1
|
Kimura S, Tagami S, Mano H, Kittaka A, Ida Y, Takagi Y, Nakagawa K, Arai T, Yokota S, Tsugawa N, Kamao M, Suhara Y, Sakaki T, Nakagawa K, Okano T, Hirota Y. Divergent roles of 25-hydroxyvitamin D 3 and 1α,25-dihydroxyvitamin D 3 in neural fate determination: A CYP27B1-dependent neuron formation and VDR-dependent astrocyte development. Biochem Biophys Res Commun 2025; 755:151547. [PMID: 40043620 DOI: 10.1016/j.bbrc.2025.151547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/17/2025]
Abstract
Vitamin D plays a crucial role in neural differentiation, yet its precise mechanisms remain unclear. In this study, we investigated the effects of vitamin D metabolites, 25-hydroxyvitamin D3 (25D3) and 1α,25-dihydroxyvitamin D3 (1α,25D3), on neural differentiation using Cyp27b1-/- and Vdr-/- knockout mice-derived neural stem cells. We found that 1α,25D3 promotes neuronal differentiation via vitamin D receptor (VDR), whereas some of its effects occur independently of VDR. Additionally, 25D3 requires conversion to 1α,25D3 by CYP27B1 to induce neuronal differentiation. In contrast, both 25D3 and 1α,25D3 promoted astrocyte differentiation regardless of CYP27B1 expression but required VDR. Furthermore, using vitamin D derivatives, we demonstrated that VDR binding affinity does not directly correlate with neurogenic potential. These findings reveal distinct VDR-dependent and VDR-independent pathways in neural differentiation, highlighting a previously unrecognized role of vitamin D metabolism in neural fate determination.
Collapse
Affiliation(s)
- Shusaku Kimura
- Laboratory of Hygienic Sciences, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, Japan
| | - Shintaro Tagami
- Laboratory of Biochemistry, Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama, Japan
| | - Hiroki Mano
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, Japan
| | - Atsushi Kittaka
- Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo, Japan
| | - Yuka Ida
- Laboratory of Biochemistry, Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama, Japan
| | - Yuta Takagi
- Laboratory of Biochemistry, Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama, Japan
| | - Kurumi Nakagawa
- Laboratory of Biochemistry, Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama, Japan
| | - Tasuku Arai
- Laboratory of Biochemistry, Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama, Japan
| | - Satoshi Yokota
- Division of Cellular & Molecular Toxicology, Center for Biological Safety & Research, National Institute of Health Sciences, 3-25-26 Tono-machi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Naoko Tsugawa
- Laboratory of Hygienic Sciences, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, Japan; Faculty of Nutrition, Kobe Gakuin University, 518 Ikawadanicho-Arise, Nishi, Kobe, 651-2180, Japan
| | - Maya Kamao
- Laboratory of Hygienic Sciences, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, Japan; Extension Center, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, Japan
| | - Yoshitomo Suhara
- Laboratory of Hygienic Sciences, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, Japan; Laboratory of Organic Synthesis and Medicinal Chemistry, Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama, Japan
| | - Toshiyuki Sakaki
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, Japan
| | - Kimie Nakagawa
- Laboratory of Hygienic Sciences, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, Japan; Laboratory of Hygienic Sciences, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3, Minatojima, Chuo-ku, Kobe Hyogo, 650-8586, Japan.
| | - Toshio Okano
- Laboratory of Hygienic Sciences, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, Japan.
| | - Yoshihisa Hirota
- Laboratory of Hygienic Sciences, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, Japan; Laboratory of Biochemistry, Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama, Japan.
| |
Collapse
|
2
|
Jia Y, Tang L, Yao Y, Zhuo L, Qu D, Chen X, Ji Y, Tao J, Zhu Y. Low-intensity exercise combined with sodium valproate attenuates kainic acid-induced seizures and associated co-morbidities by inhibiting NF-κB signaling in mice. Front Neurol 2022; 13:993405. [PMID: 36212646 PMCID: PMC9534325 DOI: 10.3389/fneur.2022.993405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Sodium valproate (VPA) is a broad-spectrum anticonvulsant that is effective both in adults and children suffering from epilepsy, but it causes psychiatric and behavioral side effects in patients with epilepsy. In addition, 30% of patients with epilepsy develop resistance to VPA. At present, regular physical exercise has shown many benefits and has become an effective complementary therapy for various brain diseases, including epilepsy. Therefore, we wondered whether VPA combined with exercise would be more effective in the treatment of seizures and associated co-morbidities. Here, we used a mouse model with kainic acid (KA)-induced epilepsy to compare the seizure status and the levels of related co-morbidities, such as cognition, depression, anxiety, and movement disorders, in each group using animal behavioral experiment and local field potential recordings. Subsequently, we investigated the mechanism behind this phenomenon by immunological means. Our results showed that low-intensity exercise combined with VPA reduced seizures and associated co-morbidities. This phenomenon seems to be related to the Toll-like receptor 4, activation of the nuclear factor kappa B (NF-κB), and release of interleukin 1β (IL-1β), tumor necrosis factor α (TNF-α), and IL-6. In brief, low-intensity exercise combined with VPA enhanced the downregulation of NF-κB-related inflammatory response, thereby alleviating the seizures, and associated co-morbidities.
Collapse
Affiliation(s)
- Yuxiang Jia
- School of Medicine, Shanghai University, Shanghai, China
| | - Lele Tang
- Department of Neurology and Neurosurgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Yao
- School of Medicine, Shanghai University, Shanghai, China
| | - Limin Zhuo
- School of Medicine, Shanghai University, Shanghai, China
| | - Dongxiao Qu
- Department of Neurology and Neurosurgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xingxing Chen
- Department of Neurology and Neurosurgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yonghua Ji
- School of Medicine, Shanghai University, Shanghai, China
- *Correspondence: Yonghua Ji
| | - Jie Tao
- Department of Neurology and Neurosurgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Jie Tao
| | - Yudan Zhu
- Department of Neurology and Neurosurgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Yudan Zhu
| |
Collapse
|
3
|
Differentiation of Tumorigenic C6 Glioma Cells Induced by Enhanced IL-6 Signaling. ACTA ACUST UNITED AC 2020; 56:medicina56110625. [PMID: 33227992 PMCID: PMC7699282 DOI: 10.3390/medicina56110625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 12/24/2022]
Abstract
Background and objectives: Cancer stem cells (CSCs) are obstacles to cancer therapy due to their therapeutic resistance, ability to initiate neoplasia, and roles in tumor relapse and metastasis. Efforts have been made to cure CSCs, such as the use of differentiation therapy, which induces cancer stem-like cells to undergo differentiation and decrease their tumorigenicity. Interleukin 6 (IL-6) upregulates the expression of glial fibrillary acidic protein (GFAP) in C6 glioma cells, indicating that it is able to induce the differentiation of these cells. The C6 glioma cell line forms a high percentage of cancer stem-like cells, leading us to speculate whether IL-6 signaling could modulate the differentiation of tumorigenic C6 glioma cells. However, we observed that IL-6 alone could not efficiently induce the differentiation of these cells. Therefore, different IL-6 signaling elicitors, including IL-6 alone, a combination of IL-6 and soluble IL-6 receptor (IL-6/sIL-6R), and tumor necrosis factor-α (TNF-α) plus IL-6/sIL-6R (TNF-α/IL-6/sIL-6R), were evaluated for their potential use in differentiation therapy. Materials and Methods: The potential of IL-6 signaling elicitors in differentiation therapy were examined by assessing changes in biomarker levels, the rate of cell proliferation, and tumorigenicity, respectively. Results: Enhanced IL-6 signaling could effectively induce C6 glioma cell differentiation, as determined by observed variations in the expression of differentiation, cell cycle, and stem cell biomarkers. Additionally, the total cell population and the tumorigenicity of glioma cells were all considerably reduced after TNF-α/IL-6/sIL-6R treatment. Conclusions: Our findings provide evidence that enhanced IL-6 signaling can efficiently promote tumorigenic C6 glioma cells to undergo differentiation.
Collapse
|
4
|
Hashimoto M, Kumabe A, Kim JD, Murata K, Sekizar S, Williams A, Lu W, Ishida J, Nakagawa T, Endo M, Minami Y, Fukamizu A. Loss of PRMT1 in the central nervous system (CNS) induces reactive astrocytes and microglia during postnatal brain development. J Neurochem 2020; 156:834-847. [PMID: 33460120 DOI: 10.1111/jnc.15149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 03/29/2020] [Accepted: 08/05/2020] [Indexed: 12/21/2022]
Abstract
PRMT1, a major arginine methyltransferase, plays critical roles in transcription, DNA damage response, and cell proliferation. Although we have previously discovered the crucial roles of PRMT1 for oligodendrocyte lineage progression in the central nervous system of neural stem cell-specific PRMT1 conditional knockout (PRMT1-CKO) mice, the context of other glial cell states that may cause the hypomyelination phenotype in PRMT1-CKO mice has not been explored so far. Here, we performed RNA-seq of the neonatal cortices of PRMT1-CKO mice to reveal overall gene expression changes and show the up-regulation of inflammatory signaling which is generally mediated by astrocytes and microglia in advance of the myelination defects. In particular, qRT-PCR analyses revealed Interleukin-6 (Il-6), a major central nervous system cytokine, was dramatically increased in the PRMT1-CKO brains. The gene expression changes led to augmentation of glial fibrillary acidic protein and Vimentin protein levels in PRMT1-CKO mice, showing severe reactive astrogliosis after birth. We further show that IBA1-positive and CD68-positive activated microglia were increased in PRMT1-CKO mice, in spite of intact Prmt1 gene expression in purified microglia from the mutant mice. Our results indicate that PRMT1 loss in the neural stem cell lineage causes disruptive changes in all glial types perturbing postnatal brain development and myelination.
