significantly lower than that in 2019.The Influenza A (InfA) detection rate was 5.6% in 2019, but 0% in 2020. The detection rates of Mycoplasma pneumoniae, Human adenovirus, and Human rhinovirus also decreased from 20% (460), 8.9% (206), and 41.8% (961) in 2019 to 1.0% (37), 2.1% (77), and 25.6% (873) in 2020, respectively. In contrast, the detection rates of Human respiratory syncytial virus, Human parainfluenza virus, and Human metapneumovirus increased from 6.6% (153), 9.9% (229), and 0.5% (12) in 2019 to 25.6% (873), 15.5% (530), and 7.2% (247) in 2020, respectively (p < 0.0001). Conclusions Successful containment of seasonal influenza as a result of COVID-19 control measures will ensure we are better equipped to deal with future outbreaks of both influenza and COVID-19.Caused by virus competition, the detection rates of Human respiratory syncytial virus, Human parainfluenza virus, and Human metapneumovirus increased in Shenzhen,that reminds us we need to take further monitoring and preventive measures in the next epidemic season.
Collapse
Affiliation(s)
- Li Li
- Department of Respiratory Diseases, Shenzhen Children's Hospital, No. 7019 Yitian Road, Futian District, Shenzhen, 518038, Guangdong, China
| | - Heping Wang
- Department of Respiratory Diseases, Shenzhen Children's Hospital, No. 7019 Yitian Road, Futian District, Shenzhen, 518038, Guangdong, China
| | - Ailiang Liu
- Department of Respiratory Diseases, Shenzhen Children's Hospital, No. 7019 Yitian Road, Futian District, Shenzhen, 518038, Guangdong, China
| | - Rongjun Wang
- Department of Respiratory Diseases, Shenzhen Children's Hospital, No. 7019 Yitian Road, Futian District, Shenzhen, 518038, Guangdong, China
| | - Tingting Zhi
- Department of Microbiology and Immunology, College of Basic Medicine, Guangdong Medical University, Dongguan, 523808, China
| | - Yuejie Zheng
- Department of Respiratory Diseases, Shenzhen Children's Hospital, No. 7019 Yitian Road, Futian District, Shenzhen, 518038, Guangdong, China
| | - Yanming Bao
- Department of Respiratory Diseases, Shenzhen Children's Hospital, No. 7019 Yitian Road, Futian District, Shenzhen, 518038, Guangdong, China
| | - Yunsheng Chen
- Department of Respiratory Diseases, Shenzhen Children's Hospital, No. 7019 Yitian Road, Futian District, Shenzhen, 518038, Guangdong, China.
| | - Wenjian Wang
- Department of Respiratory Diseases, Shenzhen Children's Hospital, No. 7019 Yitian Road, Futian District, Shenzhen, 518038, Guangdong, China.
| |
Collapse
|
23
|
Polo D, Lema A, Gándara E, Romalde JL. Prevalence of human bocavirus infections in Europe. A systematic review and meta-analysis. Transbound Emerg Dis 2021; 69:2451-2461. [PMID: 34250765 DOI: 10.1111/tbed.14233] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/18/2021] [Accepted: 07/09/2021] [Indexed: 11/29/2022]
Abstract
Human bocaviruses (HBoVs) are recently described as human emergent viruses, especially in young children. In this study, we undertook a systematic review and meta-analysis to estimate their prevalence in Europe. PubMed, Web of Science and Scopus databases were systematically screened for clinical studies, up to October 2020. Study eligibility criteria were primary full-text articles from clinical studies, conducted using valid screening test methods and published in peer-reviewed journals, in English or Spanish and from European countries. The overall pooled prevalence, prevalence by country as well as the prevalence of HBoV as a single or co-pathogen were estimated using a random-effects model. Sub-group and meta-regression analyses explored potential sources of heterogeneity in the data. A total of 35 studies involving 32,656 subjects from 16 European countries met the inclusion criteria. Heterogeneity (I2 = 97.0%, p < .01) was seen among studies; HBoV prevalence varied from 2.0 to 45.69% with a pooled estimate of 9.57% (95%CI 7.66-11.91%). The HBoV prevalence both as a single infection (3.99%; 95%CI 2.99-5.31%) or as co-infection with other viruses (5.06%; 95%CI 3.88-6.58%) was also analysed. On a geographic level, prevalence by country did not show statistical differences, ranging from 3.24% (Greece) to 21.05% (Denmark). An odds ratio analysis was also included in order to evaluate the relevance of the variable 'age' as a risk factor of HBoV infection in children <5 years old. The OR value of 1.77 (95%CI 1.13-2.77; p < .01) indicated that being <5 years old is a risk factor for HBoV infection. This study showed that HBoV has a moderate prevalence among European countries.
Collapse
Affiliation(s)
- David Polo
- Department of Microbiology and Parasitology, CIBUS-Faculty of Biology & CRETUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Alberto Lema
- Department of Microbiology and Parasitology, CIBUS-Faculty of Biology & CRETUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Enia Gándara
- Department of Microbiology and Parasitology, CIBUS-Faculty of Biology & CRETUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jesús L Romalde
- Department of Microbiology and Parasitology, CIBUS-Faculty of Biology & CRETUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
24
|
van Dijk JGB, Verhagen JH, Hegemann A, Tolf C, Olofsson J, Järhult JD, Waldenström J. A Comparative Study of the Innate Humoral Immune Response to Avian Influenza Virus in Wild and Domestic Mallards. Front Microbiol 2020; 11:608274. [PMID: 33329501 PMCID: PMC7733965 DOI: 10.3389/fmicb.2020.608274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/09/2020] [Indexed: 12/02/2022] Open
Abstract
Domestic mallards (Anas platyrhynchos domesticus) are traditionally used as a model to investigate infection dynamics and immune responses to low pathogenic avian influenza viruses (LPAIVs) in free-living mallards. However, it is unclear whether the immune response of domestic birds reflects the response of their free-living counterparts naturally exposed to these viruses. We investigated the extent to which the innate humoral immune response was similar among (i) wild-type domestic mallards in primary and secondary infection with LPAIV H4N6 in a laboratory setting (laboratory mallards), (ii) wild-type domestic mallards naturally exposed to LPAIVs in a semi-natural setting (sentinel mallards), and (iii) free-living mallards naturally exposed to LPAIVs. We quantified innate humoral immune function by measuring non-specific natural antibodies (agglutination), complement activity (lysis), and the acute phase protein haptoglobin. We demonstrate that complement activity in the first 3 days after LPAIV exposure was higher in primary-exposed laboratory mallards than in sentinel and free-living mallards. LPAIV H4N6 likely activated the complement system and the acute phase response in primary-exposed laboratory mallards, as lysis was higher and haptoglobin lower at day 3 and 7 post-exposure compared to baseline immune function measured prior to exposure. There were no differences observed in natural antibody and haptoglobin concentrations among laboratory, sentinel, and free-living mallards in the first 3 days after LPAIV exposure. Our study demonstrates that, based on the three innate humoral immune parameters measured, domestic mallards seem an appropriate model to investigate innate immunology of their free-living counterparts, albeit the innate immune response of secondary-LPAIV exposed mallards is a better proxy for the innate immune response in pre-exposed free-living mallards than that of immunologically naïve mallards.
