1
|
Van NTH, Bach PC, Thuong VT, Tuyen TT, Vien TA, Thuy DTT, Quynh DT, Nghi DH, Quan PM, Xuan NM, Toan TQ, Minh PTH, Hung NH. Chemical Composition and Pesticidal Activities Against Three Vector Mosquito Species of Zanthoxylum armatum DC. Essential Oils. Chem Biodivers 2025:e202500648. [PMID: 40257289 DOI: 10.1002/cbdv.202500648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/12/2025] [Accepted: 04/21/2025] [Indexed: 04/22/2025]
Abstract
In this study, we investigated the extraction yield and chemical composition of essential oils from the fruit, leaf, and twig of Zanthoxylum armatum from Vietnam. The fruit essential oil (FEO) with high content, representing a chemotype, was evaluated for pesticidal activities against three mosquito species Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus, according to the WHO guidelines with modifications. The results showed that the major constituents of FEO were limonene (30.50%), sabinene (15.16%), terpinen-4-ol (13.05%), and γ-terpinene (7.49%). The major constituents of leaf essential oil (LEO) were sabinene (20%), 1,8-cineole (16.97%), limonene (12.32%), and 2-undecanone (9.17%). The twig essential oil (TEO) was rich in ketones (73.84%), with the main constituents being 2-undecanone (47.33%) and 2-tridecanone (26.14%). FEO exhibited potential pesticidal activities: larvicidal activities with 24-h LC50 values ranging from 21.55 to 29.53 µg/mL inhibited the biting of A. aegypti adults with a protection time of 176.5 ± 40.20 min, and exhibited potent adulticidal activities against A. aegypti. In addition, FEO did not exhibit cytotoxicity against the normal Vero cell line. This study contributes an evidence base to support the future development and use of FEO as a promising biopesticide agent for the control of disease-transmitting mosquito species and altering synthetic pesticides.
Collapse
Affiliation(s)
- Nguyen Thi Hong Van
- Institute of Chemistry (ICH), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Pham Cao Bach
- Institute of Chemistry (ICH), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Vo Thanh Thuong
- Department of Pharmacy, Duy Tan University, Da Nang, Vietnam
| | - Tran Thi Tuyen
- Institute of Chemistry (ICH), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Trinh Anh Vien
- Department of Examination and Quality Assurance of Education, Hanoi Medical University-Thanh Hoa Campus, Thanh Hoa, Vietnam
| | - Dinh Thi Thu Thuy
- Institute of Chemistry (ICH), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Dang Thu Quynh
- Institute of Chemistry (ICH), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Do Huu Nghi
- Institute of Chemistry (ICH), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Pham Minh Quan
- Institute of Chemistry (ICH), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Nguyen Mua Xuan
- Institute of Chemistry (ICH), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Tran Quoc Toan
- Institute of Chemistry (ICH), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Pham Thi Hong Minh
- Institute of Chemistry (ICH), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Nguyen Huy Hung
- Department of Pharmacy, Duy Tan University, Da Nang, Vietnam
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
2
|
Park K, Kim K, Kim J, Noh J, Kim SG, Cho HK, Seo YR, Kim JI, Park MS, Kim WK, Song JW. Web Visualization for Spatiotemporal Genomic Epidemiology, Annotation, and Mutation Dynamics of Orthohantavirus hantanense Using Nextstrain. Am J Trop Med Hyg 2025; 112:871-874. [PMID: 39874598 PMCID: PMC11965749 DOI: 10.4269/ajtmh.24-0432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/08/2024] [Indexed: 01/30/2025] Open
Abstract
The phylogeographic inference approach aims to connect genomic data with epidemiology to understand the spread and evolution of pathogens using visualization of spatiotemporal reconstructions. Orthohantavirus hantanense (HTNV), the causative agent of hemorrhagic fever with renal syndrome (HFRS), represents a significant global public health concern. Here, we introduce a localized Nextstrain platform for HTNV, offering a comprehensive resource for facilitating spatiotemporal genomic surveillance and the study of evolutionary dynamics of viral genomes. Nextstrain enables web-based visualization and simple sharing of graphic and numeric data through unique web addresses. The Nextstrain build for HTNV stands out for its user-friendly interface and is readily accessible online at https://nextstrain.org/community/KU-MV/Hantavirus. This study provides valuable insights into genomic surveillance, viral phylodynamics, and the evolutionary history of orthohantaviruses for the development of public health policies against endemic HFRS outbreaks.
Collapse
Affiliation(s)
- Kyungmin Park
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kijin Kim
- Centre for Infectious Disease Genomics and One Health, Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Jongwoo Kim
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Juyoung Noh
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seong-Gyu Kim
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hee-Kyung Cho
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Ye-rin Seo
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jin Il Kim
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Man-Seong Park
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Won-Keun Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
- Institute of Medical Research, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jin-Won Song
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
3
|
Bruno L, Nappo MA, Frontoso R, Perrotta MG, Di Lecce R, Guarnieri C, Ferrari L, Corradi A. West Nile Virus (WNV): One-Health and Eco-Health Global Risks. Vet Sci 2025; 12:288. [PMID: 40266979 PMCID: PMC11945822 DOI: 10.3390/vetsci12030288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/03/2025] [Accepted: 03/08/2025] [Indexed: 04/25/2025] Open
Abstract
West Nile virus (WNV) is an important zoonotic pathogen belonging to the Flaviviridae family, which is endemic in some areas and emerging in others. WNV is transmitted by blood-sucking mosquitoes of the genus Culicoides, Aedes, and Anopheles, and the infection can cause different clinical symptoms. The most common and benign illness in humans is West Nile fever (WNF), but a lethal neurological disease (WNND), related to the neuro-invasiveness of WNV lineage 2, represents the highest health risk of WNV infection. The neuro-clinical form is recognized in mammals (land and cetaceans), particularly in humans (elderly or immunosuppressed) and in horses, avian species, and wildlife animals ranging free or in a zoological setting. This review highlights the most relevant data regarding epidemiology, virology, pathogenesis and immunity, clinical signs and differential diagnosis, pathology and imaging, histopathology and gross pathology, economic impact, influence of climate change, and surveillance of WNV. Climate change has favored the wide spread of WNV in many areas of the globe and consequent One-Health and Eco-Health emergencies, influencing the health of human beings, animals, and ecosystems.
Collapse
Affiliation(s)
- Luigi Bruno
- Department of Prevention, Azienda Sanitaria Locale (A.S.L.) Napoli 3 Sud, Castellammare di Stabia, 80053 Naples, Italy;
| | - Maria Anna Nappo
- Department of Prevention, Azienda Sanitaria Locale (A.S.L.) Napoli 3 Sud, Castellammare di Stabia, 80053 Naples, Italy;
| | - Raffaele Frontoso
- Istituto Zooprofilattico Sperimentale del Mezzogiorno (I.Z.S.M.), Portici, 80055 Naples, Italy
| | - Maria Gabriella Perrotta
- Ministry of Health, Office 3 exDGSAF of the General Directorate of Animal Health, 00144 Rome, Italy;
| | - Rosanna Di Lecce
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (R.D.L.); (C.G.); (A.C.)
| | - Chiara Guarnieri
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (R.D.L.); (C.G.); (A.C.)
| | - Luca Ferrari
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (R.D.L.); (C.G.); (A.C.)
| | - Attilio Corradi
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (R.D.L.); (C.G.); (A.C.)
| |
Collapse
|
4
|
Marquard S, Wade H, Oerther S. The Role of the School Nurse in Addressing Climate-Associated Illnesses: Vector-Borne Diseases. NASN Sch Nurse 2025; 40:80-85. [PMID: 38665044 DOI: 10.1177/1942602x241247143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
The ecosystems of planet Earth have been subjected to significant changes in climate because of human activities in the last several hundred years. As winters become milder and springs begin earlier each year, many of the most common vectors, including mosquitoes and ticks, have more time to reproduce and are expanding their natural habitats. The purpose of this article is to increase awareness of how mosquitos and ticks impact the health of school-age children. This is the sixth and final article in a series of articles meant to educate school nurses about poor health outcomes related to changes in climate and to provide them with the tools they need to safeguard the well-being of children.
Collapse
Affiliation(s)
- Samantha Marquard
- Trudy Busch Valentine School of Nursing, Saint Louis University, St. Louis, MO, USA
| | - Heather Wade
- Trudy Busch Valentine School of Nursing, Saint Louis University, St. Louis, MO, USA
| | - Sarah Oerther
- Goldfarb School of Nursing, Barnes-Jewish College, St. Louis, MO, USA
| |
Collapse
|
5
|
Brüssow H, Figuerola J. The Spread of the Mosquito-Transmitted West Nile Virus in North America and Europe. Microb Biotechnol 2025; 18:e70120. [PMID: 40035176 PMCID: PMC11877000 DOI: 10.1111/1751-7915.70120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 02/15/2025] [Indexed: 03/05/2025] Open
Abstract
West Nile virus (WNV) disease, a mosquito-transmitted Flavivirus infection, represents a substantial public health research interest. This virus was unknown in the Western hemisphere until it was introduced in 1999 into an immunologically naïve population. WNV caused an epizootic and epidemic in New York City. The infection then swept over North America, causing mass mortality in birds and cumulatively 60,000 human cases, half of whom were hospitalised, mostly with neurological symptoms. The virus closely resembled a goose virus isolated in Israel in 1998. Mosquitoes of the genus Culex were identified as the insect viral vectors. WNV can infect more than 300 bird species, but in the US, the American robin (Turdus migratorius) represented the ecologically most important bird viral reservoir. Mosquito-to-mosquito viral transmission might amplify the viral spread, and iatrogenic WNV transmission was also observed, leading to the screening of blood products. Compared with African WNV isolates, the New York WNV isolate NY99 showed a mutation in the nonstructural protein NS3 that increased its virulence in birds and was also observed in WNV outbreaks from Romania in 1996 and from Russia in 1999. During its spread across the US, NY99 acquired a mutation in the envelope gene E that favoured viral infection in the insect vector. Europe reported 1200 annual WNV cases in 2024, with a focus in Mediterranean countries, but a northward spread of the infection to Germany and The Netherlands was also noted. Global warming is likely to affect the geographical distribution of vector-borne infections such that people living in temperate climate areas might be increasingly exposed to these infections. Therefore, research on temperature effects on WNV transmission by Culex mosquitoes has become a recent focus of research. Pertinent climate aspects of WNV infections are retraced in the present review.
Collapse
Affiliation(s)
- Harald Brüssow
- Department of Biosystems, Laboratory of Gene TechnologyKU LeuvenLeuvenBelgium
| | - Jordi Figuerola
- Department of Global Change and ConservationEstación Biológica de Doñana‐CSICSevillaSpain
- CIBER Epidemiología y Salud PublicaMadridSpain
| |
Collapse
|
6
|
Schwartz FW, Ibaraki M, Hort HM. Seasonal Bird Migration Could Explain Regional Synchronicity and Amplification in Human West Nile Virus Case Numbers. GEOHEALTH 2025; 9:e2024GH001194. [PMID: 40115967 PMCID: PMC11923459 DOI: 10.1029/2024gh001194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 02/23/2025] [Accepted: 02/28/2025] [Indexed: 03/23/2025]
Abstract
West Nile virus (WNV) is a zoonotic virus with a mosquito-avian transmission cycle having occasional spillover to mammals. A network analysis of annual log-transformed WNV case numbers (2003-2022) generated four spatially and temporally coherent clusters among 48 U.S. states and six Canadian provinces. Cluster 1 and Cluster 3 were the largest groups corresponding to the Central Flyway and the closely associated Eastern Flyway (with an east-coast subset). Cluster 2 and Cluster 4 corresponded with less-well defined segments of a distinctly different Western Flyway. Thus, clustering can be explained by migratory pathways of terrestrial birds. We investigated avian involvement in the spread of WNV from potential sources in the southern U.S. Analyses revealed consistent patterns in log-transformed case numbers of human WNV. This study highlights the significant role of migratory birds in shaping the spatiotemporal patterns of WNV incidence across North America. However, the observed variability in incidence also likely reflects the interplay of other factors including local environmental conditions, mosquito populations, and regional variations in both migratory and non-migratory bird populations.
Collapse
Affiliation(s)
| | - Motomu Ibaraki
- School of Earth Science The Ohio State University Columbus OH USA
| | | |
Collapse
|
7
|
Mohan G, Choudhury A, Bhat J, Phartyal R, Lal R, Verma M. Human Riboviruses: A Comprehensive Study. J Mol Evol 2025; 93:11-37. [PMID: 39739017 DOI: 10.1007/s00239-024-10221-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/20/2024] [Indexed: 01/02/2025]
Abstract
The urgency to understand the complex interactions between viruses, their animal reservoirs, and human populations has been necessitated by the continuous spread of zoonotic viral diseases as evidenced in epidemics and pandemics throughout human history. Riboviruses are involved in some of the most prevalent human diseases, responsible for causing epidemics and pandemics. These viruses have an animal origin and have been known to cross the inter-species barrier time and time again, eventually infecting human beings. Their evolution has been a long road to harbour important adaptations for increasing fitness, mutability and virulence; a result of natural selection and mutation pressure, making these viruses highly infectious and difficult to counter. Accumulating favourable mutations in the course, they imitate the GC content and codon usage patterns of the host for maximising the chances of infection. A myriad of viral and host factors determine the fate of specific viral infections, which may include virus protein and host receptor compatibility, host restriction factors and others. Thus, understanding the biology, transmission and molecular mechanisms of Riboviruses is essential for the development of effective antiviral treatments, vaccine development and strategies to prevent and control viral infections. Keeping these aspects in mind, this review aims to provide a holistic approach towards understanding Riboviruses.
Collapse
Affiliation(s)
- Gauravya Mohan
- Department of Biological Sciences, Sri Venkateswara College, University of Delhi (South Campus), New Delhi, 110021, India
| | - Akangkha Choudhury
- Department of Biological Sciences, Sri Venkateswara College, University of Delhi (South Campus), New Delhi, 110021, India
| | - Jeevika Bhat
- Department of Biological Sciences, Sri Venkateswara College, University of Delhi (South Campus), New Delhi, 110021, India
| | - Rajendra Phartyal
- Department of Zoology, Sri Venkateswara College, University of Delhi (South Campus), New Delhi, 110021, India
| | - Rup Lal
- PhiXGen Private Limited, Gurugram, Haryana, 122001, India
| | - Mansi Verma
- Department of Zoology, Hansraj College, University of Delhi, Mahatma Hansraj Marg, Malkaganj, Delhi, 110007, India.
| |
Collapse
|
8
|
Carrasco L, Utrilla MJ, Fuentes-Romero B, Fernandez-Novo A, Martin-Maldonado B. West Nile Virus: An Update Focusing on Southern Europe. Microorganisms 2024; 12:2623. [PMID: 39770826 PMCID: PMC11677777 DOI: 10.3390/microorganisms12122623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/04/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
West Nile Virus (WNV) is a zoonotic, vector-borne pathogen affecting humans and animals, particularly in Europe. The virus is primarily transmitted through mosquitoes that infect birds, which serve as the main reservoirs. Humans and horses are incidental hosts. This review focuses on the epidemiology of WNV in southern Europe, particularly its increasing prevalence. Methods included an extensive literature review and analysis of recent outbreaks. WNV is largely asymptomatic in humans, but a small percentage can develop West Nile neuroinvasive disease (WNND), leading to severe neurological symptoms and fatalities. Horses can also suffer from neurological complications, with high mortality rates. Climate change, migratory birds, and mosquito population dynamics contribute to the virus spread across Europe. Control efforts focus on vector management, and while vaccines are available for horses, none has been approved for humans. Surveillance, particularly of bird and mosquito populations, and further research into the virus molecular structure are crucial for understanding and mitigating future outbreaks.