Collapse
Affiliation(s)
- Misuzu Hashimoto
- Laboratory of Biological Chemistry, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan.,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Ayako Kumabe
- Laboratory of Biological Chemistry, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Jun-Dal Kim
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Kazuya Murata
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Sowmya Sekizar
- MRC Centre for Regenerative Medicine, Institute for Regeneration and Repair, and MS Society Edinburgh Centre, Edinburgh bioQuarter, University of Edinburgh, Edinburgh, UK
| | - Anna Williams
- MRC Centre for Regenerative Medicine, Institute for Regeneration and Repair, and MS Society Edinburgh Centre, Edinburgh bioQuarter, University of Edinburgh, Edinburgh, UK
| | - Weizhe Lu
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Junji Ishida
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Tsutomu Nakagawa
- Laboratory of Biological Chemistry, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Mitsuharu Endo
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Akiyoshi Fukamizu
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan.,The World Premier International Research Center Initiative (WPI), International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
5
|
Noggin rescues age-related stem cell loss in the brain of senescent mice with neurodegenerative pathology. Proc Natl Acad Sci U S A 2018; 115:11625-11630. [PMID: 30352848 PMCID: PMC6233090 DOI: 10.1073/pnas.1813205115] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of age-related neurodegeneration. Damage initially occurs in the hippocampus, a neurogenic brain region essential in forming memories. Since there is no cure for AD, therapeutic strategies that may aid to slow hippocampal dysfunction are necessary. We describe the precocious hippocampal stem cell loss of a mouse model that mimics the onset of pathological AD-like neurodegeneration. The loss is due to an increase in BMP6 that limits neurogenesis. We demonstrate that blocking BMP signaling by means of Noggin administration is beneficial to the hippocampal microenvironment, restoring stem cell numbers, neurogenesis, and behavior. Our findings support further development of BMP antagonists into translatable molecules for the rescue of stem cells and neurogenesis in neurodegeneration/aging. Increasing age is the greatest known risk factor for the sporadic late-onset forms of neurodegenerative disorders such as Alzheimer’s disease (AD). One of the brain regions most severely affected in AD is the hippocampus, a privileged structure that contains adult neural stem cells (NSCs) with neurogenic capacity. Hippocampal neurogenesis decreases during aging and the decrease is exacerbated in AD, but the mechanistic causes underlying this progressive decline remain largely unexplored. We here investigated the effect of age on NSCs and neurogenesis by analyzing the senescence accelerated mouse prone 8 (SAMP8) strain, a nontransgenic short-lived strain that spontaneously develops a pathological profile similar to that of AD and that has been employed as a model system to study the transition from healthy aging to neurodegeneration. We show that SAMP8 mice display an accelerated loss of the NSC pool that coincides with an aberrant rise in BMP6 protein, enhanced canonical BMP signaling, and increased astroglial differentiation. In vitro assays demonstrate that BMP6 severely impairs NSC expansion and promotes NSC differentiation into postmitotic astrocytes. Blocking the dysregulation of the BMP pathway and its progliogenic effect in vivo by intracranial delivery of the antagonist Noggin restores hippocampal NSC numbers, neurogenesis, and behavior in SAMP8 mice. Thus, manipulating the local microenvironment of the NSC pool counteracts hippocampal dysfunction in pathological aging. Our results shed light on interventions that may allow taking advantage of the brain’s natural plastic capacity to enhance cognitive function in late adulthood and in chronic neurodegenerative diseases such as AD.
Collapse
|
6
|
Kyrousi C, Lygerou Z, Taraviras S. How a radial glial cell decides to become a multiciliated ependymal cell. Glia 2017; 65:1032-1042. [DOI: 10.1002/glia.23118] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/15/2016] [Accepted: 12/15/2016] [Indexed: 12/28/2022]
Affiliation(s)
- Christina Kyrousi
- Department of Physiology; School of Medicine, University of Patras; Patras 26504 Greece
| | - Zoi Lygerou
- Department of General Biology; School of Medicine, University of Patras; Patras 26504 Greece
| | - Stavros Taraviras
- Department of Physiology; School of Medicine, University of Patras; Patras 26504 Greece
| |
Collapse
|
7
|
Johnson RL, Murray ST, Camacho DK, Wilson CG. Vagal nerve stimulation attenuates IL-6 and TNFα expression in respiratory regions of the developing rat brainstem. Respir Physiol Neurobiol 2016; 229:1-4. [PMID: 27049312 DOI: 10.1016/j.resp.2016.03.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/19/2016] [Accepted: 03/22/2016] [Indexed: 01/01/2023]
Abstract
Pre-term infants are at greater risk for systemic infection due to an underdeveloped immune system. Airway infection results in immune up-regulation of early pro-inflammatory cytokines interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNFα) in the brainstem. Current treatment for neonatal infection involves antibiotic administration. We previously showed that LPS injected into the trachea of neonatal rats causes changes in breathing and in IL-1β expression in the nucleus tractus solitarii (NTS) and hypoglossal motor nucleus (XII). We hypothesize that lipopolysaccharide (LPS) instilled in the trachea also causes the up-regulation of IL-6 and TNFα in the brainstem autonomic control regions. To test this hypothesis we injected LPS into the trachea of rat pups (postnatal ages 10-12days) and then assessed changes in IL-6 and TNFα. Vagal nerve stimulation has been used in the treatment of many inflammatory disorders, including sepsis. Our experiments show that VNS attenuates the upregulation of IL-6 and TNFα caused by LPS and may be a viable alternative to antibiotics.
Collapse
Affiliation(s)
- Rhaya L Johnson
- Center for Perinatal Biology, Dept. of Basic Sciences, Loma Linda University, United States
| | - Samuel T Murray
- Center for Perinatal Biology, Dept. of Basic Sciences, Loma Linda University, United States
| | | | - Christopher G Wilson
- Center for Perinatal Biology, Dept. of Basic Sciences, Loma Linda University, United States; Department of Pediatrics, Loma Linda University, United States.
| |
Collapse
|
8
|
Over-Expression of Cyclin D1 Promotes NSCs Proliferation and Induces the Differentiation into Astrocytes Via Jak-STAT3 Pathways. Neurochem Res 2015; 40:1681-90. [PMID: 26162780 DOI: 10.1007/s11064-015-1635-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 06/01/2015] [Accepted: 06/05/2015] [Indexed: 01/30/2023]
Abstract
Precise control of the proliferation and differentiation of multipotent neural stem cells (NSCs) is crucial for the proper development of the nervous system. Although cyclinD1 has been implicated as a cause of cancer in many studies, its roles in NSCs remain elusive. In this study, we examined the over-expression of cyclinD1 in controlling the self-renewal and differentiation of NSCs. Moreover, we found that the over-expression of cyclinD1 can drive cells to enter S phase and support the clonal self-renewing growth of NSCs. During the differentiation of NSCs, the over-expression of cyclinD1 promoted the generation of astrocytes, and their promotion likely occurred through synergistic phosphorylation of the signal transducer and activator of transcription 3. Our data suggest that the over-expression of cyclinD1 promotes the proliferation of NSCs and induces their differentiation into astrocytes via Jak-STAT3 pathways.
Collapse
|
9
|
Colucci-D'Amato L, Cicatiello AE, Reccia MG, Volpicelli F, Severino V, Russo R, Sandomenico A, Doti N, D'Esposito V, Formisano P, Chambery A. A targeted secretome profiling by multiplexed immunoassay revealed that secreted chemokine ligand 2 (MCP-1/CCL2) affects neural differentiation in mesencephalic neural progenitor cells. Proteomics 2015; 15:714-24. [PMID: 25404527 DOI: 10.1002/pmic.201400360] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/21/2014] [Accepted: 11/13/2014] [Indexed: 01/19/2023]
Abstract
Chemokines and cytokines, primarily known for their roles in the immune and inflammatory response, have also been identified as key components of the neurogenic niche where they are involved in the modulation of neural stem cell proliferation and differentiation. However, a complete understanding of the functional role played in neural differentiation and a comprehensive profiling of these secreted molecules are lacking. By exploiting the multiplexing capability of magnetic bead-based immunoassays, we have investigated the changes of the expression levels of a set of chemokines and cytokines released from the pluripotent neural cell line mes-c-myc A1 following its differentiation from a proliferating phenotype (A1P) toward a neural (A1D) phenotype. We found a subset of molecules exclusively released from A1P, whereas others were differentially detected in A1P and A1D conditioned media. Among them, we identified monocyte chemoattractant protein-1/chemokine ligand 2 (MCP-1/CCL2) as a proneurogenic factor able to affect neuronal differentiation of A1 cells as well as of neuroblasts from primary cultures and to induce the elongation and/or formation of neuritic processes. Altogether, data are suggestive of a main role played by the CCL2/CCR2 signaling pathway and in general of the network of secreted cytokines/chemokines in the differentiation of neural progenitor cells toward a neural fate.
Collapse
Affiliation(s)
- Luca Colucci-D'Amato
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Caserta, Italy; CIRN, Inter-University Center for Research in Neuroscience, Napoli, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Wang H, Kane AW, Lee C, Ahn S. Gli3 repressor controls cell fates and cell adhesion for proper establishment of neurogenic niche. Cell Rep 2014; 8:1093-104. [PMID: 25127137 DOI: 10.1016/j.celrep.2014.07.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 06/13/2014] [Accepted: 07/03/2014] [Indexed: 10/24/2022] Open
Abstract
Neural stem cells (NSCs) in the subventricular zone (SVZ) rely on environmental signals provided by the neurogenic niche for their proper function. However, little is known about the initial steps of niche establishment, as embryonic radial glia transition to postnatal NSCs. Here, we identify Gli3 repressor (Gli3R), a component of the Sonic hedgehog (Shh) pathway, as a critical factor controlling both cell-type specification and structural organization of the developing SVZ. We demonstrate that Gli3R expressed in radial glia temporally regulates gp130/STAT3 signaling at the transcriptional level to suppress glial characteristics in differentiating ependymal cells. In addition, Gli3R maintains the proper level of Numb in ependymal cells to allow localization of cell adhesion molecules such as vascular cell adhesion molecule (VCAM) and E-cadherin. Thus, our findings reveal a role for Gli3R as a mediator of niche establishment and provide insights into the conditions required for proper SVZ neurogenic niche formation.
Collapse
Affiliation(s)
- Hui Wang
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anna W Kane
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; Brown-NIH Graduate Partnership Program, Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Cheol Lee
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sohyun Ahn
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
11
|
High prevalence of Human Herpesvirus 8 in schizophrenic patients. Psychiatry Res 2014; 216:192-7. [PMID: 24560611 DOI: 10.1016/j.psychres.2013.12.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 12/19/2013] [Accepted: 12/21/2013] [Indexed: 11/21/2022]
Abstract
Many studies have reported an association between Herpes family viruses and an increased risk of schizophrenia, but the role of Human Herpesvirus 8 (HHV8) has never been investigated. This study aimed to assess HHV8 prevalence in schizophrenic patients as well as the possible association between HHV8 infection and schizophrenia clinical features. We consecutively enrolled 108 patients meeting fourth edition of Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) criteria of schizophrenia and 108 age and sex matched controls. Data about a number of demographic characteristics and potential HHV8 risk factors of infection were collected. Standardized psychopathology measures, disease severity and functioning level were obtained using Positive and Negative Syndrome Scale (PANSS), Brief Psychiatric Rating Scale (BPRS), Scale for the Assessment of Negative Symptoms (SANS), Scale for the Assessment of Positive Symptoms (SAPS), Clinical Global Impressions (CGI) and Global Assessment of functioning (GAF). The presence of anti-HHV8 antibodies was analyzed using an indirect immunofluorescence assay. A higher prevalence of HHV8 infection in schizophrenic patients than in controls was found. Marital status, having children, sexual behavior and risk factors of blood transmission were not associated with HHV8 prevalence. However, among schizophrenic patients, HHV8 prevalence was statically associated with positive symptoms. To our knowledge, this would be the first report of a possible role of HHV8 in the pathogenesis of schizophrenia. To prove this hypothesis, further investigation of HHV8 in schizophrenia with larger samples is needed.