Collapse
Affiliation(s)
- Jacintha G B van Dijk
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Josanne H Verhagen
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Arne Hegemann
- Department of Biology, Lund University, Ecology Building, Lund, Sweden
| | - Conny Tolf
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Jenny Olofsson
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Josef D Järhult
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Jonas Waldenström
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
25
|
Chiu NC, Chi H, Tai YL, Peng CC, Tseng CY, Chen CC, Tan BF, Lin CY. Impact of Wearing Masks, Hand Hygiene, and Social Distancing on Influenza, Enterovirus, and All-Cause Pneumonia During the Coronavirus Pandemic: Retrospective National Epidemiological Surveillance Study. J Med Internet Res 2020; 22:e21257. [PMID: 32750008 PMCID: PMC7471891 DOI: 10.2196/21257] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/29/2020] [Accepted: 08/01/2020] [Indexed: 01/12/2023] Open
Abstract
Background The coronavirus disease (COVID-19) pandemic is an important health crisis worldwide. Several strategies were implemented to combat COVID-19, including wearing masks, hand hygiene, and social distancing. The impact of these strategies on COVID-19 and other viral infections remains largely unclear. Objective We aim to investigate the impact of implemented infectious control strategies on the incidences of influenza, enterovirus infection, and all-cause pneumonia during the COVID-19 pandemic. Methods We utilized the electronic database of the Taiwan National Infectious Disease Statistics System and extracted incidences of COVID-19, influenza virus, enterovirus, and all-cause pneumonia. We compared the incidences of these diseases from week 45 of 2016 to week 21 of 2020 and performed linear regression analyses. Results The first case of COVID-19 in Taiwan was reported in late January 2020 (week 4). Infectious control strategies have been promoted since late January. The influenza virus usually peaks in winter and decreases around week 14. However, a significant decrease in influenza was observed after week 6 of 2020. Regression analyses produced the following results: 2017, R2=0.037; 2018, R2=0.021; 2019, R2=0.046; and 2020, R2=0.599. A dramatic decrease in all-cause pneumonia was also reported (R2 values for 2017-2020 were 0.435, 0.098, 0.352, and 0.82, respectively). Enterovirus had increased by week 18 in 2017-2019, but this was not observed in 2020. Conclusions Using this national epidemiological database, we found a significant decrease in cases of influenza, enterovirus, and all-cause pneumonia during the COVID-19 pandemic. Wearing masks, hand hygiene, and social distancing may contribute not only to the prevention of COVID-19 but also to the decline of other respiratory infectious diseases. Further studies are warranted to elucidate the causal relationship.
Collapse
Affiliation(s)
- Nan-Chang Chiu
- MacKay Children's Hospital, Taipei, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei, Taiwan
| | - Hsin Chi
- MacKay Children's Hospital, Taipei, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei, Taiwan
| | - Yu-Lin Tai
- Hsinchu MacKay Memorial Hospital, Hsinchu, Taiwan
| | - Chun-Chih Peng
- MacKay Children's Hospital, Taipei, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei, Taiwan
| | | | - Chung-Chu Chen
- Hsinchu MacKay Memorial Hospital, Hsinchu, Taiwan.,Teaching Center of Natural Science, Minghsin University of Science and Technology, Hsinchu, Taiwan
| | - Boon Fatt Tan
- National Taiwan University, Hsinchu Branch, Hsinchu, Taiwan
| | - Chien-Yu Lin
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan.,Hsinchu MacKay Memorial Hospital, Hsinchu, Taiwan
| |
Collapse
|
26
|
Wille M, Lisovski S, Risely A, Ferenczi M, Roshier D, Wong FYK, Breed AC, Klaassen M, Hurt AC. Serologic Evidence of Exposure to Highly Pathogenic Avian Influenza H5 Viruses in Migratory Shorebirds, Australia. Emerg Infect Dis 2020; 25:1903-1910. [PMID: 31538564 PMCID: PMC6759277 DOI: 10.3201/eid2510.190699] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Highly pathogenic avian influenza (HPAI) H5Nx viruses of the goose/Guangdong/96 lineage continue to cause outbreaks in poultry and wild birds globally. Shorebirds, known reservoirs of avian influenza viruses, migrate from Siberia to Australia along the East-Asian-Australasian Flyway. We examined whether migrating shorebirds spending nonbreeding seasons in Australia were exposed to HPAI H5 viruses. We compared those findings with those for a resident duck species. We screened >1,500 blood samples for nucleoprotein antibodies and tested positive samples for specific antibodies against 7 HPAI H5 virus antigens and 2 low pathogenicity avian influenza H5 virus antigens. We demonstrated the presence of hemagglutinin inhibitory antibodies against HPAI H5 virus clade 2.3.4.4 in the red-necked stint (Calidris ruficolis). We did not find hemagglutinin inhibitory antibodies in resident Pacific black ducks (Anas superciliosa). Our study highlights the potential role of long-distance migratory shorebirds in intercontinental spread of HPAI H5 viruses.
Collapse
|
27
|
Segovia KM, França MS, Bahnson CS, Latorre-Margalef N, Stallknecht DE. Are Microneutralization and Hemagglutination Inhibition Assays Comparable? Serological Results from Influenza Experimentally Infected Mallard Ducks. Avian Dis 2020; 63:138-144. [PMID: 31131570 DOI: 10.1637/11886-042718-reg.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/04/2018] [Indexed: 11/05/2022]
Abstract
The hemagglutination inhibition (HI) assay is commonly used to assess the humoral immune response against influenza A viruses (IAV). However, the microneutralization (MN) assay has been reported to have higher sensitivity when testing sera from humans and other species. Our objective was to determine the agreement between MN and HI assays and compare the proportion of positive samples detected by both methods in sera of mallards primary infected with the A/mallard/MN/Sg-000169/ 2007 (H3N8) virus and subsequently inoculated with homosubtypic or heterosubtypic IAV. Overall, we found poor to fair agreement (prevalence-adjusted bias-adjusted kappa [PABAK], 0.03-0.35) between MN and HI assays in serum samples collected 2 weeks after H3N8 inoculation; the observed agreement increased to moderate or substantial in samples collected 4 to 5 weeks postinoculation (WPI) (PABAK, 0.52-0.75). The MN assay detected a higher proportion of positive samples compared with HI assays in serum samples collected 2 WPI (P = 0.01). This difference was not observed in samples collected 4 WPI. Also, a boosting effect in MN and HI titers was observed when birds were subsequently inoculated with IAV within the same H3 clade. This effect was not observed when birds were challenged with viruses that belong to a different HA clade. In summary, the agreement between assays varies depending on the postinfection sample collection time point and the similarity between the antigens used for the assays. Additionally, subsequent exposure of ducks to homosubtypic or heterosubtypic strains might affect the observed agreement.