Collapse
Affiliation(s)
- Lara Carrasco
- Department of Veterinary Medicine, Biomedical and Health Sciences School, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain; (M.J.U.); (B.F.-R.); (A.F.-N.); (B.M.-M.)
| | - Maria Jose Utrilla
- Department of Veterinary Medicine, Biomedical and Health Sciences School, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain; (M.J.U.); (B.F.-R.); (A.F.-N.); (B.M.-M.)
| | - Beatriz Fuentes-Romero
- Department of Veterinary Medicine, Biomedical and Health Sciences School, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain; (M.J.U.); (B.F.-R.); (A.F.-N.); (B.M.-M.)
- Veterinary Hospital, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
| | - Aitor Fernandez-Novo
- Department of Veterinary Medicine, Biomedical and Health Sciences School, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain; (M.J.U.); (B.F.-R.); (A.F.-N.); (B.M.-M.)
| | - Barbara Martin-Maldonado
- Department of Veterinary Medicine, Biomedical and Health Sciences School, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain; (M.J.U.); (B.F.-R.); (A.F.-N.); (B.M.-M.)
| |
Collapse
|
9
|
Silverj A, Mencattelli G, Monaco F, Iapaolo F, Teodori L, Leone A, Polci A, Curini V, Di Domenico M, Secondini B, Di Lollo V, Ancora M, Di Gennaro A, Morelli D, Perrotta MG, Marini G, Rosà R, Segata N, Rota-Stabelli O, Rizzoli A, Savini G, West Nile Virus Working Group. Origin and evolution of West Nile virus lineage 1 in Italy. Epidemiol Infect 2024; 152:e150. [PMID: 39620707 PMCID: PMC11626449 DOI: 10.1017/s0950268824001420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 07/10/2024] [Accepted: 09/03/2024] [Indexed: 12/11/2024] Open
Abstract
West Nile virus (WNV) is a mosquito-borne pathogen that can infect humans, equids, and many bird species, posing a threat to their health. It consists of eight lineages, with Lineage 1 (L1) and Lineage 2 (L2) being the most prevalent and pathogenic. Italy is one of the hardest-hit European nations, with 330 neurological cases and 37 fatalities in humans in the 2021-2022 season, in which the L1 re-emerged after several years of low circulation. We assembled a database comprising all publicly available WNV genomes, along with 31 new Italian strains of WNV L1 sequenced in this study, to trace their evolutionary history using phylodynamics and phylogeography. Our analysis suggests that WNV L1 may have initially entered Italy from Northern Africa around 1985 and indicates a connection between European and Western Mediterranean countries, with two distinct strains circulating within Italy. Furthermore, we identified new genetic mutations that are typical of the Italian strains and that can be tested in future studies to assess their pathogenicity. Our research clarifies the dynamics of WNV L1 in Italy, provides a comprehensive dataset of genome sequences for future reference, and underscores the critical need for continuous and coordinated surveillance efforts between Europe and Africa.
Collapse
Affiliation(s)
- Andrea Silverj
- Centre Agriculture Food Environment, University of Trento, San Michele all’Adige, Trento, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
- Department CIBIO, University of Trento, Trento, Italy
| | - Giulia Mencattelli
- Centre Agriculture Food Environment, University of Trento, San Michele all’Adige, Trento, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Federica Monaco
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Federica Iapaolo
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Liana Teodori
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Alessandra Leone
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Andrea Polci
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Valentina Curini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Marco Di Domenico
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Barbara Secondini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Valeria Di Lollo
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Massimo Ancora
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Annapia Di Gennaro
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Daniela Morelli
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | | | - Giovanni Marini
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Roberto Rosà
- Centre Agriculture Food Environment, University of Trento, San Michele all’Adige, Trento, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
| | - Omar Rota-Stabelli
- Centre Agriculture Food Environment, University of Trento, San Michele all’Adige, Trento, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
- Department CIBIO, University of Trento, Trento, Italy
| | - Annapaola Rizzoli
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Giovanni Savini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - West Nile Virus Working Group
- The members of the West Nile virus working group are listed in the group authorship list, located in supplementary materials
| |
Collapse
|
10
|
Bigeard C, Pezzi L, Klitting R, Ayhan N, L’Ambert G, Gomez N, Piorkowski G, Amaral R, Durand GA, Colmant AMG, Giraud C, Ramiara K, Migné C, Grard G, Touzet T, Zientara S, Charrel R, Gonzalez G, Duvignaud A, Malvy D, de Lamballerie X, Fontaine A. Molecular Xenomonitoring (MX) allows real-time surveillance of West Nile and Usutu virus in mosquito populations. PLoS Negl Trop Dis 2024; 18:e0012754. [PMID: 39724146 PMCID: PMC11709297 DOI: 10.1371/journal.pntd.0012754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 01/08/2025] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
West Nile Virus (WNV) and Usutu virus (USUV) circulate through complex cryptic transmission cycles involving mosquitoes as vectors, birds as amplifying hosts and several mammal species as dead-end hosts. Both viruses can be transmitted to humans through mosquito bites, which can lead to neuroinvasive and potentially fatal disease. Notably, WNV can also be transmitted through blood donations and organ transplants. The high proportion of asymptomatic infections caused by these viruses and their cryptic enzootic circulation make their early detection in the environment challenging. Viral surveillance in France still heavily relies on human and animal surveillance, i.e. late indicators of viral circulation. Entomological surveillance is a method of choice for identifying virus circulation ahead of the first human and animal cases and to reveal their genetic identity, but performing molecular screening of vectors is expensive, and time-consuming. Here we show substantial WNV and USUV co-circulation in Atlantic seaboard of France between July and August 2023 using a non-invasive MX (Molecular Xenomonitoring) method that use trapped mosquito excreta. MX offers significant advantages over traditional entomological surveillance: it is cost-effective and efficient, enabling viral RNA screening from a community of trapped mosquitoes via their excreta, which can be transported at room temperature. Additionally, MX extends the longevity of trapped mosquitoes, enhancing virus detection and simplifying logistics, and is easy to implement without requiring specialized skills. At the crossroads between entomological and environmental surveillance, MX can detect the circulation of zoonotic pathogens in the environment before cases are observed in humans and horses, enabling the timely alerts to health policy makers, allowing them to take suitable control measures.
Collapse
Affiliation(s)
- Clément Bigeard
- Department of Infectious Diseases and Tropical Medicine, CHU Bordeaux, France; National Institute for Health and Medical Research (INSERM) UMR 1219, Research Institute for Sustainable Development (IRD) EMR 271, Bordeaux Population Health Research Centre, University of Bordeaux, Bordeaux, France
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR Virologie, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Laura Pezzi
- Centre National de Référence des Arbovirus, Inserm-IRBA, Marseille, France
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), France
| | - Raphaelle Klitting
- Centre National de Référence des Arbovirus, Inserm-IRBA, Marseille, France
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), France
| | - Nazli Ayhan
- Centre National de Référence des Arbovirus, Inserm-IRBA, Marseille, France
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), France
| | - Grégory L’Ambert
- Entente interdépartementale pour la démoustication du littoral méditerranéen (EID Méditerranée), Montpellier, France
| | - Nicolas Gomez
- Unité de Parasitologie et Entomologie, Département Microbiologie et maladies infectieuses, Institut de Recherche Biomédicale des Armées (IRBA), Marseille, France
| | - Géraldine Piorkowski
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), France
| | - Rayane Amaral
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), France
| | - Guillaume André Durand
- Centre National de Référence des Arbovirus, Inserm-IRBA, Marseille, France
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), France
| | - Agathe M. G. Colmant
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), France
| | - Cynthia Giraud
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), France
| | - Katia Ramiara
- Department of Infectious Diseases and Tropical Medicine, CHU Bordeaux, France; National Institute for Health and Medical Research (INSERM) UMR 1219, Research Institute for Sustainable Development (IRD) EMR 271, Bordeaux Population Health Research Centre, University of Bordeaux, Bordeaux, France
| | - Camille Migné
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR Virologie, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Gilda Grard
- Centre National de Référence des Arbovirus, Inserm-IRBA, Marseille, France
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), France
| | - Thierry Touzet
- Direction Régional de l’Alimentation de l’Agriculture et de la Forêt (DRAAF) de Nouvelle-Aquitaine
| | - Stéphan Zientara
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR Virologie, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Rémi Charrel
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), France
| | - Gaëlle Gonzalez
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR Virologie, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Alexandre Duvignaud
- Department of Infectious Diseases and Tropical Medicine, CHU Bordeaux, France; National Institute for Health and Medical Research (INSERM) UMR 1219, Research Institute for Sustainable Development (IRD) EMR 271, Bordeaux Population Health Research Centre, University of Bordeaux, Bordeaux, France
| | - Denis Malvy
- Department of Infectious Diseases and Tropical Medicine, CHU Bordeaux, France; National Institute for Health and Medical Research (INSERM) UMR 1219, Research Institute for Sustainable Development (IRD) EMR 271, Bordeaux Population Health Research Centre, University of Bordeaux, Bordeaux, France
| | - Xavier de Lamballerie
- Centre National de Référence des Arbovirus, Inserm-IRBA, Marseille, France
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), France
| | - Albin Fontaine
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), France
- Institut de Recherche Biomédicale des Armées (IRBA), Unité de virologie, Marseille, France
| |
Collapse
|
11
|
Eibner GJ, Graff SL, Hieke C, Ochieng JR, Kopp A, Drosten C, Lutwama J, Rwego IB, Junglen S. Genotypic and phylogeographic insights into a pre-epidemic variant of Wesselsbron virus detected in sylvatic Aedes mcintoshi from Semuliki Forest, Uganda. Microbiol Spectr 2024; 12:e0091424. [PMID: 39530699 PMCID: PMC11619370 DOI: 10.1128/spectrum.00914-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/18/2024] [Indexed: 11/16/2024] Open
Abstract
Wesselsbron virus (WSLV) is a neglected mosquito-borne virus within the yellow fever subgroup in the genus Orthoflavivirus of the Flaviviridae family. Despite being primarily a veterinary pathogen able to cause stillbirths, congenital malformations, and mortality in ruminants, WSLV also infects humans, causing a usually self-limiting febrile illness, or may lead to neurological complications in rare cases. WSLV causes sporadic outbreaks in Southern Africa, but findings in mosquitoes from other African countries suggest a wider distribution. Here, we report the detection and isolation of WSLV from an Aedes mcintoshi mosquito collected in a pristine ecosystem within Semuliki National Park, western Uganda. The detected strain M5937-UG-2018 was impaired in infectivity, replication, and production of infectious particles in cell lines derived from different hosts compared to an epidemic reference strain, SA H177. Full-genome sequencing by next-generation sequencing from the mosquito homogenate revealed a maximum nucleotide identity of 98.1% to a WSLV isolate from a human sample collected in South Africa in 1996. M5937-UG-2018 grouped in phylogenetic analyses with strains from South Africa and Senegal. Reconstruction of the temporal and spatial dispersal of WSLV across Africa estimated a likely origin of WSLV in South Africa in the early 19th century and spread in Southern Africa in the following decades. Long-distance movement toward Western and Eastern Africa was modeled to have occurred in the early 21st century. However, displacing the origin of M5937-UG-2018 did not decrease the likelihood of the model supporting the hypothesis that WSLV is widely distributed in Africa.IMPORTANCEWSLV is a neglected mosquito-borne virus causing teratogenicity in ruminants and febrile illness in humans. WSLV is mainly endemic to Southern Africa, but findings in other regions suggest a wider distribution on the continent. Knowledge of the distribution of WSLV is impaired as differential diagnostics are rarely performed in livestock and humans presenting with symptoms compatible with WSLV infection. Our work investigating viral infections in mosquitoes from a remote tropical rainforest region demonstrates that WSLV is endemic in Uganda. The isolated virus was less infective and showed lower replication ability in vitro compared to an epidemic isolate from South Africa. Phylogeographic reconstruction of spatial and temporal movements, along with the displacement of the origin of the newly detected strain, suggests that WSLV may be widely distributed across Africa. Our data show that the geographic distribution of WSLV and its impact on human and animal health are likely underestimated.
Collapse
Affiliation(s)
- Georg Joachim Eibner
- Institute of Virology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Selina Laura Graff
- Institute of Virology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christian Hieke
- Institute of Virology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - James Robert Ochieng
- Department of Zoology, Entomology and Fisheries Sciences, Makerere University, Kampala, Uganda
| | - Anne Kopp
- Institute of Virology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christian Drosten
- Institute of Virology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julius Lutwama
- Department of Arbovirology, Uganda Virus Research Institute (UVRI), Entebbe, Uganda
| | - Innocent Bidason Rwego
- Department of Biosecurity, Ecosystems and Veterinary Public Health, Makerere University, Kampala, Uganda
| | - Sandra Junglen
- Institute of Virology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
12
|
Krejčová K, Krafcikova P, Klima M, Chalupska D, Chalupsky K, Zilecka E, Boura E. Structural and functional insights in flavivirus NS5 proteins gained by the structure of Ntaya virus polymerase and methyltransferase. Structure 2024; 32:1099-1109.e3. [PMID: 38781970 DOI: 10.1016/j.str.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 04/04/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Flaviviruses are single-stranded positive-sense RNA (+RNA) viruses that are responsible for several (re)emerging diseases such as yellow, dengue, or West Nile fevers. The Zika epidemic highlighted their dangerousness when a relatively benign virus known since the 1950s turned into a deadly pathogen. The central protein for their replication is NS5 (non-structural protein 5), which is composed of the N-terminal methyltransferase (MTase) domain and the C-terminal RNA-dependent RNA-polymerase (RdRp) domain. It is responsible for both RNA replication and installation of the 5' RNA cap. We structurally and biochemically analyzed the Ntaya virus MTase and RdRp domains and we compared their properties to other flaviviral NS5s. The enzymatic centers are well conserved across Flaviviridae, suggesting that the development of drugs targeting all flaviviruses is feasible. However, the enzymatic activities of the isolated proteins were significantly different for the MTase domains.
