1
|
Dua I, Yampolsky LY. Transcriptional atlas of Daphnia magna. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 55:101504. [PMID: 40199048 DOI: 10.1016/j.cbd.2025.101504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/29/2025] [Accepted: 03/30/2025] [Indexed: 04/10/2025]
Abstract
Transcriptomics studies are more likely to achieve predictive results when they rely on tissue- and cell-specific transcriptional data. Identification of cell types in novel model organisms by their transcriptional profiles is difficult without data on transcriptional differences among major tissues and anatomical features. Here we report the first dataset on tissue- and organ-specific transcriptomics in freshwater plankton crustacean Daphnia magna, reporting markers of embryos, hemocytes, gut, carapace, antennae-2, and head, as well as the remaining carcass. Embryos are the most transcriptionally different from adults' features, with antennae and carapace being the most differentiated among them. We demonstrate that transcriptional markers of embryos vs. adults and of various adult anatomical features can be used to provide validation and functional explanation to published differential expression in response to environmental factors like infection, hypoxia, toxicants, or kairomones; to annotate Daphnia single cell data; and to ask questions about transcriptional diversification within extended gene families.
Collapse
Affiliation(s)
- Ishaan Dua
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37615, USA; University of Tennessee Health Science Center College of Medicine, 920 Madison Ave, Memphis TN 38163
| | - Lev Y Yampolsky
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37615, USA.
| |
Collapse
|
2
|
Bojarski KK, Samsonov SA. In silico insights into procathepsin S maturation mediated by glycosaminoglycans. J Mol Graph Model 2023; 120:108406. [PMID: 36707295 DOI: 10.1016/j.jmgm.2023.108406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/24/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Procathepsins, inactive precursors of cathepsins are present in the extracellular matrix (ECM) and in lysosomes. Their active forms are involved in a number of biologically relevant processes, including bone resorption, intracellular proteolysis and regulation of programmed cell death. These processes might be mediated by glycosaminoglycans (GAGs), long unbranched periodic negatively charged polysaccharides. GAGs are also present in ECM and play important role in anticoagulation, angiogenesis and tissue regeneration. GAGs not only mediate the enzymatic activity of cathepsins but can also regulate the process of procathepsin maturation, as it was shown for procathepsin B and S. In this study, we propose the molecular mechanism underlying the biological role of GAGs in procathepsin S maturation and compare our findings with computational data obtained for procathepsin B. We rigorously analyse procathepsin S-GAG complexes in terms of their dynamics, free energy and potential allosteric regulation. We conclude that the GAG binding region might have an effect on the dynamics of procathepsin S structure and so affect its maturation by two different mechanisms.
Collapse
Affiliation(s)
- Krzysztof K Bojarski
- Department of Physical Chemistry, Gdansk University of Technology, Narutowicza 11/12, Gdansk, 80-233, Poland.
| | - Sergey A Samsonov
- Department of Theoretical Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk, 80-308, Poland
| |
Collapse
|
3
|
In silico and in vitro mapping of specificity patterns of glycosaminoglycans towards cysteine cathepsins B, L, K, S and V. J Mol Graph Model 2022; 113:108153. [DOI: 10.1016/j.jmgm.2022.108153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/26/2022] [Accepted: 02/08/2022] [Indexed: 12/13/2022]
|
4
|
Ji X, Zhao L, Umapathy A, Fitzmaurice B, Wang J, Williams DS, Chang B, Naggert JK, Nishina PM. Deficiency in Lyst function leads to accumulation of secreted proteases and reduced retinal adhesion. PLoS One 2022; 17:e0254469. [PMID: 35239671 PMCID: PMC8893605 DOI: 10.1371/journal.pone.0254469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 02/18/2022] [Indexed: 11/19/2022] Open
Abstract
Chediak-Higashi syndrome, caused by mutations in the Lysosome Trafficking Regulator (Lyst) gene, is a recessive hypopigmentation disorder characterized by albinism, neuropathies, neurodegeneration, and defective immune responses, with enlargement of lysosomes and lysosome-related organelles. Although recent studies have suggested that Lyst mutations impair the regulation of sizes of lysosome and lysosome-related organelle, the underlying pathogenic mechanism of Chediak-Higashi syndrome is still unclear. Here we show striking evidence that deficiency in LYST protein function leads to accumulation of photoreceptor outer segment phagosomes in retinal pigment epithelial cells, and reduces adhesion between photoreceptor outer segment and retinal pigment epithelial cells in a mouse model of Chediak-Higashi syndrome. In addition, we observe elevated levels of cathepsins, matrix metallopeptidase (MMP) 3 and oxidative stress markers in the retinal pigment epithelium of Lyst mutants. Previous reports showed that impaired degradation of photoreceptor outer segment phagosomes causes elevated oxidative stress, which could consequently lead to increases of cysteine cathepsins and MMPs in the extracellular matrix. Taken together, we conclude that the loss of LYST function causes accumulation of phagosomes in the retinal pigment epithelium and elevation of several extracellular matrix-remodeling proteases through oxidative stress, which may, in turn, reduce retinal adhesion. Our work reveals previously unreported pathogenic events in the retinal pigment epithelium caused by Lyst deficiency. The same pathogenic events may be conserved in other professional phagocytic cells, such as macrophages in the immune system, contributing to overall Chediak-Higashi syndrome pathology.
Collapse
Affiliation(s)
- Xiaojie Ji
- The Jackson Laboratory, Bar Harbor, ME, United States of America
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States of America
| | - Lihong Zhao
- The Jackson Laboratory, Bar Harbor, ME, United States of America
| | - Ankita Umapathy
- Department of Ophthalmology and Stein Eye Institute, University of California, Los Angeles, CA, United States of America
| | | | - Jieping Wang
- The Jackson Laboratory, Bar Harbor, ME, United States of America
| | - David S. Williams
- Department of Ophthalmology and Stein Eye Institute, University of California, Los Angeles, CA, United States of America
- Department of Neurobiology, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States of America
- Molecular Biology Institute, UCLA, Los Angeles, CA, United States of America
- Brain Research Institute, UCLA, Los Angeles, CA, United States of America
| | - Bo Chang
- The Jackson Laboratory, Bar Harbor, ME, United States of America
| | | | - Patsy M. Nishina
- The Jackson Laboratory, Bar Harbor, ME, United States of America
| |
Collapse
|
5
|
Khan A, Sayedahmed EE, Singh VK, Mishra A, Dorta-Estremera S, Nookala S, Canaday DH, Chen M, Wang J, Sastry KJ, Mittal SK, Jagannath C. A recombinant bovine adenoviral mucosal vaccine expressing mycobacterial antigen-85B generates robust protection against tuberculosis in mice. Cell Rep Med 2021; 2:100372. [PMID: 34467249 PMCID: PMC8385328 DOI: 10.1016/j.xcrm.2021.100372] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 02/16/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023]
Abstract
Although the BCG vaccine offers partial protection, tuberculosis remains a leading cause of infectious disease death, killing ∼1.5 million people annually. We developed mucosal vaccines expressing the autophagy-inducing peptide C5 and mycobacterial Ag85B-p25 epitope using replication-defective human adenovirus (HAdv85C5) and bovine adenovirus (BAdv85C5) vectors. BAdv85C5-infected dendritic cells (DCs) expressed a robust transcriptome of genes regulating antigen processing compared to HAdv85C5-infected DCs. BAdv85C5-infected DCs showed enhanced galectin-3/8 and autophagy-dependent in vitro Ag85B-p25 epitope presentation to CD4 T cells. BCG-vaccinated mice were intranasally boosted using HAdv85C5 or BAdv85C5 followed by infection using aerosolized Mycobacterium tuberculosis (Mtb). BAdv85C5 protected mice against tuberculosis both as a booster after BCG vaccine (>1.4-log10 reduction in Mtb lung burden) and as a single intranasal dose (>0.5-log10 reduction). Protection was associated with robust CD4 and CD8 effector (TEM), central memory (TCM), and CD103+/CD69+ lung-resident memory (TRM) T cell expansion, revealing BAdv85C5 as a promising mucosal vaccine for tuberculosis.