Collapse
Affiliation(s)
- Karen M Segovia
- Poultry Diagnostic and Research Center, The University of Georgia, Athens, GA 30602
| | - Monique S França
- Poultry Diagnostic and Research Center, The University of Georgia, Athens, GA 30602
| | - Charlie S Bahnson
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA 30606
| | - Neus Latorre-Margalef
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA 30606.,Department of Biology, Lund University, Lund, Sweden
| | - David E Stallknecht
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA 30606,
| |
Collapse
|
28
|
SUSCEPTIBILITY OF LAUGHING GULLS (LEUCOPHAEUS ATRICILLA) AND MALLARDS (ANAS PLATYRHYNCHOS) TO RUDDY TURNSTONE (ARENARIA INTERPRES MORINELLA) ORIGIN TYPE A INFLUENZA VIRUSES. J Wildl Dis 2020. [DOI: 10.7589/2019-03-065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
EXPERIMENTAL INFECTIONS AND SEROLOGY INDICATE THAT AMERICAN WHITE IBIS ( EUDOCIUMUS ALBUS) ARE COMPETENT RESERVOIRS FOR TYPE A INFLUENZA VIRUS. J Wildl Dis 2020; 56:530-537. [PMID: 31895646 DOI: 10.7589/2019-05-136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The American White Ibis (Eudocimus albus) is a nomadic wading bird common to wetland habitats in the southeastern US. In south Florida, US, habitat depletion has driven many ibis to become highly urbanized. Although they forage in neighborhood parks, artificial wetlands, backyards, and golf courses, the majority continue to nest in natural wetlands, often in dense, mixed species colonies. Adults and juveniles commonly disperse thousands of kilometers to other breeding colonies along the Gulf and southeast Atlantic coasts, presenting the potential for close contact with humans, domestic animals, and other wild bird species. Historically, wading birds were not considered to be significant hosts for influenza A virus (IAV), yet as ibis regularly move among various human, domestic animal, and wildlife interfaces, their potential to be exposed to or infected with IAV deserves attention. We experimentally challenged wild-caught, captive-reared White Ibis (n=20) with IAV, tested wild White Ibis for IAV, and serologically tested wild White Ibis for antibodies to IAV. White Ibis were highly susceptible to experimental challenge with H6N1 and H11N9 IAVs, with cloacal shedding lasting an average of 6 d. All 13 infected birds seroconverted by 14 d postinfection as determined by microneutralization. In contrast, no birds challenged with H3N8 were infected. We tested 118 swabs and 578 serum samples from White Ibis captured in southeastern Florida for IAV infection and antibodies to IAV, respectively. Although no IAVs were isolated, 70.4% serum samples were antibody positive by blocking enzyme-linked immunosorbent assay (bELISA). Neutralizing antibodies to H1-H12 were detected in 96.0% of a subset of bELISA positive birds (n=196) and 81.0% tested antibody positive to two or more hemagglutinin subtypes, indicating that exposure to multiple IAVs is common. These results provide evidence that White Ibis are susceptible and naturally infected with IAV and may represent a component of the IAV natural reservoir system.
Collapse
|
30
|
Bahnson CS, Poulson RL, Hollander LP, Bradley JAC, Stallknecht DE. SUSCEPTIBILITY OF LAUGHING GULLS ( LEUCOPHAEUS ATRICILLA) AND MALLARDS ( ANAS PLATYRHYNCHOS) TO RUDDY TURNSTONE ( ARENARIA INTERPRES MORINELLA) ORIGIN TYPE A INFLUENZA VIRUSES. J Wildl Dis 2020; 56:167-174. [PMID: 31532732 PMCID: PMC9202238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Delaware Bay, US is the only documented location where influenza A virus (IAV) is consistently detected in a shorebird species, the Ruddy Turnstone (RUTU; Arenaria interpres morinella). Although IAV in shorebirds has been well studied at this site for decades, the importance of other species in the avian community as potential sources for the IAVs that infect RUTUs each spring remains unclear. We determined the susceptibility of Mallards (Anas platyrhynchos) and Laughing Gulls (Leucophaeus atricilla), to IAVs isolated from RUTUs in order to gain insight into the potential host range of these viruses. Captive-reared gulls were challenged with RUTU-origin H6N1, H10N7, H11N9, H12N4, and H13N6 IAV, as well as Mallard-origin H6N1 and H11N9. We challenged captive-reared Mallards with the same viruses, except for H13N6. At a biologically plausible challenge dose (104 50% embryo infective doses/0.1 mL), one of five gulls challenged with both H6N1 IAVs shed virus. The remaining gulls were resistant to infection with all viruses. In contrast, all Mallards were infected and shed virus. The H12N4 Mallard challenge group was an exception with no birds infected. These results indicated that Mallards are permissive to infection with viruses originating from a shorebird host and that interspecies transmission could occur. In contrast, host adaptation of IAVs to RUTUs may compromise their ability to be transmitted back to gulls.
Collapse
Affiliation(s)
- Charlie S. Bahnson
- Southeastern Cooperative Wildlife Disease Study, 589 D. W. Brooks Drive, College of Veterinary Medicine, Department of Population Health, The University of Georgia, Athens, Georgia 30602, USA
| | - Rebecca L. Poulson
- Southeastern Cooperative Wildlife Disease Study, 589 D. W. Brooks Drive, College of Veterinary Medicine, Department of Population Health, The University of Georgia, Athens, Georgia 30602, USA
| | - Laura P. Hollander
- Southeastern Cooperative Wildlife Disease Study, 589 D. W. Brooks Drive, College of Veterinary Medicine, Department of Population Health, The University of Georgia, Athens, Georgia 30602, USA
| | - Jo A. Crum Bradley
- Southeastern Cooperative Wildlife Disease Study, 589 D. W. Brooks Drive, College of Veterinary Medicine, Department of Population Health, The University of Georgia, Athens, Georgia 30602, USA
| | - David E. Stallknecht
- Southeastern Cooperative Wildlife Disease Study, 589 D. W. Brooks Drive, College of Veterinary Medicine, Department of Population Health, The University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
31
|
LIMITED DETECTION OF ANTIBODIES TO CLADE 2.3.4.4 A/GOOSE/GUANGDONG/1/1996 LINEAGE HIGHLY PATHOGENIC H5 AVIAN INFLUENZA VIRUS IN NORTH AMERICAN WATERFOWL. J Wildl Dis 2019. [PMID: 31556839 DOI: 10.7589/2019-01-003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
During 2014, highly pathogenic (HP) influenza A viruses (IAVs) of the A/Goose/Guangdong/1/1996 lineage (GsGD-HP-H5), originating from Asia, were detected in domestic poultry and wild birds in Canada and the US. These clade 2.3.4.4 GsGD-HP-H5 viruses included reassortants possessing North American lineage gene segments; were detected in wild birds in the Pacific, Central, and Mississippi flyways; and caused the largest HP IAV outbreak in poultry in US history. To determine if an antibody response indicative of previous infection with clade 2.3.4.4 GsGD-HP-H5 IAV could be detected in North American wild waterfowl sampled before, during, and after the 2014-15 outbreak, sera from 2,793 geese and 3,715 ducks were tested by blocking enzyme-linked immunosorbent assay and hemagglutination inhibition (HI) tests using both clade 2.3.4.4 GsGD-HPH5 and North American lineage low pathogenic (LP) H5 IAV antigens. We detected an antibody response meeting a comparative titer-based criteria (HI titer observed with 2.3.4.4 GsGD-HP-H5 antigens exceeded the titer observed for LP H5 antigen by two or more dilutions) for previous infection with clade 2.3.4.4 GsGD-HP-H5 IAV in only five birds, one Blue-winged Teal (Spatula discors) sampled during the outbreak and three Mallards (Anas platyrhynchos) and one Canada Goose (Branta canadensis) sampled during the post-outbreak period. These serologic results are consistent with the spatiotemporal extent of the outbreak in wild birds in North America during 2014 and 2015 and limited exposure of waterfowl to GsGD-HP-H5 IAV, particularly in the central and eastern US.