Collapse
|
12
|
Kwak YD, Hendrix BJ, Sugaya K. Secreted type of amyloid precursor protein induces glial differentiation by stimulating the BMP/Smad signaling pathway. Biochem Biophys Res Commun 2014; 447:394-9. [DOI: 10.1016/j.bbrc.2014.03.139] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 03/27/2014] [Indexed: 01/22/2023]
|
13
|
Yeo S, Bandyopadhyay S, Messing A, Brenner M. Transgenic analysis of GFAP promoter elements. Glia 2013; 61:1488-99. [PMID: 23832770 DOI: 10.1002/glia.22536] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 02/11/2013] [Accepted: 05/02/2013] [Indexed: 01/01/2023]
Abstract
Transcriptional regulation of the glial fibrillary acidic protein gene (GFAP) is of interest because of its astrocyte specificity and its upregulation in response to CNS injuries. We have used a transgenic approach instead of cell transfection to identify promoter elements of the human GFAP gene, since previous observations show that GFAP transcription is regulated differently in transfected cultured cells from in the mouse. We previously showed that block mutation of enhancer regions spanning from bp -1488 to -1434 (the C1.1 segment) and -1443 to -1399 (C1.2) resulted in altered patterns of expression and loss of astrocyte specificity, respectively. This analysis has now been extended upstream to bp -1612 to -1489 (the B region), which previously has been shown especially important for expression. Block mutation of each of four contiguous sequences, which together span the B region, each decreased the level of transgene activity by at least 50%, indicating that multiple sites contribute to the transcriptional activity in a cooperative manner. Several of the block mutations also altered the brain region pattern of expression, astrocyte specificity and/or the developmental time course. Transgenes were then analyzed in which mutations were limited to specific transcription factor binding sites in each of the 4 B block segments as well as in C1.1 and C1.2. Whereas mutation of the conserved consensus AP-1 site unexpectedly had little effect on transgene expression; NFI, SP1, STAT3, and NF-κB were identified as having important roles in regulating the strength of GFAP promoter activity and/or its astrocyte specificity.
Collapse
Affiliation(s)
- Sujeong Yeo
- Department of Neurobiology and the Civitan International Research Center, Center for Glial Biology in Medicine, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294-0021, USA
| | | | | | | |
Collapse
|
14
|
Kim BK, Tran HYP, Shin EJ, Lee C, Chung YH, Jeong JH, Bach JH, Kim WK, Park DH, Saito K, Nabeshima T, Kim HC. IL-6 attenuates trimethyltin-induced cognitive dysfunction via activation of JAK2/STAT3, M1 mAChR and ERK signaling network. Cell Signal 2013; 25:1348-60. [PMID: 23499905 DOI: 10.1016/j.cellsig.2013.02.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 02/19/2013] [Indexed: 12/26/2022]
Abstract
We previously reported that interleukin (IL)-6 deficiency potentiates trimethyltin (TMT)-induced convulsive neurotoxicity. The purpose in this study was to investigate the molecular mechanism by which cytokines affect TMT-induced cognitive impairment. To accomplish this, we examined hippocampal changes in Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling in relation to cholinergic parameters after TMT treatment in mice genetically deficient in IL-6 (IL-6(-/-)), tumor necrosis factor-α (TNF-α(-/-)), or interferon-γ (IFN-γ(-/-)). The IL-6(-/-) mice were the most susceptible to TMT-induced cognitive dysfunction and exhibited significant decreases in JAK2/STAT3 signaling and M1 muscarinic acetylcholine receptor (mAChR) expression, as well as other cholinergic parameters, compared with wild-type (WT) animals. Recombinant IL-6 protein (rIL-6) significantly attenuated these impairments in TMT-treated IL-6(-/-) mice, whereas an IL-6 receptor antibody potentiated these impairments in TMT-treated WT animals. Inhibition of JAK2 with AG490 or inhibition of cholinergic signaling with the M1 mAChR antagonist dicyclomine counteracted the attenuating effects of rIL-6 on phosphorylated extracellular signal-regulated kinase (ERK) expression, or on cognitive impairment in TMT-treated IL-6(-/-) mice. However, neither AG490 nor dicyclomine significantly attenuated effects of rIL-6 on acetylcholinesterase values. Our results suggest that activation of JAK2/STAT3 signaling and upregulation of the M1 mAChR are essential components of IL-6-mediated memory improvement against TMT toxicity.
Collapse
Affiliation(s)
- Beom Keun Kim
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul 156-756, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Urayama S, Semi K, Sanosaka T, Hori Y, Namihira M, Kohyama J, Takizawa T, Nakashima K. Chromatin accessibility at a STAT3 target site is altered prior to astrocyte differentiation. Cell Struct Funct 2013; 38:55-66. [PMID: 23439558 DOI: 10.1247/csf.12034] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
DNA demethylation of astrocyte-specific gene promoters and STAT3 activation in neural precursor cells (NPCs) are essential for astrogliogenesis in the developing brain. To date, it remains unclear whether DNA methylation is the sole epigenetic determinant responsible for suppressing astrocyte-specific genes. Here, we used mouse embryonic stem cells (TKO ESCs) that lacked all 3 DNA methyltransferase genes, Dnmt1, Dnmt3a, and Dnmt3b, and thereby exhibit complete demethylation of the astrocyte-specific glial fibrillary acidic protein (Gfap) gene promoter. We found that although the Gfap promoter was demethylated, STAT3 failed to bind to its cognate element to induce Gfap transcription, whereas it induced transcription of a different target gene, Socs3. Moreover, although the Gfap promoter region containing the STAT3-binding site (GSBS) is enriched with transcription-repressive histone modifications, such as methylation of H3 at lysine 9 (H3K9me3) and H3K27me3, the reduction of these modifications in TKO ESCs was not sufficient for binding of STAT3 at GSBS. Furthermore, GSBS was digested by micrococcal nuclease in late-gestational NPCs that express GFAP upon LIF stimulation, but not in cells that show no expression of GFAP even in the presence of LIF, indicating that STAT3 can access GSBS in the former cells. We further showed that expression of NF-1A, which is known to potentiate differentiation of mid-gestational NPCs into astrocytes, increased its accessibility. Taken together, our results suggest that chromatin accessibility of GSBS plays a critical role in the regulation of Gfap expression.
Collapse
Affiliation(s)
- Satoshi Urayama
- Laboratory of Molecular Neuroscience, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Kizil C, Kaslin J, Kroehne V, Brand M. Adult neurogenesis and brain regeneration in zebrafish. Dev Neurobiol 2012; 72:429-61. [DOI: 10.1002/dneu.20918] [Citation(s) in RCA: 248] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Cytotoxic T lymphocyte antigen 4 immunogloblin promotes neuronal differentiation in the grafts of embryonic stem cell-derived neural precursor cells. Neuroscience 2012; 202:484-91. [DOI: 10.1016/j.neuroscience.2011.11.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2011] [Revised: 11/09/2011] [Accepted: 11/24/2011] [Indexed: 12/31/2022]
|
18
|
Sánchez-Camacho C, Ortega JA, Ocaña I, Alcántara S, Bovolenta P. Appropriate Bmp7 levels are required for the differentiation of midline guidepost cells involved in corpus callosum formation. Dev Neurobiol 2011; 71:337-50. [PMID: 21485009 DOI: 10.1002/dneu.20865] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Guidepost cells are essential structures for the establishment of major axonal tracts. How these structures are specified and acquire their axon guidance properties is still poorly understood. Here, we show that in mouse embryos appropriate levels of Bone Morphogenetic Protein 7 (Bmp7), a member of the TGF-β superfamily of secreted proteins, are required for the correct development of the glial wedge, the indusium griseum, and the subcallosal sling, three groups of cells that act as guidepost cells for growing callosal axons. Bmp7 is expressed in the region occupied by these structures and its genetic inactivation in mouse embryos caused a marked reduction and disorganization of these cell populations. On the contrary, infusion of recombinant Bmp7 in the developing forebrain induced their premature differentiation. In both cases, changes were associated with the disruption of callosal axon growth and, in most animals fibers did not cross the midline forming typical Probst bundles. Addition of Bmp7 to cortical explants did not modify the extent of their outgrowth nor their directionality, when explants were exposed to a focalized source of the protein. Together, these results indicate that Bmp7 is indirectly required for corpus callosum formation by controlling the timely differentiation of its guidepost cells.
