1
|
Quilez S, Dumontier E, Baim C, Kam J, Cloutier JF. Loss of Neogenin alters branchial arch development and leads to craniofacial skeletal defects. Front Cell Dev Biol 2024; 12:1256465. [PMID: 38404688 PMCID: PMC10884240 DOI: 10.3389/fcell.2024.1256465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/22/2024] [Indexed: 02/27/2024] Open
Abstract
The formation of complex structures, such as the craniofacial skeleton, requires precise and intricate two-way signalling between populations of cells of different embryonic origins. For example, the lower jaw, or mandible, arises from cranial neural crest cells (CNCCs) in the mandibular portion of the first branchial arch (mdBA1) of the embryo, and its development is regulated by signals from the ectoderm and cranial mesoderm (CM) within this structure. The molecular mechanisms underlying CM cell influence on CNCC development in the mdBA1 remain poorly defined. Herein we identified the receptor Neogenin as a key regulator of craniofacial development. We found that ablation of Neogenin expression via gene-targeting resulted in several craniofacial skeletal defects, including reduced size of the CNCC-derived mandible. Loss of Neogenin did not affect the formation of the mdBA1 CM core but resulted in altered Bmp4 and Fgf8 expression, increased apoptosis, and reduced osteoblast differentiation in the mdBA1 mesenchyme. Reduced BMP signalling in the mdBA1 of Neogenin mutant embryos was associated with alterations in the gene regulatory network, including decreased expression of transcription factors of the Hand, Msx, and Alx families, which play key roles in the patterning and outgrowth of the mdBA1. Tissue-specific Neogenin loss-of-function studies revealed that Neogenin expression in mesodermal cells contributes to mandible formation. Thus, our results identify Neogenin as a novel regulator of craniofacial skeletal formation and demonstrates it impinges on CNCC development via a non-cell autonomous mechanism.
Collapse
Affiliation(s)
- Sabrina Quilez
- The Neuro—Montreal Neurological Institute and Hospital, 3801 University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Emilie Dumontier
- The Neuro—Montreal Neurological Institute and Hospital, 3801 University, Montréal, QC, Canada
| | - Christopher Baim
- The Neuro—Montreal Neurological Institute and Hospital, 3801 University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Joseph Kam
- The Neuro—Montreal Neurological Institute and Hospital, 3801 University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Jean-François Cloutier
- The Neuro—Montreal Neurological Institute and Hospital, 3801 University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| |
Collapse
|
2
|
Massri AJ, Fitzpatrick M, Cunny H, Li JL, Harry GJ. Differential gene expression profiling implicates altered network development in rat postnatal day 4 cortex following 4-Methylimidazole (4-MeI) induced maternal seizures. Neurotoxicol Teratol 2023; 100:107301. [PMID: 37783441 PMCID: PMC10843020 DOI: 10.1016/j.ntt.2023.107301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/31/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023]
Abstract
Compromised maternal health leading to maternal seizures can have adverse effects on the healthy development of offspring. This may be the result of inflammation, hypoxia-ischemia, and altered GABA signaling. The current study examined cortical tissue from F2b (2nd litter of the 2nd generation) postnatal day 4 (PND4) offspring of female Harlan SD rats chronically exposed to the seizuregenic compound, 4-Methylimidazole (0, 750, or 2500 ppm 4-MeI). Maternal seizures were evident only at 2500 ppm 4-MeI. GABA related gene expression as examined by qRT-PCR and whole genome microarray showed no indication of disrupted GABA or glutamatergic signaling. Canonical pathway hierarchical clustering and multi-omics combinatory genomic (CNet) plots of differentially expressed genes (DEG) showed alterations in genes associated with regulatory processes of cell development including neuronal differentiation and synaptogenesis. Functional enrichment analysis showed a similarity of cellular processes across the two exposure groups however, the genes comprising each cluster were primarily unique rather than shared and often showed different directionality. A dose-related induction of cytokine signaling was indicated however, pathways associated with individual cytokine signaling were not elevated, suggesting an alternative involvement of cytokine signaling. Pathways related to growth process and cell signaling showed a negative activation supporting an interpretation of disruption or delay in developmental processes at the 2500 ppm 4-MeI exposure level with maternal seizures. Thus, while GABA signaling was not altered as has been observed with maternal seizures, the pattern of DEG suggested a potential for alteration in neuronal network formation.
Collapse
Affiliation(s)
- Abdull J Massri
- Integrative Bioinformatics, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Mackenzie Fitzpatrick
- Mechanistic Toxicology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Helen Cunny
- Office of the Scientific Director, Division of Translational Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Jian-Liang Li
- Integrative Bioinformatics, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - G Jean Harry
- Mechanistic Toxicology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
3
|
Baxi A, Jourdeuil K, Cox TC, Clouthier DE, Tavares ALP. Transcriptomic analysis reveals the role of SIX1 in mouse cranial neural crest patterning and bone development. Dev Dyn 2023; 252:1303-1315. [PMID: 37183792 PMCID: PMC10592572 DOI: 10.1002/dvdy.597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/16/2023] Open
Abstract
BACKGROUND Genetic variants of the transcription factor SIX1 and its co-factor EYA1 underlie 50% of Branchio-oto-renal syndrome (BOR) cases. BOR is characterized by craniofacial defects, including malformed middle ear ossicles leading to conductive hearing loss. In this work, we expand our knowledge of the Six1 gene regulatory network by using a Six1-null mouse line to assess gene expression profiles of E10.5 mandibular arches, which give rise to the neural crest (NC)-derived middle ear ossicles and lower jaw, via bulk RNA sequencing. RESULTS Our transcriptomic analysis led to the identification of 808 differentially expressed genes that are related to translation, NC cell differentiation, osteogenesis, and chondrogenesis including components of the WNT signaling pathway. As WNT signaling is a known contributor to bone development, we demonstrated that SIX1 is required for expression of the WNT antagonist Frzb in the mandibular arch, and determined that SIX1 expression results in repression of WNT signaling. CONCLUSION Our results clarify the mechanisms by which SIX1 regulates the development of NC-derived craniofacial elements that are altered in SIX1-associated disorders. In addition, this work identifies novel genes that could be causative to this birth defect and establishes a link between SIX1 and WNT signaling during patterning of NC cells.
Collapse
Affiliation(s)
- Aparna Baxi
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington DC, DC 20037, USA
| | - Karyn Jourdeuil
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington DC, DC 20037, USA
| | - Timothy C. Cox
- Departments of Oral and Craniofacial Sciences and Pediatrics, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - David E. Clouthier
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Andre L. P. Tavares
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington DC, DC 20037, USA
| |
Collapse
|
4
|
Alexander BE, Zhao H, Astrof S. SMAD4: A Critical Regulator of Cardiac Neural Crest Cell Fate and Vascular Smooth Muscle Differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532676. [PMID: 36993156 PMCID: PMC10055180 DOI: 10.1101/2023.03.14.532676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Background The pharyngeal arch arteries (PAAs) are precursor vessels which remodel into the aortic arch arteries (AAAs) during embryonic cardiovascular development. Cardiac neural crest cells (NCs) populate the PAAs and differentiate into vascular smooth muscle cells (vSMCs), which is critical for successful PAA-to-AAA remodeling. SMAD4, the central mediator of canonical TGFβ signaling, has been implicated in NC-to-vSMC differentiation; however, its distinct roles in vSMC differentiation and NC survival are unclear. Results Here, we investigated the role of SMAD4 in cardiac NC differentiation to vSMCs using lineage-specific inducible mouse strains in an attempt to avoid early embryonic lethality and NC cell death. We found that with global SMAD4 loss, its role in smooth muscle differentiation could be uncoupled from its role in the survival of the cardiac NC in vivo . Moreover, we found that SMAD4 may regulate the induction of fibronectin, a known mediator of NC-to-vSMC differentiation. Finally, we found that SMAD4 is required in NCs cell-autonomously for NC-to-vSMC differentiation and for NC contribution to and persistence in the pharyngeal arch mesenchyme. Conclusions Overall, this study demonstrates the critical role of SMAD4 in the survival of cardiac NCs, their differentiation to vSMCs, and their contribution to the developing pharyngeal arches.