Collapse
|
32
|
Hill SC, Hansen R, Watson S, Coward V, Russell C, Cooper J, Essen S, Everest H, Parag KV, Fiddaman S, Reid S, Lewis N, Brookes SM, Smith AL, Sheldon B, Perrins CM, Brown IH, Pybus OG. Comparative micro-epidemiology of pathogenic avian influenza virus outbreaks in a wild bird population. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180259. [PMID: 31056057 PMCID: PMC6553603 DOI: 10.1098/rstb.2018.0259] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2019] [Indexed: 12/13/2022] Open
Abstract
Understanding the epidemiological dynamics of highly pathogenic avian influenza virus (HPAIV) in wild birds is crucial for guiding effective surveillance and control measures. The spread of H5 HPAIV has been well characterized over large geographical and temporal scales. However, information about the detailed dynamics and demographics of individual outbreaks in wild birds is rare and important epidemiological parameters remain unknown. We present data from a wild population of long-lived birds (mute swans; Cygnus olor) that has experienced three outbreaks of related H5 HPAIVs in the past decade, specifically, H5N1 (2007), H5N8 (2016) and H5N6 (2017). Detailed demographic data were available and intense sampling was conducted before and after the outbreaks; hence the population is unusually suitable for exploring the natural epidemiology, evolution and ecology of HPAIV in wild birds. We show that key epidemiological features remain remarkably consistent across multiple outbreaks, including the timing of virus incursion and outbreak duration, and the presence of a strong age-structure in morbidity that likely arises from an equivalent age-structure in immunological responses. The predictability of these features across a series of outbreaks in a complex natural population is striking and contributes to our understanding of HPAIV in wild birds. This article is part of the theme issue 'Modelling infectious disease outbreaks in humans, animals and plants: approaches and important themes'. This issue is linked with the subsequent theme issue 'Modelling infectious disease outbreaks in humans, animals and plants: epidemic forecasting and control'.
Collapse
Affiliation(s)
- Sarah C. Hill
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford, UK
| | - Rowena Hansen
- Department of Virology, Animal and Plant Health Agency – Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Samantha Watson
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford, UK
| | - Vivien Coward
- Department of Virology, Animal and Plant Health Agency – Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Christine Russell
- Department of Virology, Animal and Plant Health Agency – Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Jayne Cooper
- Department of Virology, Animal and Plant Health Agency – Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Steve Essen
- Department of Virology, Animal and Plant Health Agency – Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Holly Everest
- Department of Virology, Animal and Plant Health Agency – Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Kris V. Parag
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford, UK
| | - Steven Fiddaman
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford, UK
| | - Scott Reid
- Department of Virology, Animal and Plant Health Agency – Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Nicola Lewis
- Department of Virology, Animal and Plant Health Agency – Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
- The Royal Veterinary College, Royal College Street, London, UK
| | - Sharon M. Brookes
- Department of Virology, Animal and Plant Health Agency – Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Adrian L. Smith
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford, UK
| | - Ben Sheldon
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford, UK
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford, UK
| | - Christopher M. Perrins
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford, UK
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford, UK
| | - Ian H. Brown
- Department of Virology, Animal and Plant Health Agency – Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Oliver G. Pybus
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford, UK
| |
Collapse
|
33
|
Cheng W, Chong KC, Lau SYF, Wang X, Yu Z, Liu S, Wang M, Pan J, Chen E. Comparison of Avian Influenza Virus Contamination in the Environment Before and After Massive Poultry H5/H7 Vaccination in Zhejiang Province, China. Open Forum Infect Dis 2019; 6:ofz197. [PMID: 31198818 PMCID: PMC6546204 DOI: 10.1093/ofid/ofz197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 04/20/2019] [Indexed: 12/25/2022] Open
Abstract
Background Information regarding comparison of the environmental prevalence of avian influenza virus (AIVs), before and after massive poultry vaccinations, is limited. Our study aimed to detect differences in the prevalence of AIVs type A and subtypes H5, H7, and H9 before and after the September 2017 massive poultry vaccination, across different sampling places and types. Methods We collected 55 130 environmental samples from 11 cities in Zhejiang Province (China) between March 2013 and December 2018. Multivariate logistic regression analyses were conducted to determine the prevalence of AIV type A and subtypes H5, H7, and H9 across different sampling places and types, before and after massive poultry vaccination. Results After the vaccination, contamination risk of AIV type A (adjusted odds ratio [aOR] = 1.08; 95% confidence interval [CI], 1.03–1.14) and subtype H9 (aOR = 1.58; 95% CI, 1.48–1.68) increased, and that of subtype H7 (aOR = 0.12; 95% CI, 0.10–0.14) decreased. Statistically significant decreased risk for H7 subtype contamination and increased risk for H9 subtype contamination were observed in backyard poultry flocks, live poultry markets, and slaughtering/processing plants. Swabs from poultry cages and slaughtering tables showed a statistically significant increased risk for H5 subtype contamination. The prevalence of H7 subtype decreased statistically significantly, whereas that of H9 subtype increased across the 5 sample types (poultry cages swabs, slaughtering table swabs, poultry feces, poultry drinking water, and poultry sewage). Conclusions Despite the sharp decrease in H7 subtype prevalence, reduction measures for AIV circulation are still imperative, given the high type A prevalence and the increase in H9 subtype contamination across different sampling places and types.
Collapse
Affiliation(s)
- Wei Cheng
- Zhejiang Provincial Centre for Disease Control and Prevention, Bin jiang District, Hangzhou, China
| | - Ka Chun Chong
- Division of Biostatistics, JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories
| | - Steven Yuk-Fai Lau
- Division of Biostatistics, JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories
| | - Xiaoxiao Wang
- Zhejiang Provincial Centre for Disease Control and Prevention, Bin jiang District, Hangzhou, China
| | - Zhao Yu
- Zhejiang Provincial Centre for Disease Control and Prevention, Bin jiang District, Hangzhou, China
| | - Shelan Liu
- Zhejiang Provincial Centre for Disease Control and Prevention, Bin jiang District, Hangzhou, China
| | - Maggie Wang
- Division of Biostatistics, JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories
| | - Jinren Pan
- Zhejiang Provincial Centre for Disease Control and Prevention, Bin jiang District, Hangzhou, China
| | - Enfu Chen
- Zhejiang Provincial Centre for Disease Control and Prevention, Bin jiang District, Hangzhou, China
| |
Collapse
|
34
|
Carter D, Link P, Walther P, Ramey A, Stallknecht D, Poulson R. Influenza A Prevalence and Subtype Diversity in Migrating Teal Sampled Along the United States Gulf Coast. Avian Dis 2019; 63:165-171. [PMID: 31131574 PMCID: PMC11312343 DOI: 10.1637/11850-041918-reg.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 12/09/2018] [Indexed: 11/05/2022]
Abstract
Wild birds in the order Anseriformes are important reservoirs for influenza A viruses (IAVs); however, IAV prevalence and subtype diversity may vary by season, even at the same location. To better understand the ecology of IAV during waterfowl migration through the Gulf Coast of the United States (Louisiana and Texas), surveillance of blue-winged (Spatula discors) and American green-winged (Anas carolinensis) teal was conducted. The surveillance was done annually during the spring (live capture; 2012-17) and fall (hunter harvested; 2007-17) at times inferred to coincide with northward and southward movements, respectively, for these waterfowl species. During spring migration, 266 low pathogenicity (LP) IAV positive samples were recovered from 7547 paired cloacal-oropharyngeal (COP) samples (prevalence, 3.5%; annual range, 1.3%-8.4%). During fall migration, 650 LP IAV-positive samples were recovered from 9493 COP samples (prevalence, 6.8%; annual range, 0.4%-23.5%). Overall, 34 and 20 different IAV subtypes were recovered during fall and spring sampling, respectively. Consistent with previous results for fall migrating ducks, H3 and H4 hemagglutinin (HA) subtypes were most common; however, H4 subtype viruses predominated every year. This is in contrast to the predominance of LP H7 and H10 HA subtype viruses during spring. The N6 and N8 neuraminidase subtypes, which were usually associated with H4, were most common during fall; the N6 subtype was not recovered in the spring. These consistent seasonal trends in IAV subtype detection in teal are currently not understood and highlight the need for further research regarding potential drivers of spatiotemporal patterns of infection, such as population immunity.