Collapse
Affiliation(s)
- Arshad Khan
- Department of Pathology and Genomic Medicine, Houston Methodist Academic Institute, Houston Methodist Research Institute & Weill Cornell Medical College, Houston, TX, USA
| | - Ekramy E. Sayedahmed
- Department of Comparative Pathobiology and Purdue Institute of Inflammation, Immunology, and Infectious Disease, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Vipul K. Singh
- Department of Pathology and Genomic Medicine, Houston Methodist Academic Institute, Houston Methodist Research Institute & Weill Cornell Medical College, Houston, TX, USA
| | - Abhishek Mishra
- Department of Pathology and Genomic Medicine, Houston Methodist Academic Institute, Houston Methodist Research Institute & Weill Cornell Medical College, Houston, TX, USA
| | | | - Sita Nookala
- Department of Thoracic Head and Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - David H. Canaday
- Department of Medicine, Case Western Reserve University and Cleveland Veterans Affairs, Cleveland, OH, USA
| | - Min Chen
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Jin Wang
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, and Department of Surgery, Weill Cornell Medical College, Houston, TX, USA
| | - K. Jagannadha Sastry
- Department of Thoracic Head and Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Suresh K. Mittal
- Department of Comparative Pathobiology and Purdue Institute of Inflammation, Immunology, and Infectious Disease, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Houston Methodist Academic Institute, Houston Methodist Research Institute & Weill Cornell Medical College, Houston, TX, USA
| |
Collapse
|
6
|
Azarkan M, Maquoi E, Delbrassine F, Herman R, M'Rabet N, Calvo Esposito R, Charlier P, Kerff F. Structures of the free and inhibitors-bound forms of bromelain and ananain from Ananas comosus stem and in vitro study of their cytotoxicity. Sci Rep 2020; 10:19570. [PMID: 33177555 PMCID: PMC7658999 DOI: 10.1038/s41598-020-76172-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 10/01/2020] [Indexed: 11/09/2022] Open
Abstract
The Ananas comosus stem extract is a complex mixture containing various cysteine proteases of the C1A subfamily, such as bromelain and ananain. This mixture used for centuries in Chinese medicine, has several potential therapeutic applications as anti-cancer, anti-inflammatory and ecchymosis degradation agent. In the present work we determined the structures of bromelain and ananain, both in their free forms and in complex with the inhibitors E64 and TLCK. These structures combined with protease-substrate complexes modeling clearly identified the Glu68 as responsible for the high discrimination of bromelain in favor of substrates with positively charged residues at P2, and unveil the reasons for its weak inhibition by cystatins and E64. Our results with purified and fully active bromelain, ananain and papain show a strong reduction of cell proliferation with MDA-MB231 and A2058 cancer cell lines at a concentration of about 1 μM, control experiments clearly emphasizing the need for proteolytic activity. In contrast, while bromelain and ananain had a strong effect on the proliferation of the OCI-LY19 and HL-60 non-adherent cell lines, papain, the archetypal member of the C1A subfamily, had none. This indicates that, in this case, sequence/structure identity beyond the active site of bromelain and ananain is more important than substrate specificity.
Collapse
Affiliation(s)
- Mohamed Azarkan
- Laboratoire de Chimie Générale (Unité de Chimie Des Protéines), Faculté de Médecine, Université Libre de Bruxelles, Campus Erasme (CP 609), 1070, Bruxelles, Belgium.
| | - Erik Maquoi
- Laboratoire de Biologie Des Tumeurs Et du Développement, GIGA-Cancer, Université de Liège, 4000, Liège, Belgium
| | - François Delbrassine
- UR InBioS, Centre D'Ingénierie Des Protéines, Université de Liège, Sart Tilman, 4000, Liège, Belgium
| | - Raphael Herman
- UR InBioS, Centre D'Ingénierie Des Protéines, Université de Liège, Sart Tilman, 4000, Liège, Belgium
| | - Nasiha M'Rabet
- Laboratoire de Chimie Générale (Unité de Chimie Des Protéines), Faculté de Médecine, Université Libre de Bruxelles, Campus Erasme (CP 609), 1070, Bruxelles, Belgium
| | - Rafaèle Calvo Esposito
- Laboratoire de Chimie Générale (Unité de Chimie Des Protéines), Faculté de Médecine, Université Libre de Bruxelles, Campus Erasme (CP 609), 1070, Bruxelles, Belgium
| | - Paulette Charlier
- UR InBioS, Centre D'Ingénierie Des Protéines, Université de Liège, Sart Tilman, 4000, Liège, Belgium
| | - Frédéric Kerff
- UR InBioS, Centre D'Ingénierie Des Protéines, Université de Liège, Sart Tilman, 4000, Liège, Belgium.
| |
Collapse
|
7
|
Elbadawy M, Usui T, Mori T, Tsunedomi R, Hazama S, Nabeta R, Uchide T, Fukushima R, Yoshida T, Shibutani M, Tanaka T, Masuda S, Okada R, Ichikawa R, Omatsu T, Mizutani T, Katayama Y, Noguchi S, Iwai S, Nakagawa T, Shinohara Y, Kaneda M, Yamawaki H, Sasaki K. Establishment of a novel experimental model for muscle-invasive bladder cancer using a dog bladder cancer organoid culture. Cancer Sci 2019; 110:2806-2821. [PMID: 31254429 PMCID: PMC6726682 DOI: 10.1111/cas.14118] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/20/2019] [Accepted: 06/27/2019] [Indexed: 12/19/2022] Open
Abstract
In human and dogs, bladder cancer (BC) is the most common neoplasm affecting the urinary tract. Dog BC resembles human muscle-invasive BC in histopathological characteristics and gene expression profiles, and could be an important research model for this disease. Cancer patient-derived organoid culture can recapitulate organ structures and maintains the gene expression profiles of original tumor tissues. In a previous study, we generated dog prostate cancer organoids using urine samples, however dog BC organoids had never been produced. Therefore we aimed to generate dog BC organoids using urine samples and check their histopathological characteristics, drug sensitivity, and gene expression profiles. Organoids from individual BC dogs were successfully generated, expressed urothelial cell markers (CK7, CK20, and UPK3A) and exhibited tumorigenesis in vivo. In a cell viability assay, the response to combined treatment with a range of anticancer drugs (cisplatin, vinblastine, gemcitabine or piroxicam) was markedly different in each BC organoid. In RNA-sequencing analysis, expression levels of basal cell markers (CK5 and DSG3) and several novel genes (MMP28, CTSE, CNN3, TFPI2, COL17A1, and AGPAT4) were upregulated in BC organoids compared with normal bladder tissues or two-dimensional (2D) BC cell lines. These established dog BC organoids might be a useful tool, not only to determine suitable chemotherapy for BC diseased dogs but also to identify novel biomarkers in human muscle-invasive BC. In the present study, for the 1st time, dog BC organoids were generated and several specifically upregulated organoid genes were identified. Our data suggest that dog BC organoids might become a new tool to provide fresh insights into both dog BC therapy and diagnostic biomarkers.
Collapse
Affiliation(s)
- Mohamed Elbadawy
- Laboratory of Veterinary PharmacologyDepartment of Veterinary MedicineFaculty of AgricultureTokyo University of Agriculture and TechnologyFuchuJapan
- Department of PharmacologyFaculty of Veterinary MedicineBenha UniversityToukhEgypt
| | - Tatsuya Usui
- Laboratory of Veterinary PharmacologyDepartment of Veterinary MedicineFaculty of AgricultureTokyo University of Agriculture and TechnologyFuchuJapan
| | - Takashi Mori
- Laboratory of Veterinary Clinical OncologyFaculty of Applied Biological SciencesGifu UniversityGifuJapan
- Center for Highly Advanced Integration of Nano and Life SciencesGifu University (G‐CHAIN)GifuJapan
| | - Ryouichi Tsunedomi
- Department of Gastroenterological, Breast, and Endocrine SurgeryYamaguchi University Graduate School of MedicineUbeJapan
| | - Shoichi Hazama
- Department of Gastroenterological, Breast, and Endocrine SurgeryYamaguchi University Graduate School of MedicineUbeJapan
- Department of Translational Research and Developmental Therapeutics against CancerSchool of MedicineYamaguchi UniversityUbeJapan
| | - Rina Nabeta
- Department of Veterinary SurgeryFaculty of AgricultureTokyo University of Agriculture and TechnologyFuchuJapan
| | - Tsuyoshi Uchide
- Department of Veterinary SurgeryFaculty of AgricultureTokyo University of Agriculture and TechnologyFuchuJapan
| | - Ryuji Fukushima
- Animal Medical CenterFaculty of AgricultureTokyo University of Agriculture and TechnologyFuchuJapan
| | - Toshinori Yoshida
- Laboratory of Veterinary PathologyDepartment of Veterinary MedicineFaculty of AgricultureTokyo University of Agriculture and TechnologyFuchuJapan
| | - Makoto Shibutani
- Laboratory of Veterinary PathologyDepartment of Veterinary MedicineFaculty of AgricultureTokyo University of Agriculture and TechnologyFuchuJapan
| | - Takaharu Tanaka
- Laboratory of Veterinary PathologyDepartment of Veterinary MedicineFaculty of AgricultureTokyo University of Agriculture and TechnologyFuchuJapan
| | - Sosuke Masuda
- Laboratory of Veterinary PathologyDepartment of Veterinary MedicineFaculty of AgricultureTokyo University of Agriculture and TechnologyFuchuJapan
| | - Rena Okada
- Laboratory of Veterinary PathologyDepartment of Veterinary MedicineFaculty of AgricultureTokyo University of Agriculture and TechnologyFuchuJapan
| | - Ryo Ichikawa
- Laboratory of Veterinary PathologyDepartment of Veterinary MedicineFaculty of AgricultureTokyo University of Agriculture and TechnologyFuchuJapan
| | - Tsutomu Omatsu
- Research and Education Center for Prevention of Global Infectious Disease of AnimalsTokyo University of Agriculture and TechnologyFuchuJapan
| | - Tetsuya Mizutani
- Research and Education Center for Prevention of Global Infectious Disease of AnimalsTokyo University of Agriculture and TechnologyFuchuJapan
| | - Yukie Katayama
