1
|
Gong A, Dai J, Zhao Y, Hu H, Guan C, Yu H, Wang K, Jin S, Wu Y, Xiao B. Piezo1 activation protects against sepsis-induced myocardial dysfunction in a pilot study. Sci Rep 2025; 15:15975. [PMID: 40341084 PMCID: PMC12062470 DOI: 10.1038/s41598-025-00829-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 04/30/2025] [Indexed: 05/10/2025] Open
Abstract
To explore the role and underlying mechanisms of Piezo1 in sepsis-induced myocardial dysfunction (SIMD). A SIMD model was established in mice via intraperitoneal lipopolysaccharide (LPS) injection. Cardiac function, histology, Piezo1 protein expression, and cardiac troponin T (cTnT) were assessed. Piezo1's role in SIMD was investigated using the agonist Yoda1, inhibitor GsMTx-4, and cardiomyocyte-specific Piezo1 knockout (Piezo1ΔCM) mice. Dual Specificity Phosphatase 3 (DUSP3) protein levels were also assessed to explore potential mechanisms. SIMD mice exhibited significantly impaired cardiac function, along with increased Piezo1 protein and cTnT levels. Piezo1 activation improved cardiac function and reduced tissue damage, while inhibition worsened SIMD. Piezo1ΔCM mice exhibited more severe cardiac dysfunction and injury, especially with LPS treatment. DUSP3 protein levels were significantly elevated in Piezo1ΔCM and LPS-treated hearts. Piezo1 exerted a protective role in SIMD, potentially through the modulation of DUSP3.
Collapse
Affiliation(s)
- Angwei Gong
- Department of Cardiology, The Second Hospital of Hebei Medical University, Hebei, 050000, China
| | - Jing Dai
- Department of Clinical Diagnostics, Hebei Medical University, Hebei, 050017, China
| | - Yan Zhao
- Department of Cardiology, The Second Hospital of Hebei Medical University, Hebei, 050000, China
| | - Haijuan Hu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Hebei, 050000, China
| | - Chengjian Guan
- Department of Cardiology, The Second Hospital of Hebei Medical University, Hebei, 050000, China
| | - Hangtian Yu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Hebei, 050000, China
| | - Keke Wang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Hebei, 050000, China
| | - Sheng Jin
- Department of Physiology, Hebei Medical University, Hebei, 050017, China
| | - Yuming Wu
- Department of Physiology, Hebei Medical University, Hebei, 050017, China.
| | - Bing Xiao
- Department of Cardiology, The Second Hospital of Hebei Medical University, Hebei, 050000, China.
| |
Collapse
|
2
|
Bae J, Kim J, Choi J, Lee H, Koh M. Split Proteins and Reassembly Modules for Biological Applications. Chembiochem 2024; 25:e202400123. [PMID: 38530024 DOI: 10.1002/cbic.202400123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 03/27/2024]
Abstract
Split systems, modular entities enabling controlled biological processes, have become instrumental in biological research. This review highlights their utility across applications like gene regulation, protein interaction identification, and biosensor development. Covering significant progress over the last decade, it revisits traditional split proteins such as GFP, luciferase, and inteins, and explores advancements in technologies like Cas proteins and base editors. We also examine reassembly modules and their applications in diverse fields, from gene regulation to therapeutic innovation. This review offers a comprehensive perspective on the recent evolution of split systems in biological research.
Collapse
Affiliation(s)
- Jieun Bae
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| | - Jonghoon Kim
- Department of Chemistry and Integrative Institute of Basic Science, Soongsil University, Seoul, 06978, Republic of Korea
| | - Jongdoo Choi
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| | - Hwiyeong Lee
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| | - Minseob Koh
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| |
Collapse
|
3
|
Zhu X, Yang Y, Feng D, Wang O, Chen J, Wang J, Wang B, Liu Y, Edenfield BH, Haddock AN, Wang Y, Patel T, Bi Y, Ji B. Albumin promoter-driven FlpO expression induces efficient genetic recombination in mouse liver. Am J Physiol Gastrointest Liver Physiol 2024; 326:G495-G503. [PMID: 38469630 PMCID: PMC11376971 DOI: 10.1152/ajpgi.00263.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/13/2024]
Abstract
Tissue-specific gene manipulations are widely used in genetically engineered mouse models. A single recombinase system, such as the one using Alb-Cre, has been commonly used for liver-specific genetic manipulations. However, most diseases are complex, involving multiple genetic changes and various cell types. A dual recombinase system is required for conditionally modifying different genes sequentially in the same cell or inducing genetic changes in different cell types within the same organism. A FlpO cDNA was inserted between the last exon and 3'-UTR of the mouse albumin gene in a bacterial artificial chromosome (BAC-Alb-FlpO). The founders were crossed with various reporter mice to examine the efficiency of recombination. Liver cancer tumorigenesis was investigated by crossing the FlpO mice with FSF-KrasG12D mice and p53frt mice (KPF mice). BAC-Alb-FlpO mice exhibited highly efficient recombination capability in both hepatocytes and intrahepatic cholangiocytes. No recombination was observed in the duodenum and pancreatic cells. BAC-Alb-FlpO-mediated liver-specific expression of mutant KrasG12D and conditional deletion of p53 gene caused the development of liver cancer. Remarkably, liver cancer in these KPF mice manifested a distinctive mixed hepatocellular carcinoma and cholangiocarcinoma phenotype. A highly efficient and liver-specific BAC-Alb-FlpO mouse model was developed. In combination with other Cre lines, different genes can be manipulated sequentially in the same cell, or distinct genetic changes can be induced in different cell types of the same organism.NEW & NOTEWORTHY A liver-specific Alb-FlpO mouse line was generated. By coupling it with other existing CreERT or Cre lines, the dual recombinase approach can enable sequential gene modifications within the same cell or across various cell types in an organism for liver research through temporal and spatial gene manipulations.
Collapse
Affiliation(s)
- Xiaohui Zhu
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States
| | - Yan Yang
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States
| | - Dongfeng Feng
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States
| | - Oliver Wang
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States
| | - Jiaxiang Chen
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States
| | - Jiale Wang
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States
| | - Bin Wang
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States
| | - Yang Liu
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States
| | - Brandy H Edenfield
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States
| | - Ashley N Haddock
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States
| | - Ying Wang
- Departments of Cardiovascular Diseases and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States
| | - Tushar Patel
- Department of Transplantation, Mayo Clinic, Jacksonville, Florida, United States
| | - Yan Bi
- Department of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida, United States
| | - Baoan Ji
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States
| |
Collapse
|
4
|
Lu Z, Chen P, Xu Q, Li B, Jiang S, Jiang L, Zheng X. Constitutive and conditional gene knockout mice for the study of intervertebral disc degeneration: Current status, decision considerations, and future possibilities. JOR Spine 2023; 6:e1242. [PMID: 36994464 PMCID: PMC10041386 DOI: 10.1002/jsp2.1242] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 01/09/2023] Open
Abstract
There have been an increasing number of patients with degenerative disc diseases due to the aging population. In light of this, studies on the pathogenesis of intervertebral disc degeneration have become a hot topic, and gene knockout mice have become a valuable tool in this field of research. With the development of science and technology, constitutive gene knockout mice can be constructed using homologous recombination, zinc finger nuclease, transcription activator-like effector nuclease technology and clustered regularly interspaced short palindromic repeats/Cas9 (CRISPR/Cas9) system, and conditional gene knockout mice can be constructed using the Cre/LoxP system. The gene-edited mice using these techniques have been widely used in the studies on disc degeneration. This paper reviews the development process and principles of these technologies, functions of the edited genes in disc degeneration, advantages, and disadvantages of different methods and possible targets of the specific Cre recombinase in intervertebral discs. Recommendations for the choice of suitable gene-edited model mice are presented. At the same time, possible technological improvements in the future are also discussed.
Collapse
Affiliation(s)
- Ze‐Yu Lu
- Spine CenterXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Peng‐Bo Chen
- Spine CenterXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qing‐Yin Xu
- Spine CenterXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Bo Li
- Spine CenterXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Sheng‐Dan Jiang
- Spine CenterXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Lei‐Sheng Jiang
- Spine CenterXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xin‐Feng Zheng
- Spine CenterXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
5
|
Caothien R, Yu C, Tam L, Newman R, Nakao B, Alcantar T, Bacarro N, Reyes J, Pham A, Roose-Girma M. Accelerated embryonic stem cell screening with a highly efficient genotyping pipeline. Mol Biol Rep 2022; 49:3281-3288. [PMID: 35107736 DOI: 10.1007/s11033-022-07165-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 01/19/2022] [Indexed: 12/01/2022]
Abstract
INTRODUCTION Gene targeting in mouse ES cells replaces or modifies genes of interest; conditional alleles, reporter knock-ins, and amino acid changes are common examples of how gene targeting is used. For example, enhanced green fluorescent protein or Cre recombinase is placed under the control of endogenous genes to define promoter expression patterns. METHODS AND RESULTS The most important step in the process is to demonstrate that a gene targeting vector is correctly integrated in the genome at the desired chromosomal location. The rapid identification of correctly targeted ES cell clones is facilitated by proper targeting vector construction, rapid screening procedures, and advances in cell culture. Here, we optimized and functionally linked magnetic activated cell sorting (MACS) technology as well as multiplex droplet digital PCR (ddPCR) to our ES cell screening process to achieve a greater than 60% assurance that ES clones are correctly targeted. In a further refinement of the process, drug selection cassettes are removed from ES cells with adenovirus technology. We describe this improved workflow and illustrate the reduction in time between therapeutic target identification and experimental validation. CONCLUSION In sum, we describe a novel and effective implementation of ddPCR, multiMACS, and adenovirus recombinase into a streamlined screening workflow that significantly reduces timelines for gene targeting in mouse ES cells.
