1
|
Safaei S, Derakhshan-sefidi M, Karimi A. Wolbachia: A bacterial weapon against dengue fever- a narrative review of risk factors for dengue fever outbreaks. New Microbes New Infect 2025; 65:101578. [PMID: 40176883 PMCID: PMC11964561 DOI: 10.1016/j.nmni.2025.101578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/10/2025] [Accepted: 03/06/2025] [Indexed: 04/05/2025] Open
Abstract
Arboviruses constitute the largest known group of viruses and are responsible for various infections that impose significant socioeconomic burdens worldwide, particularly due to their link with insect-borne diseases. The increasing incidence of dengue fever in non-endemic regions underscores the urgent need for innovative strategies to combat this public health threat. Wolbachia, a bacterium, presents a promising biological control method against mosquito vectors, offering a novel approach to managing dengue fever. We systematically investigated biomedical databases (PubMed, Web of Science, Google Scholar, Science Direct, and Embase) using "AND" as a Boolean operator with keywords such as "dengue fever," "dengue virus," "risk factors," "Wolbachia," and "outbreak." We prioritized articles that offered significant insights into the risk factors contributing to the outbreak of dengue fever and provided an overview of Wolbachia's characteristics and functions in disease management, considering studies published until December 25, 2024. Field experiments have shown that introducing Wolbachia-infected mosquitoes can effectively reduce mosquito populations and lower dengue transmission rates, signifying its potential as a practical approach for controlling this disease.
Collapse
Affiliation(s)
- Sahel Safaei
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | |
Collapse
|
2
|
Loterio RK, Rosevear K, Edenborough K, Fraser JE. Complete inactivation of orthoflavi- and alphaviruses by acetone for safe titering by ELISA. J Virol Methods 2025; 335:115146. [PMID: 40056951 DOI: 10.1016/j.jviromet.2025.115146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 04/15/2025]
Abstract
The tissue culture infectious dose 50 (TCID50) end-point dilution assay is the gold-standard assay to titer viruses with negligible or ambiguous cytopathic effects. The assay's specificity is improved when followed by an Enzyme-Linked Immunosorbent Assay (ELISA) to detect viral antigens. Cells infected with mosquito-borne orthoflavi- and alphaviruses are fixed after TCID50, prior to ELISA, using paraformaldehyde (PFA) or acetone. While 4 % PFA has been shown to effectively inactivate these viruses for safe handling in low biocontainment conditions, equivalent studies have not been reported for standard acetone fixation methods (20 % acetone for 24 hours at 4°C). This study evaluated the inactivation efficacy of acetone on orthoflavi- and alphaviruses using dengue virus (DENV) and Ross River virus (RRV), as exemplar viruses from each genus, respectively. We show that 50 % acetone and 4 % PFA fully inactivate DENV and RRV, but 20 % acetone does not reduce the infectivity of these viruses. Importantly, ELISA-based detection of DENV- and RRV-infected cells fixed with 50 % acetone was effective, with calculated titres comparable to cells treated with 20 % acetone. Together, our results inform a fixation method for titrating orthoflavi- and alphavirus samples by TCID50/ELISA, ensuring the safe handling and processing of these viruses under low biocontainment conditions.
Collapse
Affiliation(s)
- Robson K Loterio
- Life Sciences Discipline, Burnet Institute, Melbourne, Victoria, Australia; Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton Campus, Victoria, Australia.
| | - Katherine Rosevear
- Life Sciences Discipline, Burnet Institute, Melbourne, Victoria, Australia; Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton Campus, Victoria, Australia
| | - Kathryn Edenborough
- Department of Infectious Diseases, Doherty Institute of Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Johanna E Fraser
- Life Sciences Discipline, Burnet Institute, Melbourne, Victoria, Australia; Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton Campus, Victoria, Australia
| |
Collapse
|
3
|
Dainty KR, Duyvestyn JM, Flores HA. Targeted knockdown of in vitro candidates does not alter Wolbachia density in vivo. J Invertebr Pathol 2025; 211:108346. [PMID: 40252916 DOI: 10.1016/j.jip.2025.108346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/08/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
The bacterial endosymbiont Wolbachia has emerged as an effective biocontrol method to reduce arbovirus transmission. Transinfection of wMel Wolbachia from Drosophila melanogaster to Aedes aegypti results in the transfer of important Wolbachia-induced phenotypes including the reproductive modification, cytoplasmic incompatibility, and inhibition of viruses including dengue and chikungunya. However, the mechanisms underlying these critical traits as well other Wolbachia-host interactions are still not fully understood. Recently an in vitro genome wide RNAi screen was performed on wMel-infected Drosophila S2 cells and identified large cohorts of host genes that alter wMel density when targeted. If these findings can be replicated in vivo, this would provide a powerful tool for modulating wMel density both systemically and in a tissue-specific manner allowing for interrogation of wMel-host interactions. Here, we used the GAL4/UAS system to express RNAi molecules targeting host gene candidates previously identified to dysregulate wMel density in vitro. We found systemic knockdown of two candidate D. melanogaster genes does not lead to wMel density dysregulation. To explore the lack of consistency between our study and previous work, we also examined native tissue-specific density of wMel in D. melanogaster. We show density is varied between tissues and find that individual tissue densities are not reliable linear predictors of other tissue densities. Our results demonstrate the complexities of implementing in vitro findings in systemic applications.
Collapse
Affiliation(s)
- Kimberley R Dainty
- Institute of Vector-Borne Disease, Monash University, Melbourne, Victoria, Australia; Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Johanna M Duyvestyn
- Institute of Vector-Borne Disease, Monash University, Melbourne, Victoria, Australia
| | - Heather A Flores
- Institute of Vector-Borne Disease, Monash University, Melbourne, Victoria, Australia; School of Biological Sciences, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
4
|
Moretti R, Lim JT, Ferreira AGA, Ponti L, Giovanetti M, Yi CJ, Tewari P, Cholvi M, Crawford J, Gutierrez AP, Dobson SL, Ross PA. Exploiting Wolbachia as a Tool for Mosquito-Borne Disease Control: Pursuing Efficacy, Safety, and Sustainability. Pathogens 2025; 14:285. [PMID: 40137770 PMCID: PMC11944716 DOI: 10.3390/pathogens14030285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/28/2025] [Accepted: 03/07/2025] [Indexed: 03/29/2025] Open
Abstract
Despite the application of control measures, mosquito-borne diseases continue to pose a serious threat to human health. In this context, exploiting Wolbachia, a common symbiotic bacterium in insects, may offer effective solutions to suppress vectors or reduce their competence in transmitting several arboviruses. Many Wolbachia strains can induce conditional egg sterility, known as cytoplasmic incompatibility (CI), when infected males mate with females that do not harbor the same Wolbachia infection. Infected males can be mass-reared and then released to compete with wild males, reducing the likelihood of wild females encountering a fertile mate. Furthermore, certain Wolbachia strains can reduce the competence of mosquitoes to transmit several RNA viruses. Through CI, Wolbachia-infected individuals can spread within the population, leading to an increased frequency of mosquitoes with a reduced ability to transmit pathogens. Using artificial methods, Wolbachia can be horizontally transferred between species, allowing the establishment of various laboratory lines of mosquito vector species that, without any additional treatment, can produce sterilizing males or females with reduced vector competence, which can be used subsequently to replace wild populations. This manuscript reviews the current knowledge in this field, describing the different approaches and evaluating their efficacy, safety, and sustainability. Successes, challenges, and future perspectives are discussed in the context of the current spread of several arboviral diseases, the rise of insecticide resistance in mosquito populations, and the impact of climate change. In this context, we explore the necessity of coordinating efforts among all stakeholders to maximize disease control. We discuss how the involvement of diverse expertise-ranging from new biotechnologies to mechanistic modeling of eco-epidemiological interactions between hosts, vectors, Wolbachia, and pathogens-becomes increasingly crucial. This coordination is especially important in light of the added complexity introduced by Wolbachia and the ongoing challenges posed by global change.
Collapse
Affiliation(s)
- Riccardo Moretti
- Casaccia Research Center, Department for Sustainability, Italian National Agency for New Technologies, Energy, and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (R.M.); (L.P.)
| | - Jue Tao Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.T.L.); (C.J.Y.); (P.T.)
| | | | - Luigi Ponti
- Casaccia Research Center, Department for Sustainability, Italian National Agency for New Technologies, Energy, and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (R.M.); (L.P.)
- Center for the Analysis of Sustainable Agricultural Systems, Kensington, CA 94707, USA or (A.P.G.)
| | - Marta Giovanetti
- René Rachou Institute, Oswaldo Cruz Foundation, Belo Horizonte 30190-002, Brazil; (A.G.A.F.); (M.G.)
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, 00128 Roma, Italy
| | - Chow Jo Yi
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.T.L.); (C.J.Y.); (P.T.)
| | - Pranav Tewari
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.T.L.); (C.J.Y.); (P.T.)
| | - Maria Cholvi
- Area of Parasitology, Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, Universitat de València, 46100 Valencia, Spain; (M.C.)
| | - Jacob Crawford
- Verily Life Sciences, South San Francisco, CA 94080, USA; (J.C.)
| | - Andrew Paul Gutierrez
- Center for the Analysis of Sustainable Agricultural Systems, Kensington, CA 94707, USA or (A.P.G.)
- Division of Ecosystem Science, College of Natural Resources, University of California, Berkeley, CA 94720, USA
| | - Stephen L. Dobson
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA or (S.L.D.)
- MosquitoMate, Inc., Lexington, KY 40502, USA
| | - Perran A. Ross
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 2052, Australia; (P.A.R.)
| |
Collapse
|
5
|
Lejarre Q, Scussel S, Esnault J, Gaudillat B, Duployer M, Mavingui P, Tortosa P, Cattel J. Development of the Incompatible Insect Technique targeting Aedes albopictus: introgression of a wild nuclear background restores the performance of males artificially infected with Wolbachia. Appl Environ Microbiol 2025; 91:e0235024. [PMID: 39840979 PMCID: PMC11837521 DOI: 10.1128/aem.02350-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 12/09/2024] [Indexed: 01/23/2025] Open
Abstract
The bacterium Wolbachia pipientis is increasingly studied for its potential use in controlling insect vectors or pests due to its ability to induce Cytoplasmic Incompatibility (CI). CI can be exploited by establishing an opportunistic Wolbachia infection in a targeted insect species through trans-infection and then releasing the infected males into the environment as sterilizing agents. Several host life history traits (LHT) have been reported to be negatively affected by artificial Wolbachia infection. Wolbachia is often considered the causative agent of these detrimental effects, and the importance of the host's genetic origins in the outcome of trans-infection is generally overlooked. In this study, we investigated the impact of host genetic background using an Aedes albopictus line recently trans-infected with wPip from the Culex pipiens mosquito, which exhibited some fitness costs. We measured several LHTs including fecundity, egg hatch rate, and male mating competitiveness in the incompatible line after four rounds of introgression aiming at restoring genetic diversity in the nuclear genome. Our results show that introgression with a wild genetic background restored most fitness traits and conferred mating competitiveness comparable to that of wild males. Finally, we show that introgression leads to faster and stronger population suppression under laboratory conditions. Overall, our data support that the host genome plays a decisive role in determining the fitness of Wolbachia-infected incompatible males.IMPORTANCEThe bacterium Wolbachia pipientis is increasingly used to control insect vectors and pests through the Incompatible Insect Technique (IIT) inducing a form of conditional sterility when a Wolbachia-infected male mates with an uninfected or differently infected female. Wolbachia artificial trans-infection has been repeatedly reported to affect mosquitoes LHTs, which may in turn compromise the efficiency of IIT. Using a tiger mosquito (Aedes albopictus) line recently trans-infected with a Wolbachia strain from Culex pipiens and displaying reduced fitness, we show that restoring genetic diversity through introgression significantly mitigated the fitness costs associated with Wolbachia trans-infection. This was further demonstrated through experimental population suppression, showing that introgression is required to achieve mosquito population suppression under laboratory conditions. These findings are significant for the implementation of IIT programs, as an increase in female fecundity and male performance improves mass rearing productivity as well as the sterilizing capacity of released males.
Collapse
Affiliation(s)
- Quentin Lejarre
- Symbiosis Technologies for Insect Control (SymbioTIC), Plateforme de Recherche CYROI, Ste Clotilde, France
| | - Sarah Scussel
- Groupement d’Intérêt Public Cyclotron Océan Indien (CYROI), Ste Clotilde, France
| | - Jérémy Esnault
- Groupement d’Intérêt Public Cyclotron Océan Indien (CYROI), Ste Clotilde, France
| | - Benjamin Gaudillat
- Groupement d’Intérêt Public Cyclotron Océan Indien (CYROI), Ste Clotilde, France
| | - Marianne Duployer
- Groupement d’Intérêt Public Cyclotron Océan Indien (CYROI), Ste Clotilde, France
| | - Patrick Mavingui
- Unité Mixte de Recherche Processus Infectieux en Milieu Insulaire Tropical (UMR PIMIT), Université de La Réunion, CNRS 9192, INSERM 1187, IRD 249, La Réunion, France
| | - Pablo Tortosa
- Unité Mixte de Recherche Processus Infectieux en Milieu Insulaire Tropical (UMR PIMIT), Université de La Réunion, CNRS 9192, INSERM 1187, IRD 249, La Réunion, France
| | - Julien Cattel
- Symbiosis Technologies for Insect Control (SymbioTIC), Plateforme de Recherche CYROI, Ste Clotilde, France
| |
Collapse
|
6
|
Bhattacharyya J, Roelke DL. Wolbachia-based mosquito control: Environmental perspectives on population suppression and replacement strategies. Acta Trop 2025; 262:107517. [PMID: 39740726 DOI: 10.1016/j.actatropica.2024.107517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/02/2025]
Abstract
Mosquito-borne diseases pose a significant threat to global health, and traditional mosquito control methods often fall short of effectiveness. A promising alternative is the biological control strategy of transinfecting mosquitoes with Wolbachia, a bacterium capable of outcompeting harmful pathogens and reducing the ability of mosquitoes to transmit diseases. However, Wolbachia infections are sensitive to abiotic environmental factors such as temperature and humidity, which can affect their densities in mosquitoes and, consequently, their ability to block pathogens. This review evaluates the effectiveness of different Wolbachia strains transinfected into mosquitoes in reducing mosquito-borne diseases. It explores how Wolbachia contributes to mosquito population control and pathogen interference, highlighting the importance of mathematical models in understanding Wolbachia transmission dynamics. Additionally, the review addresses the potential impact on arboviral transmission and the challenges posed by environmental fluctuations in mosquito control programs.
Collapse
Affiliation(s)
- Joydeb Bhattacharyya
- Department of Mathematics, Karimpur Pannadevi College, Nadia, West Bengal 741152, India.
| | - Daniel L Roelke
- Department of Marine Biology, Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77554, USA
| |
Collapse
|
7
|
Yao RK, Gomgnimbou MK, Coulibaly IZ, Essoh CY, Traoré I, Amara MF, Ako BA, Diabate A, Bilgo E. Molecular detection of Wolbachia sp. and Cytoplasmic incompatibility factors (CifA/B) in wild caught mosquitoes in Côte d'Ivoire. Mol Biol Rep 2025; 52:181. [PMID: 39888481 DOI: 10.1007/s11033-025-10280-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 01/20/2025] [Indexed: 02/01/2025]
Abstract
BACKGROUND Wolbachia is an endosymbiont bacterium known to stimulate host immunity against arboviruses and protozoa. Côte d'Ivoire is in a malaria-endemic region, and has experienced several dengue epidemics in recent decades as well. In order to help reduce the transmission of pathogens by mosquito vectors, we studied the prevalence of Wolbachia and the distribution of Cytoplasmic incompatibility factors (Cif) genes in different mosquito species caught in the wild in Cote d'Ivoire. METHODS AND RESULTS Mosquitoes of the genera Anopheles, Aedes, Culex, Eretmapodites and Mansonia were captured in five cities. Mosquitoes were collected at larval stage in breeding sites and adults were captured using BG sentinel traps. The mosquitoes were identified morphologically and Wolbachia and Cif were screened using qPCR targeting the 16s rRNA gene and the CifA, B genes. A total of 518 mosquito samples belonging to 15 species and 4 genera were examined. 60% of the species were infected with Wolbachia. The three medically important mosquito species Aedes aegypti, Anopheles gambiae s.l. and Culex quinquefasciatus had a prevalence of 12.84%, 13.46% and 72.64% respectively. The Wolbachia strains infecting the different mosquito species of the genus Culex encoded 98.46% for the CifA gene and 77.69% for the CifB gene. CONCLUSION The presence of Wolbachia and CifA, B genes in mosquitoes of different species in Côte d'Ivoire offer a promising opportunity to reduce the competence of mosquito vectors. Characterization of Wolbachia strains and cytoplasmic incompatibility factors will provide a better understanding of these endosymbionts, enabling the development of vector control strategies.