Collapse
Affiliation(s)
- Cristina Sánchez-Camacho
- Departamento de Neurobiología Molecular, Celular y del Desarrollo, Instituto Cajal (CSIC) and CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | | | | | | | | |
Collapse
|
19
|
Peng H, Sun L, Jia B, Lan X, Zhu B, Wu Y, Zheng J. HIV-1-infected and immune-activated macrophages induce astrocytic differentiation of human cortical neural progenitor cells via the STAT3 pathway. PLoS One 2011; 6:e19439. [PMID: 21637744 PMCID: PMC3103496 DOI: 10.1371/journal.pone.0019439] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 04/06/2011] [Indexed: 02/05/2023] Open
Abstract
Diminished adult neurogenesis is considered a potential mechanism in the pathogenesis of HIV-1-associated dementia (HAD). In HAD, HIV-1-infected and immune-activated brain mononuclear phagocytes (MP; perivascular macrophages and microglia) drive central nervous system (CNS) inflammation and may alter normal neurogenesis. We previously demonstrated HIV-1-infected and lipopolysaccharide (LPS) activated monocyte-derived macrophages (MDM) inhibit human neural progenitor cell (NPC) neurogenesis, while enhancing astrogliogenesis through the secretion of the inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), in vitro and in vivo. Here we further test the hypothesis that HIV-1-infected/activated MDM promote NPC astrogliogenesis via activation of the transcription factor signal transducer and activator of transcription 3 (STAT3), a critical factor for astrogliogenesis. Our results show that LPS-activated MDM-conditioned medium (LPS-MCM) and HIV-infected/LPS-activated MDM-conditioned medium (LPS+HIV-MCM) induced Janus kinase 1 (Jak1) and STAT3 activation. Induction of the Jak-STAT3 activation correlated with increased glia fibrillary acidic protein (GFAP) expression, demonstrating an induction of astrogliogenesis. Moreover, STAT3-targeting siRNA (siSTAT3) decreased MCM-induced STAT3 activation and NPC astrogliogenesis. Furthermore, inflammatory cytokines (including IL-6, IL-1β and TNF-α) produced by LPS-activated and/or HIV-1-infected MDM may contribute to MCM-induced STAT3 activation and astrocytic differentiation. These observations were confirmed in severe combined immunodeficient (SCID) mice with HIV-1 encephalitis (HIVE). In HIVE mice, siRNA control (without target sequence, sicon) pre-transfected NPCs injected with HIV-1-infected MDM showed more astrocytic differentiation and less neuronal differentiation of NPCs as compared to NPC injection alone. siSTAT3 abrogated HIV-1-infected MDM-induced astrogliogenesis of injected NPCs. Collectively, these observations demonstrate that HIV-1-infected/activated MDM induces NPC astrogliogenesis through the STAT3 pathway. This study generates important data elucidating the role of brain inflammation in neurogenesis and may provide insight into new therapeutic strategies for HAD.
Collapse
Affiliation(s)
- Hui Peng
- Laboratory of Neuroimmunology and Regenerative Therapy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail: (HP); (JZ)
| | - Lijun Sun
- Laboratory of Neuroimmunology and Regenerative Therapy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Beibei Jia
- Laboratory of Neuroimmunology and Regenerative Therapy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Xiqian Lan
- Laboratory of Neuroimmunology and Regenerative Therapy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Bing Zhu
- Laboratory of Neuroimmunology and Regenerative Therapy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Yumei Wu
- Laboratory of Neuroimmunology and Regenerative Therapy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Jialin Zheng
- Laboratory of Neuroimmunology and Regenerative Therapy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Departments of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail: (HP); (JZ)
| |
Collapse
|
20
|
Gomi M, Aoki T, Takagi Y, Nishimura M, Ohsugi Y, Mihara M, Nozaki K, Hashimoto N, Miyamoto S, Takahashi J. Single and local blockade of interleukin-6 signaling promotes neuronal differentiation from transplanted embryonic stem cell-derived neural precursor cells. J Neurosci Res 2011; 89:1388-99. [PMID: 21557295 DOI: 10.1002/jnr.22667] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 03/17/2011] [Accepted: 03/24/2011] [Indexed: 11/08/2022]
Abstract
Safe and efficient transplantation of embryonic stem (ES) cells to the brain requires that local inflammatory and immune responses to allogeneic grafts are inhibited. To investigate cytokines that affect graft cell survival and differentiation, we used stromal cell-derived inducing activity to induce the differentiation of neural progenitor cells (NPCs) from mouse ES cells and transplanted the NPCs into mouse brain. Examination of surrounding brain tissue revealed elevated expression levels of interleukin (IL)-1β, IL-4, and IL-6 in response to NPC transplantation. Among these, only IL-6 reduced neuronal differentiation and promoted glial differentiation in vitro. When we added anti-IL-6 receptor antibodies to NPCs during transplantation, this single and local blockade of IL-6 signaling reduced the accumulation of host-derived leukocytes, including microglia. Furthermore, it also promoted neuronal differentiation and reduced glial differentiation from the grafted NPCs to an extent similar to that with systemic and continuous administration of cyclosporine A. These results suggest that local administration of anti-IL-6 receptor antibodies with NPCs may promote neuronal differentiation during the treatment of neurological diseases with cell replacement therapy.
Collapse
Affiliation(s)
- Masanori Gomi
- Department of Biological Repair, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kwak YD, Marutle A, Dantuma E, Merchant S, Bushnev S, Sugaya K. Involvement of notch signaling pathway in amyloid precursor protein induced glial differentiation. Eur J Pharmacol 2011; 650:18-27. [PMID: 20883690 PMCID: PMC2997918 DOI: 10.1016/j.ejphar.2010.09.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 08/10/2010] [Accepted: 09/07/2010] [Indexed: 10/19/2022]
Abstract
The amyloid precursor protein (APP) has been mainly studied in its role in the production of amyloid β peptides (Aβ), because Aβ deposition is a hallmark of Alzheimer's disease. Although several studies suggest APP has physiological functions, it is still controversial. We previously reported that APP increased glial differentiation of neural progenitor cells (NPCs). In the current study, NPCs transplanted into APP23 transgenic mice primarily differentiated into glial cells. In vitro treatment with secreted APP (sAPP) dose-dependently increased glial fibrillary acidic protein (GFAP) immuno-positive cells in NPCs and over expression of APP caused most NPCs to differentiate into GFAP immuno-positive cells. Treatment with sAPP also dose-dependently increased expression levels of GFAP in NT-2/D1 cells along with the generation of Notch intracellular domain (NICD) and expression of Hairy and enhancer of split 1 (Hes1). Treatment with γ-secretase inhibitor suppressed the generation of NICD and reduced Hes1 and GFAP expressions. Treatment with the N-terminal domain of APP (APP 1-205) was enough to induce up regulation of GFAP and Hes1 expressions, and application of 22 C11 antibodies recognizing N-terminal APP suppressed these changes by sAPP. These results indicate APP induces glial differentiation of NPCs through Notch signaling.
Collapse
Affiliation(s)
- Young-Don Kwak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827 USA
| | - Amelia Marutle
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827 USA
| | - Elise Dantuma
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827 USA
| | - Stephanie Merchant
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827 USA
| | - Sergey Bushnev
- Florida Hospital Orlando, 601 East Rollins Street, Orlando, FL 32803 USA
| | - Kiminobu Sugaya
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827 USA
| |
Collapse
|
22
|
Li G, Bauer S, Nowak M, Norwood B, Tackenberg B, Rosenow F, Knake S, Oertel WH, Hamer HM. Cytokines and epilepsy. Seizure 2011; 20:249-56. [PMID: 21216630 DOI: 10.1016/j.seizure.2010.12.005] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 12/02/2010] [Accepted: 12/06/2010] [Indexed: 01/03/2023] Open
Abstract
Epilepsy is a common chronic neurological disorder affecting approximately 8 out of 1000 people. Its pathophysiology, however, has remained elusive in many regards. Consequently, adequate seizure control is still lacking in about one third of patients. Cytokines are soluble mediators of cell communication that are critical in immune regulation. In recent years, studies have shown that epileptic seizures can induce the production of cytokines, which in turn influence the pathogenesis and course of epilepsies. At the time of this review, the focus is mostly on interleukin-1beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNFα). In this review, we summarize the current knowledge regarding these cytokines and their potential roles in epilepsy. The focus concentrates on their expression and influence on induced seizures in animal models of epilepsy, as well as findings in human studies. Both proconvulsive and anticonvulsive effects have been reported for each of these molecules. One possible explanation for this phenomenon is that cytokines play dichotomous roles through multiple pathways, each of which is dependent on free concentration and available receptors. Furthermore, the immune-mediated leakage in the blood-brain-barrier also plays an important role in epileptogenesis. Nonetheless, these observations demonstrate the multifarious nature of cytokine networks and the complex relationship between the immune system and epilepsy. Future studies are warranted to further clarify the influence of the immune system on epilepsy and vice versa.
Collapse
Affiliation(s)
- Gang Li
- Department of Neurology, University of Marburg, Rudolf-Bultmann-Str. 8, 35033 Marburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Luo Y, Mughal M, Ouyang X, Jiang H, Luo TGSW, Yu QS, Greig NH, Mattson MP. Plumbagin promotes the generation of astrocytes from rat spinal cord neural progenitors via activation of the transcription factor Stat3. J Neurochem 2010; 115:1337-49. [PMID: 20456019 PMCID: PMC2928856 DOI: 10.1111/j.1471-4159.2010.06780.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Plumbagin (5-hydroxy-2-methyl-1,4 naphthoquinone) is a naturally occurring low molecular weight lipophilic phytochemical derived from roots of plants of the Plumbago genus. Plumbagin has been reported to have several clinically relevant biological activities in non-neural cells, including anti-atherosclerotic, anticoagulant, anticarcinogenic, antitumor, and bactericidal effects. In a recent screen of a panel of botanical pesticides, we identified plumbagin as having neuroprotective activity. In this study, we determined if plumbagin could modify the developmental fate of rat E14.5 embryonic neural progenitor cells (NPC). Plumbagin exhibited no cytotoxicity when applied to cultured NPC at concentrations below 1 μM. At a concentration of 0.1 μM, plumbagin significantly enhanced the proliferation of NPC as indicated by a 17% increase in the percentage of cells incorporating bromo-deoxyuridine. Plumbagin at a concentration of 0.1 pM (but not 0.1 μM), stimulated the production of astrocytes as indicated by increased GFAP expression. Plumbagin selectively induced the proliferation and differentiation of glial progenitor cells without affecting the proliferation or differentiation of neuron-restricted progenitors. Plumbagin (0.1 pM) rapidly activated the transcription factor signal transducer and activator of transcription 3 (Stat3) in NPC, and a Stat3 inhibitor peptide prevented both plumbagin-induced astrocyte formation and proliferation. These findings demonstrate the ability of a low molecular weight naturally occurring phytochemical to control the fate of glial progenitor cells by a mechanism involving the Stat3 signaling pathway.
