1
|
Li Y, Zeng L, Peng Y, Liu J, Li X, Yang H. Study on the active ingredients and mechanism of Huyang Yangkun Formula for treating premature ovarian insufficiency via chemical profiling, network pharmacology, and experimental validation. J Pharm Biomed Anal 2025; 263:116951. [PMID: 40344967 DOI: 10.1016/j.jpba.2025.116951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/30/2025] [Accepted: 05/05/2025] [Indexed: 05/11/2025]
Abstract
Huyang Yangkun Formula (HYF) is a Chinese herbal remedy used for premature ovarian insufficiency (POI), though its active ingredients and mechanisms are not well understood.This study aims to identify HYF's chemical components and investigate its mechanism in treating POI. Using UHPLC-QE Focus HRMS, chemical profiling and quantification were conducted. The therapeutic effects and target validation of HYF were examined using a POI rat model, human ovarian granulosa cells (COV434), and network pharmacology. Molecular docking was used to predict the affinity of active compounds for the key target TP53. 125 compounds were identified in HYF, including flavonoids, organic acids, saponins and phenylethanoid glycosides. By using network pharmacological analysis, a total of 123 potential targets for the HYF treatment of POI were identified. PIK3R1, AKT1, EGFR, MMP2 and TP53 were deduced to be core targets of HYF for treating POI, and the main pathway included HIF-1, PI3K-Akt and P53 signaling pathway. HYF enhances follicle development and ovarian function by reducing apoptosis in ovarian granulosa cells in VCD-POI rats. In vitro, HYF decreased VCD-induced COV434 cell death. qRT-PCR and WB experiments identified the P53-mitochondrial apoptosis signaling pathway as the main target, with molecular docking showing Hyperoside, Isochlorogenic acid B, and Baohuoside I having the highest binding affinity to TP53.The potential active components and mechanisms of HYF in relation to POI were investigated through chemical profiling, network pharmacology, and both in vitro and in vivo experimental validation.
Collapse
Affiliation(s)
- Yang Li
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China; Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Liuxi Zeng
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Bengxi, liaoning 117000, China
| | - Yin Peng
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Jian Liu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China; Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Xiong Li
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China; Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Hongyan Yang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China; Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong Province 510120, China.
| |
Collapse
|
2
|
Jin S, Zhao H, Liu W, Ren Y, Peng C, Cheng Y, Cai H, Chen B, Lv C, Tan S, Wang S. An efficient and green pretreatment of Astragalus membranaceus fermentation with magnetic cellulose-immobilized Bacillus natto using deep eutectic solvent assisted for improving thrombolytic activity and evaluation of its antioxidant activity. Prep Biochem Biotechnol 2025:1-10. [PMID: 40423947 DOI: 10.1080/10826068.2025.2509897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
This study aimed to improve the thrombolytic activity of Astragalus membranaceus using magnetic cellulose-immobilized Bacillus natto fermentation. The fermentation parameters: time, temperature, pH, inoculum amount and solid-liquid ratio were screened by one-way experiments, and Plackett-Burman experiments were performed to determine the fermentation time, temperature, and inoculum amount as the key influencing factors, and the steepest-climbing experiments were performed to optimize the parameters, and then Box-Behnken design (BBD) experiments were conducted to determine the optimal conditions, which significantly increased the thrombolytic efficiency of Astragalus membranaceus immobilized natto fermentation to 311.156 IU/mg and exhibited superior antioxidant activity at 52.23 h of fermentation, an inoculum volume of 1.54 g/g, and a liquid-solid ratio of 30.61 mL/g. In addition, introducing deep eutectic solvent (DES) further enhanced the damage effect. The optimal type and concentration of DES were determined by screening. The magnetic cellulose system exhibited excellent thrombolytic activity and reusability compared to the calcium alginate immobilized system. This study provides a new strategy for immobilizing Bacillus natto provides a scientific basis for developing novel and efficient thrombolytic agents and highlights the potential of magnetic cellulose systems for biocatalysis and biomedical applications.
Collapse
Affiliation(s)
- Shuang Jin
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Huayong Zhao
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Weili Liu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Yubin Ren
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Cailiang Peng
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Yupeng Cheng
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Hongyao Cai
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Biqiong Chen
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Chen Lv
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Siran Tan
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Siyuan Wang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, PR China
| |
Collapse
|
3
|
Xia T, Yan Z, Shen P, Chang M, Zhang N, Zhang Y, Chen Q, Wang R, Tong L, Zhou W, Ni Z, Gao Y. Neuroprotective Effects of Qi Jing Wan and Its Active Ingredient Diosgenin Against Cognitive Impairment in Plateau Hypoxia. Pharmaceuticals (Basel) 2025; 18:738. [PMID: 40430556 PMCID: PMC12114856 DOI: 10.3390/ph18050738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 05/03/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: High-altitude environments have a significant detrimental impact on the cognitive functions of the brain. Qi Jing Wan (QJW), a traditional herbal formula composed of Angelica sinensis, Astragalus membranaceus, and Rhizoma Polygonati Odorati, has demonstrated potential efficacy in treating cognitive disorders. However, its effects on cognitive dysfunction in plateau hypoxic environments remain unclear. Methods: In this study, acute and chronic plateau cognitive impairment mouse models were constructed to investigate the preventive and therapeutic effects of QJW and its significant active ingredient, diosgenin (Dio). Behavioral experiments were conducted to assess learning and memory in mice. Morphological changes in hippocampal neurons and synapses were assessed, and microglial activation and inflammatory factor levels were measured to evaluate brain damage. Potential active ingredients capable of crossing the blood-brain barrier were identified through chemical composition analysis and network database screening, followed by validation in animal and brain organoid experiments. Transcriptomics analysis, immunofluorescence staining, and molecular docking techniques were employed to explore the underlying mechanisms. Results: QJW significantly enhanced learning and memory abilities in plateau model mice, reduced structural damage to hippocampal neurons, restored NeuN expression, inhibited inflammatory factor levels and microglial activation, and improved hippocampal synaptic damage. Transcriptomics analysis revealed that Dio alleviated hypoxic brain damage and protected cognitive function by regulating the expression of PDE4C. Conclusions: These findings indicate that QJW and its significant active ingredient Dio effectively mitigate hypoxic brain injury and prevent cognitive impairment in high-altitude environments.
Collapse
Affiliation(s)
- Tiantian Xia
- Department of Tranditional Chinese Medicine, Qinghai Unversity Medical College, Xining 810016, China; (T.X.); (N.Z.); (L.T.)
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (Z.Y.); (P.S.); (M.C.); (Y.Z.); (Q.C.); (W.Z.)
| | - Ziqiao Yan
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (Z.Y.); (P.S.); (M.C.); (Y.Z.); (Q.C.); (W.Z.)
- Chinese PLA Medical School, Chinese People’s Liberation Army (PLA) General Hospital, Beijing 100036, China
| | - Pan Shen
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (Z.Y.); (P.S.); (M.C.); (Y.Z.); (Q.C.); (W.Z.)
| | - Mingyang Chang
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (Z.Y.); (P.S.); (M.C.); (Y.Z.); (Q.C.); (W.Z.)
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Nan Zhang
- Department of Tranditional Chinese Medicine, Qinghai Unversity Medical College, Xining 810016, China; (T.X.); (N.Z.); (L.T.)
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (Z.Y.); (P.S.); (M.C.); (Y.Z.); (Q.C.); (W.Z.)
| | - Yunan Zhang
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (Z.Y.); (P.S.); (M.C.); (Y.Z.); (Q.C.); (W.Z.)
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Qi Chen
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (Z.Y.); (P.S.); (M.C.); (Y.Z.); (Q.C.); (W.Z.)
- Chinese PLA Medical School, Chinese People’s Liberation Army (PLA) General Hospital, Beijing 100036, China
| | - Rui Wang
- General Hospital of Xinjiang Military Command, PLA, Urumqi 830000, China;
| | - Li Tong
- Department of Tranditional Chinese Medicine, Qinghai Unversity Medical College, Xining 810016, China; (T.X.); (N.Z.); (L.T.)
| | - Wei Zhou
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (Z.Y.); (P.S.); (M.C.); (Y.Z.); (Q.C.); (W.Z.)
| | - Zhexin Ni
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (Z.Y.); (P.S.); (M.C.); (Y.Z.); (Q.C.); (W.Z.)
| | - Yue Gao
- Department of Tranditional Chinese Medicine, Qinghai Unversity Medical College, Xining 810016, China; (T.X.); (N.Z.); (L.T.)
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (Z.Y.); (P.S.); (M.C.); (Y.Z.); (Q.C.); (W.Z.)
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
4
|
Ma SD, Yuan R, Huang MW, Xin QQ, Miao Y, Zhu YZ, Chen KJ, Cong WH. Natural Anti-aging Herb: Role and Potential of Astragalus membranaceus. Chin J Integr Med 2025:10.1007/s11655-025-4009-4. [PMID: 40366565 DOI: 10.1007/s11655-025-4009-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2024] [Indexed: 05/15/2025]
Affiliation(s)
- Shu-Dong Ma
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Rong Yuan
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Mei-Wen Huang
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Qi-Qi Xin
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Yu Miao
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Yi-Zhun Zhu
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Ke-Ji Chen
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Wei-Hong Cong
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau, 999078, China.
| |
Collapse
|
5
|
Ji J, Yan H, Ye Y, Huang Z, Wang Y, Sun J, Sheng L, Zhang Y, Sun X. Plant polysaccharides with anti-aging effects and mechanism in evaluation model Caenorhabditis elegans. Int J Biol Macromol 2025; 308:142268. [PMID: 40112976 DOI: 10.1016/j.ijbiomac.2025.142268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/04/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
Aging in human evolution leads to function decline and immune weakening, causing severe problems. Plant polysaccharides, as a key source of dietary fiber, play vital roles in enhancing intestinal health, regulating blood glucose, lowering cholesterol, and offer promising strategies for aging prevention. This review begins by examining the characteristics and applications of polysaccharides and elucidates the mechanisms of anti-aging effect of plant polysaccharides. It focuses on nematodes as an ideal anti - aging model, expounding their aging indicator evaluation methods, highlighting key pathways and molecules for aging inhibition, and elaborating on related plant polysaccharides. As polysaccharide anti - aging research mainly focuses on plants, this study aims to support their use against aging. C. elegans provides new anti - aging insights, but limited understanding of plant polysaccharide structure challenges structure - activity analysis. The review presents C. elegans - based strategies and plant polysaccharide challenges for further research. In summary, this review proposes novel strategies developed by Caenorhabditis elegans in anti-aging research as well as the challenges facing plant polysaccharides, providing insights for further research on anti-aging plant polysaccharides.
Collapse
Affiliation(s)
- Jian Ji
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology, No. 19, Wenzhuang Road, Qiting Street, Yixing City, Wuxi, China
| | - Honglin Yan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhongjia Huang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuting Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Lina Sheng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yinzhi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology, No. 19, Wenzhuang Road, Qiting Street, Yixing City, Wuxi, China.
| |
Collapse
|
6
|
Xia H, He W, Lv C, Zhang J, Lin X, Qin S. The inhibitory effect of Astragalus flavone extract on hyperuricemia and its underlying molecular mechanism by targeting JNK/AP-1/NLRP3/IL-1β signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156622. [PMID: 40073779 DOI: 10.1016/j.phymed.2025.156622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 03/02/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
BACKGROUND Hyperuricemia (HUA) is a metabolic disease disturbing human health caused by the overproduction or underexcretion of uric acid (UA). Astragalus is the root of Astragalus membranaceus (Fisch.) Bunge, has notable regulatory effect on chronic nephritis, proteinuria and spontaneous sweating, suggesting it could be a potential anti-HUA agent. However, limited research has been conducted on its anti-HUA effect and mechanism. METHODS The present study performed untargeted and plasma metabolomics of Astragalus extract to identify the main constituents that can be absorbed and exert effect in mice, and further investigated the underlying mechanism by enzyme activity assay, Western Blotting and molecular docking. RESULTS The results showed that Astragalus flavone extract inhibited UA synthesis by binding to XOD to hinder substrate binding and inhibiting xanthine oxidase (XOD) protein expression, inhibited JNK/AP-1/NLRP3/IL-1β signaling pathway to alleviate prolonged HUA-induced inflammation and abnormal UA metabolism, and protected the kidney by reducing serum renal function index and improving renal tissue atrophy, fibrosis and tubular dilatation both in vitro and in vivo. Besides, glycitein and isoformononet were identified as the main flavones in Astragalus extract absorbed into the bloodstream of mice, isoformononetin was found to inhibit UA synthesis by direct binding to XOD, and glycitein was found to interact with c-Jun to facilitate UA excretion and inhibit inflammation. CONCLUSION This paper represents the pioneering investigation that firstly identifying two flavonoids of Astragalus extract that can be absorbed to fight against HUA, and elucidating their diverse molecular mechanism by targeting JNK/AP-1/NLRP3/IL-1β signaling pathway, UA metabolism and kidney protection.
Collapse
Affiliation(s)
- Hongjuan Xia
- Lab of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Wenjiang He
- Health Food R&D Center Infinitus, Guangzhou 510665, China
| | - Chenghao Lv
- College of Biological Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jieyan Zhang
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Xuan Lin
- Department of Endocrinology, CR & WISCO General Hospital, Wuhan University of Science and Technology, Wuhan 430080, China.
| | - Si Qin
- Lab of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
7
|
An H, Shao C, He Y, Zhou H, Wang T, Xu G, Yang J, Wan H. Calycosin Inhibit PANoptosis and Alleviate Brain Damage: A Bioinformatics and Experimental Verification Approach. ACS Chem Neurosci 2025; 16:1550-1564. [PMID: 40156525 DOI: 10.1021/acschemneuro.5c00072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2025] Open
Abstract
PANoptosis is a newly identified form of cell death that encompasses pyroptosis, apoptosis, and necroptosis. Numerous studies have highlighted the significance of PANoptosis in brain ischemia-reperfusion (I/R) injury. Calycosin, a natural product with diverse biological activities, has demonstrated a significant reduction in neuronal death caused by ischemic brain injury by modulating multiple cell death pathways. In order to investigate the potential mechanisms underlying the neuroprotective role of calycosin in alleviating PANoptosis-induced damage in ischemic stroke therapy, we used mouse hippocampal neuronal cell line HT22 to stimulate ischemia in vitro through Oxygen and Glucose Deprivation/Reperfusion (OGD/R) and established molecular docking to assess the binding affinity of Calycosin with key targets and molecular dynamics simulations (MDS) to study the stability of the ligand-protein complex. The results demonstrate that Calycosin could improve the cell growth of HT22, leading to enhanced cell viability, reduced lactate dehydrogenase leakage, and decreased cell apoptosis after OGD/R. It also regulated the expression of PANoptosis-related genes such as NLRP3, GSDMD, MLKL, and RIPK1 and increased the Bcl-2/Bax ratio, effectively reducing cellular damage and providing protection. Molecular docking and MDS simulations demonstrated strong binding activity and stability between Calycosin and PANoptosis-related targets. Furthermore, Calycosin successfully passed the drug similarity (DS) evaluation and exhibited favorable absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties and biological activity. In conclusion, Calycosin could alleviate ischemic stroke by inhibiting PANoptosis, reducing neuronal inflammation and apoptosis, and improving damage caused by the OGD/R. Thus, it could serve as a potential therapy for ischemic stroke.