Collapse
Affiliation(s)
- Roger Caothien
- Department of Molecular Biology, Genentech, Inc., South San Francisco, CA, USA
| | - Charles Yu
- Department of Molecular Biology, Genentech, Inc., South San Francisco, CA, USA
| | - Lucinda Tam
- Department of Molecular Biology, Genentech, Inc., South San Francisco, CA, USA
| | - Robert Newman
- Department of Molecular Biology, Genentech, Inc., South San Francisco, CA, USA
| | - Brian Nakao
- Department of Molecular Biology, Genentech, Inc., South San Francisco, CA, USA
| | - Tuija Alcantar
- Department of Molecular Biology, Genentech, Inc., South San Francisco, CA, USA
| | - Natasha Bacarro
- Department of Molecular Biology, Genentech, Inc., South San Francisco, CA, USA
| | - Juan Reyes
- Department of Molecular Biology, Genentech, Inc., South San Francisco, CA, USA
| | - Anna Pham
- Department of Molecular Biology, Genentech, Inc., South San Francisco, CA, USA
| | - Merone Roose-Girma
- Department of Molecular Biology, Genentech, Inc., South San Francisco, CA, USA.
| |
Collapse
|
6
|
Onaciu A, Munteanu R, Munteanu VC, Gulei D, Raduly L, Feder RI, Pirlog R, Atanasov AG, Korban SS, Irimie A, Berindan-Neagoe I. Spontaneous and Induced Animal Models for Cancer Research. Diagnostics (Basel) 2020; 10:E660. [PMID: 32878340 PMCID: PMC7555044 DOI: 10.3390/diagnostics10090660] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Considering the complexity of the current framework in oncology, the relevance of animal models in biomedical research is critical in light of the capacity to produce valuable data with clinical translation. The laboratory mouse is the most common animal model used in cancer research due to its high adaptation to different environments, genetic variability, and physiological similarities with humans. Beginning with spontaneous mutations arising in mice colonies that allow for pursuing studies of specific pathological conditions, this area of in vivo research has significantly evolved, now capable of generating humanized mice models encompassing the human immune system in biological correlation with human tumor xenografts. Moreover, the era of genetic engineering, especially of the hijacking CRISPR/Cas9 technique, offers powerful tools in designing and developing various mouse strains. Within this article, we will cover the principal mouse models used in oncology research, beginning with behavioral science of animals vs. humans, and continuing on with genetically engineered mice, microsurgical-induced cancer models, and avatar mouse models for personalized cancer therapy. Moreover, the area of spontaneous large animal models for cancer research will be briefly presented.
Collapse
Affiliation(s)
- Anca Onaciu
- Research Center for Advanced Medicine - Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.O.); (R.M.); (R.-I.F.)
| | - Raluca Munteanu
- Research Center for Advanced Medicine - Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.O.); (R.M.); (R.-I.F.)
| | - Vlad Cristian Munteanu
- Department of Urology, The Oncology Institute “Prof Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania;
- Department of Anatomy and Embryology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Diana Gulei
- Research Center for Advanced Medicine - Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.O.); (R.M.); (R.-I.F.)
| | - Lajos Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (L.R.); (R.P.)
| | - Richard-Ionut Feder
- Research Center for Advanced Medicine - Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.O.); (R.M.); (R.-I.F.)
| | - Radu Pirlog
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (L.R.); (R.P.)
- Department of Morphological Sciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Atanas G. Atanasov
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria;
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland
- Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev str., 1113 Sofia, Bulgaria
- Department of Pharmacognosy, University of Vienna, 1090 Vienna, Austria
| | - Schuyler S. Korban
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| | - Alexandru Irimie
- 11th Department of Surgical Oncology and Gynaecological Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania;
- Department of Surgery, The Oncology Institute Prof. Dr. Ion Chiricuta, 34–36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (L.R.); (R.P.)
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| |
Collapse
|
7
|
Mouse models to study genes involved in hematological malignancies. BLOOD SCIENCE 2020; 2:50-53. [PMID: 35402815 PMCID: PMC8975018 DOI: 10.1097/bs9.0000000000000044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 11/25/2022] Open
Abstract
Hematological malignancies, including leukemia and lymphoma, consist a group of highly heterogeneous neoplasms characterized by numerous genetic lesions specific for the type of the disease. In order to understand, the role of a particular alteration in the development of a malignancy functional studies have to be carried out in vitro, in cell lines derived from primary cancer cells. Further efforts to understand the mechanisms underlying blood disorders including malignant transformation and progression relies on model organism research. Numerous transgenic mouse models, carrying human oncogenes have been generated resembling distinct types of hematological disorders. Recent technological advances revolutionized the generation of animal models making it much easier, faster, and precise. The introduction of the CRISPR-Cas9 technology allows for rapid generation of novel knockout or transgenic animals, and the development of conditional site- and time-specific Cre-Lox gene targeting technology, allows studying the function of genes which are relevant to normal hematopoiesis and development of hematological malignancies, but lethal when knocked out in embryonic cells. Besides the studies on gene function, mouse models of human leukemia allow for discovery and testing of novel antileukemic drugs. These new technologies are deepening our understanding of disease pathophysiology and treatment resistance, as well as are leading to novel therapeutic strategies for improved outcomes in patients.
Collapse
|
8
|
Xu C, Wang K, Ding YH, Li WJ, Ding L. Claudin-7 gene knockout causes destruction of intestinal structure and animal death in mice. World J Gastroenterol 2019; 25:584-599. [PMID: 30774273 PMCID: PMC6371004 DOI: 10.3748/wjg.v25.i5.584] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/10/2019] [Accepted: 01/18/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Claudin-7, one of the important components of cellular tight junctions, is currently considered to be expressed abnormally in colorectal inflammation and colorectal cancer. However, there is currently no effective animal model to study its specific mechanism. Therefore, we constructed three lines of Claudin-7 knockout mice using the Cre/LoxP system. AIM To determine the function of the tumor suppressor gene Claudin-7 by generating three lines of Claudin-7 gene knockout mice. METHODS We crossed Claudin-7-floxed mice with CMV-Cre, vil1-Cre, and villin-CreERT2 transgenic mice, and the offspring were self-crossed to obtain conventional Claudin-7 knockout mice, conditional (intestinal specific) Claudin-7 knockout mice, and inducible conditional Claudin-7 knockout mice. Intraperitoneal injection of tamoxifen into the inducible conditional Claudin-7 knockout mice can induce the knockout of Claudin-7. PCR and agarose gel electrophoresis were used to identify mouse genotypes, and Western blot was used to confirm the knockout of Claudin-7. The mental state, body length, and survival time of these mice were observed. The dying mice were sacrificed, and hematoxylin-eosin (HE) staining and immunohistochemical staining were performed to observe changes in intestinal structure and proliferation markers. RESULTS We generated Claudin-7-floxed mice and three lines of Claudin-7 gene knockout mice using the Cre/LoxP system successfully. Conventional and intestinal specific Claudin-7 knockout mice were stunted and died during the perinatal period, and intestinal HE staining in these mice revealed mucosal gland structure disappearance and connective tissue hyperplasia with extensive inflammatory cell infiltration. The inducible conditional Claudin-7 knockout mice had a normal phenotype at birth, but after the induction with tamoxifen, they exhibited a dying state. Intestinal HE staining showed significant inflammatory cell infiltration, and atypical hyperplasia and adenoma were also observed. Intestinal immunohistochemistry analysis showed abnormal expression and distribution of Ki67, and the normal intestinal proliferation balance was disrupted. The intestinal crypt size in inducible conditional Claudin-7 knockout mice was increased compared with control mice (small intestine: 54.1 ± 2.96 vs 38.4 ± 1.63; large intestine: 44.7 ± 1.93 vs 27.4 ± 0.60; P < 0.001). CONCLUSION The knockout of Claudin-7 in vivo causes extensive inflammation, atypical hyperplasia, and adenoma in intestinal tissue as well as animal death in mice. Claudin-7 may act as a tumor suppressor gene in the development of colorectal cancer.