Collapse
|
5
|
Erhardt S, Wang J. Cardiac Neural Crest and Cardiac Regeneration. Cells 2022; 12:cells12010111. [PMID: 36611905 PMCID: PMC9818523 DOI: 10.3390/cells12010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/30/2022] Open
Abstract
Neural crest cells (NCCs) are a vertebrate-specific, multipotent stem cell population that have the ability to migrate and differentiate into various cell populations throughout the embryo during embryogenesis. The heart is a muscular and complex organ whose primary function is to pump blood and nutrients throughout the body. Mammalian hearts, such as those of humans, lose their regenerative ability shortly after birth. However, a few vertebrate species, such as zebrafish, have the ability to self-repair/regenerate after cardiac damage. Recent research has discovered the potential functional ability and contribution of cardiac NCCs to cardiac regeneration through the use of various vertebrate species and pluripotent stem cell-derived NCCs. Here, we review the neural crest's regenerative capacity in various tissues and organs, and in particular, we summarize the characteristics of cardiac NCCs between species and their roles in cardiac regeneration. We further discuss emerging and future work to determine the potential contributions of NCCs for disease treatment.
Collapse
Affiliation(s)
- Shannon Erhardt
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas, Houston, TX 77030, USA
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
6
|
Kanai SM, Heffner C, Cox TC, Cunningham ML, Perez FA, Bauer AM, Reigan P, Carter C, Murray SA, Clouthier DE. Auriculocondylar syndrome 2 results from the dominant-negative action of PLCB4 variants. Dis Model Mech 2022; 15:dmm049320. [PMID: 35284927 PMCID: PMC9066496 DOI: 10.1242/dmm.049320] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/22/2022] [Indexed: 12/16/2022] Open
Abstract
Auriculocondylar syndrome 2 (ARCND2) is a rare autosomal dominant craniofacial malformation syndrome linked to multiple genetic variants in the coding sequence of phospholipase C β4 (PLCB4). PLCB4 is a direct signaling effector of the endothelin receptor type A (EDNRA)-Gq/11 pathway, which establishes the identity of neural crest cells (NCCs) that form lower jaw and middle ear structures. However, the functional consequences of PLCB4 variants on EDNRA signaling is not known. Here, we show, using multiple signaling reporter assays, that known PLCB4 variants resulting from missense mutations exert a dominant-negative interference over EDNRA signaling. In addition, using CRISPR/Cas9, we find that F0 mouse embryos modeling one PLCB4 variant have facial defects recapitulating those observed in hypomorphic Ednra mouse models, including a bone that we identify as an atavistic change in the posterior palate/oral cavity. Remarkably, we have identified a similar osseous phenotype in a child with ARCND2. Our results identify the disease mechanism of ARCND2, demonstrate that the PLCB4 variants cause craniofacial differences and illustrate how minor changes in signaling within NCCs may have driven evolutionary changes in jaw structure and function. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Stanley M. Kanai
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | - Timothy C. Cox
- Departments of Oral and Craniofacial Sciences and Pediatrics, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Michael L. Cunningham
- University of Washington, Department of Pediatrics, Division of Craniofacial Medicine and Seattle Children's Craniofacial Center, Seattle, WA 98105, USA
| | - Francisco A. Perez
- University of Washington, Department of Radiology and Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Aaron M. Bauer
- Department of Biology, Villanova University, Villanova, PA 19085, USA
| | - Philip Reigan
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Cristan Carter
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | - David E. Clouthier
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
7
|
Abe M, Cox TC, Firulli AB, Kanai SM, Dahlka J, Lim KC, Engel JD, Clouthier DE. GATA3 is essential for separating patterning domains during facial morphogenesis. Development 2021; 148:dev199534. [PMID: 34383890 PMCID: PMC8451945 DOI: 10.1242/dev.199534] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 08/02/2021] [Indexed: 11/20/2022]
Abstract
Neural crest cells (NCCs) within the mandibular and maxillary prominences of the first pharyngeal arch are initially competent to respond to signals from either region. However, mechanisms that are only partially understood establish developmental tissue boundaries to ensure spatially correct patterning. In the 'hinge and caps' model of facial development, signals from both ventral prominences (the caps) pattern the adjacent tissues whereas the intervening region, referred to as the maxillomandibular junction (the hinge), maintains separation of the mandibular and maxillary domains. One cap signal is GATA3, a member of the GATA family of zinc-finger transcription factors with a distinct expression pattern in the ventral-most part of the mandibular and maxillary portions of the first arch. Here, we show that disruption of Gata3 in mouse embryos leads to craniofacial microsomia and syngnathia (bony fusion of the upper and lower jaws) that results from changes in BMP4 and FGF8 gene regulatory networks within NCCs near the maxillomandibular junction. GATA3 is thus a crucial component in establishing the network of factors that functionally separate the upper and lower jaws during development.
Collapse
Affiliation(s)
- Makoto Abe
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Oral Anatomy and Developmental Biology, Osaka University Graduate School of Dentistry, Suita, Osaka, 565-0871, Japan
| | - Timothy C. Cox
- Departments of Oral & Craniofacial Sciences and Pediatrics, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Anthony B. Firulli
- Herman B Wells Center for Pediatric Research, Departments of Pediatrics, Anatomy and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Stanley M. Kanai
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jacob Dahlka
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kim-Chew Lim
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - James Douglas Engel
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - David E. Clouthier
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
8
|
Méndez-Maldonado K, Vega-López GA, Aybar MJ, Velasco I. Neurogenesis From Neural Crest Cells: Molecular Mechanisms in the Formation of Cranial Nerves and Ganglia. Front Cell Dev Biol 2020; 8:635. [PMID: 32850790 PMCID: PMC7427511 DOI: 10.3389/fcell.2020.00635] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/24/2020] [Indexed: 12/15/2022] Open
Abstract
The neural crest (NC) is a transient multipotent cell population that originates in the dorsal neural tube. Cells of the NC are highly migratory, as they travel considerable distances through the body to reach their final sites. Derivatives of the NC are neurons and glia of the peripheral nervous system (PNS) and the enteric nervous system as well as non-neural cells. Different signaling pathways triggered by Bone Morphogenetic Proteins (BMPs), Fibroblast Growth Factors (FGFs), Wnt proteins, Notch ligands, retinoic acid (RA), and Receptor Tyrosine Kinases (RTKs) participate in the processes of induction, specification, cell migration and neural differentiation of the NC. A specific set of signaling pathways and transcription factors are initially expressed in the neural plate border and then in the NC cell precursors to the formation of cranial nerves. The molecular mechanisms of control during embryonic development have been gradually elucidated, pointing to an important role of transcriptional regulators when neural differentiation occurs. However, some of these proteins have an important participation in malformations of the cranial portion and their mutation results in aberrant neurogenesis. This review aims to give an overview of the role of cell signaling and of the function of transcription factors involved in the specification of ganglia precursors and neurogenesis to form the NC-derived cranial nerves during organogenesis.
Collapse
Affiliation(s)
- Karla Méndez-Maldonado
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Guillermo A Vega-López
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), San Miguel de Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | - Manuel J Aybar
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), San Miguel de Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | - Iván Velasco
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Ciudad de México, Mexico
| |
Collapse
|
9
|
Pezoa SA, Artinger KB, Niswander LA. GCN5 acetylation is required for craniofacial chondrocyte maturation. Dev Biol 2020; 464:24-34. [PMID: 32446700 DOI: 10.1016/j.ydbio.2020.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/21/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023]
Abstract
Development of the craniofacial structures requires the precise differentiation of cranial neural crest cells into osteoblasts or chondrocytes. Here, we explore the epigenetic and non-epigenetic mechanisms that are required for the development of craniofacial chondrocytes. We previously demonstrated that the acetyltransferase activity of the highly conserved acetyltransferase GCN5, or KAT2A, is required for murine craniofacial development. We show that Gcn5 is required cell autonomously in the cranial neural crest. Moreover, GCN5 is required for chondrocyte development following the arrival of the cranial neural crest within the pharyngeal arches. Using a combination of in vivo and in vitro inhibition of GCN5 acetyltransferase activity, we demonstrate that GCN5 is a potent activator of chondrocyte maturation, acting to control chondrocyte maturation and size increase during pre-hypertrophic maturation to hypertrophic chondrocytes. Rather than acting as an epigenetic regulator of histone H3K9 acetylation, our findings suggest GCN5 primarily acts as a non-histone acetyltransferase to regulate chondrocyte development. Here, we investigate the contribution of GCN5 acetylation to the activity of the mTORC1 pathway. Our findings indicate that GCN5 acetylation is required for activation of this pathway, either via direct activation of mTORC1 or through indirect mechanisms. We also investigate one possibility of how mTORC1 activity is regulated through RAPTOR acetylation, which is hypothesized to enhance mTORC1 downstream phosphorylation. This study contributes to our understanding of the specificity of acetyltransferases, and the cell type specific roles in which these enzymes function.