Collapse
Affiliation(s)
- Huiyan An
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Chongyu Shao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Huifen Zhou
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Ting Wang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Guanfeng Xu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Jiehong Yang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Haitong Wan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
- School of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| |
Collapse
|
8
|
Zhong J, Fan X. Chinese herbal extract Astragalus radix potentiates human ovarian cancer cell cytotoxicity by aggravated ROS production and apoptosis. Comput Biol Chem 2025; 118:108457. [PMID: 40233474 DOI: 10.1016/j.compbiolchem.2025.108457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/21/2025] [Accepted: 04/01/2025] [Indexed: 04/17/2025]
Abstract
BACKGROUND Ovarian cancer remains one of the most lethal gynaecological malignancies due to its late diagnosis, and resistance to conventional therapies. Traditional Chinese Medicine (TCM) is increasingly explored for its potential in cancer treatment. This study investigates the anti-tumor effects of a Chinese herbal extract on an ovarian cancer cell line in vitro. METHODS The ovarian cancer cell lines OVCAR-3 and SK-OV-3 treated with varying concentrations of the Chinese herbal extract (Astragalus radix) at different course of time. Cell viability using the MTT assay, and apoptosis was examined by flow cytometry after staining with Annexin V/PI staining. Molecular docking and dynamics were carried out to examine the interaction of quinacetol with a well-known target of ovarian cancer, i.e., phosphoinositide 3-kinase (PI3K). RESULTS The Chinese herbal extract Astragalus radix significantly reduced the viability of ovarian cancer cells in a time- and dose- dependent way. Flow cytometry analysis revealed increased apoptotic rates in ovarian cancer cells compared to controls. Quinacetol was found to interact at active site of PI3K with binding energy of -6.9 kcal/mol. The PI3K-quinacetol complex was stable at physiological conditions as evident from molecular simulation studies. CONCLUSION The findings of this study demonstrate that the Chinese herbal extract (Astragalus radix) exhibits potent anti-tumor effects against ovarian cancer cells in vitro, highlighting its potential as an adjunct or alternative therapeutic option. Further in vivo studies in animal models and clinical trials are warranted to explore the efficacy and safety of this herbal treatment in ovarian cancer patients.
Collapse
Affiliation(s)
- Jianjian Zhong
- Department of Gynecology, Zhenjiang Fourth People's Hospital, Zhenjiang, Jiangsu 212000, China
| | - Xiaohua Fan
- Department of Gynecology, Zhenjiang Fourth People's Hospital, Zhenjiang, Jiangsu 212000, China.
| |
Collapse
|
9
|
Borowicz KK, Jach ME. Astragalus Membranaceus-Can It Delay Cellular Aging? Nutrients 2025; 17:1299. [PMID: 40284164 PMCID: PMC12029721 DOI: 10.3390/nu17081299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 03/31/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025] Open
Abstract
Astragalus membranaceus, a plant that has been utilized in traditional Chinese medicine for centuries, is widely regarded as one of the most valuable herbs in this medicinal tradition. It is commonly referred to as the "yellow leader", a designation that stems from the yellow hue of its most significant organ, the root, and its adaptogenic properties. The plant Astragalus is renowned for its abundance of active components, including polysaccharides, flavonoids, saponins, and an array of trace elements. It has been demonstrated that the administration of Astragalus can prevent cellular aging, owing to its diverse range of actions that provide protection to the body from both external and internal factors. The antioxidant, immunomodulatory, anti-inflammatory, and regenerative properties of this plant contribute to the maintenance of good skin condition, preventing atrophy of subcutaneous tissue and degeneration of facial bones. Systemic actions encompass the maintenance of function and protection of the cardiovascular, nervous, respiratory, digestive, excretory, immune, and endocrine systems. This article reviews the composition of Astragalus membranaceus and the beneficial effects of its root extract and its active substances on the whole body, with a particular focus on the anti-aging effects on the skin.
Collapse
Affiliation(s)
- Kinga K. Borowicz
- Independent Experimental Neuropathophysiology Unit, Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090 Lublin, Poland
| | - Monika E. Jach
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, Konstantynów Street 1I, 20-708 Lublin, Poland;
| |
Collapse
|
10
|
Liang W, Li Y, Lei S, Chen R, Shi H, Li F, Liao Z, Zhong C, She Y. Astragalus polysaccharide mediates lnc-GD2H to regulate proliferation and differentiation of C2C12 muscle cells under hypoxic condition. Tissue Cell 2025; 93:102731. [PMID: 39823705 DOI: 10.1016/j.tice.2025.102731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 01/20/2025]
Abstract
Astragalus polysaccharide (APS) is a bioactive component of Astragalus species that shows protective effects on C2C12 muscle cell proliferation and differentiation under hypoxic conditions. In this study, EdU staining, cell scratch testing, quantitative reverse-transcription polymerase chain reaction, Western blotting, immunofluorescence analysis, and lnc-GD2H silencing were used to investigated the protective effects and mechanisms of action of APS against CoCl2-induced hypoxic injury of muscle cells. Our results showed that APS promoted cell proliferation and increased the expression of lnc-GD2H, c-Myc, and Ki-67. In addition, APS protected against the effect of CoCl2 on differentiation and increased the levels of Myog and MyHC expression. Silencing lnc-GD2H attenuated the protective effects of APS outlined above. Considering that APS may mediate the regulation of proliferation and differentiation by lnc-GD2H in C2C12 cells, and alleviates hypoxic injury induced by CoCl2.
Collapse
Affiliation(s)
- Wannian Liang
- Department of Clinical Research, Shenzhen Guangming District People's Hospital, ShenZhen, Guangdong, China
| | - Yang Li
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Si Lei
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Rui Chen
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Huacai Shi
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Feimeng Li
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Zhiyuan Liao
- Department of Interventional Radiology, Shenzhen Guangming District People's Hospital,ShenZhen, Guangdong, China
| | - Chao Zhong
- Department of Clinical Research, Shenzhen Guangming District People's Hospital, ShenZhen, Guangdong, China
| | - Yanling She
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, Guangdong, China.
| |
Collapse
|
11
|
Zhang PP, Tang JN, Xiang BY, Li L, Xie MZ, Qu HY. Unlocking the potential of Radix Astragali and its active ingredients in gastric ulcer therapy. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2025:1-15. [PMID: 40111320 DOI: 10.1080/10286020.2025.2475475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 02/28/2025] [Accepted: 03/01/2025] [Indexed: 03/22/2025]
Abstract
We studied the protective effects of Radix Astragali (RA) on gastric ulcer (GU). A literature search was conducted using databases from Web of Science, PubMed, Springer, ScienceDirect, Science Direct Chinese National Knowledge Infrastructure (CNKI), and Wanfang. The inclusion criteria for this study were limited to reports on the effects of RA, AS-IV, cycloastragenol, astragalus polysaccharide (APS), and astragalosides (AST) in the treatment of gastric ulcers. Any studies involving gastric lesions that were precancerous or cancerous were eliminated. The search period was from database inception through June 2024. The results suggested RA hold promiseas potential novel therapeutics for the therapy of GU.
Collapse
Affiliation(s)
- Pei-Pei Zhang
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha410208, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Hunan University of Chinese Medicine, Changsha410208, China
- Provincial Key Laboratory for TCM Diagnostics of Hunan, Hunan University of Chinese Medicine, Changsha410208, China
| | - Jing-Ni Tang
- Medical School, Hunan University of Traditional Chinese Medicine, Changsha410208, China
| | - Bo-Yu Xiang
- Medical School, Hunan University of Traditional Chinese Medicine, Changsha410208, China
| | - Liang Li
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha410208, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Hunan University of Chinese Medicine, Changsha410208, China
- Provincial Key Laboratory for TCM Diagnostics of Hunan, Hunan University of Chinese Medicine, Changsha410208, China
| | - Meng-Zhou Xie
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha410208, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Hunan University of Chinese Medicine, Changsha410208, China
- Provincial Key Laboratory for TCM Diagnostics of Hunan, Hunan University of Chinese Medicine, Changsha410208, China
| | - Hao-Yu Qu
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Hunan University of Chinese Medicine, Changsha410208, China
- School of informatics, Hunan University of Traditional Chinese Medicine, Changsha410208, China
| |
Collapse
|
12
|
Hou J, Li A, Wang G, Qin X, Liu Y. Metabolomics analysis of Astragali Radix in Shanxi Province: Investigating the impact of various cultivation methods and growth years on metabolite profiles. Food Chem 2025; 468:142492. [PMID: 39700793 DOI: 10.1016/j.foodchem.2024.142492] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 12/04/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
Astragali radix (HQ) is a herb with rich medicinal and edible value. Wild-simulated HQ (FYS) and Transplanted HQ (PZ) are its currently two primary forms available in the market. Metabolomics was employed to investigate their intricate metabolic variations under various cultivation methods and growth years. Notable similarities were observed in their metabolic changes across various growth years. Specifically, saponins was higher in the early growth phase, while flavonoids increased in the later. Additionally, comparative analysis of HQ samples from different cultivation methods indicated that FYS generally exhibited different chemical characteristics compared to PZ within the same market circulation period, and Calycosin-7-O-Glc-6"-O-acetate and Cycloastragenol-H2O might be used to discriminant them (the content of Calycosin-7-O-Glc-6"-O-acetate and Cycloastragenol-H2O was higher in FYS than in PZ). This approach elucidates the dynamic change pattern of characteristic metabolites and pinpoints potential biomarkers for both FYS and PZ, thereby enhancing our understanding of these medicinal materials.
Collapse
Affiliation(s)
- Jinli Hou
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, PR China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, PR China.
| | - Aiping Li
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, PR China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, PR China.
| | - Guohong Wang
- Department of Pharmacy, Shanxi Traditional Chinese Medicine Hospital, Taiyuan 030012, PR China.
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, PR China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, PR China.
| | - Yuetao Liu
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, PR China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, PR China; Shanxi-Zhendong Pharmaceutical Co., Ltd, Shanxi Key Laboratory of Medicinal and Edible Homology Functional Food, Chang zhi 047100, PR China.
| |
Collapse
|
13
|
Zhou G, Chen Y, Xu B, Peng G, Wang L, Huang JP, Yu Z, Huang SX. Phytochemical Characterization and Comparative Analysis of Cycloartane-Type Triterpenes in Astragalus adsurgens and Astragalus membranaceus. PLANTA MEDICA 2025; 91:109-118. [PMID: 39587009 DOI: 10.1055/a-2486-8873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Astragalus adsurgens, a significant forage plant cultivated in arid regions of northwest China, remains underexplored for its triterpenoid saponins and medicinal properties compared to the extensively studied Astragalus membranaceus. To explore the phytochemical profile of A. adsurgens for its potential application in the medical field, we employed ultra-pressure liquid chromatography coupled with a tandem mass spectrometry-based method to identify cycloartane-type triterpenes. Eventually, five new cycloartane-type triterpenoids, adsurgosides A - D ( 1 - 4: ) and 3-methyl-3,4-seco-cyclostellanol (5: ), together with two known analogs, cycloastragenol (6: ) and cyclopycanthogenin (7: ), were isolated from the roots of A. adsurgens. Their structures were elucidated using 1D and 2D NMR analyses in combination with HRESIMS data. Additionally, a comparative study on the distribution patterns of these compounds revealed qualitative and quantitative variations between A. adsurgens and A. membranaceus. Our findings not only identified an alternative plant for isolating cycloartane-type triterpenoids but also offer new insights into the chemical properties of A. adsurgens.
Collapse
Affiliation(s)
- Guanglian Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yin Chen
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Bingyan Xu
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Guoqing Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Li Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jian-Ping Huang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Zhiyin Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sheng-Xiong Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
14
|
He GS, Xia JK, Li QH, Zheng Y, Shi CR, Li R, Hong Q, Chen XM. Specnuezhenide: Comprehensive review of pharmacology, pharmacokinetics and ethnomedicinal uses. Fitoterapia 2025; 181:106389. [PMID: 39805507 DOI: 10.1016/j.fitote.2025.106389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/24/2024] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
BACKGROUND Specnuezhenide (SPN) is a bioactive iridoid terpenoid compound mainly found in Ligustri Lucidi Fructus (LLF), that has a broad spectrum of pharmacological effects, including anti-neoplastic, hepatoprotective, anti-aging, anti-inflammatory, immune-modulatory properties. PURPOSE The present review provides a comprehensive summary of natural medicinal plants, traditional Chinese medicine compounds containing SPN, and their corresponding pharmacological mechanisms. METHODS Using several globally recognized databases such as Web of Science, Google Scholar, PubMed, ScienceDirect, Wiley, ACS, Springer, and CNKI until December 2024, A comprehensive literature search and analysis was carried out with the keywords "Specnuezhenide", " Pharmacology ", "Pharmacokinetics" and " Chinese herbal compound". RESULTS The results indicated that SPN is present in a diverse range of plants, including LLF, Osmanthus fragrans seeds and Naked barley. SPN plays an anti-inflammatory role by regulating the NF-κB and MAPK signaling pathways, down-regulating the expression of TNF-α, IL-1β, IL-6 and other cytokines. Furthermore, many Chinese herbal compounds have been found to contain SPN, such as treatment of spleen and kidney deficiency of compound Shenhua tablet, treatment of liver-kidney Yin deficiency of Er Zhi Wan, treatment of pulmonray abscess of Qidongning and treatment of stagnation of QI due to depression of the liver of Shuganzhi Tablet. SPN is primarily distributed in the stomach, intestine, and liver. However, due to its limited absorption in the gastrointestinal tract and low blood concentration, its bioavailability is significantly reduced. CONCLUSIONS Thereby, SPN holds immense potential in the prevention and treatment of liver, lung and kidney complications. This review intends to provide a novel insight for further development of SPN, hoping to reveal the potential of SPN and necessity of further studies in this field.