Collapse
Affiliation(s)
- Chang Xu
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Kun Wang
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Yu-Han Ding
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Wen-Jing Li
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Lei Ding
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| |
Collapse
|
9
|
Fehl J, Pozarska A, Nardiello C, Rath P, Surate Solaligue DE, Vadász I, Mayer K, Herold S, Seeger W, Morty RE. Control Interventions Can Impact Alveolarization and the Transcriptome in Developing Mouse Lungs. Anat Rec (Hoboken) 2018; 302:346-363. [PMID: 30412359 DOI: 10.1002/ar.23931] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/23/2017] [Accepted: 02/02/2018] [Indexed: 01/20/2023]
Abstract
There is currently much interest in understanding the mechanisms of normal and aberrant lung alveolarization, particularly in the context of bronchopulmonary dysplasia, a common complication of preterm birth where alveolarization is impeded. To this end, the parenteral administration of pharmacological agents that modulate biochemical pathways, or facilitate modulation of gene expression in transgenic animals, has facilitated the discovery and validation of mechanisms that direct lung development. Such studies include control interventions, where the solvent vehicle, perhaps containing an inactive form of the agent applied, is administered; thereby providing a well-controlled point of reference for the analysis of the partner experiment. In the present study, the impact of several widely used control interventions in developing C57Bl/6J mouse pups was examined for effects on lung structure and the lung transcriptome. Parenteral administration of scrambled microRNA inhibitors (called antagomiRs) that are used to control in vivo microRNA neutralization studies, impacted lung volume, septal thickness, and the transcriptome of developing mouse lungs; with some effects dependent upon nucleotide sequence. Repeated intraperitoneal isotonic saline injections altered lung volume, with limited impact on the transcriptome. Parenteral administration of the tamoxifen solvent Miglyol accelerated mouse pup growth, and changed the abundance of 73 mRNA transcripts in the lung. Tamoxifen applied in Miglyol-in the absence of Cre recombinase-decreased pup growth, lung volume, and lung alveolarization and changed the abundance of 298 mRNA transcripts in the lung. These data demonstrate that widely used control interventions can directly impact lung alveolarization and the lung transcriptome in studies on lung development. Anat Rec, 302:346-363, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Joshua Fehl
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Agnieszka Pozarska
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Claudio Nardiello
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Philipp Rath
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - David E Surate Solaligue
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - István Vadász
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Konstantin Mayer
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Susanne Herold
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Werner Seeger
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| |
Collapse
|
10
|
Hwang SU, Eun K, Yoon JD, Kim H, Hyun SH. Production of transgenic pigs using a pGFAP-CreERT2/EGFP LoxP inducible system for central nervous system disease models. J Vet Sci 2018; 19:434-445. [PMID: 29284207 PMCID: PMC5974525 DOI: 10.4142/jvs.2018.19.3.434] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/01/2017] [Accepted: 11/24/2017] [Indexed: 11/20/2022] Open
Abstract
Transgenic (TG) pigs are important in biomedical research and are used in disease modeling, pharmaceutical toxicity testing, and regenerative medicine. In this study, we constructed two vector systems by using the promoter of the pig glial fibrillary acidic protein (pGFAP) gene, which is an astrocyte cell marker. We established donor TG fibroblasts with pGFAP-CreERT2/LCMV-EGFPLoxP and evaluated the effect of the transgenes on TG-somatic cell nuclear transfer (SCNT) embryo development. Cleavage rates were not significantly different between control and transgene-donor groups. Embryo transfer was performed thrice just before ovulation of the surrogate sows. One sow delivered 5 TG piglets at 115 days after pregnancy. Polymerase chain reaction (PCR) analysis with genomic DNA isolated from skin tissues of TG pigs revealed that all 5 TG pigs had the transgenes. EGFP expression in all organs tested was confirmed by immunofluorescence staining and PCR. Real-time PCR analysis showed that pGFAP promoter-driven Cre fused to the mutated human ligand-binding domain of the estrogen receptor (CreERT2) mRNA was highly expressed in the cerebrum. Semi-nested PCR analysis revealed that CreERT2-mediated recombination was induced in cerebrum and cerebellum but not in skin. Thus, we successfully generated a TG pig with a 4-hydroxytamoxifen (TM)-inducible pGFAP-CreERT2/EGFPLoxP recombination system via SCNT.
Collapse
Affiliation(s)
- Seon-Ung Hwang
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea.,Institute of Stem Cell & Regenerative Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Kiyoung Eun
- Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Junchul David Yoon
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea.,Institute of Stem Cell & Regenerative Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Hyunggee Kim
- Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Sang-Hwan Hyun
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea.,Institute of Stem Cell & Regenerative Medicine, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
11
|
Reed L, Arlt VM, Phillips DH. The role of cytochrome P450 enzymes in carcinogen activation and detoxication: an in vivo-in vitro paradox. Carcinogenesis 2018; 39:851-859. [PMID: 29726902 PMCID: PMC6124610 DOI: 10.1093/carcin/bgy058] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/11/2018] [Accepted: 05/02/2018] [Indexed: 02/07/2023] Open
Abstract
Many chemical carcinogens require metabolic activation via xenobiotic-metabolizing enzymes in order to exert their genotoxic effects. Evidence from numerous in-vitro studies, utilizing reconstituted systems, microsomal fractions and cultured cells, implicates cytochrome P450 enzymes as being the predominant enzymes responsible for the metabolic activation of many procarcinogens. With the development of targeted gene disruption methodologies, knockout mouse models have been generated that allow investigation of the in-vivo roles of P450 enzymes in the metabolic activation of carcinogens. This review covers studies in which five procarcinogens representing different chemical classes, benzo[a]pyrene, 4-aminobiphenyl (4-ABP), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine, 2-amino-9H-pyrido[2,3-b]indole and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, have been administered to different P450 knockout mouse models. Paradoxically, while in-vitro studies using subcellular fractions enriched with P450 enzymes and their cofactors have been widely used to determine the pathways of activation of carcinogens, there is evidence from the in-vivo studies of cases where these same enzyme systems appear to have a more predominant role in carcinogen detoxication rather than activation.
Collapse
Affiliation(s)
- Lindsay Reed
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King’s College London, Franklin-Wilkins Building, London, UK
| | - Volker M Arlt
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King’s College London, Franklin-Wilkins Building, London, UK
- NIHR Health Protection Unit in Health Impact of Environmental Health Hazards at King’s College London in Partnership with Public Health England, London, UK
| | - David H Phillips
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King’s College London, Franklin-Wilkins Building, London, UK
- NIHR Health Protection Unit in Health Impact of Environmental Health Hazards at King’s College London in Partnership with Public Health England, London, UK
| |
Collapse
|
12
|
Hönig J, Mižíková I, Nardiello C, Surate Solaligue DE, Daume MJ, Vadász I, Mayer K, Herold S, Günther S, Seeger W, Morty RE. Transmission of microRNA antimiRs to mouse offspring via the maternal-placental-fetal unit. RNA (NEW YORK, N.Y.) 2018; 24:865-879. [PMID: 29540511 PMCID: PMC5959254 DOI: 10.1261/rna.063206.117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 03/12/2018] [Indexed: 09/09/2023]
Abstract
The emergence of microRNA as regulators of organogenesis and tissue differentiation has stimulated interest in the ablation of microRNA expression and function during discrete periods of development. To this end, inducible, conditional modulation of microRNA expression with doxycycline-based tetracycline-controlled transactivator and tamoxifen-based estrogen receptor systems has found widespread use. However, the induction agents and components of genome recombination systems negatively impact pregnancy, parturition, and postnatal development; thereby limiting the use of these technologies between late gestation and the early postnatal period. MicroRNA inhibitor (antimiR) administration also represents a means of neutralizing microRNA function in vitro and in vivo. To date, these studies have used direct (parenteral) administration of antimiRs to experimental animals. As an extension of this approach, an alternative means of regulating microRNA expression and function is described here: the maternal-placental-fetal transmission of antimiRs. When administered to pregnant dams, antimiRs were detected in offspring and resulted in a pronounced and persistent reduction in detectable steady-state free microRNA levels in the heart, kidney, liver, lungs, and brain. This effect was comparable to direct injection of newborn mouse pups with antimiRs, although maternal delivery resulted in fewer off-target effects. Furthermore, depletion of steady-state microRNA levels via the maternal route resulted in concomitant increases in steady-state levels of selected microRNA targets. This novel methodology permits the temporal regulation of microRNA function during late gestation and in neonates, without recourse to conventional approaches that rely on doxycycline and tamoxifen, which may confound studies on developmental processes.
Collapse
Affiliation(s)
- Jonas Hönig
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), 35392 Giessen, Germany
| | - Ivana Mižíková
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), 35392 Giessen, Germany
| | - Claudio Nardiello
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), 35392 Giessen, Germany
| | - David E Surate Solaligue
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), 35392 Giessen, Germany
| | - Maximilian J Daume
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), 35392 Giessen, Germany
| | - István Vadász
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), 35392 Giessen, Germany
| | - Konstantin Mayer
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), 35392 Giessen, Germany
| | - Susanne Herold
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), 35392 Giessen, Germany
| | - Stefan Günther
- ECCPS Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, 35392 Giessen, Germany
| | - Werner Seeger
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), 35392 Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), 35392 Giessen, Germany
| |
Collapse
|
13
|
Luiz AP, Wood JN. Sodium Channels in Pain and Cancer: New Therapeutic Opportunities. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 75:153-78. [PMID: 26920012 DOI: 10.1016/bs.apha.2015.12.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Voltage-gated sodium channels (VGSCs) underpin electrical activity in the nervous system through action potential propagation. First predicted by the modeling studies of Hodgkin and Huxley, they were subsequently identified at the molecular level by groups led by Catterall and Numa. VGSC dysfunction has long been linked to neuronal and cardiac disorders with some nonselective sodium channel blockers in current use in the clinic. The lack of selectivity means that side effect issues are a major impediment to the use of broad spectrum sodium channel blockers. Nine different sodium channels are known to exist, and selective blockers are now being developed. The potential utility of these drugs to target diseases ranging from migraine, multiple sclerosis, muscle, and immune system disorders, to cancer and pain is being explored. Four channels are potential targets for pain disorders. This conclusion comes from mouse knockout studies and human mutations that prove the involvement of Nav1.3, Nav1.7, Nav1.8, and Nav1.9 in the development and maintenance of acute and chronic pain. In this chapter, we present a short overview of the possible role of Nav1.3, Nav1.7, Nav1.8, and Nav1.9 in human pain and the emerging and unexpected role of sodium channels in cancer pathogenesis.