Collapse
Affiliation(s)
- Yongquan Luo
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD
| | - Mohamed Mughal
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD
| | - Xin Ouyang
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD
| | - Haiyang Jiang
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD
| | - Tae-Gen Son Weiming Luo
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD
| | - Qian-Sheng Yu
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD
| | - Nigel H. Greig
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD
| | - Mark P. Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD
| |
Collapse
|
24
|
Crews L, Adame A, Patrick C, DeLaney A, Pham E, Rockenstein E, Hansen L, Masliah E. Increased BMP6 levels in the brains of Alzheimer's disease patients and APP transgenic mice are accompanied by impaired neurogenesis. J Neurosci 2010; 30:12252-62. [PMID: 20844121 PMCID: PMC2978735 DOI: 10.1523/jneurosci.1305-10.2010] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 05/25/2010] [Accepted: 06/16/2010] [Indexed: 11/21/2022] Open
Abstract
During aging and in the progression of Alzheimer's disease (AD), synaptic plasticity and neuronal integrity are disturbed. In addition to the alterations in plasticity in mature neurons, the neurodegenerative process in AD has been shown to be accompanied by alterations in neurogenesis. Members of the bone morphogenetic protein (BMP) family of growth factors have been implicated as important regulators of neurogenesis and neuronal cell fate determination during development; however, their role in adult neurogenesis and in AD is less clear. We show here by qRT-PCR analysis that BMP6 mRNA levels were significantly increased in the hippocampus of human patients with AD and in APP transgenic mice compared to controls. Immunoblot and immunohistochemical analyses confirmed that BMP6 protein levels were increased in human AD brains and APP transgenic mouse brains compared to controls and accumulated around hippocampal plaques. The increased levels of BMP6 were accompanied by defects in hippocampal neurogenesis in AD patients and APP transgenic mice. In support of a role for BMP6 in defective neurogenesis in AD, we show in an in vitro model of adult neurogenesis that treatment with amyloid-β(1-42) protein (Aβ) resulted in increased expression of BMP6, and that exposure to recombinant BMP6 resulted in reduced proliferation with no toxic effects. Together, these results suggest that Aβ-associated increases in BMP6 expression in AD may have deleterious effects on neurogenesis in the hippocampus, and therapeutic approaches could focus on normalization of BMP6 levels to protect against AD-related neurogenic deficits.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lawrence Hansen
- Departments of Neurosciences and
- Pathology, University of California, San Diego, La Jolla, California 92093-0624
| | - Eliezer Masliah
- Departments of Neurosciences and
- Pathology, University of California, San Diego, La Jolla, California 92093-0624
| |
Collapse
|
25
|
Polikov VS, Hong JS, Reichert WM. Soluble factor effects on glial cell reactivity at the surface of gel-coated microwires. J Neurosci Methods 2010; 190:180-7. [PMID: 20470825 PMCID: PMC2897925 DOI: 10.1016/j.jneumeth.2010.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 04/28/2010] [Accepted: 05/03/2010] [Indexed: 11/29/2022]
Abstract
A basal lamina gel preparation was incorporated into a modified neuroinflammation cell culture model to test the system as a characterization tool for surface-modified microwires. The extent of gliosis at the surface of gel-coated microwires was quantified in response to titrating the cell culture with a number of soluble factors reported to be involved in reactive gliosis. Positive control conditions (1% FBS, 10 ng/ml bFGF, Neural Basal medium with B27 supplement) induced a layer of GFAP-expressing astrocytes to accumulate on all gel-coated microwires. Serum, inflammatory cytokines IL-1alpha and IL-1beta and the neural progenitor cell (NPC) proliferating growth factors bFGF and PDGF all increased the number of reactive cells on the gel, in agreement with their reported roles in cell activation, migration and proliferation at the site of injury. Technically, this study shows that a fetal neuron-glia culture system is well suited for characterizing the impact of electrode coatings designed to mitigate implant-associated gliosis, and for screening the effect of multiple soluble factors that promote and/or inhibit implant-associated gliosis. Scientifically, this study points to essential roles of serum and inflammatory factors to induce NPC activation and migration to the site of injury, where growth factors like bFGF and PDGF induce proliferation of cells that will eventually form the glial scar.
Collapse
Affiliation(s)
| | - Jau-Shyong Hong
- National Institute of Environmental Health Sciences, Laboratory of Pharmacology, Research Triangle Park, North Carolina National Institute of Environmental Health Science
| | | |
Collapse
|
26
|
Luchetti S, Beck KD, Galvan MD, Silva R, Cummings BJ, Anderson AJ. Comparison of immunopathology and locomotor recovery in C57BL/6, BUB/BnJ, and NOD-SCID mice after contusion spinal cord injury. J Neurotrauma 2010; 27:411-21. [PMID: 19831737 DOI: 10.1089/neu.2009.0930] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Studies of cell transplantation therapeutics in animal models of traumatic spinal cord injury (SCI) are often hampered by partial or complete rejection of the graft by the host. Pharmacological immunosuppression is rarely sufficient to prevent rejection. Further, the immunological niche created by both the host immune response and immunosuppressant drugs could hypothetically influence the proliferation, differentiation, and fate of transplanted progenitor/stem cells. To avoid these confounds, we have previously used the constitutively immunodeficient non-obese diabetic severe combined immunodeficient (NOD-SCID) mouse as a model for transplantation studies following SCI. In the current study, we compare behavioral and histological recovery in NOD-SCID, C57BL/6, and BUB/BnJ mice of both sexes to better facilitate interpretation of data from studies using NOD-SCID mice. Of the strains examined, NOD-SCID mice exhibited the greatest locomotor recovery in the open field; no sex differences were detected in locomotor recovery in any of the strains. Stereologic estimation of the number of infiltrated neutrophils showed more cells in C57BL/6 mice than NOD-SCID mice, with BUB/BnJ mice having an intermediate number. The volume of macrophages/microglia did not differ between strains or sexes, though more rostral-caudal spreading was observed in C57BL/6 and BUB/BnJ than NOD-SCID mice. No significant differences were detected in lesion volume. Taken together these findings demonstrate that relative to other strains, NOD-SCID mice have both similar primary lesion volume and cellular inflammatory parameters after SCI, and support the applicability of the model for neurotransplantation studies.
Collapse
Affiliation(s)
- Sabina Luchetti
- Department of Physical Medicine and Rehabilitation, University of California-Irvine, Irvine, California 92697-4540, USA
| | | | | | | | | | | |
Collapse
|
27
|
Lee HS, Han J, Lee SH, Park JA, Kim KW. Meteorin promotes the formation of GFAP-positive glia via activation of the Jak-STAT3 pathway. J Cell Sci 2010; 123:1959-68. [PMID: 20460434 DOI: 10.1242/jcs.063784] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Meteorin is an orphan ligand which has been previously reported to control neuritogenesis and angiogenesis, as well as gliogenesis. However, the precise function of this factor in CNS development and the underlying molecular mechanisms are poorly understood. Here, we demonstrate that meteorin is involved in GFAP-positive glial differentiation through activation of the Jak-STAT3 pathway, by using neurosphere and retinal explant culture systems. During embryonic brain development, meteorin is highly expressed in neural stem and radial glia cells of the ventricular zone and immature neurons outside the ventricular zone but its expression disappears spontaneously as development proceeds except in GFAP-positive astrocytes. In cultured neurospheres, meteorin activates STAT3, and in turn increases the transcriptional activity of GFAP by enhancing the binding of STAT3 to the promoter. By meteorin stimulation, differentiating neurospheres show increased numbers of GFAP-positive cells, but the effect is abrogated by a blockade of the Jak-STAT3 pathway using either a Jak inhibitor or STAT3 siRNA. Furthermore, we expand our findings to the retina, and show that meteorin increases GFAP expression in Müller glia. Together, our results suggest that meteorin promotes GFAP-positive glia formation by mediating the Jak-STAT3 signaling pathway during both cortical stem cell differentiation and retinal glia development.
Collapse
Affiliation(s)
- Hye Shin Lee
- Neurovascular Coordination Research Center, College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | |
Collapse
|
28
|
Willis LM, Freeman L, Bickford PC, Quintero EM, Umphlet CD, Moore AB, Goetzl L, Granholm AC. Blueberry supplementation attenuates microglial activation in hippocampal intraocular grafts to aged hosts. Glia 2010; 58:679-90. [PMID: 20014277 PMCID: PMC2834232 DOI: 10.1002/glia.20954] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Transplantation of central nervous tissue has been proposed as a therapeutic intervention for age-related neurodegenerative diseases and stroke. However, survival of embryonic neuronal cells is hampered by detrimental factors in the aged host brain such as circulating inflammatory cytokines and oxidative stress. We have previously found that supplementation with 2% blueberry in the diet increases graft growth and neuronal survival in intraocular hippocampal grafts to aged hosts. In the present study we explored possible biochemical mechanisms for this increased survival, and we here report decreased microglial activation and astrogliosis in intraocular hippocampal grafts to middle-aged hosts fed a 2% blueberry diet. Markers for astrocytes and for activated microglial cells were both decreased long-term after grafting to blueberry-treated hosts compared with age-matched rats on a control diet. Similar findings were obtained in the host brain, with a reduction in OX-6 immunoreactive microglial cells in the hippocampus of those recipients treated with blueberry. In addition, immunoreactivity for the pro-inflammatory cytokine IL-6 was found to be significantly attenuated in intraocular grafts by the 2% blueberry diet. These studies demonstrate direct effects of blueberry upon microglial activation both during isolated conditions and in the aged host brain and suggest that this nutraceutical can attenuate age-induced inflammation.
Collapse
Affiliation(s)
- Lauren M. Willis
- Department of Neurosciences and the Center on Aging, Medical University of South Carolina, Charleston, SC, USA
| | - Linnea Freeman
- Department of Neurosciences and the Center on Aging, Medical University of South Carolina, Charleston, SC, USA
| | - Paula C. Bickford
- Department of Neurosurgery, Center for Excellence for Aging and Brain Repair, University of South Florida, Tampa, FL, USA
- James A. Haley Veterans' Hospital Medical Center, Tampa, FL, USA
| | - E. Matthew Quintero
- Department of Neurosciences and the Center on Aging, Medical University of South Carolina, Charleston, SC, USA
| | - Claudia D. Umphlet
- Department of Neurosciences and the Center on Aging, Medical University of South Carolina, Charleston, SC, USA
| | - Alfred B. Moore
- Department of Neurosciences and the Center on Aging, Medical University of South Carolina, Charleston, SC, USA
| | - Laura Goetzl
- Department of Ob/Gyn, Division of Maternal Fetal Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Ann-Charlotte Granholm
- Department of Neurosciences and the Center on Aging, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
29
|
Asano H, Aonuma M, Sanosaka T, Kohyama J, Namihira M, Nakashima K. Astrocyte Differentiation of Neural Precursor Cells is Enhanced by Retinoic Acid Through a Change in Epigenetic Modification. Stem Cells 2009; 27:2744-52. [DOI: 10.1002/stem.176] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Pardo-Villamizar C, Zimmerman A. Inflammation and Neuroimmunity in the Pathogenesis of Autism. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2009. [DOI: 10.1201/9781420068870-c12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
31
|
Chang JY, Tsai PF. IL-6 release from mouse glia caused by MeHg requires cytosolic phospholipase A2 activation. Neurosci Lett 2009; 461:85-9. [PMID: 19539721 PMCID: PMC2726735 DOI: 10.1016/j.neulet.2009.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2009] [Revised: 06/02/2009] [Accepted: 06/11/2009] [Indexed: 11/28/2022]
Abstract
Methylmercury is a potent neurotoxin that causes severe neurological disorders in fetuses and young children. Recent studies indicated that MeHg could alter levels of immune mediators produced by cells of the central nervous system. Results from this study indicated that MeHg could greatly induce IL-6 release from primary mouse glial cultures. This property was not shared by other cytotoxic heavy metals, such as CdCl(2) or HgCl(2). MeHg was known to induce cytosolic phospholipase A(2) (PLA(2)) activation and expression, and this enzyme was required for IL-6 induction in some experimental systems. Further experiments using structurally distinct pharmacological agents were performed to test the hypothesis that MeHg induced PLA(2) activation was necessary for MeHg induced IL-6 release. Results indicated that AACOCF(3) (>or=10 microM), MAFP (>or=0.625 microM) and BEL (>or=0.625 microM) significantly reduced MeHg induced IL-6 release in glia. However, these PLA(2) inhibitors did not block MeHg induced GSH depletion. These results suggested that PLA(2) activation was required for MeHg to induce glial IL-6 release.
