1
|
Simonson AW, Zeppa JJ, Bucsan AN, Chao MC, Pokkali S, Hopkins F, Chase MR, Vickers AJ, Sutton MS, Winchell CG, Myers AJ, Ameel CL, Kelly RJ, Krouse B, Hood LE, Li J, Lehman CC, Kamath M, Tomko J, Rodgers MA, Donlan R, Chishti H, Borish HJ, Klein E, Scanga CA, Fortune SM, Lin PL, Maiello P, Roederer M, Darrah PA, Seder RA, Flynn JL. Intravenous BCG-mediated protection against tuberculosis requires CD4+ T cells and CD8α+ lymphocytes. J Exp Med 2025; 222:e20241571. [PMID: 39912921 PMCID: PMC11801270 DOI: 10.1084/jem.20241571] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/23/2024] [Accepted: 01/16/2025] [Indexed: 02/07/2025] Open
Abstract
Tuberculosis (TB) is a major health burden worldwide despite widespread intradermal (ID) BCG vaccination in newborns. We previously demonstrated that changing the BCG route and dose from 5 × 105 CFUs ID to 5 × 107 CFUs i.v. resulted in prevention of Mycobacterium tuberculosis (Mtb) infection and TB disease in highly susceptible nonhuman primates. Identifying immune mechanisms protection following i.v. BCG will facilitate development of more effective vaccines against TB. Here, we depleted lymphocyte subsets prior to and during Mtb challenge in i.v. BCG-vaccinated macaques to identify those necessary for protection. Depletion of adaptive CD4 T cells, but not adaptive CD8αβ T cells, resulted in loss of protection with increased Mtb burdens and dissemination, indicating that CD4 T cells are critical to i.v. BCG-mediated protection. Depletion of unconventional CD8α-expressing lymphocytes (NK cells, innate T cells, and CD4+CD8α+ double-positive T cells) abrogated protection in most i.v. BCG-immunized macaques, supporting further investigation into which of these cell subsets contribute to protection after vaccination.
Collapse
Affiliation(s)
- Andrew W. Simonson
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Joseph J. Zeppa
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Allison N. Bucsan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Michael C. Chao
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Supriya Pokkali
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Forrest Hopkins
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Michael R. Chase
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Andrew J. Vickers
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Matthew S. Sutton
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Caylin G. Winchell
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amy J. Myers
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Cassaundra L. Ameel
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ryan J. Kelly
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ben Krouse
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Luke E. Hood
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jiaxiang Li
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Chelsea C. Lehman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Megha Kamath
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jaime Tomko
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mark A. Rodgers
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rachel Donlan
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Harris Chishti
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - H. Jacob Borish
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Edwin Klein
- Division of Animal Laboratory Resources, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Charles A. Scanga
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sarah M. Fortune
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Philana Ling Lin
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pediatrics, Children’s Hospital of the University of Pittsburgh of UPMC, Pittsburgh, PA, USA
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Patricia A. Darrah
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Robert A. Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - JoAnne L. Flynn
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Maiello P, Diedrich C, Rutledge T, Rodgers M, Kracinovsky K, Borish HJ, White A, Hopkins F, Chao MC, Klein E, Fortune S, Flynn JL, Lin PL. Characterizing PET CT patterns and bacterial dissemination features of tuberculosis relapse in the macaque model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.646419. [PMID: 40236101 PMCID: PMC11996433 DOI: 10.1101/2025.03.31.646419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Tuberculosis (TB) relapse after appropriate drug treatment is poorly understood but critical to developing shorter treatment regimens. Using a cynomolgus macaque model of human TB, macaques with active TB disease were treated with a short course of isoniazid and rifampin and subsequently infected with SIV. Serial clinical, microbiologic, immunologic and position emission and computed tomography (PET CT) assessments were performed to identify risk factors of relapse. Of the 12 animals, eight developed radiologically defined relapse including four that had clinical and/or microbiologic signs. Greater gross pathology and bacterial burden were observed in relapse animals. PET CT characteristics before, during, and at the end of treatment were similar amongst relapse and non-relapse animals. We show that complete sterilization or very low Mtb burden is protective against SIV-induced TB relapse but cannot be predicted by PET CT. Using bar-coded M. tuberculosis , we found that Mtb dissemination during relapse originated from both lung and thoracic lymph nodes, underscoring the importance of lymph nodes as a reservoir. By matching bar-coded Mtb and serial PET CT, we also demonstrate that not every site of persistent Mtb growth after drug treatment is capable of dissemination and relapse, underscoring the complex nature of drug treatment and relapse.
Collapse
|
3
|
Wang S, Myers AJ, Irvine EB, Wang C, Maiello P, Rodgers MA, Tomko J, Kracinovsky K, Borish HJ, Chao MC, Mugahid D, Darrah PA, Seder RA, Roederer M, Scanga CA, Lin PL, Alter G, Fortune SM, Flynn JL, Lauffenburger DA. Markov field network model of multi-modal data predicts effects of immune system perturbations on intravenous BCG vaccination in macaques. Cell Syst 2024; 15:1278-1294.e4. [PMID: 39504969 DOI: 10.1016/j.cels.2024.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 07/09/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024]
Abstract
Analysis of multi-modal datasets can identify multi-scale interactions underlying biological systems but can be beset by spurious connections due to indirect impacts propagating through an unmapped biological network. For example, studies in macaques have shown that Bacillus Calmette-Guerin (BCG) vaccination by an intravenous route protects against tuberculosis, correlating with changes across various immune data modes. To eliminate spurious correlations and identify critical immune interactions in a public multi-modal dataset (systems serology, cytokines, and cytometry) of vaccinated macaques, we applied Markov fields (MFs), a data-driven approach that explains vaccine efficacy and immune correlations via multivariate network paths, without requiring large numbers of samples (i.e., macaques) relative to multivariate features. We find that integrating multiple data modes with MFs helps remove spurious connections. Finally, we used the MF to predict outcomes of perturbations at various immune nodes, including an experimentally validated B cell depletion that induced network-wide shifts without reducing vaccine protection.
Collapse
Affiliation(s)
- Shu Wang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Amy J Myers
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Edward B Irvine
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Cambridge, MA 02139, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Chuangqi Wang
- Department of Immunology and Microbiology, University of Colorado, Anschuntz Medical Campus, Aurora, CO 80045, USA
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Mark A Rodgers
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jaime Tomko
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Kara Kracinovsky
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - H Jacob Borish
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Michael C Chao
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Douaa Mugahid
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Patricia A Darrah
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20814, USA
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20814, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20814, USA
| | - Charles A Scanga
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Philana Ling Lin
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15620, USA
| | - Galit Alter
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Cambridge, MA 02139, USA
| | - Sarah M Fortune
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Cambridge, MA 02139, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - JoAnne L Flynn
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
4
|
Li Q, Wang C, Gou J, Kitanovski S, Tang X, Cai Y, Zhang C, Zhang X, Zhang Z, Qiu Y, Zhao F, Lu M, He Y, Wang J, Lu H. Deciphering lung granulomas in HIV & TB co-infection: unveiling macrophages aggregation with IL6R/STAT3 activation. Emerg Microbes Infect 2024; 13:2366359. [PMID: 38855910 PMCID: PMC11188963 DOI: 10.1080/22221751.2024.2366359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
Tuberculosis (TB) remains a leading cause of mortality among individuals coinfected with HIV, characterized by progressive pulmonary inflammation. Despite TB's hallmark being focal granulomatous lung lesions, our understanding of the histopathological features and regulation of inflammation in HIV & TB coinfection remains incomplete. In this study, we aimed to elucidate these histopathological features through an immunohistochemistry analysis of HIV & TB co-infected and TB patients, revealing marked differences. Notably, HIV & TB granulomas exhibited aggregation of CD68 + macrophage (Mφ), while TB lesions predominantly featured aggregation of CD20+ B cells, highlighting distinct immune responses in coinfection. Spatial transcriptome profiling further elucidated CD68+ Mφ aggregation in HIV & TB, accompanied by activation of IL6 pathway, potentially exacerbating inflammation. Through multiplex immunostaining, we validated two granuloma types in HIV & TB versus three in TB, distinguished by cell architecture. Remarkably, in the two types of HIV & TB granulomas, CD68 + Mφ highly co-expressed IL6R/pSTAT3, contrasting TB granulomas' high IFNGRA/SOCS3 expression, indicating different signaling pathways at play. Thus, activation of IL6 pathway may intensify inflammation in HIV & TB-lungs, while SOCS3-enriched immune microenvironment suppresses IL6-induced over-inflammation in TB. These findings provide crucial insights into HIV & TB granuloma formation, shedding light on potential therapeutic targets, particularly for granulomatous pulmonary under HIV & TB co-infection. Our study emphasizes the importance of a comprehensive understanding of the immunopathogenesis of HIV & TB coinfection and suggests potential avenues for targeting IL6 signaling with SOCS3 activators or anti-IL6R agents to mitigate lung inflammation in HIV & TB coinfected individuals.