Collapse
Affiliation(s)
- Raymond Karlhis Yao
- Ecole Doctorale Sciences Naturelles et Agronomiques, Université Nazi Boni, Bobo-Dioulasso, Burkina Faso
- Equipe Biologie Moléculaire et Biotechnologies, Laboratoire de Recherche, Centre MURAZ, Institut National de Santé Publique, Bobo-Dioulasso, Burkina Faso
- Centre d'Excellence Africain en Innovations Biotechnologiques pour l'élimination des Maladies à Transmission Vectorielle (CEA/ITECH-MTV), Université Nazi BONI, Bobo-Dioulasso, Burkina Faso
| | - Michel Kiréopori Gomgnimbou
- Equipe Biologie Moléculaire et Biotechnologies, Laboratoire de Recherche, Centre MURAZ, Institut National de Santé Publique, Bobo-Dioulasso, Burkina Faso.
- Centre d'Excellence Africain en Innovations Biotechnologiques pour l'élimination des Maladies à Transmission Vectorielle (CEA/ITECH-MTV), Université Nazi BONI, Bobo-Dioulasso, Burkina Faso.
- Institut Supérieur des Sciences de la Santé (IN.S.SA), Université Nazi BONI, Bobo-Dioulasso, Burkina Faso.
| | | | - Christiane You Essoh
- Département de Biochemie-Genetique, UFR Sciences Biologique, Péléforo Gon Coulibaly University, Korhogo, BP, 1328, Côte d'Ivoire
| | - Issouf Traoré
- Unité d'Entomologie et Herpetologie, Pasteur Institute de Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Miriam Félicité Amara
- Ecole Doctorale Sciences Naturelles et Agronomiques, Université Nazi Boni, Bobo-Dioulasso, Burkina Faso
- Centre d'Excellence Africain en Innovations Biotechnologiques pour l'élimination des Maladies à Transmission Vectorielle (CEA/ITECH-MTV), Université Nazi BONI, Bobo-Dioulasso, Burkina Faso
- Equipe Parasitologie-Mycologie et Entomologie, Laboratoire de Recherche, Centre MURAZ, Institut National de Santé Publique, Bobo-Dioulasso, Burkina Faso
| | | | - Abdoulaye Diabate
- Institut de Recherche en Sciences de la Santé (IRSS), Direction Régionale de l'Ouest, Bobo-Dioulasso, Burkina Faso
| | - Etienne Bilgo
- Equipe Biologie Moléculaire et Biotechnologies, Laboratoire de Recherche, Centre MURAZ, Institut National de Santé Publique, Bobo-Dioulasso, Burkina Faso
- Institut de Recherche en Sciences de la Santé (IRSS), Direction Régionale de l'Ouest, Bobo-Dioulasso, Burkina Faso
| |
Collapse
|
8
|
Ross PA, Yeatman E, Berran MS, Gu X, Hoffmann AA, van Heerwaarden B. Wolbachia strain wMelM disrupts egg retention by Aedes aegypti females prevented from ovipositing. Appl Environ Microbiol 2025; 91:e0149124. [PMID: 39629982 PMCID: PMC11784415 DOI: 10.1128/aem.01491-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 10/30/2024] [Indexed: 02/01/2025] Open
Abstract
Aedes aegypti mosquitoes are well adapted to dry climates and can retain their eggs for extended periods in the absence of suitable habitat. Wolbachia strains transferred from other insects to mosquitoes can be released to combat dengue transmission by blocking virus replication and spreading through populations, but host fitness costs imposed by Wolbachia, particularly under some environments, can impede spread. We, therefore, assessed the impact of two Wolbachia strains being released for dengue control (wAlbB and wMelM) on fecundity and egg viability following extended egg retention (up to 24 days) under laboratory conditions. Egg viability following retention decreased to a greater extent in females carrying wMelM compared to uninfected or wAlbB females. Fertility fully recovered in uninfected females following a second blood meal after laying retained eggs, while wMelM females experienced only partial recovery. Effects of wMelM on egg retention were similar regardless of whether females were crossed to uninfected or wMelM males, suggesting that fitness costs were triggered by Wolbachia presence in females. The fecundity and hatch proportions of eggs of wMelM females declined with age, regardless of whether females used stored sperm or were recently inseminated. Costs of some Wolbachia strains during egg retention may affect the invasion and persistence of Wolbachia in release sites where larval habitats are scarce and/or intermittent.IMPORTANCEWolbachia mosquito releases are expanding around the world with substantial impacts on dengue transmission. Releases have succeeded in many locations, but the establishment of Wolbachia has been challenging in some environments, and the factors contributing to this outcome remain unresolved. Here, we explore the effects of Wolbachia on a novel trait, egg retention, which is likely to be important for the persistence of mosquito populations in locations with intermittent rainfall. We find substantial impacts of the Wolbachia strain wMelM on the quality of retained eggs but not the wAlbB strain. This cost is driven by the Wolbachia infection status of the female and can partially recover following a second blood meal. The results of our study may help to explain the difficulty in establishing Wolbachia strains at some field release sites and emphasize the need to characterize Wolbachia phenotypes across a variety of traits and strains.
Collapse
Affiliation(s)
- Perran A. Ross
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Ella Yeatman
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Mel S. Berran
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Xinyue Gu
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Ary A. Hoffmann
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Belinda van Heerwaarden
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| |
Collapse
|
9
|
Montenegro D, Cortés-Cortés G, Balbuena-Alonso MG, Warner C, Camps M. Wolbachia-based emerging strategies for control of vector-transmitted disease. Acta Trop 2024; 260:107410. [PMID: 39349234 PMCID: PMC11637914 DOI: 10.1016/j.actatropica.2024.107410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/02/2024]
Abstract
Dengue fever is a mosquito-transmitted disease of great public health importance. Dengue lacks adequate vaccine protection and insecticide-based methods of mosquito control are proving increasingly ineffective. Here we review the emerging use of mosquitoes transinfected with the obligate intracellular bacterium Wolbachia pipientis for vector control. Wolbachia often induces cytoplasmic incompatibility in its mosquito hosts, resulting in infertile progeny between an infected male and an uninfected female. Wolbachia infection also suppresses the replication of pathogens in the mosquito, a process known as "pathogen blocking". Two strategies have emerged. The first one releases Wolbachia carriers (both male and female) to replace the wild mosquito population, a process driven by cytoplasmic incompatibility and that becomes irreversible once a threshold is reached. This suppresses disease transmission mainly by pathogen blocking and frequently requires a single intervention. The second strategy floods the field population with an exclusively male population of Wolbachia-carrying mosquitoes to generate infertile hybrid progeny. In this case, transmission suppression depends largely on decreasing the population density of mosquitoes driven by infertility and requires continued mosquito release. The efficacy of both Wolbachia-based approaches has been conclusively demonstrated by randomized and non-randomized studies of deployments across the world. However, results conducted in one setting cannot be directly or easily extrapolated to other settings because dengue incidence is highly affected by the conditions into which the mosquitoes are released. Compared to traditional vector control methods, Wolbachia-based approaches are much more environmentally friendly and can be effective in the medium/long term. On the flip side, they are much more complex and cost-intensive operations, requiring a substantial investment, infrastructure, trained personnel, coordination between agencies, and community engagement. Finally, we discuss recent evidence suggesting that the release of Wolbachia-transinfected mosquitoes has a moderate potential risk of spreading potentially dangerous genes in the environment.
Collapse
Affiliation(s)
- Diego Montenegro
- Corporación Innovation Hub, Monteria 230001, Colombia; Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA; Grupo de Investigación: Salud y Tecnología 4.0. Fundación Chilloa, Santa Marta 470001, Colombia
| | - Gerardo Cortés-Cortés
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA; Posgrado en Microbiología, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias de la Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, San Manuel, Puebla 72570, Mexico
| | - María Guadalupe Balbuena-Alonso
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA; Posgrado en Microbiología, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias de la Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, San Manuel, Puebla 72570, Mexico
| | - Caison Warner
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| | - Manel Camps
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA.
| |
Collapse
|
10
|
Li Y, Peng J, Li H, Zhang R, Chen J, Hou X, Yang G. Integrating pyriproxyfen into the incompatible insect technique enhances mosquito population suppression efficiency and eliminates the risk of population replacement. PEST MANAGEMENT SCIENCE 2024; 80:6117-6129. [PMID: 39072896 DOI: 10.1002/ps.8339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/28/2024] [Accepted: 07/14/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND The incompatible insect technique (IIT) has been used for Aedes mosquito population suppression to curb the transmission of dengue. However, its wide application is limited owing to the low output of male mosquitoes and the risk of population replacement from the release of fertile Wolbachia-infected females. This study aims to improve IIT efficiency for broader adoption. RESULTS We assessed the impact of 10% pyriproxyfen (PPF) sticky powder exposure on Wolbachia (from Culex molestus)-transinfected Aedes albopictus Guangzhou line (GUA line) (GC) mosquitoes. We found that the exposure caused chronic toxicity in adult mosquitoes without affecting the cytoplasmic incompatibility (CI)-inducing capability of males. The PPF-contaminated GC females exhibited significant sterilization and the ability to disseminate lethal doses of PPF to breeding sites. Subsequently, we conducted a field trial combining PPF with IIT aiming to suppress the Ae. albopictus population. This combined approach, termed boosted IIT (BIIT), showed a notable enhancement in population suppression efficiency. The improved efficacy of BIIT was attributed to the dispersion of PPF particles in the field via the released PPF-contaminated male mosquitoes. During the BIIT field trial, no Wolbachia wPip-positive Ae. albopictus larvae were detected, indicating the effective elimination of the risk of Wolbachia-induced population replacement. Additionally, the field trial of BIIT against Ae. albopictus resulted in the suppression of the nontarget mosquito species Culex quinquefasciatus. CONCLUSION Our results highlight the remarkable efficiency and feasibility of combining IIT with PPF in suppressing mosquito populations, facilitating the widespread implementation of IIT-based management of mosquito-borne diseases. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yongjun Li
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, China
| | - Jiameng Peng
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, China
| | - Haiying Li
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, China
| | - Ruiqi Zhang
- International School, Jinan University, Guangzhou, China
| | - Jiexia Chen
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, China
| | - Xiuying Hou
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, China
| | - Guang Yang
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
11
|
Visser B, Scheifler M. Insect Lipid Metabolism in the Presence of Symbiotic and Pathogenic Viruses and Bacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 39548000 DOI: 10.1007/5584_2024_833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Insects, like most animals, have intimate interactions with microorganisms that can influence the insect host's lipid metabolism. In this chapter, we describe what is known so far about the role prokaryotic microorganisms play in insect lipid metabolism. We start exploring microbe-insect lipid interactions focusing on endosymbionts, and more specifically the gut microbiota that has been predominantly studied in Drosophila melanogaster. We then move on to an overview of the work done on the common and well-studied endosymbiont Wolbachia pipientis, also in interaction with other microbes. Taking a slightly different angle, we then look at the effect of human pathogens, including dengue and other viruses, on the lipids of mosquito vectors. We extend the work on human pathogens and include interactions with the endosymbiont Wolbachia that was identified as a natural tool to reduce the spread of mosquito-borne diseases. Research on lipid metabolism of plant disease vectors is up and coming and we end this chapter by highlighting current knowledge in that field.
Collapse
Affiliation(s)
- Bertanne Visser
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, University of Liège - Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - Mathilde Scheifler
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, University of Liège - Gembloux Agro-Bio Tech, Gembloux, Belgium.
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.
| |
Collapse
|
12
|
Hu H, Lu Z, Ma Y, Song X, Wang D, Wu C, Ma X, Shan Y, Ren X, Ma Y. Impact of transinfection of Wolbachia from the planthopper Laodelphax striatellus on reproductive fitness and transcriptome of the whitefly Bemisia tabaci. J Invertebr Pathol 2024; 207:108230. [PMID: 39547593 DOI: 10.1016/j.jip.2024.108230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
The whitefly Bemisia tabaci is critical global pest threatening crops and leading to agricultural losses. Wolbachia is an intracellular symbiotic bacterium in insects, which can regulate the growth and development of the host through various ways. In a prior study, Wolbachia was found to be transferred to whitefly and induce fitness changes. However, little is known about the underlying mechanisms of host-Wolbachia interactions in B. tabaci. In this study, a Wolbachia strain wStri was isolated from the small brown planthopper, Laodelphex striatellus, and transferred to B. tabaci. The distribution of Wolbachia in whiteflies was determined using fluorescence in situ hybridization. Reciprocal crossing experiments demonstrated that wStri did not induce cytoplasmic incompatibility phenotypes in B. tabaci, but prolonged the developmental duration of the offspring. We performed transcriptomic analysis of Wolbachia-infected female and male adults using Illumina-based RNA-Seq. A total of 843 differentially expressed genes (DEGs) were identified in infected females, among them 141 were significantly up-regulated and 702 were down-regulated by Wolbachia infection. In infected males, of 511 gene sets, 279 host genes were significantly up-regulated, and 232 were down-regulated by Wolbachia infection. KEGG analysis of DEGs demonstrated significant differences in gene pathway distribution between up-regulated and down-regulated genes. These genes are involved in various biological processes, including, but not limited to, detoxification, oxidation-reduction, metabolic processes, and immunity. The transcriptomic profiling of this study offers valuable information on the differential expression of genes in whiteflies following Wolbachia infection, and enhances our understanding of this host-symbiotic interaction.
Collapse
Affiliation(s)
- Hongyan Hu
- Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Zhenhua Lu
- Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Yajie Ma
- Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Xianpeng Song
- Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Dan Wang
- Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Changcai Wu
- Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xiaoyan Ma
- Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yongpan Shan
- Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Xiangliang Ren
- Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China.
| | - Yan Ma
- Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
13
|
Orozco-Gonzales JL, Dos Santos Benedito A, Cardona-Salgado D, Ferreira CP, de Oliveira Florentino H, Sepulveda-Salcedo LS, Vasilieva O. Comparing the long-term persistence of different Wolbachia strains after the release of bacteria-carrying mosquitoes. Math Biosci 2024; 372:109190. [PMID: 38631561 DOI: 10.1016/j.mbs.2024.109190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/18/2024] [Accepted: 04/04/2024] [Indexed: 04/19/2024]
Abstract
This paper proposes a bidimensional modeling framework for Wolbachia invasion, assuming imperfect maternal transmission, incomplete cytoplasmic incompatibility, and direct infection loss due to thermal stress. Our model adapts to various Wolbachia strains and retains all properties of higher-dimensional models. The conditions for the durable coexistence of Wolbachia-carrying and wild mosquitoes are expressed using the model's parameters in a compact closed form. When the Wolbachia bacterium is locally established, the size of the remanent wild population can be assessed by a direct formula derived from the model. The model was tested for four Wolbachia strains undergoing laboratory and field trials to control mosquito-borne diseases: wMel, wMelPop, wAlbB, and wAu. As all these bacterial strains affect the individual fitness of mosquito hosts differently and exhibit different levels of resistance to temperature variations, the model helped to conclude that: (1) the wMel strain spreads faster in wild mosquito populations; (2) the wMelPop exhibits lower resilience but also guarantees the smallest size of the remanent wild population; (3) the wAlbB strain performs better at higher ambient temperatures than others; (4) the wAu strain is not sustainable and cannot persist in the wild mosquito population despite its resistance to high temperatures.