Collapse
Affiliation(s)
- Deborah Carter
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Paul Link
- Louisiana Department of Wildlife and Fisheries, Baton Rouge, Louisiana 70808
| | - Patrick Walther
- United States Fish and Wildlife Service, P.O. Box 278, 4017 FM 563, Anahuac, Texas 77514
- Deceased
| | - Andrew Ramey
- United States Geological Survey, Alaska Science Center, Anchorage, Alaska 99508
| | - David Stallknecht
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Rebecca Poulson
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602,
| |
Collapse
|
35
|
Hollander LP, Fojtik A, Kienzle-Dean C, Davis-Fields N, Poulson RL, Davis B, Mowry C, Stallknecht DE. Prevalence of Influenza A Viruses in Ducks Sampled in Northwestern Minnesota and Evidence for Predominance of H3N8 and H4N6 Subtypes in Mallards, 2007-2016. Avian Dis 2019; 63:126-130. [PMID: 31131568 PMCID: PMC11312346 DOI: 10.1637/11851-041918-reg.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/20/2018] [Indexed: 11/05/2022]
Abstract
Long-term comprehensive studies of avian influenza virus subtypes in ducks not only contribute to understanding variations and patterns of subtype diversity, but also can be important in defining seasonal and temporal risks associated with transmission of potentially highly pathogenic H5 and H7 subtypes to domestic poultry. We analyzed influenza A virus (IAV) surveillance data from dabbling ducks collected at an important migratory stopover site in northwestern Minnesota from 2007-2016 and identified prevalence and subtype diversity throughout this period. In total, 13,228 cloacal and oropharyngeal swabs from waterfowl were tested over the 10-year period; the majority of these waterfowl were mallards sampled from late August through late September (n = 9133). From these, 1768 IAVs were isolated (19.4% mean annual prevalence, ranging from 11.0% in 2007 to 32.8% in 2011), and both hemagglutinin (HA) and neuraminidase were identified for 1588. Although subtype diversity and prevalence varied by year, H3 and H4 HA subtypes predominated in all years, accounting for 65.7% of the observed HA subtype diversity. The mechanisms driving this consistent pattern of subtype diversity and predominance are not understood but may include factors at the host, population, and virus level.
Collapse
Affiliation(s)
- Laura P Hollander
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, School of Veterinary Medicine, University of Georgia, Athens, GA 30602, lholla27@gmailcom
| | - Alinde Fojtik
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, School of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Clara Kienzle-Dean
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, School of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Nick Davis-Fields
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, School of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Rebecca L Poulson
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, School of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Bruce Davis
- Minnesota Department of Natural Resources, Bemidji, MN 56601
| | - Craig Mowry
- United States Fish and Wildlife Service, Agassiz National Wildlife Refuge, Middle River, MN 56737
| | - David E Stallknecht
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, School of Veterinary Medicine, University of Georgia, Athens, GA 30602
| |
Collapse
|
36
|
Torrontegi O, Alvarez V, Acevedo P, Gerrikagoitia X, Höfle U, Barral M. Long-term avian influenza virus epidemiology in a small Spanish wetland ecosystem is driven by the breeding Anseriformes community. Vet Res 2019; 50:4. [PMID: 30654831 PMCID: PMC6337815 DOI: 10.1186/s13567-019-0623-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 11/20/2018] [Indexed: 11/12/2022] Open
Abstract
During 2007-2009 and 2012-2014, avian influenza virus (AIV) was studied in a wild avian community of a northern Spanish wetland using non-invasive sampling methods and host identification by COI barcoding. The aim of this longitudinal study was to evaluate AIV dynamics in a natural wetland ecosystem, taking into account both virological aspects and ecological traits of hosts. Global AIV prevalence decreased significantly during the second sampling period (0.3%) compared to the first (6.6%). Circulating subtype distributions were also different between periods, with a noteworthy H5 and H7 subtype richness during the first sampling period. Mallard Anas platyrhynchos was identified as the main AIV host, although not all positive samples could be ascribed to the host. We modelled AIV prevalence with regard to the avian host community composition and meteorological data from the wetland. Statistical analysis revealed seasonal differences in AIV detection, with higher prevalence during the breeding season compared to other phenological events. The model also shows that the lower AIV prevalence during the second study period was associated with a significant reduction of breeding Anseriformes in the wetland, revealing a long-term fluctuation of AIV prevalence driven by the breeding Anseriformes community. This longitudinal study on AIV epidemiology in a natural ecosystem reveals that although prevalence follows seasonal and annual patterns, long-term prevalence fluctuation is linked to the breeding community composition and size. These results are relevant to understanding the influence of host ecology on pathogen transmission for preventing and managing influenza emergence.
Collapse
Affiliation(s)
- Olalla Torrontegi
- Animal Health Department, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Parque tecnológico de Bizkaia P-812, 48160 Derio, Bizkaia Spain
| | - Vega Alvarez
- Animal Health Department, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Parque tecnológico de Bizkaia P-812, 48160 Derio, Bizkaia Spain
| | - Pelayo Acevedo
- Grupo SaBio, Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain
| | - Xeider Gerrikagoitia
- Animal Health Department, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Parque tecnológico de Bizkaia P-812, 48160 Derio, Bizkaia Spain
| | - Ursula Höfle
- Grupo SaBio, Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain
| | - Marta Barral
- Animal Health Department, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Parque tecnológico de Bizkaia P-812, 48160 Derio, Bizkaia Spain
| |
Collapse
|
37
|
Innate Immune Responses to Avian Influenza Viruses in Ducks and Chickens. Vet Sci 2019; 6:vetsci6010005. [PMID: 30634569 PMCID: PMC6466002 DOI: 10.3390/vetsci6010005] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/26/2018] [Accepted: 01/04/2019] [Indexed: 02/06/2023] Open
Abstract
Mallard ducks are important natural hosts of low pathogenic avian influenza (LPAI) viruses and many strains circulate in this reservoir and cause little harm. Some strains can be transmitted to other hosts, including chickens, and cause respiratory and systemic disease. Rarely, these highly pathogenic avian influenza (HPAI) viruses cause disease in mallards, while chickens are highly susceptible. The long co-evolution of mallard ducks with influenza viruses has undoubtedly fine-tuned many immunological host–pathogen interactions to confer resistance to disease, which are poorly understood. Here, we compare innate responses to different avian influenza viruses in ducks and chickens to reveal differences that point to potential mechanisms of disease resistance. Mallard ducks are permissive to LPAI replication in their intestinal tissues without overtly compromising their fitness. In contrast, the mallard response to HPAI infection reflects an immediate and robust induction of type I interferon and antiviral interferon stimulated genes, highlighting the importance of the RIG-I pathway. Ducks also appear to limit the duration of the response, particularly of pro-inflammatory cytokine expression. Chickens lack RIG-I, and some modulators of the signaling pathway and may be compromised in initiating an early interferon response, allowing more viral replication and consequent damage. We review current knowledge about innate response mediators to influenza infection in mallard ducks compared to chickens to gain insight into protective immune responses, and open questions for future research.