Collapse
MESH Headings
- Adult
- Female
- Humans
- Male
- Antigens, CD/metabolism
- Antigens, CD/genetics
- Antigens, Differentiation, Myelomonocytic/metabolism
- Antigens, Differentiation, Myelomonocytic/genetics
- CD68 Molecule
- Coinfection/virology
- Coinfection/immunology
- Coinfection/microbiology
- Granuloma/immunology
- HIV Infections/complications
- HIV Infections/immunology
- Interleukin-6/metabolism
- Interleukin-6/genetics
- Lung/pathology
- Lung/immunology
- Macrophages/immunology
- Receptors, Interleukin-6/metabolism
- Receptors, Interleukin-6/genetics
- Signal Transduction
- STAT3 Transcription Factor/metabolism
- STAT3 Transcription Factor/genetics
- Suppressor of Cytokine Signaling 3 Protein/metabolism
- Suppressor of Cytokine Signaling 3 Protein/genetics
- Tuberculosis, Pulmonary/immunology
- Tuberculosis, Pulmonary/complications
Collapse
Affiliation(s)
- Qian Li
- National Clinical Research Center for Infectious Diseases, The Third People’s Hospital of Shenzhen and The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - Cheng Wang
- National Clinical Research Center for Infectious Diseases, The Third People’s Hospital of Shenzhen and The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - Jizhou Gou
- Department of Pathology, National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, Shenzhen, People’s Republic of China
| | - Simo Kitanovski
- Bioinformatics and Computational Biophysics, University of Duisburg-Essen, Essen, Germany
| | - XiangYi Tang
- National Clinical Research Center for Infectious Diseases, The Third People’s Hospital of Shenzhen and The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - Yixuan Cai
- Clinical Research Center, The Fifth People’s Hospital of Wuxi, Jiangnan University, Wuxi, People’s Republic of China
| | - Chenxia Zhang
- Clinical Research Center, The Fifth People’s Hospital of Wuxi, Jiangnan University, Wuxi, People’s Republic of China
| | - Xiling Zhang
- National Clinical Research Center for Infectious Diseases, The Third People’s Hospital of Shenzhen and The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - Zhenfeng Zhang
- School of Public Health and Emergency Management, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - Yuanwang Qiu
- Clinical Research Center, The Fifth People’s Hospital of Wuxi, Jiangnan University, Wuxi, People’s Republic of China
| | - Fang Zhao
- National Clinical Research Center for Infectious Diseases, The Third People’s Hospital of Shenzhen and The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - Mengji Lu
- Institute of Virology, Essen University Hospital, University of Duisburg-Essen, Essen, German
| | - Yun He
- National Clinical Research Center for Infectious Diseases, The Third People’s Hospital of Shenzhen and The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - Jun Wang
- National Clinical Research Center for Infectious Diseases, The Third People’s Hospital of Shenzhen and The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, People’s Republic of China
- Bioinformatics and Computational Biophysics, University of Duisburg-Essen, Essen, Germany
- Clinical Research Center, The Fifth People’s Hospital of Wuxi, Jiangnan University, Wuxi, People’s Republic of China
| | - Hongzhou Lu
- National Clinical Research Center for Infectious Diseases, The Third People’s Hospital of Shenzhen and The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, People’s Republic of China
| |
Collapse
|
5
|
Wang S, Myers AJ, Irvine EB, Wang C, Maiello P, Rodgers MA, Tomko J, Kracinovsky K, Borish HJ, Chao MC, Mugahid D, Darrah PA, Seder RA, Roederer M, Scanga CA, Lin PL, Alter G, Fortune SM, Flynn JL, Lauffenburger DA. Markov Field network model of multi-modal data predicts effects of immune system perturbations on intravenous BCG vaccination in macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.13.589359. [PMID: 39554028 PMCID: PMC11565837 DOI: 10.1101/2024.04.13.589359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Analysis of multi-modal datasets can identify multi-scale interactions underlying biological systems, but can be beset by spurious connections due to indirect impacts propagating through an unmapped biological network. For example, studies in macaques have shown that BCG vaccination by an intravenous route protects against tuberculosis, correlating with changes across various immune data modes. To eliminate spurious correlations and identify critical immune interactions in a public multi-modal dataset (systems serology, cytokines, cytometry) of vaccinated macaques, we applied Markov Fields (MF), a data-driven approach that explains vaccine efficacy and immune correlations via multivariate network paths, without requiring large numbers of samples (i.e. macaques) relative to multivariate features. Furthermore, we find that integrating multiple data modes with MFs helps to remove spurious connections. Finally, we used the MF to predict outcomes of perturbations at various immune nodes, including a B-cell depletion that induced network-wide shifts without reducing vaccine protection, which we validated experimentally.
Collapse
Affiliation(s)
- Shu Wang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Amy J Myers
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Edward B Irvine
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Cambridge, MA 02139, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Chuangqi Wang
- Department of Immunology and Microbiology, University of Colorado, Anschuntz Medical Campus, Aurora, CO 80045, USA
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Mark A Rodgers
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jaime Tomko
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Kara Kracinovsky
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - H Jacob Borish
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Michael C Chao
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Douaa Mugahid
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Patricia A Darrah
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20814, USA
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20814, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20814, USA
| | - Charles A Scanga
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Philana Ling Lin
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15620, USA
| | - Galit Alter
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Cambridge, MA 02139, USA
| | - Sarah M Fortune
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Cambridge, MA 02139, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - JoAnne L Flynn
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| |
Collapse
|
6
|
Bromley JD, Ganchua SKC, Nyquist SK, Maiello P, Chao M, Borish HJ, Rodgers M, Tomko J, Kracinovsky K, Mugahid D, Nguyen S, Wang QD, Rosenberg JM, Klein EC, Gideon HP, Floyd-O'Sullivan R, Berger B, Scanga CA, Lin PL, Fortune SM, Shalek AK, Flynn JL. CD4 + T cells re-wire granuloma cellularity and regulatory networks to promote immunomodulation following Mtb reinfection. Immunity 2024; 57:2380-2398.e6. [PMID: 39214090 PMCID: PMC11466276 DOI: 10.1016/j.immuni.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/03/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Abstract
Immunological priming-in the context of either prior infection or vaccination-elicits protective responses against subsequent Mycobacterium tuberculosis (Mtb) infection. However, the changes that occur in the lung cellular milieu post-primary Mtb infection and their contributions to protection upon reinfection remain poorly understood. Using clinical and microbiological endpoints in a non-human primate reinfection model, we demonstrated that prior Mtb infection elicited a long-lasting protective response against subsequent Mtb exposure and was CD4+ T cell dependent. By analyzing data from primary infection, reinfection, and reinfection-CD4+ T cell-depleted granulomas, we found that the presence of CD4+ T cells during reinfection resulted in a less inflammatory lung milieu characterized by reprogrammed CD8+ T cells, reduced neutrophilia, and blunted type 1 immune signaling among myeloid cells. These results open avenues for developing vaccines and therapeutics that not only target lymphocytes but also modulate innate immune cells to limit tuberculosis (TB) disease.
Collapse
Affiliation(s)
- Joshua D Bromley
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Graduate Program in Microbiology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sharie Keanne C Ganchua
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sarah K Nyquist
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michael Chao
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - H Jacob Borish
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mark Rodgers
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jaime Tomko
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kara Kracinovsky
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Douaa Mugahid
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Son Nguyen
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Qianchang Dennis Wang
- Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jacob M Rosenberg
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Edwin C Klein
- Division of Laboratory Animal Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hannah P Gideon
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Roisin Floyd-O'Sullivan
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bonnie Berger
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Charles A Scanga
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Philana Ling Lin
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sarah M Fortune
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Alex K Shalek
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - JoAnne L Flynn
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Simonson AW, Zeppa JJ, Bucsan AN, Chao MC, Pokkali S, Hopkins F, Chase MR, Vickers AJ, Sutton MS, Winchell CG, Myers AJ, Ameel CL, Kelly R, Krouse B, Hood LE, Li J, Lehman CC, Kamath M, Tomko J, Rodgers MA, Donlan R, Chishti H, Jacob Borish H, Klein E, Scanga CA, Fortune S, Lin PL, Maiello P, Roederer M, Darrah PA, Seder RA, Flynn JL. CD4 T cells and CD8α+ lymphocytes are necessary for intravenous BCG-induced protection against tuberculosis in macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594183. [PMID: 38798646 PMCID: PMC11118459 DOI: 10.1101/2024.05.14.594183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Tuberculosis (TB) is a major cause of morbidity and mortality worldwide despite widespread intradermal (ID) BCG vaccination in newborns. We previously demonstrated that changing the route and dose of BCG vaccination from 5×105 CFU ID to 5×107 CFU intravenous (IV) resulted in prevention of infection and disease in a rigorous, highly susceptible non-human primate model of TB. Identifying the immune mechanisms of protection for IV BCG will facilitate development of more effective vaccines against TB. Here, we depleted select lymphocyte subsets in IV BCG vaccinated macaques prior to Mtb challenge to determine the cell types necessary for that protection. Depletion of CD4 T cells or all CD8α expressing lymphoycytes (both innate and adaptive) resulted in loss of protection in most macaques, concomitant with increased bacterial burdens (~4-5 log10 thoracic CFU) and dissemination of infection. In contrast, depletion of only adaptive CD8αβ+ T cells did not significantly reduce protection against disease. Our results demonstrate that CD4 T cells and innate CD8α+ lymphocytes are critical for IV BCG-induced protection, supporting investigation of how eliciting these cells and their functions can improve future TB vaccines.