Collapse
|
14
|
Maciel-de-Freitas R, Sauer FG, Kliemke K, Garcia GA, Pavan MG, David MR, Schmidt-Chanasit J, Hoffmann A, Lühken R. Wolbachia strains wMel and wAlbB differentially affect Aedes aegypti traits related to fecundity. Microbiol Spectr 2024; 12:e0012824. [PMID: 38483475 PMCID: PMC10986601 DOI: 10.1128/spectrum.00128-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/01/2024] [Indexed: 04/06/2024] Open
Abstract
Two Wolbachia strains, wMel and wAlbB, have been transinfected into Aedes aegypti mosquitoes for population replacement with the aim of reducing dengue transmission. Epidemiological data from various endemic sites suggest a pronounced decrease in dengue transmission after implementing this strategy. In this study, we investigated the impact of the Wolbachia strains wMel and wAlbB on Ae. aegypti fitness in a common genetic background. We found that Ae. aegypti females infected with the wMel strain exhibited several significant differences compared with those infected with the wAlbB strain. Specifically, wMel-infected females laid significantly fewer eggs, ingested a lower amount of blood, had a reduced egg production rate, and exhibited a decreased Wolbachia density at a later age compared with mosquitoes infected with the wAlbB strain. Conversely, the wAlbB strain showed only mild negative effects when compared with Wolbachia-uninfected specimens. These differential effects on Ae. aegypti fitness following infection with either wMel or wAlbB may have important implications for the success of population replacement strategies in invading native Ae. aegypti populations in endemic settings. Further research is needed to better understand the underlying mechanisms responsible for these differences in fitness effects and their potential impact on the long-term efficacy of Wolbachia-based dengue control programs.IMPORTANCEThe transmission of arboviruses such as dengue, Zika, and chikungunya is on the rise globally. Among the most promising strategies to reduce arbovirus burden is the release of one out of two strains of Wolbachia-infected Aedes aegypti: wMel and wAlbB. One critical aspect of whether this approach will succeed involves the fitness cost of either Wolbachia strains on mosquito life history traits. For instance, we found that wMel-infected Ae. aegypti females laid significantly fewer eggs, ingested a lower amount of blood, had a reduced egg production rate, and exhibited a decreased Wolbachia density at a later age compared with mosquitoes infected with the wAlbB strain. Conversely, the wAlbB strain showed only mild negative effects when compared with Wolbachia-uninfected specimens. These differential effects on mosquito fitness following infection with either wMel or wAlbB may have important implications for the success of population replacement strategies in invading native Ae. aegypti populations.
Collapse
Affiliation(s)
- Rafael Maciel-de-Freitas
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felix G. Sauer
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | - Gabriela A. Garcia
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Márcio G. Pavan
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Mariana R. David
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Jonas Schmidt-Chanasit
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, Hamburg, Germany
| | - Ary Hoffmann
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Renke Lühken
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
15
|
Reyes JIL, Suzuki T, Suzuki Y, Watanabe K. Detection and quantification of natural Wolbachia in Aedes aegypti in Metropolitan Manila, Philippines using locally designed primers. Front Cell Infect Microbiol 2024; 14:1360438. [PMID: 38562961 PMCID: PMC10982481 DOI: 10.3389/fcimb.2024.1360438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Background The Philippines bears health and economic burden caused by high dengue cases annually. Presently, the Philippines still lack an effective and sustainable vector management. The use of Wolbachia, a maternally transmitted bacterium, that mitigate arbovirus transmission has been recommended. Cytoplasmic incompatibility and viral blocking, two characteristics that make Wolbachia suitable for vector control, depend on infection prevalence and density. There are no current Wolbachia release programs in the Philippines, and studies regarding the safety of this intervention. Here, we screened for Wolbachia in Aedes aegypti collected from Metropolitan Manila, Philippines. We designed location-specific primers for qPCR to test whether this improved Wolbachia detection in Ae. aegypti. We explored if host sex and Wolbachia strain could be potential factors affecting Wolbachia density. Methods Ae. aegypti mosquitoes (n=429) were screened for natural Wolbachia by taqman qPCR using location-specific Wolbachia surface protein primers (wspAAML) and known 16S rRNA primers. Samples positive for wspAAML (n=267) were processed for Sanger sequencing. We constructed a phylogenetic tree using IQ-TREE 2 to further characterize Wolbachia present in the Philippine Ae. aegypti. We then compared Wolbachia densities between Wolbachia groups and host sex. Statistical analyses were done using GraphPad Prism 9.0. Results Wolbachia prevalence for 16S rRNA (40%) and wspAAML (62%) markers were high. Wolbachia relative densities for 16S rRNA ranged from -3.84 to 2.71 and wspAAML from -4.02 to 1.81. Densities were higher in male than female mosquitoes. Wolbachia strains detected in Ae. aegypti clustered into supergroup B. Some 54% (123/226) of these sequences clustered under a group referred to here as "wAegML," that belongs to the supergroup B, which had a significantly lower density than wAegB/wAlbB, and wAlbA strains. Conclusion Location-specific primers improved detection of natural Wolbachia in Ae. aegypti and allowed for relative quantification. Wolbachia density is relatively low, and differed between host sexes and Wolbachia strains. An economical way of confirming sporadic or transient Wolbachia in Ae. aegypti is necessary while considering host sex and bacterial strain.
Collapse
Affiliation(s)
- Jerica Isabel L. Reyes
- Molecular Ecology and Health Laboratory, Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Japan
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
| | - Takahiro Suzuki
- Molecular Ecology and Health Laboratory, Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Japan
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
| | - Yasutsugu Suzuki
- Molecular Ecology and Health Laboratory, Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Japan
| | - Kozo Watanabe
- Molecular Ecology and Health Laboratory, Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Japan
| |
Collapse
|
16
|
Loterio RK, Monson EA, Templin R, de Bruyne JT, Flores HA, Mackenzie JM, Ramm G, Helbig KJ, Simmons CP, Fraser JE. Antiviral Wolbachia strains associate with Aedes aegypti endoplasmic reticulum membranes and induce lipid droplet formation to restrict dengue virus replication. mBio 2024; 15:e0249523. [PMID: 38132636 PMCID: PMC10865983 DOI: 10.1128/mbio.02495-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Wolbachia are a genus of insect endosymbiotic bacteria which includes strains wMel and wAlbB that are being utilized as a biocontrol tool to reduce the incidence of Aedes aegypti-transmitted viral diseases like dengue. However, the precise mechanisms underpinning the antiviral activity of these Wolbachia strains are not well defined. Here, we generated a panel of Ae. aegypti-derived cell lines infected with antiviral strains wMel and wAlbB or the non-antiviral Wolbachia strain wPip to understand host cell morphological changes specifically induced by antiviral strains. Antiviral strains were frequently found to be entirely wrapped by the host endoplasmic reticulum (ER) membrane, while wPip bacteria clustered separately in the host cell cytoplasm. ER-derived lipid droplets (LDs) increased in volume in wMel- and wAlbB-infected cell lines and mosquito tissues compared to cells infected with wPip or Wolbachia-free controls. Inhibition of fatty acid synthase (required for triacylglycerol biosynthesis) reduced LD formation and significantly restored ER-associated dengue virus replication in cells occupied by wMel. Together, this suggests that antiviral Wolbachia strains may specifically alter the lipid composition of the ER to preclude the establishment of dengue virus (DENV) replication complexes. Defining Wolbachia's antiviral mechanisms will support the application and longevity of this effective biocontrol tool that is already being used at scale.IMPORTANCEAedes aegypti transmits a range of important human pathogenic viruses like dengue. However, infection of Ae. aegypti with the insect endosymbiotic bacterium, Wolbachia, reduces the risk of mosquito to human viral transmission. Wolbachia is being utilized at field sites across more than 13 countries to reduce the incidence of viruses like dengue, but it is not well understood how Wolbachia induces its antiviral effects. To examine this at the subcellular level, we compared how different strains of Wolbachia with varying antiviral strengths associate with and modify host cell structures. Strongly antiviral strains were found to specifically associate with the host endoplasmic reticulum and induce striking impacts on host cell lipid droplets. Inhibiting Wolbachia-induced lipid redistribution partially restored dengue virus replication demonstrating this is a contributing role for Wolbachia's antiviral activity. These findings provide new insights into how antiviral Wolbachia strains associate with and modify Ae. aegypti host cells.
Collapse
Affiliation(s)
- Robson K. Loterio
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Ebony A. Monson
- Department of Microbiology, Anatomy, Physiology and Pharmacology; School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Australia
| | - Rachel Templin
- Ramaciotti Centre For Cryo-Electron Microscopy, Monash University, Clayton, Australia
| | | | - Heather A. Flores
- School of Biological Sciences, Monash University, Clayton, Australia
| | - Jason M. Mackenzie
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Georg Ramm
- Ramaciotti Centre For Cryo-Electron Microscopy, Monash University, Clayton, Australia
| | - Karla J. Helbig
- Department of Microbiology, Anatomy, Physiology and Pharmacology; School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Australia
| | - Cameron P. Simmons
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
- World Mosquito Program, Monash University, Clayton, Australia
| | - Johanna E. Fraser
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| |
Collapse
|
17
|
Corrêa-Antônio J, David MR, Couto-Lima D, Garcia GA, Keirsebelik MSG, Maciel-de-Freitas R, Pavan MG. DENV-1 Titer Impacts Viral Blocking in wMel Aedes aegypti with Brazilian Genetic Background. Viruses 2024; 16:214. [PMID: 38399990 PMCID: PMC10891765 DOI: 10.3390/v16020214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/23/2024] [Accepted: 01/28/2024] [Indexed: 02/25/2024] Open
Abstract
Several countries have been using Wolbachia deployments to replace highly competent native Aedes aegypti populations with Wolbachia-carrying mosquitoes with lower susceptibility to arboviruses such as dengue, Zika, and chikungunya. In Rio de Janeiro, Wolbachia deployments started in 2015 and still present a moderate introgression with a modest reduction in dengue cases in humans (38%). Here, we evaluated the vector competence of wild-type and wMel-infected Ae. aegypti with a Brazilian genetic background to investigate whether virus leakage could contribute to the observed outcomes in Brazil. We collected the specimens in three areas of Rio de Janeiro with distinct frequencies of mosquitoes with wMel strain and two areas with wild Ae. aegypti. The mosquitoes were orally exposed to two titers of DENV-1 and the saliva of DENV-1-infected Ae. aegypti was microinjected into wMel-free mosquitoes to check their infectivity. When infected with the high DENV-1 titer, the presence of wMel did not avoid viral infection in mosquitoes' bodies and saliva but DENV-1-infected wMel mosquitoes produced lower viral loads than wMel-free mosquitoes. On the other hand, wMel mosquitoes infected with the low DENV-1 titer were less susceptible to virus infection than wMel-free mosquitoes, although once infected, wMel and wMel-free mosquitoes exhibited similar viral loads in the body and the saliva. Our results showed viral leakage in 60% of the saliva of wMel mosquitoes with Brazilian background; thus, sustained surveillance is imperative to monitor the presence of other circulating DENV-1 strains capable of overcoming the Wolbachia blocking phenotype, enabling timely implementation of action plans.
Collapse
Affiliation(s)
- Jessica Corrêa-Antônio
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, Brazil; (J.C.-A.); (M.R.D.); (D.C.-L.); (G.A.G.); (M.S.G.K.); (R.M.-d.-F.)
| | - Mariana R. David
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, Brazil; (J.C.-A.); (M.R.D.); (D.C.-L.); (G.A.G.); (M.S.G.K.); (R.M.-d.-F.)
| | - Dinair Couto-Lima
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, Brazil; (J.C.-A.); (M.R.D.); (D.C.-L.); (G.A.G.); (M.S.G.K.); (R.M.-d.-F.)
| | - Gabriela Azambuja Garcia
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, Brazil; (J.C.-A.); (M.R.D.); (D.C.-L.); (G.A.G.); (M.S.G.K.); (R.M.-d.-F.)
| | - Milan S. G. Keirsebelik
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, Brazil; (J.C.-A.); (M.R.D.); (D.C.-L.); (G.A.G.); (M.S.G.K.); (R.M.-d.-F.)
| | - Rafael Maciel-de-Freitas
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, Brazil; (J.C.-A.); (M.R.D.); (D.C.-L.); (G.A.G.); (M.S.G.K.); (R.M.-d.-F.)
- Department of Arbovirology, Bernhard Nocht Institute of Tropical Medicine, 20359 Hamburg, Germany
| | - Márcio Galvão Pavan
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, Brazil; (J.C.-A.); (M.R.D.); (D.C.-L.); (G.A.G.); (M.S.G.K.); (R.M.-d.-F.)
| |
Collapse
|
18
|
McNamara CJ, Ant TH, Harvey-Samuel T, White-Cooper H, Martinez J, Alphey L, Sinkins SP. Transgenic expression of cif genes from Wolbachia strain wAlbB recapitulates cytoplasmic incompatibility in Aedes aegypti. Nat Commun 2024; 15:869. [PMID: 38287029 PMCID: PMC10825118 DOI: 10.1038/s41467-024-45238-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/16/2024] [Indexed: 01/31/2024] Open
Abstract
The endosymbiotic bacteria Wolbachia can invade insect populations by modifying host reproduction through cytoplasmic incompatibility (CI), an effect that results in embryonic lethality when Wolbachia-carrying males mate with Wolbachia-free females. Here we describe a transgenic system for recreating CI in the major arbovirus vector Aedes aegypti using CI factor (cif) genes from wAlbB, a Wolbachia strain currently being deployed to reduce dengue transmission. CI-like sterility is induced when cifA and cifB are co-expressed in testes; this sterility is rescued by maternal cifA expression, thereby reproducing the pattern of Wolbachia-induced CI. Expression of cifB alone is associated with extensive DNA damage and disrupted spermatogenesis. The strength of rescue by maternal cifA expression is dependent on the comparative levels of cifA/cifB expression in males. These findings are consistent with CifB acting as a toxin and CifA as an antitoxin, with CifA attenuating CifB toxicity in both the male germline and in developing embryos. These findings provide important insights into the interactions between cif genes and their mechanism of activity and provide a foundation for the building of a cif gene-based drive system in Ae. aegypti.
Collapse
Affiliation(s)
- Cameron J McNamara
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow, G61 1QH, UK
| | - Thomas H Ant
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow, G61 1QH, UK
| | - Tim Harvey-Samuel
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK
| | - Helen White-Cooper
- Molecular Biosciences Division, Cardiff University, Cardiff, CF10 3AX, UK
| | - Julien Martinez
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow, G61 1QH, UK
| | - Luke Alphey
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK
- The Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Steven P Sinkins
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow, G61 1QH, UK.
| |
Collapse
|
19
|
Walker T. Detection of Natural Wolbachia Strains in Anopheles Mosquitoes. Methods Mol Biol 2024; 2739:205-218. [PMID: 38006554 DOI: 10.1007/978-1-0716-3553-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Wolbachia is an endosymbiotic bacterium that naturally infects many insect species, including mosquitoes that transmit human diseases. Wolbachia strains have been shown to inhibit the transmission of both arboviruses and malaria Plasmodium parasites. The existence of natural strains in wild Anopheles (An.) mosquitoes, the vectors of malaria parasites, in an endosymbiotic relationship is still to be fully determined. Although Wolbachia has been reported to be present in wild populations of the An. gambiae complex, the primary vectors of malaria in Sub-Saharan Africa, Wolbachia DNA sequence density and infection frequencies are low. As most studies have used highly sensitive nested PCR as the only detection method, more robust evidence is required to determine whether Wolbachia strains are established as endosymbionts in Anopheles species. Techniques such as fluorescent in situ hybridization, microbiome sequencing, and Wolbachia whole genome sequencing have provided concrete evidence for genuine Wolbachia strains in two mosquito species: An. moucheti and An. demeilloni. In this chapter, the current methodology used to determine if resident strains exist in Anopheles mosquitoes will be reviewed, including both PCR- and non-PCR-based protocols.