Collapse
Affiliation(s)
- Kateřina Krejčová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic; Faculty of Sciences, Charles University, Albertov 6, 128 00 Prague 2, Czech Republic
| | - Petra Krafcikova
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Martin Klima
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Dominika Chalupska
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Karel Chalupsky
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Eva Zilecka
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic.
| |
Collapse
|
13
|
Frasca F, Sorrentino L, Fracella M, D’Auria A, Coratti E, Maddaloni L, Bugani G, Gentile M, Pierangeli A, d’Ettorre G, Scagnolari C. An Update on the Entomology, Virology, Pathogenesis, and Epidemiology Status of West Nile and Dengue Viruses in Europe (2018-2023). Trop Med Infect Dis 2024; 9:166. [PMID: 39058208 PMCID: PMC11281579 DOI: 10.3390/tropicalmed9070166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
In recent decades, increases in temperature and tropical rainfall have facilitated the spread of mosquito species into temperate zones. Mosquitoes are vectors for many viruses, including West Nile virus (WNV) and dengue virus (DENV), and pose a serious threat to public health. This review covers most of the current knowledge on the mosquito species associated with the transmission of WNV and DENV and their geographical distribution and discusses the main vertebrate hosts involved in the cycles of WNV or DENV. It also describes virological and pathogenic aspects of WNV or DENV infection, including emerging concepts linking WNV and DENV to the reproductive system. Furthermore, it provides an epidemiological analysis of the human cases of WNV and DENV reported in Europe, from 1 January 2018 to 31 December 2023, with a particular focus on Italy. The first autochthonous cases of DENV infection, with the most likely vector being Aedes albopictus, have been observed in several European countries in recent years, with a high incidence in Italy in 2023. The lack of treatments and effective vaccines is a serious challenge. Currently, the primary strategy to prevent the spread of WNV and DENV infections in humans remains to limit the spread of mosquitoes.
Collapse
Affiliation(s)
- Federica Frasca
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (M.F.); (A.D.); (E.C.); (M.G.); (A.P.); (C.S.)
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (L.M.); (G.B.); (G.d.)
| | - Leonardo Sorrentino
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (M.F.); (A.D.); (E.C.); (M.G.); (A.P.); (C.S.)
| | - Matteo Fracella
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (M.F.); (A.D.); (E.C.); (M.G.); (A.P.); (C.S.)
| | - Alessandra D’Auria
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (M.F.); (A.D.); (E.C.); (M.G.); (A.P.); (C.S.)
| | - Eleonora Coratti
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (M.F.); (A.D.); (E.C.); (M.G.); (A.P.); (C.S.)
| | - Luca Maddaloni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (L.M.); (G.B.); (G.d.)
| | - Ginevra Bugani
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (L.M.); (G.B.); (G.d.)
| | - Massimo Gentile
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (M.F.); (A.D.); (E.C.); (M.G.); (A.P.); (C.S.)
| | - Alessandra Pierangeli
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (M.F.); (A.D.); (E.C.); (M.G.); (A.P.); (C.S.)
| | - Gabriella d’Ettorre
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (L.M.); (G.B.); (G.d.)
| | - Carolina Scagnolari
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (M.F.); (A.D.); (E.C.); (M.G.); (A.P.); (C.S.)
| |
Collapse
|
14
|
Li L, Li S, Ma H, Akhtar MF, Tan Y, Wang T, Liu W, Khan A, Khan MZ, Wang C. An Overview of Infectious and Non-Infectious Causes of Pregnancy Losses in Equine. Animals (Basel) 2024; 14:1961. [PMID: 38998073 PMCID: PMC11240482 DOI: 10.3390/ani14131961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
Equine breeding plays an essential role in the local economic development of many countries, and it has experienced rapid growth in China in recent years. However, the equine industry, particularly large-scale donkey farms, faces a significant challenge with pregnancy losses. Unfortunately, there is a lack of systematic research on abortion during equine breeding. Several causes, both infectious and non-infectious, of pregnancy losses have been documented in equines. The infectious causes are viruses, bacteria, parasites, and fungi. Non-infectious causes may include long transportation, ingestion of mycotoxins, hormonal disturbances, twinning, placentitis, umbilical length and torsion, etc. In current review, we discuss the transmission routes, diagnostic methods, and control measures for these infectious agents. Early detection of the cause and appropriate management are crucial in preventing pregnancy loss in equine practice. This review aims to provide a comprehensive understanding of the potential causes of abortion in equines, including infectious agents and non-infectious factors. It emphasizes the importance of continued research and effective control measures to address this significant challenge in the equine industry.
Collapse
Affiliation(s)
- Liangliang Li
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252059, China; (L.L.)
| | - Shuwen Li
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252059, China; (L.L.)
| | - Haoran Ma
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252059, China; (L.L.)
| | - Muhammad Faheem Akhtar
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252059, China; (L.L.)
| | - Ying Tan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252059, China; (L.L.)
| | - Tongtong Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252059, China; (L.L.)
| | - Wenhua Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Adnan Khan
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 511464, China
| | - Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252059, China; (L.L.)
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252059, China; (L.L.)
| |
Collapse
|
15
|
Walker CW. What is causing this patient's diffuse rash? JAAPA 2024; 37:47-49. [PMID: 38916370 DOI: 10.1097/01.jaa.0000000000000045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Affiliation(s)
- Clay W Walker
- Clay W. Walker practices in family medicine at the Mayo Clinic in Phoenix, Ariz., and is an adjunct faculty member in the PA programs at Southern Illinois University in Carbondale, Ill., Rush University in Chicago, Ill., A.T. Still University in Mesa, Ariz., and Franklin Pierce University in Rindge, N.H. The author has disclosed no potential conflicts of interest, financial or otherwise
| |
Collapse
|
16
|
Koch RT, Erazo D, Folly AJ, Johnson N, Dellicour S, Grubaugh ND, Vogels CB. Genomic epidemiology of West Nile virus in Europe. One Health 2024; 18:100664. [PMID: 38193029 PMCID: PMC10772404 DOI: 10.1016/j.onehlt.2023.100664] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024] Open
Abstract
West Nile virus is one of the most widespread mosquito-borne zoonotic viruses, with unique transmission dynamics in various parts of the world. Genomic surveillance has provided important insights in the global patterns of West Nile virus emergence and spread. In Europe, multiple West Nile virus lineages have been isolated, with lineage 1a and 2 being the main lineages responsible for human infections. In contrast to North America, where a single introduction of lineage 1a resulted in the virus establishing itself in a new continent, at least 13 introductions of lineages 1a and 2 have occurred into Europe, which is likely a vast underestimation of the true number of introductions. Historically, lineage 1a was the main lineage circulating in Europe, but since the emergence of lineage 2 in the early 2000s, the latter has become the predominant lineage. This shift in West Nile virus lineage prevalence has been broadly linked to the expansion of the virus into northerly temperate regions, where autochthonous cases in animals and humans have been reported in Germany and The Netherlands. Here, we discuss how genomic analysis has increased our understanding of the epidemiology of West Nile virus in Europe, and we present a global Nextstrain build consisting of publicly available West Nile virus genomes (https://nextstrain.org/community/grubaughlab/WNV-Global). Our results elucidate recent insights in West Nile virus lineage dynamics in Europe, and discuss how expanded programs can fill current genomic surveillance gaps.
Collapse
Affiliation(s)
- R. Tobias Koch
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Diana Erazo
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Brussels, Belgium
| | - Arran J. Folly
- Vector-Borne Diseases, Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, UK
| | - Nicholas Johnson
- Vector-Borne Diseases, Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, UK
| | - Simon Dellicour
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Brussels, Belgium
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
| | - Nathan D. Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Yale Institute for Global Health, Yale University, New Haven, CT, USA
- Public Health Modeling Unit, Yale School of Public Health, New Haven, CT, United States of America
| | - Chantal B.F. Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Yale Institute for Global Health, Yale University, New Haven, CT, USA
| |
Collapse
|
17
|
Naveed A, Eertink LG, Wang D, Li F. Lessons Learned from West Nile Virus Infection:Vaccinations in Equines and Their Implications for One Health Approaches. Viruses 2024; 16:781. [PMID: 38793662 PMCID: PMC11125849 DOI: 10.3390/v16050781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Humans and equines are two dead-end hosts of the mosquito-borne West Nile virus (WNV) with similar susceptibility and pathogenesis. Since the introduction of WNV vaccines into equine populations of the United States of America (USA) in late 2002, there have been only sporadic cases of WNV infection in equines. These cases are generally attributed to unvaccinated and under-vaccinated equines. In contrast, due to the lack of a human WNV vaccine, WNV cases in humans have remained steadily high. An average of 115 deaths have been reported per year in the USA since the first reported case in 1999. Therefore, the characterization of protective immune responses to WNV and the identification of immune correlates of protection in vaccinated equines will provide new fundamental information about the successful development and evaluation of WNV vaccines in humans. This review discusses the comparative epidemiology, transmission, susceptibility to infection and disease, clinical manifestation and pathogenesis, and immune responses of WNV in humans and equines. Furthermore, prophylactic and therapeutic strategies that are currently available and under development are described. In addition, the successful vaccination of equines against WNV and the potential lessons for human vaccine development are discussed.
Collapse
Affiliation(s)
| | | | | | - Feng Li
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA; (A.N.); (L.G.E.); (D.W.)
| |
Collapse
|
18
|
Srichawla BS, Manan MR, Kipkorir V, Dhali A, Diebel S, Sawant T, Zia S, Carrion-Alvarez D, Suteja RC, Nurani K, Găman MA. Neuroinvasion of emerging and re-emerging arboviruses: A scoping review. SAGE Open Med 2024; 12:20503121241229847. [PMID: 38711470 PMCID: PMC11072077 DOI: 10.1177/20503121241229847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/16/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Arboviruses are RNA viruses and some have the potential to cause neuroinvasive disease and are a growing threat to global health. OBJECTIVES Our objective is to identify and map all aspects of arbovirus neuroinvasive disease, clarify key concepts, and identify gaps within our knowledge with appropriate future directions related to the improvement of global health. METHODS Sources of Evidence: A scoping review of the literature was conducted using PubMed, Scopus, ScienceDirect, and Hinari. Eligibility Criteria: Original data including epidemiology, risk factors, neurological manifestations, neuro-diagnostics, management, and preventive measures related to neuroinvasive arbovirus infections was obtained. Sources of evidence not reporting on original data, non-English, and not in peer-reviewed journals were removed. Charting Methods: An initial pilot sample of 30 abstracts were reviewed by all authors and a Cohen's kappa of κ = 0.81 (near-perfect agreement) was obtained. Records were manually reviewed by two authors using the Rayyan QCRI software. RESULTS A total of 171 records were included. A wide array of neurological manifestations can occur most frequently, including parkinsonism, encephalitis/encephalopathy, meningitis, flaccid myelitis, and Guillain-Barré syndrome. Magnetic resonance imaging of the brain often reveals subcortical lesions, sometimes with diffusion restriction consistent with acute ischemia. Vertical transmission of arbovirus is most often secondary to the Zika virus. Neurological manifestations of congenital Zika syndrome, include microcephaly, failure to thrive, intellectual disability, and seizures. Cerebrospinal fluid analysis often shows lymphocytic pleocytosis, elevated albumin, and protein consistent with blood-brain barrier dysfunction. CONCLUSIONS Arbovirus infection with neurological manifestations leads to increased morbidity and mortality. Risk factors for disease include living and traveling in an arbovirus endemic zone, age, pregnancy, and immunosuppressed status. The management of neuroinvasive arbovirus disease is largely supportive and focuses on specific neurological complications. There is a need for therapeutics and currently, management is based on disease prevention and limiting zoonosis.
Collapse
Affiliation(s)
- Bahadar S Srichawla
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Vincent Kipkorir
- Department of Human Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| | - Arkadeep Dhali
- Department of Internal Medicine, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Sebastian Diebel
- Department of Family Medicine, Northern Ontario School of Medicine University, Sudbury, ON, Canada
| | - Tirtha Sawant
- Department of Neurology, Spartan Health Sciences University, Spartan Drive St, Saint Lucia
| | - Subtain Zia
- Department of Infectious Diseases, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Richard C Suteja
- Faculty of Medicine, Udayana University, Kampus Bukit, Jl, Raya Kampus Unud Jimbaran, Kec, Kuta Sel, Kabupaten Badung, Bukit Jimbaran, Bali, Indonesia
| | - Khulud Nurani
- Department of Human Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| | - Mihnea-Alexandru Găman
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, București, Romania
- Bucharest, Romania and Department of Hematology, Center of Hematology and Bone Marrow Transplantation, Fundeni Clinical Institute, București, Romania
| |
Collapse
|
19
|
Patel KM, Raj P. Automated molecular detection of West Nile Virus in mosquito pools using the Panther Fusion system. J Virol Methods 2024; 326:114893. [PMID: 38360267 DOI: 10.1016/j.jviromet.2024.114893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
West Nile Virus (WNV) is an arthropod-borne virus that is spread through mosquito vectors. WNV emerged in the US in 1999 and has since become endemic in the US, causing the most domestically acquired arboviral disease in the country. Mosquito surveillance for WNV is useful to monitor arboviral disease burden over time and across different locations. RT-qPCR is the preferred method for WNV surveillance, but these methods are labor-intensive. The Panther Fusion System has an Open Access feature that allows for laboratory-developed tests (LDTs) to run on a fully automated system for nucleic acid extraction, RT-qPCR, and result generation. This study demonstrates the successful optimization of a WNV multiplex LDT (assay targets: ENV and NS1 genes) for high-throughput environmental surveillance testing of mosquito pool homogenates on the Panther Fusion System. Analytical sensitivity of the assay was 186 and 744 copies/PCR reaction for the ENV and NS1 targets, respectively. To assess the performance of this assay, a total of 80 mosquito pools were tested, including 60 previously tested pools and 20 spiked negative mosquito pools. Among the 60 previously tested specimens, the Panther Fusion WNV LDT demonstrated 100% positive and negative agreement with the CDC West Nile RT-qPCR assay. The Panther Fusion WNV LDT also detected all 20 spiked specimens. The Panther Fusion WNV LDT assay was successfully developed and optimized for high throughput testing with similar performance to the previously used CDC West Nile RT-qPCR assay.
Collapse
Affiliation(s)
- Kajal M Patel
- District of Columbia Department of Forensic Sciences, Public Health Laboratory Division, Immunology and Virology Unit, 401 E Street SW Washington, DC 20024, USA.
| | - Pushker Raj
- District of Columbia Department of Forensic Sciences, Public Health Laboratory Division, Immunology and Virology Unit, 401 E Street SW Washington, DC 20024, USA
| |
Collapse
|
20
|
Cardo MV, Rubio A, Carbajo AE, Vezzani D. Exploring the range of Culex mosquitoes in Western Argentinean Patagonia, unveiling the presence of Culex pipiens bioform pipiens in South America. Parasitol Res 2024; 123:151. [PMID: 38441704 DOI: 10.1007/s00436-024-08166-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/15/2024] [Indexed: 03/07/2024]
Abstract
Culicids in Argentinean Patagonia are characterized by low species diversity and adaptation to extreme environmental conditions, yet few studies have been conducted in the region. To further assess the occurrence of Culicidae in Western Patagonia, and in particular the presence of Culex pipiens bioforms at the southernmost extent of their distribution, immature and adult specimens were collected aboveground across various land uses located in shrubland, steppe, and deciduous forest between 38.96 and 46.55°S. Mosquitoes were reported at 35 of the 105 inspected sites. Five species from the genus Culex were identified, all of which were present in the steppe and the forest, while only Cx. apicinus and members of the Cx. pipiens complex were collected in the shrubland. Within the latter, a total of 150 specimens were molecularly identified by PCR amplification of Ace-2 and CQ11 loci. The first-to-date occurrence of bioform pipiens in South America is reported, along with the first records of Cx. quinquefasciatus signatures in Patagonia. In addition, the distribution of Cx. acharistus and Cx. dolosus as south as Santa Cruz province is expanded, and the first record of Cx. eduardoi in Río Negro province is provided. Immature specimens of Cx. pipiens were conspicuous in human-made aquatic habitats (both containers and in the ground), while Cx. acharistus was more prominent in artificial containers and Cx. eduardoi was mainly in ground habitats, either natural or human-made. These findings provide valuable insights into the distribution and ecological roles of these mosquito species in a region of extreme environmental conditions.