- Research and Education Center for Prevention of Global Infectious Disease of AnimalsTokyo University of Agriculture and TechnologyFuchuJapan
| | - Shunsuke Noguchi
- Laboratory of Veterinary RadiologyGraduate School of Life and Environmental SciencesOsaka Prefecture UniversitySanoJapan
| | - Satomi Iwai
- Laboratory of Small Animal Surgery 2School of Veterinary MedicineKitasato UniversityTowadaJapan
| | - Takayuki Nakagawa
- Laboratory of Veterinary SurgeryGraduate School of Agricultural and Life SciencesUniversity of TokyoTokyoJapan
| | - Yuta Shinohara
- Laboratory of Veterinary PharmacologyDepartment of Veterinary MedicineFaculty of AgricultureTokyo University of Agriculture and TechnologyFuchuJapan
- Pet Health & Food DivisionIskara Industry CO., LTDTokyoJapan
| | - Masahiro Kaneda
- Laboratory of Veterinary AnatomyDepartment of Veterinary MedicineFaculty of AgricultureTokyo University of Agriculture and TechnologyFuchuJapan
| | - Hideyuki Yamawaki
- Laboratory of Veterinary PharmacologySchool of Veterinary MedicineKitasato UniversityTowadaJapan
| | - Kazuaki Sasaki
- Laboratory of Veterinary PharmacologyDepartment of Veterinary MedicineFaculty of AgricultureTokyo University of Agriculture and TechnologyFuchuJapan
| |
Collapse
|
8
|
Bossowska-Nowicka M, Mielcarska MB, Struzik J, Jackowska-Tracz A, Tracz M, Gregorczyk-Zboroch KP, Gieryńska M, Toka FN, Szulc-Dąbrowska L. Deficiency of Selected Cathepsins Does Not Affect the Inhibitory Action of ECTV on Immune Properties of Dendritic Cells. Immunol Invest 2019; 49:232-248. [PMID: 31240969 DOI: 10.1080/08820139.2019.1631843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ectromelia virus (ECTV), an orthopoxvirus, undergoes productive replication in conventional dendritic cells (cDCs), resulting in the inhibition of their innate and adaptive immune functions. ECTV replication rate in cDCs is increased due to downregulation of the expression of cathepsins - cystein proteases that orchestrate several steps during DC maturation. Therefore, this study was aimed to determine if downregulation of cathepsins, such as B, L or S, disrupts cDC capacity to induce activating signals in T cells or whether infection of cDCs with ECTV further weakens their functions as antigen-presenting cells. Our results showed that cDCs treated with siRNA against cathepsin B, L and S synthesize similar amounts of pro-inflammatory cytokines and exhibit comparable ability to mature and stimulate alloreactive CD4+ T cells, as untreated wild type (WT) cells. Moreover, ECTV inhibitory effect on cDC innate and adaptive immune functions, observed especially after LPS treatment, was comparable in both cathepsin-silenced and WT cells. Taken together, the absence of cathepsins B, L and S has minimal, if any, impact on the inhibitory effect of ECTV on cDC immune functions. We assume that the virus-mediated inhibition of cathepsin expression in cDCs represents more a survival mechanism than an immune evasion strategy.
Collapse
Affiliation(s)
- Magdalena Bossowska-Nowicka
- Division of Immunology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Matylda B Mielcarska
- Division of Immunology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Justyna Struzik
- Division of Immunology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Agnieszka Jackowska-Tracz
- Department of Food Hygiene and Public Health Protection, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Michał Tracz
- Department of Food Hygiene and Public Health Protection, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Karolina P Gregorczyk-Zboroch
- Division of Immunology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Małgorzata Gieryńska
- Division of Immunology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Felix N Toka
- Division of Immunology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Warsaw, Poland.,Center for Integrative Mammalian Research, Ross University School of Veterinary Medicine, St. Kitts & Nevis, West Indies
| | - Lidia Szulc-Dąbrowska
- Division of Immunology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| |
Collapse
|
9
|
Bossowska-Nowicka M, Mielcarska MB, Romaniewicz M, Kaczmarek MM, Gregorczyk-Zboroch KP, Struzik J, Grodzik M, Gieryńska MM, Toka FN, Szulc-Dąbrowska L. Ectromelia virus suppresses expression of cathepsins and cystatins in conventional dendritic cells to efficiently execute the replication process. BMC Microbiol 2019; 19:92. [PMID: 31077130 PMCID: PMC6509786 DOI: 10.1186/s12866-019-1471-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/30/2019] [Indexed: 12/19/2022] Open
Abstract
Background Cathepsins are a group of endosomal proteases present in many cells including dendritic cells (DCs). The activity of cathepsins is regulated by their endogenous inhibitors – cystatins. Cathepsins are crucial to antigen processing during viral and bacterial infections, and as such are a prerequisite to antigen presentation in the context of major histocompatibility complex class I and II molecules. Due to the involvement of DCs in both innate and adaptive immune responses, and the quest to understand the impact of poxvirus infection on host cells, we investigated the influence of ectromelia virus (ECTV) infection on cathepsin and cystatin levels in murine conventional DCs (cDCs). ECTV is a poxvirus that has evolved many mechanisms to avoid host immune response and is able to replicate productively in DCs. Results Our results showed that ECTV-infection of JAWS II DCs and primary murine GM-CSF-derived bone marrow cells down-regulated both mRNA and protein of cathepsin B, L and S, and cystatin B and C, particularly during the later stages of infection. Moreover, the activity of cathepsin B, L and S was confirmed to be diminished especially at later stages of infection in JAWS II cells. Consequently, ECTV-infected DCs had diminished ability to endocytose and process a soluble antigen. Close examination of cellular protein distribution showed that beginning from early stages of infection, the remnants of cathepsin L and cystatin B co-localized and partially co-localized with viral replication centers (viral factories), respectively. Moreover, viral yield increased in cDCs treated with siRNA against cathepsin B, L or S and subsequently infected with ECTV. Conclusions Taken together, our results indicate that infection of cDCs with ECTV suppresses cathepsins and cystatins, and alters their cellular distribution which impairs the cDC function. We propose this as an additional viral strategy to escape immune responses, enabling the virus to replicate effectively in infected cells. Electronic supplementary material The online version of this article (10.1186/s12866-019-1471-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Magdalena Bossowska-Nowicka
- Division of Immunology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Ciszewskiego 8, 02-786, Warsaw, Poland
| | - Matylda B Mielcarska
- Division of Immunology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Ciszewskiego 8, 02-786, Warsaw, Poland
| | - Marta Romaniewicz
- Molecular Biology Laboratory, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Monika M Kaczmarek
- Molecular Biology Laboratory, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Karolina P Gregorczyk-Zboroch
- Division of Immunology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Ciszewskiego 8, 02-786, Warsaw, Poland
| | - Justyna Struzik
- Division of Immunology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Ciszewskiego 8, 02-786, Warsaw, Poland
| | - Marta Grodzik
- Division of Nanobiotechnology, Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Małgorzata M Gieryńska
- Division of Immunology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Ciszewskiego 8, 02-786, Warsaw, Poland
| | - Felix N Toka
- Division of Immunology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Ciszewskiego 8, 02-786, Warsaw, Poland.,Center for Integrative Mammalian Research, Ross University School of Veterinary Medicine, Basseterre, St. Kitts and Nevis
| | - Lidia Szulc-Dąbrowska
- Division of Immunology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Ciszewskiego 8, 02-786, Warsaw, Poland.
| |
Collapse
|
10
|
Xu W, Jin J, Han D, Liu H, Zhu X, Yang Y, Xie S. Physiological and transcriptomic responses to fishmeal-based diet and rapeseed meal-based diet in two strains of gibel carp (Carassius gibelio). FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:267-286. [PMID: 30167883 DOI: 10.1007/s10695-018-0560-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 08/15/2018] [Indexed: 06/08/2023]
Abstract
The present study investigated differences in the utilization of fishmeal (FM) and rapeseed meal (RM) by gibel carp (Carassius gibelio) and explored the effects of protein sources on the responses of different genotypes. Gibel carp strains A (4.12 ± 0.03 g) and F (3.47 ± 0.00 g) were fed FM diet or RM diet for 56 days, and after which, growth performance, body composition, hematologic indices, and hepatic transcriptomes were measured. The effects of strain and diet on growth performance, body composition, and hematologic indices were analyzed by two-way analysis of covariance (ANCOVA). The results revealed that total replacement of FM with RM caused poor growth and feed utilization in both strains as well as the existence of genotype-diet interactions. Strain A showed better growth performance than strain F in the FM group, while the strain F grew better than strain A in the RM group. Transcriptomic analysis showed that the three main biological processes affected by the RM diet were amino acid metabolism, lipid metabolism, and digestive system. The different responses to the RM diet between strains were involved in amino acid metabolism, immune responses, and lipid metabolism. Identifying the underlying mechanisms by which different strains differently respond to meal sources might be the basis to develop a selective breeding program towards strains accepting alternative meal sources.