Collapse
Affiliation(s)
- Jason Y Chang
- Department of Neurobiology and Developmental Sciences, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | |
Collapse
|
32
|
Fukushima M, Setoguchi T, Komiya S, Tanihara H, Taga T. Retinal astrocyte differentiation mediated by leukemia inhibitory factor in cooperation with bone morphogenetic protein 2. Int J Dev Neurosci 2009; 27:685-90. [PMID: 19646521 DOI: 10.1016/j.ijdevneu.2009.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2009] [Revised: 07/14/2009] [Accepted: 07/21/2009] [Indexed: 11/26/2022] Open
Abstract
Retinal astrocytes and their precursor cells migrate from the optic nerve. Interleukin 6 family cytokines, whose signal transduction requires gp130, promote astrocyte differentiation in the optic nerve, though the mechanism of astrocyte differentiation in the retina has not been clarified. We found that GFAP-positive astrocytes were significantly decreased in number but that a considerable number of astrocytes were still present in gp130-deficient mouse retina. These findings suggest that gp130-dependent signaling pathways play essential roles in retinal astrocyte differentiation and that retinal astrocyte differentiation can also be promoted by other signaling pathways. We found that leukemia inhibitory factor, bone morphogenetic proteins, and their receptors are expressed in P0 retina. In addition, leukemia inhibitory factor and bone morphogenetic protein 2 synergistically promote astrocyte differentiation of retinal precursor cells isolated from P0 mouse retina. These observations demonstrated that not only gp130-dependent signaling but also bone morphogenetic proteins play essential roles in retinal astrocyte differentiation.
Collapse
Affiliation(s)
- Mikiko Fukushima
- Department of Ophthalmology and Visual Science, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
| | | | | | | | | |
Collapse
|
33
|
Choi SH, Veeraraghavalu K, Lazarov O, Marler S, Ransohoff RM, Ramirez JM, Sisodia SS. Non-cell-autonomous effects of presenilin 1 variants on enrichment-mediated hippocampal progenitor cell proliferation and differentiation. Neuron 2008; 59:568-580. [PMID: 18760694 PMCID: PMC3489017 DOI: 10.1016/j.neuron.2008.07.033] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 05/30/2008] [Accepted: 07/22/2008] [Indexed: 11/22/2022]
Abstract
Presenilin 1 (PS1) regulates environmental enrichment (EE)-mediated neural progenitor cell (NPC) proliferation and neurogenesis in the adult hippocampus. We now report that transgenic mice that ubiquitously express human PS1 variants linked to early-onset familial Alzheimer's disease (FAD) neither exhibit EE-induced proliferation, nor neuronal lineage commitment of NPCs. Remarkably, the proliferation and differentiation of cultured NPCs from standard-housed mice expressing wild-type PS1 or PS1 variants are indistinguishable. On the other hand, wild-type NPCs cocultured with primary microglia from mice expressing PS1 variants exhibit impaired proliferation and neuronal lineage commitment, phenotypes that are recapitulated with mutant microglia conditioned media in which we detect altered levels of selected soluble signaling factors. These findings lead us to conclude that factors secreted from microglia play a central role in modulating hippocampal neurogenesis, and argue for non-cell-autonomous mechanisms that govern FAD-linked PS1-mediated impairments in adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Se Hoon Choi
- Committee on Neurobiology, University of Chicago, Chicago, Illinois 60637
| | | | - Orly Lazarov
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Seoan Marler
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois 60637
| | - Richard M. Ransohoff
- Neuroinflammation Research Center, Department of Neurosciences, Lerner Research Institute, Cleveland Clinic. Cleveland, Ohio 44195
| | - Jan Marino Ramirez
- Committee on Neurobiology, University of Chicago, Chicago, Illinois 60637
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois 60637
| | - Sangram S. Sisodia
- Committee on Neurobiology, University of Chicago, Chicago, Illinois 60637
- Department of Neurobiology, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
34
|
Ideguchi M, Shinoyama M, Gomi M, Hayashi H, Hashimoto N, Takahashi J. Immune or inflammatory response by the host brain suppresses neuronal differentiation of transplanted ES cell-derived neural precursor cells. J Neurosci Res 2008; 86:1936-43. [PMID: 18335525 DOI: 10.1002/jnr.21652] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Embryonic stem (ES) cells are a promising donor source for transplantation therapy, but several problems must be solved before they can be clinically useful. One of these is the host immune reaction to allogeneic grafts. In this article, we examine the effect of the host immune reaction on survival and differentiation of grafted ES cell-derived neural precursor cells (NPCs). We induced NPCs from mouse ES cells by stromal cell-derived inducing activity and then transplanted them into mouse brains with or without administering the immunosuppressant cyclosporine A (CsA). Two and 8 weeks following transplantation, the accumulation of host-derived microglia/macrophages and lymphocytes was observed around the graft. This effect was reduced by CsA treatment, although no significant difference in graft volume was observed. These data suggest that an immune response occurs in allografts of ES cell-derived NPCs. Intriguingly, however, the ratio of neurons to astrocytes in the graft was higher in immunosuppressed mice. Because inflammatory or immune cells produce various cytokines, we examined the effect of IL-1beta, IL-6, IFN-gamma, and TNF-alpha on the differentiation of NPCs in vitro. Only IL-6 promoted glial cell fate, and this effect could be reversed by the addition of an IL-6 neutralizing antibody. These results suggest that allogeneic ES cell-derived NPCs can cause an immune response by the host brain, but it is not strong enough to reject the graft. More important, activated microglia and lymphocytes can suppress neuronal differentiation of grafted NPCs in vivo by producing cytokines such as IL-6.
Collapse
Affiliation(s)
- Makoto Ideguchi
- Department of Neurosurgery, Clinical Neuroscience, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Johansson S, Price J, Modo M. Effect of inflammatory cytokines on major histocompatibility complex expression and differentiation of human neural stem/progenitor cells. Stem Cells 2008; 26:2444-54. [PMID: 18635871 DOI: 10.1634/stemcells.2008-0116] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To develop transplantation of neural stem/progenitor cells (NSPCs) as a successful treatment of neurodegenerative disorders, the possible induction of an inflammatory response following implantation needs to be taken into consideration. Inflammatory cytokines can upregulate major histocompatibility complex (MHC) expression on transplanted cells, thereby rendering them more susceptible to graft rejection. Furthermore, cytokines also have a profound effect on cell differentiation, migration, and proliferation, which can greatly affect the outcome of transplantation. Here we studied the effect of three inflammatory cytokines, interferon-gamma (IFN-gamma), tumor necrosis factor-alpha (TNF-alpha), and interleukin-6 (IL-6), from three different species (human, monkey, rat) on expression of MHC molecules and differentiation of two human NSPC lines derived from striatum and hippocampus. Human and monkey IFN-gamma strongly upregulate MHC expression in both NSPC lines in a dose-dependent manner, whereas rat IFN-gamma has an effect on MHC expression only in hippocampal cells. Furthermore, TNF-alpha, but not IL-6, upregulates MHC expression in both NSPC lines. Differentiation of NSPCs in the presence of cytokines showed that IFN-gamma increased the neuronal yield threefold in striatal NSPC cultures and increased the number of oligodendrocytes twofold in hippocampal NSPC cultures. Addition of TNF-alpha enhanced gliogenesis in both cell lines, whereas IL-6 stimulated neurogenesis. Human NSPC lines' response to cytokines is therefore species specific and also dependent on the NSPCs' region of origin. The successful translation of different cell lines from animal models to clinical trials could be substantially influenced by the species-specific regulation of MHC and differentiation as reported here. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Saga Johansson
- Centre for the Cellular Basis of Behavior, Institute of Psychiatry, King's College London, London, United Kingdom
| | | | | |
Collapse
|
36
|
|
37
|
Koch M, May U, Kuhns S, Drechsler H, Adam N, Hattermann K, Wirtz S, Rose-John S, Scheller J. Interleukin 27 induces differentiation of neural C6-precursor cells into astrocytes. Biochem Biophys Res Commun 2007; 364:483-7. [PMID: 17961512 DOI: 10.1016/j.bbrc.2007.10.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Accepted: 10/07/2007] [Indexed: 10/22/2022]
Abstract
Interleukin 6 (IL6)-type cytokines are major regulators of inflammation and thereby contribute to the neuropathology and pathophysiology associated with inflammation of the central nervous system (CNS). Furthermore, astrocyte development which is a key process in the development of the CNS is also controlled by cytokines of the IL6-family. Interleukin 27 (IL27) is a recently identified member of this family and has been implicated in the inhibition of TH17 T-cell-responses. Here we show that IL27 and the HHV8 encoded viral IL6 (vIL6) induce C6 glioma cells to differentiate into an astrocyte-like state. Cytokine stimulation led to STAT-factor phosphorylation and consequently to protein expression of the astrocyte marker glial fibrillary acidic protein (GFAP). These data could be confirmed by GFAP-immunostaining of stimulated cells. Taken together, IL27 and vIL6 can be considered as new astrocyte-inducing cytokines of the brain.