Collapse
Affiliation(s)
- Andrew W. Simonson
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
| | - Joseph J. Zeppa
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
| | - Allison N. Bucsan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH); Bethesda, MD, USA
| | - Michael C. Chao
- Ragon Institute of MGH, MIT, and Harvard; Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health; Boston, MA, USA
| | - Supriya Pokkali
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH); Bethesda, MD, USA
| | - Forrest Hopkins
- Ragon Institute of MGH, MIT, and Harvard; Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health; Boston, MA, USA
| | - Michael R. Chase
- Ragon Institute of MGH, MIT, and Harvard; Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health; Boston, MA, USA
| | - Andrew J. Vickers
- Ragon Institute of MGH, MIT, and Harvard; Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health; Boston, MA, USA
| | - Matthew S. Sutton
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH); Bethesda, MD, USA
| | - Caylin G. Winchell
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
| | - Amy J. Myers
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
| | - Cassaundra L. Ameel
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
| | - Ryan Kelly
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
| | - Ben Krouse
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
| | - Luke E. Hood
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
| | - Jiaxiang Li
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
| | - Chelsea C. Lehman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH); Bethesda, MD, USA
| | - Megha Kamath
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH); Bethesda, MD, USA
| | - Jaime Tomko
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
| | - Mark A. Rodgers
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
| | - Rachel Donlan
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
| | - Harris Chishti
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
| | - H. Jacob Borish
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
| | - Edwin Klein
- Division of Animal Laboratory Resources, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
| | - Charles A. Scanga
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
| | - Sarah Fortune
- Ragon Institute of MGH, MIT, and Harvard; Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health; Boston, MA, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, USA
| | - Philana Ling Lin
- Center for Vaccine Research, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
- Department of Pediatrics, Children’s Hospital of the University of Pittsburgh of UPMC; Pittsburgh, PA, USA
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH); Bethesda, MD, USA
| | - Patricia A. Darrah
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH); Bethesda, MD, USA
| | - Robert A. Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH); Bethesda, MD, USA
| | - JoAnne L. Flynn
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
| |
Collapse
|
8
|
Bromley JD, Ganchua SKC, Nyquist SK, Maiello P, Chao M, Borish HJ, Rodgers M, Tomko J, Kracinovsky K, Mugahid D, Nguyen S, Wang D, Rosenberg JM, Klein EC, Gideon HP, Floyd-O’Sullivan R, Berger B, Scanga CA, Lin PL, Fortune SM, Shalek AK, Flynn JL. CD4 + T cells are homeostatic regulators during Mtb reinfection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572669. [PMID: 38187598 PMCID: PMC10769325 DOI: 10.1101/2023.12.20.572669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Immunological priming - either in the context of prior infection or vaccination - elicits protective responses against subsequent Mycobacterium tuberculosis (Mtb) infection. However, the changes that occur in the lung cellular milieu post-primary Mtb infection and their contributions to protection upon reinfection remain poorly understood. Here, using clinical and microbiological endpoints in a non-human primate reinfection model, we demonstrate that prior Mtb infection elicits a long-lasting protective response against subsequent Mtb exposure and that the depletion of CD4+ T cells prior to Mtb rechallenge significantly abrogates this protection. Leveraging microbiologic, PET-CT, flow cytometric, and single-cell RNA-seq data from primary infection, reinfection, and reinfection-CD4+ T cell depleted granulomas, we identify differential cellular and microbial features of control. The data collectively demonstrate that the presence of CD4+ T cells in the setting of reinfection results in a reduced inflammatory lung milieu characterized by reprogrammed CD8+ T cell activity, reduced neutrophilia, and blunted type-1 immune signaling among myeloid cells, mitigating Mtb disease severity. These results open avenues for developing vaccines and therapeutics that not only target CD4+ and CD8+ T cells, but also modulate innate immune cells to limit Mtb disease.
Collapse
Affiliation(s)
- Joshua D. Bromley
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Graduate Program in Microbiology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sharie Keanne C. Ganchua
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh PA USA
| | - Sarah K. Nyquist
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA USA
| | - Michael Chao
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - H. Jacob Borish
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh PA USA
| | - Mark Rodgers
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh PA USA
| | - Jaime Tomko
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh PA USA
| | - Kara Kracinovsky
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh PA USA
| | - Douaa Mugahid
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Son Nguyen
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Dennis Wang
- Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jacob M. Rosenberg
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Edwin C. Klein
- Division of Laboratory Animal Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hannah P. Gideon
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh PA USA
| | - Roisin Floyd-O’Sullivan
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bonnie Berger
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Charles A Scanga
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh PA USA
| | - Philana Ling Lin
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh PA USA
- Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine
| | - Sarah M. Fortune
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Alex K. Shalek
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - JoAnne L. Flynn
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh PA USA
- Lead contact
| |
Collapse
|
9
|
Corleis B, Bastian M, Hoffmann D, Beer M, Dorhoi A. Animal models for COVID-19 and tuberculosis. Front Immunol 2023; 14:1223260. [PMID: 37638020 PMCID: PMC10451089 DOI: 10.3389/fimmu.2023.1223260] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023] Open
Abstract
Respiratory infections cause tremendous morbidity and mortality worldwide. Amongst these diseases, tuberculosis (TB), a bacterial illness caused by Mycobacterium tuberculosis which often affects the lung, and coronavirus disease 2019 (COVID-19) caused by the Severe Acute Respiratory Syndrome Coronavirus type 2 (SARS-CoV-2), stand out as major drivers of epidemics of global concern. Despite their unrelated etiology and distinct pathology, these infections affect the same vital organ and share immunopathogenesis traits and an imperative demand to model the diseases at their various progression stages and localizations. Due to the clinical spectrum and heterogeneity of both diseases experimental infections were pursued in a variety of animal models. We summarize mammalian models employed in TB and COVID-19 experimental investigations, highlighting the diversity of rodent models and species peculiarities for each infection. We discuss the utility of non-human primates for translational research and emphasize on the benefits of non-conventional experimental models such as livestock. We epitomize advances facilitated by animal models with regard to understanding disease pathophysiology and immune responses. Finally, we highlight research areas necessitating optimized models and advocate that research of pulmonary infectious diseases could benefit from cross-fertilization between studies of apparently unrelated diseases, such as TB and COVID-19.
Collapse
Affiliation(s)
- Björn Corleis
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Max Bastian
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
- Faculty of Mathematics and Natural Sciences, University of Greifswald, Greifswald, Germany
| |
Collapse
|
10
|
Gordon SB, Sichone S, Chirwa AE, Hazenberg P, Kafuko Z, Ferreira DM, Flynn J, Fortune S, Balasingam S, Biagini GA, McShane H, Mwandumba HC, Jambo K, Dheda K, Raj Sharma N, Robertson BD, Walker NF, Morton B, TB Controlled Human Infection Model Development Group. Practical considerations for a TB controlled human infection model (TB-CHIM); the case for TB-CHIM in Africa, a systematic review of the literature and report of 2 workshop discussions in UK and Malawi. Wellcome Open Res 2023; 8:71. [PMID: 37007907 PMCID: PMC10064019 DOI: 10.12688/wellcomeopenres.18767.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2023] [Indexed: 06/23/2023] Open
Abstract
Background: Tuberculosis (TB) remains a major challenge in many domains including diagnosis, pathogenesis, prevention, treatment, drug resistance and long-term protection of the public health by vaccination. A controlled human infection model (CHIM) could potentially facilitate breakthroughs in each of these domains but has so far been considered impossible owing to technical and safety concerns. Methods: A systematic review of mycobacterial human challenge studies was carried out to evaluate progress to date, best possible ways forward and challenges to be overcome. We searched MEDLINE (1946 to current) and CINAHL (1984 to current) databases; and Google Scholar to search citations in selected manuscripts. The final search was conducted 3 rd February 2022. Inclusion criteria: adults ≥18 years old; administration of live mycobacteria; and interventional trials or cohort studies with immune and/or microbiological endpoints. Exclusion criteria: animal studies; studies with no primary data; no administration of live mycobacteria; retrospective cohort studies; case-series; and case-reports. Relevant tools (Cochrane Collaboration for RCTs and Newcastle-Ottawa Scale for non-randomised studies) were used to assess risk of bias and present a narrative synthesis of our findings. Results: The search identified 1,388 titles for review; of these 90 were reviewed for inclusion; and 27 were included. Of these, 15 were randomised controlled trials and 12 were prospective cohort studies. We focussed on administration route, challenge agent and dose administered for data extraction. Overall, BCG studies including fluorescent BCG show the most immediate utility, and genetically modified Mycobacteria tuberculosis is the most tantalising prospect of discovery breakthrough. Conclusions: The TB-CHIM development group met in 2019 and 2022 to consider the results of the systematic review, to hear presentations from many of the senior authors whose work had been reviewed and to consider best ways forward. This paper reports both the systematic review and the deliberations. Registration: PROSPERO ( CRD42022302785; 21 January 2022).