Collapse
Affiliation(s)
- Guo-Sen He
- The College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, State Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Key Disciplines of National Administration of Traditional Chinese Medicine(zyyzdxk-2023310), Beijing 100853, China
| | - Ji-Kai Xia
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, State Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Key Disciplines of National Administration of Traditional Chinese Medicine(zyyzdxk-2023310), Beijing 100853, China; School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qi-Hu Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, State Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Key Disciplines of National Administration of Traditional Chinese Medicine(zyyzdxk-2023310), Beijing 100853, China; School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Zheng
- The College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, State Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Key Disciplines of National Administration of Traditional Chinese Medicine(zyyzdxk-2023310), Beijing 100853, China
| | - Chun-Ru Shi
- The College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, State Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Key Disciplines of National Administration of Traditional Chinese Medicine(zyyzdxk-2023310), Beijing 100853, China
| | - Run Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, State Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Key Disciplines of National Administration of Traditional Chinese Medicine(zyyzdxk-2023310), Beijing 100853, China
| | - Quan Hong
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, State Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Key Disciplines of National Administration of Traditional Chinese Medicine(zyyzdxk-2023310), Beijing 100853, China.
| | - Xiang-Mei Chen
- The College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, State Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Key Disciplines of National Administration of Traditional Chinese Medicine(zyyzdxk-2023310), Beijing 100853, China.
| |
Collapse
|
15
|
Pan Y, Zhang Y, Lin J, Liu Z, Li Z, Luo Z, Xu N. Simulating Arterial Stress for Rapid Evaluation of Antivascular Calcification Therapies from Herbal Extracts. ACS Biomater Sci Eng 2025; 11:1212-1221. [PMID: 39853277 DOI: 10.1021/acsbiomaterials.4c01808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Vascular calcification severely disrupts cardiovascular hemodynamics, leading to high rates of morbidity and mortality. Despite their clinical impact, the development of effective treatments remains limited, underscoring an urgent need for efficient and reliable drug screening methods. Vascular smooth muscle cells (VSMCs) are known to play a central role in driving the calcification process, undergoing an osteogenic transition in response to pathological conditions. To mimic this process, we developed a cyclic stretching device that replicates the physiological mechanical stresses experienced by VSMCs during arterial pulsation. This device dramatically accelerates the osteogenic transition of VSMCs, reducing phenotypic switching from 13 days under static conditions to just 4 h. Using this device, we screened 20 herbal extracts for anticalcification properties and identifiedSalvia miltiorrhizaas a candidate with therapeutic potential that inhibits VSMC osteogenic transdifferentiation in vitro. The anticalcification efficacy ofSalvia miltiorrhizawas further validated in a vitamin D-induced rat model of cardiovascular calcification, highlighting its translational potential. This screening platform provides a rapid and physiologically relevant method for evaluating potential antivascular calcification therapies, significantly improving the efficiency of drug discovery for clinical translation.
Collapse
Affiliation(s)
- Yu Pan
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China
| | - Yuhang Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China
| | - Junsheng Lin
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China
| | - Zongtao Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Zhi Luo
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China
| | - Nan Xu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China
| |
Collapse
|
16
|
Mao J, Tan L, Tian C, Wang W, Zou Y, Zhu Z, Li Y. Systemic investigation of the mechanism underlying the therapeutic effect of Astragalus membranaceus in ulcerative colitis. Am J Med Sci 2025; 369:238-251. [PMID: 39009282 DOI: 10.1016/j.amjms.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Whether Astragalus membranaceus is an effective drug in the treatment of ulcerative colitis (UC) is unknown and how it exhibits activity in UC is unclear. METHODS TCMSP, GeneCards, String, and DAVID databases were used to screen target genes in PPI network and we performed GO and KEGG pathway enrichment analysis. Molecular docking and animal experiments were performed. The body weight and disease activity index (DAI) of mice were recorded. ELISA kits were used to detect the levels of CAT, SOD, MDA and IL-6, IL-10, TNF-α in the blood of mice. Western blot kits were utilized to measure the expression of MAPK14, RB1, MAPK1, JUN, ATK1, and IL2 proteins. RESULTS The active components of Astragalus membranaceus mainly include 7-O-methylisomucronulatol, quercetin, kaempferol, formononetin and isrhamnetin. Astragalus membranaceus may inhibit the expression of TNF-α, IL-6, MDA, while promoting the expression of CAT, SOD, and IL-10. The expression levels of MAPK14, RB1, MAPK1, JUN and ATK1 proteins were significantly decreased while IL2 protein increased after administration of Astragalus membranaceus. CONCLUSIONS Astragalus membranaceus may be an effective drug in the treatment of UC by acting on targets with anti-UC effect via its antioxidant action and by regulating the balance of pro-inflammatory and anti-inflammatory factors.
Collapse
Affiliation(s)
- Jingxin Mao
- Department of Science and Technology Industry, Chongqing Medical and Pharmaceutical College, Chongqing 400030, China; College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Lihong Tan
- Department of Science and Technology Industry, Chongqing Medical and Pharmaceutical College, Chongqing 400030, China; Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing 400030, China
| | - Cheng Tian
- Department of Science and Technology Industry, Chongqing Medical and Pharmaceutical College, Chongqing 400030, China; Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing 400030, China
| | - Wenxiang Wang
- College of pharmacy, Chongqing Three Gorges Medical College, Chongqing 404120, China
| | - YanLin Zou
- College of pharmacy, Chongqing Three Gorges Medical College, Chongqing 404120, China
| | - Zhaojing Zhu
- Department of Science and Technology Industry, Chongqing Medical and Pharmaceutical College, Chongqing 400030, China; Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing 400030, China
| | - Yan Li
- Department of Science and Technology Industry, Chongqing Medical and Pharmaceutical College, Chongqing 400030, China; Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing 400030, China.
| |
Collapse
|
17
|
Ma Y, Zhang Y, Zhao Y, Wang J, Hu Q, Yang L, Chen S, Diao Y, Ma H. Comparison of the Antioxidant Capacity of Cell Wall-Broken Decoction Pieces and Traditional Decoction Pieces of Astragli Radix Based on HPLC-ABTS Analytical Method. Biomed Chromatogr 2025; 39:e6052. [PMID: 39587434 DOI: 10.1002/bmc.6052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/14/2024] [Accepted: 11/15/2024] [Indexed: 11/27/2024]
Abstract
In this study, an online antioxidant assay based on HPLC-ABTS was mainly developed for screening the antioxidants of flavonoids from Astragali Radix (AR), and comparing the antioxidant capacity between traditional decoction pieces (TDP) of AR and cell wall-broken decoction pieces (CDP) of AR. The experimental results showed that the overall antioxidant capacity of CDP of AR was about twice as much as that of TDP of AR, which was specifically expressed as the antioxidant capacity of the screened antioxidants extracted from CDP was equivalent to 1.9-5.1 times that of those extracted from TDP, and three antioxidants were successfully screened, which were calycosin-7-O-β-D-glucoside, calycosin, and formononetin. The method established in this study is characterized by high efficiency and accuracy, which can simultaneously accomplish the screening of antioxidant components and the comparison of antioxidant capacity between samples, and provides a new method for the quality evaluation of AR from the perspective of antioxidant activity.
Collapse
Affiliation(s)
- Yonglin Ma
- Research Center of Chinese Herbal Resource Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- National and Local Joint Engineering Research Center for Ultrafine Granular Powder of Herbal Medicine, Zhongshan Zhongzhi Pharmaceutical Group Co., Ltd., Zhongshan, Guangdong, China
| | - Yue Zhang
- Research Center of Chinese Herbal Resource Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- National and Local Joint Engineering Research Center for Ultrafine Granular Powder of Herbal Medicine, Zhongshan Zhongzhi Pharmaceutical Group Co., Ltd., Zhongshan, Guangdong, China
| | - Yu Zhao
- Research Center of Chinese Herbal Resource Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- National and Local Joint Engineering Research Center for Ultrafine Granular Powder of Herbal Medicine, Zhongshan Zhongzhi Pharmaceutical Group Co., Ltd., Zhongshan, Guangdong, China
| | - Jiwen Wang
- National and Local Joint Engineering Research Center for Ultrafine Granular Powder of Herbal Medicine, Zhongshan Zhongzhi Pharmaceutical Group Co., Ltd., Zhongshan, Guangdong, China
| | - Qianqian Hu
- National and Local Joint Engineering Research Center for Ultrafine Granular Powder of Herbal Medicine, Zhongshan Zhongzhi Pharmaceutical Group Co., Ltd., Zhongshan, Guangdong, China
| | - Lianlin Yang
- National and Local Joint Engineering Research Center for Ultrafine Granular Powder of Herbal Medicine, Zhongshan Zhongzhi Pharmaceutical Group Co., Ltd., Zhongshan, Guangdong, China
| | - Shuzhen Chen
- Research Center of Chinese Herbal Resource Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- National and Local Joint Engineering Research Center for Ultrafine Granular Powder of Herbal Medicine, Zhongshan Zhongzhi Pharmaceutical Group Co., Ltd., Zhongshan, Guangdong, China
| | - Yong Diao
- College of Notoginseng Medicine and Pharmacy, Wenshan University, Wenshan, Yunnan, China
| | - Hongliang Ma
- Research Center of Chinese Herbal Resource Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- National and Local Joint Engineering Research Center for Ultrafine Granular Powder of Herbal Medicine, Zhongshan Zhongzhi Pharmaceutical Group Co., Ltd., Zhongshan, Guangdong, China
| |
Collapse
|
18
|
Xia Z, Li G, Zhai Y, Tong L, Ru Y, Wu M, Hu J, Wang M, Meng Y, Sun B, Wang C, Luo X, Liu Y, Zhao Y, Zheng X, Jia P. Immunomodulatory effects and multi-omics analysis of Codonopsis Pilosula Extract in septic rats. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118847. [PMID: 39368762 DOI: 10.1016/j.jep.2024.118847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 10/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Codonopsis Pilosula (CP), as a well-known traditional Chinese medicine (TCM) with medicinal and edible herb, is one of the most representative tonic Chinese herbal medicine. It has been widely used for regulating immune function with hardly any adverse effects in clinical practice. AIM OF THE STUDY This study aimed to elucidate the immunomodulatory effect and to explore probable mechanism of Codonopsis Pilosula Extract (CPE) in septic rats. MATERIALS AND METHODS The model of septic rat was established by cecal ligation and perforation (CLP). The thymus index, spleen index and cerebral index were calculated. Histological changes were observed by Hematoxylin-eosin (HE). The positive expression of CD4+ T cells was determined in the thymus and spleen by immunohistochemical (IHC). The expression level of 24 h CD4 was corroborated by real-time quantitative polymerase chain reaction (RT-QPCR). Infectious factors, immune factors and inflammatory factors were determined by enzyme-linked immunosorbent assay (ELISA). Blood cells were detected by automatic biochemical analyzer. The metabolite changes and gene expression levels, the potential targets and pathways of CPE in regulating immune function of thymus were analyzed by integrative analysis of transcriptomic and metabolomic methods. RESULTS High dose of CPE increased the thymus index and spleen index of septic rats at different stages, and the brain index at different stages could be increased at medium dose and high dose. Medium and high doses of CPE reduced the pathological changes of thymus, spleen and brain tissue. CPE promoted the expression levels of CD4 in the thymus and spleen. CPE improved the levels of red blood cells (RBC), lymphocytes (LYM) and hemoglobin (HGB), and decreased the levels of neutrophils (NEUT), NLR (NEUT/LYM) and PLR (PLT/LYM). CPE dynamically regulated the levels of white blood cells (WBC) and PLT (platelet). CPE dynamically regulated the expression levels of infectious factors, immune factors, and inflammatory factors related to disease severity. CONCLUSION CPE has the ability to dynamically modulate the expression levels of infectious factors, immune factors, and inflammatory factors related to disease severity, and alleviate the damages of immune organs. The research has provided a global view of the integration of metabolomics and transcriptomics to elucidate the immunomodulatory effects and mechanisms of CPE. CPE could affect a series of biological processes in glycerophospholipid metabolism by interfering with the B cell receptor (BCR) signaling pathway in the thymus, to maintain immune homeostasis of septic rats on the whole, especially humoral immunity.
Collapse
Affiliation(s)
- Zhaodi Xia
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, PR China.
| | - Gufeng Li
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Yufei Zhai
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Liguo Tong
- Shanxi Academy of Traditional Chinese Medicine, Taiyuan, Shanxi, 030012, PR China
| | - Yilin Ru
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Mengyao Wu
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Jinming Hu
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Mengyuan Wang
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Yaxi Meng
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Bao Sun
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, PR China; Department of Pharmacy, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, 710038, PR China
| | - Chunliu Wang
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, PR China; Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, Shaanxi, 710003, PR China
| | - Xianlin Luo
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Yidi Liu
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Ye Zhao
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Xiaohui Zheng
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, PR China.
| | - Pu Jia
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, PR China.
| |
Collapse
|
19
|
Tian J, Huo R, Wang Y, Wang J, Fang F, Fang C. Astragalus Polysaccharide Alleviates Cognitive Decline in D-Galactose-Induced Aging. Biol Pharm Bull 2025; 48:523-536. [PMID: 40335326 DOI: 10.1248/bpb.b24-00524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Astragalus polysaccharide (APS) is a biologically active water-soluble polysaccharide extracted from stems or roots, which has been proven to have antiaging effects. The aim of this study was to investigate the effects of APS on cognitive function in d-galactose (d-gal)-induced aging rats and explore the potential underlying molecular mechanisms. The rats were induced to age by intraperitoneal injection with 400 mg/kg/d d-gal for 8 weeks. Aging of rats was assessed through the Morris water maze test, step-down test, open field test, and grip strength test. Pathological changes in the hippocampal CA3 and CA1 regions were determined by Hematoxylin and eosin and Nissl staining. The superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), malondialdehyde (MDA), and total antioxidant capacity (T-AOC) in the serum were measured. Telomere length, dual oxidase 1 (Duox1), dual oxidase 2 (Duox2), peroxiredoxin 1 (Prdx1), p21, p16, p53, telomerase reverse transcriptase (TERT), phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), nicotinamide phosphoribosyl transferase (NAMPT), and sirtuin 1 (SIRT1) were detected via real-time PCR, Western blotting, and immunohistochemical staining. The results indicated that APS ameliorated the general status in d-gal-induced aging rats, mitigated neuronal degeneration in the CA3 and CA1 regions, reduced the oxidative stress levels, modulated senescence-related β-GAL and protein expression, and maintained telomere length. Furthermore, APS significantly reduced p53 expression and increased p-PI3K, p-AKT, NAMPT, SIRT1, and TERT expression. Therefore, d-gal-induced aging and cognitive impairment in rats can be prevented by APS, likely through regulation of the TERT/p53 signaling axis via the PI3K/Akt and NAMPT/SIRT1 signaling pathways.