Collapse
|
38
|
van Toor ML, Avril A, Wu G, Holan SH, Waldenström J. As the Duck Flies—Estimating the Dispersal of Low-Pathogenic Avian Influenza Viruses by Migrating Mallards. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00208] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
39
|
Gallet R, Michalakis Y, Blanc S. Vector-transmission of plant viruses and constraints imposed by virus–vector interactions. Curr Opin Virol 2018; 33:144-150. [DOI: 10.1016/j.coviro.2018.08.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/01/2018] [Accepted: 08/08/2018] [Indexed: 11/26/2022]
|
40
|
Lisovski S, van Dijk JG, Klinkenberg D, Nolet BA, Fouchier RA, Klaassen M. The roles of migratory and resident birds in local avian influenza infection dynamics. J Appl Ecol 2018; 55:2963-2975. [PMID: 30337766 PMCID: PMC6188652 DOI: 10.1111/1365-2664.13154] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 03/14/2018] [Indexed: 12/29/2022]
Abstract
Migratory birds are an increasing focus of interest when it comes to infection dynamics and the spread of avian influenza viruses (AIV). However, we lack detailed understanding migratory birds' contribution to local AIV prevalence levels and their downstream socio-economic costs and threats.To explain the potential differential roles of migratory and resident birds in local AIV infection dynamics, we used a susceptible-infectious-recovered (SIR) model. We investigated five (mutually non- exclusive) mechanisms potentially driving observed prevalence patterns: 1) a pronounced birth pulse (e.g. the synchronised annual influx of immunologically naïve individuals), 2) short-term immunity, 3) increase of susceptible migrants, 4) differential susceptibility to infection (i.e. transmission rate) for migrants and residents, and 5) replacement of migrants during peak migration.SIR models describing all possible combinations of the five mechanisms were fitted to individual AIV infection data from a detailed longitudinal surveillance study in the partially migratory mallard duck (Anas platyrhynchos). During autumn and winter, the local resident mallard community also held migratory mallards that exhibited distinct AIV infection dynamics.Replacement of migratory birds during peak migration in autumn was found to be the most important mechanism driving the variation in local AIV infection patterns. This suggests that a constant influx of migratory birds, likely immunological naïve to locally circulating AIV strains, is required to predict the observed temporal prevalence patterns and the distinct differences in prevalence between residents and migrants.Synthesis and applications. Our analysis reveals a key mechanism that could explain the amplifying role of migratory birds in local avian influenza virus infection dynamics; the constant flow and replacement of migratory birds during peak migration. Aside from monitoring efforts, in order to achieve adequate disease management and control in wildlife - with knock-on effects for livestock and humans, - we conclude that it is crucial, in future surveillance studies, to record host demographical parameters such as population density, timing of birth and turnover of migrants.
Collapse
Affiliation(s)
- Simeon Lisovski
- Deakin University, School of Life and Environmental Sciences, Centre for Integrative Ecology, Geelong, Australia
- Swiss Ornithological Institute, Seerose 1, CH-6204 Sempach, Switzerland
| | - Jacintha G.B. van Dijk
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), The Netherlands
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, SE-391 82 Kalmar, Sweden
| | - Don Klinkenberg
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Bart A. Nolet
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), The Netherlands
- Theoretical and Computational Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, The Netherlands
| | | | - Marcel Klaassen
- Deakin University, School of Life and Environmental Sciences, Centre for Integrative Ecology, Geelong, Australia
| |
Collapse
|
41
|
Gonzales JL, Roberts H, Smietanka K, Baldinelli F, Ortiz-Pelaez A, Verdonck F. Assessment of low pathogenic avian influenza virus transmission via raw poultry meat and raw table eggs. EFSA J 2018; 16:e05431. [PMID: 32625713 PMCID: PMC7009628 DOI: 10.2903/j.efsa.2018.5431] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A rapid qualitative assessment has been done by performing a theoretical analysis on the transmission of low pathogenic avian influenza (LPAI) via fresh meat from poultry reared or kept in captivity for the production of meat (raw poultry meat) or raw table eggs. A predetermined transmission pathway followed a number of steps from a commercial or non-commercial poultry establishment within the EU exposed to LPAI virus (LPAIV) to the onward virus transmission to animals and humans. The combined probability of exposure and subsequent LPAIV infection via raw poultry meat containing LPAIV is negligible for commercial poultry and humans exposed via consumption whereas it is very unlikely for non-commercial poultry, wild birds and humans exposed via handling and manipulation. The probability of LPAIV transmission from an individual infected via raw poultry meat containing LPAIV is negligible for commercial poultry and humans, whereas it is very unlikely for non-commercial poultry and wild birds. The combined probability of exposure and subsequent LPAIV infection via raw table eggs containing LPAIV is negligible for commercial poultry and humans and extremely unlikely to negligible for non-commercial poultry and wild birds. The probability of LPAIV transmission from an individual infected via raw table eggs containing LPAIV is negligible for commercial poultry and humans and very unlikely to negligible for non-commercial poultry and wild birds. Although the presence of LPAIV in raw poultry meat and table eggs is very unlikely to negligible, there is in general a high level of uncertainty on the estimation of the subsequent probabilities of key steps of the transmission pathways for poultry and wild birds, mainly due to the limited number of studies available, for instance on the viral load required to infect a bird via raw poultry meat or raw table eggs containing LPAIV.
Collapse
|
42
|
Wille M, Latorre-Margalef N, Tolf C, Halpin R, Wentworth D, Fouchier RAM, Raghwani J, Pybus OG, Olsen B, Waldenström J. Where do all the subtypes go? Temporal dynamics of H8-H12 influenza A viruses in waterfowl. Virus Evol 2018; 4:vey025. [PMID: 30151242 PMCID: PMC6101617 DOI: 10.1093/ve/vey025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Influenza A virus (IAV) is ubiquitous in waterfowl. In the northern hemisphere IAV prevalence is highest during the autumn and coincides with a peak in viral subtype diversity. Although haemagglutinin subtypes H1-H12 are associated with waterfowl hosts, subtypes H8-H12 are detected very infrequently. To better understand the role of waterfowl in the maintenance of these rare subtypes, we sequenced H8-H12 viruses isolated from Mallards (Anas platyrhynchos) from 2002 to 2009. These rare viruses exhibited varying ecological and phylodynamic features. The Eurasian clades of H8 and H12 phylogenies were dominated by waterfowl sequences; mostly viruses sequenced in this study. H11, once believed to be a subtype that infected charadriiformes (shorebirds), exhibited patterns more typical of common virus subtypes. Finally, subtypes H9 and H10, which have maintained lineages in poultry, showed markedly different patterns: H10 was associated with all possible NA subtypes and this drove HA lineage diversity within years. Rare viruses belonging to subtypes H8-H12 were highly reassorted, indicating that these rare subtypes are part of the broader IAV pool. Our results suggest that waterfowl play a role in the maintenance of these rare subtypes, but we recommend additional sampling of non-traditional hosts to better understand the reservoirs of these rare viruses.