Collapse
Affiliation(s)
- Stephen B. Gordon
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Simon Sichone
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Anthony E. Chirwa
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | | | | | - Daniela M. Ferreira
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- Oxford Vaccine Group, University of Oxford, Oxford, UK
| | - JoAnne Flynn
- Centre for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sarah Fortune
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | | | | | - Helen McShane
- The Jenner Institute, University of Oxford, Oxford, UK
| | - Henry C Mwandumba
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Kondwani Jambo
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Keertan Dheda
- Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute & South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa
| | | | | | - Naomi F Walker
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Ben Morton
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - TB Controlled Human Infection Model Development Group
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- 1Day Africa, 1Day Sooner, Lusaka Province, Zambia
- Oxford Vaccine Group, University of Oxford, Oxford, UK
- Centre for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Wellcome Trust, London, UK
- The Jenner Institute, University of Oxford, Oxford, UK
- Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute & South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa
- Imperial College London, London, UK
| |
Collapse
|
11
|
Larson EC, Ellis AL, Rodgers MA, Gubernat AK, Gleim JL, Moriarty RV, Balgeman AJ, Menezes YK, Ameel CL, Fillmore DJ, Pergalske SM, Juno JA, Maiello P, White AG, Borish HJ, Godfrey DI, Kent SJ, Ndhlovu LC, O’Connor SL, Scanga CA. Host Immunity to Mycobacterium tuberculosis Infection Is Similar in Simian Immunodeficiency Virus (SIV)-Infected, Antiretroviral Therapy-Treated and SIV-Naïve Juvenile Macaques. Infect Immun 2023; 91:e0055822. [PMID: 37039653 PMCID: PMC10187125 DOI: 10.1128/iai.00558-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/20/2023] [Indexed: 04/12/2023] Open
Abstract
Pre-existing HIV infection increases tuberculosis (TB) risk in children. Antiretroviral therapy (ART) reduces, but does not abolish, this risk in children with HIV. The immunologic mechanisms involved in TB progression in both HIV-naive and HIV-infected children have not been explored. Much of our current understanding is based on human studies in adults and adult animal models. In this study, we sought to model childhood HIV/Mycobacterium tuberculosis (Mtb) coinfection in the setting of ART and characterize T cells during TB progression. Macaques equivalent to 4 to 8 year-old children were intravenously infected with SIVmac239M, treated with ART 3 months later, and coinfected with Mtb 3 months after initiating ART. SIV-naive macaques were similarly infected with Mtb alone. TB pathology and total Mtb burden did not differ between SIV-infected, ART-treated and SIV-naive macaques, although lung Mtb burden was lower in SIV-infected, ART-treated macaques. No major differences in frequencies of CD4+ and CD8+ T cells and unconventional T cell subsets (Vγ9+ γδ T cells, MAIT cells, and NKT cells) in airways were observed between SIV-infected, ART-treated and SIV-naive macaques over the course of Mtb infection, with the exception of CCR5+ CD4+ and CD8+ T cells which were slightly lower. CD4+ and CD8+ T cell frequencies did not differ in the lung granulomas. Immune checkpoint marker levels were similar, although ki-67 levels in CD8+ T cells were elevated. Thus, ART treatment of juvenile macaques, 3 months after SIV infection, resulted in similar progression of Mtb and T cell responses compared to Mtb in SIV-naive macaques.
Collapse
Affiliation(s)
- Erica C. Larson
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Amy L. Ellis
- Department of Pathology and Laboratory Medicine, University of Wisconsin - Madison, Wisconsin, USA
| | - Mark A. Rodgers
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Abigail K. Gubernat
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Janelle L. Gleim
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ryan V. Moriarty
- Department of Pathology and Laboratory Medicine, University of Wisconsin - Madison, Wisconsin, USA
| | - Alexis J. Balgeman
- Department of Pathology and Laboratory Medicine, University of Wisconsin - Madison, Wisconsin, USA
| | - Yonne K. Menezes
- Department of Immunobiology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Cassaundra L. Ameel
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Daniel J. Fillmore
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Skyler M. Pergalske
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jennifer A. Juno
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Alexander G. White
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - H. Jacob Borish
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Dale I. Godfrey
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Stephen J. Kent
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Centre Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Lishomwa C. Ndhlovu
- Department of Medicine, Division of Infectious Disease, Weill Cornell Medicine, New York, New York, USA
| | - Shelby L. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin - Madison, Wisconsin, USA
- Wisconsin National Primate Research Center, University of Wisconsin - Madison, Wisconsin, USA
| | - Charles A. Scanga
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
12
|
Medrano JM, Maiello P, Rutledge T, Tomko J, Rodgers MA, Fillmore D, Frye LJ, Janssen C, Klein E, Flynn JL, Lin PL. Characterizing the Spectrum of Latent Mycobacterium tuberculosis in the Cynomolgus Macaque Model: Clinical, Immunologic, and Imaging Features of Evolution. J Infect Dis 2023; 227:592-601. [PMID: 36611221 PMCID: PMC9927077 DOI: 10.1093/infdis/jiac504] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/20/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Mycobacterium tuberculosis infection outcomes have been described as active tuberculosis or latent infection but a spectrum of outcomes is now recognized. We used a nonhuman primate model, which recapitulates human infection, to characterize the clinical, microbiologic, and radiographic patterns associated with developing latent M. tuberculosis infection. Four patterns were identified. "Controllers" had normal erythrocyte sedimentation rate (ESR) without M. tuberculosis growth in bronchoalveolar lavage or gastric aspirate (BAL/GA). "Early subclinicals" showed transient ESR elevation and/or M. tuberculosis growth on BAL/GA for 60 days postinfection, "mid subclinicals" were positive for 90 days, and "late subclinicals" were positive intermittently, despite the absence of clinical disease. Variability was noted regarding granuloma formation, lung/lymph node metabolic activity, lung/lymph node bacterial burden, gross pathology, and extrapulmonary disease. Like human M. tuberculosis infection, this highlights the heterogeneity associated with the establishment of latent infection, underscoring the need to understand the clinical spectrum and risk factors associated with severe disease.
Collapse
Affiliation(s)
- Jessica Marie Medrano
- Department of Pediatrics, University of Pittsburgh Medical Center's Children's Hospital of Pittsburgh, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tara Rutledge
- Department of Pediatrics, University of Pittsburgh Medical Center's Children's Hospital of Pittsburgh, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jaime Tomko
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mark A Rodgers
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Daniel Fillmore
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - L James Frye
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Christopher Janssen
- Division of Laboratory Animal Resources, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Edwin Klein
- Division of Laboratory Animal Resources, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Laboratory Animal Medicine and Care, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - JoAnne L Flynn
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Philana Ling Lin
- Department of Pediatrics, University of Pittsburgh Medical Center's Children's Hospital of Pittsburgh, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
13
|
Gordon SB, Sichone S, Chirwa AE, Hazenberg P, Kafuko Z, Ferreira DM, Flynn J, Fortune S, Balasingam S, Biagini GA, McShane H, Mwandumba HC, Jambo K, Dheda K, Raj Sharma N, Robertson BD, Walker NF, Morton B, TB Controlled Human Infection Model Development Group. Practical considerations for a TB controlled human infection model (TB-CHIM); the case for TB-CHIM in Africa, a systematic review of the literature and report of 2 workshop discussions in UK and Malawi. Wellcome Open Res 2023; 8:71. [PMID: 37007907 PMCID: PMC10064019 DOI: 10.12688/wellcomeopenres.18767.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2023] [Indexed: 02/12/2023] Open
Abstract
Background: Tuberculosis (TB) remains a major challenge in many domains including diagnosis, pathogenesis, prevention, treatment, drug resistance and long-term protection of the public health by vaccination. A controlled human infection model (CHIM) could potentially facilitate breakthroughs in each of these domains but has so far been considered impossible owing to technical and safety concerns. Methods: A systematic review of mycobacterial human challenge studies was carried out to evaluate progress to date, best possible ways forward and challenges to be overcome. We searched MEDLINE (1946 to current) and CINAHL (1984 to current) databases; and Google Scholar to search citations in selected manuscripts. The final search was conducted 3 rd February 2022. Inclusion criteria: adults ≥18 years old; administration of live mycobacteria; and interventional trials or cohort studies with immune and/or microbiological endpoints. Exclusion criteria: animal studies; studies with no primary data; no administration of live mycobacteria; retrospective cohort studies; case-series; and case-reports. Relevant tools (Cochrane Collaboration for RCTs and Newcastle-Ottawa Scale for non-randomised studies) were used to assess risk of bias and present a narrative synthesis of our findings. Results: The search identified 1,388 titles for review; of these 90 were reviewed for inclusion; and 27 were included. Of these, 15 were randomised controlled trials and 12 were prospective cohort studies. We focussed on administration route, challenge agent and dose administered for data extraction. Overall, BCG studies including fluorescent BCG show the most immediate utility, and genetically modified Mycobacteria tuberculosis is the most tantalising prospect of discovery breakthrough. Conclusions: The TB-CHIM development group met in 2019 and 2022 to consider the results of the systematic review, to hear presentations from many of the senior authors whose work had been reviewed and to consider best ways forward. This paper reports both the systematic review and the deliberations. Registration: PROSPERO ( CRD42022302785; 21 January 2022).