Collapse
Affiliation(s)
- Ana Paula Luiz
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, United Kingdom
| | - John N Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, United Kingdom.
| |
Collapse
|
14
|
Grimsley A, Foster A, Gallagher R, Hutchison M, Lundqvist A, Pickup K, Wilson ID, Samuelsson K. A comparison of the metabolism of midazolam in C57BL/6J and hepatic reductase null (HRN) mice. Biochem Pharmacol 2014; 92:701-11. [DOI: 10.1016/j.bcp.2014.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 10/02/2014] [Accepted: 10/07/2014] [Indexed: 01/10/2023]
|
15
|
Bouwknecht JA. Behavioral studies on anxiety and depression in a drug discovery environment: keys to a successful future. Eur J Pharmacol 2014; 753:158-76. [PMID: 25460021 DOI: 10.1016/j.ejphar.2014.09.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 08/25/2014] [Accepted: 09/11/2014] [Indexed: 11/18/2022]
Abstract
The review describes a personal journey through 25 years of animal research with a focus on the contribution of rodent models for anxiety and depression to the development of new medicines in a drug discovery environment. Several classic acute models for mood disorders are briefly described as well as chronic stress and disease-induction models. The paper highlights a variety of factors that influence the quality and consistency of behavioral data in a laboratory setting. The importance of meta-analysis techniques for study validation (tolerance interval) and assay sensitivity (Monte Carlo modeling) are demonstrated by examples that use historic data. It is essential for successful discovery of new potential drugs to maintain a high level of control in animal research and to bridge knowledge across in silico modeling, and in vitro and in vivo assays. Today, drug discovery is a highly dynamic environment in search of new types of treatments and new animal models which should be guided by enhanced two-way translation between bench and bed. Although productivity has been disappointing in the search of new and better medicines in psychiatry over the past decades, there has been and will always be an important role for in vivo models in-between preclinical discovery and clinical development. The right balance between good science and proper judgment versus a decent level of innovation, assay development and two-way translation will open the doors to a very bright future.
Collapse
|
16
|
Pickup K, Wills J, Rodrigues A, Jones HB, Page C, Martin S, Sarda S, Wilson I. The metabolic fate of [14C]-fenclozic acid in the hepatic reductase null (HRN) mouse. Xenobiotica 2013; 44:164-73. [DOI: 10.3109/00498254.2013.866299] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
17
|
Grimsley A, Gallagher R, Hutchison M, Pickup K, Wilson ID, Samuelsson K. Drug-drug interactions and metabolism in cytochrome P450 2C knockout mice: application to troleandomycin and midazolam. Biochem Pharmacol 2013; 86:529-38. [PMID: 23732297 DOI: 10.1016/j.bcp.2013.05.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/22/2013] [Accepted: 05/22/2013] [Indexed: 12/11/2022]
Abstract
Drug-drug interactions (DDIs) may cause serious drug toxicity and delay development of candidate drugs. Screening using human liver microsomes and hepatocytes can help predict DDIs but do not always provide the degree of certainty required for confident progression of a candidate drug. Thus a suitable in vivo test system could be of great value. Here a Cyp2c knockout (KO) mouse was investigated for studying DDIs using midazolam (MDZ) a standard human CYP3A4 substrate and troleandomycin (TAO) a potent human CYP3A4 inhibitor. Pharmacokinetics (PK) and biotransformation of MDZ were investigated following dosing to Cyp2c KO and wild type mice before and after TAO treatment. The noteworthy differences in the metabolism of MDZ in Cyp2c KO compared to wild type mice confirms the important role that Cyp2c enzymes play in the murine metabolism of MDZ in vivo. The impact of Cyp3a inhibition produced a further increase in circulating MDZ concentrations in all individuals from both strains of mice though the impact of the elimination of the Cyp2c pathway in the KO mice on the AUC was less than perhaps expected. We have shown that TAO produces an increase in the MDZ concentration and a reduction in the 1'hydroxymidazolam/midazolam formation ratio but the expected difference in the magnitude of this effect between the wild type and the Cyp2c KO mice was not seen. The magnitude of the TAO effect was also smaller than is reported in humans. Hence further work is required before this animal model could be used to predict clinical interactions.
Collapse
Affiliation(s)
- Aidan Grimsley
- Global DMPK, AstraZeneca UK Ltd., Alderley Park, Macclesfield SK10 4TG, United Kingdom
| | | | | | | | | | | |
Collapse
|
18
|
Sanders JA, Schorl C, Patel A, Sedivy JM, Gruppuso PA. Postnatal liver growth and regeneration are independent of c-myc in a mouse model of conditional hepatic c-myc deletion. BMC PHYSIOLOGY 2012; 12:1. [PMID: 22397685 PMCID: PMC3353165 DOI: 10.1186/1472-6793-12-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 03/07/2012] [Indexed: 12/27/2022]
Abstract
BACKGROUND The transcription factor c-myc regulates genes involved in hepatocyte growth, proliferation, metabolism, and differentiation. It has also been assigned roles in liver development and regeneration. In previous studies, we made the unexpected observation that c-Myc protein levels were similar in proliferating fetal liver and quiescent adult liver with c-Myc displaying nucleolar localization in the latter. In order to investigate the functional role of c-Myc in adult liver, we have developed a hepatocyte-specific c-myc knockout mouse, c-mycfl/fl;Alb-Cre. RESULTS Liver weight to body weight ratios were similar in control and c-myc deficient mice. Liver architecture was unaffected. Conditional c-myc deletion did not result in compensatory induction of other myc family members or in c-Myc's binding partner Max. Floxed c-myc did have a negative effect on Alb-Cre expression at 4 weeks of age. To explore this relationship further, we used the Rosa26 reporter line to assay Cre activity in the c-myc floxed mice. No significant difference in Alb-Cre activity was found between control and c-mycfl/fl mice. c-myc deficient mice were studied in a nonproliferative model of liver growth, fasting for 48 hr followed by a 24 hr refeeding period. Fasting resulted in a decrease in liver mass and liver protein, both of which recovered upon 24 h of refeeding in the c-mycfl/fl;Alb-Cre animals. There was also no effect of reducing c-myc on recovery of liver mass following 2/3 partial hepatectomy. CONCLUSIONS c-Myc appears to be dispensable for normal liver growth during the postnatal period, restoration of liver mass following partial hepatectomy and recovery from fasting.
Collapse
Affiliation(s)
- Jennifer A Sanders
- Department of Pediatrics, Rhode Island Hospital and Brown University, Providence, RI 02903, USA.
| | | | | | | | | |
Collapse
|
19
|
Pickup K, Gavin A, Jones HB, Karlsson E, Page C, Ratcliffe K, Sarda S, Schulz-Utermoehl T, Wilson I. The hepatic reductase null mouse as a model for exploring hepatic conjugation of xenobiotics: Application to the metabolism of diclofenac. Xenobiotica 2011; 42:195-205. [DOI: 10.3109/00498254.2011.607196] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
Zurborg S, Piszczek A, Martínez C, Hublitz P, Al Banchaabouchi M, Moreira P, Perlas E, Heppenstall PA. Generation and characterization of an Advillin-Cre driver mouse line. Mol Pain 2011; 7:66. [PMID: 21906401 PMCID: PMC3185264 DOI: 10.1186/1744-8069-7-66] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 09/11/2011] [Indexed: 12/15/2022] Open
Abstract
Progress in the somatosensory field has been restricted by the limited number of genetic tools available to study gene function in peripheral sensory neurons. Here we generated a Cre-driver mouse line that expresses Cre-recombinase from the locus of the sensory neuron specific gene Advillin. These mice displayed almost exclusive Cre-mediated recombination in all peripheral sensory neurons. As such, the Advillin-Cre-driver line will be a powerful tool for targeting peripheral neurons in future investigations.
Collapse
Affiliation(s)
- Sandra Zurborg
- Mouse Biology Unit, European Molecular Biology Laboratory, Via Ramarini 32, 00016 Monterotondo (Roma), Italy
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Yap SP, Xing X, Kraus P, Sivakamasundari V, Chan HY, Lufkin T. Generation of mice with a novel conditional null allele of the Sox9 gene. Biotechnol Lett 2011; 33:1551-8. [PMID: 21484342 DOI: 10.1007/s10529-011-0608-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 03/29/2011] [Indexed: 11/26/2022]
Abstract
Sox9 is expressed in multiple tissues during mouse development and adulthood. Mutations in the Sox9 gene or changes in expression levels can be attributed to many congenital diseases. Heterozygous loss-of-function mutations in the human SOX9 gene cause Campomelic dysplasia, a semi-lethal skeletal malformation syndrome. Disruption of Sox9 by conventional gene targeting leads to perinatal lethality in heterozygous mice, hence hampering the feasibility to obtain the homozygous Sox9 null mice for in vivo functional studies. In this study, we generated a conditional allele of Sox9 (Sox9 ( tm4.Tlu )) by flanking exon 1 with loxP sites. Homozygous mice for the Sox9 ( tm4.Tlu ) allele (Sox9 ( flox/flox )) are viable, fertile and indistinguishable from wildtype (WT) mice, indicating that the Sox9 ( tm4.Tlu ) allele is a fully functional Sox9 allele. Furthermore, we demonstrated that Cre-mediated recombination using a Col2a1-Cre line resulted in specific ablation of Sox9 activity in cartilage tissues.