Collapse
Affiliation(s)
- Jin Tian
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, China
| | - Ran Huo
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, China
| | - Yixuan Wang
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, China
| | - Jiepeng Wang
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, China
- Hebei Key Laboratory of Integrated Chinese and Western Medicine for Lung Disease Research, Shijiazhuang, Hebei 050091, China
| | - Fang Fang
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, China
- Hebei Key Laboratory of Integrated Chinese and Western Medicine for Lung Disease Research, Shijiazhuang, Hebei 050091, China
| | - Chaoyi Fang
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, China
- Hebei Key Laboratory of Integrated Chinese and Western Medicine for Lung Disease Research, Shijiazhuang, Hebei 050091, China
| |
Collapse
|
20
|
Hejazian SM, Hejazian SS, Mostafavi SM, Hosseiniyan SM, Montazersaheb S, Ardalan M, Zununi Vahed S, Barzegari A. Targeting cellular senescence in kidney diseases and aging: A focus on mesenchymal stem cells and their paracrine factors. Cell Commun Signal 2024; 22:609. [PMID: 39696575 DOI: 10.1186/s12964-024-01968-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
Cellular senescence is a phenomenon distinguished by the halting of cellular division, typically triggered by DNA injury or numerous stress-inducing factors. Cellular senescence is implicated in various pathological and physiological processes and is a hallmark of aging. The presence of accumulated senescent cells, whether transiently (acute senescence) or persistently (chronic senescence) plays a dual role in various conditions such as natural kidney aging and different kidney disorders. Elevations in senescent cells and senescence-associated secretory phenotype (SASP) levels correlate with decreased kidney function, kidney ailments, and age-related conditions. Strategies involving senotherapeutic agents like senolytics, senomorphics, and senoinflammation have been devised to specifically target senescent cells. Mesenchymal stem cells (MSCs) and their secreted factors may also offer alternative approaches for anti-senescence interventions. The MSC-derived secretome compromises significant therapeutic benefits in kidney diseases by facilitating tissue repair via anti-inflammatory, anti-fibrosis, anti-apoptotic, and pro-angiogenesis effects, thereby improving kidney function and mitigating disease progression. Moreover, by promoting the clearance of senescent cells or modulating their secretory profiles, MSCs could potentially reverse some age-related declines in kidney function.This review article intends to shed light on the present discoveries concerning the role of cellular senescence in kidney aging and diseases. Furthermore, it outlines the role of senotherapeutics utilized to alleviate kidney damage and aging. It also highlights the possible impact of MSCs secretome on mitigating kidney injury and prolonging lifespan across various models of kidney diseases as a novel senotherapy.
Collapse
Affiliation(s)
| | - Seyyed Sina Hejazian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyedeh Mina Mostafavi
- Ayatollah Taleghani Hospital, Research Development Unit, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Abolfazl Barzegari
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
21
|
Xiao Z, Guo Y, Li J, Jiang X, Wu F, Wang Y, Zhang Y, Zhou W. Harnessing traditional Chinese medicine polysaccharides for combatting COVID-19. Carbohydr Polym 2024; 346:122605. [PMID: 39245521 DOI: 10.1016/j.carbpol.2024.122605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/26/2024] [Accepted: 08/09/2024] [Indexed: 09/10/2024]
Abstract
With the global spread of COVID-19 posing ongoing challenges to public health systems, there is an ever-increasing demand for effective therapeutics that can mitigate both viral transmission and disease severity. This review surveys the landscape of polysaccharides derived from traditional Chinese medicine, acclaimed for their medicinal properties and potential to contribute to the COVID-19 response. We specifically focus on the capability of these polysaccharides to thwart SARS-CoV-2 entry into host cells, a pivotal step in the viral life cycle that informs transmission and pathogenicity. Moreover, we delve into the concept of trained immunity, an innate immune system feature that polysaccharides may potentiate, offering an avenue for a more moderated yet efficacious immune response against various pathogens, including SARS-CoV-2. Our comprehensive overview aims to bolster understanding of the possible integration of these substances within anti-COVID-19 measures, emphasizing the need for rigorous investigation into their potential applications and underlying mechanisms. The insights provided here strongly support ongoing investigations into the adjunctive use of polysaccharides in the management of COVID-19, with the anticipation that such findings could lead to a deeper appreciation and clearer elucidation of the antiviral potentials inherent in complex Chinese herbal remedies.
Collapse
Affiliation(s)
- Zhiyong Xiao
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Drug, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China.
| | - Yizhen Guo
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Drug, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China
| | - Jingxuan Li
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Drug, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China
| | - Xuyong Jiang
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Drug, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Fushan Wu
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Drug, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Ying Wang
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Drug, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China
| | - Yongxiang Zhang
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Drug, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China.
| | - Wenxia Zhou
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Drug, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China.
| |
Collapse
|
22
|
Xu Lou I, Yu X, Chen Q. Exploratory review on the effect of Astragalus mongholicus on signaling pathways. Front Pharmacol 2024; 15:1510307. [PMID: 39726784 PMCID: PMC11670317 DOI: 10.3389/fphar.2024.1510307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
Background Astragalus mongholicus Bunge [Fabaceae; Astragali radix] (AM), a traditional Chinese medicinal (TCM) botanical drug, has been used for centuries and is gaining growing recognition in medical research for its therapeutic potential. The currently accepted scientific name is Astragalus mongholicus Bunge, with Astragalus membranaceus Fisch. ex Bunge recognized as a taxonomic synonym. This review explores the most relevant scientific studies on AM, focusing on its chemical composition, mechanisms of action, and associated health benefits. Main body AM is commonly used in clinical practice to treat diabetes mellitus, cardiovascular diseases, oncological processes, lipid metabolism disorders, and ulcerative colitis. Recent research has investigated its potential as a product for anti-aging purposes. These therapeutic effects are attributed to the interactions of bioactive metabolites such as Astragaloside IV, Formononetin, and polysaccharides, with various signaling pathways, leading to the activation or inhibition of gene expression. This review aims to map the signaling pathways affected by these metabolites and their effects on different pathologies. Studies suggest that these metabolites act on signaling pathways such as TLR4/MyD88/NF-κB, PI3K/AKT, RNA expression, and tumor receptors. However, further research is necessary to validate the findings in human trials with better methodological quality. Conclusion AM is rich in bioactive metabolites that interact with various signaling pathways, modulating diseases such as diabetes mellitus type 2, cardiovascular diseases, cancer, lipid metabolism disorders, and ulcerative colitis. Although promising, the majority of the studies are conducted in vitro and animal models, and more rigorous human trials are needed to determine the therapeutic potential of AM.
Collapse
Affiliation(s)
| | | | - Qilan Chen
- Department of Cardiology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
23
|
Liu J, Yang F, Ji W, Zhao L, Han J, Chen L, Zhu F, Duan J, Zhang S. Efficient biosynthesis of three rare formononetin derivatives by newly discovered Bacillus velezensis LQ5. J Biotechnol 2024; 396:116-126. [PMID: 39521250 DOI: 10.1016/j.jbiotec.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Formononetin is a natural flavonoid existing widely in plants with many pharmacological effects. However, its application is limited by structure, poor water solubility and low bioavailability. In this study, Bacillus velezensis LQ5 was isolated from the inter-root soil of Glycyrrhiza uralensis Fisch for the first time and formononetin was firstly structurally modified by whole-cell catalysis of LQ5 to obtain formononetin-7-O-β-D-glucoside (FG), formononetin-7-O-β-(6''-O-succinyl)-D-glucoside (FGS) and formononetin-7-O-phosphate (FP). The selective preparation of the three products was achieved by adjusting the content of yeast extract, type and content of sugars, metal ions, pH and ATP content. The result confirmed that FP had the ideal drug-likeness properties and showed a greater ability to reduce intracellular reactive oxygen species levels and regulate oxidative enzymes. This work successfully established a biotransformation method for the efficient transformation of formononetin to produce high-value formononetin derivatives.
Collapse
Affiliation(s)
- Jiaqi Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Fan Yang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Wenxin Ji
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Lin Zhao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Jing Han
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Liangliang Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Fucheng Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China; College of Biology and Pharmaceutical Engineering, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu'an 237012, China.
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Sen Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
24
|
Lu KC, Wu SC, Lu TC, Tzeng IS, Kuo CE, Hung YC, Wu SY, Chen TC, Tsai MK, Chuang CK, Hu WL. Therapeutic effects of Huangqi formula (Eefooton) in chronic kidney disease: clinical research and narrative literature review. Aging (Albany NY) 2024; 16:13627-13647. [PMID: 39652245 PMCID: PMC11723655 DOI: 10.18632/aging.206170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 10/19/2024] [Indexed: 01/07/2025]
Abstract
OBJECTIVE The study aimed to assess the clinical effects of employing the Huangqi formula (Eefooton; EFT) for chronic kidney disease (CKD) treatment. A narrative literature review was undertaken to elucidate the specific ingredients of EFT and their potential impact on renal health. METHODS A retrospective observational study investigated EFT treatment in outpatients with stable CKD (stages 3B to 5) from March 2019 to March 2021. Patients received 20 mL of EFT thrice daily for 6 months, along with standard treatment. Control groups were matched to the EFT cohort. Regular assessments of renal, liver functions, and lipid profiles were conducted. RESULTS Serum creatinine (Cr) and eGFR levels consistently improved in stage 3B CKD patients at each follow-up visit. At 6 months, improvement in Cr and eGFR was observed for stage 4 and 5 CKD. Stage 3B CKD patients exhibited notable reductions in systolic blood pressure after 3 and 6 months of EFT treatment. Remarkably, a substantial decrease in HbA1C was noted in stage 4 CKD individuals after three months of therapy. Additionally, stage 4 CKD patients saw a significant reduction in LDL levels after both 3 and 6 months of EFT treatment. A literature review on EFT ingredients indicated that the positive effects of EFT might be associated with its anti-inflammatory, antioxidant, and anti-fibrotic properties. CONCLUSIONS This research demonstrated that incorporating EFT alongside standard treatment enhanced renal function in individuals with CKD. EFT is proposed as a feasible complementary treatment for CKD patients, emphasizing the importance of early intervention.
Collapse
Affiliation(s)
- Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan
- Division of Nephrology, Department of Medicine, Fu-Jen Catholic University Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei City 24352, Taiwan
| | - San-Chiang Wu
- Wu San-Chiang Medical Clinic, Lingya District, Kaohsiung City 802014, Taiwan
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, Lingya District, Kaohsiung City 80284, Taiwan
| | - Tsuo-Cheng Lu
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Niaosong District, Kaohsiung 833, Taiwan
| | - I-Shang Tzeng
- Department of Statistics, School of Business, National Taipei University, New Taipei, Taiwan
| | - Chun-En Kuo
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Niaosong District, Kaohsiung 833, Taiwan
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Dashu District, Kaohsiung 840, Taiwan
| | - Yu-Chiang Hung
- Department of Chinese Medicine, National Yang Ming Chiao Tung University, Beitou District, Taipei 112304, Taiwan
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Beitou District, Taipei 112304, Taiwan
- Department of Chinese Medicine, Taipei City Hospital, Linsen, Chinese Medicine, and Kunming Branch, Datong District, Taipei 103212, Taiwan
| | - Szu-Ying Wu
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Niaosong District, Kaohsiung 833, Taiwan
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Dashu District, Kaohsiung 840, Taiwan
| | - Te-Chuan Chen
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan, Niaosong District, Kaohsiung 833, Taiwan
| | - Ming-Kai Tsai
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, Lingya District, Kaohsiung City 80284, Taiwan
| | - Chih-Kuang Chuang
- Division of Nephrology, Chong Guang Hospital, Miaoli, Taiwan, Toufen City, Miaoli County 351, Taiwan
| | - Wen-Long Hu
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Niaosong District, Kaohsiung 833, Taiwan
- Kaohsiung Medical University College of Medicine, Kaohsiung, Taiwan, Shihcyuan, Sanmin District, Kaohsiung 807, Taiwan
- Fooyin University College of Nursing, Kaohsiung, Taiwan, Ta-liao District, Kaohsiung 831, Taiwan
| |
Collapse
|
25
|
Venkataraman A, Kordic I, Li J, Zhang N, Bharadwaj NS, Fang Z, Das S, Coskun AF. Decoding senescence of aging single cells at the nexus of biomaterials, microfluidics, and spatial omics. NPJ AGING 2024; 10:57. [PMID: 39592596 PMCID: PMC11599402 DOI: 10.1038/s41514-024-00178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024]
Abstract
Aging has profound effects on the body, most notably an increase in the prevalence of several diseases. An important aging hallmark is the presence of senescent cells that no longer multiply nor die off properly. Another characteristic is an altered immune system that fails to properly self-surveil. In this multi-player aging process, cellular senescence induces a change in the secretory phenotype, known as senescence-associated secretory phenotype (SASP), of many cells with the intention of recruiting immune cells to accelerate the clearance of these damaged senescent cells. However, the SASP phenotype results in inducing secondary senescence of nearby cells, resulting in those cells becoming senescent, and improper immune activation resulting in a state of chronic inflammation, called inflammaging, in many diseases. Senescence in immune cells, termed immunosenescence, results in further dysregulation of the immune system. An interdisciplinary approach is needed to physiologically assess aging changes of the immune system at the cellular and tissue level. Thus, the intersection of biomaterials, microfluidics, and spatial omics has great potential to collectively model aging and immunosenescence. Each of these approaches mimics unique aspects of the body undergoes as a part of aging. This perspective highlights the key aspects of how biomaterials provide non-cellular cues to cell aging, microfluidics recapitulate flow-induced and multi-cellular dynamics, and spatial omics analyses dissect the coordination of several biomarkers of senescence as a function of cell interactions in distinct tissue environments. An overview of how senescence and immune dysregulation play a role in organ aging, cancer, wound healing, Alzheimer's, and osteoporosis is included. To illuminate the societal impact of aging, an increasing trend in anti-senescence and anti-aging interventions, including pharmacological interventions, medical procedures, and lifestyle changes is discussed, including further context of senescence.
Collapse
Affiliation(s)
- Abhijeet Venkataraman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA, 30332, USA
| | - Ivan Kordic
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - JiaXun Li
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Nicholas Zhang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA
| | - Nivik Sanjay Bharadwaj
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Zhou Fang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Machine Learning Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sandip Das
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Ahmet F Coskun
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA, 30332, USA.
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
26
|
Shen J, Zhao Y, Cui W. Astragalus mongholicus Bunge extract improves ulcerative colitis by promoting PLCB2 to inhibit colonic epithelial cell pyroptosis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118554. [PMID: 38992398 DOI: 10.1016/j.jep.2024.118554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Astragalus mongholicus Bunge (AM) and its active ingredients are mainly used for anti-inflammatory, antiviral, antioxidant, immune regulation, cardiovascular and nervous system protection, anti-cancer, anti-tumor and so on. AIM OF THE STUDY To explore the Astragalus mongholicus Bunge extract pharmacological mechanisms and biology processes which improves ulcerative colitis (UC). MATERIALS AND METHODS Dextran sulfate sodium (DSS)-induced UC models in C57BL/6 mice were established, and the mice were treated with Astragalus mongholicus Bunge extract or salazosulfapyridine (SASP). DSS-induced mice- and human-derived colonic epithelial cell lines were used to reveal the inflammatory environment of UC. After treatment with Astragalus mongholicus Bunge extract, the expression of phospholipase C-β 2 (PLCB2) in the cells was detected by quantitative real-time PCR (qRT-PCR), and cell proliferative activity was detected by cell counting kit 8 (CCK-8) assay. Finally, the levels of pyroptosis-related inflammatory factors in cell culture supernatants was detected by ELISA. RESULTS Treatment of UC mice with Astragalus mongholicus Bunge extract do significantly improved DAI scores and histopathological damage scores, and decreased the levels of Eotaxin, GCSF, KC, MCP-1, TNF-α, and IL-6. Besides, Astragalus mongholicus Bunge extract inhibited the expression of nucleotide-binding oligomerization segment-like receptor family 3 (NLRP3), cleaved Caspase-1, and GSDMD-N in the colonic tissues, and reduced the levels of inflammation-related factors IL-1β and IL-18 in serum and tissues. In vitro, Astragalus mongholicus Bunge extract partially reversed the DSS-induced reduction of PLCB2 expression in CP-M030 and NCM460, promoted cell proliferative activity, and reduced the levels of IL-1β and IL-18. CONCLUSIONS In DDS-induced UC mice, Astragalus mongholicus Bunge extract improves ulcerative colitis by inhibiting colonic epithelial cell pyroptosis through PLCB2 promotion.