Collapse
Affiliation(s)
- Manuel Koch
- Biochemisches Institut, Christian-Albrechts-Universität, Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Agoston VA, Zádori A, Demeter K, Nagy Z, Madarász E. Different behaviour of implanted stem cells in intact and lesioned forebrain cortices. Neuropathol Appl Neurobiol 2007; 33:510-22. [PMID: 17854438 DOI: 10.1111/j.1365-2990.2007.00845.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cell-replacement therapy promises a useful tool to regenerate compromised brain tissue, but the interaction between grafted cells and host tissues is not well understood. In these studies, the fates of neuroectodermal stem cells were compared in 'healthy' or damaged mouse forebrains. One-cell derived, fluorescent GFP-4C neural stem cells were implanted into normal and cold-lesioned mouse cortices. The fates of implanted cells were followed by histological and immunocytochemical assays for a 55-day postimplantation period. Cells were recultivated from lesioned cortices and characterized by cell cycle parameters, chromosome numbers, immunocytochemical markers and in vitro inducibility. Their intracerebral fates were checked upon re-implanting into 'healthy' mouse brain cortices. GFP-4C cells, giving rise to neurones and astrocytes upon in vitro induction, failed to differentiate in either normal or lesioned cortical tissues. The rate of proliferation and the length of the survival, however, depended on the host environment, markedly. In intact cortices, implanted cells formed compact, isolated aggregates and their survival did not exceed 4 weeks. In compromised cortices, GFP-4C cells survived longer than 8 weeks and repopulated the decayed region. The morphology, viability, immunocytochemical properties, in vitro inducibility and chromosome number of cells recultivated from lesioned cortices were identical to those of the master cells. Long-term survival and repopulating capability were due to signals present in the lesioned, but missing from the intact cortical environment. The results underline the importance of host environment in the fate determination of grafted cells and emphasize the need to understand the 'roles' of recipient tissues for potential cell-replacement methodologies.
Collapse
Affiliation(s)
- V A Agoston
- Institute of Experimental Medicine of Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | |
Collapse
|
39
|
Nakashima M. Tissue Engineering of Teeth. HANDBOOK OF BIOMINERALIZATION 2007:265-282. [DOI: 10.1002/9783527619443.ch61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
40
|
Ahmed O, Ahmed R, Nada M, . MB. Does the Heat Stress Affect the Neurons Development in Some Central Nervous System Regions of Albino Rat Newborns? ACTA ACUST UNITED AC 2007. [DOI: 10.3923/ajava.2007.86.103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
41
|
Oh-hashi K, Hirata Y, Koga H, Kiuchi K. GRP78-binding protein regulates cAMP-induced glial fibrillary acidic protein expression in rat C6 glioblastoma cells. FEBS Lett 2006; 580:3943-7. [PMID: 16806201 DOI: 10.1016/j.febslet.2006.06.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Accepted: 06/08/2006] [Indexed: 11/30/2022]
Abstract
We previously reported that a novel GRP78-binding protein (GBP) is predominantly expressed in rat brain and its expression declines through the aging process. To characterize its biological function, we established C6 glioblastoma cells that stably overexpressed GBP. Stable overexpression of GBP attenuated cAMP-induced expression of the glial fibrillary acidic protein (GFAP) gene, which was accompanied by a decrease in cAMP-induced signal transducer and activators of transcription 3 (STAT3) phosphorylation. Other distinct cAMP-induced events, including a transient reduction in extracellular signal-regulated protein kinase phosphorylation and a slowdown in cell proliferation, were hardly affected by GBP overexpression. Most importantly, treatment with siRNA against endogenous GBP markedly downregulated GBP expression in C6 glioblastoma cells, and dramatically augmented cAMP-induced GFAP mRNA expression in parallel with hyper-phosphorylation of STAT3. These results suggest a novel function of GBP in regulating GFAP gene expression via STAT3 phosphorylation.
Collapse
Affiliation(s)
- Kentaro Oh-hashi
- Department of Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | | | | | | |
Collapse
|
42
|
Barkho BZ, Song H, Aimone JB, Smrt RD, Kuwabara T, Nakashima K, Gage FH, Zhao X. Identification of astrocyte-expressed factors that modulate neural stem/progenitor cell differentiation. Stem Cells Dev 2006; 15:407-21. [PMID: 16846377 PMCID: PMC2777811 DOI: 10.1089/scd.2006.15.407] [Citation(s) in RCA: 229] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Multipotent neural stem/progenitor cells (NSPCs) can be isolated from many regions of the adult central nervous system (CNS), yet neurogenesis is restricted to the hippocampus and subventricular zone in vivo. Identification of the molecular cues that modulate NSPC fate choice is a prerequisite for their therapeutic applications. Previously, we demonstrated that primary astrocytes isolated from regions with higher neuroplasticity, such as newborn and adult hippocampus and newborn spinal cord, promoted neuronal differentiation of adult NSPCs, whereas astrocytes isolated from the nonneurogenic region of the adult spinal cord inhibited neural differentiation. To identify the factors expressed by these astrocytes that could modulate NSPC differentiation, we performed gene expression profiling analysis using Affymetrix rat genome arrays. Our results demonstrated that these astrocytes had distinct gene expression profiles. We further tested the functional effects of candidate factors that were differentially expressed in neurogenesis-promoting and -inhibiting astrocytes using in vitro NSPC differentiation assays. Our results indicated that two interleukins, IL-1beta and IL-6, and a combination of factors that included these two interleukins could promote NSPC neuronal differentiation, whereas insulin-like growth factor binding protein 6 (IGFBP6) and decorin inhibited neuronal differentiation of adult NSPCs. Our results have provided further evidence to support the ongoing hypothesis that, in adult mammalian brains, astrocytes play critical roles in modulating NSPC differentiation. The finding that cytokines and chemokines expressed by astrocytes could promote NSPC neuronal differentiation may help us to understand how injuries induce neurogenesis in adult brains.
Collapse
Affiliation(s)
- Basam Z. Barkho
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Hongjun Song
- Departments of Neurology and Neuroscience, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - James B. Aimone
- The Salk Institute for Biological Studies, Laboratory of Genetics, La Jolla, CA 92037
| | - Richard D. Smrt
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Tomoko Kuwabara
- The Salk Institute for Biological Studies, Laboratory of Genetics, La Jolla, CA 92037
| | - Kinichi Nakashima
- The Salk Institute for Biological Studies, Laboratory of Genetics, La Jolla, CA 92037
| | - Fred H. Gage
- The Salk Institute for Biological Studies, Laboratory of Genetics, La Jolla, CA 92037
| | - Xinyu Zhao
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131
| |
Collapse
|
43
|
Deleyrolle L, Marchal-Victorion S, Dromard C, Fritz V, Saunier M, Sabourin JC, Tran Van Ba C, Privat A, Hugnot JP. Exogenous and Fibroblast Growth Factor 2/Epidermal Growth Factor-Regulated Endogenous Cytokines Regulate Neural Precursor Cell Growth and Differentiation. Stem Cells 2006; 24:748-62. [PMID: 16166253 DOI: 10.1634/stemcells.2005-0138] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Neurospheres (NSs) are clonal cellular aggregates composed of neural stem cells and progenitors. A comprehensive description of their proliferation and differentiation regulation is an essential prerequisite for their use in biotherapies. Cytokines are essential molecules regulating cell precursor fate. Using a gene-array strategy, we conducted a descriptive and functional analysis of endogenous cytokines and receptors expressed by spinal cord-derived NSs during their growth or their differentiation into neuronal and glial cells. NSs were found to express approximately 100 receptor subunits and cytokine/secreted developmental factors. Several angiogenic factors and receptors that could mediate neural precursor cell-endothelial cell relationships were detected. Among them, receptor B for endothelins was highly expressed, and endothelins were found to increase NS growth. In contrast, NSs express receptors for ciliary neurotrophic factor (CNTF), bone morphogenetic protein (BMP), interferon (IFN)-gamma, or tumor necrosis factor (TNF)-alpha, which, when added in the growth phase, led to a dramatic growth reduction followed by a reduction or a loss of oligodendrocyte formation on differentiation. In addition, NSs synthesize fibroblast growth factor 2/epidermal growth factor (FGF2/EGF)-regulated endogenous cytokines that participate in their growth and differentiation. Notably, BMP-7 and CNTF were expressed during expansion, but upon differentiation there was a remarkable switch from BMP-7 to BMP-4 and -6 and a sharp increase of CNTF. Reintroduction of growth factors reverses the BMP expression profile, indicating growth factor-BMP cross-regulations. The role of endogenous CNTF was investigated by deriving NSs from CNTF knockout mice. These NSs have an increased growth rate associated with reduction of apoptosis and generate astrocytes with a reduced glial fibulary acidic protein (GFAP) content. These results demonstrate the combined role of endogenous and exogenous cytokines in neural precursor cell growth and differentiation.
Collapse
Affiliation(s)
- Loïc Deleyrolle
- INSERM U583, INM-Hôpital Saint Eloi, 80 rue Augustin Fliche, 34295 Montpellier, France
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Gao L, Macklin W, Gerson J, Miller RH. Intrinsic and extrinsic inhibition of oligodendrocyte development by rat retina. Dev Biol 2006; 290:277-86. [PMID: 16388796 DOI: 10.1016/j.ydbio.2005.11.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Revised: 11/02/2005] [Accepted: 11/07/2005] [Indexed: 10/25/2022]
Abstract
Cell patterning in the vertebrate CNS reflects the combination of localized cell induction, migration and differentiation. A striking example of patterning is the myelination of visual system. In many species, retinal ganglion cell axons are myelinated in the optic nerve but are unmyelinated in the retina. Here, we confirm that rat and mouse retina lack oligodendrocytes and their precursors and identify multiple mechanisms that might contribute to their absence. Soluble cues from embryonic retina inhibit the induction of oligodendrocytes from neural stem cells and their differentiation from optic nerve precursors. This inhibition is mediated by retinal-derived BMPs. During development BMPs are expressed in the retina and addition of the BMP antagonist Noggin reversed retinal inhibition of oligodendrocyte development. The lack of retinal oligodendrocytes does not simply reflect expression of BMPs, since no oligodendrocytes or their precursors developed when embryonic retinal cells were grown in the presence of Noggin and/or inductive cues such as Shh and IGF-1. Similarly, injection of Noggin into the postnatal rat eye failed to induce oligodendrocyte differentiation. These data combined with the proposed inhibition of OPC migration by molecules selectively expressed at the nerve retina junction suggest that multiple mechanisms combine to suppress retinal myelination during development.