Collapse
Affiliation(s)
- Thomas Walker
- School of Life Sciences, University of Warwick, Coventry, UK.
| |
Collapse
|
20
|
Muharromah AF, Reyes JIL, Kagia N, Watanabe K. Genome-wide detection of Wolbachia in natural Aedes aegypti populations using ddRAD-Seq. Front Cell Infect Microbiol 2023; 13:1252656. [PMID: 38162582 PMCID: PMC10755911 DOI: 10.3389/fcimb.2023.1252656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Background Wolbachia, an endosymbiotic bacterium, is globally used to control arboviruses because of its ability to block arboviral replication and manipulate the reproduction of Wolbachia host, Aedes aegypti. Polymerase chain reaction (PCR)-based Wolbachia detection has been recently reported from natural Ae. aegypti populations. However, due to the technical limitations of PCR, such as primer incompatibility, PCR-based assays are not sufficiently reliable or accurate. In this study, we examined double digestion restriction site-associated DNA sequencing (ddRAD-Seq) efficiency and limitations in Wolbachia detection and quantification in field-collected Ae. aegypti natural populations in Metro Manila, the Philippines, compared with PCR-based assays. Methods A total of 217 individuals Ae. aegypti were collected from Metropolitan Manila, Philippines. We separated it into 14 populations consisting of 7 female and male populations. We constructed a library for pool ddRAD-Seq per population and also screened for Wolbachia by PCR assays using wsp and 16S rRNA. Wolbachia density per population were measured using RPS17 as the housekeeping gene. Results From 146,239,637 sequence reads obtained, 26,299 and 43,778 reads were mapped across the entire Wolbachia genome (with the wAlbA and wAlbB strains, respectively), suggesting that ddRAD-Seq complements PCR assays and supports more reliable Wolbachia detection from a genome-wide perspective. The number of reads mapped to the Wolbachia genome per population positively correlated with the number of Wolbachia-infected individuals per population based on PCR assays and the relative density of Wolbachia in the Ae. aegypti populations based on qPCR, suggesting ddRAD-Seq-based semi-quantification of Wolbachia by ddRAD-Seq. Male Ae. aegypti exhibited more reads mapped to the Wolbachia genome than females, suggesting higher Wolbachia prevalence rates in their case. We detected 150 single nucleotide polymorphism loci across the Wolbachia genome, allowing for more accurate the detection of four strains: wPip, wRi, TRS of Brugia malayi, and wMel. Conclusions Taken together, our results demonstrate the feasibility of ddRAD-Seq-based Wolbachia detection from field-collected Ae. aegypti mosquitoes.
Collapse
Affiliation(s)
- Atikah Fitria Muharromah
- Molecular Ecology and Health Laboratory, Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Japan
- Entomology Laboratory, Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Jerica Isabel L. Reyes
- Molecular Ecology and Health Laboratory, Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Japan
| | - Ngure Kagia
- Molecular Ecology and Health Laboratory, Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Japan
| | - Kozo Watanabe
- Molecular Ecology and Health Laboratory, Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Japan
| |
Collapse
|
21
|
Mercant Osuna A, Gidley A, Mayi MPA, Bamou R, Dhokiya V, Antonio-Nkondjio C, Jeffries CL, Walker T. Diverse novel Wolbachia bacteria strains and genera-specific co-infections with Asaia bacteria in Culicine mosquitoes from ecologically diverse regions of Cameroon. Wellcome Open Res 2023; 8:267. [PMID: 37799509 PMCID: PMC10548110 DOI: 10.12688/wellcomeopenres.18580.2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2023] [Indexed: 10/07/2023] Open
Abstract
Background: The endosymbiotic bacterium Wolbachia infects numerous species of insects and Wolbachia transinfection of Aedes mosquito species is now being used for biocontrol programs as Wolbachia strains can both inhibit arboviruses and invade wild mosquito populations. The discovery of novel, resident Wolbachia strains in mosquito species warrants further investigation as potential candidate strains for biocontrol strategies. Methods: We obtained mosquito specimens from diverse Culicine mosquitoes from Cameroon including ecologically diverse locations in the Central and West Regions. Wolbachia prevalence rates were assessed in addition to the environmentally acquired bacterial species Asaia in major Culicine genera. PCR-based methods were also used with phylogenetic analysis to confirm identities of host mosquito species and Wolbachia strains were classified using multi-locus sequence typing (MLST). Results: We report high Wolbachia prevalence rates for Culicine species, including in a large cohort of Aedes africanus collected from west Cameroon in which 100% of mono-specific pools were infected. Furthermore, co-infections with Asaia bacteria were observed across multiple genera, demonstrating that these two bacteria can co-exist in wild mosquito populations. Wolbachia strain MLST and phylogenetic analysis provided evidence for diverse Wolbachia strains in 13 different mosquito species across seven different genera. Full or partial MLST profiles were generated from resident Wolbachia strains in six Culex species ( quinquefasciatus, watti, cinerus, nigripalpus, perexiguus and rima), two Aedes species (africanus and denderensis) and in Mansonia uniformis, Catageiomyia argenteopunctata, Lutzia tigripes, Eretmapodites chrysogaster and Uranotaenia bilineata. Conclusions: Our study provides further evidence that Wolbachia is widespread within wild mosquito populations of diverse Culicine species and provides further candidate strains that could be investigated as future options for Wolbachia-based biocontrol to inhibit arbovirus transmission.
Collapse
Affiliation(s)
- Aina Mercant Osuna
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK
| | - Alexandra Gidley
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK
| | - Marie Paul Audrey Mayi
- Department of Microbiology, University of Yaounde 1, Yaoundé, Cameroon
- School of Biosciences & Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Roland Bamou
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, Maryland, USA
- IHU Méditerranée Infection, Marseille, France
- Vecteurs-Infections Tropicales et Méditerranéennes (VITROME), Aix Marseille University, Marseille, France
- Vector Borne Diseases Laboratory of the Research Unit of Biology and Applied Ecology (VBID-RUBAE), Department of Animal Biology, University of Dschang, Dschang, Cameroon
- Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), Yaoundé, Cameroon
| | - Vishaal Dhokiya
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Christophe Antonio-Nkondjio
- Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), Yaoundé, Cameroon
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Thomas Walker
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK
- School of Life Sciences, University of Warwick, Coventry, UK
| |
Collapse
|
22
|
Duong Thi Hue K, da Silva Goncalves D, Tran Thuy V, Thi Vo L, Le Thi D, Vu Tuyet N, Nguyen Thi G, Huynh Thi Xuan T, Nguyen Minh N, Nguyen Thanh P, Yacoub S, Simmons CP. Wolbachia wMel strain-mediated effects on dengue virus vertical transmission from Aedes aegypti to their offspring. Parasit Vectors 2023; 16:308. [PMID: 37653429 PMCID: PMC10472731 DOI: 10.1186/s13071-023-05921-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/09/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Dengue virus serotypes (DENV-1 to -4) can be transmitted vertically in Aedes aegpti mosquitoes. Whether infection with the wMel strain of the endosymbiont Wolbachia can reduce the incidence of vertical transmission of DENV from infected females to their offspring is not well understood. METHODS A laboratory colony of Vietnamese Ae. aegypti, both with and without wMel infection, were infected with DENV-1 by intrathoracic injection (IT) to estimate the rate of vertical transmission (VT) of the virus. VT in the DENV-infected mosquitoes was calculated via the infection rate estimation from mosquito pool data using maximum likelihood estimation (MLE). RESULTS In 6047 F1 Vietnamese wild-type Ae. aegypti, the MLE of DENV-1 infection was 1.49 per 1000 mosquitoes (95% confidence interval [CI] 0.73-2.74). In 5500 wMel-infected Ae. aegypti, the MLE infection rate was 0 (95% CI 0-0.69). The VT rates between mosquito lines showed a statistically significant difference. CONCLUSIONS The results reinforce the view that VT is a rare event in wild-type mosquitoes and that infection with wMel is effective in reducing VT.
Collapse
Affiliation(s)
- Kien Duong Thi Hue
- Oxford University Clinical Research Unit, Wellcome Trust Africa Asia Programme, District 5, Ho Chi Minh City, Vietnam.
| | - Daniela da Silva Goncalves
- Oxford University Clinical Research Unit, Wellcome Trust Africa Asia Programme, District 5, Ho Chi Minh City, Vietnam
| | - Vi Tran Thuy
- Oxford University Clinical Research Unit, Wellcome Trust Africa Asia Programme, District 5, Ho Chi Minh City, Vietnam
| | - Long Thi Vo
- Oxford University Clinical Research Unit, Wellcome Trust Africa Asia Programme, District 5, Ho Chi Minh City, Vietnam
| | - Dui Le Thi
- Oxford University Clinical Research Unit, Wellcome Trust Africa Asia Programme, District 5, Ho Chi Minh City, Vietnam
| | - Nhu Vu Tuyet
- Oxford University Clinical Research Unit, Wellcome Trust Africa Asia Programme, District 5, Ho Chi Minh City, Vietnam
| | - Giang Nguyen Thi
- Oxford University Clinical Research Unit, Wellcome Trust Africa Asia Programme, District 5, Ho Chi Minh City, Vietnam
| | - Trang Huynh Thi Xuan
- Oxford University Clinical Research Unit, Wellcome Trust Africa Asia Programme, District 5, Ho Chi Minh City, Vietnam
| | - Nguyet Nguyen Minh
- Oxford University Clinical Research Unit, Wellcome Trust Africa Asia Programme, District 5, Ho Chi Minh City, Vietnam
| | | | - Sophie Yacoub
- Oxford University Clinical Research Unit, Wellcome Trust Africa Asia Programme, District 5, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Cameron P Simmons
- Institute for Vector Borne Disease, Monash University, Clayton Campus, Melbourne, VIC, 3168, Australia
| |
Collapse
|
23
|
Rainey SM, Geoghegan V, Lefteri DA, Ant TH, Martinez J, McNamara CJ, Kamel W, de Laurent ZR, Castello A, Sinkins SP. Differences in proteome perturbations caused by the Wolbachia strain wAu suggest multiple mechanisms of Wolbachia-mediated antiviral activity. Sci Rep 2023; 13:11737. [PMID: 37474590 PMCID: PMC10359319 DOI: 10.1038/s41598-023-38127-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/03/2023] [Indexed: 07/22/2023] Open
Abstract
Some strains of the inherited bacterium Wolbachia have been shown to be effective at reducing the transmission of dengue virus (DENV) and other RNA viruses by Aedes aegypti in both laboratory and field settings and are being deployed for DENV control. The degree of virus inhibition varies between Wolbachia strains. Density and tissue tropism can contribute to these differences but there are also indications that this is not the only factor involved: for example, strains wAu and wAlbA are maintained at similar intracellular densities but only wAu produces strong DENV inhibition. We previously reported perturbations in lipid transport dynamics, including sequestration of cholesterol in lipid droplets, with strains wMel/wMelPop in Ae. aegypti. To further investigate the cellular basis underlying these differences, proteomic analysis of midguts was carried out on Ae. aegypti lines carrying strains wAu and wAlbA: with the hypothesis that differences in perturbations may underline Wolbachia-mediated antiviral activity. Surprisingly, wAu-carrying midguts not only showed distinct proteome perturbations when compared to non-Wolbachia carrying and wAlbA-carrying midguts but also wMel-carrying midguts. There are changes in RNA processing pathways and upregulation of a specific set of RNA-binding proteins in the wAu-carrying line, including genes with known antiviral activity. Lipid transport and metabolism proteome changes also differ between strains, and we show that strain wAu does not produce the same cholesterol sequestration phenotype as wMel. Moreover, in contrast to wMel, wAu antiviral activity was not rescued by cyclodextrin treatment. Together these results suggest that wAu could show unique features in its inhibition of arboviruses compared to previously characterized Wolbachia strains.
Collapse
Affiliation(s)
| | - Vincent Geoghegan
- MRC-University of Glasgow-Centre for Virus Research, Glasgow, UK
- The University of York, York, UK
| | | | - Thomas H Ant
- MRC-University of Glasgow-Centre for Virus Research, Glasgow, UK
| | - Julien Martinez
- MRC-University of Glasgow-Centre for Virus Research, Glasgow, UK
| | | | - Wael Kamel
- MRC-University of Glasgow-Centre for Virus Research, Glasgow, UK
| | | | - Alfredo Castello
- MRC-University of Glasgow-Centre for Virus Research, Glasgow, UK
| | - Steven P Sinkins
- MRC-University of Glasgow-Centre for Virus Research, Glasgow, UK.
| |
Collapse
|
24
|
Ant TH, Mancini MV, McNamara CJ, Rainey SM, Sinkins SP. Wolbachia-Virus interactions and arbovirus control through population replacement in mosquitoes. Pathog Glob Health 2023; 117:245-258. [PMID: 36205550 PMCID: PMC10081064 DOI: 10.1080/20477724.2022.2117939] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022] Open
Abstract
Following transfer into the primary arbovirus vector Aedes aegypti, several strains of the intracellular bacterium Wolbachia have been shown to inhibit the transmission of dengue, Zika, and chikungunya viruses, important human pathogens that cause significant morbidity and mortality worldwide. In addition to pathogen inhibition, many Wolbachia strains manipulate host reproduction, resulting in an invasive capacity of the bacterium in insect populations. This has led to the deployment of Wolbachia as a dengue control tool, and trials have reported significant reductions in transmission in release areas. Here, we discuss the possible mechanisms of Wolbachia-virus inhibition and the implications for long-term success of dengue control. We also consider the evidence presented in several reports that Wolbachia may cause an enhancement of replication of certain viruses under particular conditions, and conclude that these should not cause any concerns with respect to the application of Wolbachia to arbovirus control.
Collapse
Affiliation(s)
- Thomas H Ant
- Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Maria Vittoria Mancini
- Centre for Virus Research, University of Glasgow, Glasgow, UK
- Polo d’Innovazione di Genomica, Genetica e Biologia, Terni, Italy
| | | | | | | |
Collapse
|
25
|
Sanaei E, Albery GF, Yeoh YK, Lin YP, Cook LG, Engelstädter J. Host phylogeny and ecological associations best explain Wolbachia host shifts in scale insects. Mol Ecol 2023; 32:2351-2363. [PMID: 36785954 DOI: 10.1111/mec.16883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/15/2023]
Abstract
Wolbachia are among the most prevalent and widespread endosymbiotic bacteria on Earth. Wolbachia's success in infecting an enormous number of arthropod species is attributed to two features: the range of phenotypes they induce in their hosts, and their ability to switch between host species. Whilst much progress has been made in elucidating their induced phenotypes, our understanding of Wolbachia host-shifting is still very limited: we lack answers to even fundamental questions concerning Wolbachia's routes of transfer and the importance of factors influencing host shifts. Here, we investigate the diversity and host-shift patterns of Wolbachia in scale insects, a group of arthropods with intimate associations with other insects that make them well suited to studying host shifts. Using Illumina multitarget amplicon sequencing of Wolbachia-infected scale insects and their direct associates we determined the identity of all Wolbachia strains. We then fitted a generalized additive mixed model to our data to estimate the influence of host phylogeny and the geographical distribution on Wolbachia strain sharing among scale insect species. The model predicts no significant contribution of host geography but strong effects of host phylogeny, with high rates of Wolbachia sharing among closely related species and a sudden drop-off in sharing with increasing phylogenetic distance. We also detected the same Wolbachia strain in scale insects and several intimately associated species (ants, wasps and flies). This indicates putative host shifts and potential routes of transfers via these associates and highlights the importance of ecological connectivity in Wolbachia host-shifting.