Collapse
Affiliation(s)
- María Victoria Cardo
- Ecología de Enfermedades Transmitidas Por Vectores (2eTV), Instituto de Investigación E Ingeniería Ambiental (UNSAM-CONICET), Escuela de Hábitat y Sostenibilidad, San Martín, Prov. de Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| | - Alejandra Rubio
- Ecología de Enfermedades Transmitidas Por Vectores (2eTV), Instituto de Investigación E Ingeniería Ambiental (UNSAM-CONICET), Escuela de Hábitat y Sostenibilidad, San Martín, Prov. de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Aníbal Eduardo Carbajo
- Ecología de Enfermedades Transmitidas Por Vectores (2eTV), Instituto de Investigación E Ingeniería Ambiental (UNSAM-CONICET), Escuela de Hábitat y Sostenibilidad, San Martín, Prov. de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Darío Vezzani
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Facultad de Ciencias Exactas, Instituto Multidisciplinario Sobre Ecosistemas y Desarrollo Sustentable, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA), Tandil, Prov. de Buenos Aires, Argentina
| |
Collapse
|
21
|
Wan G, Allen J, Ge W, Rawlani S, Uelmen J, Mainzer LS, Smith RL. Two-step light gradient boosted model to identify human west nile virus infection risk factor in Chicago. PLoS One 2024; 19:e0296283. [PMID: 38181002 PMCID: PMC10769082 DOI: 10.1371/journal.pone.0296283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/08/2023] [Indexed: 01/07/2024] Open
Abstract
West Nile virus (WNV), a flavivirus transmitted by mosquito bites, causes primarily mild symptoms but can also be fatal. Therefore, predicting and controlling the spread of West Nile virus is essential for public health in endemic areas. We hypothesized that socioeconomic factors may influence human risk from WNV. We analyzed a list of weather, land use, mosquito surveillance, and socioeconomic variables for predicting WNV cases in 1-km hexagonal grids across the Chicago metropolitan area. We used a two-stage lightGBM approach to perform the analysis and found that hexagons with incomes above and below the median are influenced by the same top characteristics. We found that weather factors and mosquito infection rates were the strongest common factors. Land use and socioeconomic variables had relatively small contributions in predicting WNV cases. The Light GBM handles unbalanced data sets well and provides meaningful predictions of the risk of epidemic disease outbreaks.
Collapse
Affiliation(s)
- Guangya Wan
- National Center for Supercomputing Applications, University of Illinois, Urbana-Champaign, Illinois, United States of America
- Department of Statistics, University of Illinois, Urbana-Champaign, Illinois, United States of America
| | - Joshua Allen
- National Center for Supercomputing Applications, University of Illinois, Urbana-Champaign, Illinois, United States of America
| | - Weihao Ge
- National Center for Supercomputing Applications, University of Illinois, Urbana-Champaign, Illinois, United States of America
| | - Shubham Rawlani
- National Center for Supercomputing Applications, University of Illinois, Urbana-Champaign, Illinois, United States of America
- Information School, University of Illinois, Urbana-Champaign, Illinois, United States of America
| | - John Uelmen
- Department of Pathobiology, University of Illinois, Urbana-Champaign, Illinois, United States of America
| | - Liudmila Sergeevna Mainzer
- National Center for Supercomputing Applications, University of Illinois, Urbana-Champaign, Illinois, United States of America
- Car R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Illinois, United States of America
| | - Rebecca Lee Smith
- National Center for Supercomputing Applications, University of Illinois, Urbana-Champaign, Illinois, United States of America
- Department of Pathobiology, University of Illinois, Urbana-Champaign, Illinois, United States of America
- Car R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Illinois, United States of America
| |
Collapse
|
22
|
Monath TP. Japanese Encephalitis: Risk of Emergence in the United States and the Resulting Impact. Viruses 2023; 16:54. [PMID: 38257754 PMCID: PMC10820346 DOI: 10.3390/v16010054] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Japanese encephalitis virus is a mosquito-borne member of the Flaviviridae family. JEV is the leading cause of viral encephalitis in Asia and is characterized by encephalitis, high lethality, and neurological sequelae in survivors. The virus also causes severe disease in swine, which are an amplifying host in the transmission cycle, and in horses. US agricultural authorities have recently recognized the threat to the swine industry and initiated preparedness activities. Other mosquito-borne viruses exotic to the Western Hemisphere have been introduced and established in recent years, including West Nile, Zika, and chikungunya viruses, and JEV has recently invaded continental Australia for the first time. These events amply illustrate the potential threat of JEV to US health security. Susceptible indigenous mosquito vectors, birds, feral and domestic pigs, and possibly bats, constitute the receptive ecological ingredients for the spread of JEV in the US. Fortunately, unlike the other virus invaders mentioned above, an inactivated whole virus JE vaccine (IXIARO®) has been approved by the US Food and Drug Administration for human use in advance of a public health emergency, but there is no veterinary vaccine. This paper describes the risks and potential consequences of the introduction of JEV into the US, the need to integrate planning for such an event in public health policy, and the requirement for additional countermeasures, including antiviral drugs and an improved single dose vaccine that elicits durable immunity in both humans and livestock.
Collapse
Affiliation(s)
- Thomas P Monath
- Quigley BioPharma LLC, 114 Water Tower Plaza No. 1042, Leominster, MA 01453, USA
| |
Collapse
|
23
|
Romanello M, Napoli CD, Green C, Kennard H, Lampard P, Scamman D, Walawender M, Ali Z, Ameli N, Ayeb-Karlsson S, Beggs PJ, Belesova K, Berrang Ford L, Bowen K, Cai W, Callaghan M, Campbell-Lendrum D, Chambers J, Cross TJ, van Daalen KR, Dalin C, Dasandi N, Dasgupta S, Davies M, Dominguez-Salas P, Dubrow R, Ebi KL, Eckelman M, Ekins P, Freyberg C, Gasparyan O, Gordon-Strachan G, Graham H, Gunther SH, Hamilton I, Hang Y, Hänninen R, Hartinger S, He K, Heidecke J, Hess JJ, Hsu SC, Jamart L, Jankin S, Jay O, Kelman I, Kiesewetter G, Kinney P, Kniveton D, Kouznetsov R, Larosa F, Lee JKW, Lemke B, Liu Y, Liu Z, Lott M, Lotto Batista M, Lowe R, Odhiambo Sewe M, Martinez-Urtaza J, Maslin M, McAllister L, McMichael C, Mi Z, Milner J, Minor K, Minx JC, Mohajeri N, Momen NC, Moradi-Lakeh M, Morrissey K, Munzert S, Murray KA, Neville T, Nilsson M, Obradovich N, O'Hare MB, Oliveira C, Oreszczyn T, Otto M, Owfi F, Pearman O, Pega F, Pershing A, Rabbaniha M, Rickman J, Robinson EJZ, Rocklöv J, Salas RN, Semenza JC, Sherman JD, Shumake-Guillemot J, Silbert G, Sofiev M, Springmann M, Stowell JD, Tabatabaei M, Taylor J, Thompson R, Tonne C, et alRomanello M, Napoli CD, Green C, Kennard H, Lampard P, Scamman D, Walawender M, Ali Z, Ameli N, Ayeb-Karlsson S, Beggs PJ, Belesova K, Berrang Ford L, Bowen K, Cai W, Callaghan M, Campbell-Lendrum D, Chambers J, Cross TJ, van Daalen KR, Dalin C, Dasandi N, Dasgupta S, Davies M, Dominguez-Salas P, Dubrow R, Ebi KL, Eckelman M, Ekins P, Freyberg C, Gasparyan O, Gordon-Strachan G, Graham H, Gunther SH, Hamilton I, Hang Y, Hänninen R, Hartinger S, He K, Heidecke J, Hess JJ, Hsu SC, Jamart L, Jankin S, Jay O, Kelman I, Kiesewetter G, Kinney P, Kniveton D, Kouznetsov R, Larosa F, Lee JKW, Lemke B, Liu Y, Liu Z, Lott M, Lotto Batista M, Lowe R, Odhiambo Sewe M, Martinez-Urtaza J, Maslin M, McAllister L, McMichael C, Mi Z, Milner J, Minor K, Minx JC, Mohajeri N, Momen NC, Moradi-Lakeh M, Morrissey K, Munzert S, Murray KA, Neville T, Nilsson M, Obradovich N, O'Hare MB, Oliveira C, Oreszczyn T, Otto M, Owfi F, Pearman O, Pega F, Pershing A, Rabbaniha M, Rickman J, Robinson EJZ, Rocklöv J, Salas RN, Semenza JC, Sherman JD, Shumake-Guillemot J, Silbert G, Sofiev M, Springmann M, Stowell JD, Tabatabaei M, Taylor J, Thompson R, Tonne C, Treskova M, Trinanes JA, Wagner F, Warnecke L, Whitcombe H, Winning M, Wyns A, Yglesias-González M, Zhang S, Zhang Y, Zhu Q, Gong P, Montgomery H, Costello A. The 2023 report of the Lancet Countdown on health and climate change: the imperative for a health-centred response in a world facing irreversible harms. Lancet 2023; 402:2346-2394. [PMID: 37977174 PMCID: PMC7616810 DOI: 10.1016/s0140-6736(23)01859-7] [Show More Authors] [Citation(s) in RCA: 331] [Impact Index Per Article: 165.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/07/2023] [Accepted: 08/31/2023] [Indexed: 11/19/2023]
Abstract
The Lancet Countdown is an international research collaboration that independently monitors the evolving impacts of climate change on health, and the emerging health opportunities of climate action. In its eighth iteration, this 2023 report draws on the expertise of 114 scientists and health practitioners from 52 research institutions and UN agencies worldwide to provide its most comprehensive assessment yet. In 2022, the Lancet Countdown warned that people’s health is at the mercy of fossil fuels and stressed the transformative opportunity of jointly tackling the concurrent climate change, energy, cost-of-living, and health crises for human health and wellbeing. This year’s report finds few signs of such progress. At the current 10-year mean heating of 1·14°C above pre-industrial levels, climate change is increasingly impacting the health and survival of people worldwide, and projections show these risks could worsen steeply with further inaction. However, with health matters gaining prominence in climate change negotiations, this report highlights new opportunities to deliver health-promoting climate change action and a safe and thriving future for all.
Collapse
Affiliation(s)
- Marina Romanello
- Institute for Global Health, University College London, London, UK.