Collapse
Affiliation(s)
- Stephen B. Gordon
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Simon Sichone
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Anthony E. Chirwa
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | | | | | - Daniela M. Ferreira
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- Oxford Vaccine Group, University of Oxford, Oxford, UK
| | - JoAnne Flynn
- Centre for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sarah Fortune
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | | | | | - Helen McShane
- The Jenner Institute, University of Oxford, Oxford, UK
| | - Henry C Mwandumba
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Kondwani Jambo
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Keertan Dheda
- Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute & South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa
| | | | | | - Naomi F Walker
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Ben Morton
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - TB Controlled Human Infection Model Development Group
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- 1Day Africa, 1Day Sooner, Lusaka Province, Zambia
- Oxford Vaccine Group, University of Oxford, Oxford, UK
- Centre for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Wellcome Trust, London, UK
- The Jenner Institute, University of Oxford, Oxford, UK
- Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute & South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa
- Imperial College London, London, UK
| |
Collapse
|
14
|
Diedrich CR, Rutledge T, Baranowski TM, Maiello P, Lin PL. Characterization of natural killer cells in the blood and airways of cynomolgus macaques during Mycobacterium tuberculosis infection. J Med Primatol 2023; 52:24-33. [PMID: 36056684 PMCID: PMC9825635 DOI: 10.1111/jmp.12617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/01/2022] [Accepted: 08/13/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Tuberculosis (TB) is caused by Mycobacterium tuberculosis (Mtb) and kills more than 1.5 million people each year. METHODS We examine the frequency and function of NK cells in the blood and airways over the course of Mtb infection in a TB macaque model and demonstrate differences in NK marker expression between the two compartments. Flow cytometry and intracellular cytokine staining were utilized to identify NK cell subsets (expressing NKG2A, CD56, or CD16) and function (IL-10, TNF, IL-2, IFN-g, IL-17, and CD107a). RESULTS Blood and airway NK cell frequencies were similar during infection though there were differences in subset populations between blood and airway. Increased functional (cytokine/CD107a) parameters were observed in airway NK cells during the course of infection while none were seen in the blood. CONCLUSIONS This study suggests that NK cells in the airway may play an important role in TB host response.
Collapse
Affiliation(s)
- Collin R Diedrich
- Department of Pediatrics, Children’s Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Tara Rutledge
- Department of Pediatrics, Children’s Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Tonilynn M. Baranowski
- Department of Pediatrics, Children’s Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Pauline Maiello
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Microbiology and Molecular Genetics, Pittsburgh, Pennsylvania, United States of America
| | - Philana Ling Lin
- Department of Pediatrics, Children’s Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
15
|
Immune cell interactions in tuberculosis. Cell 2022; 185:4682-4702. [PMID: 36493751 DOI: 10.1016/j.cell.2022.10.025] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/15/2022] [Accepted: 10/26/2022] [Indexed: 12/13/2022]
Abstract
Despite having been identified as the organism that causes tuberculosis in 1882, Mycobacterium tuberculosis has managed to still evade our understanding of the protective immune response against it, defying the development of an effective vaccine. Technology and novel experimental models have revealed much new knowledge, particularly with respect to the heterogeneity of the bacillus and the host response. This review focuses on certain immunological elements that have recently yielded exciting data and highlights the importance of taking a holistic approach to understanding the interaction of M. tuberculosis with the many host cells that contribute to the development of protective immunity.
Collapse
|
16
|
Hoerter A, Arnett E, Schlesinger LS, Pienaar E. Systems biology approaches to investigate the role of granulomas in TB-HIV coinfection. Front Immunol 2022; 13:1014515. [PMID: 36405707 PMCID: PMC9670175 DOI: 10.3389/fimmu.2022.1014515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/20/2022] [Indexed: 09/29/2023] Open
Abstract
The risk of active tuberculosis disease is 15-21 times higher in those coinfected with human immunodeficiency virus-1 (HIV) compared to tuberculosis alone, and tuberculosis is the leading cause of death in HIV+ individuals. Mechanisms driving synergy between Mycobacterium tuberculosis (Mtb) and HIV during coinfection include: disruption of cytokine balances, impairment of innate and adaptive immune cell functionality, and Mtb-induced increase in HIV viral loads. Tuberculosis granulomas are the interface of host-pathogen interactions. Thus, granuloma-based research elucidating the role and relative impact of coinfection mechanisms within Mtb granulomas could inform cohesive treatments that target both pathogens simultaneously. We review known interactions between Mtb and HIV, and discuss how the structure, function and development of the granuloma microenvironment create a positive feedback loop favoring pathogen expansion and interaction. We also identify key outstanding questions and highlight how coupling computational modeling with in vitro and in vivo efforts could accelerate Mtb-HIV coinfection discoveries.
Collapse
Affiliation(s)
- Alexis Hoerter
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Eusondia Arnett
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Larry S. Schlesinger
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Elsje Pienaar
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
- Regenstrief Center for Healthcare Engineering, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
17
|
Foreman TW, Nelson CE, Kauffman KD, Lora NE, Vinhaes CL, Dorosky DE, Sakai S, Gomez F, Fleegle JD, Parham M, Perera SR, Lindestam Arlehamn CS, Sette A, Brenchley JM, Queiroz ATL, Andrade BB, Kabat J, Via LE, Barber DL. CD4 T cells are rapidly depleted from tuberculosis granulomas following acute SIV co-infection. Cell Rep 2022; 39:110896. [PMID: 35649361 DOI: 10.1016/j.celrep.2022.110896] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/12/2022] [Accepted: 05/09/2022] [Indexed: 01/04/2023] Open
Abstract
HIV/Mycobacterium tuberculosis (Mtb) co-infected individuals have an increased risk of tuberculosis prior to loss of peripheral CD4 T cells, raising the possibility that HIV co-infection leads to CD4 T cell depletion in lung tissue before it is evident in blood. Here, we use rhesus macaques to study the early effects of simian immunodeficiency virus (SIV) co-infection on pulmonary granulomas. Two weeks after SIV inoculation of Mtb-infected macaques, Mtb-specific CD4 T cells are dramatically depleted from granulomas, before CD4 T cell loss in blood, airways, and lymph nodes, or increases in bacterial loads or radiographic evidence of disease. Spatially, CD4 T cells are preferentially depleted from the granuloma core and cuff relative to B cell-rich regions. Moreover, live imaging of granuloma explants show that intralesional CD4 T cell motility is reduced after SIV co-infection. Thus, granuloma CD4 T cells may be decimated before many co-infected individuals experience the first symptoms of acute HIV infection.
Collapse
Affiliation(s)
- Taylor W Foreman
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christine E Nelson
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Keith D Kauffman
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nickiana E Lora
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Caian L Vinhaes
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, BA 41810-710, Brazil; Bahiana School of Medicine and Public Health (EBMSP), Salvador, BA 40296, Brazil
| | - Danielle E Dorosky
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shunsuke Sakai
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Felipe Gomez
- Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joel D Fleegle
- Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Melanie Parham
- Axle Informatics, National Center for Advancing Translational Sciences, Bethesda, MD 20892, USA
| | - Shehan R Perera
- Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43201, USA
| | | | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | -
- Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jason M Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Artur T L Queiroz
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, BA 41810-710, Brazil; Data and Knowledge Integration Center for Health (CIDACS), Instituto Gonçalo Moniz, Salvador, BA 40296, Brazil
| | - Bruno B Andrade
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, BA 41810-710, Brazil; Bahiana School of Medicine and Public Health (EBMSP), Salvador, BA 40296, Brazil
| | - Juraj Kabat
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Laura E Via
- Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA; Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA; Institute of Infectious Disease & Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| | - Daniel L Barber
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
18
|
After 100 Years of BCG Immunization against Tuberculosis, What Is New and Still Outstanding for This Vaccine? Vaccines (Basel) 2021; 10:vaccines10010057. [PMID: 35062718 PMCID: PMC8778337 DOI: 10.3390/vaccines10010057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/17/2021] [Accepted: 12/29/2021] [Indexed: 12/14/2022] Open
Abstract
In 2021, most of the world was reasonably still concerned about the COVID-19 pandemic, how cases were up and down in different countries, how the vaccination campaigns were ongoing, and most people were familiar with the speed with which vaccines against SARS-Co-V2 were developed, analyzed, and started to be applied in an attempt to curb the pandemic. Because of this, it may have somehow passed relatively inadvertently for people outside of the field that the vaccine used to control tuberculosis (TB), Mycobacterium bovis Bacille Calmette-Guérin (BCG), was first applied to humans a century ago. Over these years, BCG has been the vaccine applied to most human beings in the world, despite its known lack of efficacy to fully prevent respiratory TB. Several strategies have been employed in the last 20 years to produce a novel vaccine that would replace, or boost, immunity and protection elicited by BCG. In this work, to avoid potential redundancies with recently published reviews, I only aim to present my current thoughts about some of the latest findings and outstanding questions that I consider worth investigating to help develop a replacement or modified BCG in order to successfully fight TB, based on BCG itself.