Collapse
Affiliation(s)
- Jie Shen
- Department of Colorectal Surgery, Ningbo Medical Center Lihuili Hospital (Affiliated Lihuili Hospital of Ningbo University), China.
| | - Yibin Zhao
- Department of Colorectal Surgery, Ningbo Medical Center Lihuili Hospital (Affiliated Lihuili Hospital of Ningbo University), China.
| | - Wei Cui
- Department of Colorectal Surgery, Ningbo Medical Center Lihuili Hospital (Affiliated Lihuili Hospital of Ningbo University), China.
| |
Collapse
|
27
|
Wei X, Leng X, Liang J, Liu J, Chi L, Deng H, Sun D. Pharmacological potential of natural medicine Astragali Radix in treating intestinal diseases. Biomed Pharmacother 2024; 180:117580. [PMID: 39413615 DOI: 10.1016/j.biopha.2024.117580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/07/2024] [Accepted: 10/14/2024] [Indexed: 10/18/2024] Open
Abstract
Due to changes in diet and lifestyle, the prevalence of intestinal diseases has been increasing annually. Current treatment methods exhibit several limitations, including adverse reactions and drug resistance, necessitating the development of new, safe, and effective therapies. Astragali Radix, a natural medicine utilized for over two millennia, offers unique advantages in treating intestinal ailments due to its multi-component and multi-target properties. This study aims to review the effective components of Astragali Radix that provide intestinal protection and to explore its pharmacological effects and molecular mechanisms across various intestinal diseases. This will provide a comprehensive foundation for using Astragali Radix in treating intestinal diseases and serve as a reference for future research directions. The active components of Astragali Radix with protective effects on the intestines include astragaloside (AS)-IV, AS-III, AS-II, astragalus polysaccharide (APS), cycloastagenol, calycosin, formononetin, and ononin. Astragali Radix and its active components primarily address intestinal diseases such as colorectal cancer (CRC), inflammatory bowel disease (IBD), and enterocolitis through mechanisms including anti-inflammatory actions, antioxidative stress responses, anti-proliferation and invasion activities, regulation of programmed cell death, immunoregulation, restoration of the intestinal epithelial barrier, and modulation of the intestinal microbiota and its metabolites. Consequently, Astragali Radix demonstrates significant intestinal protective activity and represents a promising natural treatment for intestinal diseases. However, the pharmacological actions and mechanisms of some active components in Astragali Radix remain unexplored. Moreover, further comprehensive toxicological and clinical studies are required to ascertain its safety and clinical effectiveness.
Collapse
Affiliation(s)
- Xiunan Wei
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Xiaohui Leng
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Junwei Liang
- Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Jiahui Liu
- Department of Gastroenterology, Shandong Provincial Third Hospital, Jinan 250014, China.
| | - Lili Chi
- Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Hualiang Deng
- Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Dajuan Sun
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| |
Collapse
|
28
|
Aydoğan F, Pandey P, Fronczek FR, Ferreira D, Khan IA, Ali Z, Chittiboyina AG. Revisiting the Cyclocephagenols via Astragalus condensatus: Structural Insights and Configurational Revision. JOURNAL OF NATURAL PRODUCTS 2024. [PMID: 39460711 DOI: 10.1021/acs.jnatprod.4c00751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
The phytochemical investigation of the MeOH extract of Astragalus condensatus roots led to the discovery of a new tetrahydropyran cycloartane-type triterpenoid, astracondensatol A (1), alongside six known cyclocephagenol derivatives (2, 3, 20, 32, 35, and 36). Elucidation of their structures involved 1D and 2D-NMR spectroscopy and mass data analysis. Upon comparing NMR spectroscopic data with prior literature, several carbon shift anomalies, particularly at C-24, prompted a reevaluation using quantum chemical calculations, resulting in the revision of the 24S to 24R absolute configuration for compound 2 and 38 other reported cyclocephagenol-type triterpenoids. X-ray crystallography data further supported the analysis in establishing the absolute configuration of compound 2. Ambiguous NOE correlations and publication bias could have played a significant role in miss-assigning the C-24 absolute configuration in tetrahydropyran cycloartane-type triterpenoids.
Collapse
Affiliation(s)
- Fadime Aydoğan
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Pankaj Pandey
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Frank R Fronczek
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Daneel Ferreira
- National Center for Natural Products Research and Department of BioMolecular Sciences, Division of Pharmacognosy, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Ikhlas A Khan
- National Center for Natural Products Research and Department of BioMolecular Sciences, Division of Pharmacognosy, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Zulfiqar Ali
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Amar G Chittiboyina
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| |
Collapse
|
29
|
Cheng Y, Lin L, Huang P, Zhang J, Pan X. Efficacy, safety, and response predictors of Astragalus in patients with mild to moderate Alzheimer's disease: A study protocol of an assessor-blind, statistician-blind open-label randomized controlled trial. Contemp Clin Trials Commun 2024; 41:101339. [PMID: 39176240 PMCID: PMC11339046 DOI: 10.1016/j.conctc.2024.101339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/30/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
Background This pragmatic clinical trial aims to determine the efficacy and safety of add-on Astragalus membranaceus (AM) for cognition and non-cognition in patients with of mild to moderate Alzheimer's disease complicated with orthostatic hypotension in orthostatic hypotension, elucidate the underlying mechanisms, identify related response predictors, and explore effective drug components. Methods This is an add-on, assessor-blinded, parallel, pragmatic, randomized controlled trial. At least 66 adults with mild to moderate Alzheimer's disease (AD) and OH aged 50-85 years will be recruited. Participants will be randomized in a 1:1:1 ratio to receive 24 weeks of routine care or add-on low dose AM or add-on high dose AM group. The primary efficacy outcome will be measured by the Alzheimer's Disease Assessment Scale-Cognitive Subscale, Chinese version. Secondary efficacy outcome assessment will include neuropsychological tests, blood pressure, plasma biomarkers, multimodal electroencephalograms, and neuroimaging. Safety outcome measures will include physical examinations, vital signs, electrocardiography, laboratory tests (such as hematologic and blood chemical tests), and adverse event records. Ethics and dissemination This trial was approved and supervised by Fujian Medical University Union Hospital (2021KJCX040). Independent results, findings will be published in peer-reviewed journals and presented at national and international conferences. Trial registration number NCT05647473; ClinicalTrials.gov Identifier.
Collapse
Affiliation(s)
- Yingzhe Cheng
- Department of Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Institute of Clinical Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350001, China
| | - Lin Lin
- Department of Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Institute of Clinical Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350001, China
| | - Peilin Huang
- Department of Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Institute of Clinical Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350001, China
| | - Jiejun Zhang
- Department of Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Institute of Clinical Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350001, China
- Center for Geriatrics, Hainan General Hospital, 19 Xiuhua Road, Hainan, 570311, China
| | - Xiaodong Pan
- Department of Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Institute of Clinical Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350001, China
| |
Collapse
|
30
|
Kim HI, Han Y, Kim MH, Boo M, Cho KJ, Kim HL, Lee IS, Jung JH, Kim W, Um JY, Park J, Ko SG. The multi-herbal decoction SH003 alleviates LPS-induced acute lung injury by targeting inflammasome and extracellular traps in neutrophils. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155926. [PMID: 39128302 DOI: 10.1016/j.phymed.2024.155926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/07/2024] [Accepted: 07/28/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Acute lung injury (ALI) is a devastating condition caused by sepsis, pneumonia, trauma, and more recently, COVID-19. SH003, an herbal formula consisted of Astragalus membranaceus, Angelica gigas and Trichosanthes kirilowii, is known for its effects on cancer and immunoregulation. HYPOTHESIS/PURPOSE Previous studies show SH003 exerts a promising anti-inflammatory effect. This study investigates the effect of modified SH003 on ALI using in silico, in vivo, and in vitro models. STUDY DESIGN AND METHODS We performed in silico-based analysis of SH003 on ALI-related pathways. C57BL/6 mice were intraperitoneally subjected to lipopolysaccharide (LPS) to induce septic ALI, followed by oral administration of SH003 for 2 weeks. Dexamethasone was used as the positive control. Human peripheral blood-derived polymorphonuclear neutrophils (PMN) were used to investigate the effect and mechanisms of SH003 on neutrophil extracellular trap (NET) formation. RESULTS Network pharmacology analysis suggested SH003 regulates lung inflammation by modulating NET formation. SH003 significantly reduced mortality in sepsis in vivo by inhibiting local and systemic inflammation, likely via nuclear factor kappa B and mitogen-activated protein kinase pathways-mediated inflammasome suppression. SH003 also decreased NET-related markers in lung tissues and inhibited LPS- and phorbol myristate acetate-induced NET formation in PMN. Cytometry time-of-flight analysis confirmed regulation of NETosis-related pathways by SH003. CONCLUSION SH003 effectively inhibits excessive immune responses in the lung by suppressing inflammasome activation and NET formation. These findings suggest SH003 as a potential therapeutic agent for septic ALI.
Collapse
Affiliation(s)
- Hyo In Kim
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Yohan Han
- Department of Microbiology and Sarcopenia Total Solution Center, Wonkwang University School of Medicine, Iksan, Republic of Korea
| | - Mi-Hye Kim
- College of Korean Medicine, Woosuk University, Jeonju, Republic of Korea
| | - Mina Boo
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Kwang-Jin Cho
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Hye-Lin Kim
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - In-Seon Lee
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea; College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ji Hoon Jung
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea; College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Woojin Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea; College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea; Korean Medicine-Based Drug Repositioning Cancer Research Center, Kyung Hee University, Seoul, Republic of Korea
| | - Jae-Young Um
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea; College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jinbong Park
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea; College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea; Korean Medicine-Based Drug Repositioning Cancer Research Center, Kyung Hee University, Seoul, Republic of Korea.
| | - Seong-Gyu Ko
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea; College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea; Korean Medicine-Based Drug Repositioning Cancer Research Center, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
31
|
Zheng Y, Chen Y, Zhao J, Wu M, Bao L, Zhao D, Bai S, Di D, Shi Y. The Protection of Astragalus Polysaccharide in BALB/C Mice during Brucella melitensis M5 Infection. Immunol Invest 2024; 53:1102-1112. [PMID: 39206848 DOI: 10.1080/08820139.2024.2380718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Brucellosis is an important zoonosis worldwide, affecting humans and animals. There are no specific medicines available to treat brucellosis. Astragalus polysaccharide (APS) is derived from Astragalus membranaceus and exhibits impressive bioactivity, including anti-aging, anti-tumor, and immunomodulatory functions. METHODS Mice were intraperitoneally inoculated with Brucella melitensis M5 and then treated with APS intraperitoneally injection daily for 7 d. RESULTS Compared to the M5-infected group, the lower bacteria loads in the APS-treated groups were proved, especially at the acute stage of infection. APS treatment relieved splenomegaly, excess expressions of several pro-inflammatory cytokines (including CXCL1, IFN-γ, IL-1β, IL-2, IL-12p70, and TNF-α). The raised level of IL-4 was observed in APS-treated mice. APS contributed to raising the ratio of M1 macrophage and reducing the ratio of M2 macrophage in the blood. DISCUSSION The present study provides some evidence on the potential application of APS in controlling and treating brucellosis and should be further explored.
Collapse
Affiliation(s)
- Yuanqiang Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Inner Mongolia Key Laboratory of Molecular Biology, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yajing Chen
- Inner Mongolia Key Laboratory of Molecular Biology, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Jianlong Zhao
- ABSL-3 laboratory, Jinyu Baoling Bio-Pharmaceutical Co. Ltd., Hohhot, Inner Mongolia, China
| | - Meihua Wu
- ABSL-3 laboratory, Jinyu Baoling Bio-Pharmaceutical Co. Ltd., Hohhot, Inner Mongolia, China
| | - Ligao Bao
- ABSL-3 laboratory, Jinyu Baoling Bio-Pharmaceutical Co. Ltd., Hohhot, Inner Mongolia, China
| | - Dantong Zhao
- ABSL-3 laboratory, Jinyu Baoling Bio-Pharmaceutical Co. Ltd., Hohhot, Inner Mongolia, China
| | - Shuang Bai
- Department of Dermatology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Dongdong Di
- ABSL-3 laboratory, Jinyu Baoling Bio-Pharmaceutical Co. Ltd., Hohhot, Inner Mongolia, China
| | - Yanchun Shi
- Inner Mongolia Key Laboratory of Molecular Biology, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| |
Collapse
|
32
|
Yue L, Ni-Ni J, Long W, Xing-Yu Z, Shuai W, Meng-Jun P, Xiang L, Xiao-Qin C. Chemical detection and analysis of Astragalus-Cassia twig drug pair using UHPLC-Q-TOF-MS and HPLC-UV methods. Fitoterapia 2024; 177:106129. [PMID: 39047846 DOI: 10.1016/j.fitote.2024.106129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/02/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
The classic Astragalus-Cassia twig drug pair has a long history of proven efficacy. However, a fewer studies on material basis of the Astragalus and Cassia twig decoction (ACD) was researched at present. The method of UPLC-Q-TOF-MS for classifying and identifying the main chemical components of ACD was established and the differences in composition between single decoction and co-decoction were compared by using HPLC-UV. The therapeutic role of ACD on type 2 diabetes (T2D) rats was investigated. Thirty-five compounds were resolved from the ACD. Fifteen compounds were deduced from the decoction of Astragalus, whereas nine compounds were identified from Cassia twig. Pairing of herbs make a significant effect on the chemical composition of herbal decoction. ACD can play a more obvious role in alleviating the symptoms of T2D rats, compared to the application of single herb.