Collapse
Affiliation(s)
- Sook Peng Yap
- Stem Cell and Developmental Biology, Genome Institute of Singapore, 60 Biopolis Street, Singapore.
| | | | | | | | | | | |
Collapse
|
22
|
Wang J, Xu X, Elliott MH, Zhu M, Le YZ. Müller cell-derived VEGF is essential for diabetes-induced retinal inflammation and vascular leakage. Diabetes 2010; 59:2297-2305. [PMID: 20530741 PMCID: PMC2927953 DOI: 10.2337/db09-1420] [Citation(s) in RCA: 283] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 05/24/2010] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Vascular endothelial growth factor (VEGF-A or VEGF) is a major pathogenic factor and therapeutic target for diabetic retinopathy (DR). Since VEGF has been proposed as a survival factor for retinal neurons, defining the cellular origin of pathogenic VEGF is necessary for the effectiveness and safety of long-term anti-VEGF therapies for DR. To determine the significance of Müller cell-derived VEGF in DR, we disrupted VEGF in Müller cells with an inducible Cre/lox system and examined diabetes-induced retinal inflammation and vascular leakage in these conditional VEGF knockout (KO) mice. RESEARCH DESIGN AND METHODS Leukostasis was determined by counting the number of fluorescently labeled leukocytes inside retinal vasculature. Expression of biomarkers for retinal inflammation was assessed by immunoblotting of TNF-alpha, ICAM-1, and NF-kappaB. Vascular leakage was measured by immunoblotting of retinal albumin and fluorescent microscopic analysis of extravascular albumin. Diabetes-induced vascular alterations were examined by immunoblotting and immunohistochemistry for tight junctions, and by trypsin digestion assays for acellular capillaries. Retinal integrity was analyzed with morphologic and morphometric analyses. RESULTS Diabetic conditional VEGF KO mice exhibited significantly reduced leukostasis, expression of inflammatory biomarkers, depletion of tight junction proteins, numbers of acellular capillaries, and vascular leakage compared to diabetic control mice. CONCLUSIONS Müller cell-derived VEGF plays an essential and causative role in retinal inflammation, vascular lesions, and vascular leakage in DR. Therefore, Müller cells are a primary cellular target for proinflammatory signals that mediates retinal inflammation and vascular leakage in DR.
Collapse
Affiliation(s)
- Juanjuan Wang
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- Department of Medicine Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Harold Hamm Oklahoma Diabetes Center, University of Oklahoma, Oklahoma City, Oklahoma
| | - Xueliang Xu
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
| | - Michael H. Elliott
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Dean A. McGee Eye Institute, Oklahoma City, Oklahoma
| | - Meili Zhu
- Department of Medicine Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Harold Hamm Oklahoma Diabetes Center, University of Oklahoma, Oklahoma City, Oklahoma
| | - Yun-Zheng Le
- Department of Medicine Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Harold Hamm Oklahoma Diabetes Center, University of Oklahoma, Oklahoma City, Oklahoma
- Dean A. McGee Eye Institute, Oklahoma City, Oklahoma
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
23
|
Kumar TR, Larson M, Wang H, McDermott J, Bronshteyn I. Transgenic mouse technology: principles and methods. Methods Mol Biol 2009; 590:335-62. [PMID: 19763515 DOI: 10.1007/978-1-60327-378-7_22] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction of foreign DNA into the mouse germ line is considered a major technical advancement in the fields of developmental biology and genetics. This technology now referred to as transgenic mouse technology has revolutionized virtually all fields of biology and provided new genetic approaches to model many human diseases in a whole animal context. Several hundreds of transgenic lines with expression of foreign genes specifically targeted to desired organelles/cells/tissues have been characterized. Further, the ability to spatio-temporally inactivate or activate gene expression in vivo using the "Cre-lox" technology has recently emerged as a powerful approach to understand various developmental processes including those relevant to molecular endocrinology. In this chapter, we will discuss the principles of transgenic mouse technology, and describe detailed methodology standardized at our institute.
Collapse
Affiliation(s)
- T Rajendra Kumar
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | | | | | | | | |
Collapse
|
24
|
Abstract
Hepatocellular carcinoma (HCC) is a common and deadly cancer whose pathogenesis is incompletely understood. Comparative genomic studies from human HCC samples have classified HCCs into different molecular subgroups; yet, the unifying feature of this tumor is its propensity to arise upon a background of inflammation and fibrosis. This review seeks to analyze the available experimental models in HCC research and to correlate data from human populations with them in order to consolidate our efforts to date, as it is increasingly clear that different models will be required to mimic different subclasses of the neoplasm. These models will be instrumental in the evaluation of compounds targeting specific molecular pathways in future preclinical studies.
Collapse
|
25
|
Chang GY, Cao F, Krishnan M, Huang M, Li Z, Xie X, Sheikh AY, Hoyt G, Robbins R, Hsiai T, Schneider MD, Wu JC. Positron emission tomography imaging of conditional gene activation in the heart. J Mol Cell Cardiol 2007; 43:18-26. [PMID: 17467733 PMCID: PMC2727602 DOI: 10.1016/j.yjmcc.2007.03.809] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 01/04/2007] [Accepted: 03/13/2007] [Indexed: 10/23/2022]
Abstract
The Cre-loxP system has been routinely used for conditional activation and deletion of gene expression. However, the spatiotemporal manner of these events in the heart has not yet been defined by in vivo imaging. Adenovirus (1 x 10(9 )pfu) carrying the silent positron emission tomography (PET) reporter gene, herpes simplex virus type 1 thymidine kinase (HSV1-tk), was injected into the left ventricular wall of male transgenic mice (n=15) or FVB controls (n=8). Transgenic mice expressed Cre recombinase driven by a cardiac-specific alpha-myosin heavy chain (alpha-MHC) promoter. Following injection of the 9-[4-fluoro-3-(hydroxymethyl)butyl]guanine ([18F]-FHBG; 137+/-25 microCi) reporter probe, microPET imaging was used to assess the expression of HSV1-tk reporter gene in the myocardium. Two days following adenoviral injection, cardiac HSV1-tk gene activation resulted in tracer uptake of 3.20+/-0.51% ID/g for alpha-MHC-Cre and 0.05+/-0.02%ID/g for control mice (P<0.01). The in vivo results were confirmed by RT-PCR and Western blot analysis. Similar transfections were evaluated in both cardiac-specific and non-cardiac-specific cell lines. Enzyme activity showed a robust correlation (r2=0.82) between in vivo molecular imaging technique and traditional in vitro enzyme assays. With further development and validation, PET imaging will likely play an important role in the noninvasive, repetitive, and quantitative measurement of conditional gene activation in the future.
Collapse
Affiliation(s)
- Gwendolen Y. Chang
- The Molecular Imaging Program at Stanford (MIPS) and Department of Radiology, Stanford University, Palo Alto, CA
| | - Feng Cao
- The Molecular Imaging Program at Stanford (MIPS) and Department of Radiology, Stanford University, Palo Alto, CA
| | - Manickam Krishnan
- The Molecular Imaging Program at Stanford (MIPS) and Department of Radiology, Stanford University, Palo Alto, CA
| | - Mei Huang
- The Molecular Imaging Program at Stanford (MIPS) and Department of Radiology, Stanford University, Palo Alto, CA
| | - Zongjin Li
- The Molecular Imaging Program at Stanford (MIPS) and Department of Radiology, Stanford University, Palo Alto, CA
| | - Xiaoyan Xie
- The Molecular Imaging Program at Stanford (MIPS) and Department of Radiology, Stanford University, Palo Alto, CA
| | - Ahmad Y. Sheikh
- The Department of Surgery, Stanford University, Palo Alto, CA
| | - Grant Hoyt
- The Department of Surgery, Stanford University, Palo Alto, CA
| | - Robert Robbins
- The Department of Surgery, Stanford University, Palo Alto, CA
| | - Tzung Hsiai
- Department of Biomedical Engineering, University of Southern California
| | - Michael D Schneider
- Center for Cardiovascular Development, Baylor College of Medicine, Houston, TX
| | - Joseph C. Wu
- The Molecular Imaging Program at Stanford (MIPS) and Department of Radiology, Stanford University, Palo Alto, CA
- The Department of Medicine, Division of Cardiology, Stanford University, Palo Alto, CA
| |
Collapse
|
26
|
Lincoln J, Kist R, Scherer G, Yutzey KE. Sox9 is required for precursor cell expansion and extracellular matrix organization during mouse heart valve development. Dev Biol 2007; 305:120-32. [PMID: 17350610 PMCID: PMC1920559 DOI: 10.1016/j.ydbio.2007.02.002] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Revised: 01/31/2007] [Accepted: 02/01/2007] [Indexed: 10/23/2022]
Abstract
Heart valve structures derived from mesenchymal cells of the endocardial cushions (ECs) are composed of highly organized cell lineages and extracellular matrix. Sox9 is a transcription factor required for both early and late stages of cartilage formation that is also expressed in the developing valves of the heart. The requirements for Sox9 function during valvulogenesis and adult valve homeostasis in mice were examined by conditional inactivation of Sox9 using Tie2-cre and Col2a1-cre transgenes. Sox9(flox/flox);Tie2-cre mice die before E14.5 with hypoplastic ECs, reduced cell proliferation and altered extracellular matrix protein (ECM) deposition. Sox9(flox/flox);Col2a1-cre mice die at birth with thickened heart valve leaflets, reduced expression of cartilage-associated proteins and abnormal ECM patterning. Thickened valve leaflets and calcium deposits, characteristic of valve disease, are observed in heterozygous adult Sox9(flox/+);Col2a1-cre mice. Therefore, Sox9 is required early in valve development for expansion of the precursor cell population and later is required for normal expression and distribution of valvular ECM proteins. These data indicate that Sox9 is required for early and late stages of valvulogenesis and identify a potential role for Sox9 in valve disease mechanisms.