| | - Claudia di Napoli
- School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | - Carole Green
- Department of Global Health, University of Washington, Washington, DC, USA
| | - Harry Kennard
- Center on Global Energy Policy, Columbia University, New York, NY, USA
| | - Pete Lampard
- Department of Health Sciences, University of York, York, UK
| | - Daniel Scamman
- Institute for Sustainable Resources, University College London, London, UK
| | - Maria Walawender
- Institute for Global Health, University College London, London, UK
| | - Zakari Ali
- Medical Research Council Unit The Gambia, London School of Hygiene and Tropical Medicine, London, UK
| | - Nadia Ameli
- Institute for Sustainable Resources, University College London, London, UK
| | - Sonja Ayeb-Karlsson
- Institute for Risk and Disaster Reduction, University College London, London, UK
| | - Paul J Beggs
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| | | | | | - Kathryn Bowen
- School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Wenjia Cai
- Department of Earth System Science, Tsinghua University, Beijing, China
| | - Max Callaghan
- Mercator Research Institute on Global Commons and Climate Change, Berlin, Germany
| | - Diarmid Campbell-Lendrum
- Department of Environment, Climate Change and Health, World Health Organisation, Geneva, Switzerland
| | - Jonathan Chambers
- Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland
| | - Troy J Cross
- Heat and Health Research Incubator, University of Sydney, Sydney, NSW, Australia
| | | | - Carole Dalin
- Institute for Sustainable Resources, University College London, London, UK
| | - Niheer Dasandi
- International Development Department, University of Birmingham, Birmingham, UK
| | - Shouro Dasgupta
- Euro-Mediterranean Center on Climate Change Foundation, Lecce, Italy
| | - Michael Davies
- Institute for Risk and Disaster Reduction, University College London, London, UK
| | | | - Robert Dubrow
- School of Public Health, Yale University, New Haven, CT, USA
| | - Kristie L Ebi
- Department of Global Health, University of Washington, Washington, DC, USA
| | - Matthew Eckelman
- Department of Civil & Environmental Engineering, Northeastern University, Boston, MA, USA
| | - Paul Ekins
- Institute for Sustainable Resources, University College London, London, UK
| | - Chris Freyberg
- Department of Information Systems, Massey University, Palmerston North, New Zealand
| | - Olga Gasparyan
- Department of Political Science, Florida State University, Tallahassee, FL, USA
| | | | - Hilary Graham
- Department of Health Sciences, University of York, York, UK
| | - Samuel H Gunther
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ian Hamilton
- Energy Institute, University College London, London, UK
| | - Yun Hang
- Gangarosa Department of Environmental Health, Emory University, Atlanta, GA
| | | | - Stella Hartinger
- Carlos Vidal Layseca School of Public Health and Management, Cayetano Heredia Pervuvian University, Lima, Peru
| | - Kehan He
- Bartlett School of Sustainable Construction, University College London, London, UK
| | - Julian Heidecke
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany
| | - Jeremy J Hess
- Centre for Health and the Global Environment, University of Washington, Washington, DC, USA
| | - Shih-Che Hsu
- Energy Institute, University College London, London, UK
| | - Louis Jamart
- Institute for Global Health, University College London, London, UK
| | - Slava Jankin
- Centre for AI in Government, University of Birmingham, Birmingham, UK
| | - Ollie Jay
- Heat and Health Research Incubator, University of Sydney, Sydney, NSW, Australia
| | - Ilan Kelman
- Institute for Global Health, University College London, London, UK
| | - Gregor Kiesewetter
- International Institute for Applied Systems Analysis Energy, Climate, and Environment Program, Laxenburg, Austria
| | - Patrick Kinney
- Department of Environmental Health, Boston University, Boston, MA, USA
| | - Dominic Kniveton
- School of Global Studies, University of Sussex, Brighton and Hove, UK
| | | | - Francesca Larosa
- Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Jason K W Lee
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Bruno Lemke
- School of Health, Nelson Marlborough Institute of Technology, Nelson, New Zealand
| | - Yang Liu
- Gangarosa Department of Environmental Health, Emory University, Atlanta, GA
| | - Zhao Liu
- Department of Earth System Science, Tsinghua University, Beijing, China
| | - Melissa Lott
- Center on Global Energy Policy, Columbia University, New York, NY, USA
| | | | - Rachel Lowe
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | | | - Jaime Martinez-Urtaza
- Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, Spain
| | - Mark Maslin
- Department of Geography, University College London, London, UK
| | - Lucy McAllister
- Environmental Studies Program, Denison University, Granville, OH, USA
| | - Celia McMichael
- School of Geography, Earth and Atmospheric Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Zhifu Mi
- Bartlett School of Sustainable Construction, University College London, London, UK
| | - James Milner
- Department of Public Health Environments and Society, London School of Hygiene and Tropical Medicine, London, UK
| | - Kelton Minor
- Data Science Institute, Columbia University, New York, NY, USA
| | - Jan C Minx
- Mercator Research Institute on Global Commons and Climate Change, Berlin, Germany
| | - Nahid Mohajeri
- Bartlett School of Sustainable Construction, University College London, London, UK
| | - Natalie C Momen
- Department of Environment, Climate Change and Health, World Health Organisation, Geneva, Switzerland
| | - Maziar Moradi-Lakeh
- Preventive Medicine and Public Health Research Center, Psychosocial Health Research Institute, Department of Community and Family Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Karyn Morrissey
- Department of Technology Management and Economics, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Kris A Murray
- Medical Research Council Unit The Gambia, London School of Hygiene and Tropical Medicine, London, UK
| | - Tara Neville
- Department of Environment, Climate Change and Health, World Health Organisation, Geneva, Switzerland
| | - Maria Nilsson
- Department for Epidemiology and Global Health, Umeå University, Umeå, Sweden
| | | | - Megan B O'Hare
- Institute for Global Health, University College London, London, UK
| | - Camile Oliveira
- Institute for Global Health, University College London, London, UK
| | | | - Matthias Otto
- School of Health, Nelson Marlborough Institute of Technology, Nelson, New Zealand
| | - Fereidoon Owfi
- Iranian Fisheries Science Research Institute, Tehran, Iran
| | - Olivia Pearman
- Center for Science and Technology Policy, University of Colorado Boulder, Boulder, CO, USA
| | - Frank Pega
- Department of Environment, Climate Change and Health, World Health Organisation, Geneva, Switzerland
| | | | | | - Jamie Rickman
- Institute for Sustainable Resources, University College London, London, UK
| | - Elizabeth J Z Robinson
- Grantham Research Institute on Climate Change and the Environment, London School of Economics and Political Science, London, UK
| | - Joacim Rocklöv
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany
| | - Renee N Salas
- Harvard Medical School, Harvard University, Boston, MA, USA
| | - Jan C Semenza
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Jodi D Sherman
- Department of Anesthesiology, Yale University, New Haven, CT, USA
| | | | - Grant Silbert
- Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia
| | | | - Marco Springmann
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | | | - Meisam Tabatabaei
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Terengganu, Malaysia
| | - Jonathon Taylor
- Department of Civil Engineering, Tampere University, Tampere, Finland
| | | | - Cathryn Tonne
- Barcelona Institute for Global Health, Barcelona, Spain
| | - Marina Treskova
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany
| | - Joaquin A Trinanes
- Department of Electronics and Computer Science, University of Santiago de Compostela, Santiago, Spain
| | - Fabian Wagner
- International Institute for Applied Systems Analysis Energy, Climate, and Environment Program, Laxenburg, Austria
| | - Laura Warnecke
- International Institute for Applied Systems Analysis Energy, Climate, and Environment Program, Laxenburg, Austria
| | - Hannah Whitcombe
- Institute for Global Health, University College London, London, UK
| | - Matthew Winning
- Institute for Sustainable Resources, University College London, London, UK
| | - Arthur Wyns
- Melbourne Climate Futures, The University of Melbourne, Melbourne, VIC, Australia
| | - Marisol Yglesias-González
- Centro Latinoamericano de Excelencia en Cambio Climatico y Salud, Cayetano Heredia Pervuvian University, Lima, Peru
| | - Shihui Zhang
- Department of Earth System Science, Tsinghua University, Beijing, China
| | - Ying Zhang
- School of Public Health, University of Sydney, Sydney, NSW, Australia
| | - Qiao Zhu
- Gangarosa Department of Environmental Health, Emory University, Atlanta, GA
| | - Peng Gong
- Department of Geography, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Hugh Montgomery
- Department of Experimental and Translational Medicine and Division of Medicine, University College London, London, UK
| | - Anthony Costello
- Institute for Global Health, University College London, London, UK
| |
Collapse
|
24
|
Lee HJ, Zhao Y, Fleming I, Mehta S, Wang X, Wyk BV, Ronca SE, Kang H, Chou CH, Fatou B, Smolen KK, Levy O, Clish CB, Xavier RJ, Steen H, Hafler DA, Love JC, Shalek AK, Guan L, Murray KO, Kleinstein SH, Montgomery RR. Early cellular and molecular signatures correlate with severity of West Nile virus infection. iScience 2023; 26:108387. [PMID: 38047068 PMCID: PMC10692672 DOI: 10.1016/j.isci.2023.108387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/04/2023] [Accepted: 10/27/2023] [Indexed: 12/05/2023] Open
Abstract
Infection with West Nile virus (WNV) drives a wide range of responses, from asymptomatic to flu-like symptoms/fever or severe cases of encephalitis and death. To identify cellular and molecular signatures distinguishing WNV severity, we employed systems profiling of peripheral blood from asymptomatic and severely ill individuals infected with WNV. We interrogated immune responses longitudinally from acute infection through convalescence employing single-cell protein and transcriptional profiling complemented with matched serum proteomics and metabolomics as well as multi-omics analysis. At the acute time point, we detected both elevation of pro-inflammatory markers in innate immune cell types and reduction of regulatory T cell activity in participants with severe infection, whereas asymptomatic donors had higher expression of genes associated with anti-inflammatory CD16+ monocytes. Therefore, we demonstrated the potential of systems immunology using multiple cell-type and cell-state-specific analyses to identify correlates of infection severity and host cellular activity contributing to an effective anti-viral response.
Collapse
Affiliation(s)
- Ho-Joon Lee
- Department of Genetics and Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT 06520, USA
| | - Yujiao Zhao
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Ira Fleming
- The Institute of Medical Science and Engineering, Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Sameet Mehta
- Department of Genetics and Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT 06520, USA
| | - Xiaomei Wang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Brent Vander Wyk
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Shannon E. Ronca
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX 77030, USA
| | - Heather Kang
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Chih-Hung Chou
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Benoit Fatou
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Kinga K. Smolen
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ofer Levy
- Department of Infectious Disease, Precision Vaccines Program, Boston Children’s Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Clary B. Clish
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ramnik J. Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Center for Computational and Integrative Biology and Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Hanno Steen
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX 77030, USA
| | - David A. Hafler
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - J. Christopher Love
- The Institute of Medical Science and Engineering, Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Alex K. Shalek
- The Institute of Medical Science and Engineering, Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Leying Guan
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06520, USA
| | - Kristy O. Murray
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX 77030, USA
| | - Steven H. Kleinstein
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | - Ruth R. Montgomery
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
25
|
Weiß R, Issmail L, Rockstroh A, Grunwald T, Fertey J, Ulbert S. Immunization with different recombinant West Nile virus envelope proteins induces varying levels of serological cross-reactivity and protection from infection. Front Cell Infect Microbiol 2023; 13:1279147. [PMID: 38035335 PMCID: PMC10684968 DOI: 10.3389/fcimb.2023.1279147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction West Nile Virus (WNV) is a zoonotic flavivirus transmitted by mosquitoes. Especially in the elderly or in immunocompromised individuals an infection with WNV can lead to severe neurological symptoms. To date, no human vaccine against WNV is available. The Envelope (E) protein, located at the surface of flaviviruses, is involved in the invasion into host cells and is the major target for neutralizing antibodies and therefore central to vaccine development. Due to their close genetic and structural relationship, flaviviruses share highly conserved epitopes, such as the fusion loop domain (FL) in the E protein, that are recognized by cross-reactive antibodies. These antibodies can lead to enhancement of infection with heterologous flaviviruses, which is a major concern for potential vaccines in areas with co-circulation of different flaviviruses, e.g. Dengue or Zika viruses. Material To reduce the potential of inducing cross-reactive antibodies, we performed an immunization study in mice using WNV E proteins with either wild type sequence or a mutated FL, and WNV E domain III which does not contain the FL at all. Results and discussion Our data show that all antigens induce high levels of WNV-binding antibodies. However, the level of protection against WNV varied, with the wildtype E protein inducing full, the other antigens only partial protection. On the other hand, serological cross-reactivity to heterologous flaviviruses was significantly reduced after immunization with the mutated E protein or domain III as compared to the wild type version. These results have indications for choosing antigens with the optimal specificity and efficacy in WNV vaccine development.
Collapse
Affiliation(s)
| | | | | | | | | | - Sebastian Ulbert
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Vaccines and Infection Models, Leipzig, Germany
| |
Collapse
|
26
|
Dupuis AP, Lange RE, Ciota AT. Emerging tickborne viruses vectored by Amblyomma americanum (Ixodida: Ixodidae): Heartland and Bourbon viruses. JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:1183-1196. [PMID: 37862097 DOI: 10.1093/jme/tjad060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/01/2023] [Accepted: 05/19/2023] [Indexed: 10/21/2023]
Abstract
Heartland (HRTV) and Bourbon (BRBV) viruses are newly identified tick-borne viruses, isolated from serious clinical cases in 2009 and 2014, respectively. Both viruses originated in the lower Midwest United States near the border of Missouri and Kansas, cause similar disease manifestations, and are presumably vectored by the same tick species, Amblyomma americanum Linnaeus (Ixodida: Ixodidae). In this article, we provide a current review of HRTV and BRBV, including the virology, epidemiology, and ecology of the viruses with an emphasis on the tick vector. We touch on current challenges of vector control and surveillance, and we discuss future directions in the study of these emergent pathogens.
Collapse
Affiliation(s)
- Alan P Dupuis
- Wadsworth Center, New York State Department of Health, Griffin Laboratory, 5668 State Farm Road, Slingerlands, NY 12159, USA
| | - Rachel E Lange
- Wadsworth Center, New York State Department of Health, Griffin Laboratory, 5668 State Farm Road, Slingerlands, NY 12159, USA
- Department of Biomedical Sciences, School of Public Health, State University of New York University at Albany, Rensselaer, NY 12144, USA
| | - Alexander T Ciota
- Wadsworth Center, New York State Department of Health, Griffin Laboratory, 5668 State Farm Road, Slingerlands, NY 12159, USA
- Department of Biomedical Sciences, School of Public Health, State University of New York University at Albany, Rensselaer, NY 12144, USA
| |
Collapse
|
27
|
Ji X, Fisher AA, Su S, Thorne JL, Potter B, Lemey P, Baele G, Suchard MA. Scalable Bayesian Divergence Time Estimation With Ratio Transformations. Syst Biol 2023; 72:1136-1153. [PMID: 37458991 PMCID: PMC10636426 DOI: 10.1093/sysbio/syad039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 06/13/2023] [Accepted: 06/30/2023] [Indexed: 11/08/2023] Open
Abstract
Divergence time estimation is crucial to provide temporal signals for dating biologically important events from species divergence to viral transmissions in space and time. With the advent of high-throughput sequencing, recent Bayesian phylogenetic studies have analyzed hundreds to thousands of sequences. Such large-scale analyses challenge divergence time reconstruction by requiring inference on highly correlated internal node heights that often become computationally infeasible. To overcome this limitation, we explore a ratio transformation that maps the original $N-1$ internal node heights into a space of one height parameter and $N-2$ ratio parameters. To make the analyses scalable, we develop a collection of linear-time algorithms to compute the gradient and Jacobian-associated terms of the log-likelihood with respect to these ratios. We then apply Hamiltonian Monte Carlo sampling with the ratio transform in a Bayesian framework to learn the divergence times in 4 pathogenic viruses (West Nile virus, rabies virus, Lassa virus, and Ebola virus) and the coralline red algae. Our method both resolves a mixing issue in the West Nile virus example and improves inference efficiency by at least 5-fold for the Lassa and rabies virus examples as well as for the algae example. Our method now also makes it computationally feasible to incorporate mixed-effects molecular clock models for the Ebola virus example, confirms the findings from the original study, and reveals clearer multimodal distributions of the divergence times of some clades of interest.
Collapse
Affiliation(s)
- Xiang Ji
- Department of Mathematics, School of Science & Engineering, Tulane University, 6823 St. Charles Avenue, New Orleans, LA 70118, USA
| | - Alexander A Fisher
- Department of Statistical Science, Duke University, 214 Old Chemistry, Durham, NC 27708, USA
| | - Shuo Su
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Weigang, Xiaolingwei District, Nanjing, Jiangsu 210095, China
| | - Jeffrey L Thorne
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
- Department of Statistics, North Carolina State University, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, Ricks Hall, 1 Lampe Dr, Raleigh, NC 27607, USA
| | - Barney Potter
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Herestraat 49, 3000 Leuven, Belgium
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Herestraat 49, 3000 Leuven, Belgium
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Herestraat 49, 3000 Leuven, Belgium
| | - Marc A Suchard
- Department of Biomathematics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, 695 Charles E Young Dr S, Los Angeles, CA 90095, USA
| |
Collapse
|
28
|
Hiraldo JDG, Fuerte-Hortigón A, Domínguez-Mayoral A, De la Rosa Riestra S, Palacios-Baena ZR, Fernández FS, Ruiz RL, Pascual-Vaca D, de León CM, Hurtado RJ, Sanbonmatsu-Gámez S. Uncovering the neurological effects of West Nile virus during a record-breaking southern Spain outbreak in 2020-2021. J Neuroimmunol 2023; 383:578179. [PMID: 37657130 DOI: 10.1016/j.jneuroim.2023.578179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023]
Abstract
The 2020-21 West Nile Virus (WNV) outbreak in Andalusia, Spain, was the largest reported in the country, with eight cases of West Nile Neuroinvasive Disease (WNND) diagnosed in a tertiary hospital. Diagnosis of WNND is based on detecting WNV RNA, viral isolation, or demonstrating a specific immune response against the virus, with additional tests used to support the diagnosis. Treatment remains supportive, with variable outcomes. The potential efficacy of plasma exchange (PLEX) in select cases raises the possibility of an autoimmune component secondary to infectious pathology of the central nervous system. The influence of climate change on the expansion of WNV into new regions is a significant concern. It is crucial for physicians practicing in high-risk areas to be knowledgeable about the disease for early prevention and effective control measures.