Collapse
Affiliation(s)
- Ehsan Sanaei
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Gregory F Albery
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Yun Kit Yeoh
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Yen-Po Lin
- Department of Plant Medicine, College of Agriculture, National Chiayi University, Chiayi City, Taiwan
| | - Lyn G Cook
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Jan Engelstädter
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
26
|
Oladipupo SO, Carroll JD, Beckmann JF. Convergent Aedes and Drosophila CidB interactomes suggest cytoplasmic incompatibility targets are conserved. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 155:103931. [PMID: 36933571 DOI: 10.1016/j.ibmb.2023.103931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 05/10/2023]
Abstract
Wolbachia-mediated cytoplasmic incompatibility (CI) is a conditional embryonic lethality induced when Wolbachia-modified sperm fertilizes an uninfected egg. The Wolbachia proteins, CidA and CidB control CI. CidA is a rescue factor that reverses lethality. CidA binds to CidB. CidB contains a deubiquitinating enzyme and induces CI. Precisely how CidB induces CI and what it targets are unknown. Likewise, how CidA prevents sterilization by CidB is not clear. To identify CidB substrates in mosquitos we conducted pull-down assays using recombinant CidA and CidB mixed with Aedes aegypti lysates to identify the protein interactomes of CidB and the CidB/CidA protein complex. Our data allow us to cross compare CidB interactomes across taxa for Aedes and Drosophila. Our data replicate several convergent interactions, suggesting that CI targets conserved substrates across insects. Our data support a hypothesis that CidA rescues CI by tethering CidB away from its substrates. Specifically, we identify ten convergent candidate substrates including P32 (protamine-histone exchange factor), karyopherin alpha, ubiquitin-conjugating enzyme, and bicoid stabilizing factor. Future analysis on how these candidates contribute to CI will clarify mechanisms.
Collapse
Affiliation(s)
- Seun O Oladipupo
- Department of Entomology & Plant Pathology, Auburn University, Auburn, AL, 36849, USA; Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA.
| | - Jazmine D Carroll
- Department of Entomology & Plant Pathology, Auburn University, Auburn, AL, 36849, USA
| | - John F Beckmann
- Department of Entomology & Plant Pathology, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
27
|
Allman MJ, Lin YH, Joubert DA, Addley-Cook J, Mejía-Torres MC, Simmons CP, Flores HA, Fraser JE. Enhancing the scalability of Wolbachia-based vector-borne disease management: time and temperature limits for storage and transport of Wolbachia-infected Aedes aegypti eggs for field releases. Parasit Vectors 2023; 16:108. [PMID: 36934294 PMCID: PMC10024388 DOI: 10.1186/s13071-023-05724-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/02/2023] [Indexed: 03/20/2023] Open
Abstract
BACKGROUND Introgression of the bacterial endosymbiont Wolbachia into Aedes aegypti populations is a biocontrol approach being used to reduce arbovirus transmission. This requires mass release of Wolbachia-infected mosquitoes. While releases have been conducted using a variety of techniques, egg releases, using water-soluble capsules containing mosquito eggs and larval food, offer an attractive method due to its potential to reduce onsite resource requirements. However, optimisation of this approach is required to ensure there is no detrimental impact on mosquito fitness and to promote successful Wolbachia introgression. METHODS We determined the impact of storage time and temperature on wild-type (WT) and Wolbachia-infected (wMel or wAlbB strains) Ae. aegypti eggs. Eggs were stored inside capsules over 8 weeks at 18 °C or 22 °C and hatch rate, emergence rate and Wolbachia density were determined. We next examined egg quality and Wolbachia density after exposing eggs to 4-40 °C to determine how eggs may be impacted if exposed to extreme temperatures during shipment. RESULTS Encapsulating eggs for 8 weeks did not negatively impact egg viability or resulting adult emergence and Wolbachia density compared to controls. When eggs were exposed to temperatures within 4-36 °C for 48 h, their viability and resulting adult Wolbachia density were maintained; however, both were significantly reduced when exposed to 40 °C. CONCLUSIONS We describe the time and temperature limits for maintaining viability of Wolbachia-infected Ae. aegypti eggs when encapsulated or exposed to extreme temperatures. These findings could improve the efficiency of mass releases by providing transport and storage constraints to ensure only high-quality material is utilised during field releases.
Collapse
Affiliation(s)
- Megan J. Allman
- grid.1002.30000 0004 1936 7857Institute of Vector-borne Diseases, Monash University, Melbourne, VIC 3800 Australia
- grid.1002.30000 0004 1936 7857Department of Microbiology, Monash University, Melbourne, VIC 3800 Australia
| | - Ya-Hsun Lin
- grid.1002.30000 0004 1936 7857World Mosquito Program, Monash University, Melbourne, VIC 3800 Australia
| | - D. Albert Joubert
- grid.1002.30000 0004 1936 7857World Mosquito Program, Monash University, Melbourne, VIC 3800 Australia
| | - Jessica Addley-Cook
- grid.1002.30000 0004 1936 7857World Mosquito Program, Monash University, Melbourne, VIC 3800 Australia
| | - Maria Camila Mejía-Torres
- grid.1002.30000 0004 1936 7857World Mosquito Program, Monash University, Melbourne, VIC 3800 Australia
| | - Cameron P. Simmons
- grid.1002.30000 0004 1936 7857Institute of Vector-borne Diseases, Monash University, Melbourne, VIC 3800 Australia
- grid.1002.30000 0004 1936 7857World Mosquito Program, Monash University, Melbourne, VIC 3800 Australia
| | - Heather A. Flores
- grid.1002.30000 0004 1936 7857Institute of Vector-borne Diseases, Monash University, Melbourne, VIC 3800 Australia
- grid.1002.30000 0004 1936 7857School of Biological Sciences, Monash University, Melbourne, VIC 3800 Australia
| | - Johanna E. Fraser
- grid.1002.30000 0004 1936 7857Institute of Vector-borne Diseases, Monash University, Melbourne, VIC 3800 Australia
- grid.1002.30000 0004 1936 7857Department of Microbiology, Monash University, Melbourne, VIC 3800 Australia
| |
Collapse
|
28
|
Thi Hue Kien D, Edenborough K, da Silva Goncalves D, Thuy Vi T, Casagrande E, Thi Le Duyen H, Thi Long V, Thi Dui L, Thi Tuyet Nhu V, Thi Giang N, Thi Xuan Trang H, Lee E, Donovan-Banfield I, Thi Thuy Van H, Minh Nguyet N, Thanh Phong N, Van Vinh Chau N, Wills B, Yacoub S, Flores H, Simmons C. Genome evolution of dengue virus serotype 1 under selection by Wolbachia pipientis in Aedes aegypti mosquitoes. Virus Evol 2023; 9:vead016. [PMID: 37744653 PMCID: PMC10517695 DOI: 10.1093/ve/vead016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/26/2023] [Accepted: 03/03/2023] [Indexed: 09/26/2023] Open
Abstract
The introgression of antiviral strains of Wolbachia into Aedes aegypti mosquito populations is a public health intervention for the control of dengue. Plausibly, dengue virus (DENV) could evolve to bypass the antiviral effects of Wolbachia and undermine this approach. Here, we established a serial-passage system to investigate the evolution of DENV in Ae. aegypti mosquitoes infected with the wMel strain of Wolbachia. Using this system, we report on virus genetic outcomes after twenty passages of serotype 1 of DENV (DENV-1). An amino acid substitution, E203K, in the DENV-1 envelope protein was more frequently detected in the consensus sequence of virus populations passaged in wMel-infected Ae. aegypti than wild-type counterparts. Positive selection at residue 203 was reproducible; it occurred in passaged virus populations from independent DENV-1-infected patients and also in a second, independent experimental system. In wild-type mosquitoes and human cells, the 203K variant was rapidly replaced by the progenitor sequence. These findings provide proof of concept that wMel-associated selection of virus populations can occur in experimental conditions. Field-based studies are needed to explore whether wMel imparts selective pressure on DENV evolution in locations where wMel is established.
Collapse
Affiliation(s)
| | - Kathryn Edenborough
- World Mosquito Program, Institute of Vector-Borne Disease, Monash University, Clayton, VIC 3800, Australia
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Oxford University Clinical Research Unit, Hospital for Tropical Disease, Ho Chi Minh City, Vietnam
| | - Daniela da Silva Goncalves
- World Mosquito Program, Institute of Vector-Borne Disease, Monash University, Clayton, VIC 3800, Australia
| | - Tran Thuy Vi
- Oxford University Clinical Research Unit, Hospital for Tropical Disease, Ho Chi Minh City, Vietnam
| | - Etiene Casagrande
- World Mosquito Program, Institute of Vector-Borne Disease, Monash University, Clayton, VIC 3800, Australia
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Huynh Thi Le Duyen
- Oxford University Clinical Research Unit, Hospital for Tropical Disease, Ho Chi Minh City, Vietnam
| | - Vo Thi Long
- Oxford University Clinical Research Unit, Hospital for Tropical Disease, Ho Chi Minh City, Vietnam
| | - Le Thi Dui
- Oxford University Clinical Research Unit, Hospital for Tropical Disease, Ho Chi Minh City, Vietnam
| | - Vu Thi Tuyet Nhu
- Oxford University Clinical Research Unit, Hospital for Tropical Disease, Ho Chi Minh City, Vietnam
| | - Nguyen Thi Giang
- Oxford University Clinical Research Unit, Hospital for Tropical Disease, Ho Chi Minh City, Vietnam
| | - Huynh Thi Xuan Trang
- Oxford University Clinical Research Unit, Hospital for Tropical Disease, Ho Chi Minh City, Vietnam
| | - Elvina Lee
- World Mosquito Program, Institute of Vector-Borne Disease, Monash University, Clayton, VIC 3800, Australia
| | - I’ah Donovan-Banfield
- World Mosquito Program, Institute of Vector-Borne Disease, Monash University, Clayton, VIC 3800, Australia
| | - Huynh Thi Thuy Van
- Oxford University Clinical Research Unit, Hospital for Tropical Disease, Ho Chi Minh City, Vietnam
| | | | - Nguyen Thanh Phong
- Hospital for Tropical Diseases, 190 Ben Ham Tu, District 5, Ho Chi Minh City, Vietnam
| | - Nguyen Van Vinh Chau
- Hospital for Tropical Diseases, 190 Ben Ham Tu, District 5, Ho Chi Minh City, Vietnam
| | - Bridget Wills
- Oxford University Clinical Research Unit, Hospital for Tropical Disease, Ho Chi Minh City, Vietnam
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sophie Yacoub
- Oxford University Clinical Research Unit, Hospital for Tropical Disease, Ho Chi Minh City, Vietnam
| | - Heather Flores
- World Mosquito Program, Institute of Vector-Borne Disease, Monash University, Clayton, VIC 3800, Australia
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Cameron Simmons
- World Mosquito Program, Institute of Vector-Borne Disease, Monash University, Clayton, VIC 3800, Australia
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Oxford University Clinical Research Unit, Hospital for Tropical Disease, Ho Chi Minh City, Vietnam
| |
Collapse
|
29
|
Ross PA, Hoffmann AA. Fitness costs of Wolbachia shift in locally-adapted Aedes aegypti mosquitoes. Environ Microbiol 2022; 24:5749-5759. [PMID: 36200325 PMCID: PMC10947380 DOI: 10.1111/1462-2920.16235] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/04/2022] [Indexed: 01/12/2023]
Abstract
Aedes aegypti mosquito eggs can remain quiescent for many months before hatching, allowing populations to persist through unfavourable conditions. A. aegypti infected with the Wolbachia strain wMel have been released in tropical and subtropical regions for dengue control. wMel reduces the viability of quiescent eggs, but this physiological cost might be expected to evolve in natural mosquito populations that frequently experience stressful conditions. We found that the cost of wMel infection differed consistently between mosquitoes collected from different locations and became weaker across laboratory generations, suggesting environment-specific adaptation of mosquitoes to the wMel infection. Reciprocal crossing experiments show that differences in the cost of wMel to quiescent egg viability were mainly due to mosquito genetic background and not Wolbachia origin. wMel-infected mosquitoes hatching from long-term quiescent eggs showed partial loss of cytoplasmic incompatibility and female infertility, highlighting additional costs of long-term quiescence. Our study provides the first evidence for a shift in Wolbachia phenotypic effects following deliberate field release and establishment and it highlights interactions between Wolbachia infections and mosquito genetic backgrounds. The unexpected changes in fitness costs observed here suggest potential tradeoffs with undescribed fitness benefits of the wMel infection.
Collapse
Affiliation(s)
- Perran A. Ross
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciencesThe University of MelbourneParkvilleVictoriaAustralia
| | - Ary A. Hoffmann
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciencesThe University of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
30
|
Ritchie IT, Needles KT, Leigh BA, Kaur R, Bordenstein SR. Transgenic cytoplasmic incompatibility persists across age and temperature variation in Drosophila melanogaster. iScience 2022; 25:105327. [PMID: 36304111 PMCID: PMC9593245 DOI: 10.1016/j.isci.2022.105327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/28/2022] [Accepted: 10/07/2022] [Indexed: 12/03/2022] Open
Abstract
Environmental stressors can impact the basic biology and applications of host-microbe symbioses. For example, Wolbachia symbiont densities and cytoplasmic incompatibility (CI) levels can decline in response to extreme temperatures and host aging. To investigate whether transgenic expression of CI-causing cif genes overcomes the environmental sensitivity of CI, we exposed transgenic male flies to low and high temperatures as well as aging treatments. Our results indicate that transgenic cif expression induces nearly complete CI regardless of temperature and aging, despite severe weakening of Wolbachia-based wild-type CI. Strong CI levels correlate with higher levels of cif transgene expression in young males. Altogether, our results highlight that transgenic CI persists against common environmental pressures and may be relevant for future control applications involving the cifA and cifB transgenes.
Collapse
Affiliation(s)
- Isabella T. Ritchie
- Vanderbilt University, Department of Biological Sciences, Nashville, TN 37235, USA
- Vanderbilt University, Vanderbilt Microbiome Innovation Center, Nashville, TN 37235, USA
| | - Kelly T. Needles
- Vanderbilt University, Department of Biological Sciences, Nashville, TN 37235, USA
- Vanderbilt University, Vanderbilt Microbiome Innovation Center, Nashville, TN 37235, USA
| | - Brittany A. Leigh
- Vanderbilt University, Department of Biological Sciences, Nashville, TN 37235, USA
- Vanderbilt University, Vanderbilt Microbiome Innovation Center, Nashville, TN 37235, USA
| | - Rupinder Kaur
- Vanderbilt University, Department of Biological Sciences, Nashville, TN 37235, USA
- Vanderbilt University, Vanderbilt Microbiome Innovation Center, Nashville, TN 37235, USA
- The Pennsylvania State University, Departments of Biology and Entomology, University Park, PA 16802, USA
- The Pennsylvania State University, Microbiome Center, Huck Institutes of the Life Sciences, University Park, PA 16802, USA
| | - Seth R. Bordenstein
- Vanderbilt University, Department of Biological Sciences, Nashville, TN 37235, USA
- Vanderbilt University, Vanderbilt Microbiome Innovation Center, Nashville, TN 37235, USA
- The Pennsylvania State University, Departments of Biology and Entomology, University Park, PA 16802, USA
- The Pennsylvania State University, Microbiome Center, Huck Institutes of the Life Sciences, University Park, PA 16802, USA
| |
Collapse
|
31
|
Liang X, Tan CH, Sun Q, Zhang M, Wong PSJ, Li MI, Mak KW, Martín-Park A, Contreras-Perera Y, Puerta-Guardo H, Manrique-Saide P, Ng LC, Xi Z. Wolbachia wAlbB remains stable in Aedes aegypti over 15 years but exhibits genetic background-dependent variation in virus blocking. PNAS NEXUS 2022; 1:pgac203. [PMID: 36714832 PMCID: PMC9802048 DOI: 10.1093/pnasnexus/pgac203] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/20/2022] [Indexed: 02/01/2023]
Abstract
The ability of the maternally transmitted endosymbiotic bacterium Wolbachia to induce cytoplasmic incompatibility (CI) and virus blocking makes it a promising weapon for combatting mosquito-borne diseases through either suppression or replacement of wild-type populations. Recent field trials show that both approaches significantly reduce the incidence of dengue fever in humans. However, new questions emerge about how Wolbachia-mosquito associations will co-evolve over time and whether Wolbachia-mediated virus blocking will be affected by the genetic diversity of mosquitoes and arboviruses in the real world. Here, we have compared the Wolbachia density and CI expression of two wAlbB-infected Aedes aegypti lines transinfected 15 years apart. We have also assessed wAlbB-mediated virus blocking against dengue (DENV), Zika (ZIKV), and Chikungunya (CHIKV) viruses and examined whether host genetic backgrounds modulate viral blocking effects by comparing ZIKV infection in mosquitoes with a Mexican genetic background to those with a Singaporean background. Our results show that over 15 years, wAlbB maintained the capacity to form a stable association with Ae. aegypti in terms of both density and CI expression. There were variations in wAlbB-induced virus blocking against CHIKV, DENV, and ZIKV, and higher inhibitory effects on ZIKV in mosquitoes on the Singaporean genetic background than on the Mexican background. These results provide important information concerning the robustness and long-term stability of Wolbachia as a biocontrol agent for arbovirus disease control.