Collapse
Affiliation(s)
- Liu Yue
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jia Ni-Ni
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Wu Long
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Zou Xing-Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Wang Shuai
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Pan Meng-Jun
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Li Xiang
- Anhui Province Institute for Food and Drug Control, Hefei, Anhui 230012, China.
| | - Chu Xiao-Qin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, Anhui 230012, China.
| |
Collapse
|
33
|
Zhang Y, Chen Z, Chen L, Dong Q, Yang DH, Zhang Q, Zeng J, Wang Y, Liu X, Cui Y, Li M, Luo X, Zhou C, Ye M, Li L, He Y. Astragali radix (Huangqi): a time-honored nourishing herbal medicine. Chin Med 2024; 19:119. [PMID: 39215362 PMCID: PMC11363671 DOI: 10.1186/s13020-024-00977-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Astragali radix (AR, namded Huangqi in Chinese) is the dried root of Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao or Astragalus membranaceus (Fisch.) Bge. As a widely used ethnomedicine, the biological activities of AR include immunomodulatory, anti-hyperglycemic, anti-oxidant, anti-aging, anti-inflammatory, anti-viral, anti-tumor, cardioprotective, and anti-diabetic effects, with minimum side effects. Currently, it is known that polysaccharides, saponins, and flavonoids are the indispensable components of AR. In this review, we will elaborate the research advancements of AR on ethnobotany, ethnopharmacological practices, phytochemicals, pharmacological activities, clinical uses, quality control, production developments, and toxicology. The information is expected to assist clinicians and scientists in developing useful therapeutic medicines with minimal systemic side effects.
Collapse
Affiliation(s)
- Yuyu Zhang
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Zhejie Chen
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Liping Chen
- School of Comprehensive Health Management, Xihua University, Chengdu, 610039, China
| | - Qin Dong
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Dong-Hua Yang
- New York College of Traditional Chinese Medicine, Mineola, NY, 11501, USA
| | - Qi Zhang
- Pengzhou Hospital of Traditional Chinese Medicine, Pengzhou, 611930, China
| | - Jing Zeng
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Yang Wang
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Xiao Liu
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Yuan Cui
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Minglong Li
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Xiao Luo
- Chengdu Institute for Drug Control, NMPA Key Laboratory for Quality Monitoring and Evaluation of Traditional Chinese Medicine, Chengdu, 610045, China
| | - Chongjian Zhou
- HuBei Guizhenyuan Chinese Herbal Medicine Co.Ltd., Hong'an, 438400, China
| | - Mingzhu Ye
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Ling Li
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China.
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| | - Yuxin He
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China.
| |
Collapse
|
34
|
Dong P, Wang L, Chen Y, Wang L, Liang W, Wang H, Cheng J, Chen Y, Guo F. Germplasm Resources and Genetic Breeding of Huang-Qi (Astragali Radix): A Systematic Review. BIOLOGY 2024; 13:625. [PMID: 39194563 DOI: 10.3390/biology13080625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
Huang-Qi (Astragali radix) is one of the most widely used herbs in traditional Chinese medicine, derived from the dried roots of Astragalus membranaceus or Astragalus membranaceus var. mongholicus. To date, more than 200 compounds have been reported to be isolated and identified in Huang-Qi. However, information pertaining to Huang-Qi breeding is considerably fragmented, with fundamental gaps in knowledge, creating a bottleneck in effective breeding strategies. This review systematically introduces Huang-Qi germplasm resources, genetic diversity, and genetic breeding, including wild species and cultivars, and summarizes the breeding strategy for cultivars and the results thereof as well as recent progress in the functional characterization of the structural and regulatory genes related to horticultural traits. Perspectives about the resource protection and utilization, breeding, and industrialization of Huang-Qi in the future are also briefly discussed.
Collapse
Affiliation(s)
- Pengbin Dong
- College of Agronomy, College of Life Science and Technology, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Lingjuan Wang
- Pingliang City Plant Protection Centre, Pingliang 743400, China
| | - Yong Chen
- Institute of Soil, Fertilizer and Agricultural Water saving, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China
| | - Liyang Wang
- College of Agronomy, College of Life Science and Technology, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Wei Liang
- College of Agronomy, College of Life Science and Technology, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Hongyan Wang
- College of Agronomy, College of Life Science and Technology, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiali Cheng
- College of Agronomy, College of Life Science and Technology, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuan Chen
- College of Agronomy, College of Life Science and Technology, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Fengxia Guo
- College of Agronomy, College of Life Science and Technology, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
35
|
Boccardi V, Marano L. Aging, Cancer, and Inflammation: The Telomerase Connection. Int J Mol Sci 2024; 25:8542. [PMID: 39126110 PMCID: PMC11313618 DOI: 10.3390/ijms25158542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 07/31/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024] Open
Abstract
Understanding the complex dynamics of telomere biology is important in the strong link between aging and cancer. Telomeres, the protective caps at the end of chromosomes, are central players in this connection. While their gradual shortening due to replication limits tumors expansion by triggering DNA repair mechanisms, it also promotes oncogenic changes within chromosomes, thus sustaining tumorigenesis. The enzyme telomerase, responsible for maintaining telomere length, emerges as a central player in this context. Its expression in cancer cells facilitates the preservation of telomeres, allowing them to circumvent the growth-limiting effects of short telomeres. Interestingly, the influence of telomerase extends beyond telomere maintenance, as evidenced by its involvement in promoting cell growth through alternative pathways. In this context, inflammation accelerates telomere shortening, resulting in telomere dysfunction, while telomere elements also play a role in modulating the inflammatory response. The recognition of this interplay has promoted the development of novel therapeutic approaches centered around telomerase inhibition. This review provides a comprehensive overview of the field, emphasizing recent progress in knowledge and the implications in understanding of cancer biology.
Collapse
Affiliation(s)
- Virginia Boccardi
- Division of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Luigi Marano
- Department of Medicine, Academy of Applied Medical and Social Sciences—AMiSNS: Akademia Medycznych I Spolecznych Nauk Stosowanych, 82-300 Elbląg, Poland;
- Department of General Surgery and Surgical Oncology, “Saint Wojciech” Hospital, “Nicolaus Copernicus” Health Center, 80-462 Gdańsk, Poland
| |
Collapse
|
36
|
Di D, Zhang C, Sun S, Pei K, Gu R, Sun Y, Zhou S, Wang Y, Chen X, Jiang S, Wu H, Zhu B, Xu X. Mechanism of Yishen Chuchan decoction intervention of Parkinson's disease based on network pharmacology and experimental verification. Heliyon 2024; 10:e34823. [PMID: 39149067 PMCID: PMC11325061 DOI: 10.1016/j.heliyon.2024.e34823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024] Open
Abstract
The incidence of Parkinson's disease (PD) rises rapidly with the increase of age. With the advent of global aging, the number of patients with PD is rising along with the elderly population, especially in China. Previously, we found that Yishen chuchan decoction (YCD), prescribed based on clinical experience, has the potential of alleviating symptoms, delaying the progression, and controlling the development of PD. Nonetheless, the underlying mechanistic role is yet to be explored. Aim This research examined the possible therapeutic effects of YCD in alleviating PD via a systematic approach with network pharmacology and experimental validation, aiming at providing a new understanding of traditional Chinese medicine management regarding PD. Methods The chemical structure and properties of YCD were adopted from Traditional Chinese Medicine System Pharmacology Database (TCMSP), SwissADME, PubChem, and PubMed. The potential targets for YCD and PD were identified using Swiss Target Prediction, GeneCard, PubChem, and UniProt. The herbal-component-target network was created via the Cytoscape software. Moreover, by using the STRING database, the protein-protein interaction (PPI) network was screened. Gene function GO and KEGG pathway enrichment analyses were performed via the Metascape database. YCD-medicated Rat Serum from Sprague-Dawley (SD) Rats was prepared, and SH-SY5Y cells were preconditioned with rotenone to develop the PD model. To examine the impact of YCD on these cells and explore the mechanistic role of the p38 mitogen-activated protein kinase (MAPK) pathway, the cells were pretreated with either serum or a p38 MAPK pathway inhibitor. This study employed the Cell Counting Kit (CCK)-8 assay and Hoechst 33,342 staining to evaluate the viability and morphological changes induced by the YCD-medicated rat serum on rotenone-treated SH-SY5Y cells. Apoptosis was assessed by Flow cytometry. Immunofluorescence staining assessed the microtubule-associated protein 2 (MAP2) level. Enzyme-linked immunosorbent assay (ELISA) was employed to quantify the concentrations of inflammatory mediators interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α). Also, reactive oxygen species (ROS) and superoxide dismutase (SOD) levels were determined. Western Blotting measured the expression of total and phospho-p38 MAPK (p-p38). Results This study identified 65 active components in YCD, which were found to target 801 specific genes. By screening, 63 potential core targets were identified from a pool of 172 overlapping targets between PD and YCD. These targets were examined by GO and KEGG analyses revealing their substantial correlation to MAPK, PI3K-Akt signaling pathways, positively controlling protein phosphorylation, and pathways of neurodegenerative diseases. SH-SY5Y cells were treated with 2 μM rotenone for 48 h, which reduced cell viability to 50 %, and reduced MAP2 expression, increased the rate of apoptosis, oxidative stress, inflammation, and p-p38 expressions. YCD-medicated rat serum significantly improved the viability, reduced the apoptosis rate, and increased the MAP2 expression. YCD-medicated serum increased SOD, reduced ROS and suppressed IL-6, IL-1β and TNF-α levels, thus inhibiting oxidative stress and inflammation in rotenone-treated SH-SY5Y cells. Moreover, YCD-medicated serum substantially lowered the p-p38 expression induced by rotenone. SB203580, a specific inhibitor of p38 MAPK, could also inhibit the p-p38 expression, apoptosis, and restore morphological damage of cells, also improve inflammation and oxidative stress. Conclusion YCD enhanced cell viability and reduced apoptosis rate, inflammation, and oxidative stress in vitro. These beneficial effects could potentially involve the suppression of p38 pathway and suppressed the phosphorylation of p38 MAPK.
Collapse
Affiliation(s)
- Dong Di
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- Key Laboratory of Integrative Biomedicine for Brain Diseases, College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210046, China
| | - Chencheng Zhang
- Institute of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, 226631, Jiangsu, China
| | - Suping Sun
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- Key Laboratory of Integrative Biomedicine for Brain Diseases, College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210046, China
| | - Ke Pei
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Renjun Gu
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Yan Sun
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- Key Laboratory of Integrative Biomedicine for Brain Diseases, College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210046, China
| | - Shihan Zhou
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- Key Laboratory of Integrative Biomedicine for Brain Diseases, College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210046, China
| | - Yanqing Wang
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- Key Laboratory of Integrative Biomedicine for Brain Diseases, College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210046, China
| | - Xinyi Chen
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- Key Laboratory of Integrative Biomedicine for Brain Diseases, College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210046, China
| | - Shan Jiang
- Nantong TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Nantong, Jiangsu, 226001, China
| | - Haoxin Wu
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- Key Laboratory of Integrative Biomedicine for Brain Diseases, College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210046, China
| | - Boran Zhu
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- Key Laboratory of Integrative Biomedicine for Brain Diseases, College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210046, China
| | - Xu Xu
- Nantong TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Nantong, Jiangsu, 226001, China
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| |
Collapse
|
37
|
Li Z, Liu J, Cui H, Qi W, Tong Y, Wang T. Astragalus membranaceus: A Review of Its Antitumor Effects on Non-Small Cell Lung Cancer. Cancer Manag Res 2024; 16:909-919. [PMID: 39081698 PMCID: PMC11287463 DOI: 10.2147/cmar.s466633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/08/2024] [Indexed: 08/02/2024] Open
Abstract
The rising global morbidity and mortality rates of non-small cell lung cancer (NSCLC) underscore the urgent need for more effective treatments. Current therapeutic modalities-including surgery, radiotherapy, chemotherapy, and targeted therapy-face several limitations. Recently, Astragalus membranaceus, a traditional Chinese medicine (TCM), has captured significant attention due to its broad pharmacological properties, such as immune regulation, anti-inflammatory effects, and the modulation of reactive oxygen species (ROS) and enzyme activities. This review delivers a comprehensive summary of the most recent advancements and ongoing applications of Astragalus membranaceus in NSCLC treatment, underlining its potential for integration into existing treatment protocols. It also highlights essential areas for future research, including the elucidation of its molecular mechanisms, optimization of dosage and administration, and evaluation of its efficacy and safety alongside standard therapies, all of which could potentially improve therapeutic outcomes for NSCLC patients.
Collapse
Affiliation(s)
- Zhenyu Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, People’s Republic of China
| | - Jimin Liu
- Department of Respiratory, The Third Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130117, People’s Republic of China
| | - Haishan Cui
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130117, People’s Republic of China
| | - Wenlong Qi
- Department of Respiratory, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, People’s Republic of China
| | - Yangyang Tong
- Department of Respiratory, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, People’s Republic of China
| | - Tan Wang
- Department of Respiratory, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, People’s Republic of China
| |
Collapse
|
38
|
Ali J, Choe K, Park JS, Park HY, Kang H, Park TJ, Kim MO. The Interplay of Protein Aggregation, Genetics, and Oxidative Stress in Alzheimer's Disease: Role for Natural Antioxidants and Immunotherapeutics. Antioxidants (Basel) 2024; 13:862. [PMID: 39061930 PMCID: PMC11274292 DOI: 10.3390/antiox13070862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that comprises amyloid-beta protein (Aβ) as a main component of neuritic plaques. Its deposition is considered a trigger for AD pathogenesis, progression, and the clinical symptoms of cognitive impairment. Some distinct pathological features of AD include phosphorylation of tau protein, oxidative stress, and mitochondrial dysfunction. These pathological consequences tend to produce reactive oxygen species (ROS), resulting in the dysregulation of various signaling pathways of neuroinflammation and neurodegeneration. The relationship between the Aβ cascade and oxidative stress in AD pathogenesis is like a "chicken and egg" story, with the etiology of the disease regarding these two factors remaining a question of "which comes first." However, in this review, we have tried our best to clarify the interconnection between these two mechanisms and to show the precise cause-and-effect relationship. Based on the above hallmarks of AD, several therapeutic strategies using natural antioxidants, monoclonal antibodies, and vaccines are employed as anti-Aβ therapy to decrease ROS, Aβ burden, chronic neuroinflammation, and synaptic failure. These natural antioxidants and immunotherapeutics have demonstrated significant neuroprotective effects and symptomatic relief in various in vitro and in vivo models, as well as in clinical trials for AD. However, none of them have received final approval to enter the drug market for mitigating AD. In this review, we extensively elaborate on the pitfalls, assurances, and important crosstalk between oxidative stress and Aβ concerning current anti-Aβ therapy. Additionally, we discuss future strategies for the development of more Aβ-targeted approaches and the optimization of AD treatment and mitigation.
Collapse
Affiliation(s)
- Jawad Ali
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (J.A.); (K.C.); (J.S.P.)
| | - Kyonghwan Choe
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (J.A.); (K.C.); (J.S.P.)