Collapse
Affiliation(s)
- Sofia A Pezoa
- Cell Biology, Stem Cells, and Developmental Biology Graduate Program. University of Colorado Anschutz School of Medicine, Aurora, CO, USA, 80045; Department of Molecular, Cellular, and Developmental Biology. University of Colorado Boulder, Boulder, CO, USA, 80309
| | - Kristin B Artinger
- Department of Craniofacial Biology, University of Colorado Anschutz School of Dentistry, Aurora, CO, USA, 80045
| | - Lee A Niswander
- Department of Molecular, Cellular, and Developmental Biology. University of Colorado Boulder, Boulder, CO, USA, 80309.
| |
Collapse
|
10
|
Pritchard AB, Kanai SM, Krock B, Schindewolf E, Oliver-Krasinski J, Khalek N, Okashah N, Lambert NA, Tavares ALP, Zackai E, Clouthier DE. Loss-of-function of Endothelin receptor type A results in Oro-Oto-Cardiac syndrome. Am J Med Genet A 2020; 182:1104-1116. [PMID: 32133772 PMCID: PMC7202054 DOI: 10.1002/ajmg.a.61531] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 01/14/2023]
Abstract
Craniofacial morphogenesis is regulated in part by signaling from the Endothelin receptor type A (EDNRA). Pathogenic variants in EDNRA signaling pathway components EDNRA, GNAI3, PCLB4, and EDN1 cause Mandibulofacial Dysostosis with Alopecia (MFDA), Auriculocondylar syndrome (ARCND) 1, 2, and 3, respectively. However, cardiovascular development is normal in MFDA and ARCND individuals, unlike Ednra knockout mice. One explanation may be that partial EDNRA signaling remains in MFDA and ARCND, as mice with reduced, but not absent, EDNRA signaling also lack a cardiovascular phenotype. Here we report an individual with craniofacial and cardiovascular malformations mimicking the Ednra -/- mouse phenotype, including a distinctive micrognathia with microstomia and a hypoplastic aortic arch. Exome sequencing found a novel homozygous missense variant in EDNRA (c.1142A>C; p.Q381P). Bioluminescence resonance energy transfer assays revealed that this amino acid substitution in helix 8 of EDNRA prevents recruitment of G proteins to the receptor, abrogating subsequent receptor activation by its ligand, Endothelin-1. This homozygous variant is thus the first reported loss-of-function EDNRA allele, resulting in a syndrome we have named Oro-Oto-Cardiac Syndrome. Further, our results illustrate that EDNRA signaling is required for both normal human craniofacial and cardiovascular development, and that limited EDNRA signaling is likely retained in ARCND and MFDA individuals. This work illustrates a straightforward approach to identifying the functional consequence of novel genetic variants in signaling molecules associated with malformation syndromes.
Collapse
Affiliation(s)
- Amanda Barone Pritchard
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Stanley M Kanai
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Bryan Krock
- Division of Genomic Diagnostics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Erica Schindewolf
- Center for Fetal Diagnosis and Treatment, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | - Nahla Khalek
- Center for Fetal Diagnosis and Treatment, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Najeah Okashah
- Department of Pharmacology and Toxicology, Medical College of Georgia-Augusta University, Augusta, Georgia, USA
| | - Nevin A Lambert
- Department of Pharmacology and Toxicology, Medical College of Georgia-Augusta University, Augusta, Georgia, USA
| | - Andre L P Tavares
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Elaine Zackai
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - David E Clouthier
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
11
|
Cdc42 activation by endothelin regulates neural crest cell migration in the cardiac outflow tract. Dev Dyn 2019; 248:795-812. [DOI: 10.1002/dvdy.75] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 02/06/2023] Open
|
12
|
Wiszniak S, Schwarz Q. Notch signalling defines dorsal root ganglia neuroglial fate choice during early neural crest cell migration. BMC Neurosci 2019; 20:21. [PMID: 31036074 PMCID: PMC6489353 DOI: 10.1186/s12868-019-0501-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/15/2019] [Indexed: 11/25/2022] Open
Abstract
Background The dorsal root ganglia (DRG) are a critical component of the peripheral nervous system, and function to relay somatosensory information from the body’s periphery to sensory perception centres within the brain. The DRG are primarily comprised of two cell types, sensory neurons and glia, both of which are neural crest-derived. Notch signalling is known to play an essential role in defining the neuronal or glial fate of bipotent neural crest progenitors that migrate from the dorsal ridge of the neural tube to the sites of the DRG. However, the involvement of Notch ligands in this process and the timing at which neuronal versus glial fate is acquired has remained uncertain. Results We have used tissue specific knockout of the E3 ubiquitin ligase mindbomb1 (Mib1) to remove the function of all Notch ligands in neural crest cells. Wnt1-Cre; Mib1fl/fl mice exhibit severe DRG defects, including a reduction in glial cells, and neuronal cell death later in development. By comparing formation of sensory neurons and glia with the expression and activation of Notch signalling in these mice, we define a critical period during embryonic development in which early migrating neural crest cells become biased toward neuronal and glial phenotypes. Conclusions We demonstrate active Notch signalling between neural crest progenitors as soon as trunk neural crest cells delaminate from the neural tube and during their early migration toward the site of the DRG. This data brings into question the timing of neuroglial fate specification in the DRG and suggest that it may occur much earlier than originally considered. Electronic supplementary material The online version of this article (10.1186/s12868-019-0501-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sophie Wiszniak
- Centre for Cancer Biology, University of South Australia and SA Pathology, North Terrace, Adelaide, SA, 5001, Australia
| | - Quenten Schwarz
- Centre for Cancer Biology, University of South Australia and SA Pathology, North Terrace, Adelaide, SA, 5001, Australia.
| |
Collapse
|
13
|
Joshi SS, Tandukar B, Pan L, Huang JM, Livak F, Smith BJ, Hodges T, Mahurkar AA, Hornyak TJ. CD34 defines melanocyte stem cell subpopulations with distinct regenerative properties. PLoS Genet 2019; 15:e1008034. [PMID: 31017901 PMCID: PMC6481766 DOI: 10.1371/journal.pgen.1008034] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/18/2019] [Indexed: 12/16/2022] Open
Abstract
Melanocyte stem cells (McSCs) are the undifferentiated melanocytic cells of the mammalian hair follicle (HF) responsible for recurrent generation of a large number of differentiated melanocytes during each HF cycle. HF McSCs reside in both the CD34+ bulge/lower permanent portion (LPP) and the CD34- secondary hair germ (SHG) regions of the HF during telogen. Using Dct-H2BGFP mice, we separate bulge/LPP and SHG McSCs using FACS with GFP and anti-CD34 to show that these two subsets of McSCs are functionally distinct. Genome-wide expression profiling results support the distinct nature of these populations, with CD34- McSCs exhibiting higher expression of melanocyte differentiation genes and with CD34+ McSCs demonstrating a profile more consistent with a neural crest stem cell. In culture and in vivo, CD34- McSCs regenerate pigmentation more efficiently whereas CD34+ McSCs selectively exhibit the ability to myelinate neurons. CD34+ McSCs, and their counterparts in human skin, may be useful for myelinating neurons in vivo, leading to new therapeutic opportunities for demyelinating diseases and traumatic nerve injury.