Collapse
Affiliation(s)
- Joy Lincoln
- Department of Molecular and Cellular Pharmacology, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, 33101, USA
| | - Ralf Kist
- Institute of Human Genetics, International Centre for Life, University of Newcastle, Central Parkway, Newcastle-Upon-Tyne, NE1 3BZ, United Kingdom
| | - Gerd Scherer
- Institute of Human Genetics and Anthropology, University of Freiburg, Breisacherstr 33, D-79106, Freiburg, Germany
| | - Katherine E. Yutzey
- Division of Molecular Cardiovascular Biology, MLC 7020, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
- Corresponding author Phone: 513-636-8340 Fax: 513-636-5958
| |
Collapse
|
27
|
|
28
|
Abstract
The distribution of ion channels in neurons associated with pain pathways is becoming better understood. In particular, we now have insights into the molecular nature of the channels that are activated by tissue-damaging stimuli, as well as the mechanisms by which voltage-gated channels alter the sensitivity of peripheral neurons to change pain thresholds. This chapter details the evidence that individual channels may be associated with particular pain states, and describes genetic approaches to test the possible utility of targeting individual channels to treat pain.
Collapse
Affiliation(s)
- Tamara Rosenbaum
- Departamento de Biofísica, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México
- Correspondence should be addressed to León D. Islas or Tamara Rosenbaum, León D. Islas, Departamento de Fisiología, Facultad de Medicina, Apartado Postal 70-600. Circuito Escolar S/N; Ciudad Universitaria, Universidad Nacional Autónoma de México, México, D.F., 04510, México, Phone +(52) 55 5623 2132; Fax +(52) 55 5623 2241, , Tamara Rosenbaum, Departamento de Biofísica, Instituto de Fisiología Celular, Apartado Postal 70-600. Circuito Exterior S/N, Ciudad Universitaria, Universidad Nacional Autónoma de México, México, D.F., 04510, México. Phone +(52) 55 5622 5624; Fax +(52) 55 5622 5607,
| | - Sidney A. Simon
- Department of Neurobiology and Center of Neuroengineering Duke University Medical Center, Durham, NC 27710, USA
| | - Leon D. Islas
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México
- Correspondence should be addressed to León D. Islas or Tamara Rosenbaum, León D. Islas, Departamento de Fisiología, Facultad de Medicina, Apartado Postal 70-600. Circuito Escolar S/N; Ciudad Universitaria, Universidad Nacional Autónoma de México, México, D.F., 04510, México, Phone +(52) 55 5623 2132; Fax +(52) 55 5623 2241, , Tamara Rosenbaum, Departamento de Biofísica, Instituto de Fisiología Celular, Apartado Postal 70-600. Circuito Exterior S/N, Ciudad Universitaria, Universidad Nacional Autónoma de México, México, D.F., 04510, México. Phone +(52) 55 5622 5624; Fax +(52) 55 5622 5607,
| |
Collapse
|
29
|
Zhao J, Nassar MA, Gavazzi I, Wood JN. Tamoxifen-inducible NaV1.8-CreERT2 recombinase activity in nociceptive neurons of dorsal root ganglia. Genesis 2006; 44:364-71. [PMID: 16850455 DOI: 10.1002/dvg.20224] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
To explore the function of genes expressed in adult mouse nociceptive neurons, we generated heterozygous knock-in mice expressing the tamoxifen-inducible Cre recombinase construct CreERT2 downstream of the Na(V)1.8 promoter. CreERT2 encodes a Cre recombinase (Cre) fused to a mutant estrogen ligand-binding domain (ERT2) that requires the presence of tamoxifen for activity. We have previously shown that heterozygous Na(V)1.8-Cre mice will delete loxP flanked genes specifically in nociceptive sensory neurons from embryonic day 14. We therefore used the same strategy of homologous recombination and mouse generation, substituting the Cre cassette with CreERT2. No functional Cre recombinase activity was found in CreERT2 mice crossed with reporter mice in the absence of tamoxifen. We found that, as with Na(V)1.8-Cre mice, functional Cre recombinase was present in nociceptive sensory neurons after tamoxifen induction in vivo. However, the percentage of dorsal root ganglion (DRG) neurons expressing functional Cre activity was much reduced (<10% of the number found in the Na(V)1.8-Cre mouse). We also examined Cre recombinase activity in sensory neurons in culture. After treatment with 1 muM tamoxifen for 48 h, 15% of DRG neurons showed Cre activity. Na(V)1.8-CreERT2 animals may thus be useful for single cell studies of the functional consequences of gene ablation in culture, but are unlikely to be useful for behavioral studies.
Collapse
Affiliation(s)
- Jing Zhao
- Molecular Nociception Group, Department of Biology, University College London, UK
| | | | | | | |
Collapse
|
30
|
Domenici MR, Azad SC, Marsicano G, Schierloh A, Wotjak CT, Dodt HU, Zieglgänsberger W, Lutz B, Rammes G. Cannabinoid receptor type 1 located on presynaptic terminals of principal neurons in the forebrain controls glutamatergic synaptic transmission. J Neurosci 2006; 26:5794-9. [PMID: 16723537 PMCID: PMC6675276 DOI: 10.1523/jneurosci.0372-06.2006] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
It is widely accepted that cannabinoids regulate GABA release by activation of cannabinoid receptor type 1 (CB1). Results obtained from a variety of brain regions consistently indicate that cannabinoid agonists can also reduce glutamatergic synaptic transmission. However, there are still conflicting data concerning the role of CB1 in cannabinoid-induced inhibition of glutamatergic transmission in cortical areas. Here, we provide direct evidence that activation of CB1 on terminals of principal neurons controls excitatory synaptic responses in the forebrain. In slices of the basolateral amygdala, the CA1 region of the hippocampus, and the primary somatosensory cortex of wild-type mice, application of the CB1 agonist (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone (WIN55,212-2; WIN) (5 mum) reduced evoked excitatory postsynaptic responses. In contrast, in slices obtained from conditional mouse mutants lacking CB1 in all principal forebrain neurons but not in GABAergic interneurons (CB1(f/f;CaMKIIalphaCre)), WIN no longer affected glutamatergic synaptic transmission in any of the brain regions tested. Compatible with a presynaptic mechanism, WIN did not change the sensitivity to focally uncaged l-glutamate. WIN reduced glutamatergic responses in slices obtained from mice lacking CB1 exclusively in GABAergic neurons (CB1(f/f;Dlx5/6-Cre)), thus excluding the involvement of CB1 expressed on GABAergic neurons in this effect of the drug. The present data strongly indicate that excitatory synaptic transmission in forebrain areas is directly modulated by CB1 expressed on presynaptic axon terminals originating from glutamatergic neurons.
Collapse
|
31
|
Wood JN. Chapter 5 Molecular mechanisms of nociception and pain. HANDBOOK OF CLINICAL NEUROLOGY 2006; 81:49-59. [PMID: 18808827 DOI: 10.1016/s0072-9752(06)80009-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
32
|
Thummel R, Burket CT, Brewer JL, Sarras MP, Li L, Perry M, McDermott JP, Sauer B, Hyde DR, Godwin AR. Cre-mediated site-specific recombination in zebrafish embryos. Dev Dyn 2005; 233:1366-77. [PMID: 15977183 DOI: 10.1002/dvdy.20475] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cre-mediated site-specific recombination has become an invaluable tool for manipulation of the murine genome. The ability to conditionally activate gene expression or to generate chromosomal alterations with this same tool would greatly enhance zebrafish genetics. This study demonstrates that the HSP70 promoter can be used to inducibly control expression of an enhanced green fluorescent protein (EGFP) -Cre fusion protein. The EGFP-Cre fusion protein is capable of promoting recombination between lox sites in injected plasmids or in stably inherited transgenes as early as 2 hr post-heat shock induction. Finally, the levels of Cre expression achieved in a transgenic fish line carrying the HSP70-EGFP-cre transgene are compatible with viability and both male and female transgenic fish are fertile subsequent to induction of EGFP-Cre expression. Hence, our data suggests that Cre-mediated recombination is a viable means of manipulating gene expression in zebrafish.
Collapse
Affiliation(s)
- Ryan Thummel
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Suggitt M, Bibby MC. 50 Years of Preclinical Anticancer Drug Screening: Empirical to Target-Driven Approaches. Clin Cancer Res 2005. [DOI: 10.1158/1078-0432.971.11.3] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Abstract
The number of anticancer agents that fail in the clinic far outweighs those considered effective, suggesting that the selection procedure for progression of molecules into the clinic requires improvement. The value of any preclinical model will ultimately depend on its ability to accurately predict clinical response. This review focuses on the major contributions of preclinical screening models to anticancer drug development over the past 50 years. Over time, a general transition has been observed from the empirical drug screening of cytotoxic agents against uncharacterized tumor models to the target-orientated drug screening of agents with defined mechanisms of action. New approaches to anticancer drug development involve the molecular characterization of models along with an appreciation of the pharmacodynamic and pharmacokinetic properties of compounds [e.g., the US National Cancer Institute (NCI) in vitro 60-cell line panel, hollow fiber assay, and s.c. xenograft]. Contributions of other potentially more clinically relevant in vivo tumor models including orthotopic, metastatic, and genetically engineered mouse models are also reviewed. Although this review concentrates on the preclinical screening efforts of the NCI, European efforts are not overlooked. Europe has played a key role in the development of new anticancer agents. The two largest academic drug development groups, the European Organisation for Research and Treatment of Cancer and Cancer Research UK, have been collaborating with the NCI in the acquisition and screening of compounds since the 1970s. As with the drug development process internationally, rational pharmacodynamic approaches have more recently been adopted by these two groups.