Collapse
Affiliation(s)
- Michelle Wille
- Center for Ecology and Evolution in Microbial Model Systems, Linnaeus University, SE-391 82 Kalmar, Sweden
| | - Neus Latorre-Margalef
- Center for Ecology and Evolution in Microbial Model Systems, Linnaeus University, SE-391 82 Kalmar, Sweden.,Department of Biology, Lund University, Ecology Building, 223 62 Lund, Sweden
| | - Conny Tolf
- Center for Ecology and Evolution in Microbial Model Systems, Linnaeus University, SE-391 82 Kalmar, Sweden
| | - Rebecca Halpin
- Department of Infectious Disease, J. Craig Venter Institute, Rockville, MD, USA
| | - David Wentworth
- Department of Infectious Disease, J. Craig Venter Institute, Rockville, MD, USA
| | - Ron A M Fouchier
- Department of Virology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jayna Raghwani
- Department of Zoology, University of Oxford, Oxford OX1 3SY, UK
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, Oxford OX1 3SY, UK
| | - Björn Olsen
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| | - Jonas Waldenström
- Center for Ecology and Evolution in Microbial Model Systems, Linnaeus University, SE-391 82 Kalmar, Sweden
| |
Collapse
|
43
|
NEUTRALIZING ANTIBODIES TO TYPE A INFLUENZA VIRUSES IN SHOREBIRDS AT DELAWARE BAY, NEW JERSEY, USA. J Wildl Dis 2018; 54:708-715. [PMID: 29741997 DOI: 10.7589/2017-10-252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Influenza A virus (IAV) infections in shorebirds at Delaware Bay, New Jersey, US, have historically included avian hemagglutinin (HA) subtypes H1-13 and H16. In a given year, infections are characterized by a limited number of HA and neuraminidase subtypes and a dominant HA subtype that often represents >50% of all isolates. Predominant HA subtypes shift between consecutive years. In addition, infection prevalence is consistently higher in Ruddy Turnstones (RUTU; Arenaria interpres morinella) compared to Red Knots (REKN; Calidris canutus rufa), despite comparable rates of exposure. To investigate a potential immunological basis for this phenomenon, a virus microneutralization assay was used to detect subtype-specific, neutralizing antibodies to H1-H12 in sera collected from RUTUs from 2012-16 and REKNs in 2012, 2013, and 2016. Neutralizing antibodies to one or more subtypes were detected in 36% (222/611) of RUTUs. Prevalence of antibodies to subtypes H6 and H11 remained high throughout the study, and these virus subtypes were isolated every year, suggesting a continual source of exposure. Antibody prevalence was intermediate for most IAV subtypes that were isolated in 2-3 of 5 yr (H1, H3, H5, H9, H10, and H12) but was low for H7 viruses, despite the isolation of this virus subtype in 3 of 5 yr. This suggests a reduced antigenicity of H7 IAVs compared to other subtypes. Antibody prevalence was low for H4 virus that was isolated once, and H2 and H8 viruses that were never isolated. Neutralizing antibodies were detected in 66% (169/257) of REKNs and subtype-specific antibody prevalences were higher in REKNs than RUTUs with few exceptions. The results suggest that population immunity influences which species is infected at Delaware Bay, indicate that IAV dynamics are subtype-dependent, and demonstrate the utility of the microneutralization assay as a supportive tool for field research.
Collapse
|
44
|
Heterosubtypic immunity increases infectious dose required to infect Mallard ducks with Influenza A virus. PLoS One 2018; 13:e0196394. [PMID: 29698449 PMCID: PMC5919434 DOI: 10.1371/journal.pone.0196394] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 04/12/2018] [Indexed: 11/19/2022] Open
Abstract
Previous field and experimental studies have demonstrated that heterosubtypic immunity (HSI) is a potential driver of Influenza A virus (IAV) prevalence and subtype diversity in mallards. Prior infection with IAV can reduce viral shedding during subsequent reinfection with IAV that have genetically related hemagglutinins (HA). In this experiment, we evaluated the effect of HSI conferred by an H3N8 IAV infection against increasing challenge doses of closely (H4N6) and distantly (H6N2) related IAV subtypes in mallards. Two groups of thirty 1-month-old mallards each, were inoculated with 105.9 50% embryo infectious doses (EID50) of an H3N8 virus or a mock-inoculum. One month later, groups of five birds each were challenged with increasing doses of H4N6 or H6N2 virus; age-matched, single infection control ducks were included for all challenges. Results demonstrate that naïve birds were infected after inoculation with 103 and 104 EID50 doses of the H4N6 or H6N2 virus, but not with 102 EID50 doses of either IAV. In contrast, with birds previously infected with H3N8 IAV, only one duck challenged with 104 EID50 of H4N6 IAV was shedding viral RNA at 2 days post-inoculation, and with H6N2 IAV, only birds challenged with the 104 EID50 dose were positive to virus isolation. Viral shedding in ducks infected with H6N2 IAV was reduced on days 2 and 3 post-inoculation compared to control birds. To explain the differences in the dose necessary to produce infection among H3-primed ducks challenged with H4N6 or H6N2 IAV, we mapped the amino acid sequence changes between H3 and H4 or H6 HA on predicted three-dimensional structures. Most of the sequence differences occurred between H3 and H6 at antigenic sites A, B, and D of the HA1 region. These findings demonstrate that the infectious dose necessary to infect mallards with IAV can increase as a result of HSI and that this effect is most pronounced when the HA of the viruses are genetically related.
Collapse
|
45
|
Ramey AM, DeLiberto TJ, Berhane Y, Swayne DE, Stallknecht DE. Lessons learned from research and surveillance directed at highly pathogenic influenza A viruses in wild birds inhabiting North America. Virology 2018; 518:55-63. [PMID: 29453059 DOI: 10.1016/j.virol.2018.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/29/2018] [Accepted: 02/02/2018] [Indexed: 11/19/2022]
Abstract
Following detections of highly pathogenic (HP) influenza A viruses (IAVs) in wild birds inhabiting East Asia after the turn of the millennium, the intensity of sampling of wild birds for IAVs increased throughout much of North America. The objectives for many research and surveillance efforts were directed towards detecting Eurasian origin HP IAVs and understanding the potential of such viruses to be maintained and dispersed by wild birds. In this review, we highlight five important lessons learned from research and surveillance directed at HP IAVs in wild birds inhabiting North America: (1) Wild birds may disperse IAVs between North America and adjacent regions via migration, (2) HP IAVs can be introduced to wild birds in North America, (3) HP IAVs may cross the wild bird-poultry interface in North America, (4) The probability of encountering and detecting a specific virus may be low, and (5) Population immunity of wild birds may influence HP IAV outbreaks in North America. We review empirical support derived from research and surveillance efforts for each lesson learned and, furthermore, identify implications for future surveillance efforts, biosecurity, and population health. We conclude our review by identifying five additional areas in which we think future mechanistic research relative to IAVs in wild birds in North America are likely to lead to other important lessons learned in the years ahead.