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER Maastricht, The Netherlands;
| | - Jun Sung Park
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (J.A.); (K.C.); (J.S.P.)
| | - Hyun Young Park
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER Maastricht, The Netherlands;
- Department of Pediatrics, Maastricht University Medical Center (MUMC+), 6202 AZ Maastricht, The Netherlands
| | - Heeyoung Kang
- Department of Neurology, Gyeongsang National University Hospital & College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea;
| | - Tae Ju Park
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences (MVLS), University of Glasgow, Glasgow G12 0ZD, UK
| | - Myeong Ok Kim
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (J.A.); (K.C.); (J.S.P.)
- Alz-Dementia Korea Co., Jinju 52828, Republic of Korea
| |
Collapse
|
39
|
Wang H, Zhao X, Wu Z. Mechanism of drug-pairs Astragalus Mongholicus-Largehead Atractylodes on treating knee osteoarthritis investigated by GEO gene chip with network pharmacology and molecular docking. Medicine (Baltimore) 2024; 103:e38699. [PMID: 38968529 PMCID: PMC11224889 DOI: 10.1097/md.0000000000038699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 06/04/2024] [Indexed: 07/07/2024] Open
Abstract
Investigations into the therapeutic potential of Astragalus Mongholicus (AM, huáng qí) and Largehead Atractylodes (LA, bái zhú) reveal significant efficacy in mitigating the onset and progression of knee osteoarthritis (KOA), albeit with an elusive mechanistic understanding. This study delineates the primary bioactive constituents and their molecular targets within the AM-LA synergy by harnessing the comprehensive Traditional Chinese Medicine (TCM) network databases, including TCMSP, TCMID, and ETCM. Furthermore, an analysis of 3 gene expression datasets, sourced from the gene expression omnibus database, facilitated the identification of differential genes associated with KOA. Integrating these findings with data from 5 predominant databases yielded a refined list of KOA-associated targets, which were subsequently aligned with the gene signatures corresponding to AM and LA treatment. Through this alignment, specific molecular targets pertinent to the AM-LA therapeutic axis were elucidated. The construction of a protein-protein interaction network, leveraging the shared genetic markers between KOA pathology and AM-LA intervention, enabled the identification of pivotal molecular targets via the topological analysis facilitated by CytoNCA plugins. Subsequent GO and KEGG enrichment analyses fostered the development of a holistic herbal-ingredient-target network and a core target-signal pathway network. Molecular docking techniques were employed to validate the interaction between 5 central molecular targets and their corresponding active compounds within the AM-LA complex. Our findings suggest that the AM-LA combination modulates key biological processes, including cellular activity, reactive oxygen species modification, metabolic regulation, and the activation of systemic immunity. By either augmenting or attenuating crucial signaling pathways, such as MAPK, calcium, and PI3K/AKT pathways, the AM-LA dyad orchestrates a comprehensive regulatory effect on immune-inflammatory responses, cellular proliferation, differentiation, apoptosis, and antioxidant defenses, offering a novel therapeutic avenue for KOA management. This study, underpinned by gene expression omnibus gene chip analyses and network pharmacology, advances our understanding of the molecular underpinnings governing the inhibitory effects of AM and LA on KOA progression, laying the groundwork for future explorations into the active components and mechanistic pathways of TCM in KOA treatment.
Collapse
Affiliation(s)
- Hui Wang
- Jinan Third People’s Hospital, Affiliated Jinan Third People’s Hospital of Jining Medical University, Jining, Shandong, China
| | - Xinyou Zhao
- Yanzhou People’s Hospital, Jining Medical University, Jining, Shandong, China
| | - Zixuan Wu
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan Province, China
| |
Collapse
|
40
|
Takata T, Inoue S, Masauji T, Miyazawa K, Motoo Y. Generation and Accumulation of Various Advanced Glycation End-Products in Cardiomyocytes May Induce Cardiovascular Disease. Int J Mol Sci 2024; 25:7319. [PMID: 39000424 PMCID: PMC11242264 DOI: 10.3390/ijms25137319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Cardiomyocyte dysfunction and cardiovascular diseases (CVDs) can be classified as ischemic or non-ischemic. We consider the induction of cardiac tissue dysfunction by intracellular advanced glycation end-products (AGEs) in cardiomyocytes as a novel type of non-ischemic CVD. Various types of AGEs can be generated from saccharides (glucose and fructose) and their intermediate/non-enzymatic reaction byproducts. Recently, certain types of AGEs (Nε-carboxymethyl-lycine [CML], 2-ammnonio-6-[4-(hydroxymetyl)-3-oxidopyridinium-1-yl]-hexanoate-lysine [4-hydroxymethyl-OP-lysine, hydroxymethyl-OP-lysine], and Nδ-(5-hydro-5-methyl-4-imidazolone-2-yl)-ornithine [MG-H1]) were identified and quantified in the ryanodine receptor 2 (RyR2) and F-actin-tropomyosin filament in the cardiomyocytes of mice or patients with diabetes and/or heart failure. Under these conditions, the excessive leakage of Ca2+ from glycated RyR2 and reduced contractile force from glycated F-actin-tropomyosin filaments induce cardiomyocyte dysfunction. CVDs are included in lifestyle-related diseases (LSRDs), which ancient people recognized and prevented using traditional medicines (e.g., Kampo medicines). Various natural compounds, such as quercetin, curcumin, and epigallocatechin-3-gallate, in these drugs can inhibit the generation of intracellular AGEs through mechanisms such as the carbonyl trap effect and glyoxalase 1 activation, potentially preventing CVDs caused by intracellular AGEs, such as CML, hydroxymethyl-OP, and MG-H1. These investigations showed that bioactive herbal extracts obtained from traditional medicine treatments may contain compounds that prevent CVDs.
Collapse
Affiliation(s)
- Takanobu Takata
- Division of Molecular and Genetic Biology, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
- Department of Pharmacy, Kanazawa Medical University Hospital, Uchinada, Ishikawa 920-0293, Japan;
| | - Shinya Inoue
- Department of Urology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan; (S.I.); (K.M.)
| | - Togen Masauji
- Department of Pharmacy, Kanazawa Medical University Hospital, Uchinada, Ishikawa 920-0293, Japan;
| | - Katsuhito Miyazawa
- Department of Urology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan; (S.I.); (K.M.)
| | - Yoshiharu Motoo
- Department of Internal Medicine, Fukui Saiseikai Hospital, Wadanaka, Fukui 918-8503, Japan
| |
Collapse
|
41
|
Liu M, Di YM, May B, Zhang AL, Zhang L, Chen J, Wang R, Liu X, Xue CC. Renal protective effects and mechanisms of Astragalus membranaceus for diabetic kidney disease in animal models: An updated systematic review and meta-analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155646. [PMID: 38733903 DOI: 10.1016/j.phymed.2024.155646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/03/2024] [Accepted: 04/15/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Astragalus membranaceus (AM) shows potential therapeutic benefits for managing diabetic kidney disease (DKD), a leading cause of kidney failure with no cure. However, its comprehensive effects on renal outcomes and plausible mechanisms remain unclear. PURPOSE This systematic review and meta-analysis aimed to synthesize the effects and mechanisms of AM on renal outcomes in DKD animal models. METHODS Seven electronic databases were searched for animal studies until September 2023. Risk of bias was assessed based on SYRCLE's Risk of Bias tool. Standardized mean difference (SMD) or mean difference (MD) were estimated for the effects of AM on serum creatinine (SCr), blood urea nitrogen (BUN), albuminuria, histological changes, oxidative stress, inflammation, fibrosis and glucolipids. Effects were pooled using random-effects models. Heterogeneity was presented as I2. Subgroup analysis investigated treatment- and animal-related factors for renal outcomes. Publication bias was assessed using funnel plots and Egger's test. Sensitivity analysis was performed to assess the results' robustness. RevMan 5.3 and Stata MP 15 software were used for statistical analysis. RESULTS Forty studies involving 1543 animals were identified for analysis. AM treatment significantly decreased SCr (MD = -19.12 μmol/l, 95 % CI: -25.02 to -13.23), BUN (MD = -6.72 mmol/l, 95 % CI: -9.32 to -4.12), urinary albumin excretion rate (SMD = -2.74, 95 % CI: -3.57, -1.90), histological changes (SMD = -2.25, 95 % CI: -3.19 to -1.32). AM treatment significantly improved anti-oxidative stress expression (SMD = 1.69, 95 % CI: 0.97 to 2.41), and decreased inflammation biomarkers (SMD = -3.58, 95 % CI: -5.21 to -1.95). AM treatment also decreased fibrosis markers (i.e. TGF-β1, CTGF, collagen IV, Wnt4 and β-catenin) and increased anti-fibrosis marker BMP-7. Blood glucose, lipids and kidney size were also improved compared with the DM control group. CONCLUSION AM could improve renal outcomes and alleviate injury through multiple signaling pathways. This indicates AM may be an option to consider for the development of future DKD therapeutics.
Collapse
Affiliation(s)
- Meifang Liu
- China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, Melbourne, 3083, Australia; Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Yuan Ming Di
- China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, Melbourne, 3083, Australia
| | - Brian May
- China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, Melbourne, 3083, Australia
| | - Anthony Lin Zhang
- China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, Melbourne, 3083, Australia
| | - Lei Zhang
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Junhui Chen
- Second Clinical College of Guangzhou University of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Ruobing Wang
- Second Clinical College of Guangzhou University of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xusheng Liu
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
| | - Charlie Changli Xue
- China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, Melbourne, 3083, Australia.
| |
Collapse
|
42
|
Zhang WJ, Chen RQ, Tang X, Li PB, Wang J, Wu HK, Xu N, Zou MF, Luo SR, Ouyang ZQ, Chen ZK, Liao XX, Wu H. Naoxintong capsule for treating cardiovascular and cerebrovascular diseases: from bench to bedside. Front Pharmacol 2024; 15:1402763. [PMID: 38994201 PMCID: PMC11236728 DOI: 10.3389/fphar.2024.1402763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/06/2024] [Indexed: 07/13/2024] Open
Abstract
Naoxintong Capsule (NXT), a renowned traditional Chinese medicine (TCM) formulation, has been broadly applied in China for more than 30 years. Over decades, accumulating evidences have proven satisfactory efficacy and safety of NXT in treating cardiovascular and cerebrovascular diseases (CCVD). Studies have been conducted unceasingly, while this growing latest knowledge of NXT has not yet been interpreted properly and summarized comprehensively. Hence, we systematically review the advancements in NXT research, from its chemical constituents, quality control, pharmacokinetics, to its profound pharmacological activities as well as its clinical applications in CCVD. Moreover, we further propose specific challenges for its future perspectives: 1) to precisely clarify bioactivities of single compound in complicated mixtures; 2) to evaluate the pharmacokinetic behaviors of NXT feature components in clinical studies, especially drug-drug interactions in CCVD patients; 3) to explore and validate its multi-target mechanisms by integrating multi-omics technologies; 4) to re-evaluate the safety and efficacy of NXT by carrying out large-scale, multicenter randomized controlled trials. In brief, this review aims to straighten out a paradigm for TCM modernization, which help to contribute NXT as a piece of Chinese Wisdom into the advanced intervention strategy for CCVD therapy.
Collapse
Affiliation(s)
- Wei-jian Zhang
- Department of Neurosurgery, First People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Rui-qi Chen
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xuan Tang
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Pei-bo Li
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jian Wang
- Department of Neurosurgery, Foshan Sanshui District People’s Hospital, Foshan, Guangdong, China
| | - Hai-ke Wu
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, China
| | - Ning Xu
- Second People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Ming-fei Zou
- Second People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Sen-rong Luo
- Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zi-qi Ouyang
- Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhi-kai Chen
- Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xu-xing Liao
- Department of Neurosurgery, First People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Hao Wu
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
43
|
Wang F, Zhu L, Cui H, Guo S, Wu J, Li A, Wang Z. Renshen Yangrong decoction for secondary malaise and fatigue: network pharmacology and Mendelian randomization study. Front Nutr 2024; 11:1404123. [PMID: 38966421 PMCID: PMC11222649 DOI: 10.3389/fnut.2024.1404123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/13/2024] [Indexed: 07/06/2024] Open
Abstract
Background Renshen Yangrong decoction (RSYRD) has been shown therapeutic effects on secondary malaise and fatigue (SMF). However, to date, its bioactive ingredients and potential targets remain unclear. Purpose The purpose of this study is to assess the potential ingredients and targets of RSYRD on SMF through a comprehensive strategy integrating network pharmacology, Mendelian randomization as well as molecular docking verification. Methods Search for potential active ingredients and corresponding protein targets of RSYRD on TCMSP and BATMAN-TCM for network pharmacology analysis. Mendelian randomization (MR) was performed to find therapeutic targets for SMF. The eQTLGen Consortium (sample sizes: 31,684) provided data on cis-expression quantitative trait loci (cis-eQTL, exposure). The summary data on SMF (outcome) from genome-wide association studies (GWAS) were gathered from the MRC-IEU Consortium (sample sizes: 463,010). We built a target interaction network between the probable active ingredient targets of RSYRD and the therapeutic targets of SMF. We next used drug prediction and molecular docking to confirm the therapeutic value of the therapeutic targets. Results In RSYRD, network pharmacology investigations revealed 193 possible active compounds and 234 associated protein targets. The genetically predicted amounts of 176 proteins were related to SMF risk in the MR analysis. Thirty-seven overlapping targets for RSYRD in treating SMF, among which six (NOS3, GAA, IMPA1, P4HTM, RB1, and SLC16A1) were prioritized with the most convincing evidence. Finally, the 14 active ingredients of RSYRD were identified as potential drug molecules. The strong affinity between active components and putative protein targets was established by molecular docking. Conclusion This study revealed several active components and possible RSYRD protein targets for the therapy of SMF and provided novel insights into the feasibility of using Mendelian randomization for causal inference between Chinese medical formula and disease.