Collapse
Affiliation(s)
- Marie Suggitt
- Tom Connors Cancer Research Centre, University of Bradford, Bradford, United Kingdom
| | - Michael C. Bibby
- Tom Connors Cancer Research Centre, University of Bradford, Bradford, United Kingdom
| |
Collapse
|
34
|
Stirling LC, Forlani G, Baker MD, Wood JN, Matthews EA, Dickenson AH, Nassar MA. Nociceptor-specific gene deletion using heterozygous NaV1.8-Cre recombinase mice. Pain 2005; 113:27-36. [PMID: 15621361 DOI: 10.1016/j.pain.2004.08.015] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2004] [Revised: 08/13/2004] [Accepted: 08/17/2004] [Indexed: 11/22/2022]
Abstract
NaV1.8 is a voltage-gated sodium channel expressed only in a subset of sensory neurons of which more than 85% are nociceptors. In order to delete genes in nociceptive neurons, we generated heterozygous transgenic mice expressing Cre recombinase under the control of the NaV1.8 promoter. Functional Cre recombinase expression replicated precisely the expression pattern of NaV1.8. Cre expression began at embryonic day 14 in small diameter neurons in dorsal root, trigeminal and nodose ganglia, but was absent in non-neuronal or CNS tissues into adulthood. Sodium channel subtypes were normal in isolated DRG neurons. Pain behaviour in response to mechanical or thermal stimuli, and in acute, inflammatory and neuropathic pain was also normal. These data demonstrate that the heterozygous NaV1.8-Cre mouse line is a useful tool to analyse the effects of deleting floxed genes on pain behaviour.
Collapse
Affiliation(s)
- L Caroline Stirling
- Molecular Nociception Group, Biology Department, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | | | | | |
Collapse
|
35
|
Nassar MA, Stirling LC, Forlani G, Baker MD, Matthews EA, Dickenson AH, Wood JN. Nociceptor-specific gene deletion reveals a major role for Nav1.7 (PN1) in acute and inflammatory pain. Proc Natl Acad Sci U S A 2004; 101:12706-11. [PMID: 15314237 PMCID: PMC515119 DOI: 10.1073/pnas.0404915101] [Citation(s) in RCA: 513] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Indexed: 12/11/2022] Open
Abstract
Nine voltage-gated sodium channels are expressed in complex patterns in mammalian nerve and muscle. Three channels, Na(v)1.7, Na(v)1.8, and Na(v)1.9, are expressed selectively in peripheral damage-sensing neurons. Because there are no selective blockers of these channels, we used gene ablation in mice to examine the function of Na(v)1.7 (PN1) in pain pathways. A global Na(v)1.7-null mutant was found to die shortly after birth. We therefore used the Cre-loxP system to generate nociceptor-specific knockouts. Na(v)1.8 is only expressed in peripheral, mainly nociceptive, sensory neurons. We knocked Cre recombinase into the Na(v)1.8 locus to generate heterozygous mice expressing Cre recombinase in Na(v)1.8-positive sensory neurons. Crossing these animals with mice where Na(v)1.7 exons 14 and 15 were flanked by loxP sites produced nociceptor-specific knockout mice that were viable and apparently normal. These animals showed increased mechanical and thermal pain thresholds. Remarkably, all inflammatory pain responses evoked by a range of stimuli, such as formalin, carrageenan, complete Freund's adjuvant, or nerve growth factor, were reduced or abolished. A congenital pain syndrome in humans recently has been mapped to the Na(v)1.7 gene, SCN9A. Dominant Na(v)1.7 mutations lead to edema, redness, warmth, and bilateral pain in human erythermalgia patients, confirming an important role for Na(v)1.7 in inflammatory pain. Nociceptor-specific gene ablation should prove useful in understanding the role of other broadly expressed genes in pain pathways.
Collapse
Affiliation(s)
- Mohammed A Nassar
- Molecular Nociception Group, Biology Department, and Pharmacology Department, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
The lung is a complex organ consisting of numerous cell types that function to ensure sufficient gas exchange to oxygenate the blood. In order to accomplish this function, the lung must be exposed to the external environment and at the same time maintain a homeostatic balance between its function in gas exchange and the maintenance of inflammatory balance. During the past two decades, as molecular methodologies have evolved with the sequencing of entire genomes, the use of in vivo models to elucidate the molecular mechanisms involved in pulmonary physiology and disease have increased. The mouse has emerged as a potent model to investigate pulmonary physiology due to the explosion in molecular methods that now allow for the developmental and tissue-specific regulation of gene transcription. Initial efforts to manipulate gene expression in the mouse genome resulted in the generation of transgenic mice characterized by the constitutive expression of a specific gene and knockout mice characterized by the ablation of a specific gene. The utility of these original mouse models was limited, in many cases, by phenotypes resulting in embryonic or neonatal lethality that prevented analysis of the impact of the genetic manipulation on pulmonary biology. Second-generation transgenic mouse models employ multiple strategies that can either activate or silence gene expression thereby providing extensive temporal and spatial control of the experimental parameters of gene expression. These highly regulated mouse models are intended to serve as a foundation for further investigation of the molecular basis of human disease such as tumorigenesis. This review describes the principles, progress, and application of systems that are currently employed in the conditional regulation of gene expression in the investigation of lung cancer.
Collapse
Affiliation(s)
- I Kwak
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
37
|
Harju S, Fedosyuk H, Peterson KR. Rapid isolation of yeast genomic DNA: Bust n' Grab. BMC Biotechnol 2004; 4:8. [PMID: 15102338 PMCID: PMC406510 DOI: 10.1186/1472-6750-4-8] [Citation(s) in RCA: 199] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Accepted: 04/21/2004] [Indexed: 11/11/2022] Open
Abstract
Background Mutagenesis of yeast artificial chromosomes (YACs) often requires analysis of large numbers of yeast clones to obtain correctly targeted mutants. Conventional ways to isolate yeast genomic DNA utilize either glass beads or enzymatic digestion to disrupt yeast cell wall. Using small glass beads is messy, whereas enzymatic digestion of the cells is expensive when many samples need to be analyzed. We sought to develop an easier and faster protocol than the existing methods for obtaining yeast genomic DNA from liquid cultures or colonies on plates. Results Repeated freeze-thawing of cells in a lysis buffer was used to disrupt the cells and release genomic DNA. Cell lysis was followed by extraction with chloroform and ethanol precipitation of DNA. Two hundred ng – 3 μg of genomic DNA could be isolated from a 1.5 ml overnight liquid culture or from a large colony. Samples were either resuspended directly in a restriction enzyme/RNase coctail mixture for Southern blot hybridization or used for several PCR reactions. We demonstrated the utility of this method by showing an analysis of yeast clones containing a mutagenized human β-globin locus YAC. Conclusion An efficient, inexpensive method for obtaining yeast genomic DNA from liquid cultures or directly from colonies was developed. This protocol circumvents the use of enzymes or glass beads, and therefore is cheaper and easier to perform when processing large numbers of samples.
Collapse
Affiliation(s)
- Susanna Harju
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Halyna Fedosyuk
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Kenneth R Peterson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
38
|
Barrett B, LaCount DJ, Donelson JE. Trypanosoma brucei: a first-generation CRE-loxP site-specific recombination system. Exp Parasitol 2004; 106:37-44. [PMID: 15013787 DOI: 10.1016/j.exppara.2004.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2003] [Accepted: 01/05/2004] [Indexed: 11/20/2022]
Abstract
The bacteriophage CRE-loxP system of DNA recombination is widely used to manipulate segments of the genomes of mice and other eukaryotes for the purpose of studying the regulation and functions of their genes. Since this recombination system could have similar applications in analyzing the genomes of trypanosomatids, we assessed the action of CRE recombinase on its loxP DNA recognition sites in Trypanosoma brucei after inserting tetracycline-regulated CRE and two 34-bp loxP sites into the T. brucei genome. We found that when loxP sites flank in a direct orientation the transcription termination sequence (1.1 kb) of the T. brucei GPEET/PAG3 locus, CRE recombinase deletes this termination sequence, permitting transcription and subsequent expression of a downstream reporter gene for the green fluorescent protein (GFP). Thus, the CRE-loxP system is highly efficient in T. brucei, but the experimental results also indicate that a better way than the existing tetracycline-regulated system is required to completely silence expression of CRE in the T. brucei genome when it is not needed before the full range of CRE-loxP applications currently used in mice can be exploited in African trypanosomes.
Collapse
Affiliation(s)
- Brian Barrett
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
39
|
Wood JN, Boorman JP, Okuse K, Baker MD. Voltage-gated sodium channels and pain pathways. ACTA ACUST UNITED AC 2004; 61:55-71. [PMID: 15362153 DOI: 10.1002/neu.20094] [Citation(s) in RCA: 259] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Acute, inflammatory, and neuropathic pain can all be attenuated or abolished by local treatment with sodium channel blockers such as lidocaine. The peripheral input that drives pain perception thus depends on the presence of functional voltage-gated sodium channels. Remarkably, two voltage-gated sodium channel genes (Nav1.8 and Nav1.9) are expressed selectively in damage-sensing peripheral neurons, while a third channel (Nav1.7) is found predominantly in sensory and sympathetic neurons. An embryonic channel (Nav1.3) is also upregulated in damaged peripheral nerves and associated with increased electrical excitability in neuropathic pain states. A combination of antisense and knock-out studies support a specialized role for these sodium channels in pain pathways, and pharmacological studies with conotoxins suggest that isotype-specific antagonists should be feasible. Taken together, these data suggest that isotype-specific sodium channel blockers could be useful analgesics.