Collapse
Affiliation(s)
| | | | - Qiang Sun
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Meichun Zhang
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Pei Sze Jeslyn Wong
- Environmental Health Institute, National Environment Agency, Singapore 138667
| | - Meizhi Irene Li
- Environmental Health Institute, National Environment Agency, Singapore 138667
| | - Keng Wai Mak
- Environmental Health Institute, National Environment Agency, Singapore 138667
| | - Abdiel Martín-Park
- Laboratorio para el Control Biologico de Aedes aegypti (LCB-UADY), Unidad Colaborativa para Bioensayos Entomologicos, Campus de Ciencias Biologicas y Agropecuarias, Universidad Autonoma de Yucatan, Mérida, Yucatán CP 97315, Mexico
| | - Yamili Contreras-Perera
- Laboratorio para el Control Biologico de Aedes aegypti (LCB-UADY), Unidad Colaborativa para Bioensayos Entomologicos, Campus de Ciencias Biologicas y Agropecuarias, Universidad Autonoma de Yucatan, Mérida, Yucatán CP 97315, Mexico
| | - Henry Puerta-Guardo
- Laboratorio para el Control Biologico de Aedes aegypti (LCB-UADY), Unidad Colaborativa para Bioensayos Entomologicos, Campus de Ciencias Biologicas y Agropecuarias, Universidad Autonoma de Yucatan, Mérida, Yucatán CP 97315, Mexico
| | - Pablo Manrique-Saide
- Laboratorio para el Control Biologico de Aedes aegypti (LCB-UADY), Unidad Colaborativa para Bioensayos Entomologicos, Campus de Ciencias Biologicas y Agropecuarias, Universidad Autonoma de Yucatan, Mérida, Yucatán CP 97315, Mexico
| | - Lee Ching Ng
- Environmental Health Institute, National Environment Agency, Singapore 138667,School of Biological Sciences, Nanyang Technological Institute, Singapore 637551
| | - Zhiyong Xi
- To whom correspondence should be addressed:
| |
Collapse
|
32
|
Fallon AM. From Mosquito Ovaries to Ecdysone; from Ecdysone to Wolbachia: One Woman's Career in Insect Biology. INSECTS 2022; 13:756. [PMID: 36005381 PMCID: PMC9409236 DOI: 10.3390/insects13080756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
In anautogenous mosquitoes, synchronous development of terminal ovarian follicles after a blood meal provides an important model for studies on insect reproduction. Removal and implantation of ovaries, in vitro culture of dissected tissues and immunological assays for vitellogenin synthesis by the fat body showed that the Aedes aegypti (L.) (Diptera, Culicidae) mosquito ovary produces a factor essential for egg production. The discovery that the ovarian factor was the insect steroid hormone, ecdysone, provided a model for co-option of the larval hormones as reproductive hormones in adult insects. In later work on cultured mosquito cells, ecdysone was shown to arrest the cell cycle, resulting in an accumulation of diploid cells in G1, prior to initiation of DNA synthesis. Some mosquito species, such as Culex pipiens L. (Diptera, Culicidae), harbor the obligate intracellular bacterium, Wolbachia pipientis Hertig (Rickettsiales, Anaplasmataceae), in their reproductive tissues. When maintained in mosquito cell lines, Wolbachia abundance increases in ecdysone-arrested cells. This observation facilitated the recovery of high levels of Wolbachia from cultured cells for microinjection and genetic manipulation. In female Culex pipiens, it will be of interest to explore how hormonal cues that support initiation and progression of the vitellogenic cycle influence Wolbachia replication and transmission to subsequent generations via infected eggs.
Collapse
Affiliation(s)
- Ann M Fallon
- Department of Entomology, University of Minnesota, 1980 Folwell Ave., St Paul, MN 55108, USA
| |
Collapse
|
33
|
Sadanandane C, Gunasekaran K, Panneer D, Subbarao SK, Rahi M, Vijayakumar B, Athithan V, Sakthivel A, Dinesh S, Jambulingam P. Studies on the fitness characteristics of wMel- and wAlbB-introgressed Aedes aegypti (Pud) lines in comparison with wMel- and wAlbB-transinfected Aedes aegypti (Aus) and wild-type Aedes aegypti (Pud) lines. Front Microbiol 2022; 13:947857. [PMID: 35992676 PMCID: PMC9389317 DOI: 10.3389/fmicb.2022.947857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Wolbachia, an intracellular maternally transmitted endosymbiont, has been shown to interfere with the replication of dengue virus in Aedes aegypti mosquitoes. The Wolbachia-transinfected Ae. aegypti has been currently released in many countries to test its effectiveness in preventing the transmission of dengue virus. ICMR-Vector Control Research Centre in collaboration with World Mosquito Program Monash University, Australia, has generated two new Wolbachia-introgressed Ae. aegypti Puducherry (Pud) lines via backcrossing Ae. aegypti females of Australian (Aus) strains, infected with wMel and wAlbB Wolbachia with wild-type Ae. aegypti Puducherry (Pud) males. Wolbachia infections are known to induce a fitness cost and confer benefit on the host mosquito populations that will influence spread of the Wolbachia into native wild mosquito populations during the field release. Hence, the induced fitness cost or benefit/advantage in the two newly generated Ae. aegypti (Pud) lines was assessed in the laboratory in comparison with the wild-type Ae. aegypti (Pud) strain. In addition, maternal transmission (MT) efficiency, induced cytoplasmic incompatibility (CI), and insecticide resistance status of the two (Pud) lines were determined to assess the likely frequency of wMel and wAlbB infections in the native wild population after field invasion. The study shows that wMel and wAlbB infections did not induce any fitness cost on the two newly generated (Pud) lines. Rather, in terms of wing length, fecundity, egg hatch rate, and adult survival, the Wolbachia introgression conferred fitness benefits on the (Pud) lines compared to uninfected Wolbachia free wild Ae. aegypti population. wMel and wAlbB exhibited a high maternal transmission (99–100%) and induced nearly complete (98–100%) cytoplasmic incompatibility. Both the (Pud) lines were resistant to deltamethrin, malathion, DDT, and temephos, and the level of resistance was almost the same between the two lines as in the wild type. Overall, the stable association of wMel and wAlbB established with Ae. aegypti and the reproductive advantages of the (Pud) lines encourage a pilot release in the field for population replacement potential.
Collapse
Affiliation(s)
- Candasamy Sadanandane
- ICMR-Vector Control Research Centre, Medical Complex, Puducherry, India
- *Correspondence: Candasamy Sadanandane,
| | | | - Devaraju Panneer
- ICMR-Vector Control Research Centre, Medical Complex, Puducherry, India
| | - Sarala K. Subbarao
- Indian Council of Medical Research, Ramalingaswami Bhawan, New Delhi, India
| | - Manju Rahi
- Indian Council of Medical Research, Ramalingaswami Bhawan, New Delhi, India
- Manju Rahi,
| | | | - Velan Athithan
- ICMR-Vector Control Research Centre, Medical Complex, Puducherry, India
| | | | - Sundaram Dinesh
- ICMR-Vector Control Research Centre, Medical Complex, Puducherry, India
| | | |
Collapse
|
34
|
Fallon AM. Muramidase, nuclease, or hypothetical protein genes intervene between paired genes encoding DNA packaging terminase and portal proteins in Wolbachia phages and prophages. Virus Genes 2022; 58:327-349. [PMID: 35538383 DOI: 10.1007/s11262-022-01907-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/11/2022] [Indexed: 12/25/2022]
Abstract
Genomes of the obligate intracellular alpha proteobacterium Wolbachia pipientis often encode prophage-like regions, and in a few cases, purified particles have been recovered. Because the structure of a conserved WO phage genome has been difficult to establish, we examined paired terminase and portal genes in Wolbachia phages and prophages, relative to those encoded by the gene transfer agent RcGTA from the free-living alpha proteobacterium Rhodobacter capsulatus. Terminase and portal proteins from Wolbachia have higher similarity to orthologs encoded by RcGTA than to orthologs encoded by bacteriophage lambda. In lambdoid phages, these proteins play key roles in assembly of mature phage particles, while in less well-studied gene transfer agents, terminase and portal proteins package random fragments of bacterial DNA, which could confound elucidation of WO phage genomes. In WO phages and prophages, terminase genes followed by a short gpW gene may be separated from the downstream portal gene by open-reading frames encoding a GH_25 hydrolase/muramidase, a PD-(D/E)XK nuclease, a hypothetical protein and/or a RelE/ParE toxin-antitoxin module. These aspects of gene organization, coupled with evidence for a low, non-inducible yield of WO phages, and the small size of WO phage particles described in the literature raise the possibility that Wolbachia prophage regions participate in processes that extend beyond conventional bacteriophage lysogeny and lytic replication. These intervening genes, and their possible relation to functions associated with GTAs, may contribute to variability among WO phage genomes recovered from physical particles and impact the ability of WO phages to act as transducing agents.
Collapse
Affiliation(s)
- Ann M Fallon
- Department of Entomology, University of Minnesota, 1980 Folwell Ave, St. Paul, MN, 55108, USA.
| |
Collapse
|
35
|
Kaavya K, Tharakan J, Joshi CO, Aneesh EM. Role of vertically transmitted viral and bacterial endosymbionts of Aedes mosquitoes. Does Paratransgenesis influence vector-borne disease control? Symbiosis 2022. [DOI: 10.1007/s13199-022-00836-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
Tantowijoyo W, Tanamas SK, Nurhayati I, Setyawan S, Budiwati N, Fitriana I, Ernesia I, Wardana DS, Supriyati E, Arguni E, Meitika Y, Prabowo E, Andari B, Green BR, Hodgson L, Rancès E, Ryan PA, O’Neill SL, Anders KL, Ansari MR, Indriani C, Ahmad RA, Utarini A, Simmons CP. Aedes aegypti abundance and insecticide resistance profiles in the Applying Wolbachia to Eliminate Dengue trial. PLoS Negl Trop Dis 2022; 16:e0010284. [PMID: 35442957 PMCID: PMC9060332 DOI: 10.1371/journal.pntd.0010284] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 05/02/2022] [Accepted: 02/27/2022] [Indexed: 11/21/2022] Open
Abstract
The Applying Wolbachia to Eliminate Dengue (AWED) trial was a parallel cluster randomised trial that demonstrated Wolbachia (wMel) introgression into Ae. aegypti populations reduced dengue incidence. In this predefined substudy, we compared between treatment arms, the relative abundance of Ae. aegypti and Ae. albopictus before, during and after wMel-introgression. Between March 2015 and March 2020, 60,084 BG trap collections yielded 478,254 Ae. aegypti and 17,623 Ae. albopictus. Between treatment arms there was no measurable difference in Ae. aegypti relative abundance before or after wMel-deployments, with a count ratio of 0.96 (95% CI 0.76, 1.21) and 1.00 (95% CI 0.85, 1.17) respectively. More Ae. aegypti were caught per trap per week in the wMel-intervention arm compared to the control arm during wMel deployments (count ratio 1.23 (95% CI 1.03, 1.46)). Between treatment arms there was no measurable difference in the Ae. albopictus population size before, during or after wMel-deployment (overall count ratio 1.10 (95% CI 0.89, 1.35)). We also compared insecticide resistance phenotypes of Ae. aegypti in the first and second years after wMel-deployments. Ae. aegypti field populations from wMel-treated and untreated arms were similarly resistant to malathion (0.8%), permethrin (1.25%) and cyfluthrin (0.15%) in year 1 and year 2 of the trial. In summary, we found no between-arm differences in the relative abundance of Ae. aegypti or Ae. albopictus prior to or after wMel introgression, and no between-arm difference in Ae. aegypti insecticide resistance phenotypes. These data suggest neither Aedes abundance, nor insecticide resistance, confounded the epidemiological outcomes of the AWED trial.
Collapse
Affiliation(s)
- Warsito Tantowijoyo
- World Mosquito Program Yogyakarta, Centre for Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Stephanie K. Tanamas
- World Mosquito Program, Institute of Vector-borne Disease, Monash University, Clayton, Australia
| | - Indah Nurhayati
- World Mosquito Program Yogyakarta, Centre for Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Sigit Setyawan
- World Mosquito Program Yogyakarta, Centre for Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Nida Budiwati
- World Mosquito Program Yogyakarta, Centre for Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Iva Fitriana
- World Mosquito Program Yogyakarta, Centre for Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Inggrid Ernesia
- World Mosquito Program Yogyakarta, Centre for Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Dwi Satria Wardana
- World Mosquito Program Yogyakarta, Centre for Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Endah Supriyati
- World Mosquito Program Yogyakarta, Centre for Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Eggi Arguni
- World Mosquito Program Yogyakarta, Centre for Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Yeti Meitika
- World Mosquito Program Yogyakarta, Centre for Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Equatori Prabowo
- World Mosquito Program Yogyakarta, Centre for Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Bekti Andari
- World Mosquito Program, Institute of Vector-borne Disease, Monash University, Clayton, Australia
| | - Benjamin R. Green
- World Mosquito Program, Institute of Vector-borne Disease, Monash University, Clayton, Australia
| | - Lauren Hodgson
- World Mosquito Program, Institute of Vector-borne Disease, Monash University, Clayton, Australia
| | - Edwige Rancès
- World Mosquito Program, Institute of Vector-borne Disease, Monash University, Clayton, Australia
| | - Peter A. Ryan
- World Mosquito Program, Institute of Vector-borne Disease, Monash University, Clayton, Australia
| | - Scott L. O’Neill
- World Mosquito Program, Institute of Vector-borne Disease, Monash University, Clayton, Australia
| | - Katherine L. Anders
- World Mosquito Program, Institute of Vector-borne Disease, Monash University, Clayton, Australia
| | - M. Ridwan Ansari
- World Mosquito Program Yogyakarta, Centre for Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Citra Indriani
- World Mosquito Program Yogyakarta, Centre for Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Biostatistics, Epidemiology and Public Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Riris Andono Ahmad
- World Mosquito Program Yogyakarta, Centre for Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Biostatistics, Epidemiology and Public Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Adi Utarini
- World Mosquito Program Yogyakarta, Centre for Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Health Policy and Management, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Cameron P. Simmons
- World Mosquito Program, Institute of Vector-borne Disease, Monash University, Clayton, Australia
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| |
Collapse
|
37
|
Gu X, Ross PA, Rodriguez-Andres J, Robinson KL, Yang Q, Lau MJ, Hoffmann AA. A wMel Wolbachia variant in Aedes aegypti from field-collected Drosophila melanogaster with increased phenotypic stability under heat stress. Environ Microbiol 2022; 24:2119-2135. [PMID: 35319146 PMCID: PMC9544352 DOI: 10.1111/1462-2920.15966] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/15/2022] [Accepted: 03/02/2022] [Indexed: 02/03/2023]
Abstract
Mosquito‐borne diseases remain a major cause of morbidity and mortality. Population replacement strategies involving the wMel strain of Wolbachia are being used widely to control mosquito‐borne diseases. However, these strategies may be influenced by temperature because wMel is vulnerable to heat. wMel infections in Drosophila melanogaster are genetically diverse, but few transinfections of wMel variants have been generated in Aedes aegypti. Here, we successfully transferred a wMel variant (termed wMelM) originating from a field‐collected D. melanogaster into Ae. aegypti. The new wMelM variant (clade I) is genetically distinct from the original wMel transinfection (clade III), and there are no genomic differences between wMelM in its original and transinfected host. We compared wMelM with wMel in its effects on host fitness, temperature tolerance, Wolbachia density, vector competence, cytoplasmic incompatibility and maternal transmission under heat stress in a controlled background. wMelM showed a higher heat tolerance than wMel, likely due to higher overall densities within the mosquito. Both wMel variants had minimal host fitness costs, complete cytoplasmic incompatibility and maternal transmission, and dengue virus blocking under laboratory conditions. Our results highlight phenotypic differences between Wolbachia variants and wMelM shows potential as an alternative strain in areas with strong seasonal temperature fluctuations.