Collapse
Affiliation(s)
- Sandeep S. Joshi
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Bishal Tandukar
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Li Pan
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jennifer M. Huang
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Ferenc Livak
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Marlene and Stuart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Barbara J. Smith
- Institute for Basic Biomedical Sciences, John Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Theresa Hodges
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Anup A. Mahurkar
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Thomas J. Hornyak
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Marlene and Stuart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Research & Development Service, VA Maryland Health Care System, United States Department of Veterans Affairs, Baltimore, Maryland, United States of America
- Department of Dermatology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
14
|
Sharma PP, MacLean AL, Meinecke L, Clouthier DE, Nie Q, Schilling TF. Transcriptomics reveals complex kinetics of dorsal-ventral patterning gene expression in the mandibular arch. Genesis 2018; 57:e23275. [PMID: 30561090 DOI: 10.1002/dvg.23275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 11/06/2022]
Abstract
The mandibular or first pharyngeal arch forms the upper and lower jaws in all gnathostomes. A gene regulatory network that defines ventral, intermediate, and dorsal domains along the dorsal-ventral (D-V) axis of the arch has emerged from studies in zebrafish and mice, but the temporal dynamics of this process remain unclear. To define cell fate trajectories in the arches we have performed quantitative gene expression analyses of D-V patterning genes in pharyngeal arch primordia in zebrafish and mice. Using NanoString technology to measure transcript numbers per cell directly we show that, in many cases, genes expressed in similar D-V domains and induced by similar signals vary dramatically in their temporal profiles. This suggests that cellular responses to D-V patterning signals are likely shaped by the baseline kinetics of target gene expression. Furthermore, similarities in the temporal dynamics of genes that occupy distinct pathways suggest novel shared modes of regulation. Incorporating these gene expression kinetics into our computational models for the mandibular arch improves the accuracy of patterning, and facilitates temporal comparisons between species. These data suggest that the magnitude and timing of target gene expression help diversify responses to patterning signals during craniofacial development.
Collapse
Affiliation(s)
- Praveer P Sharma
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California
| | - Adam L MacLean
- Department of Mathematics, University of California, Irvine, Irvine, California
| | - Lina Meinecke
- Department of Mathematics, University of California, Irvine, Irvine, California
| | - David E Clouthier
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Qing Nie
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California.,Department of Mathematics, University of California, Irvine, Irvine, California
| | - Thomas F Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California
| |
Collapse
|
15
|
Han X, Chen H, Huang D, Chen H, Fei L, Cheng C, Huang H, Yuan GC, Guo G. Mapping human pluripotent stem cell differentiation pathways using high throughput single-cell RNA-sequencing. Genome Biol 2018; 19:47. [PMID: 29622030 PMCID: PMC5887227 DOI: 10.1186/s13059-018-1426-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/21/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Human pluripotent stem cells (hPSCs) provide powerful models for studying cellular differentiations and unlimited sources of cells for regenerative medicine. However, a comprehensive single-cell level differentiation roadmap for hPSCs has not been achieved. RESULTS We use high throughput single-cell RNA-sequencing (scRNA-seq), based on optimized microfluidic circuits, to profile early differentiation lineages in the human embryoid body system. We present a cellular-state landscape for hPSC early differentiation that covers multiple cellular lineages, including neural, muscle, endothelial, stromal, liver, and epithelial cells. Through pseudotime analysis, we construct the developmental trajectories of these progenitor cells and reveal the gene expression dynamics in the process of cell differentiation. We further reprogram primed H9 cells into naïve-like H9 cells to study the cellular-state transition process. We find that genes related to hemogenic endothelium development are enriched in naïve-like H9. Functionally, naïve-like H9 show higher potency for differentiation into hematopoietic lineages than primed cells. CONCLUSIONS Our single-cell analysis reveals the cellular-state landscape of hPSC early differentiation, offering new insights that can be harnessed for optimization of differentiation protocols.
Collapse
Affiliation(s)
- Xiaoping Han
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Institute of Hematology, The 1st Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Haide Chen
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China. .,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Hangzhou, 310058, China. .,College of Animal Science, Zhejiang University, Hangzhou, 310058, China.
| | - Daosheng Huang
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Huidong Chen
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard Chan School of Public Health, Boston, MA, 02115, USA.,Department of Computer Science and Technology, Tongji University, Shanghai, 201804, China
| | - Lijiang Fei
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Chen Cheng
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - He Huang
- Institute of Hematology, The 1st Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Guo-Cheng Yuan
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard Chan School of Public Health, Boston, MA, 02115, USA.
| | - Guoji Guo
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China. .,Institute of Hematology, The 1st Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China. .,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Hangzhou, 310058, China. .,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
16
|
Viable Ednra Y129F mice feature human mandibulofacial dysostosis with alopecia (MFDA) syndrome due to the homologue mutation. Mamm Genome 2016; 27:587-598. [PMID: 27671791 PMCID: PMC5110705 DOI: 10.1007/s00335-016-9664-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/21/2016] [Indexed: 12/24/2022]
Abstract
Animal models resembling human mutations are valuable tools to research the features of complex human craniofacial syndromes. This is the first report on a viable dominant mouse model carrying a non-synonymous sequence variation within the endothelin receptor type A gene (Ednra c.386A>T, p.Tyr129Phe) derived by an ENU mutagenesis program. The identical amino acid substitution was reported recently as disease causing in three individuals with the mandibulofacial dysostosis with alopecia (MFDA, OMIM 616367) syndrome. We performed standardized phenotyping of wild-type, heterozygous, and homozygous EdnraY129F mice within the German Mouse Clinic. Mutant mice mimic the craniofacial phenotypes of jaw dysplasia, micrognathia, dysplastic temporomandibular joints, auricular dysmorphism, and missing of the squamosal zygomatic process as described for MFDA-affected individuals. As observed in MFDA-affected individuals, mutant EdnraY129F mice exhibit hearing impairment in line with strong abnormalities of the ossicles and further, reduction of some lung volumetric parameters. In general, heterozygous and homozygous mice demonstrated inter-individual diversity of expression of the craniofacial phenotypes as observed in MFDA patients but without showing any cleft palates, eyelid defects, or alopecia. Mutant EdnraY129F mice represent a valuable viable model for complex human syndromes of the first and second pharyngeal arches and for further studies and analysis of impaired endothelin 1 (EDN1)–endothelin receptor type A (EDNRA) signaling. Above all, EdnraY129F mice model the recently published human MFDA syndrome and may be helpful for further disease understanding and development of therapeutic interventions.
Collapse
|
17
|
Nomir AG, Takeuchi Y, Fujikawa J, El Sharaby AA, Wakisaka S, Abe M. Fate mapping of Trps1 daughter cells during cardiac development using novel Trps1-Cre mice. Genesis 2016; 54:379-88. [PMID: 27257806 DOI: 10.1002/dvg.22951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/31/2016] [Accepted: 05/31/2016] [Indexed: 01/12/2023]
Abstract
Tricho-rhino-phalangeal syndrome (TRPS) is a rare congenital disorder that is characterized by abnormal hair growth and skeletal deformities. These result in sparse hair, short stature, and early onset of joint problems. Recent reports have shown that a relatively high proportion of patients with TRPS exhibit a broad range of congenital heart defects. To determine the regulation of Trps1 transcription in vivo, we generated novel transgenic mice, which expressed Cre recombinase under the murine Trps1 proximal promoter sequence (Trps1-Cre). We crossed these mice with Cre reporter mice to identify Trps1 daughter cells. Labeled cells were observed in the appendicular joint tissue, dermal papilla of the hair follicles, cardiac valves, aortic sinus, atrial walls, and the interventricular septum. In situ analysis showed restricted Trps1 expression, which was observed in endocardial cushions of the outflow tract, and in leaflets of all mature cardiac valves. These results suggest that the Trps1 proximal promoter sequence contains some of the tissue-specific Trps1 regulatory region. Further, our findings partially explain why patients with TRPS show a broad range of congenital cardiac defects, although Trps1 expression is observed in a more restricted fashion. genesis 54:379-388, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ahmed G Nomir
- Department of Oral Anatomy and Developmental Biology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan.,Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Damnhour University, Egypt
| | - Yuto Takeuchi
- Department of Oral Anatomy and Developmental Biology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan.,Department of Orthodontics, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Junji Fujikawa
- Department of Oral Anatomy and Developmental Biology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Ashraf A El Sharaby
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Damnhour University, Egypt
| | - Satoshi Wakisaka
- Department of Oral Anatomy and Developmental Biology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Makoto Abe
- Department of Oral Anatomy and Developmental Biology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| |
Collapse
|
18
|
Miyashita T, Diogo R. Evolution of Serial Patterns in the Vertebrate Pharyngeal Apparatus and Paired Appendages via Assimilation of Dissimilar Units. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
19
|
Abe S, Yamaguchi S, Sato Y, Harada K. Sphere-Derived Multipotent Progenitor Cells Obtained From Human Oral Mucosa Are Enriched in Neural Crest Cells. Stem Cells Transl Med 2015; 5:117-28. [PMID: 26582909 DOI: 10.5966/sctm.2015-0111] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 09/16/2015] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED : Although isolation of oral mucosal stromal stem cells has been previously reported, complex isolation methods are not suitable for clinical application. The neurosphere culture technique is a convenient method for the isolation of neural stem cells and neural crest stem cells (NCSCs); neurosphere generation is a phenotype of NCSCs. However, the molecular details underlying the isolation and characterization of human oral mucosa stromal cells (OMSCs) by neurosphere culture are not understood. The purpose of the present study was to isolate NCSCs from oral mucosa using the neurosphere technique and to establish effective in vivo bone tissue regeneration methods. Human OMSCs were isolated from excised human oral mucosa; these cells formed spheres in neurosphere culture conditions. Oral mucosa sphere-forming cells (OMSFCs) were characterized by biological analyses of stem cells. Additionally, composites of OMSFCs and multiporous polylactic acid scaffolds were implanted subcutaneously into immunocompromised mice. OMSFCs had the capacity for self-renewal and expressed neural crest-related markers (e.g., nestin, CD44, slug, snail, and MSX1). Furthermore, upregulated expression of neural crest-related genes (EDNRA, Hes1, and Sox9) was observed in OMSFCs, which are thought to contain an enriched population of neural crest-derived cells. The expression pattern of α2-integrin (CD49b) in OMSFCs also differed from that in OMSCs. Finally, OMSFCs were capable of differentiating into neural crest lineages in vitro and generating ectopic bone tissues even in the subcutaneous region. The results of the present study suggest that OMSFCs are an ideal source of cells for the neural crest lineage and hard tissue regeneration. SIGNIFICANCE The sphere culture technique is a convenient method for isolating stem cells. However, the isolation and characterization of human oral mucosa stromal cells (OMSCs) using the sphere culture system are not fully understood. The present study describes the isolation of neural crest progenitor cells from oral mucosa using this system. Human OMSCs form spheres that exhibit self-renewal capabilities and multipotency, and are enriched with neural crest-derived cells. These oral mucosa sphere-forming cells can generate ectopic bone tissue in vivo. Therefore, the results of the present study show that the sphere culture system can be applied, without the need for complex isolation techniques, to produce multipotent spheres with the properties of neural crest stem cells. Furthermore, a convenient strategy is demonstrated for the isolation and culture of human OMSCs that could have clinical applications.