Collapse
Affiliation(s)
- John N Wood
- Molecular Nociception Group, Department of Biology, University College, Gower Street, London WC1E 6BT, UK.
| | | | | | | |
Collapse
|
40
|
Zhu HZ, Chen JQ, Cheng GX, Xue JL. Generation and characterization of transgenic mice expressing tamoxifen-inducible cre-fusion protein specifically in mouse liver. World J Gastroenterol 2003; 9:1844-7. [PMID: 12918135 PMCID: PMC4611558 DOI: 10.3748/wjg.v9.i8.1844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To establish transgenic mice expressing tamoxifen-inducible Cre-ERt recombinase specifically in the liver and to provide an efficient animal model for studying gene function in the liver and creating various mouse models mimicking human diseases.
METHODS: Alb-Cre-ERt transgenic mice were produced by microinjecting the construct with Cre-ERt fusion gene of DNA fragments into fertilized eggs derived from inbred C57BL/6 strain. Transgenic mice were identified by using PCR and Southern blotting. Expression of Cre-ERt fusion gene was analyzed in the liver, kidney, brain and lung from F1 generation transgenic mice at 8 weeks of age by reverse transcription (RT)-PCR.
RESULTS: Four hundred and fourteen fertilized eggs of C57 BL/6 mice were microinjected with recombinant Alb-Cre-ERt DNA fragments, and 312 survival eggs injected were transferred to the oviducts of 12 pseudopregnant recipient mice, 6 of 12 recipient mice became pregnant and gave birth to 44 offsprings. Of the 44 offsprings, two males and one female carried the hybrid Cre-ERt fusion gene. Three mice were determined as founders, and were back crossed to set up F1 generations with other inbred C57BL/6 mice. Transmission of Cre-ERt fusion gene in F1 offspring followed Mendelian rules. The expression of Cre-ERt mRNA was detected only in the liver of F1 offspring from two of three founder mice.
CONCLUSION: Transgenic mice expressing tamoxifen-inducible Cre-ERt recombinase under control of the liver-specific promoter are preliminary established.
Collapse
Affiliation(s)
- Huan-Zhang Zhu
- Institute of Pathology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | | | | | | |
Collapse
|
41
|
Hadjantonakis AK, Dickinson ME, Fraser SE, Papaioannou VE. Technicolour transgenics: imaging tools for functional genomics in the mouse. Nat Rev Genet 2003; 4:613-25. [PMID: 12897773 DOI: 10.1038/nrg1126] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Over the past decade, a battery of powerful tools that encompass forward and reverse genetic approaches have been developed to dissect the molecular and cellular processes that regulate development and disease. The advent of genetically-encoded fluorescent proteins that are expressed in wild type and mutant mice, together with advances in imaging technology, make it possible to study these biological processes in many dimensions. Importantly, these technologies allow direct visual access to complex events as they happen in their native environment, which provides greater insights into mammalian biology than ever before.
Collapse
Affiliation(s)
- Anna-Katerina Hadjantonakis
- Department of Genetics and Development, College of Physicians and Surgeons of Columbia University, New York 10032, USA
| | | | | | | |
Collapse
|
42
|
Henderson CJ, Otto DME, Carrie D, Magnuson MA, McLaren AW, Rosewell I, Wolf CR. Inactivation of the hepatic cytochrome P450 system by conditional deletion of hepatic cytochrome P450 reductase. J Biol Chem 2003; 278:13480-6. [PMID: 12566435 DOI: 10.1074/jbc.m212087200] [Citation(s) in RCA: 206] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Cytochrome P450 (CYP) monooxygenases catalyze the oxidation of a large number of endogenous compounds and the majority of ingested environmental chemicals, leading to their elimination and often to their metabolic activation to toxic products. This enzyme system therefore provides our primary defense against xenobiotics and is a major determinant in the therapeutic efficacy of pharmacological agents. To evaluate the importance of hepatic P450s in normal homeostasis, drug pharmacology, and chemical toxicity, we have conditionally deleted the essential electron transfer protein, NADH:ferrihemoprotein reductase (EC, cytochrome P450 reductase, CPR) in the liver, resulting in essentially complete ablation of hepatic microsomal P450 activity. Hepatic CPR-null mice could no longer break down cholesterol because of their inability to produce bile acids, and whereas hepatic lipid levels were significantly increased, circulating levels of cholesterol and triglycerides were severely reduced. Loss of hepatic P450 activity resulted in a 5-fold increase in P450 protein, indicating the existence of a negative feedback pathway regulating P450 expression. Profound changes in the in vivo metabolism of pentobarbital and acetaminophen indicated that extrahepatic metabolism does not play a major role in the disposition of these compounds. Hepatic CPR-null mice developed normally and were able to breed, indicating that hepatic microsomal P450-mediated steroid hormone metabolism is not essential for fertility, demonstrating that a major evolutionary role for hepatic P450s is to protect mammals from their environment.
Collapse
Affiliation(s)
- Colin J Henderson
- Cancer Research UK Molecular Pharmacology Unit, Biomedical Research Centre, Level 5, Ninewells Hospital & Medical School, Dundee DD1 9SY, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
43
|
Bockamp E, Maringer M, Spangenberg C, Fees S, Fraser S, Eshkind L, Oesch F, Zabel B. Of mice and models: improved animal models for biomedical research. Physiol Genomics 2002; 11:115-32. [PMID: 12464688 DOI: 10.1152/physiolgenomics.00067.2002] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The ability to engineer the mouse genome has profoundly transformed biomedical research. During the last decade, conventional transgenic and gene knockout technologies have become invaluable experimental tools for modeling genetic disorders, assigning functions to genes, evaluating drugs and toxins, and by and large helping to answer fundamental questions in basic and applied research. In addition, the growing demand for more sophisticated murine models has also become increasingly evident. Good state-of-principle knowledge about the enormous potential of second-generation conditional mouse technology will be beneficial for any researcher interested in using these experimental tools. In this review we will focus on practice, pivotal principles, and progress in the rapidly expanding area of conditional mouse technology. The review will also present an internet compilation of available tetracycline-inducible mouse models as tools for biomedical research (http://www.zmg.uni-mainz.de/tetmouse/).
Collapse
Affiliation(s)
- Ernesto Bockamp
- Laboratory of Molecular Mouse Genetics, Institute of Toxicology, Johannes Gutenberg-University Mainz, D-55131 Mainz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Retinogenesis is a developmental process that is tightly regulated both temporally and spatially and is therefore an excellent model system for studying the molecular and cellular mechanisms of neurogenesis in the central nervous system. Understanding of these events in vivo is greatly facilitated by the availability of mouse mutant models, including those with natural or targeted mutations and those with conditional knockout or forced expression of genes. This article reviews these genetic modifications and their contribution to the study of retinogenesis in mammals, with special emphasis on conditional gene targeting approaches.
Collapse
Affiliation(s)
- Ruth Ashery-Padan
- Department of Human Genetics and Molecular Medicine, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, Israel.
| |
Collapse
|
45
|
Ghazvini M, Mandemakers W, Jaegle M, Piirsoo M, Driegen S, Koutsourakis M, Smit X, Grosveld F, Meijer D. A cell type-specific allele of the POU gene Oct-6 reveals Schwann cell autonomous function in nerve development and regeneration. EMBO J 2002; 21:4612-20. [PMID: 12198163 PMCID: PMC125415 DOI: 10.1093/emboj/cdf475] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
While an important role for the POU domain transcription factor Oct-6 in the developing peripheral nerve has been well established, studies into its exact role in nerve development and regeneration have been hampered by the high mortality rate of newborn Oct-6 mutant animals. In this study we have generated a Schwann cell-specific Oct-6 allele through deletion of the Schwann cell-specific enhancer element (SCE) in the Oct-6 locus. Analysis of mice homozygous for this allele (deltaSCE allele) reveals that rate-limiting levels of Oct-6 in Schwann cells are dependent on the SCE and that this element does not contribute to Oct-6 regulation in other cell types. We demonstrate a Schwann cell autonomous function for Oct-6 during nerve development as well as in regenerating nerve. Additionally, we show that Krox-20, an important regulatory target of Oct-6 in Schwann cells, is activated, with delayed kinetics, through an Oct-6-independent mechanism in these mice.
Collapse
Affiliation(s)
- Merhnaz Ghazvini
- Department of Cell Biology and Genetics, Erasmus University Rotterdam, PO Box 1738, 3000DR Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kist R, Schrewe H, Balling R, Scherer G. Conditional inactivation of Sox9: a mouse model for campomelic dysplasia. Genesis 2002; 32:121-3. [PMID: 11857796 DOI: 10.1002/gene.10050] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ralf Kist
- Institute of Human Genetics, University of Freiburg, Freiburg, Germany
| | | | | | | |
Collapse
|
47
|
Abstract
This review examines the value of transgenic studies in mice for the genetic dissection of signal-transduction pathways relevant to thymus development. T-cell development in the thymus is controlled by an ordered sequence of differentiation and proliferation checkpoints that culminate in the production of correctly selected, non-autoreactive, peripheral T lymphocytes. Work in transgenic mice has been fundamental for the preparation of genetic maps of signal-transduction pathways that control T-cell development. This review discusses how tyrosine kinases, guanine-nucleotide-binding proteins and transcription factors converge to control T-cell differentiation and proliferation in the immune system.
Collapse
Affiliation(s)
- Doreen A Cantrell
- Lymphocyte Activation Laboratory, Imperial Cancer Research Fund, Lincoln's Inn Fields, London, UK.
| |
Collapse
|