Collapse
Affiliation(s)
- Wenjie Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Junyan Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Dong Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- Freshwater Aquaculture Collaborative Innovation Centre of Hubei Province, Wuhan, 430070, China
| | - Haokun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xiaoming Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yunxia Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Shouqi Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China.
| |
Collapse
|
11
|
Wang XW, Wang JJ, Gutowska-Owsiak D, Salimi M, Selvakumar TA, Gwela A, Chen LY, Wang YJ, Giannoulatou E, Ogg G. Deficiency of filaggrin regulates endogenous cysteine protease activity, leading to impaired skin barrier function. Clin Exp Dermatol 2017; 42:622-631. [DOI: 10.1111/ced.13113] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2016] [Indexed: 01/09/2023]
Affiliation(s)
- X. W. Wang
- State Key Laboratory of Military Stomatology; Department of Oral Medicine; School of Stomatology; The Fourth Military Medical University; Xi'an Shaanxi Province China
- Medical Research Council Human Immunology Unit; Weatherall Insititute of Molecular Medicine; NIHR Biomedical Research Centre; University of Oxford; Oxford UK
| | - J. J. Wang
- State Key Laboratory of Military Stomatology; Department of Oral Medicine; School of Stomatology; The Fourth Military Medical University; Xi'an Shaanxi Province China
| | - D. Gutowska-Owsiak
- Medical Research Council Human Immunology Unit; Weatherall Insititute of Molecular Medicine; NIHR Biomedical Research Centre; University of Oxford; Oxford UK
| | - M. Salimi
- Medical Research Council Human Immunology Unit; Weatherall Insititute of Molecular Medicine; NIHR Biomedical Research Centre; University of Oxford; Oxford UK
| | - T. A. Selvakumar
- Medical Research Council Human Immunology Unit; Weatherall Insititute of Molecular Medicine; NIHR Biomedical Research Centre; University of Oxford; Oxford UK
| | - A. Gwela
- Medical Research Council Human Immunology Unit; Weatherall Insititute of Molecular Medicine; NIHR Biomedical Research Centre; University of Oxford; Oxford UK
| | - L. Y. Chen
- Medical Research Council Human Immunology Unit; Weatherall Insititute of Molecular Medicine; NIHR Biomedical Research Centre; University of Oxford; Oxford UK
| | - Y. J. Wang
- Medical Research Council Human Immunology Unit; Weatherall Insititute of Molecular Medicine; NIHR Biomedical Research Centre; University of Oxford; Oxford UK
| | - E. Giannoulatou
- Computational Biology Research Group; Weatherall Institute of Molecular Medicine; University of Oxford; Oxford UK
| | - G. Ogg
- Medical Research Council Human Immunology Unit; Weatherall Insititute of Molecular Medicine; NIHR Biomedical Research Centre; University of Oxford; Oxford UK
| |
Collapse
|
12
|
Tsubokawa D, Hatta T, Maeda H, Mikami F, Goso Y, Nakamura T, Alim MA, Tsuji N. A cysteine protease from Spirometra erinaceieuropaei plerocercoid is a critical factor for host tissue invasion and migration. Acta Trop 2017; 167:99-107. [PMID: 28012905 DOI: 10.1016/j.actatropica.2016.12.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 12/14/2016] [Accepted: 12/18/2016] [Indexed: 01/13/2023]
Abstract
Sparganosis in humans caused by the plerocercoid larvae of Spirometra erinaceieuropaei is found worldwide, especially in Eastern Asia and the Far East. Previous studies have suggested that dissolution of plerocercoid body, plerocercoid invasion of host tissue, and migration are important processes for sparganosis progression. However, the mechanisms underlying these processes have yet to be determined. Here, we demonstrated the enzymatic property and involvement of a native 23kDa cysteine protease (Se23kCP), purified from plerocercoids, in sparganosis pathogenesis. Se23kCP is mature protease consisting of 216 amino acids and has a high sequence similarity with cathepsin L in various organisms. Se23kCP conjugated with N-glycans, which have a core fucose residue. Both cysteine and serine protease-specific activities were determined in Se23kCP and their optimal pHs were found to be different, indicating that Se23kCP has a wide range of substrate specificity. Se23kCP was secreted from tegumental vacuoles of the plerocercoid to host subcutaneous tissues and degraded human structural proteins, such as collagen and fibronectin. In addition, the plerocercoid body was lysed by Se23kCP, which facilitated larval invasion of host tissue. Our findings suggest that Se23kCP induces host tissue invasion and migration, and might be an essential molecule for sparganosis onset and progression.
Collapse
Affiliation(s)
- Daigo Tsubokawa
- Department of Molecular and Cellular Parasitology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan; Department of Parasitology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0374, Japan
| | - Takeshi Hatta
- Department of Molecular and Cellular Parasitology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan; Department of Parasitology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0374, Japan
| | - Hiroki Maeda
- Department of Parasitology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0374, Japan; Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi 753-8515, Japan
| | - Fusako Mikami
- Department of Parasitology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0374, Japan
| | - Yukinobu Goso
- Department of Biochemistry, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0374, Japan
| | - Takeshi Nakamura
- Department of Parasitology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0374, Japan
| | - M Abdul Alim
- Department of Parasitology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Naotoshi Tsuji
- Department of Molecular and Cellular Parasitology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan; Department of Parasitology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0374, Japan.
| |
Collapse
|
13
|
Mengwasser J, Babes L, Cordes S, Mertlitz S, Riesner K, Shi Y, McGearey A, Kalupa M, Reinheckel T, Penack O. Cathepsin E Deficiency Ameliorates Graft-versus-Host Disease and Modifies Dendritic Cell Motility. Front Immunol 2017; 8:203. [PMID: 28298913 PMCID: PMC5331043 DOI: 10.3389/fimmu.2017.00203] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/14/2017] [Indexed: 01/15/2023] Open
Abstract
Microbial products influence immunity after allogeneic hematopoietic stem cell transplantation (allo-SCT). In this context, the role of cathepsin E (Ctse), an aspartate protease known to cleave bacterial peptides for antigen presentation in dendritic cells (DCs), has not been studied. During experimental acute graft-versus-host disease (GVHD), we found infiltration by Ctse-positive immune cells leading to higher Ctse RNA- and protein levels in target organs. In Ctse-deficient allo-SCT recipients, we found ameliorated GVHD, improved survival, and lower numbers of tissue-infiltrating DCs. Donor T cell proliferation was not different in Ctse-deficient vs. wild-type allo-SCT recipients in MHC-matched and MHC-mismatched models. Furthermore, Ctse-deficient DCs had an intact ability to induce allogeneic T cell proliferation, suggesting that its role in antigen presentation may not be the main mechanism how Ctse impacts GVHD. We found that Ctse deficiency significantly decreases DC motility in vivo, reduces adhesion to extracellular matrix (ECM), and diminishes invasion through ECM. We conclude that Ctse has a previously unrecognized role in regulating DC motility that possibly contributes to reduced DC counts and ameliorated inflammation in GVHD target organs of Ctse-deficient allo-SCT recipients. However, our data do not provide definite proof that the observed effect of Ctse−/− deficiency is exclusively mediated by DCs. A contribution of Ctse−/−-mediated functions in other recipient cell types, e.g., macrophages, cannot be excluded.