Collapse
Affiliation(s)
- Andrew M Ramey
- US Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, AK 99508, USA.
| | - Thomas J DeLiberto
- National Wildlife Disease Program, Wildlife Services, Animal and Plant Health Inspection Service, US Department of Agriculture, Fort Collins, CO 80521, USA
| | - Yohannes Berhane
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, Manitoba, Canada R3E 3M4; Department of Animal Science, University of Manitoba, Winnipeg, Canada
| | - David E Swayne
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, USA
| | - David E Stallknecht
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
46
|
van Dijk JGB, Verhagen JH, Wille M, Waldenström J. Host and virus ecology as determinants of influenza A virus transmission in wild birds. Curr Opin Virol 2018; 28:26-36. [DOI: 10.1016/j.coviro.2017.10.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/11/2017] [Accepted: 10/17/2017] [Indexed: 10/18/2022]
|
47
|
Development of an influenza virus protein microarray to measure the humoral response to influenza virus infection in mallards. Emerg Microbes Infect 2017; 6:e110. [PMID: 29209053 PMCID: PMC5750464 DOI: 10.1038/emi.2017.98] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/19/2017] [Accepted: 10/22/2017] [Indexed: 02/02/2023]
Abstract
Avian influenza viruses pose a serious zoonotic threat, in part because current seasonal influenza virus vaccines only offer strain-specific protection, instead of heterosubtypic or universal protection against influenza virus infection. Understanding the humoral response to vaccination and natural infection in the broadest context possible is important to developing defenses against influenza zoonosis. Protein microarrays are a novel platform well suited to assaying the humoral immune response broadly and efficiently. We developed an influenza virus protein microarray (IVPM) that could be used to assay sera from many species, including humans. Waterfowl such as mallard ducks are natural reservoirs for many influenza A viruses, but their humoral immune response to infection is poorly understood. To establish this technology, we assayed sera from mallards experimentally infected with two low-pathogenic common avian influenza viruses (H3N8 and H4N5) for reactivity to influenza virus hemagglutinin (HA) by IVPM. The IVPM results correlated well with results from an established enzyme-linked immunosorbent assay, supporting the validity of the IVPM as a serological assay in influenza virus research. Interestingly, successive infection with H3N8 followed by H4N5 virus in mallard ducks induced antibodies that were broadly reactive against group 2 hemagglutinins. We also analyzed sera from wild mallards and observed serological evidence for infection in those sera. With serological information, it may be possible to infer infection history of wild avian species and gain a better understanding of the infection dynamics of influenza viruses in their natural reservoir. This might ultimately lead to interventions that enhance our pandemic preparedness.
Collapse
|
48
|
Spivey TJ, Lindberg MS, Meixell BW, Smith KR, Puryear WB, Davis KR, Runstadler JA, Stallknecht DE, Ramey AM. Maintenance of influenza A viruses and antibody response in mallards (Anas platyrhynchos) sampled during the non-breeding season in Alaska. PLoS One 2017; 12:e0183505. [PMID: 28837606 PMCID: PMC5570339 DOI: 10.1371/journal.pone.0183505] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 08/04/2017] [Indexed: 11/25/2022] Open
Abstract
Prevalence of influenza A virus (IAV) infections in northern-breeding waterfowl has previously been reported to reach an annual peak during late summer or autumn; however, little is known about IAV infection dynamics in waterfowl populations persisting at high-latitude regions such as Alaska, during winter. We captured mallards (Anas platyrhynchos) throughout the non-breeding season (August–April) of 2012–2015 in Fairbanks and Anchorage, the two largest cities in Alaska, to assess patterns of IAV infection and antibody production using molecular methods and a standard serologic assay. In addition, we used virus isolation, genetic sequencing, and a virus microneutralization assay to characterize viral subtypes and to evaluate the immune response of mallards captured on multiple occasions through time. We captured 923 mallards during three successive sampling years: Fairbanks in 2012/13 and 2013/14, and Anchorage in 2014/15. Prevalence varied by age, season, and year/site with high and relatively stable estimates throughout the non-breeding season. Infected birds were detected in all locations/seasons except early-winter in Fairbanks during 2013/14. IAVs with 17 combinations of hemagglutinin (H1–5, H7–9, H11, H12) and neuraminidase (N1–6, N8, N9) subtypes were isolated. Antibodies to IAVs were detected throughout autumn and winter for all sampling locations and years, however, seroprevalence was higher among adults and varied among years. Mallards exhibited individual heterogeneity with regard to immune response, providing instances of both seroconversion and seroreversion to detected viral subtypes. The probability that an individual transitioned from one serostatus to another varied by age, with juvenile mallards having higher rates of seroconversion and seroreversion than adults. Our study provides evidence that a diversity of IAVs circulate in populations of mallards wintering at urban locations in Alaska, and we suggest waterfowl wintering at high-latitudes may play an important role in maintenance of viruses across breeding seasons.
Collapse
Affiliation(s)
- Timothy J. Spivey
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America
- U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska, United States of America
- * E-mail:
| | - Mark S. Lindberg
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America
- Institute of Arctic Biology, University of Alaska, Fairbanks, Alaska, United States of America
| | - Brandt W. Meixell
- U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska, United States of America
| | - Kyle R. Smith
- Alaska Department of Fish and Game, Anchorage, Alaska, United States of America
| | - Wendy B. Puryear
- Department of Biological Engineering & Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Kimberly R. Davis
- Department of Biological Engineering & Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Jonathan A. Runstadler
- Department of Biological Engineering & Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - David E. Stallknecht
- College of Veterinary Medicine, Department of Population Health, University of Georgia, Athens, Georgia, United States of America
| | - Andrew M. Ramey
- U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska, United States of America
| |
Collapse
|
49
|
Wille M, Latorre-Margalef N, Tolf C, Stallknecht DE, Waldenström J. No evidence for homosubtypic immunity of influenza H3 in Mallards following vaccination in a natural experimental system. Mol Ecol 2017; 26:1420-1431. [PMID: 27997047 PMCID: PMC5347849 DOI: 10.1111/mec.13967] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 12/07/2016] [Accepted: 12/08/2016] [Indexed: 11/28/2022]
Abstract
The Mallard (Anas platyrhynchos) is an important reservoir species for influenza A viruses (IAV), and in this host, prevalence and virus diversity are high. Studies have demonstrated the presence of homosubtypic immunity, where individuals are unlikely to be reinfected with the same subtype within an autumn season. Further, evidence for heterosubtypic immunity exists, whereby immune responses specific for one subtype offer partial or complete protection against related HA subtypes. We utilized a natural experimental system to determine whether homo- or heterospecific immunity could be induced following experimental vaccination. Thirty Mallards were vaccinated with an inactivated H3, H6 or a sham vaccine and after seroconversion were exposed to naturally infected wild conspecifics. All ducks were infected within 2 days and had both primary and secondary infections. Overall, there was no observable difference between groups; all individuals were infected with H3 and H10 IAV. At the cessation of the experiment, most individuals had anti-NP antibodies and neutralizing antibodies against H10. Not all individuals had H3 neutralizing antibodies. The isolated H3 IAVs revealed genetic dissimilarity to the H3 vaccine strain, specifically substitutions in the vicinity of the receptor-binding site. There was no evidence of vaccine-induced homosubtypic immunity to H3, a likely result of both a poor H3 immune response in the ducks and H3 immune escape. Likewise, there was no observed heterosubtypic protection related to H6 vaccination. This study highlights the need for experimental approaches to assess how exposure to pathogens and resulting immune processes translates to individual and population disease dynamics.
Collapse
Affiliation(s)
- M Wille
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, SE-391 82, Kalmar, Sweden
| | - N Latorre-Margalef
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, SE-391 82, Kalmar, Sweden.,Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, Department of Population Health, The University of Georgia, Athens, GA, 30602, USA
| | - C Tolf
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, SE-391 82, Kalmar, Sweden
| | - D E Stallknecht
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, Department of Population Health, The University of Georgia, Athens, GA, 30602, USA
| | - J Waldenström
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, SE-391 82, Kalmar, Sweden
| |
Collapse
|