Collapse
Affiliation(s)
- Xinyue Gu
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Vic, Australia
| | - Perran A Ross
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Vic, Australia
| | - Julio Rodriguez-Andres
- Peter Doherty Institute for Infection and Immunity and Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Vic, 3000, Australia
| | - Katie L Robinson
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Vic, Australia
| | - Qiong Yang
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Vic, Australia
| | - Meng-Jia Lau
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Vic, Australia
| | - Ary A Hoffmann
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Vic, Australia
| |
Collapse
|
38
|
Neupane S, Bonilla SI, Manalo AM, Pelz-Stelinski KS. Complete de novo assembly of Wolbachia endosymbiont of Diaphorina citri Kuwayama (Hemiptera: Liviidae) using long-read genome sequencing. Sci Rep 2022; 12:125. [PMID: 34996906 PMCID: PMC8741817 DOI: 10.1038/s41598-021-03184-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/26/2021] [Indexed: 01/23/2023] Open
Abstract
Wolbachia, a gram-negative \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathrm{\alpha }$$\end{document}α-proteobacterium, is an endosymbiont found in some arthropods and nematodes. Diaphorina citri Kuwayama, the vector of ‘Candidatus Liberibacter asiaticus’ (CLas), are naturally infected with a strain of Wolbachia (wDi), which has been shown to colocalize with the bacteria pathogens CLas, the pathogen associated with huanglongbing (HLB) disease of citrus. The relationship between wDi and CLas is poorly understood in part because the complete genome of wDi has not been available. Using high-quality long-read PacBio circular consensus sequences, we present the largest complete circular wDi genome among supergroup-B members. The assembled circular chromosome is 1.52 megabases with 95.7% genome completeness with contamination of 1.45%, as assessed by checkM. We identified Insertion Sequences (ISs) and prophage genes scattered throughout the genomes. The proteins were annotated using Pfam, eggNOG, and COG that assigned unique domains and functions. The wDi genome was compared with previously sequenced Wolbachia genomes using pangenome and phylogenetic analyses. The availability of a complete circular chromosome of wDi will facilitate understanding of its role within the insect vector, which may assist in developing tools for disease management. This information also provides a baseline for understanding phylogenetic relationships among Wolbachia of other insect vectors.
Collapse
Affiliation(s)
- Surendra Neupane
- Entomology and Nematology Department, Citrus Research and Education Center/IFAS, University of Florida, Lake Alfred, Florida, 33850, USA
| | - Sylvia I Bonilla
- Entomology and Nematology Department, Citrus Research and Education Center/IFAS, University of Florida, Lake Alfred, Florida, 33850, USA
| | - Andrew M Manalo
- Entomology and Nematology Department, Citrus Research and Education Center/IFAS, University of Florida, Lake Alfred, Florida, 33850, USA
| | - Kirsten S Pelz-Stelinski
- Entomology and Nematology Department, Citrus Research and Education Center/IFAS, University of Florida, Lake Alfred, Florida, 33850, USA.
| |
Collapse
|
39
|
Mancini MV, Ant TH, Herd CS, Martinez J, Murdochy SM, Gingell DD, Mararo E, Johnson PCD, Sinkins SP. High Temperature Cycles Result in Maternal Transmission and Dengue Infection Differences Between Wolbachia Strains in Aedes aegypti. mBio 2021; 12:e0025021. [PMID: 34749528 PMCID: PMC8576525 DOI: 10.1128/mbio.00250-21] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 09/30/2021] [Indexed: 11/28/2022] Open
Abstract
Environmental factors play a crucial role in the population dynamics of arthropod endosymbionts, and therefore in the deployment of Wolbachia symbionts for the control of dengue arboviruses. The potential of Wolbachia to invade, persist, and block virus transmission depends in part on its intracellular density. Several recent studies have highlighted the importance of larval rearing temperature in modulating Wolbachia densities in adults, suggesting that elevated temperatures can severely impact some strains, while having little effect on others. The effect of a replicated tropical heat cycle on Wolbachia density and levels of virus blocking was assessed using Aedes aegypti lines carrying strains wMel and wAlbB, two Wolbachia strains currently used for dengue control. Impacts on intracellular density, maternal transmission fidelity, and dengue inhibition capacity were observed for wMel. In contrast, wAlbB-carrying Ae. aegypti maintained a relatively constant intracellular density at high temperatures and conserved its capacity to inhibit dengue. Following larval heat treatment, wMel showed a degree of density recovery in aging adults, although this was compromised by elevated air temperatures. IMPORTANCE In the past decades, dengue incidence has dramatically increased all over the world. An emerging dengue control strategy utilizes Aedes aegypti mosquitoes artificially transinfected with the bacterial symbiont Wolbachia, with the ultimate aim of replacing wild mosquito populations. However, the rearing temperature of mosquito larvae is known to impact on some Wolbachia strains. In this study, we compared the effects of a temperature cycle mimicking natural breeding sites in tropical climates on two Wolbachia strains, currently used for open field trials. When choosing the Wolbachia strain to be used in a dengue control program it is important to consider the effects of environmental temperatures on invasiveness and virus inhibition. These results underline the significance of understanding the impact of environmental factors on released mosquitoes, in order to ensure the most efficient strategy for dengue control.
Collapse
Affiliation(s)
| | - Thomas H. Ant
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Christie S. Herd
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Julien Martinez
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | | | | | - Enock Mararo
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Paul C. D. Johnson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | | |
Collapse
|
40
|
Aryaprema VS, Qualls WA, Dobson KL, Dobson SL, Xue RD. The Effects of Boric Acid Sugar Bait on Wolbachia Trans-Infected Male Aedes albopictus (ZAP Males®) in Laboratory Conditions. INSECTS 2021; 13:insects13010001. [PMID: 35055844 PMCID: PMC8777746 DOI: 10.3390/insects13010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary The release of Wolbachia trans-infected mosquitoes to the environment has demonstrated promising results in reducing the target mosquito populations. The use of boric acid toxic sugar bait is another successful and upcoming technique in mosquito control. However, the potential complementary use of the two techniques had not been evaluated. This study demonstrates the significant mortality impact of boric acid toxic sugar bait on Wolbachia trans-infected Aedes albopictus Skuse mosquitoes, thus giving important insight to program planners. Abstract The field release of Wolbachia trans-infected male mosquitoes, as well as the use of toxic sugar baits, is a novel and promising candidate technique for integrated mosquito management programs. However, the methods of action of the two techniques may not be complementary, because the Wolbachia method releases mosquitoes into the environment expecting a wild population reduction in subsequent generations while the toxic baits are intended to reduce the wild population by killing mosquitoes. This laboratory study was conducted to evaluate the effectiveness of boric acid toxic sugar baits on Wolbachia trans-infected male Aedes albopictus, relative to wild-type Ae. albopictus males. Wolbachia trans-infected (ZAP male®) and the wild-type Ae. albopictus males were exposed separately to 1% boric acid in a 10% sucrose solution in BugDorms. In the control test, the two groups were exposed to 10% sucrose solution without boric acid. Percent mortalities were counted for 24 h, 48 h and 72 h post exposure periods. The results show that 1% boric acid toxic sugar bait can effectively kill ZAP males under laboratory conditions, and the effectiveness was significantly higher after 24 h and 48 h, compared to wild-type male Ae. albopictus. This finding will help in planning and coordinating integrated mosquito management programs, including both Wolbachia trans-infected mosquito releases and the use of toxic sugar baits against Ae. albopictus.
Collapse
Affiliation(s)
- Vindhya S. Aryaprema
- Anastasia Mosquito Control District, 120 EOC Drive, St. Augustine, FL 32092, USA; (V.S.A.); (W.A.Q.)
| | - Whitney A. Qualls
- Anastasia Mosquito Control District, 120 EOC Drive, St. Augustine, FL 32092, USA; (V.S.A.); (W.A.Q.)
| | - Karen L. Dobson
- MosquitoMate, Inc., Lexington, KY 40503, USA; (K.L.D.); (S.L.D.)
| | - Stephen L. Dobson
- MosquitoMate, Inc., Lexington, KY 40503, USA; (K.L.D.); (S.L.D.)
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA
| | - Rui-De Xue
- Anastasia Mosquito Control District, 120 EOC Drive, St. Augustine, FL 32092, USA; (V.S.A.); (W.A.Q.)
- Correspondence:
| |
Collapse
|
41
|
Singh S, Singh A, Baweja V, Roy A, Chakraborty A, Singh IK. Molecular Rationale of Insect-Microbes Symbiosis-From Insect Behaviour to Mechanism. Microorganisms 2021; 9:microorganisms9122422. [PMID: 34946024 PMCID: PMC8707026 DOI: 10.3390/microorganisms9122422] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 12/27/2022] Open
Abstract
Insects nurture a panoply of microbial populations that are often obligatory and exist mutually with their hosts. Symbionts not only impact their host fitness but also shape the trajectory of their phenotype. This co-constructed niche successfully evolved long in the past to mark advanced ecological specialization. The resident microbes regulate insect nutrition by controlling their host plant specialization and immunity. It enhances the host fitness and performance by detoxifying toxins secreted by the predators and abstains them. The profound effect of a microbial population on insect physiology and behaviour is exploited to understand the host–microbial system in diverse taxa. Emergent research of insect-associated microbes has revealed their potential to modulate insect brain functions and, ultimately, control their behaviours, including social interactions. The revelation of the gut microbiota–brain axis has now unravelled insects as a cost-effective potential model to study neurodegenerative disorders and behavioural dysfunctions in humans. This article reviewed our knowledge about the insect–microbial system, an exquisite network of interactions operating between insects and microbes, its mechanistic insight that holds intricate multi-organismal systems in harmony, and its future perspectives. The demystification of molecular networks governing insect–microbial symbiosis will reveal the perplexing behaviours of insects that could be utilized in managing insect pests.
Collapse
Affiliation(s)
- Sujata Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India; (S.S.); (V.B.)
- Department of Botany, Hansraj College, University of Delhi, New Delhi 110007, India;
| | - Archana Singh
- Department of Botany, Hansraj College, University of Delhi, New Delhi 110007, India;
| | - Varsha Baweja
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India; (S.S.); (V.B.)
- DBC i4 Center, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India
| | - Amit Roy
- EVA 4.0 Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, Suchdol, 16521 Prague 6, Czech Republic;
- Excelentní Tým pro Mitigaci (ETM), Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, Suchdol, 16521 Prague 6, Czech Republic
| | - Amrita Chakraborty
- EVA 4.0 Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, Suchdol, 16521 Prague 6, Czech Republic;
- Correspondence: (A.C.); (I.K.S.)
| | - Indrakant Kumar Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India; (S.S.); (V.B.)
- DBC i4 Center, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India
- Correspondence: (A.C.); (I.K.S.)
| |
Collapse
|
42
|
Ross PA. Designing effective Wolbachia release programs for mosquito and arbovirus control. Acta Trop 2021; 222:106045. [PMID: 34273308 DOI: 10.1016/j.actatropica.2021.106045] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 01/22/2023]
Abstract
Mosquitoes carrying endosymbiotic bacteria called Wolbachia are being released in mosquito and arbovirus control programs around the world through two main approaches: population suppression and population replacement. Open field releases of Wolbachia-infected male mosquitoes have achieved over 95% population suppression by reducing the fertility of wild mosquito populations. The replacement of populations with Wolbachia-infected females is self-sustaining and can greatly reduce local dengue transmission by reducing the vector competence of mosquito populations. Despite many successful interventions, significant questions and challenges lie ahead. Wolbachia, viruses and their mosquito hosts can evolve, leading to uncertainty around the long-term effectiveness of a given Wolbachia strain, while few ecological impacts of Wolbachia releases have been explored. Wolbachia strains are diverse and the choice of strain to release should be made carefully, taking environmental conditions and the release objective into account. Mosquito quality control, thoughtful community awareness programs and long-term monitoring of populations are essential for all types of Wolbachia intervention. Releases of Wolbachia-infected mosquitoes show great promise, but existing control measures remain an important way to reduce the burden of mosquito-borne disease.
Collapse
|
43
|
Calle-Tobón A, Holguin-Rocha AF, Moore C, Rippee-Brooks M, Rozo-Lopez P, Harrod J, Fatehi S, Rua-Uribe GL, Park Y, Londoño-Rentería B. Blood Meals With Active and Heat-Inactivated Serum Modifies the Gene Expression and Microbiome of Aedes albopictus. Front Microbiol 2021; 12:724345. [PMID: 34566927 PMCID: PMC8458951 DOI: 10.3389/fmicb.2021.724345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/12/2021] [Indexed: 11/13/2022] Open
Abstract
The Asian "tiger mosquito" Aedes albopictus is currently the most widely distributed disease-transmitting mosquito in the world. Its geographical expansion has also allowed the expansion of multiple arboviruses like dengue, Zika, and chikungunya, to higher latitudes. Due to the enormous risk to global public health caused by mosquitoes species vectors of human disease, and the challenges in slowing their expansion, it is necessary to develop new and environmentally friendly vector control strategies. Among these, host-associated microbiome-based strategies have emerged as promising options. In this study, we performed an RNA-seq analysis on dissected abdomens of Ae. albopictus females from Manhattan, KS, United States fed with sugar and human blood containing either normal or heat-inactivated serum, to evaluate the effect of heat inactivation on gene expression, the bacteriome transcripts and the RNA virome of this mosquito species. Our results showed at least 600 genes with modified expression profile when mosquitoes were fed with normal vs. heat-inactivated-containing blood. These genes were mainly involved in immunity, oxidative stress, lipid metabolism, and oogenesis. Also, we observed bacteriome changes with an increase in transcripts of Actinobacteria, Rhodospirillaceae, and Anaplasmataceae at 6 h post-feeding. We also found that feeding with normal blood seems to particularly influence Wolbachia metabolism, demonstrated by a significant increase in transcripts of this bacteria in mosquitoes fed with blood containing normal serum. However, no differences were observed in the virome core of this mosquito population. These results suggest that heat and further inactivation of complement proteins in human serum may have profound effect on mosquito and microbiome metabolism, which could influence interpretation of the pathogen-host interaction findings when using this type of reagents specially when measuring the effect of Wolbachia in vector competence.