Collapse
Affiliation(s)
- Jörg Mengwasser
- Medical Department, Division of Hematology, Oncology and Tumor Immunology, Charité University Medicine , Berlin , Germany
| | - Liane Babes
- Faculty of Medicine, BIOSS Centre for Biological Signalling Studies, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg , Freiburg , Germany
| | - Steffen Cordes
- Medical Department, Division of Hematology, Oncology and Tumor Immunology, Charité University Medicine , Berlin , Germany
| | - Sarah Mertlitz
- Medical Department, Division of Hematology, Oncology and Tumor Immunology, Charité University Medicine , Berlin , Germany
| | - Katarina Riesner
- Medical Department, Division of Hematology, Oncology and Tumor Immunology, Charité University Medicine , Berlin , Germany
| | - Yu Shi
- Medical Department, Division of Hematology, Oncology and Tumor Immunology, Charité University Medicine , Berlin , Germany
| | - Aleixandria McGearey
- Medical Department, Division of Hematology, Oncology and Tumor Immunology, Charité University Medicine , Berlin , Germany
| | - Martina Kalupa
- Medical Department, Division of Hematology, Oncology and Tumor Immunology, Charité University Medicine , Berlin , Germany
| | - Thomas Reinheckel
- Faculty of Medicine, BIOSS Centre for Biological Signalling Studies, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg , Freiburg , Germany
| | - Olaf Penack
- Medical Department, Division of Hematology, Oncology and Tumor Immunology, Charité University Medicine , Berlin , Germany
| |
Collapse
|
14
|
Welsby I, Detienne S, N'Kuli F, Thomas S, Wouters S, Bechtold V, De Wit D, Gineste R, Reinheckel T, Elouahabi A, Courtoy PJ, Didierlaurent AM, Goriely S. Lysosome-Dependent Activation of Human Dendritic Cells by the Vaccine Adjuvant QS-21. Front Immunol 2017; 7:663. [PMID: 28105029 PMCID: PMC5215313 DOI: 10.3389/fimmu.2016.00663] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/16/2016] [Indexed: 12/12/2022] Open
Abstract
The adjuvant properties of the saponin QS-21 have been known for decades. It is a component of the Adjuvant System AS01 that is used in several vaccine candidates. QS-21 strongly potentiates both cellular and humoral immune responses to purified antigens, yet how it activates immune cells is largely unknown. Here, we report that QS-21 directly activated human monocyte-derived dendritic cells (moDCs) and promoted a pro-inflammatory transcriptional program. Cholesterol-dependent QS-21 endocytosis followed by lysosomal destabilization and Syk kinase activation were prerequisites for this response. Cathepsin B, a lysosomal cysteine protease, was essential for moDC activation in vitro and contributed to the adjuvant effects of QS-21 in vivo. Collectively, these findings provide new insights into the pathways involved in the direct activation of antigen-presenting cells by a clinically relevant QS-21 formulation.
Collapse
Affiliation(s)
- Iain Welsby
- Institute for Medical Immunology, Université Libre de Bruxelles (ULB) , Gosselies , Belgium
| | - Sophie Detienne
- Institute for Medical Immunology, Université Libre de Bruxelles (ULB) , Gosselies , Belgium
| | - Francisca N'Kuli
- Cell Biology Unit, de Duve Institute, Université Catholique de Louvain , Brussels , Belgium
| | - Séverine Thomas
- Institute for Medical Immunology, Université Libre de Bruxelles (ULB) , Gosselies , Belgium
| | | | | | - Dominique De Wit
- Institute for Medical Immunology, Université Libre de Bruxelles (ULB) , Gosselies , Belgium
| | | | - Thomas Reinheckel
- Medical Faculty, Institute for Molecular Medicine and Cell Research, Albert Ludwigs University , Freiburg , Germany
| | | | - Pierre J Courtoy
- Cell Biology Unit, de Duve Institute, Université Catholique de Louvain , Brussels , Belgium
| | | | - Stanislas Goriely
- Institute for Medical Immunology, Université Libre de Bruxelles (ULB) , Gosselies , Belgium
| |
Collapse
|
15
|
Wang X, Liu Y, Liu Y, Dong G, Kenney EB, Liu Q, Ma Z, Wang Q. Long-term change of disease behavior in Papillon-Lefèvre syndrome: Seven years follow-up. Eur J Med Genet 2015; 58:184-7. [DOI: 10.1016/j.ejmg.2014.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 12/04/2014] [Indexed: 10/24/2022]
|
16
|
Alvarado R, O'Brien B, Tanaka A, Dalton JP, Donnelly S. A parasitic helminth-derived peptide that targets the macrophage lysosome is a novel therapeutic option for autoimmune disease. Immunobiology 2014; 220:262-9. [PMID: 25466586 DOI: 10.1016/j.imbio.2014.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 11/06/2014] [Accepted: 11/07/2014] [Indexed: 12/24/2022]
Abstract
Parasitic worms (helminths) reside in their mammalian hosts for many years. This is attributable, in part, to their ability to skew the host's immune system away from pro-inflammatory responses and towards anti-inflammatory or regulatory responses. This immune modulatory ability ensures helminth longevity within the host, while simultaneously minimises tissue destruction for the host. The molecules that the parasite releases clearly exert potent immune-modulatory actions, which could be exploited clinically, for example in the prophylactic and therapeutic treatment of pro-inflammatory and autoimmune diseases. We have identified a novel family of immune-modulatory proteins, termed helminth defence molecules (HDMs), which are secreted by several medically important helminth parasites. These HDMs share biochemical and structural characteristics with mammalian cathelicidin-like host defence peptides (HDPs), which are significant components of the innate immune system. Like their mammalian counterparts, parasite HDMs block the activation of macrophages via toll like receptor (TLR) 4 signalling, however HDMs are significantly less cytotoxic than HDPs. HDMs can traverse the cell membrane of macrophages and enter the endolysosomal system where they reduce the acidification of lysosomal compartments by inhibiting vacuolar (v)-ATPase activity. In doing this, HDMs can modulate critical cellular functions, such as cytokine secretion and antigen processing/presentation. Here, we review the role of macrophages, specifically their lysosomal mediated activities, in the initiation and perpetuation of pro-inflammatory immune responses. We also discuss the potential of helminth defence molecules (HDMs) as therapeutics to counteract the pro-inflammatory responses underlying autoimmune disease. Given the current lack of effective, non-cytotoxic treatment options to limit the progression of autoimmune pathologies, HDMs open novel treatment avenues.
Collapse
Affiliation(s)
- Raquel Alvarado
- School of Medical and Molecular Biosciences, University of Technology, Sydney, Sydney, NSW, Australia
| | - Bronwyn O'Brien
- School of Medical and Molecular Biosciences, University of Technology, Sydney, Sydney, NSW, Australia
| | - Akane Tanaka
- School of Medical and Molecular Biosciences, University of Technology, Sydney, Sydney, NSW, Australia
| | - John P Dalton
- School of Biological Sciences, Medical Biology Centre, Queen's University, Belfast, Belfast, Northern Ireland, UK
| | - Sheila Donnelly
- School of Medical and Molecular Biosciences, University of Technology, Sydney, Sydney, NSW, Australia; The i3 Institute, University of Technology, Sydney, Sydney, NSW, Australia.
| |
Collapse
|
17
|
Figliuolo VR, Chaves SP, Santoro GF, Coutinho CMLM, Meyer-Fernandes JR, Rossi-Bergmann B, Coutinho-Silva R. Periodate-oxidized ATP modulates macrophage functions during infection with Leishmania amazonensis. Cytometry A 2014; 85:588-600. [PMID: 24804957 DOI: 10.1002/cyto.a.22449] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 11/30/2013] [Accepted: 01/27/2014] [Indexed: 12/11/2022]
Abstract
Previously, we showed that treating macrophages with ATP impairs the intracellular growth of Leishmania amazonensis, and that the P2X7 purinergic receptor is overexpressed during leishmaniasis. In the present study, we directly evaluated the effect of periodate-oxidized ATP (oATP) on parasite control in Leishmania-infected macrophages. We found that oATP impaired the attachment/entrance of L. amazonensis promastigotes to C57BL/6 mouse macrophages in a P2X7 receptor-independent manner, as macrophages from P2X7(-/-) mice were similarly affected. Although oATP directly inhibited the growth of axenic promastigotes in culture, promoted rapid ultrastructural alterations, and impaired Leishmania internalization by macrophages, it did not affect intracellular parasite multiplication. Upon infection, phagosomal acidification was diminished in oATP-treated macrophages, accompanied by reduced endosomal proteolysis. Likewise, MHC class II molecules expression and ectoATPase activity was decreased by oATP added to macrophages at the time of parasite infection. These inhibitory effects were not due to a cytotoxic effect, as no additional release of lactate dehydrogenase was detected in culture supernatants. Moreover, the capacity of macrophages to produce nitric oxide and reactive oxygen species was not affected by the presence of oATP during infection. We conclude that oATP directly affects extracellular parasite integrity and macrophage functioning.
Collapse
Affiliation(s)
- V R Figliuolo
- Laboratório de Imunofisiologia, Instituto de Biofísica Carlos Chagas Filho-IBCCF, Universidade Federal do Rio de Janeiro, RJ, Brazil; Instituto Nacional para Pesquisa Translacional em Saúde e Ambiente na Região Amazônica, Conselho Nacional de Desenvolvimento Científico e Tecnológico/MCT, Brasil
| | | | | | | | | | | | | |
Collapse
|
18
|
Gao X, Lee J, Malladi S, Melendez L, Lascelles BDX, Al-Murrani S. Feline degenerative joint disease: a genomic and proteomic approach. J Feline Med Surg 2013; 15:466-77. [PMID: 23295270 PMCID: PMC10816310 DOI: 10.1177/1098612x12470652] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The underlying disease mechanisms for feline degenerative joint disease (DJD) are mostly unidentified. Today, most of what is published on mammalian arthritis is based on human clinical findings or on mammalian models of human arthritis. However, DJD is a common occurrence in the millions of domestic felines worldwide. To get a better understanding of the changes in biological pathways that are associated with feline DJD, this study employed a custom-designed feline GeneChip, and the institution's unique access to large sample populations to investigate genes and proteins from whole blood and serum that may be up- or down-regulated in DJD cats. The GeneChip results centered around three main pathways that were affected in DJD cats: immune function, apoptosis and oxidative phosphorylation. By identifying these key disease-associated pathways it will then be possible to better understand disease pathogenesis and diagnose it more easily, and to better target it with pharmaceutical and nutritional intervention.