Collapse
Affiliation(s)
- Shigehiro Abe
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoshi Yamaguchi
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yutaka Sato
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kiyoshi Harada
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
20
|
Miyashita T. Fishing for jaws in early vertebrate evolution: a new hypothesis of mandibular confinement. Biol Rev Camb Philos Soc 2015; 91:611-57. [DOI: 10.1111/brv.12187] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Tetsuto Miyashita
- Department of Biological Sciences; University of Alberta; Edmonton Alberta T6G 2E9 Canada
| |
Collapse
|
21
|
Cre recombinase-regulated Endothelin1 transgenic mouse lines: novel tools for analysis of embryonic and adult disorders. Dev Biol 2015; 400:191-201. [PMID: 25725491 DOI: 10.1016/j.ydbio.2015.01.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 12/31/2014] [Accepted: 01/25/2015] [Indexed: 01/06/2023]
Abstract
Endothelin-1 (EDN1) influences both craniofacial and cardiovascular development and a number of adult physiological conditions by binding to one or both of the known endothelin receptors, thus initiating multiple signaling cascades. Animal models containing both conventional and conditional loss of the Edn1 gene have been used to dissect EDN1 function in both embryos and adults. However, while transgenic Edn1 over-expression or targeted genomic insertion of Edn1 has been performed to understand how elevated levels of Edn1 result in or exacerbate disease states, an animal model in which Edn1 over-expression can be achieved in a spatiotemporal-specific manner has not been reported. Here we describe the creation of Edn1 conditional over-expression transgenic mouse lines in which the chicken β-actin promoter and an Edn1 cDNA are separated by a strong stop sequence flanked by loxP sites. In the presence of Cre, the stop cassette is removed, leading to Edn1 expression. Using the Wnt1-Cre strain, in which Cre expression is targeted to the Wnt1-expressing domain of the central nervous system (CNS) from which neural crest cells (NCCs) arise, we show that stable chicken β-actin-Edn1 (CBA-Edn1) transgenic lines with varying EDN1 protein levels develop defects in NCC-derived tissues of the face, though the severity differs between lines. We also show that Edn1 expression can be achieved in other embryonic tissues utilizing other Cre strains, with this expression also resulting in developmental defects. CBA-Edn1 transgenic mice will be useful in investigating diverse aspects of EDN1-mediated-development and disease, including understanding how NCCs achieve and maintain a positional and functional identity and how aberrant EDN1 levels can lead to multiple physiological changes and diseases.
Collapse
|
22
|
Kim KS, Arima Y, Kitazawa T, Nishiyama K, Asai R, Uchijima Y, Sato T, Levi G, Kitanaka S, Igarashi T, Kurihara Y, Kurihara H. Endothelin regulates neural crest deployment and fate to form great vessels through Dlx5/Dlx6-independent mechanisms. Mech Dev 2013; 130:553-66. [PMID: 23933587 DOI: 10.1016/j.mod.2013.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 07/07/2013] [Accepted: 07/19/2013] [Indexed: 12/15/2022]
Abstract
Endothelin-1 (Edn1), originally identified as a vasoconstrictor peptide, is involved in the development of cranial/cardiac neural crest-derived tissues and organs. In craniofacial development, Edn1 binds to Endothelin type-A receptor (Ednra) to induce homeobox genes Dlx5/Dlx6 and determines the mandibular identity in the first pharyngeal arch. However, it remains unsolved whether this pathway is also critical for pharyngeal arch artery development to form thoracic arteries. Here, we show that the Edn1/Ednra signaling is involved in pharyngeal artery development by controlling the fate of neural crest cells through a Dlx5/Dlx6-independent mechanism. Edn1 and Ednra knock-out mice demonstrate abnormalities in pharyngeal arch artery patterning, which include persistent first and second pharyngeal arteries, resulting in additional branches from common carotid arteries. Neural crest cell labeling with Wnt1-Cre transgene and immunostaining for smooth muscle cell markers revealed that neural crest cells abnormally differentiate into smooth muscle cells at the first and second pharyngeal arteries of Ednra knock-out embryos. By contrast, Dlx5/Dlx6 knockout little affect the development of pharyngeal arch arteries and coronary arteries, the latter of which is also contributed by neural crest cells through an Edn-dependent mechanism. These findings indicate that the Edn1/Ednra signaling regulates neural crest differentiation to ensure the proper patterning of pharyngeal arch arteries, which is independent of the regional identification of the pharyngeal arches along the dorsoventral axis mediated by Dlx5/Dlx6.
Collapse
Affiliation(s)
- Ki-Sung Kim
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
edn1 and hand2 Interact in early regulation of pharyngeal arch outgrowth during zebrafish development. PLoS One 2013; 8:e67522. [PMID: 23826316 PMCID: PMC3691169 DOI: 10.1371/journal.pone.0067522] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/20/2013] [Indexed: 12/02/2022] Open
Abstract
Endothelin-1 (Edn1) signaling provides a critical input to development of the embryonic pharygneal arches and their skeletal derivatives, particularly the articulating joints and the ventral skeleton including the lower jaw. Previous work in zebrafish has mostly focused on the role of Edn1 in dorsal-ventral (DV) patterning, but Edn1 signaling must also regulate tissue size, for with severe loss of the pathway the ventral skeleton is not only mispatterned, but is also prominently hypoplastic – reduced in size. Here we use mutational analyses to show that in the early pharyngeal arches, ventral-specific edn1-mediated proliferation of neural crest derived cells is required for DV expansion and outgrowth, and that this positive regulation is counterbalanced by a negative one exerted through a pivotal, ventrally expressed Edn1-target gene, hand2. We also describe a new morphogenetic cell movement in the ventral first arch, sweeping cells anterior in the arch to the region where the lower jaw forms. This movement is negatively regulated by hand2 in an apparently edn1-independent fashion. These findings point to complexity of regulation by edn1 and hand2 at the earliest stages of pharyngeal arch development, in which control of growth and morphogenesis can be genetically separated.