Collapse
Affiliation(s)
| | | | | | - Sandra De la Rosa Riestra
- Unit of Infectious Diseases and Clinical Microbiology, University Hospital Virgen Macarena/Institute of Biomedicine of Seville (IBIS), Spain
| | - Zaira R Palacios-Baena
- Unit of Infectious Diseases and Clinical Microbiology, University Hospital Virgen Macarena/Institute of Biomedicine of Seville (IBIS), Spain
| | | | - Rocio López Ruiz
- Department of Neurology, University Hospital Virgen Macarena, Seville, Spain
| | - Diego Pascual-Vaca
- Department of Paediatric Neurology, University Hospital Virgen Macarena, Seville, Spain
| | | | - Rafael Jiménez Hurtado
- Department of Clinical Neurophysiology, University Hospital Virgen Macarena, Seville, Spain
| | | |
Collapse
|
29
|
Zhou P, Ma B, Gao Y, Xu Y, Li Z, Jin H, Luo R. Epidemiology, genetic diversity, and evolutionary dynamics of Tembusu virus. Arch Virol 2023; 168:262. [PMID: 37773423 DOI: 10.1007/s00705-023-05885-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 08/02/2023] [Indexed: 10/01/2023]
Abstract
Tembusu virus (TMUV) is an emerging pathogenic flavivirus associated with acute egg-drop and fatal encephalitis in domestic waterfowl. Since its initial identification in mosquitoes in 1955, TMUV has been confirmed to infect ducks, pigeons, sparrows, geese, and chickens, posing a significant threat to the poultry industry. Here, we sequenced two DTMUV strains isolated in 2019 and systematically investigated the possible origin, genetic relationships, evolutionary dynamics, and transmission patterns of TMUV based on complete virus genome sequences in the public database. We found that TMUV can be divided into four major clusters: TMUV, cluster 1, cluster 2, and cluster 3. Interestingly, we found that cluster 2.2 (within cluster 2) is the most commonly involved in interspecies transmission events, and subcluster 2.1.2 (within cluster 2.1) is currently the most prevalent cluster circulating in Asia. Notably, we also identified three positively selected sites in the E and NS1 proteins, which may be involved in virus replication, immune evasion, and host adaptation. Finally, phylogeographic analysis revealed that cluster dispersal originated in Southeast Asia and that short-distance transmission events have occurred frequently. Altogether, these data provide novel insights into the evolution and dispersal of TMUV, facilitating the development of rapid diagnostics, vaccines, and therapeutics against TMUV infection.
Collapse
Affiliation(s)
- Peng Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Road, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Bin Ma
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Road, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Yuan Gao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Road, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Yumin Xu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Road, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Zhuofei Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Road, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Hui Jin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Road, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Rui Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Road, Wuhan, 430070, Hubei, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China.
| |
Collapse
|
30
|
Pereira PDC, Diniz DG, da Costa ER, Magalhães NGDM, da Silva ADJF, Leite JGS, Almeida NIP, Cunha KDN, de Melo MAD, Vasconcelos PFDC, Diniz JAP, Brites D, Anthony DC, Diniz CWP, Guerreiro-Diniz C. Genes, inflammatory response, tolerance, and resistance to virus infections in migratory birds, bats, and rodents. Front Immunol 2023; 14:1239572. [PMID: 37711609 PMCID: PMC10497949 DOI: 10.3389/fimmu.2023.1239572] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Normally, the host immunological response to viral infection is coordinated to restore homeostasis and protect the individual from possible tissue damage. The two major approaches are adopted by the host to deal with the pathogen: resistance or tolerance. The nature of the responses often differs between species and between individuals of the same species. Resistance includes innate and adaptive immune responses to control virus replication. Disease tolerance relies on the immune response allowing the coexistence of infections in the host with minimal or no clinical signs, while maintaining sufficient viral replication for transmission. Here, we compared the virome of bats, rodents and migratory birds and the molecular mechanisms underlying symptomatic and asymptomatic disease progression. We also explore the influence of the host physiology and environmental influences on RNA virus expression and how it impacts on the whole brain transcriptome of seemingly healthy semipalmated sandpiper (Calidris pusilla) and spotted sandpiper (Actitis macularius). Three time points throughout the year were selected to understand the importance of longitudinal surveys in the characterization of the virome. We finally revisited evidence that upstream and downstream regulation of the inflammatory response is, respectively, associated with resistance and tolerance to viral infections.
Collapse
Affiliation(s)
- Patrick Douglas Corrêa Pereira
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
| | - Daniel Guerreiro Diniz
- Seção de Hepatologia, Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Belém, Pará, Brazil
- Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Laboratório de Investigações em Neurodegeneração e Infecção, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Emanuel Ramos da Costa
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
- Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Laboratório de Investigações em Neurodegeneração e Infecção, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Nara Gyzely de Morais Magalhães
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
| | - Anderson de Jesus Falcão da Silva
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
| | - Jéssica Gizele Sousa Leite
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
| | - Natan Ibraim Pires Almeida
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
| | - Kelle de Nazaré Cunha
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
| | - Mauro André Damasceno de Melo
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
| | - Pedro Fernando da Costa Vasconcelos
- Centro de Ciências Biológicas e da Saúde, Universidade do Estado do Pará, Belém, Pará, Brazil
- Seção de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Ananindeua, Pará, Brazil
| | - José Antonio Picanço Diniz
- Seção de Hepatologia, Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Belém, Pará, Brazil
| | - Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Daniel Clive Anthony
- Department of Pharmacology, Laboratory of Experimental Neuropathology, University of Oxford, Oxford, United Kingdom
| | - Cristovam Wanderley Picanço Diniz
- Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Laboratório de Investigações em Neurodegeneração e Infecção, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Cristovam Guerreiro-Diniz
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
| |
Collapse
|
31
|
Sewgobind S, McCracken F, Schilling M. JMM Profile: West Nile virus. J Med Microbiol 2023; 72. [PMID: 37459154 DOI: 10.1099/jmm.0.001730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
West Nile virus (WNV) is a positive-sense single-stranded RNA virus belonging to the Flaviviridae family and is maintained in an enzootic cycle between avian hosts and mosquito vectors. Humans, horses and other mammals are susceptible to infection but are dead-end hosts due to a low viraemia. The disease can manifest itself in a variety of clinical signs and symptoms in people and horses from mild fever to severe encephalitis and morbidity. There are no vaccines licensed for human protection, but parts of Europe, North America, Africa and Australia have vaccines commercially available for horses.
Collapse
Affiliation(s)
- Sanam Sewgobind
- Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT15 3NB, UK
| | - Fiona McCracken
- Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT15 3NB, UK
| | - Mirjam Schilling
- Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT15 3NB, UK
| |
Collapse
|
32
|
Talmi-Frank D, Byas AD, Murrieta R, Weger-Lucarelli J, Rückert C, Gallichotte EN, Yoshimoto JA, Allen C, Bosco-Lauth AM, Graham B, Felix TA, Brault AC, Ebel GD. Intracellular Diversity of WNV within Circulating Avian Peripheral Blood Mononuclear Cells Reveals Host-Dependent Patterns of Polyinfection. Pathogens 2023; 12:767. [PMID: 37375457 DOI: 10.3390/pathogens12060767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Arthropod-borne virus (arbovirus) populations exist as mutant swarms that are maintained between arthropods and vertebrates. West Nile virus (WNV) population dynamics are host-dependent. In American crows, purifying selection is weak and population diversity is high compared to American robins, which have 100- to 1000-fold lower viremia. WNV passed in robins leads to fitness gains, whereas that passed in crows does not. Therefore, we tested the hypothesis that high crow viremia allows for higher genetic diversity within individual avian peripheral blood mononuclear cells (PBMCs), reasoning that this could have produced the previously observed host-specific differences in genetic diversity and fitness. Specifically, we infected cells and birds with a molecularly barcoded WNV and sequenced viral RNA from single cells to quantify the number of WNV barcodes in each. Our results demonstrate that the richness of WNV populations within crows far exceeds that in robins. Similarly, rare WNV variants were maintained by crows more frequently than by robins. Our results suggest that increased viremia in crows relative to robins leads to the maintenance of defective genomes and less prevalent variants, presumably through complementation. Our findings further suggest that weaker purifying selection in highly susceptible crows is attributable to this higher viremia, polyinfections and complementation.
Collapse
Affiliation(s)
- Dalit Talmi-Frank
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Alex D Byas
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Reyes Murrieta
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - James Weger-Lucarelli
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Claudia Rückert
- Department of Biochemistry and Molecular Biology, College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, NV 89557, USA
| | - Emily N Gallichotte
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Janna A Yoshimoto
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Chris Allen
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Angela M Bosco-Lauth
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Barbara Graham
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Todd A Felix
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Lakewood, CO 80228, USA
| | - Aaron C Brault
- Division of Vector-Borne Diseases, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - Gregory D Ebel
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
33
|
Flores-Ferrer A, Suzán G, Waleckx E, Gourbière S. Assessing the risk of West Nile Virus seasonal outbreaks and its vector control in an urbanizing bird community: An integrative R0-modelling study in the city of Merida, Mexico. PLoS Negl Trop Dis 2023; 17:e0011340. [PMID: 37253060 PMCID: PMC10256229 DOI: 10.1371/journal.pntd.0011340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/09/2023] [Accepted: 04/27/2023] [Indexed: 06/01/2023] Open
Abstract
Urbanization is a global trend associated with key socio-economic issues, one of them being to control the transmission of infectious diseases to a urban fraction of the world's population that shall reach 68% in 2050. While urban growth has been shown to favor mosquito species responsible for the transmission of the West Nile Virus (WNV), a major human arbovirosis, the effects of concomitant changes in the host bird communities remain hard to anticipate albeit essential to quantify disease risk and to plan control initiatives. We developed a R0 modelling of WNV transmission in a urban bird community to assess the risk of outbreak in Merida, one of the cities with the highest growth rate in Mexico. The model was parameterized using ecological and epidemiological data collected over the past 15-years on the local vector, Culex quinquefasciatus, and avian community. We identified a 3-weeks summer period during which the vector population strongly amplifies the WNV enzootic transmission and lead to a significant risk of outbreaks in humans. Extensive sensitivity analyses showed that urbanization induced changes in the bird community could lead to an up-to 6-fold increase in the duration of the risk period, while the daily risk could rise by 40%. Interestingly, the increase in Quiscalus mexicanus abundance had 4-5 times larger impact than any other change in the bird community. In such a context, annihilating the current and future risk of WNV outbreaks in Merida requires reducing the mosquito population by 13% and up to 56%, respectively. This study provides an integrative assessment of the current and future risks of WNV outbreak in the fast urbanizing city of Merida, and points toward the implementation of epidemiological monitoring combined with preemptive measures targeting both C. quinquefasciatus and Q. mexicanus populations, as they are expected to have synergistic effects.
Collapse
Affiliation(s)
- Alheli Flores-Ferrer
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
- International Joint Laboratory ELDORADO, IRD/UNAM, Mérida, Yucatán, México
| | - Gerardo Suzán
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
- International Joint Laboratory ELDORADO, IRD/UNAM, Mérida, Yucatán, México
| | - Etienne Waleckx
- Institut de Recherche pour le Développement, UMR INTERTRYP IRD, CIRAD, Université de Montpellier, Montpellier, France
- Laboratorio de Parasitología, Centro de Investigaciones Regionales ‘Dr. Hideyo Noguchi’, Universidad Autónoma deYucatán, Mérida, Yucatán, México
| | - Sébastien Gourbière
- UMR5096 ‘Laboratoire Génome et Développement des Plantes’, Université de Perpignan Via Domitia, Perpignan, France
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| |
Collapse
|
34
|
Hort HM, Ibaraki M, Schwartz FW. Temporal and Spatial Synchronicity in West Nile Virus Cases Along the Central Flyway, USA. GEOHEALTH 2023; 7:e2022GH000708. [PMID: 37181010 PMCID: PMC10171186 DOI: 10.1029/2022gh000708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 03/18/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023]
Abstract
This study of West Nile virus (WNV) examined the possibility of avian transmission to explain synchronicity in the year-to-year variability of WNV case numbers from Texas northward to the Dakotas, and reasons for the large case numbers on the northern Great Plains. We determined correlation coefficients between annual disease incidence per 100,000 people among states within the Great Plains Region, as well as the Central Flyway. There was spatial and temporal synchronicity, as evidenced by Pearson "r," with values along the core of the Central Flyway (Oklahoma, Kansas, Nebraska, and South Dakota) varying between 0.69 and 0.79. Correlations for North Dakota (r = 0.6), however, were affected by local conditions. The concept of relative amplification is helpful in explaining why northerly states along the Central Flyway have larger annual case numbers per 100,000 than Texas but preserve the temporal signal. States differed in their capacity for amplifying the temporal signal in case numbers. For example, Nebraska, South Dakota, and North Dakota case numbers were commonly amplified relative to Texas, with Oklahoma and Kansas deamplified. Relative amplification factors for all states increased as a function of increasing case numbers in Texas. Thus, increased numbers of initially infected birds in Texas likely led to the rapid intensification of the zoonotic cycle as compared to more typical years. The study also confirmed the importance of winter weather in locally modulating disease cases. North Dakota appeared most impacted by these factors to the extent of reducing WNV case numbers in colder years and years with deep snow.
Collapse
Affiliation(s)
| | - M. Ibaraki
- School of Earth SciencesThe Ohio State UniversityColumbusOHUSA
| | - F. W. Schwartz
- School of Earth SciencesThe Ohio State UniversityColumbusOHUSA
| |
Collapse
|
35
|
Hyeon JY, Helal ZH, Appel A, Tocco N, Hunt A, Lee DH, Risatti GR. Whole genome sequencing and phylogenetic analysis of West Nile viruses from animals in New England, United States, 2021. Front Vet Sci 2023; 10:1085554. [PMID: 37187933 PMCID: PMC10175668 DOI: 10.3389/fvets.2023.1085554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/06/2023] [Indexed: 05/17/2023] Open
Abstract
West Nile virus is a mosquito-borne Flavivirus which is the leading cause of global arboviral encephalitis. We sequenced WNVs from an American crow found in Connecticut and an alpaca found in Massachusetts which were submitted to the Connecticut Veterinary Medical Diagnostic Laboratory (CVMDL). We report here the complete protein-coding sequences (CDS) of the WNVs (WNV 21-3957/USA CT/Crow/2021 and WNV 21-3782/USA MA/Alpaca/2021) and their phylogenetic relationship with other WNVs recovered from across the United States. In the phylogenetic analysis, the WNVs from this study belonged to the WNV lineage 1. The WNV 21-3957/USA CT/Crow/2021 clustered with WNVs from a mosquito and birds in New York during 2007-2013. Interestingly, the virus detected in the alpaca, WNV 21-3782/USA MA/Alpaca/2021 clustered with WNVs from mosquitos in New York, Texas, and Arizona during 2012-2016. The genetic differences between the viruses detected during the same season in an American crow and an alpaca suggest that vector-host feeding preferences are most likely driving viral transmission. The CDS of the WNVs and their phylogenetic relationships with other WNVs established in this study would be useful as reference data for future investigations on WNVs. Seasonal surveillance of WNV in birds and mammals and the genetic characterization of detected viruses are necessary to monitor patterns of disease presentations and viral evolution within a geographical area.