Collapse
Affiliation(s)
- Limin Gao
- Department of Neurosciences, Case School of Medicine, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
45
|
Yanagisawa M, Taga T, Nakamura K, Ariga T, Yu RK. Characterization of glycoconjugate antigens in mouse embryonic neural precursor cells. J Neurochem 2005; 95:1311-20. [PMID: 16219035 DOI: 10.1111/j.1471-4159.2005.03452.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neuronal and glial cells organizing the central nervous system (CNS) are generated from common neural precursor cells (NPCs) during neural development. However, the expression of cell-surface glycoconjugates that are crucial for determining the properties and biological function of these cells at different stages of development has not been clearly defined. In this study, we investigated the expression of several stage-specific glycoconjugate antigens, including several b-series gangliosides GD3, 9-O-acetyl GD3, GT1b and GQ1b, stage-specific embryonic antigen-1 (SSEA-1) and HNK-1, in mouse embryonic NPCs employing immunocytochemistry and flow cytometry. In addition, several of these antigens were positively identified by chemical means for the first time. We further showed that the SSEA-1 immunoreactivity was contributed by both glycoprotein and glycolipid antigens, and that of HNK-1 was contributed only by glycoproteins. Functionally, SSEA-1 may participate in migration of the cells from neurospheres in an NPC cell culture system, and the effect could be repressed by anti-SSEA-1 antibody. Based on this observation, we identified beta1 integrin as one of the SSEA-1 carrier glycoproteins. Our data thus provide insights into the functional role of certain glycoconjugate antigens in NPCs during neural development.
Collapse
Affiliation(s)
- Makoto Yanagisawa
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | | | | | |
Collapse
|
46
|
Mendis C, Das R, Hammamieh R, Royaee A, Yang D, Peel S, Jett M. Transcriptional response signature of human lymphoid cells to staphylococcal enterotoxin B. Genes Immun 2005; 6:84-94. [PMID: 15674373 DOI: 10.1038/sj.gene.6364160] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Two shock-inducing toxins that result in similar eventual outcome of disease were studied to determine host gene expression responses, for correlation of both similar and unique gene patterns. We initially used differential display (DD)-PCR and identified 859 cDNA fragments that were differentially expressed after 16 h of in vitro exposure of human peripheral blood mononuclear cells (PBMC) to staphylococcal enterotoxin B (SEB). Upon further examination using custom cDNA microarrays and RT-PCR analysis, we found unique set of genes to each toxin (SEB or lipopolysaccharide (LPS)), especially at early time periods. By 16 h, there was a convergence of some gene expression responses and many of those genes code for proteins such as proteinases, transcription factors, vascular tone regulators, and respiratory distress. In an attempt to replicate the findings in vivo, monkeys were challenged with SEB and the resultant gene expression responses indicated a pattern typical of SEB exposure when compared to LPS, with a similar outcome. We provide evidence that vastly diverse global gene analysis techniques used in unison can not only effectively identify pathogen-specific genomic markers and provide a solid foundation to mechanistic insights but also explain some of the toxin-related symptoms through gene functions.
Collapse
Affiliation(s)
- C Mendis
- Division of Pathology, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Lopez-Coviella I, Follettie MT, Mellott TJ, Kovacheva VP, Slack BE, Diesl V, Berse B, Thies RS, Blusztajn JK. Bone morphogenetic protein 9 induces the transcriptome of basal forebrain cholinergic neurons. Proc Natl Acad Sci U S A 2005; 102:6984-9. [PMID: 15870197 PMCID: PMC1088172 DOI: 10.1073/pnas.0502097102] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Indexed: 01/19/2023] Open
Abstract
Basal forebrain cholinergic neurons (BFCN) participate in processes of learning, memory, and attention. Little is known about the genes expressed by BFCN and the extracellular signals that control their expression. Previous studies showed that bone morphogenetic protein (BMP) 9 induces and maintains the cholinergic phenotype of embryonic BFCN. We measured gene expression patterns in septal cultures of embryonic day 14 mice and rats grown in the presence or absence of BMP9 by using species-specific microarrays and validated the RNA expression data of selected genes by immunoblot and immunocytochemistry analysis of their protein products. BMP9 enhanced the expression of multiple genes in a time-dependent and, in most cases, reversible manner. The set of BMP9-responsive genes was concordant between mouse and rat and included genes encoding cell-cycle/growth control proteins, transcription factors, signal transduction molecules, extracellular matrix, and adhesion molecules, enzymes, transporters, and chaperonins. BMP9 induced the p75 neurotrophin receptor (NGFR), a marker of BFCN, and Cntf and Serpinf1, two trophic factors for cholinergic neurons, suggesting that BMP9 creates a trophic environment for BFCN. To determine whether the genes induced by BMP9 in culture were constituents of the BFCN transcriptome, we purified BFCN from embryonic day 18 mouse septum by using fluorescence-activated cell sorting of NGFR(+) cells and profiled mRNA expression of these and NGFR(-) cells. Approximately 30% of genes induced by BMP9 in vitro were overexpressed in purified BFCN, indicating that they belong to the BFCN transcriptome in situ and suggesting that BMP signaling contributes to maturation of BFCN in vivo.
Collapse
Affiliation(s)
- Ignacio Lopez-Coviella
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Scheel JR, Ray J, Gage FH, Barlow C. Quantitative analysis of gene expression in living adult neural stem cells by gene trapping. Nat Methods 2005; 2:363-70. [PMID: 15846364 DOI: 10.1038/nmeth755] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Accepted: 03/21/2005] [Indexed: 12/27/2022]
Abstract
The potential of neural stem cells (NSCs) for the treatment of neurodegenerative diseases makes the identification and characterization of genes involved in neural stem cell responses therapeutically important. Although technologies exist for measuring gene expression in cells, they often provide only a representative expression profile specific to a stimulus and time. We developed a complementary technology based on a retroviral-vector gene-trap approach that uses beta-lactamase-induced disruption of fluorescence resonance energy transfer in the fluorophore CCF-2/AM. A library of 'tagged' adult rat NSCs was generated by transduction with gene-trap virus produced from a single-integrant packaging cell line that allowed us to quantitatively analyze dynamic gene expression changes in real time in living NSCs. Using this library we identified previously unknown genes regulated by oxidative stress, indomethacin and factors that induce differentiation, and show that one of the trapped genes, Sox6, is sufficient to induce astrocytic differentiation when overexpressed.
Collapse
Affiliation(s)
- John R Scheel
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
49
|
Hao A, Novotny-Diermayr V, Bian W, Lin B, Lim CP, Jing N, Cao X. The LIM/homeodomain protein Islet1 recruits Janus tyrosine kinases and signal transducer and activator of transcription 3 and stimulates their activities. Mol Biol Cell 2005; 16:1569-83. [PMID: 15659653 PMCID: PMC1073642 DOI: 10.1091/mbc.e04-08-0664] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Islet1 (Isl1) belongs to the LIM homeodomain transcription factor family. Its roles in differentiation of motor neurons and organogenesis of pancreas and heart have been revealed. However, less is known about its regulatory mechanism and the target genes. In this study, we identified interactions between Isl1 and Janus tyrosine kinase (JAK), as well as signal transducer and activator of transcription (Stat)3, but not Stat1 and Stat5, in mammalian cells. We found that Isl1 not only forms a complex with Jak1 and Stat3 but also triggers the tyrosine phosphorylation of Jak1 and its kinase activity, thereby elevating the tyrosine phosphorylation, DNA binding activity, and target gene expression of Stat3. In vivo, the tyrosine-phosphorylated Stat3 was colocalized with Isl1 in the nucleus of the mouse motor neurons in spinal cord after nerve injury. Correspondingly, electroporation of Isl1 and Stat3 into the neural tube of chick embryos resulted in the activation of a reporter gene expression controlled by a Stat3 regulatory sequence, and cotransfection of Isl1 and Stat3 promoted the proliferation of the mouse motor neuron cells. Our data suggest a novel role of Isl1 as an adaptor for Jak1 and Stat3 and reveal a possible functional link between LIM homeodomain transcription factors and the Jak-Stat pathway.
Collapse
Affiliation(s)
- Aijun Hao
- Signal Transduction Laboratory, Institute of Molecular and Cell Biology, Republic of Singapore
| | | | | | | | | | | | | |
Collapse
|
50
|
Mueller FJ, McKercher SR, Imitola J, Loring JF, Yip S, Khoury SJ, Snyder EY. At the interface of the immune system and the nervous system: how neuroinflammation modulates the fate of neural progenitors in vivo. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2005:83-114. [PMID: 16315610 DOI: 10.1007/3-540-27626-2_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Neural stem and progenitor cells express a variety of receptors that enable them to sense and react to signals emanating from physiological and pathophysiological conditions in the brain as well as elsewhere in the body. Many of these receptors and were first described in investigations of the immune system, particularly with respect to hematopoietic stem cells. This emerging view of neurobiology has two major implications. First, many phenomena known from the hematopoietic system may actually be generalizable to stem cells from many organ systems, reflecting the cells' progenitor-mediated regenerative potential. Second, regenerative interfaces may exist between diverse organ systems; populations of cells of neuroectodermal and hematopoietic origin may interact to play a crucial role in normal brain physiology, pathology, and repair. An understanding of the origins of signals and the neural progenitors' responses might lead to the development of effective therapeutic strategies to counterbalance acute and chronic neurodegenerative processes. Such strategies may include modifying and modulating cells with regenerative potential in subtle ways. For example, stem cells might be able to detect pathology-associated signals and be used as "interpreters" to mediate drug and other therapeutic interventions. This review has focused on the role of inflammation in brain repair. We propose that resident astroglia and blood-born cells both contribute to an inflammatory signature that is unique to each kind of neuronal degeneration or injury. These cells play a key role in coordinating the neural progenitor cell response to brain injury by exerting direct and indirect environmentally mediated influence on neural progenitor cells. We suggest that investigations of the neural progenitor-immunologic interface will provide valuable data related to the mechanisms by which endogenous and exogenous neural progenitor cells react to brain pathology, ultimately aiding in the design of more effective therapeutic applications of stem cell biology. Such improvements will include: (1) ascertaining the proper timing for implanting exogenous neural progenitor cells in relation to the administration of anti-inflammatory agents; (2) identifying what types of molecules might be administered during injury to enhance the mobilization and differentiation of endogenous and exogenous neural progenitor cells while also inhibiting the detrimental aspects of the inflammatory reaction; (3) divining clues as to which molecules may be required to change the lesioned environment in order to invite the homing of reparative neural progenitor cells.
Collapse
Affiliation(s)
- F J Mueller
- Program in Developmental Regenerative Cell Biology, The Burnham Institute, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | |
Collapse
|