Collapse
|
24
|
Sheehan-Rooney K, Swartz ME, Lovely CB, Dixon MJ, Eberhart JK. Bmp and Shh signaling mediate the expression of satb2 in the pharyngeal arches. PLoS One 2013; 8:e59533. [PMID: 23555697 PMCID: PMC3605343 DOI: 10.1371/journal.pone.0059533] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 02/15/2013] [Indexed: 12/16/2022] Open
Abstract
In human, mutation of the transcription factor SATB2 causes severe defects to the palate and jaw. The expression and sequence of SATB2 is highly conserved across vertebrate species, including zebrafish. We sought to understand the regulation of satb2 using the zebrafish model system. Due to the normal expression domains of satb2, we analyzed satb2 expression in mutants with disrupted Hh signaling or defective ventral patterning. While satb2 expression appears independent of Edn1 signaling, appropriate expression requires Shha, Smo, Smad5 and Hand2 function. Transplantation experiments show that neural crest cells receive both Bmp and Hh signaling to induce satb2 expression. Dorsomorphin- and cyclopamine-mediated inhibition of Bmp and Hh signaling, respectively, suggests that proper satb2 expression requires a relatively earlier Bmp signal and a later Hh signal. We propose that Bmp signaling establishes competence for the neural crest to respond to Hh signaling, thus inducing satb2 expression.
Collapse
Affiliation(s)
- Kelly Sheehan-Rooney
- Section of Molecular, Cell and Developmental Biology, Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Mary E. Swartz
- Section of Molecular, Cell and Developmental Biology, Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - C. Ben Lovely
- Section of Molecular, Cell and Developmental Biology, Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Michael J. Dixon
- Faculty of Life Sciences and Faculty of Medical and Human Sciences, Manchester Academic Health Sciences Centre, Michael Smith Building, University of Manchester, Manchester, United Kingdom
| | - Johann K. Eberhart
- Section of Molecular, Cell and Developmental Biology, Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
25
|
Tavares ALP, Garcia EL, Kuhn K, Woods CM, Williams T, Clouthier DE. Ectodermal-derived Endothelin1 is required for patterning the distal and intermediate domains of the mouse mandibular arch. Dev Biol 2012; 371:47-56. [PMID: 22902530 DOI: 10.1016/j.ydbio.2012.08.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 07/18/2012] [Accepted: 08/04/2012] [Indexed: 10/28/2022]
Abstract
Morphogenesis of the vertebrate head relies on proper dorsal-ventral (D-V) patterning of neural crest cells (NCC) within the pharyngeal arches. Endothelin-1 (Edn1)-induced signaling through the endothelin-A receptor (Ednra) is crucial for cranial NCC patterning within the mandibular portion of the first pharyngeal arch, from which the lower jaw arises. Deletion of Edn1, Ednra or endothelin-converting enzyme in mice causes perinatal lethality due to severe craniofacial birth defects. These include homeotic transformation of mandibular arch-derived structures into more maxillary-like structures, indicating a loss of NCC identity. All cranial NCCs express Ednra whereas Edn1 expression is limited to the overlying ectoderm, core paraxial mesoderm and pharyngeal pouch endoderm of the mandibular arch as well as more caudal arches. To define the developmental significance of Edn1 from each of these layers, we used Cre/loxP technology to inactivate Edn1 in a tissue-specific manner. We show that deletion of Edn1 in either the mesoderm or endoderm alone does not result in cellular or molecular changes in craniofacial development. However, ectodermal deletion of Edn1 results in craniofacial defects with concomitant changes in the expression of early mandibular arch patterning genes. Importantly, our results also both define for the first time in mice an intermediate mandibular arch domain similar to the one defined in zebrafish and show that this region is most sensitive to loss of Edn1. Together, our results illustrate an integral role for ectoderm-derived Edn1 in early arch morphogenesis, particularly in the intermediate domain.
Collapse
Affiliation(s)
- Andre L P Tavares
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | | | | | | | | |
Collapse
|
26
|
Zhang Y, Blackwell EL, McKnight MT, Knutsen GR, Vu WT, Ruest LB. Specific inactivation of Twist1 in the mandibular arch neural crest cells affects the development of the ramus and reveals interactions with hand2. Dev Dyn 2012; 241:924-40. [PMID: 22411303 DOI: 10.1002/dvdy.23776] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2012] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND The basic helix-loop-helix (bHLH) transcription factor Twist1 fulfills an essential function in neural crest cell formation, migration, and survival and is associated with the craniosynostic Saethre-Chotzen syndrome in humans. However, its functions during mandibular development, when it may interact with other bHLH transcription factors like Hand2, are unknown because mice homozygous for the Twist1 null mutation die in early embryogenesis. To determine the role of Twist1 during mandibular development, we used the Hand2-Cre transgene to conditionally inactivate the gene in the neural crest cells populating the mandibular pharyngeal arch. RESULTS The mutant mice exhibited a spectrum of craniofacial anomalies, including mandibular hypoplasia, altered middle ear development, and cleft palate. It appears that Twist1 is essential for the survival of the neural crest cells involved in the development of the mandibular ramal elements. Twist1 plays a role in molar development and cusp formation by participating in the reciprocal signaling needed for the formation of the enamel knot. This gene is also needed to control the ossification of the mandible, a redundant role shared with Hand2. CONCLUSION Twist1, along with Hand2, is essential for the proximodistal patterning and development of the mandible and ossification.
Collapse
Affiliation(s)
- Yanping Zhang
- Department of Biomedical Sciences, TAMHSC-Baylor College of Dentistry, Dallas, Texas, USA
| | | | | | | | | | | |
Collapse
|
27
|
Zhang Y, Ruest LB. Analysis of neural crest cell fate during cardiovascular development using Cre-activated lacZ/β-galactosidase staining. Methods Mol Biol 2012; 843:125-138. [PMID: 22222527 DOI: 10.1007/978-1-61779-523-7_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
It is important to identify the mechanisms regulating cardiovascular development. However, complex genetic tools are often required, including transgenic animals that express the lacZ transgene encoding the β-galactosidase enzyme under the control of a specific promoter or following recombination with the Cre recombinase. The latter can be useful for identifying specific cell populations of the developing cardiovascular system, including neural crest cells. The tracking of these cells can help clarify their fate in mutant embryos and elucidate the etiology of some congenital cardiovascular birth defects. This chapter highlights the methods used to stain embryonic tissues in whole mount or sections to detect the expression of the lacZ transgene with a focus on tracking cardiac neural crest cells using the Wnt1-Cre and R26R mouse lines. We also provide a protocol using fluorescence-activated cell sorting for collecting neural crest cells for further analysis. These protocols can be used with any embryos expressing Cre and lacZ.
Collapse
Affiliation(s)
- Yanping Zhang
- Department of Biomedical Sciences, Texas A&M Healthy Science Center-Baylor College of Dentistry, Dallas, TX, USA
| | | |
Collapse
|
28
|
Barron F, Woods C, Kuhn K, Bishop J, Howard MJ, Clouthier DE. Downregulation of Dlx5 and Dlx6 expression by Hand2 is essential for initiation of tongue morphogenesis. Development 2011; 138:2249-59. [PMID: 21558373 DOI: 10.1242/dev.056929] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Lower jaw development is a complex process in which multiple signaling cascades establish a proximal-distal organization. These cascades are regulated both spatially and temporally and are constantly refined through both induction of normal signals and inhibition of inappropriate signals. The connective tissue of the tongue arises from cranial neural crest cell-derived ectomesenchyme within the mandibular portion of the first pharyngeal arch and is likely to be impacted by this signaling. Although the developmental mechanisms behind later aspects of tongue development, including innervation and taste acquisition, have been elucidated, the early patterning signals driving ectomesenchyme into a tongue lineage are largely unknown. We show here that the basic helix-loop-helix transcription factor Hand2 plays key roles in establishing the proximal-distal patterning of the mouse lower jaw, in part through establishing a negative-feedback loop in which Hand2 represses Dlx5 and Dlx6 expression in the distal arch ectomesenchyme following Dlx5- and Dlx6-mediated induction of Hand2 expression in the same region. Failure to repress distal Dlx5 and Dlx6 expression results in upregulation of Runx2 expression in the mandibular arch and the subsequent formation of aberrant bone in the lower jaw along with proximal-distal duplications. In addition, there is an absence of lateral lingual swelling expansion, from which the tongue arises, resulting in aglossia. Hand2 thus appears to establish a distal mandibular arch domain that is conducive for lower jaw development, including the initiation of tongue mesenchyme morphogenesis.