Collapse
Affiliation(s)
- Fanghan Wang
- Department of Medical Oncology, The Fourth People’s Hospital of Zibo, Zibo, China
| | - Liping Zhu
- Department of Medical Oncology, Shouguang Hospital of Traditional Chinese Medicine, Shouguang, China
| | - Haiyan Cui
- Department of Pathology, The Fourth People’s Hospital of Zibo, Zibo, China
| | - Shanchun Guo
- RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA, United States
| | - Jingliang Wu
- Medical School, Weifang University of Science and Technology, Shouguang, China
| | - Aixiang Li
- Department of Medical Oncology, Shouguang Hospital of Traditional Chinese Medicine, Shouguang, China
| | - Zhiqiang Wang
- Department of Urology, Shouguang Hospital of Traditional Chinese Medicine, Shouguang, China
| |
Collapse
|
44
|
Jia Q, Song Y, Zhang C, Li M, Feng L, Sugimoto K, Zhang X, Liu J, Gao Y. Reasons and experience for patients with amyotrophic lateral sclerosis using traditional Chinese medicine: a CARE-TCM based mixed method study. BMC Complement Med Ther 2024; 24:231. [PMID: 38867220 PMCID: PMC11167840 DOI: 10.1186/s12906-024-04513-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 05/22/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND AND AIM Traditional Chinese medicine (TCM) is widely used by patients with amyotrophic lateral sclerosis (ALS). However, their reasons and experience in using TCM have received insufficient attention. Therefore, we conducted a mixed method study to gain insights into this issue. MATERIALS AND METHODS This study was conducted on the basis of the China Amyotrophic Lateral Sclerosis Registry of Patients with Traditional Chinese Medicine (CARE-TCM). Data were collected from Dongzhimen Hospital through a mixed method approach, including a questionnaire and a semi-structured interview. Patients with ALS who were using TCM when they were initially registered with CARE-TCM and who had been followed-up for over six months were recruited. The questionnaires' outcomes were statistically outlined, and the interview transcripts were thematically analysed to identify themes and sub-themes. RESULTS Fifty-two and sixteen patients were included in the questionnaire and semi-structured interview groups, respectively. Patients used TCM with the hope of regulating their body holistically to improve nonmotor symptoms and quality of life (QOL). Those who recognised TCM as ineffective tended to discontinue it after a three-month trial period. Although quality was a major concern, herbal medicine (HM) was the most frequently used modality among all participants (n = 52), with the majority (n = 44, 84.6%) continuing to use it. Patients emphasised in-person consultations as a crucial part of TCM treatment. However, the disability caused by disease often made this interaction unattainable. CONCLUSION Nonmotor symptoms and QOL hold substantial importance for patients with ALS using TCM. HM is a more suitable modality than other TCM treatment modalities, but patients are facing challenges in seeking HM treatment. It is necessary to promote the implementation of hierarchical diagnosis and treatment, thus making TCM more accessible. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT04885374 (registered on May 13, 2021).
Collapse
Affiliation(s)
- Qiuyang Jia
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Yuebo Song
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Chi Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Mingxuan Li
- Gansu provincial Hospital of traditional Chinese medicine, Gansu, China
| | - Luda Feng
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Kazuo Sugimoto
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xuebin Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Jia Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Gao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China.
- Institute for Brain Disorders, Beijing University of Chinese Medicine Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| |
Collapse
|
45
|
Wang J, Shi L, Wang C, Yao LH, Li G, Wang S. Astragaloside depresses compound action potential in sciatic nerve of frogs involved in L-type Ca 2+-channel dependent mechanism. Nat Prod Res 2024:1-10. [PMID: 38824425 DOI: 10.1080/14786419.2024.2353388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 05/06/2024] [Indexed: 06/03/2024]
Abstract
The sciatic nerve is the largest sensorimotor nerve within the peripheral nervous system (PNS), possessing the ability to produce endogenous neurotrophins. Compound nerve action potentials (CNAPs) are regarded as a physiological/pathological indicator to identify nerve activity in signal transduction of the PNS. Astragaloside (AST), a small-molecule saponin purified from Astragalus membranaceus, is widely used to treat chronic disease. Nonetheless, the regulatory effects of AST on the sciatic nerve remain unknown. Therefore, the present investigation was undertaken to study the effect of AST on CNAPs of frog sciatic nerves. Here, AST depressed the conduction velocity and amplitude of CNAPs. Importantly, the AST-induced responses could be blocked by a Ca2+-free medium, or by applying all Ca2+ channel antagonists (CdCl2/LaCl3) or L-type Ca2+ channel blockers (nifedipine/diltiazem), but not the T-type and P-type Ca2+ channel antagonist (NiCl2). Altogether, these findings suggested that AST may attenuate the CNAPs of frog sciatic nerves in vitro via the L-type Ca2+-channel dependent mechanisms.
Collapse
Affiliation(s)
- Jinxiu Wang
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, PR China
| | - Lulu Shi
- School of Sport Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, PR China
| | - Chuchu Wang
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, PR China
| | - Li-Hua Yao
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, PR China
| | - Guoyin Li
- School of Sport Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, PR China
| | - Songhua Wang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, PR China
| |
Collapse
|
46
|
Luo Y, Chen H, Huang C, He S, Wen Q, Cai D. Structure Elucidation of a Novel Polysaccharide Isolated from Euonymus fortunei and Establishing Its Antioxidant and Anticancer Properties. Int J Anal Chem 2024; 2024:8871600. [PMID: 38827786 PMCID: PMC11142861 DOI: 10.1155/2024/8871600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/13/2024] [Accepted: 04/23/2024] [Indexed: 06/05/2024] Open
Abstract
Euonymusfortunei polysaccharides (EFPs) have not been extensively investigated yet in terms of their extraction and biological activity. The orthogonal experimental design was employed in this study to evaluate the optimum yield of EFPs. A maximum yield of 2.63 ± 0.23% was attained using material-liquid ratios of 60 mL/g, extraction temperature of 80°C, ultrasonic power of 144 W, and extraction time of 75 mins. The polysaccharide content reached 53.47 ± 0.31% when deproteinized thrice. An analysis of monosaccharide composition revealed that these polysaccharides consist of Gal, Glc, Man, Fuc, and Rha with a molar ratio of 7.14 ∶ 23.99 ∶ 6.29 ∶ 6.55 ∶ 1.00, respectively, in EFPs. Subsequently, the in vitro scavenging capacities of 2,2-diphenylpicrylhydrazyl (DPPH) and ·OH and superoxide anion radicals, along with the reducing power of EFPs, were studied. Results revealed that EFPs have higher antioxidant activity, particularly ·OH scavenging, as well as reducing power, as compared to Astragalus polysaccharides (ASPs) and Lycium barbarum polysaccharides (LBPs). The Cell Counting Kit-8 (CCK-8) method was used to evaluate the effects of different concentrations of polysaccharides on SKOV3 cell proliferation, and the results revealed their inhibition at concentrations in the range of 200-800 μg/mL. In addition, findings from flow cytometry further confirmed that EFPs blocked the cell cycle at G0/G1 and S phases and induced SKOV3 cell apoptosis. In a word, EFPs could be exploited and used further based on the experimental results from this study.
Collapse
Affiliation(s)
- Yu Luo
- Guangxi Key Laboratory of Bio-Targeting Theranostics, Nanning 530021, China
- Department of Biochemistry and Molecular Biology, Guangxi Medical University, Nanning 530021, China
- Key Laboratory of Biological Molecular Medicine Research, Guangxi Medical University, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Hongtao Chen
- Guangxi University of Chinese Medicine Bainianle Pharmaceutical Co., Ltd, Nanning 530000, China
| | - Chunxi Huang
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Shujia He
- Department of Biochemistry and Molecular Biology, Guangxi Medical University, Nanning 530021, China
- Key Laboratory of Biological Molecular Medicine Research, Guangxi Medical University, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Qilong Wen
- Department of Biochemistry and Molecular Biology, Guangxi Medical University, Nanning 530021, China
| | - Danzhao Cai
- Department of Biochemistry and Molecular Biology, Guangxi Medical University, Nanning 530021, China
- Key Laboratory of Biological Molecular Medicine Research, Guangxi Medical University, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| |
Collapse
|
47
|
Ho TJ, Tsai BCK, Debakshee G, Shibu MA, Kuo CH, Lin CH, Lin PY, Lin SZ, Kuo WW, Huang CY. Ohwia caudata aqueous extract attenuates senescence in aging adipose-derived mesenchymal stem cells. Heliyon 2024; 10:e29729. [PMID: 38698985 PMCID: PMC11064092 DOI: 10.1016/j.heliyon.2024.e29729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024] Open
Abstract
Stem cells exhibit pluripotency and self-renewal abilities. Adipose-derived mesenchymal stem cells can potentially be used to reconstruct various tissues. They possess significant versatility and alleviate various aging-related diseases. Unfortunately, aging leads to senescence, apoptosis, and a decline in regenerative capacity in adipose-derived mesenchymal stem cells. These changes necessitate a strategy to mitigate the effects of aging on stem cells. Ohwia caudata (O. caudata) has therapeutic effects against several illnesses. However, studies on whether O. caudata has therapeutic effects against aging are lacking. In this study, we aimed to identify potential therapeutic anti-aging effects in the crude aqueous extract of O. caudata on adipose-derived mesenchymal stem cells. Using 0.1 μM doxorubicin, we induced aging in human adipose-derived mesenchymal stem cells (hADMSCs) and evaluated whether various concentrations of O. caudata aqueous extract exhibit anti-aging effects on them. The O. caudata extract exhibited significant antioxidant effects on hADMSCs without any toxicity. Furthermore, after treatment with the O. caudata aqueous extract, the levels of mitochondrial superoxide, DNA double-strand breaks, and telomere shortening were reduced in the hADMSCs subjected to doxorubicin-induced aging. The extract also suppressed doxorubicin-induced aging by upregulating klotho and downregulating p21 in hADMSCs. These findings indicated that the O. caudata extract exhibited anti-aging properties that modulated hADMSC homeostasis. Therefore, it could be a potential candidate for restoring the self-renewal ability and multipotency of aging hADMSCs.
Collapse
Affiliation(s)
- Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Bruce Chi-Kang Tsai
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Goswami Debakshee
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Marthandam Asokan Shibu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Chia-Hua Kuo
- Department of Sports Sciences, University of Taipei, Taipei, Taiwan
- Laboratory of Exercise Biochemistry, University of Taipei, Tianmu Campus, Taipei, Taiwan
- Department of Kinesiology and Health Science, College of William and Mary, Williamsburg, VA, USA
- School of Physical Education and Sports Science, Soochow University, Suzhou, China
| | - Chih-Hsueh Lin
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- Department of Family Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Pi-Yu Lin
- Buddhist Compassion Relief Tzu Chi Foundation, Hualien, Taiwan
| | - Shinn-Zong Lin
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| |
Collapse
|
48
|
Huang Y, Chu C, Mai Y, Zhao Y, Cao L, Ji S, Zhu B, Shen Q. Treatment of peritoneal fibrosis: Therapeutic prospects of bioactive Agents from Astragalus membranaceus. Front Pharmacol 2024; 15:1347234. [PMID: 38835665 PMCID: PMC11148558 DOI: 10.3389/fphar.2024.1347234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/02/2024] [Indexed: 06/06/2024] Open
Abstract
Peritoneal dialysis is one of the renal replacement treatments for patients with end-stage renal disease. Peritoneal dialysis-related peritoneal fibrosis is a pathological change in peritoneal tissue of peritoneal dialysis patients with progressive, non-suppurative inflammation accompanied by fibrous tissue hyperplasia, resulting in damage to the original structure and function, leading to peritoneal function failure. Currently, there is no specific drug in the clinic. Therefore, it is necessary to find a drug with good effects and few adverse reactions. Astragalus membranaceus (AMS) is the dried root of the Astragalus membranaceus (Fisch.) Bge. AMS and its active ingredients play a significant role in anti-inflammation, anti-fibrosis, regulation of immune function and regulation of blood pressure. Studies have shown that it can alleviate peritoneal fibrosis by reducing inflammatory response, inhibiting oxidative stress, degrading extracellular matrix deposition, regulating apoptosis, and regulating Transforming Growth Factor-β. The author summarized the relationship between AMS and its active ingredients by referring to relevant literature at home and abroad, in order to provide some theoretical basis for further clinical research.
Collapse
Affiliation(s)
- Ying Huang
- School of Public Health, Hangzhou Medical College, Hangzhou, China
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Chenling Chu
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Department of Clinical Medicine and Stomatology, School of Hangzhou Normal University, Hangzhou, China
| | - Yuanyuan Mai
- Basic Medical Sciences, Hangzhou Medical College, Hangzhou, China
| | - Yue Zhao
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Luxi Cao
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Shuiyu Ji
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Bin Zhu
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Quanquan Shen
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Department of Nephrology, Zhejiang Provincial People’s Hospital Bijie Hospital, Bijie, China
| |
Collapse
|
49
|
Hu Z, Luo Y, Wu Y, Qin D, Yang F, Luo F, Lin Q. Extraction, structures, biological effects and potential mechanisms of Momordica charantia polysaccharides: A review. Int J Biol Macromol 2024; 268:131498. [PMID: 38614167 DOI: 10.1016/j.ijbiomac.2024.131498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 03/18/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
Momordica charantia L. is a kind of vegetable with medicinal value. As the main component of the vegetable, Momordica charantia polysaccharides (MCPs) mainly consist of galactose, galacturonic acid, xylose, rhamnose, mannose and the molecular weight range is 4.33 × 103-1.16 × 106 Da. MCPs have been found to have various biological activities in recent years, such as anti-oxidation, anti-diabetes, anti-brain injury, anti-obesity, immunomodulatory and anti-inflammation. In this review, we systematically summarized the extraction methods, structural characteristics and physicochemical properties of MCPs. Especially MCPs modulate gut microbiota and cause the alterations of metabolic products, which can regulate different signaling pathways and target gene expressions to exert various functions. Meanwhile, the potential structure-activity relationships of MCPs were analyzed to provide a scientific basis for better development or modification of MCPs. Future researches on MCPs should focus on industrial extraction and molecular mechanisms. In East Asia, Momordica charantia L. is used as both food and medicine. It is not clear whether MCP has its unique biological effects. Further study on the difference between MCPs and other food-derived polysaccharides will be helpful to the development and potential application of Momordica charantia L.
Collapse
Affiliation(s)
- Zuomin Hu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Yidan Luo
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Yuchi Wu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Dandan Qin
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Feiyan Yang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Feijun Luo
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Qinlu Lin
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| |
Collapse
|
50
|
Ding X, Ma X, Meng P, Yue J, Li L, Xu L. Potential Effects of Traditional Chinese Medicine in Anti-Aging and Aging-Related Diseases: Current Evidence and Perspectives. Clin Interv Aging 2024; 19:681-693. [PMID: 38706635 PMCID: PMC11070163 DOI: 10.2147/cia.s447514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/17/2024] [Indexed: 05/07/2024] Open
Abstract
Aging and aging-related diseases present a global public health problem. Therefore, the development of efficient anti-aging drugs has become an important area of research. Traditional Chinese medicine is an important complementary and alternative branch of aging-related diseases therapy. Recently, a growing number of studies have revealed that traditional Chinese medicine has a certain delaying effect on the progression of aging and aging-related diseases. Here, we review the progress in research into using traditional Chinese medicine for aging and aging-related diseases (including neurodegenerative diseases, cardiovascular diseases, diabetes, and cancer). Furthermore, we summarize the potential mechanisms of action of traditional Chinese medicine and provide references for further studies on aging and aging-related diseases.
Collapse
Affiliation(s)
- Xue Ding
- Department of Medical, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Xiuxia Ma
- Department of AIDS Clinical Research Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Pengfei Meng
- Department of the First Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Jingyu Yue
- Department of AIDS Clinical Research Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Liangping Li
- Department of Graduate, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Liran Xu
- Department of the First Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| |
Collapse
|