Collapse
|
19
|
Decreased arthritis severity in cathepsin L-deficient mice is attributed to an impaired T helper cell compartment. Inflamm Res 2012; 61:1021-9. [DOI: 10.1007/s00011-012-0495-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 05/14/2012] [Indexed: 10/28/2022] Open
|
20
|
Haves-Zburof D, Paperna T, Gour-Lavie A, Mandel I, Glass-Marmor L, Miller A. Cathepsins and their endogenous inhibitors cystatins: expression and modulation in multiple sclerosis. J Cell Mol Med 2012; 15:2421-9. [PMID: 21143385 PMCID: PMC3822953 DOI: 10.1111/j.1582-4934.2010.01229.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Cathepsins are involved in a variety of physiological processes including antigen processing and presentation and extracellular matrix degradation. In the present study, we evaluated whether expression levels of cathepsins S and B and their inhibitors cystatins B and C are affected by multiple sclerosis (MS) disease state (relapse and remission) and therapies (interferon-β[IFN-β] and the glucocorticoid [GC] methylprednisolone), and whether they are associated with the IFN-β response phenotype. Real-time PCR was employed to compare RNA expression levels in peripheral blood leucocytes (PBLs) and ELISA to determine serum protein levels of MS patients and matched healthy individuals. Cathepsin S RNA was higher in MS patients in the relapse state compared to controls (by 74%, P= 3 × 10−5, n= 30 versus n= 18) with a similar increase observed in serum (66%, P= 0.002, n= 18 versus n= 20). GC treatment reduced cathepsin S levels in PBL RNA (by 44%, P= 6 × 10−6, n= 27) and serum proteins (by 27%, P= 1 × 10−5, n= 26), reduced the serum protein levels of pro-cathepsin B (by 8%, P= 0.0007, n= 23), and in parallel increased the serum levels of their inhibitor cystatin C (by 82%, P= 8 × 10−6, n= 26). IFN-β therapy significantly elevated the RNA levels (n= 16) of cathepsin B (by 16%, P= 0.03), cystatin B (44%, P= 0.004) and cystatin C (48%, P= 0.011). In the serum, only cathepsin S levels were reduced by IFN-β (16%, P= 0.006, n= 25). Interestingly, pre-treatment serum cathepsin S/cystatin C ratio was higher in ‘good responders’ to IFN-β therapy compared to patients without a good response (by 94%, P= 0.003). These results suggest that cathepsin S and cystatin C may contribute to disease activity in MS, specifically in a subgroup of patients that are responsive to IFN-β therapy, and that these proteins should be further evaluated as biomarkers in MS.
Collapse
Affiliation(s)
- Dana Haves-Zburof
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | | | |
Collapse
|
21
|
Caracelli I, Vega-Teijido M, Zukerman-Schpector J, Cezari MH, Lopes JG, Juliano L, Santos PS, Comasseto JV, Cunha RL, Tiekink ER. A tellurium-based cathepsin B inhibitor: Molecular structure, modelling, molecular docking and biological evaluation. J Mol Struct 2012. [DOI: 10.1016/j.molstruc.2012.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
22
|
Yoshii H, Kamiyama H, Goto K, Oishi K, Katunuma N, Tanaka Y, Hayashi H, Matsuyama T, Sato H, Yamamoto N, Kubo Y. CD4-independent human immunodeficiency virus infection involves participation of endocytosis and cathepsin B. PLoS One 2011; 6:e19352. [PMID: 21541353 PMCID: PMC3081840 DOI: 10.1371/journal.pone.0019352] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 04/04/2011] [Indexed: 01/03/2023] Open
Abstract
During a comparison of the infectivity of mNDK, a CD4-independent human immunodeficiency virus type 1 (HIV-1) strain, to various cell lines, we found that HeLa cells were much less susceptible than 293T and TE671 cells. Hybridoma cells between HeLa and 293T cells were as susceptible as 293T cells, suggesting that cellular factors enhance the mNDK infection in 293T cells. By screening a cDNA expression library in HeLa cells, cystatin C was isolated as an enhancer of the mNDK infection. Because cathepsin B protease, a natural ligand of cystatin C, was upregulated in HeLa cells, we speculated that the high levels of cathepsin B activities were inhibitory to the CD4-independent infection and that cystatin C enhanced the infection by impairing the excessive cathepsin B activity. Consistent with this idea, pretreatment of HeLa cells with 125 µM of CA-074Me, a cathepsin B inhibitor, resulted in an 8-fold enhancement of the mNDK infectivity. Because cathepsin B is activated by low pH in acidic endosomes, we further examined the potential roles of endosomes in the CD4-independent infection. Suppression of endosome acidification or endocytosis by inhibitors or by an Eps15 dominant negative mutant reduced the infectivity of mNDK in which CD4-dependent infections were not significantly impaired. Taken together, these results suggest that endocytosis, endosomal acidification, and cathepsin B activity are involved in the CD4-independent entry of HIV-1.
Collapse
Affiliation(s)
- Hiroaki Yoshii
- Department of AIDS Research, Institute of Tropical Medicine, Global Center of Excellence (GCOE), Nagasaki University, Nagasaki, Japan
- Department of Preventive and Therapeutic Research for Infectious Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Haruka Kamiyama
- Department of AIDS Research, Institute of Tropical Medicine, Global Center of Excellence (GCOE), Nagasaki University, Nagasaki, Japan
| | - Kensuke Goto
- Department of Eco-epidemiology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Kazunori Oishi
- Department of Preventive and Therapeutic Research for Infectious Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Nobuhiko Katunuma
- Institute for Health Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Yuetsu Tanaka
- Department of Immunology, Graduate School and Faculty of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Hideki Hayashi
- Division of Cytokine Signaling, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Toshifumi Matsuyama
- Division of Cytokine Signaling, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hironori Sato
- Department of AIDS Research, Institute of Tropical Medicine, Global Center of Excellence (GCOE), Nagasaki University, Nagasaki, Japan
- Laboratory of Viral Genomics, Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Naoki Yamamoto
- Department of AIDS Research, Institute of Tropical Medicine, Global Center of Excellence (GCOE), Nagasaki University, Nagasaki, Japan
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshinao Kubo
- Department of AIDS Research, Institute of Tropical Medicine, Global Center of Excellence (GCOE), Nagasaki University, Nagasaki, Japan
- * E-mail:
| |
Collapse
|
23
|
Fleming LE, Kirkpatrick B, Backer LC, Walsh CJ, Nierenberg K, Clark J, Reich A, Hollenbeck J, Benson J, Cheng YS, Naar J, Pierce R, Bourdelais AJ, Abraham WM, Kirkpatrick G, Zaias J, Wanner A, Mendes E, Shalat S, Hoagland P, Stephan W, Bean J, Watkins S, Clarke T, Byrne M, Baden DG. Review of Florida Red Tide and Human Health Effects. HARMFUL ALGAE 2011; 10:224-233. [PMID: 21218152 PMCID: PMC3014608 DOI: 10.1016/j.hal.2010.08.006] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
This paper reviews the literature describing research performed over the past decade on the known and possible exposures and human health effects associated with Florida red tides. These harmful algal blooms are caused by the dinoflagellate, Karenia brevis, and similar organisms, all of which produce a suite of natural toxins known as brevetoxins. Florida red tide research has benefited from a consistently funded, long term research program, that has allowed an interdisciplinary team of researchers to focus their attention on this specific environmental issue-one that is critically important to Gulf of Mexico and other coastal communities. This long-term interdisciplinary approach has allowed the team to engage the local community, identify measures to protect public health, take emerging technologies into the field, forge advances in natural products chemistry, and develop a valuable pharmaceutical product. The Review includes a brief discussion of the Florida red tide organisms and their toxins, and then focuses on the effects of these toxins on animals and humans, including how these effects predict what we might expect to see in exposed people.