Collapse
Affiliation(s)
- Ji-Yeon Hyeon
- Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, CT, United States
- Connecticut Veterinary Medical Diagnostic Laboratory, Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, CT, United States
- College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Zeinab H. Helal
- Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, CT, United States
- Connecticut Veterinary Medical Diagnostic Laboratory, Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, CT, United States
| | - Allison Appel
- Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, CT, United States
| | - Natalie Tocco
- Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, CT, United States
| | - Amelia Hunt
- Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, CT, United States
- Connecticut Veterinary Medical Diagnostic Laboratory, Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, CT, United States
| | - Dong-Hun Lee
- College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Guillermo R. Risatti
- Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, CT, United States
- Connecticut Veterinary Medical Diagnostic Laboratory, Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
36
|
Bloom JD, Beichman AC, Neher RA, Harris K. Evolution of the SARS-CoV-2 Mutational Spectrum. Mol Biol Evol 2023; 40:msad085. [PMID: 37039557 PMCID: PMC10124870 DOI: 10.1093/molbev/msad085] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/07/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2023] Open
Abstract
SARS-CoV-2 evolves rapidly in part because of its high mutation rate. Here, we examine whether this mutational process itself has changed during viral evolution. To do this, we quantify the relative rates of different types of single-nucleotide mutations at 4-fold degenerate sites in the viral genome across millions of human SARS-CoV-2 sequences. We find clear shifts in the relative rates of several types of mutations during SARS-CoV-2 evolution. The most striking trend is a roughly 2-fold decrease in the relative rate of G→T mutations in Omicron versus early clades, as was recently noted by Ruis et al. (2022. Mutational spectra distinguish SARS-CoV-2 replication niches. bioRxiv, doi:10.1101/2022.09.27.509649). There is also a decrease in the relative rate of C→T mutations in Delta, and other subtle changes in the mutation spectrum along the phylogeny. We speculate that these changes in the mutation spectrum could arise from viral mutations that affect genome replication, packaging, and antagonization of host innate-immune factors, although environmental factors could also play a role. Interestingly, the mutation spectrum of Omicron is more similar than that of earlier SARS-CoV-2 clades to the spectrum that shaped the long-term evolution of sarbecoviruses. Overall, our work shows that the mutation process is itself a dynamic variable during SARS-CoV-2 evolution and suggests that human SARS-CoV-2 may be trending toward a mutation spectrum more similar to that of other animal sarbecoviruses.
Collapse
Affiliation(s)
- Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Genome Sciences, University of Washington, Seattle, WA
- Howard Hughes Medical Institute, Seattle, WA
| | | | - Richard A Neher
- Biozentrum, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Kelley Harris
- Department of Genome Sciences, University of Washington, Seattle, WA
| |
Collapse
|
37
|
McMillan JR, Hamer GL, Levine RS, Mead DG, Waller LA, Goldberg TL, Walker ED, Brawn JD, Ruiz MO, Kitron U, Vazquez-Prokopec G. Multi-Year Comparison of Community- and Species-Level West Nile Virus Antibody Prevalence in Birds from Atlanta, Georgia and Chicago, Illinois, 2005-2016. Am J Trop Med Hyg 2023; 108:366-376. [PMID: 36572005 PMCID: PMC9896344 DOI: 10.4269/ajtmh.21-1086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 09/26/2022] [Indexed: 12/27/2022] Open
Abstract
West Nile virus (WNV) is prevalent in the United States but shows considerable variation in transmission intensity. The purpose of this study was to compare patterns of WNV seroprevalence in avian communities sampled in Atlanta, Georgia and Chicago, Illinois during a 12-year period (Atlanta 2010-2016; Chicago 2005-2012) to reveal regional patterns of zoonotic activity of WNV. WNV antibodies were measured in wild bird sera using ELISA and serum neutralization methods, and seroprevalence among species, year, and location of sampling within each city were compared using binomial-distributed generalized linear mixed-effects models. Seroprevalence was highest in year-round and summer-resident species compared with migrants regardless of region; species explained more variance in seroprevalence within each city. Northern cardinals were the species most likely to test positive for WNV in each city, whereas all other species, on average, tested positive for WNV in proportion to their sample size. Despite similar patterns of seroprevalence among species, overall seroprevalence was higher in Atlanta (13.7%) than in Chicago (5%). Location and year of sampling had minor effects, with location explaining more variation in Atlanta and year explaining more variation in Chicago. Our findings highlight the nature and magnitude of regional differences in WNV urban ecology.
Collapse
Affiliation(s)
- Joseph R. McMillan
- Program in Population Biology, Ecology and Evolution, Emory University, Atlanta, Georgia
| | - Gabriel L. Hamer
- Department of Entomology, Texas A&M University, College Station, Texas
| | - Rebecca S. Levine
- Program in Population Biology, Ecology and Evolution, Emory University, Atlanta, Georgia
| | - Daniel G. Mead
- Southeastern Cooperative Wildlife Disease Study, University of Georgia, Athens, Georgia
| | - Lance A. Waller
- Program in Population Biology, Ecology and Evolution, Emory University, Atlanta, Georgia;,Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Tony L. Goldberg
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, Wisconsin
| | - Edward D. Walker
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan
| | - Jeffrey D. Brawn
- Department of Natural Resources and Environmental Sciences, University of Illinois Champaign–Urbana, Urbana, Illinois
| | - Marilyn O. Ruiz
- Department of Pathobiology, University of Illinois Champaign–Urbana, Urbana, Illinois
| | - Uriel Kitron
- Program in Population Biology, Ecology and Evolution, Emory University, Atlanta, Georgia;,Department of Environmental Sciences, Emory University, Atlanta, Georgia
| | - Gonzalo Vazquez-Prokopec
- Program in Population Biology, Ecology and Evolution, Emory University, Atlanta, Georgia;,Department of Environmental Sciences, Emory University, Atlanta, Georgia,Address correspondence to Gonzalo Vazquez-Prokopec, Department of Environmental Sciences, Emory University, 400 Dowman Dr., Math and Science Center, 5th Floor, Suite E530, Atlanta, GA 30322. E-mail:
| |
Collapse
|
38
|
Frank DT, Byas AD, Murrieta R, Weger-Lucarelli J, Rückert C, Gallichotte E, Yoshimoto JA, Allen C, Bosco-Lauth AM, Graham B, Felix TA, Brault A, Ebel GD. Intracellular diversity of WNV within circulating avian peripheral blood mononuclear cells reveals host-dependent patterns of polyinfection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.27.525959. [PMID: 36747638 PMCID: PMC9900929 DOI: 10.1101/2023.01.27.525959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Error-prone replication of RNA viruses generates the genetic diversity required for adaptation within rapidly changing environments. Thus, arthropod-borne virus (arbovirus) populations exist in nature as mutant swarms that are maintained between arthropods and vertebrates. Previous studies have demonstrated that West Nile virus (WNV) population dynamics are host dependent: In American crows, which experience extremely high viremia, purifying selection is weak and population diversity is high compared to American robins, which have 100 to 1000-fold lower viremia. WNV passed in robins experiences fitness gains, whereas that passed in crows does not. Therefore, we tested the hypothesis that high crow viremia allows higher genetic diversity within individual avian peripheral-blood mononuclear cells (PBMCs), reasoning that this could have produced the previously observed host-specific differences in genetic diversity and fitness. Specifically, we infected cells and birds with a novel, barcoded version of WNV and sequenced viral RNA from single cells to quantify the number of WNV barcodes that each contained. Our results demonstrate that the richness of WNV populations within crows far exceeds that in robins. Similarly, rare WNV variants were maintained by crows more frequently than by robins. Our results suggest that increased viremia in crows relative to robins leads to maintenance of defective genomes and less prevalent variants, presumably through complementation. Our findings further suggest that weaker purifying selection in highly susceptible crows is attributable to this higher viremia, polyinfections and complementation. These studies further document the role of particular, ecologically relevant hosts in shaping virus population structure. Author Summary WNV mutational diversity in vertebrates is species-dependent. In crows, low frequency variants are common, and viral populations are more diverse. In robins, fewer mutations become permanent fixtures of the overall viral population. We infected crows, robins and a chicken cell line with a genetically marked (barcoded) WNV. Higher levels of virus led to multiple unique WNV genomes infecting individual cells, even when a genotype was present at low levels in the input viral stock. Our findings suggest that higher levels of circulating virus in natural hosts allow less fit viruses to survive in RNA virus populations through complementation by more fit viruses. This is significant as it allows less represented and less fit viruses to be maintained at low levels until they potentially emerge when virus environments change. Overall our data reveal new insights on the relationships between host susceptibility to high viremia and virus evolution.
Collapse
Affiliation(s)
- Dalit Talmi Frank
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Alex D. Byas
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Reyes Murrieta
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - James Weger-Lucarelli
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Claudia Rückert
- Department of Biochemistry and Molecular Biology, College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, Nevada, USA
| | - Emily Gallichotte
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Janna A. Yoshimoto
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Chris Allen
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Angela M. Bosco-Lauth
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Barbara Graham
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Todd A. Felix
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Golden, CO, USA
| | - Aaron Brault
- Division of Vector-borne Diseases, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention Fort Collins, Colorado, USA
| | - Gregory D. Ebel
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
39
|
Velleman Y, Blair L, Fleming F, Fenwick A. Water-, Sanitation-, and Hygiene-Related Diseases. Infect Dis (Lond) 2023. [DOI: 10.1007/978-1-0716-2463-0_547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
40
|
Santos PD, Günther A, Keller M, Homeier-Bachmann T, Groschup MH, Beer M, Höper D, Ziegler U. An advanced sequence clustering and designation workflow reveals the enzootic maintenance of a dominant West Nile virus subclade in Germany. Virus Evol 2023; 9:vead013. [PMID: 37197362 PMCID: PMC10184446 DOI: 10.1093/ve/vead013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/13/2023] [Accepted: 03/16/2023] [Indexed: 05/19/2023] Open
Abstract
West Nile virus (WNV) is the most widespread arthropod-borne (arbo) virus and the primary cause of arboviral encephalitis globally. Members of WNV species genetically diverged and are classified into different hierarchical groups below species rank. However, the demarcation criteria for allocating WNV sequences into these groups remain individual and inconsistent, and the use of names for different levels of the hierarchical levels is unstructured. In order to have an objective and comprehensible grouping of WNV sequences, we developed an advanced grouping workflow using the 'affinity propagation clustering' algorithm and newly included the 'agglomerative hierarchical clustering' algorithm for the allocation of WNV sequences into different groups below species rank. In addition, we propose to use a fixed set of terms for the hierarchical naming of WNV below species level and a clear decimal numbering system to label the determined groups. For validation, we applied the refined workflow to WNV sequences that have been previously grouped into various lineages, clades, and clusters in other studies. Although our workflow regrouped some WNV sequences, overall, it generally corresponds with previous groupings. We employed our novel approach to the sequences from the WNV circulation in Germany 2020, primarily from WNV-infected birds and horses. Besides two newly defined minor (sub)clusters comprising only three sequences each, Subcluster 2.5.3.4.3c was the predominant WNV sequence group detected in Germany from 2018 to 2020. This predominant subcluster was also associated with at least five human WNV infections in 2019-20. In summary, our analyses imply that the genetic diversity of the WNV population in Germany is shaped by enzootic maintenance of the dominant WNV subcluster accompanied by sporadic incursions of other rare clusters and subclusters. Moreover, we show that our refined approach for sequence grouping yields meaningful results. Although we primarily aimed at a more detailed WNV classification, the presented workflow can also be applied to the objective genotyping of other virus species.
Collapse
Affiliation(s)
| | | | - Markus Keller
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, 17493, Greifswald-Insel Riems, Germany
| | | | - Martin H Groschup
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, 17493, Greifswald-Insel Riems, Germany
- German Centre for Infection Research, Partner site Hamburg-Lübeck-Borstel-Riems, 17493, Greifswald-Insel Riems, Germany
| | - Martin Beer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Diagnostic Virology, 17493, Greifswald-Insel Riems, Germany
| | | | | |
Collapse
|
41
|
Albrecht L, Kaufeld KA. Investigating the impact of environmental factors on West Nile virus human case prediction in Ontario, Canada. Front Public Health 2023; 11:1100543. [PMID: 36875397 PMCID: PMC9981635 DOI: 10.3389/fpubh.2023.1100543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/31/2023] [Indexed: 02/19/2023] Open
Abstract
West Nile virus is the most common mosquito borne disease in North America and the leading cause of viral encephalitis. West Nile virus is primarily transmitted between birds and mosquitoes while humans are incidental, dead-end hosts. Climate change may increase the risk of human infections as climatic variables have been shown to affect the mosquito life cycle, biting rate, incubation period of the disease in mosquitoes, and bird migration patterns. We develop a zero-inflated Poisson model to investigate how human West Nile virus case counts vary with respect to mosquito abundance and infection rates, bird abundance, and other environmental covariates. We use a Bayesian paradigm to fit our model to data from 2010-2019 in Ontario, Canada. Our results show mosquito infection rate, temperature, precipitation, and crow abundance are positively correlated with human cases while NDVI and robin abundance are negatively correlated with human cases. We find the inclusion of spatial random effects allows for more accurate predictions, particularly in years where cases are higher. Our model is able to accurately predict the magnitude and timing of yearly West Nile virus outbreaks and could be a valuable tool for public health officials to implement prevention strategies to mitigate these outbreaks.
Collapse
Affiliation(s)
- Laura Albrecht
- Statistical Sciences Group, Los Alamos National Laboratory, Los Alamos, NM, United States.,Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, CO, United States
| | - Kimberly A Kaufeld
- Statistical Sciences Group, Los Alamos National Laboratory, Los Alamos, NM, United States
| |
Collapse
|
42
|
Piche-Ovares M, Romero-Vega M, Vargas-González D, Murillo DFB, Soto-Garita C, Francisco-Llamas J, Alfaro-Alarcón A, Jiménez C, Corrales-Aguilar E. Serosurvey in Two Dengue Hyperendemic Areas of Costa Rica Evidence Active Circulation of WNV and SLEV in Peri-Domestic and Domestic Animals and in Humans. Pathogens 2022; 12:7. [PMID: 36678356 PMCID: PMC9863573 DOI: 10.3390/pathogens12010007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Costa Rica harbors several flaviviruses, including Dengue (DENV), Zika (ZIKV), West Nile virus (WNV), and Saint Louis encephalitis virus (SLEV). While DENV and ZIKV are hyperendemic, previous research indicates restricted circulation of SLEV and WNV in animals. SLEV and WNV seroprevalence and high transmission areas have not yet been measured. To determine the extents of putative WNV and SLEV circulation, we sampled peri-domestic and domestic animals, humans, and mosquitoes in rural households located in two DENV and ZIKV hyperendemic regions during the rainy and dry seasons of 2017-2018 and conducted plaque reduction neutralization test assay for serology (PRNT) and RT-PCR for virus detection. In Cuajiniquil, serological evidence of WNV and SLEV was found in equines, humans, chickens, and wild birds. Additionally, five seroconversion events were recorded for WNV (2 equines), SLEV (1 human), and DENV-1 (2 humans). In Talamanca, WNV was not found, but serological evidence of SLEV circulation was recorded in equines, humans, and wild birds. Even though no active viral infection was detected, the seroconversion events recorded here indicate recent circulation of SLEV and WNV in these two regions. This study thus provides clear-cut evidence for WNV and SLEV presence in these areas, and therefore, they should be considered in arboviruses differential diagnostics and future infection prevention campaigns.