Collapse
|
19
|
SIV Evolutionary Dynamics in Cynomolgus Macaques during SIV- Mycobacterium tuberculosis Co-Infection. Viruses 2021; 14:v14010048. [PMID: 35062252 PMCID: PMC8778162 DOI: 10.3390/v14010048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 01/08/2023] Open
Abstract
Co-infection with Mycobacterium tuberculosis (Mtb) and human immunodeficiency virus (HIV) is a worldwide public health concern, leading to worse clinical outcomes caused by both pathogens. We used a non-human primate model of simian immunodeficiency virus (SIV)-Mtb co-infection, in which latent Mtb infection was established prior to SIVmac251 infection. The evolutionary dynamics of SIV env was evaluated from samples in plasma, lymph nodes, and lungs (including granulomas) of SIV-Mtb co-infected and SIV only control animals. While the diversity of the challenge virus was low and overall viral diversity remained relatively low over 6–9 weeks, changes in viral diversity and divergence were observed, including evidence for tissue compartmentalization. Overall, viral diversity was highest in SIV-Mtb animals that did not develop clinical Mtb reactivation compared to animals with Mtb reactivation. Among lung granulomas, viral diversity was positively correlated with the frequency of CD4+ T cells and negatively correlated with the frequency of CD8+ T cells. SIV diversity was highest in the thoracic lymph nodes compared to other sites, suggesting that lymphatic drainage from the lungs in co-infected animals provides an advantageous environment for SIV replication. This is the first assessment of SIV diversity across tissue compartments during SIV-Mtb co-infection after established Mtb latency.
Collapse
|
20
|
Sharan R, Ganatra SR, Bucsan AN, Cole J, Singh DK, Alvarez X, Gough M, Alvarez C, Blakley A, Ferdin J, Thippeshappa R, Singh B, Escobedo R, Shivanna V, Dick EJ, Hall-Ursone S, Khader SA, Mehra S, Rengarajan J, Kaushal D. Antiretroviral therapy timing impacts latent tuberculosis infection reactivation in a tuberculosis/simian immunodeficiency virus coinfection model. J Clin Invest 2021; 132:153090. [PMID: 34855621 PMCID: PMC8803324 DOI: 10.1172/jci153090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022] Open
Abstract
Studies using the nonhuman primate model of Mycobacteriumtuberculosis/simian immunodeficiency virus coinfection have revealed protective CD4+ T cell–independent immune responses that suppress latent tuberculosis infection (LTBI) reactivation. In particular, chronic immune activation rather than the mere depletion of CD4+ T cells correlates with reactivation due to SIV coinfection. Here, we administered combinatorial antiretroviral therapy (cART) 2 weeks after SIV coinfection to study whether restoration of CD4+ T cell immunity occurred more broadly, and whether this prevented reactivation of LTBI compared to cART initiated 4 weeks after SIV. Earlier initiation of cART enhanced survival, led to better control of viral replication, and reduced immune activation in the periphery and lung vasculature, thereby reducing the rate of SIV-induced reactivation. We observed robust CD8+ T effector memory responses and significantly reduced macrophage turnover in the lung tissue. However, skewed CD4+ T effector memory responses persisted and new TB lesions formed after SIV coinfection. Thus, reactivation of LTBI is governed by very early events of SIV infection. Timing of cART is critical in mitigating chronic immune activation. The potential novelty of these findings mainly relates to the development of a robust animal model of human M. tuberculosis/HIV coinfection that allows the testing of underlying mechanisms.
Collapse
Affiliation(s)
- Riti Sharan
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, United States of America
| | - Shashank R Ganatra
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, United States of America
| | - Allison N Bucsan
- Department of Molecular Microbiology, Washington University, St. Louis, St. Louis, United States of America
| | - Journey Cole
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, United States of America
| | - Dhiraj K Singh
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, United States of America
| | - Xavier Alvarez
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, United States of America
| | - Maya Gough
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, United States of America
| | - Cynthia Alvarez
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, United States of America
| | - Alyssa Blakley
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, United States of America
| | - Justin Ferdin
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, United States of America
| | - Rajesh Thippeshappa
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, United States of America
| | - Bindu Singh
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, United States of America
| | - Ruby Escobedo
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, United States of America
| | - Vinay Shivanna
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, United States of America
| | - Edward J Dick
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, United States of America
| | - Shannan Hall-Ursone
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, United States of America
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University, St. Louis, St. Louis, United States of America
| | - Smriti Mehra
- Divisions of Bacteriology and Parasitology, Tulane National Primate Research Center, Covington, United States of America
| | - Jyothi Rengarajan
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, United States of America
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, United States of America
| |
Collapse
|
21
|
Boom WH, Schaible UE, Achkar JM. The knowns and unknowns of latent Mycobacterium tuberculosis infection. J Clin Invest 2021; 131:136222. [PMID: 33529162 DOI: 10.1172/jci136222] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Humans have been infected with Mycobacterium tuberculosis (Mtb) for thousands of years. While tuberculosis (TB), one of the deadliest infectious diseases, is caused by uncontrolled Mtb infection, over 90% of presumed infected individuals remain asymptomatic and contain Mtb in a latent TB infection (LTBI) without ever developing disease, and some may clear the infection. A small number of heavily Mtb-exposed individuals appear to resist developing traditional LTBI. Because Mtb has mechanisms for intracellular survival and immune evasion, successful control involves all of the arms of the immune system. Here, we focus on immune responses to Mtb in humans and nonhuman primates and discuss new concepts and outline major knowledge gaps in our understanding of LTBI, ranging from the earliest events of exposure and infection to success or failure of Mtb control.
Collapse
Affiliation(s)
- W Henry Boom
- Department of Medicine.,Department of Pathology, and.,Department of Molecular Biology and Microbiology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Ulrich E Schaible
- Division of Cellular Microbiology, Research Center Borstel-Leibniz Lung Center, Borstel, Germany.,German Center for Infection Research, partner site Hamburg-Lübeck-Borstel-Riems, Germany
| | - Jacqueline M Achkar
- Department of Medicine and.,Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
22
|
Larson EC, Ellis-Connell A, Rodgers MA, Balgeman AJ, Moriarty RV, Ameel CL, Baranowski TM, Tomko JA, Causgrove CM, Maiello P, O'Connor SL, Scanga CA. Pre-existing Simian Immunodeficiency Virus Infection Increases Expression of T Cell Markers Associated with Activation during Early Mycobacterium tuberculosis Coinfection and Impairs TNF Responses in Granulomas. THE JOURNAL OF IMMUNOLOGY 2021; 207:175-188. [PMID: 34145063 DOI: 10.4049/jimmunol.2100073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/19/2021] [Indexed: 01/01/2023]
Abstract
Tuberculosis (TB) is the leading infectious cause of death among people living with HIV. People living with HIV are more susceptible to contracting Mycobacterium tuberculosis and often have worsened TB disease. Understanding the immunologic defects caused by HIV and the consequences it has on M. tuberculosis coinfection is critical in combating this global health epidemic. We previously showed in a model of SIV and M. tuberculosis coinfection in Mauritian cynomolgus macaques (MCM) that SIV/M. tuberculosis-coinfected MCM had rapidly progressive TB. We hypothesized that pre-existing SIV infection impairs early T cell responses to M. tuberculosis infection. We infected MCM with SIVmac239, followed by coinfection with M. tuberculosis Erdman 6 mo later. Although similar, TB progression was observed in both SIV+ and SIV-naive animals at 6 wk post-M. tuberculosis infection; longitudinal sampling of the blood (PBMC) and airways (bronchoalveolar lavage) revealed a significant reduction in circulating CD4+ T cells and an influx of CD8+ T cells in airways of SIV+ animals. At sites of M. tuberculosis infection (i.e., granulomas), SIV/M. tuberculosis-coinfected animals had a higher proportion of CD4+ and CD8+ T cells expressing PD-1 and TIGIT. In addition, there were fewer TNF-producing CD4+ T cells in granulomas of SIV/M. tuberculosis-coinfected animals. Taken together, we show that concurrent SIV infection alters T cell phenotypes in granulomas during the early stages of TB disease. As it is critical to establish control of M. tuberculosis replication soon postinfection, these phenotypic changes may distinguish the immune dysfunction that arises from pre-existing SIV infection, which promotes TB progression.