Collapse
Affiliation(s)
- Lora E Fleming
- NSF NIEHS Oceans and Human Health Center, University of Miami, 4600 Rickenbacker Causeway, Miami, FL, 33149
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lopez-Castejon G, Theaker J, Pelegrin P, Clifton AD, Braddock M, Surprenant A. P2X(7) receptor-mediated release of cathepsins from macrophages is a cytokine-independent mechanism potentially involved in joint diseases. THE JOURNAL OF IMMUNOLOGY 2010; 185:2611-9. [PMID: 20639492 DOI: 10.4049/jimmunol.1000436] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The ATP-gated P2X(7) receptor (P2X(7)R) is a promising therapeutic target in chronic inflammatory diseases with highly specific antagonists currently under clinical trials for rheumatoid arthritis. Anti-inflammatory actions of P2X(7)R antagonists are considered to result from inhibition of P2X(7)R-induced release of proinflammatory cytokines from activated macrophages. However, P2X(7)Rs are also expressed in resting macrophages, suggesting that P2X(7)R may also signal via cytokine-independent mechanisms involved in joint disease. In this study, we examined P2X(7)R function in resting human lung macrophages and mouse bone marrow-derived macrophages and found that ATP induced rapid release of the lysosomal cysteine proteases cathepsin B, K, L, and S and that was independent of the presence of the proinflammatory cytokines IL-1beta and IL-18. Cathepsins released into the medium were effective to degrade collagen extracellular matrix. ATP-induced cathepsin release was abolished by P2X(7)R antagonists, absent from P2X(7)R(-/-) mouse macrophages, and not associated with cell death. Our results suggest P2X(7)R activation may play a novel and direct role in tissue damage through release of cathepsins independently of its proinflammatory actions via IL-1 cytokines.
Collapse
|
25
|
Stumpfe D, Sisay M, Frizler M, Vogt I, Gütschow M, Bajorath JÃ. Inhibitors of Cathepsins K and S Identified Using the DynaMAD Virtual Screening Algorithm. ChemMedChem 2010; 5:61-4. [DOI: 10.1002/cmdc.200900457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
26
|
Cellular metabolism of brevetoxin (PbTx-2) by a monocyte cell line (U-937). Toxicon 2008; 53:135-45. [PMID: 19027773 DOI: 10.1016/j.toxicon.2008.10.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 10/23/2008] [Accepted: 10/24/2008] [Indexed: 11/23/2022]
Abstract
Blooms of Karenia brevis produce brevetoxins which cause neurotoxic shellfish poisoning and respiratory symptoms in humans as well as harmful effects on sea life. To investigate potential effects of brevetoxins on immune system components, a monocyte cell line (U-937) was exposed in vitro to PbTx-2. U-937 cells metabolized PbTx-2 through cellular detoxification mechanisms, as evidenced by depletion of intracellular glutathione and formation of glutathione and cysteine conjugates. Total intracellular glutathione was significantly decreased in toxin-treated cells compared to control cells, as measured using an enzymatic recycling method. LC/MS was used to detect the following brevetoxin metabolites: a cysteine-PbTx-2 conjugate (m/z 1018) and two putative glutathione-PbTx-2 conjugates (m/z 1204 and 1222). During 3h incubation, glutathione conjugates were detectable as early as 1h and increased in concentration after 2 and 3h. A cysteine-PbTx-2 conjugate appeared after 2h and increased in concentration after 3h. Detectable levels of brevetoxin conjugates were present in response to toxin concentrations of 1muM. Depletion of intracellular glutathione and formation of brevetoxin metabolites, with changes in concentrations over time, suggest immune cells (U-937) have important cellular detoxification pathways for PbTx-2.
Collapse
|
27
|
Kuo CW, Chen CM, Lee YC, Chu ST, Khoo KH. Glycomics and proteomics analyses of mouse uterine luminal fluid revealed a predominance of Lewis Y and X epitopes on specific protein carriers. Mol Cell Proteomics 2008; 8:325-42. [PMID: 18941134 DOI: 10.1074/mcp.m800320-mcp200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sperm motility and maturation are known to be affected by a host of factors encountered en route in both male and female genital tracts prior to fertilization. Using a concerted proteomics and glycomics approach with advanced mass spectrometry-based glycan sequencing capability, we show in this work that 24p3, an abundant mouse uterine luminal fluid (ULF) glycoprotein also called lipocalin 2 (Lcn2), is highly fucosylated in the context of carrying multiple Lewis X and Y epitopes on complex type N-glycans at its single glycosylation site. The predominance of Lewis X/Y along with Neu5Acalpha2-6 sialylation was found to be a salient feature of the ULF glycome, and several other protein carriers were additionally identified including the highly abundant lactotransferrin, which is N-glycosylated at two sites, both with a similar range of highly fucosylated N-glycans. A comparative glycomics analysis of the male genital tract fluids revealed that there is a gradient of glycomic complexity from the cauda to caput regions of the epididymis, varying from high mannose to sialylated complex type N-glycans but mostly devoid of fucosylation. The seminal vesicle fluid glycome, on the other hand, carries equally abundant multimeric Lewis X structures but is distinctively lacking in additional fucosylation of the terminal galactose to give the Lewis Y epitope typifying the glycome of female ULF. One-dimensional shotgun proteomics analysis identified over 40 proteins in the latter, many of which are reported for the first time, and a majority are notably involved in immune defense and antigen processing. Further sperm binding and motility assays suggest that the Lewis X/Y epitopes do contribute to the sperm motility-enhancing activity of 24p3, whereas lactotransferrin is largely inactive in this context despite being similarly glycosylated. These findings underline the importance of glycoproteomics in delineating both the specific glycan structures and their carriers in assigning glycobiological functions.
Collapse
Affiliation(s)
- Chu-Wei Kuo
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
28
|
Burden RE, Snoddy P, Buick RJ, Johnston JA, Walker B, Scott CJ. Recombinant cathepsin S propeptide attenuates cell invasion by inhibition of cathepsin L-like proteases in tumor microenvironment. Mol Cancer Ther 2008; 7:538-47. [PMID: 18347141 DOI: 10.1158/1535-7163.mct-07-0528] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human cathepsin L along with cathepsin S, K, and V are collectively known as cathepsin L-like proteases due to their high homology. The overexpression and aberrant activity of each of these proteases has been implicated in tumorigenesis. These proteases contain propeptide domains that can potently inhibit both their cognate protease and other proteases within the cathepsin L-like subfamily. In this investigation, we have produced the cathepsin S propeptide recombinantly and have shown that it is a potent inhibitor of the peptidolytic, elastinolytic, and gelatinolytic activities of the cathepsin L-like proteases. In addition, we show that this peptide is capable of significantly attenuating tumor cell invasion in a panel of human cancer cell lines. Furthermore, fusion of an IgG Fc-domain to the COOH terminus of the propeptide resulted in a chimeric protein with significantly enhanced ability to block tumor cell invasion. This Fc fusion protein exhibited enhanced stability in cell-based assays in comparison with the unmodified propeptide species. This approach for the combined inhibition of the cathepsin L-like proteases may prove useful for the further study in cancer and other conditions where their aberrant activity has been implicated. Furthermore, this strategy for simultaneous inhibition of multiple cysteine cathepsins may represent the basis for novel therapeutics to attenuate tumorigenesis.
Collapse
Affiliation(s)
- Roberta E Burden
- School of Pharmacy, Queen's University of Belfast, Northern Ireland, UK
| | | | | | | | | | | |
Collapse
|
29
|
Effects of in vitro brevetoxin exposure on apoptosis and cellular metabolism in a leukemic T cell line (Jurkat). Mar Drugs 2008; 6:291-307. [PMID: 18728729 PMCID: PMC2525491 DOI: 10.3390/md20080014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 05/27/2008] [Accepted: 06/04/2008] [Indexed: 12/25/2022] Open
Abstract
Harmful algal blooms (HABs) of the toxic dinoflagellate, Karenia brevis, produce red tide toxins, or brevetoxins. Significant health effects associated with red tide toxin exposure have been reported in sea life and in humans, with brevetoxins documented within immune cells from many species. The objective of this research was to investigate potential immunotoxic effects of brevetoxins using a leukemic T cell line (Jurkat) as an in vitro model system. Viability, cell proliferation, and apoptosis assays were conducted using brevetoxin congeners PbTx-2, PbTx-3, and PbTx-6. The effects of in vitro brevetoxin exposure on cell viability and cellular metabolism or proliferation were determined using trypan blue and MTT (1-(4,5-dimethylthiazol-2-yl)-3,5-diphenylformazan), respectively. Using MTT, cellular metabolic activity was decreased in Jurkat cells exposed to 5 - 10 microg/ml PbTx-2 or PbTx-6. After 3 h, no significant effects on cell viability were observed with any toxin congener in concentrations up to 10 microg/ml. Viability decreased dramatically after 24 h in cells treated with PbTx-2 or -6. Apoptosis, as measured by caspase-3 activity, was significantly increased in cells exposed to PbTx-2 or PbTx-6. In summary, brevetoxin congeners varied in effects on Jurkat cells, with PbTx-2 and PbTx-6 eliciting greater cellular effects compared to PbTx-3.