Collapse
Affiliation(s)
- Marta Piche-Ovares
- Virology-CIET (Research Center for Tropical Diseases), Universidad de Costa Rica, San José 11501-2060, Costa Rica
- PIET (Tropical Disease Research Program), Department of Virology, School of Veterinary Medicine, Universidad Nacional, Heredia 86-3000, Costa Rica
| | - Mario Romero-Vega
- Department of Pathology, School of Veterinary Medicine, Universidad Nacional, Heredia 86-3000, Costa Rica
- Laboratorio de Investigación en Vectores-CIET (Research Center for Tropical Disease), Universidad de Costa Rica, San José 11501-2060, Costa Rica
| | - Diana Vargas-González
- PIET (Tropical Disease Research Program), Department of Virology, School of Veterinary Medicine, Universidad Nacional, Heredia 86-3000, Costa Rica
| | | | - Claudio Soto-Garita
- Virology-CIET (Research Center for Tropical Diseases), Universidad de Costa Rica, San José 11501-2060, Costa Rica
| | | | - Alejandro Alfaro-Alarcón
- Department of Pathology, School of Veterinary Medicine, Universidad Nacional, Heredia 86-3000, Costa Rica
| | - Carlos Jiménez
- PIET (Tropical Disease Research Program), Department of Virology, School of Veterinary Medicine, Universidad Nacional, Heredia 86-3000, Costa Rica
| | - Eugenia Corrales-Aguilar
- Virology-CIET (Research Center for Tropical Diseases), Universidad de Costa Rica, San José 11501-2060, Costa Rica
| |
Collapse
|
43
|
Sah R, Borde K, Mohanty A, Chandran D, Hussein NR, Lorenzo JM, Dhama K. Recent outbreaks of West Nile Virus (WNV) in the United States of America and European countries; current scenario and counteracting prospects - Correspondence. Int J Surg 2022; 106:106946. [PMID: 36152920 DOI: 10.1016/j.ijsu.2022.106946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Ranjit Sah
- Harvard Medical School, Boston, USA; Tribhuvan University Teaching Hospital, Institute of Medicine, Kathmandu, Nepal.
| | | | - Aroop Mohanty
- Department of Clinical Microbiology, All India Institute of Medical Sciences, Gorakhpur, India.
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore, 642109, Tamil Nadu, India.
| | - Nawfal R Hussein
- Department of Biomedical Sciences, College of Medicine, University of Zakho, Kurdistan Region of Iraq, Iraq.
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900, Ourense, Spain; Universidade de Vigo, Área de Tecnoloxía dos Alimentos, Facultade de Ciencias de Ourense, 32004 Ourense, Spain.
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Izatnagar, Uttar Pradesh- 243122, India.
| |
Collapse
|
44
|
Adelman JS, Tokarz RE, Euken AE, Field EN, Russell MC, Smith RC. Relative Influence of Land Use, Mosquito Abundance, and Bird Communities in Defining West Nile Virus Infection Rates in Culex Mosquito Populations. INSECTS 2022; 13:758. [PMID: 36135459 PMCID: PMC9502061 DOI: 10.3390/insects13090758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/16/2022] [Accepted: 08/21/2022] [Indexed: 06/16/2023]
Abstract
Since its introduction to North America in 1999, the West Nile virus (WNV) has resulted in over 50,000 human cases and 2400 deaths. WNV transmission is maintained via mosquito vectors and avian reservoir hosts, yet mosquito and avian infections are not uniform across ecological landscapes. As a result, it remains unclear whether the ecological communities of the vectors or reservoir hosts are more predictive of zoonotic risk at the microhabitat level. We examined this question in central Iowa, representative of the midwestern United States, across a land use gradient consisting of suburban interfaces with natural and agricultural habitats. At eight sites, we captured mosquito abundance data using New Jersey light traps and monitored bird communities using visual and auditory point count surveys. We found that the mosquito minimum infection rate (MIR) was better predicted by metrics of the mosquito community than metrics of the bird community, where sites with higher proportions of Culex pipiens group mosquitoes during late summer (after late July) showed higher MIRs. Bird community metrics did not significantly influence mosquito MIRs across sites. Together, these data suggest that the microhabitat suitability of Culex vector species is of greater importance than avian community composition in driving WNV infection dynamics at the urban and agricultural interface.
Collapse
Affiliation(s)
- James S. Adelman
- Department of Natural Resource Ecology and Management, Iowa State University, Ames, IA 50011, USA
- Department of Biological Sciences, The University of Memphis, Memphis, TN 38152, USA
| | - Ryan E. Tokarz
- Department of Entomology, Iowa State University, Ames, IA 50011, USA
- Department of International and Global Health, Mercer University, Macon, GA 31207, USA
| | - Alec E. Euken
- Department of Natural Resource Ecology and Management, Iowa State University, Ames, IA 50011, USA
| | - Eleanor N. Field
- Department of Entomology, Iowa State University, Ames, IA 50011, USA
| | - Marie C. Russell
- Department of Entomology, Iowa State University, Ames, IA 50011, USA
| | - Ryan C. Smith
- Department of Entomology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
45
|
The Evolution, Genomic Epidemiology, and Transmission Dynamics of Tembusu Virus. Viruses 2022; 14:v14061236. [PMID: 35746707 PMCID: PMC9227414 DOI: 10.3390/v14061236] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 12/10/2022] Open
Abstract
Tembusu virus (TMUV) can induce severe egg drop syndrome in ducks, causing significant economic losses. In this study, the possible origin, genomic epidemiology, and transmission dynamics of TMUV were determined. The time to the most recent common ancestor of TMUV was found to be 1924, earlier than that previously reported. The effective population size of TMUV increased rapidly from 2010 to 2013 and was associated with the diversification of different TMUV clusters. TMUV was classified into three clusters (clusters 1, 2, and 3) based on the envelope (E) protein. Subcluster 2.2, within cluster 2, is the most prevalent, and the occurrence of these mutations is accompanied by changes in the virulence and infectivity of the virus. Two positive selections on codons located in the NS3 and NS5 genes (591 of NS3 and 883 of NS5) were identified, which might have caused changes in the ability of the virus to replicate. Based on phylogeographic analysis, Malaysia was the most likely country of origin for TMUV, while Shandong Province was the earliest province of origin in China. This study has important implications for understanding TMUV and provides suggestions for its prevention and control.
Collapse
|
46
|
Habarugira G, Moran J, Harrison JJ, Isberg SR, Hobson-Peters J, Hall RA, Bielefeldt-Ohmann H. Evidence of Infection with Zoonotic Mosquito-Borne Flaviviruses in Saltwater Crocodiles (Crocodylus porosus) in Northern Australia. Viruses 2022; 14:v14051106. [PMID: 35632847 PMCID: PMC9144604 DOI: 10.3390/v14051106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
The risk of flavivirus infections among the crocodilian species was not recognised until West Nile virus (WNV) was introduced into the Americas. The first outbreaks caused death and substantial economic losses in the alligator farming industry. Several other WNV disease episodes have been reported in crocodilians in other parts of the world, including Australia and Africa. Considering that WNV shares vectors with other flaviviruses, crocodilians are highly likely to also be exposed to flaviviruses other than WNV. A serological survey for flaviviral infections was conducted on saltwater crocodiles (Crocodylus porosus) at farms in the Northern Territory, Australia. Five hundred serum samples, collected from three crocodile farms, were screened using a pan-flavivirus-specific blocking ELISA. The screening revealed that 26% (n = 130/500) of the animals had antibodies to flaviviruses. Of these, 31.5% had neutralising antibodies to WNVKUN (Kunjin strain), while 1.5% had neutralising antibodies to another important flavivirus pathogen, Murray Valley encephalitis virus (MVEV). Of the other flaviviruses tested for, Fitzroy River virus (FRV) was the most frequent (58.5%) in which virus neutralising antibodies were detected. Our data indicate that farmed crocodiles in the Northern Territory are exposed to a range of potentially zoonotic flaviviruses, in addition to WNVKUN. While these flaviviruses do not cause any known diseases in crocodiles, there is a need to investigate whether infected saltwater crocodiles can develop a viremia to sustain the transmission cycle or farmed crocodilians can be used as sentinels to monitor the dynamics of arboviral infections in tropical areas.
Collapse
Affiliation(s)
- Gervais Habarugira
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia;
| | - Jasmin Moran
- Centre for Crocodile Research, Noonamah, NT 0837, Australia; (J.M.); (S.R.I.)
| | - Jessica J. Harrison
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.J.H.); (J.H.-P.); (R.A.H.)
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Sally R. Isberg
- Centre for Crocodile Research, Noonamah, NT 0837, Australia; (J.M.); (S.R.I.)
| | - Jody Hobson-Peters
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.J.H.); (J.H.-P.); (R.A.H.)
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Roy A. Hall
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.J.H.); (J.H.-P.); (R.A.H.)
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Helle Bielefeldt-Ohmann
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.J.H.); (J.H.-P.); (R.A.H.)
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
- Correspondence:
| |
Collapse
|
47
|
Lorenz C, Chiaravalloti-Neto F. Why are there no human West Nile virus outbreaks in South America? LANCET REGIONAL HEALTH. AMERICAS 2022; 12:100276. [PMID: 36776433 PMCID: PMC9903813 DOI: 10.1016/j.lana.2022.100276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Camila Lorenz
- Corresponding author at: Department of Epidemiology, School of Public Health - FSP, University of Sao Paulo - USP, Av. Dr. Arnaldo, 715, São Paulo, SP, Brazil.
| | | |
Collapse
|
48
|
Middlebrook EA, Romero AT, Bett B, Nthiwa D, Oyola SO, Fair JM, Bartlow AW. Identification and distribution of pathogens coinfecting with Brucella spp., Coxiella burnetii and Rift Valley fever virus in humans, livestock and wildlife. Zoonoses Public Health 2022; 69:175-194. [PMID: 35034427 PMCID: PMC9303618 DOI: 10.1111/zph.12905] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 01/20/2023]
Abstract
Zoonotic diseases, such as brucellosis, Q fever and Rift Valley fever (RVF) caused by Brucella spp., Coxiella burnetii and RVF virus, respectively, can have devastating effects on human, livestock, and wildlife health and cause economic hardship due to morbidity and mortality in livestock. Coinfection with multiple pathogens can lead to more severe disease outcomes and altered transmission dynamics. These three pathogens can alter host immune responses likely leading to increased morbidity, mortality and pathogen transmission during coinfection. Developing countries, such as those commonly afflicted by outbreaks of brucellosis, Q fever and RVF, have high disease burden and thus common coinfections. A literature survey provided information on case reports and studies investigating coinfections involving the three focal diseases. Fifty five studies were collected demonstrating coinfections of Brucella spp., C. burnetii or RVFV with 50 different pathogens, of which 64% were zoonotic. While the literature search criteria involved ‘coinfection’, only 24/55 studies showed coinfections with direct pathogen detection methods (microbiology, PCR and antigen test), while the rest only reported detection of antibodies against multiple pathogens, which only indicate a history of co‐exposure, not concurrent infection. These studies lack the ability to test whether coinfection leads to changes in morbidity, mortality or transmission dynamics. We describe considerations and methods for identifying ongoing coinfections to address this critical blind spot in disease risk management.
Collapse
Affiliation(s)
- Earl A Middlebrook
- Biosecurity and Public Health, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Alicia T Romero
- Biosecurity and Public Health, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Bernard Bett
- International Livestock Research Institute, Nairobi, Kenya
| | - Daniel Nthiwa
- International Livestock Research Institute, Nairobi, Kenya.,Department of Biological Sciences, University of Embu, Embu, Kenya
| | - Samuel O Oyola
- International Livestock Research Institute, Nairobi, Kenya
| | - Jeanne M Fair
- Biosecurity and Public Health, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Andrew W Bartlow
- Biosecurity and Public Health, Los Alamos National Laboratory, Los Alamos, NM, USA
| |
Collapse
|
49
|
Libera K, Konieczny K, Grabska J, Szopka W, Augustyniak A, Pomorska-Mól M. Selected Livestock-Associated Zoonoses as a Growing Challenge for Public Health. Infect Dis Rep 2022; 14:63-81. [PMID: 35076534 PMCID: PMC8788295 DOI: 10.3390/idr14010008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 12/12/2022] Open
Abstract
The aim of this paper is to review the most significant livestock-associated zoonoses. Human and animal health are intimately connected. This idea has been known for more than a century but now it has gained special importance because of the increasing threat from zoonoses. Zoonosis is defined as any infection naturally transmissible from vertebrate animals to humans. As the frequency and prevalence of zoonotic diseases increase worldwide, they become a real threat to public health. In addition, many of the newly discovered diseases have a zoonotic origin. Due to globalization and urbanization, some of these diseases have already spread all over the world, caused by the international flow of goods, people, and animals. However, special attention should be paid to farm animals since, apart from the direct contact, humans consume their products, such as meat, eggs, and milk. Therefore, zoonoses such as salmonellosis, campylobacteriosis, tuberculosis, swine and avian influenza, Q fever, brucellosis, STEC infections, and listeriosis are crucial for both veterinary and human medicine. Consequently, in the suspicion of any zoonoses outbreak, the medical and veterinary services should closely cooperate to protect the public health.
Collapse
Affiliation(s)
- Kacper Libera
- Department of Preclinical Sciences and Infectious Diseases, Poznan University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland; (K.L.); (A.A.)
| | - Kacper Konieczny
- Department of Internal Diseases and Diagnostics, Poznan University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland;
| | - Julia Grabska
- Faculty of Veterinary Medicine and Animal Science, Poznan University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland; (J.G.); (W.S.)
| | - Wiktoria Szopka
- Faculty of Veterinary Medicine and Animal Science, Poznan University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland; (J.G.); (W.S.)
| | - Agata Augustyniak
- Department of Preclinical Sciences and Infectious Diseases, Poznan University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland; (K.L.); (A.A.)
| | - Małgorzata Pomorska-Mól
- Department of Preclinical Sciences and Infectious Diseases, Poznan University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland; (K.L.); (A.A.)
| |
Collapse
|
50
|
Alkharsah KR, Al-Afaleq AI. Serological Evidence of West Nile Virus Infection Among Humans, Horses, and Pigeons in Saudi Arabia. Infect Drug Resist 2022; 14:5595-5601. [PMID: 34992386 PMCID: PMC8711105 DOI: 10.2147/idr.s348648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/14/2021] [Indexed: 12/22/2022] Open
Abstract
Purpose This study was designed to investigate the seroprevalence of WNV antibodies in humans, horses, and pigeons in the Eastern Province of Saudi Arabia. Materials and Methods Blood samples were collected from 323 humans, 147 horses, and 282 pigeons from two regions, Al-Ahsa and Al-Qatif, in East of Saudi Arabia. Serum samples were tested for anti-WNV antibodies by ELISA. Results The percentage of anti-WNV antibodies in the human population was found to be 9.6% (3.1% in females and 6.5% in males). This percentage was much higher in horses, as 71.4% (105/147) of the horses had anti-WNV antibodies. However, no statistically significant difference in the anti-WNV antibody prevalence was found among horses from the two regions, Al-Ahsa (73.9%) and Al-Qatif (70.3%) (P value 0.665, 95% CI 0.37–1.82). No significant difference was found in the frequency of WNV antibodies among different age groups from humans or horses. Noticeably, 72.7% of the horses had detectable anti-WNV antibodies by the age of 1 year. In total, 53.19% (150/282) of the pigeons in the study had anti-WNV antibodies. Conclusion Our study provided the first evidence for anti-WNV antibody detection in humans and pigeons. This study further ascertained the high seroprevalence of the virus in horses as reported previously by Hemida et al 2019. Overall data indicates that WNV is endemic in Saudi Arabia. These findings suggest that more attention should be given to the diagnosis and reporting of WNV infections in human and animals and monitoring of virus circulation in the environment.
Collapse
Affiliation(s)
- Khaled R Alkharsah
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Kingdom of Saudi Arabia
| | - Adel I Al-Afaleq
- Department of Environmental Health, College of Public Health, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Kingdom of Saudi Arabia
| |
Collapse
|