Collapse
Affiliation(s)
- Francie Barron
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | | | | | | | | |
Collapse
|
29
|
Vieux-Rochas M, Bouhali K, Baudry S, Fontaine A, Coen L, Levi G. Irreversible effects of retinoic acid pulse on Xenopus jaw morphogenesis: new insight into cranial neural crest specification. ACTA ACUST UNITED AC 2011; 89:493-503. [PMID: 21086490 DOI: 10.1002/bdrb.20269] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Jaws are formed by cephalic neural crest (CNCCs) and mesodermal cells migrating to the first pharyngeal arch (PA1). A complex signaling network involving different PA1 components then establishes the jaw morphogenetic program. To gather insight on this developmental process, in this study, we analyze the teratogenic effects of brief (1-15 min) pulses of low doses of retinoic acid (RA: 0.25-2 µM) or RA agonists administered to early Xenopus laevis (X.l.) embryos. We show that these brief pulses of RA cause permanent craniofacial defects specifically when treatments are performed during a 6-hr window (developmental stages NF15-NF23) that covers the period of CNCCs maintenance, migration, and specification. Earlier or later treatments have no effect. Similar treatments performed at slightly different developmental stages within this temporal window give rise to different spectra of malformations. The RA-dependent teratogenic effects observed in Xenopus can be partially rescued by folinic acid. We provide evidence suggesting that in Xenopus, as in the mouse, RA causes craniofacial malformations by perturbing signaling to CNCCs. Differently from the mouse, where RA affects CNCCs only at the end of their migration, in Xenopus, RA has an effect on CNCCs during all the period ranging from their exit from the neural tube until their arrival in the PA1. Our findings provide a conceptual framework to understand the origin of individual facial features and the evolution of different craniofacial morphotypes.
Collapse
Affiliation(s)
- Maxence Vieux-Rochas
- Evolution des Régulations Endocriniennes, CNRS, UMR7221, Muséum National d'Histoire Naturelle, Paris, France
| | | | | | | | | | | |
Collapse
|
30
|
Kobayashi NR, Hawes SM, Crook JM, Pébay A. G-protein coupled receptors in stem cell self-renewal and differentiation. Stem Cell Rev Rep 2010; 6:351-66. [PMID: 20625855 DOI: 10.1007/s12015-010-9167-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Stem cells have great potential for understanding early development, treating human disease, tissue trauma and early phase drug discovery. The factors that control the regulation of stem cell survival, proliferation, migration and differentiation are still emerging. Some evidence now exists demonstrating the potent effects of various G-protein coupled receptor (GPCR) ligands on the biology of stem cells. This review aims to give an overview of the current knowledge of the regulation of embryonic and somatic stem cell maintenance and differentiation by GPCR ligands.
Collapse
|
31
|
Clouthier DE, Garcia E, Schilling TF. Regulation of facial morphogenesis by endothelin signaling: insights from mice and fish. Am J Med Genet A 2010; 152A:2962-73. [PMID: 20684004 PMCID: PMC2974943 DOI: 10.1002/ajmg.a.33568] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Craniofacial morphogenesis is accomplished through a complex set of developmental events, most of which are initiated in neural crest cells within the pharyngeal arches. Local patterning cues from the surrounding environment induce gene expression within neural crest cells, leading to formation of a diverse set of skeletal elements. Endothelin-1 (Edn1) is one of the primary signals that establishes the identity of neural crest cells within the mandibular portion of the first pharyngeal arch. Signaling through its cognate receptor, the endothelin-A receptor, is critical for patterning the ventral/distal portion of the arch (lower jaw) and also participates with Hox genes in patterning more posterior arches. Edn1/Ednra signaling is highly conserved between mouse and zebrafish, and genetic analyses in these two species have provided complementary insights into the patterning cues responsible for establishing the craniofacial complex as well as the genetic basis of facial birth defect syndromes.
Collapse
Affiliation(s)
- David E Clouthier
- Department of Craniofacial Biology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado 80045, USA.
| | | | | |
Collapse
|
32
|
Kulesa PM, Bailey CM, Kasemeier-Kulesa JC, McLennan R. Cranial neural crest migration: new rules for an old road. Dev Biol 2010; 344:543-54. [PMID: 20399765 PMCID: PMC2914193 DOI: 10.1016/j.ydbio.2010.04.010] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 04/06/2010] [Accepted: 04/09/2010] [Indexed: 10/19/2022]
Abstract
The neural crest serve as an excellent model to better understand mechanisms of embryonic cell migration. Cell tracing studies have shown that cranial neural crest cells (CNCCs) emerge from the dorsal neural tube in a rostrocaudal manner and are spatially distributed along stereotypical, long distance migratory routes to precise targets in the head and branchial arches. Although the CNCC migratory pattern is a beautifully choreographed and programmed invasion, the underlying orchestration of molecular events is not well known. For example, it is still unclear how single CNCCs react to signals that direct their choice of direction and how groups of CNCCs coordinate their interactions to arrive at a target in an ordered manner. In this review, we discuss recent cellular and molecular discoveries of the CNCC migratory pattern. We focus on events from the time when CNCCs encounter the tissue adjacent to the neural tube and their travel through different microenvironments and into the branchial arches. We describe the patterning of discrete cell migratory streams that emerge from the hindbrain, rhombomere (r) segments r1-r7, and the signals that coordinate directed migration. We propose a model that attempts to unify many complex events that establish the CNCC migratory pattern, and based on this model we integrate information between cranial and trunk neural crest development.
Collapse
Affiliation(s)
- Paul M Kulesa
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.
| | | | | | | |
Collapse
|
33
|
McLennan R, Kulesa PM. Neuropilin-1 interacts with the second branchial arch microenvironment to mediate chick neural crest cell dynamics. Dev Dyn 2010; 239:1664-73. [PMID: 20503363 PMCID: PMC3077279 DOI: 10.1002/dvdy.22303] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Cranial neural crest cells (NCCs) require neuropilin signaling to reach and invade the branchial arches. Here, we use an in vivo chick model to investigate whether the neuropilin-1 knockdown phenotype is specific to the second branchial arch (ba2), changes in NCC behaviors and phenotypic consequences, and whether neuropilins work together to facilitate entry into and invasion of ba2. We find that cranial NCCs with reduced neuropilin-1 expression displayed shorter protrusions and decreased cell body and nuclear length-to-width ratios characteristic of a loss in polarity and motility, after specific interaction with ba2. Directed NCC migration was rescued by transplantation of transfected NCCs into rhombomere 4 of younger hosts. Lastly, reduction of neuropilin-2 expression by shRNA either solely or with reduction of neuropilin-1 expression did not lead to a stronger head phenotype. Thus, NCCs, independent of rhombomere origin, require neuropilin-1, but not neuropilin-2 to maintain polarity and directed migration into ba2.
Collapse
Affiliation(s)
- Rebecca McLennan
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | | |
Collapse
|
34
|
Vieux-Rochas M, Mantero S, Heude E, Barbieri O, Astigiano S, Couly G, Kurihara H, Levi G, Merlo GR. Spatio-temporal dynamics of gene expression of the Edn1-Dlx5/6 pathway during development of the lower jaw. Genesis 2010; 48:262-373. [PMID: 20333701 DOI: 10.1002/dvg.20625] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The morphogenesis of the vertebrate skull results from highly dynamic integrated processes involving the exchange of signals between the ectoderm, the endoderm, and cephalic neural crest cells (CNCCs). Before migration CNCCs are not committed to form any specific skull element, molecular signals exchanged in restricted regions of tissue interaction are crucial in providing positional identity to the CNCCs mesenchyme and activate the specific morphogenetic process of different skeletal components of the head. In particular, the endothelin-1 (Edn1)-dependent activation of Dlx5 and Dlx6 in CNCCs that colonize the first pharyngeal arch (PA1) is necessary and sufficient to specify maxillo-mandibular identity. Here, to better analyze the spatio-temporal dynamics of this process, we associate quantitative gene expression analysis with detailed examination of skeletal phenotypes resulting from combined allelic reduction of Edn1, Dlx5, and Dlx6. We show that Edn1-dependent and -independent regulatory pathways act at different developmental times in distinct regions of PA1. The Edn1-->Dlx5/6-->Hand2 pathway is already active at E9.5 during early stages of CNCCs colonization. At later stages (E10.5) the scenario is more complex: we propose a model in which PA1 is subdivided into four adjacent territories in which distinct regulations are taking place. This new developmental model may provide a conceptual framework to interpret the craniofacial malformations present in several mouse mutants and in human first arch syndromes. More in general, our findings emphasize the importance of quantitative gene expression in the fine control of morphogenetic events.