Collapse
Affiliation(s)
- Arley Calle-Tobón
- Department of Entomology, Kansas State University, Manhattan, KS, United States
- Grupo Entomología Médica, Universidad de Antioquia, Medellín, Colombia
| | | | - Celois Moore
- Department of Entomology, Kansas State University, Manhattan, KS, United States
| | - Meagan Rippee-Brooks
- Department of Biology, Missouri State University, Springfield, MO, United States
| | - Paula Rozo-Lopez
- Department of Entomology, Kansas State University, Manhattan, KS, United States
| | - Jania Harrod
- Department of Entomology, Kansas State University, Manhattan, KS, United States
| | - Soheila Fatehi
- Department of Entomology, Kansas State University, Manhattan, KS, United States
| | | | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS, United States
| | | |
Collapse
|
44
|
Assessment of fitness and vector competence of a New Caledonia wMel Aedes aegypti strain before field-release. PLoS Negl Trop Dis 2021; 15:e0009752. [PMID: 34492017 PMCID: PMC8448375 DOI: 10.1371/journal.pntd.0009752] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/17/2021] [Accepted: 08/23/2021] [Indexed: 11/23/2022] Open
Abstract
Background Biological control programs involving Wolbachia-infected Aedes aegypti are currently deployed in different epidemiological settings. New Caledonia (NC) is an ideal location for the implementation and evaluation of such a strategy as the only proven vector for dengue virus (DENV) is Ae. aegypti and dengue outbreaks frequency and severity are increasing. We report the generation of a NC Wolbachia-infected Ae. aegypti strain and the results of experiments to assess the vector competence and fitness of this strain for future implementation as a disease control strategy in Noumea, NC. Methods/principal findings The NC Wolbachia strain (NC-wMel) was obtained by backcrossing Australian AUS-wMel females with New Caledonian Wild-Type (NC-WT) males. Blocking of DENV, chikungunya (CHIKV), and Zika (ZIKV) viruses were evaluated via mosquito oral feeding experiments and intrathoracic DENV challenge. Significant reduction in infection rates were observed for NC-wMel Ae. aegypti compared to WT Ae. aegypti. No transmission was observed for NC-wMel Ae. aegypti. Maternal transmission, cytoplasmic incompatibility, fertility, fecundity, wing length, and insecticide resistance were also assessed in laboratory experiments. Ae. aegypti NC-wMel showed complete cytoplasmic incompatibility and a strong maternal transmission. Ae. aegypti NC-wMel fitness seemed to be reduced compared to NC-WT Ae. aegypti and AUS-wMel Ae. aegypti regarding fertility and fecundity. However further experiments are required to assess it accurately. Conclusions/significance Our results demonstrated that the NC-wMel Ae. aegypti strain is a strong inhibitor of DENV, CHIKV, and ZIKV infection and prevents transmission of infectious viral particles in mosquito saliva. Furthermore, our NC-wMel Ae. aegypti strain induces reproductive cytoplasmic incompatibility with minimal apparent fitness costs and high maternal transmission, supporting field-releases in Noumea, NC. Dengue represents a risk for almost half of the world’s population, especially throughout the tropics. In New Caledonia, dengue outbreaks have become more frequent in the past decade along with the recent circulation of chikungunya and Zika viruses. The opportunity to use the biocontrol method involving the release of Wolbachia-infected Ae. aegypti mosquitoes has been investigated as an alternative solution to the traditional control methods, like elimination of larval habitats and pyrethroid insecticide application to kill adults, which are becoming insufficient. A local strain of Ae. aegypti carrying Wolbachia (NC-wMel) has been generated and tested to evaluate its pathogen blocking capacity for the four dengue virus serotypes as well as chikungunya and Zika viruses. The fitness of NC-wMel strain has also been assessed to estimate its ability to compete with the wild-type strain in the field. Noumea city, where a third of the population of New Caledonia resides, has been chosen as the first site to implement the method in New Caledonia. As Ae. aegypti is the only proven vector in New Caledonia, we expect a significant impact on dengue outbreaks occurring in Noumea as soon as a high frequency of NC-wMel is established in the population.
Collapse
|
45
|
Dainty KR, Hawkey J, Judd LM, Pacidônio EC, Duyvestyn JM, Gonçalves DS, Lin SY, O'Donnell TB, O'Neill SL, Simmons CP, Holt KE, Flores HA. wMel Wolbachia genome remains stable after 7 years in Australian Aedes aegypti field populations. Microb Genom 2021; 7. [PMID: 34468309 PMCID: PMC8715424 DOI: 10.1099/mgen.0.000641] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Infection of wMel Wolbachia in Aedes aegypti imparts two signature features that enable its application for biocontrol of dengue. First, the susceptibility of mosquitoes to viruses such as dengue and Zika is reduced. Second, a reproductive manipulation is caused that enables wMel introgression into wild-type mosquito populations. The long-term success of this method relies, in part, on evolution of the wMel genome not compromising the critical features that make it an attractive biocontrol tool. This study compared the wMel Wolbachia genome at the time of initial releases and 1-7 years post-release in Cairns, Australia. Our results show the wMel genome remains highly conserved up to 7 years post-release in gene sequence, content, synteny and structure. This work suggests the wMel genome is stable in its new mosquito host and, therefore, provides reassurance on the potential for wMel to deliver long-term public-health impacts.
Collapse
Affiliation(s)
- Kimberley R Dainty
- Institute of Vector-Borne Disease, Monash University, Melbourne, Victoria, Australia.,Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Jane Hawkey
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Louise M Judd
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Etiene C Pacidônio
- Institute of Vector-Borne Disease, Monash University, Melbourne, Victoria, Australia.,World Mosquito Program, Monash University, Melbourne, Victoria, Australia
| | - Johanna M Duyvestyn
- Institute of Vector-Borne Disease, Monash University, Melbourne, Victoria, Australia.,World Mosquito Program, Monash University, Melbourne, Victoria, Australia
| | - Daniela S Gonçalves
- Institute of Vector-Borne Disease, Monash University, Melbourne, Victoria, Australia.,World Mosquito Program, Monash University, Melbourne, Victoria, Australia
| | - Silk Yu Lin
- Institute of Vector-Borne Disease, Monash University, Melbourne, Victoria, Australia.,World Mosquito Program, Monash University, Melbourne, Victoria, Australia
| | - Tanya B O'Donnell
- Institute of Vector-Borne Disease, Monash University, Melbourne, Victoria, Australia.,World Mosquito Program, Monash University, Melbourne, Victoria, Australia
| | - Scott L O'Neill
- Institute of Vector-Borne Disease, Monash University, Melbourne, Victoria, Australia.,World Mosquito Program, Monash University, Melbourne, Victoria, Australia
| | - Cameron P Simmons
- Institute of Vector-Borne Disease, Monash University, Melbourne, Victoria, Australia.,World Mosquito Program, Monash University, Melbourne, Victoria, Australia.,Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Kathryn E Holt
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Heather A Flores
- Institute of Vector-Borne Disease, Monash University, Melbourne, Victoria, Australia.,World Mosquito Program, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
46
|
Rohaizat Hassan M, Atika Azit N, Mohd Fadzil S, Abd Ghani SR, Ahmad N, Mohammed Nawi A. Insecticide resistance of Dengue vectors in South East Asia: a systematic review. Afr Health Sci 2021; 21:1124-1140. [PMID: 35222575 PMCID: PMC8843301 DOI: 10.4314/ahs.v21i3.21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The insecticides used widely has led to resistance in the vector and impose a challenge to vector control operation. OBJECTIVES This review aims to analyse the distribution of insecticide resistance of dengue vectors in South East Asia and to describe the mechanism of insecticide resistance. METHODS Literature search for articles published on 2015 to 2019 from PubMed, Scopus and ProQuest was performed. Total of 37 studies included in the final review from the initial 420 studies. RESULTS Pyrethroid resistance was concentrated on the west coast of Peninsular Malaysia and Northern Thailand and scattered at Java Island, Indonesia while organophosphate resistance was seen across the Java Island (Indonesia), West Sumatera and North Peninsular Malaysia. Organochlorine resistance was seen in Sabah, Malaysia and scattered distribution in Nusa Tenggara, Indonesia. V1016G, S989P, F1269C gene mutation in Aedes Aegypti were associated with Pyrethroid resistance in Singapore and Indonesia. In Malaysia, over-expressed with monooxygenase P450 genes (CYP9J27, CYP6CB1, CYP9J26 and CYP9M4) Glutathione S-transferases, carboxylesterases commonly associated with pyrethroids resistance in Aedes Aegypti and CYP612 overexpressed in Aedes Albopictus. The genetic mutation in A302S in Aedes Albopictus was associated with organochlorine resistance in Malaysia. CONCLUSIONS Rotation of insecticide, integration with synergist and routine assessment of resistance profile are recommended strategies in insecticide resistance management.
Collapse
|
47
|
A wAlbB Wolbachia transinfection displays stable phenotypic effects across divergent Aedes aegypti mosquito backgrounds. Appl Environ Microbiol 2021; 87:e0126421. [PMID: 34379518 DOI: 10.1128/aem.01264-21] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aedes mosquitoes harboring intracellular Wolbachia bacteria are being released in arbovirus and mosquito control programs. With releases taking place around the world, understanding the contribution of host variation to Wolbachia phenotype is crucial. We generated a Wolbachia transinfection (wAlbBQ) in Aedes aegypti and performed backcrossing to introduce the infection into Australian or Malaysian nuclear backgrounds. Whole Wolbachia genome sequencing shows that the wAlbBQ transinfection is near-identical to the reference wAlbB genome, suggesting few changes since the infection was first introduced to Ae. aegypti over 15 years ago. However, these sequences were distinct from other available wAlbB genome sequences, highlighting the potential diversity of wAlbB in natural Ae. albopictus populations. Phenotypic comparisons demonstrate effects of wAlbB infection on egg hatch and nuclear background on fecundity and body size, but no interactions between wAlbB infection and nuclear background for any trait. The wAlbB infection was stable at high temperatures and showed perfect maternal transmission and cytoplasmic incompatibility regardless of host background. Our results demonstrate the stability of wAlbB across host backgrounds and point to its long-term effectiveness for controlling arbovirus transmission and mosquito populations. Importance Wolbachia bacteria are being used to control the transmission of dengue and other arboviruses by mosquitoes. For Wolbachia release programs to be effective globally, Wolbachia infections must be stable across mosquito populations from different locations. In this study, we transferred Wolbachia (strain wAlbB) to Aedes aegypti mosquitoes with an Australian genotype and introduced the infection to Malaysian mosquitoes through backcrossing. We found that the phenotypic effects of Wolbachia are stable across both mosquito backgrounds. We sequenced the genome of wAlbB and found very few genetic changes despite spending over 15 years in a novel mosquito host. Our results suggest that the effects of Wolbachia infections are likely to remain stable across time and host genotype.
Collapse
|
48
|
Growth and Maintenance of Wolbachia in Insect Cell Lines. INSECTS 2021; 12:insects12080706. [PMID: 34442272 PMCID: PMC8396524 DOI: 10.3390/insects12080706] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/02/2022]
Abstract
Simple Summary Wolbachia is an intracellular bacterium that occurs in arthropods and in filarial worms. First described nearly a century ago in the reproductive tissues of Culex pipiens mosquitoes, Wolbachia is now known to occur in roughly 50% of insect species, and has been considered the most abundant intracellular bacterium on earth. In insect hosts, Wolbachia modifies reproduction in ways that facilitate spread of the microbe within the host population, but otherwise is relatively benign. In this “gene drive” capacity, Wolbachia provides a tool for manipulating mosquito populations. In mosquitoes, Wolbachia causes cytoplasmic incompatibility, in which the fusion of egg and sperm nuclei is disrupted, and eggs fail to hatch, depending on the presence/absence of Wolbachia in the parent insects. Recent findings demonstrate that Wolbachia from infected insects can be transferred into mosquito species that do not host a natural infection. When transinfected into Aedes aegypti, an important vector of dengue and Zika viruses, Wolbachia causes cytoplasmic incompatibility and, in addition, decreases the mosquito’s ability to transmit viruses to humans. This review addresses the maintenance of Wolbachia in insect cell lines, which provide a tool for high-level production of infectious bacteria. In vitro technologies will improve use of Wolbachia for pest control, and provide the microbiological framework for genetic engineering of this promising biocontrol agent. Abstract The obligate intracellular microbe, Wolbachia pipientis (Rickettsiales; Anaplasmataceae), is a Gram-negative member of the alpha proteobacteria that infects arthropods and filarial worms. Although closely related to the genera Anaplasma and Ehrlichia, which include pathogens of humans, Wolbachia is uniquely associated with invertebrate hosts in the clade Ecdysozoa. Originally described in Culex pipiens mosquitoes, Wolbachia is currently represented by 17 supergroups and is believed to occur in half of all insect species. In mosquitoes, Wolbachia acts as a gene drive agent, with the potential to modify vector populations; in filarial worms, Wolbachia functions as a symbiont, and is a target for drug therapy. A small number of Wolbachia strains from supergroups A, B, and F have been maintained in insect cell lines, which are thought to provide a more permissive environment than the natural host. When transferred back to an insect host, Wolbachia produced in cultured cells are infectious and retain reproductive phenotypes. Here, I review applications of insect cell lines in Wolbachia research and describe conditions that facilitate Wolbachia infection and replication in naive host cells. Progress in manipulation of Wolbachia in vitro will enable genetic and biochemical advances that will facilitate eventual genetic engineering of this important biological control agent.
Collapse
|
49
|
Caragata EP, Dutra HLC, Sucupira PHF, Ferreira AGA, Moreira LA. Wolbachia as translational science: controlling mosquito-borne pathogens. Trends Parasitol 2021; 37:1050-1067. [PMID: 34303627 DOI: 10.1016/j.pt.2021.06.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/21/2021] [Accepted: 06/29/2021] [Indexed: 01/23/2023]
Abstract
In this review we examine how exploiting the Wolbachia-mosquito relationship has become an increasingly popular strategy for controlling arbovirus transmission. Field deployments of Wolbachia-infected mosquitoes have led to significant decreases in dengue virus incidence via high levels of mosquito population suppression and replacement, emphasizing the success of Wolbachia approaches. Here, we examine how improved knowledge of Wolbachia-host interactions has provided key insight into the mechanisms of the essential phenotypes of pathogen blocking and cytoplasmic incompatibility. And we discuss recent studies demonstrating that extrinsic factors, such as ambient temperature, can modulate Wolbachia density and maternal transmission. Finally, we assess the prospects of using Wolbachia to control other vectors and agricultural pest species.
Collapse
Affiliation(s)
- Eric P Caragata
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, FL, USA.
| | - Heverton L C Dutra
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Pedro H F Sucupira
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou - Fiocruz, Belo Horizonte, MG, Brazil
| | - Alvaro G A Ferreira
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou - Fiocruz, Belo Horizonte, MG, Brazil
| | - Luciano A Moreira
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou - Fiocruz, Belo Horizonte, MG, Brazil.
| |
Collapse
|
50
|
Wang GH, Gamez S, Raban RR, Marshall JM, Alphey L, Li M, Rasgon JL, Akbari OS. Combating mosquito-borne diseases using genetic control technologies. Nat Commun 2021; 12:4388. [PMID: 34282149 PMCID: PMC8290041 DOI: 10.1038/s41467-021-24654-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 06/30/2021] [Indexed: 01/03/2023] Open
Abstract
Mosquito-borne diseases, such as dengue and malaria, pose significant global health burdens. Unfortunately, current control methods based on insecticides and environmental maintenance have fallen short of eliminating the disease burden. Scalable, deployable, genetic-based solutions are sought to reduce the transmission risk of these diseases. Pathogen-blocking Wolbachia bacteria, or genome engineering-based mosquito control strategies including gene drives have been developed to address these problems, both requiring the release of modified mosquitoes into the environment. Here, we review the latest developments, notable similarities, and critical distinctions between these promising technologies and discuss their future applications for mosquito-borne disease control.
Collapse
Affiliation(s)
- Guan-Hong Wang
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, CA, USA
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Stephanie Gamez
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, CA, USA
| | - Robyn R Raban
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, CA, USA
| | - John M Marshall
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, Berkeley, CA, USA
| | - Luke Alphey
- Arthropod Genetics, The Pirbright Institute, Pirbright, UK
| | - Ming Li
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, CA, USA
| | - Jason L Rasgon
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
- The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Omar S Akbari
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, CA, USA.
| |
Collapse
|