Collapse
Affiliation(s)
- Erica C Larson
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA;
| | - Amy Ellis-Connell
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, WI
| | - Mark A Rodgers
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Alexis J Balgeman
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, WI
| | - Ryan V Moriarty
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, WI
| | - Cassaundra L Ameel
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Tonilynn M Baranowski
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Jaime A Tomko
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Chelsea M Causgrove
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Shelby L O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, WI.,Wisconsin National Primate Research Center, University of Wisconsin-Madison, WI; and
| | - Charles A Scanga
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA; .,Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
23
|
Endsley JJ, Huante MB, Naqvi KF, Gelman BB, Endsley MA. Advancing our understanding of HIV co-infections and neurological disease using the humanized mouse. Retrovirology 2021; 18:14. [PMID: 34134725 PMCID: PMC8206883 DOI: 10.1186/s12977-021-00559-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/09/2021] [Indexed: 11/15/2022] Open
Abstract
Humanized mice have become an important workhorse model for HIV research. Advances that enabled development of a human immune system in immune deficient mouse strains have aided new basic research in HIV pathogenesis and immune dysfunction. The small animal features facilitate development of clinical interventions that are difficult to study in clinical cohorts, and avoid the high cost and regulatory burdens of using non-human primates. The model also overcomes the host restriction of HIV for human immune cells which limits discovery and translational research related to important co-infections of people living with HIV. In this review we emphasize recent advances in modeling bacterial and viral co-infections in the setting of HIV in humanized mice, especially neurological disease, and Mycobacterium tuberculosis and HIV co-infections. Applications of current and future co-infection models to address important clinical and research questions are further discussed.
Collapse
Affiliation(s)
- Janice J Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| | - Matthew B Huante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Kubra F Naqvi
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Benjamin B Gelman
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Mark A Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
24
|
Moriarty RV, Ellis AL, O’Connor SL. Monkeying around with MAIT Cells: Studying the Role of MAIT Cells in SIV and Mtb Co-Infection. Viruses 2021; 13:863. [PMID: 34066765 PMCID: PMC8151491 DOI: 10.3390/v13050863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 11/25/2022] Open
Abstract
There were an estimated 10 million new cases of tuberculosis (TB) disease in 2019. While over 90% of individuals successfully control Mycobacterium tuberculosis (Mtb) infection, which causes TB disease, HIV co-infection often leads to active TB disease. Despite the co-endemic nature of HIV and TB, knowledge of the immune mechanisms contributing to the loss of control of Mtb replication during HIV infection is lacking. Mucosal-associated invariant T (MAIT) cells are innate-like T cells that target and destroy bacterially-infected cells and may contribute to the control of Mtb infection. Studies examining MAIT cells in human Mtb infection are commonly performed using peripheral blood samples. However, because Mtb infection occurs primarily in lung tissue and lung-associated lymph nodes, these studies may not be fully translatable to the tissues. Additionally, studies longitudinally examining MAIT cell dynamics during HIV/Mtb co-infection are rare, and lung and lymph node tissue samples from HIV+ patients are typically unavailable. Nonhuman primates (NHP) provide a model system to characterize MAIT cell activity during Mtb infection, both in Simian Immunodeficiency Virus (SIV)-infected and SIV-naïve animals. Using NHPs allows for a more comprehensive understanding of tissue-based MAIT cell dynamics during infection with both pathogens. NHP SIV and Mtb infection is similar to human HIV and Mtb infection, and MAIT cells are phenotypically similar in humans and NHPs. Here, we discuss current knowledge surrounding MAIT cells in SIV and Mtb infection, how SIV infection impairs MAIT cell function during Mtb co-infection, and knowledge gaps to address.
Collapse
Affiliation(s)
| | | | - Shelby L. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA; (R.V.M.); (A.L.E.)
| |
Collapse
|
25
|
Ordonez AA, Tucker EW, Anderson CJ, Carter CL, Ganatra S, Kaushal D, Kramnik I, Lin PL, Madigan CA, Mendez S, Rao J, Savic RM, Tobin DM, Walzl G, Wilkinson RJ, Lacourciere KA, Via LE, Jain SK. Visualizing the dynamics of tuberculosis pathology using molecular imaging. J Clin Invest 2021; 131:145107. [PMID: 33645551 PMCID: PMC7919721 DOI: 10.1172/jci145107] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Nearly 140 years after Robert Koch discovered Mycobacterium tuberculosis, tuberculosis (TB) remains a global threat and a deadly human pathogen. M. tuberculosis is notable for complex host-pathogen interactions that lead to poorly understood disease states ranging from latent infection to active disease. Additionally, multiple pathologies with a distinct local milieu (bacterial burden, antibiotic exposure, and host response) can coexist simultaneously within the same subject and change independently over time. Current tools cannot optimally measure these distinct pathologies or the spatiotemporal changes. Next-generation molecular imaging affords unparalleled opportunities to visualize infection by providing holistic, 3D spatial characterization and noninvasive, temporal monitoring within the same subject. This rapidly evolving technology could powerfully augment TB research by advancing fundamental knowledge and accelerating the development of novel diagnostics, biomarkers, and therapeutics.
Collapse
Affiliation(s)
- Alvaro A. Ordonez
- Center for Infection and Inflammation Imaging Research
- Center for Tuberculosis Research
- Department of Pediatrics, and
| | - Elizabeth W. Tucker
- Center for Infection and Inflammation Imaging Research
- Center for Tuberculosis Research
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Claire L. Carter
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, New Jersey, USA
| | - Shashank Ganatra
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Igor Kramnik
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusets, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - Philana L. Lin
- Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Cressida A. Madigan
- Department of Biological Sciences, UCSD, San Diego, La Jolla, California, USA
| | - Susana Mendez
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Rockville, Maryland, USA
| | - Jianghong Rao
- Molecular Imaging Program at Stanford, Department of Radiology and Chemistry, Stanford University, Stanford, California, USA
| | - Rada M. Savic
- Department of Bioengineering and Therapeutic Sciences, School of Pharmacy and Medicine, UCSF, San Francisco, California, USA
| | - David M. Tobin
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Gerhard Walzl
- SAMRC Centre for Tuberculosis Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
| | - Robert J. Wilkinson
- Department of Infectious Diseases, Imperial College London, London, United Kingdom
- Wellcome Centre for Infectious Diseases Research in Africa and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- The Francis Crick Institute, London, United Kingdom
| | - Karen A. Lacourciere
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Rockville, Maryland, USA
| | - Laura E. Via
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, and Tuberculosis Imaging Program, Division of Intramural Research, NIAID, NIH, Bethesda, Maryland, USA
| | - Sanjay K. Jain
- Center for Infection and Inflammation Imaging Research
- Center for Tuberculosis Research
- Department of Pediatrics, and
| |
Collapse
|
26
|
Ai S, Lin Y, Zheng J, Zhuang X. Xingbi Gel Ameliorates Allergic Rhinitis by Regulating IFN-γ Gene Promoter Methylation in CD4+ T Cells via the ERK-DNMT Pathway. Front Surg 2021; 7:619053. [PMID: 33659270 PMCID: PMC7917250 DOI: 10.3389/fsurg.2020.619053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/29/2020] [Indexed: 11/14/2022] Open
Abstract
Allergic rhinitis (AR) is a common, non-infectious, chronic nasal mucosal disease primarily mediated by immunoglobulin E (IgE) following allergen exposure. Currently, studies on AR mainly focus on cytokines, IgE and its receptors, basophils, eosinophils, mast cells, and related genes. Among these, an imbalance between T helper (Th) 1 and Th2 cells is considered an important mechanism underlying AR pathogenesis. The most important cytokines in AR are interleukin (Il)-4 and interferon gamma (IFN-γ) which are secreted by Th2 and Th1 cells, respectively. Il-4 and IFN-γ are antagonistic to each other in regulating IgE synthesis. In this study, the expression of extracellular signal-regulated protein kinase (ERK) 1/2 and its phosphorylation from p-ERK1/2, were significantly increased in a cluster of differentiation of 4+ T cells of AR mice, suggesting that the ERK signaling pathway in these cells is involved in the occurrence and development of AR. This result also implies an enhanced expression of deoxyribonucleic acid methyltransferases (DNMTs). To verify the relationship between ERK signaling and DNMT expression, AR mice were treated with PD98059, a specific inhibitor of the ERK1/2 signaling pathway. The results revealed that perturbations in ERK signaling were significantly positively correlated with the downregulation of DNMT1 expression. Pharmacological intervention is key to treating AR. This study demonstrated that Xingbi gel intervention affected both serum IgE levels and AR behavior scores in mice. Based on its effects on IFN-γ gene expression, the regulation of Th1/Th2 balance, and the ERK signaling pathway, research on the effects of Xingbi gel on AR may provide new avenues in its prevention and treatment.