Collapse
|
35
|
Enteric neural crest differentiation in ganglioneuromas implicates Hedgehog signaling in peripheral neuroblastic tumor pathogenesis. PLoS One 2009; 4:e7491. [PMID: 19834598 PMCID: PMC2759000 DOI: 10.1371/journal.pone.0007491] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 08/18/2009] [Indexed: 01/11/2023] Open
Abstract
Peripheral neuroblastic tumors (PNTs) share a common origin in the sympathetic nervous system, but manifest variable differentiation and growth potential. Malignant neuroblastoma (NB) and benign ganglioneuroma (GN) stand at opposite ends of the clinical spectrum. We hypothesize that a common PNT progenitor is driven to variable differentiation by specific developmental signaling pathways. To elucidate developmental pathways that direct PNTs along the differentiation spectrum, we compared the expression of genes related to neural crest development in GN and NB. In GNs, we found relatively low expression of sympathetic markers including adrenergic biosynthesis enzymes, indicating divergence from sympathetic fate. In contrast, GNs expressed relatively high levels of enteric neuropeptides and key constituents of the Hedgehog (HH) signaling pathway, including Dhh, Gli1 and Gli3. Predicted HH targets were also differentially expressed in GN, consistent with transcriptional response to HH signaling. These findings indicate that HH signaling is specifically active in GN. Together with the known role of HH activity in enteric neural development, these findings further suggested a role for HH activity in directing PNTs away from the sympathetic lineage toward a benign GN phenotype resembling enteric ganglia. We tested the potential for HH signaling to advance differentiation in PNTs by transducing NB cell lines with Gli1 and determining phenotypic and transcriptional response. Gli1 inhibited proliferation of NB cells, and induced a pattern of gene expression that resembled the differential pattern of gene expression of GN, compared to NB (p<0.00001). Moreover, the transcriptional response of SY5Y cells to Gli1 transduction closely resembled the transcriptional response to the differentiation agent retinoic acid (p<0.00001). Notably, Gli1 did not induce N-MYC expression in neuroblastoma cells, but strongly induced RET, a known mediator of RA effect. The decrease in NB cell proliferation induced by Gli1, and the similarity in the patterns of gene expression induced by Gli1 and by RA, corroborated by closely matched gene sets in GN tumors, all support a model in which HH signaling suppresses PNT growth by promoting differentiation along alternative neural crest pathways.
Collapse
|
36
|
Bildsoe H, Loebel DAF, Jones VJ, Chen YT, Behringer RR, Tam PPL. Requirement for Twist1 in frontonasal and skull vault development in the mouse embryo. Dev Biol 2009; 331:176-88. [PMID: 19414008 DOI: 10.1016/j.ydbio.2009.04.034] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Revised: 04/27/2009] [Accepted: 04/27/2009] [Indexed: 01/10/2023]
Abstract
Using a Cre-mediated conditional deletion approach, we have dissected the function of Twist1 in the morphogenesis of the craniofacial skeleton. Loss of Twist1 in neural crest cells and their derivatives impairs skeletogenic differentiation and leads to the loss of bones of the snout, upper face and skull vault. While no anatomically recognizable maxilla is formed, a malformed mandible is present. Since Twist1 is expressed in the tissues of the maxillary eminence and the mandibular arch, this finding suggests that the requirement for Twist1 is not the same in all neural crest derivatives. The effect of the loss of Twist1 function is not restricted to neural crest-derived bones, since the predominantly mesoderm-derived parietal and interparietal bones are also affected, presumably as a consequence of lost interactions with neural crest-derived tissues. In contrast, the formation of other mesodermal skeletal derivatives such as the occipital bones and most of the chondrocranium are not affected by the loss of Twist1 in the neural crest cells.
Collapse
Affiliation(s)
- Heidi Bildsoe
- Children's Medical Research Institute, The University of Sydney, Wentworthville, NSW, Australia
| | | | | | | | | | | |
Collapse
|
37
|
Ruest LB, Clouthier DE. Elucidating timing and function of endothelin-A receptor signaling during craniofacial development using neural crest cell-specific gene deletion and receptor antagonism. Dev Biol 2009; 328:94-108. [PMID: 19185569 PMCID: PMC2821796 DOI: 10.1016/j.ydbio.2009.01.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 12/12/2008] [Accepted: 01/06/2009] [Indexed: 12/31/2022]
Abstract
Cranial neural crest cells (NCCs) play an intimate role in craniofacial development. Multiple signaling cascades participate in patterning cranial NCCs, some of which are regulated by endothelin-A receptor (Ednra) signaling. Ednra(-/-) embryos die at birth from severe craniofacial defects resulting from disruption of neural crest cell patterning and differentiation. These defects include homeotic transformation of lower jaw structures into upper jaw-like structures, suggesting that some cephalic NCCs alter their "identity" in the absence of Ednra signaling. To elucidate the temporal necessity for Ednra signaling in vivo, we undertook two strategies. We first used a conditional knockout strategy in which mice containing a conditionally targeted Ednra allele (Ednra(fl)) were bred with mice from the Hand2-Cre and Wnt1-Cre transgenic mouse strains, two strains in which Cre expression occurs at different time periods within cranial NCCs. In our second approach, we used an Ednra-specific antagonist to treat wild type pregnant mice between embryonic days E8.0 and E10.0, a time frame encompassing the early migration and proliferation of cranial NCCs. The combined results suggest that Ednra function is crucial for NCC development between E8.25 and E9.0, a time period encompassing the arrival of NCCs in the arches and/or early post-migratory patterning. After this time period, Ednra signaling is dispensable. Interestingly, middle ear structures are enlarged and malformed in a majority of Ednra(fl/fl);Wnt1-Cre embryos, instead resembling structures found in extinct predecessors of mammals. These observations suggest that the advent of Ednra signaling in cranial NCCs may have been a crucial event in the evolution of the mammalian middle ear ossicles.
Collapse
Affiliation(s)
| | - David E. Clouthier
- Department of Craniofacial Biology, University of Colorado Denver, Aurora, CO 80045, USA
| |
Collapse
|
38
|
Sato T, Kawamura Y, Asai R, Amano T, Uchijima Y, Dettlaff-Swiercz DA, Offermanns S, Kurihara Y, Kurihara H. Recombinase-mediated cassette exchange reveals the selective use of Gq/G11-dependent and -independent endothelin 1/endothelin type A receptor signaling in pharyngeal arch development. Development 2008; 135:755-65. [PMID: 18199583 DOI: 10.1242/dev.012708] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The endothelin (Edn) system comprises three ligands (Edn1, Edn2 and Edn3) and their G-protein-coupled type A (Ednra) and type B (Ednrb) receptors. During embryogenesis, the Edn1/Ednra signaling is thought to regulate the dorsoventral axis patterning of pharyngeal arches via Dlx5/Dlx6 upregulation. To further clarify the underlying mechanism, we have established mice in which gene cassettes can be efficiently knocked-in into the Ednra locus using recombinase-mediated cassette exchange (RMCE) based on the Cre-lox system. The first homologous recombination introducing mutant lox-flanked Neo resulted in homeotic transformation of the lower jaw to an upper jaw, as expected. Subsequent RMCE-mediated knock-in of lacZ targeted its expression to the cranial/cardiac neural crest derivatives as well as in mesoderm-derived head mesenchyme. Knock-in of Ednra cDNA resulted in a complete rescue of craniofacial defects of Ednra-null mutants. By contrast, Ednrb cDNA could not rescue them except for the most distal pharyngeal structures. At early stages, the expression of Dlx5, Dlx6 and their downstream genes was downregulated and apoptotic cells distributed distally in the mandible of Ednrb-knock-in embryos. These results, together with similarity in craniofacial defects between Ednrb-knock-in mice and neural-crest-specific Galpha(q)/Galpha(11)-deficient mice, indicate that the dorsoventral axis patterning of pharyngeal arches is regulated by the Ednra-selective, G(q)/G(11)-dependent signaling, while the formation of the distal pharyngeal region is under the control of a G(q)/G(11)-independent signaling, which can be substituted by Ednrb. This RMCE-mediated knock-in system can serve as a useful tool for studies on gene functions in craniofacial development.
Collapse
Affiliation(s)
- Takahiro Sato
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|