Collapse
Affiliation(s)
- Si Ai
- The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yueyong Lin
- No. 900 Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Fuzhou, China
| | - Jian Zheng
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiangli Zhuang
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
27
|
Echeverría I, de Miguel R, Asín J, Rodríguez-Largo A, Fernández A, Pérez M, de Andrés D, Luján L, Reina R. Replication of Small Ruminant Lentiviruses in Aluminum Hydroxide-Induced Granulomas in Sheep: a Potential New Factor for Viral Dissemination. J Virol 2020; 95:e01859-20. [PMID: 33115880 PMCID: PMC7944437 DOI: 10.1128/jvi.01859-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/23/2020] [Indexed: 12/29/2022] Open
Abstract
Aluminum (Al)-based salts are widely used adjuvants in ruminants and other species to strengthen the immune response elicited against vaccine antigen(s). However, they can lead to the formation of long-lasting granulomas composed of abundant activated macrophages. Small ruminant lentiviruses (SRLV) are widely distributed macrophage-tropic retroviruses that cause persistent infections in sheep and goats. Infected monocytes/macrophages and dendritic cells establish an inflammatory microenvironment that eventually leads to clinical manifestations. The aim of this work was to study the effect of Al-induced granulomas in the replication and pathogenesis of SRLV. Eleven adult, naturally SRLV-infected sheep showing clinical arthritis were distributed in vaccine (n = 6), adjuvant-only (n = 3), and control (n = 2) groups and inoculated with commercial Al-based vaccines, Al hydroxide adjuvant alone, or phosphate-buffered saline, respectively. In vitro studies demonstrated viral replication in Al-induced granulomas in 5 out of 10 sheep. Immunohistochemistry (IHC) evinced granular, intracytoplasmic SRLV presence in macrophages within granulomas. Viral sequences obtained from granulomas, blood monocytes, and other tissues were highly similar in most animals, suggesting virus circulation among body compartments. However, notable differences between isolated strains in granulomas and other tissues in specific animals were also noted. Interestingly, the B2 subtype was the most commonly found SRLV genotype, reaching a wider body distribution than previously described. Recombination events between genotypes B2 and A3 along the gag region were identified in two sheep. Our results indicate that Al-hydroxide-derived granulomas may represent an ideal compartment for SRLV replication, perhaps altering natural SRLV infection by providing a new, suitable target tissue.IMPORTANCE Granulomas are inflammation-derived structures elicited by foreign bodies or certain infections. Aluminum adjuvants included in vaccines induce granulomas in many species. In sheep, these are persistent and consist of activated macrophages. Small ruminant lentiviruses (SRLV), which are macrophage-tropic lentiviruses, cause a chronic wasting disease affecting animal welfare and production. Here, we studied the occurrence of SRLV in postvaccination granulomas retrieved from naturally infected ewes after vaccination or inoculation with aluminum only. SRLV infection was confirmed in granulomas by identification of viral proteins, genomic fragments, and enzymatic activity. The infecting SRLV strain, previously found exclusively in carpal joints, reached the central nervous system, suggesting that occurrence of SRLV in postvaccination granulomas may broaden tissue tropism. SRLV recombination was detected in inoculated animals, a rare event in sheep lentiviruses. Potentially, virus-host interactions within granulomas may modify viral pathogenesis and lead to more widespread infection.
Collapse
Affiliation(s)
- Irache Echeverría
- Institute of Agrobiotechnology, CSIC-Government of Navarra, Mutilva, Spain
| | - Ricardo de Miguel
- Department of Animal Pathology, University of Zaragoza, Zaragoza, Spain
| | - Javier Asín
- Department of Animal Pathology, University of Zaragoza, Zaragoza, Spain
| | | | - Antonio Fernández
- Department of Animal Pathology, University of Zaragoza, Zaragoza, Spain
| | - Marta Pérez
- Department of Animal Anatomy, Embryology and Genetics, University of Zaragoza, Zaragoza, Spain
- AgriFood Institute of Aragon (IA2), Zaragoza, Spain
| | - Damián de Andrés
- Institute of Agrobiotechnology, CSIC-Government of Navarra, Mutilva, Spain
| | - Lluís Luján
- Department of Animal Pathology, University of Zaragoza, Zaragoza, Spain
- AgriFood Institute of Aragon (IA2), Zaragoza, Spain
| | - Ramsés Reina
- Institute of Agrobiotechnology, CSIC-Government of Navarra, Mutilva, Spain
| |
Collapse
|
28
|
Ganatra SR, Bucşan AN, Alvarez X, Kumar S, Chatterjee A, Quezada M, Fish A, Singh DK, Singh B, Sharan R, Lee TH, Shanmugasundaram U, Velu V, Khader SA, Mehra S, Rengarajan J, Kaushal D. Antiretroviral therapy does not reduce tuberculosis reactivation in a tuberculosis-HIV coinfection model. J Clin Invest 2020; 130:5171-5179. [PMID: 32544085 PMCID: PMC7524506 DOI: 10.1172/jci136502] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022] Open
Abstract
While the advent of combination antiretroviral therapy (ART) has significantly improved survival, tuberculosis (TB) remains the leading cause of death in the HIV-infected population. We used Mycobacterium tuberculosis/simian immunodeficiency virus-coinfected (M. tuberculosis/SIV-coinfected) macaques to model M. tuberculosis/HIV coinfection and study the impact of ART on TB reactivation due to HIV infection. Although ART significantly reduced viral loads and increased CD4+ T cell counts in blood and bronchoalveolar lavage (BAL) samples, it did not reduce the relative risk of SIV-induced TB reactivation in ART-treated macaques in the early phase of treatment. CD4+ T cells were poorly restored specifically in the lung interstitium, despite their significant restoration in the alveolar compartment of the lung as well as in the periphery. IDO1 induction in myeloid cells in the inducible bronchus-associated lymphoid tissue (iBALT) likely contributed to dysregulated T cell homing and impaired lung immunity. Thus, although ART was indispensable for controlling viral replication, restoring CD4+ T cells, and preventing opportunistic infection, it appeared inadequate in reversing the clinical signs of TB reactivation during the relatively short duration of ART administered in this study. This finding warrants the modeling of concurrent treatment of TB and HIV to potentially reduce the risk of reactivation of TB due to HIV to inform treatment strategies in patients with M. tuberculosis/HIV coinfection.
Collapse
Affiliation(s)
- Shashank R. Ganatra
- Southwest National Primate Research Center (SNPRC), Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Allison N. Bucşan
- Tulane National Primate Research Center (TNPRC), Covington, Louisiana, USA
| | - Xavier Alvarez
- Southwest National Primate Research Center (SNPRC), Texas Biomedical Research Institute, San Antonio, Texas, USA
- Tulane National Primate Research Center (TNPRC), Covington, Louisiana, USA
| | - Shyamesh Kumar
- Southwest National Primate Research Center (SNPRC), Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Ayan Chatterjee
- Southwest National Primate Research Center (SNPRC), Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Melanie Quezada
- Emory Vaccine Center and
- Yerkes National Primate Research Center (YNPRC), Emory University School of Medicine, Atlanta, Georgia, USA
| | - Abigail Fish
- Southwest National Primate Research Center (SNPRC), Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Dhiraj K. Singh
- Southwest National Primate Research Center (SNPRC), Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Bindu Singh
- Southwest National Primate Research Center (SNPRC), Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Riti Sharan
- Southwest National Primate Research Center (SNPRC), Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Tae-Hyung Lee
- Southwest National Primate Research Center (SNPRC), Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Uma Shanmugasundaram
- Emory Vaccine Center and
- Yerkes National Primate Research Center (YNPRC), Emory University School of Medicine, Atlanta, Georgia, USA
| | - Vijayakumar Velu
- Emory Vaccine Center and
- Yerkes National Primate Research Center (YNPRC), Emory University School of Medicine, Atlanta, Georgia, USA
| | - Shabaana A. Khader
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Smriti Mehra
- Tulane National Primate Research Center (TNPRC), Covington, Louisiana, USA
| | - Jyothi Rengarajan
- Emory Vaccine Center and
- Yerkes National Primate Research Center (YNPRC), Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Deepak Kaushal
- Southwest National Primate Research Center (SNPRC), Texas Biomedical Research Institute, San Antonio, Texas, USA
| |
Collapse
|
29
|
Abstract
Lymph nodes, particularly thoracic lymph nodes, are among the most common sites of extrapulmonary tuberculosis (TB). However, Mycobacterium tuberculosis (Mtb) infection in these organs is understudied. Aside from being sites of initiation of the adaptive immune system, lymph nodes also serve as niches of Mtb growth and persistence. Mtb infection results in granuloma formation that disrupts and—if it becomes large enough—replaces the normal architecture of the lymph node that is vital to its function. In preclinical models, successful TB vaccines appear to prevent spread of Mtb from the lungs to the lymph nodes. Reactivation of latent TB can start in the lymph nodes resulting in dissemination of the bacteria to the lungs and other organs. Involvement of the lymph nodes may improve Bacille Calmette-Guerin (BCG) vaccine efficacy. Lastly, drug penetration to the lymph nodes is poor compared to blood, lung tissue, and lung granulomas. Future studies on evaluating the efficacy of vaccines and anti-TB drug treatments should include consideration of the effects on thoracic lymph nodes and not just the lungs.
Collapse
Affiliation(s)
- Sharie Keanne C. Ganchua
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Alexander G. White
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Edwin C. Klein
- Division of Laboratory Animal Resources, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - JoAnne L. Flynn
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|