Collapse
|
30
|
Effects of in vitro Brevetoxin Exposure on Apoptosis and Cellular Metabolism in a Leukemic T Cell Line (Jurkat). Mar Drugs 2008. [DOI: 10.3390/md6020291] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
31
|
Ramani K, Miclea RD, Purohit VS, Mager DE, Straubinger RM, Balu-Iyer SV. Phosphatidylserine containing liposomes reduce immunogenicity of recombinant human factor VIII (rFVIII) in a murine model of hemophilia A. J Pharm Sci 2008; 97:1386-98. [PMID: 17705286 PMCID: PMC2574438 DOI: 10.1002/jps.21102] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Factor VIII (FVIII) is a multidomain protein that is deficient in hemophilia A, a clinically important bleeding disorder. Replacement therapy using recombinant human FVIII (rFVIII) is the main therapy. However, approximately 15-30% of patients develop inhibitory antibodies that neutralize rFVIII activity. Antibodies to epitopes in C2 domain, which is involved in FVIII binding to phospholipids, are highly prevalent. Here, we investigated the effect of phosphatidylserine (PS)-containing liposomes, which bind to C2 domain with high affinity and specificity, upon the immunogenicity of rFVIII. Circular dichroism studies showed that PS-containing liposomes interfered with aggregation of rFVIII. Immunogenicity of free- versus liposomal-rFVIII was evaluated in a murine model of hemophilia A. Animals treated with s.c. injections of liposomal-rFVIII had lower total- and inhibitory titers, compared to animals treated with rFVIII alone. Antigen processing by proteolytic enzymes was reduced in the presence of liposomes. Animals treated with s.c. injections of liposomal-rFVIII showed a significant increase in rFVIII plasma concentration compared to animals that received rFVIII alone. Based on these studies, we hypothesize that specific molecular interactions between PS-containing bilayers and rFVIII may provide a basis for designing lipidic complexes that improve the stability, reduce the immunogenicity of rFVIII formulations, and permit administration by s.c. route.
Collapse
Affiliation(s)
- Karthik Ramani
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Amherst, New York 14260, USA
| | | | | | | | | | | |
Collapse
|
32
|
Watanabe D, Yamamoto A, Tomoo K, Matsumoto K, Murata M, Kitamura K, Ishida T. Quantitative evaluation of each catalytic subsite of cathepsin B for inhibitory activity based on inhibitory activity-binding mode relationship of epoxysuccinyl inhibitors by X-ray crystal structure analyses of complexes. J Mol Biol 2006; 362:979-93. [PMID: 16950396 DOI: 10.1016/j.jmb.2006.07.070] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Revised: 07/17/2006] [Accepted: 07/26/2006] [Indexed: 10/24/2022]
Abstract
To quantitatively estimate the inhibitory effect of each substrate-binding subsite of cathepsin B (CB), a series of epoxysuccinyl derivatives with different functional groups bound to both carbon atoms of the epoxy ring were synthesized, and the relationship between their inhibitory activities and binding modes at CB subsites was evaluated by the X-ray crystal structure analyses of eight complexes. With the common reaction in which the epoxy ring of inhibitor was opened to form a covalent bond with the SgammaH group of the active center Cys29, the observed binding modes of the substituents of inhibitors at the binding subsites of CB enabled the quantitative assessment of the inhibitory effect of each subsite. Although the single blockage of S1' or S2' subsite exerts only the inhibitory effect of IC50 = approximately 24 microM (k2 = approximately 1250 M(-1) s(-1)) or approximately 15 microM (k2 = approximately 1800 M(-1) s(-1)), respectively, the synchronous block of both subsites leads to IC50 = approximately 23 nM (k2 = 153,000 - 185,000 M(-1) s(-1)), under the condition that (i) the inhibitor possesses a P1' hydrophobic residue such as Ile and a P2' hydrophobic residue such as Ala, Ile or Pro, and (ii) the C-terminal carboxyl group of a P2' residue is able to form paired hydrogen bonds with the imidazole NH of His110 and the imidazole N of His111 of CB. The inhibitor of a Pn' > or = 3' substituent was not potentiated by collision with the occluding loop. On the other hand, it was suggested that the inhibitory effects of Sn subsites are independent of those of Sn' subsites, and the simultaneous blockage of the funnel-like arrangement of S2 and S3 subsites leads to the inhibition of IC50 = approximately 40 nM (k2 = approximately 66,600 M(-1) s(-1)) regardless of the lack of Pn' substituents. Here we present a systematic X-ray structure-based evaluation of structure-inhibitory activity relationship of each binding subsite of CB, and the results provide the structural basis for designing a more potent CB-specific inhibitor.
Collapse
Affiliation(s)
- Daiya Watanabe
- Department of Physical Chemistry, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara,Takatsuki, Osaka 569-1094, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Free P, Hurley CA, Kageyama T, Chain BM, Tabor AB. Mannose-pepstatin conjugates as targeted inhibitors of antigen processing. Org Biomol Chem 2006; 4:1817-30. [PMID: 16633575 DOI: 10.1039/b600060f] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The molecular details of antigen processing, including the identity of the enzymes involved, their intracellular location and their substrate specificity, are still incompletely understood. Selective inhibition of proteolytic antigen processing enzymes such as cathepsins D and E, using small molecular inhibitors such as pepstatin, has proven to be a valuable tool in investigating these pathways. However, pepstatin is poorly soluble in water and has limited access to the antigen processing compartment in antigen presenting cells. We have synthesised mannose-pepstatin conjugates, and neomannosylated BSA-pepstatin conjugates, as tools for the in vivo study of the antigen processing pathway. Conjugation to mannose and to neomannosylated BSA substantially improved the solubility of the conjugates relative to pepstatin. The mannose-pepstatin conjugates showed no reduction in inhibition of cathepsin E, whereas the neomannosylated BSA-pepstatin conjugates showed some loss of inhibition, probably due to steric factors. However, a neomannosylated BSA-pepstatin conjugate incorporating a cleavable disulfide linkage between the pepstatin and the BSA showed the best uptake to dendritic cells and the best inhibition of antigen processing.
Collapse
Affiliation(s)
- Paul Free
- University College London, Department of Chemistry, Christopher Ingold Laboratories, UK
| | | | | | | | | |
Collapse
|
34
|
Purohit VS, Middaugh CR, Balasubramanian SV. Influence of aggregation on immunogenicity of recombinant human Factor VIII in hemophilia A mice. J Pharm Sci 2006; 95:358-71. [PMID: 16372314 PMCID: PMC2574426 DOI: 10.1002/jps.20529] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recombinant human factor VIII (rFVIII), a multidomain glycoprotein is used in replacement therapy for treatment of hemophilia A. Unfortunately, 15%-30% of the treated patients develop inhibitory antibodies. The pathogenesis of antibody development is not completely understood. The presence of aggregated protein in formulations is generally believed to enhance the immune response. rFVIII has a tendency to aggregate but the effect of such aggregation on the immunogenicity of rFVIII is not known. We have, therefore, characterized aggregated rFVIII produced by thermal stress and evaluated its effect on the immunogenicity of rFVIII in hemophilia A mice. Aggregated rFVIII alone and mixtures of rFVIII with aggregated rFVIII were less immunogenic than native rFVIII. In vitro Th-cell proliferation studies and cytokine analyses conducted on splenocytes obtained from immunized animals suggest that aggregated rFVIII behaves as a unique antigen compared to native monomeric rFVIII. The antigenic properties of the aggregated and native rFVIII were compared using ELISAs (epitope availability) and cathepsin-B (an antigen processing enzyme) digestion. The data suggest significant differences in the antigenic properties of rFVIII and aggregated rFVIII. Overall it appears that aggregated rFVIII does not enhance the immunogenicity (inhibitor development) of rFVIII in hemophilia A mice but rather acts as a distinct antigen.
Collapse
Affiliation(s)
- Vivek S Purohit
- The Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Amherst, 14260-1200, USA
| | | | | |
Collapse
|
35
|
Kitamura H, Kamon H, Sawa SI, Park SJ, Katunuma N, Ishihara K, Murakami M, Hirano T. IL-6-STAT3 Controls Intracellular MHC Class II αβ Dimer Level through Cathepsin S Activity in Dendritic Cells. Immunity 2005; 23:491-502. [PMID: 16286017 DOI: 10.1016/j.immuni.2005.09.010] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2005] [Revised: 08/16/2005] [Accepted: 09/22/2005] [Indexed: 01/03/2023]
Abstract
We found IL-6-STAT3 pathway suppresses MHC class II (MHCII) expression on dendritic cells (DCs) and attenuates T cell activation. Here, we showed that IL-6-STAT3 signaling reduced intracellular MHCII alphabeta dimmer, Ii, and H2-DM levels in DCs. IL-6-mediated STAT3 activation decreased cystatin C level, an endogenous inhibitor of cathepsins, and enhanced cathepsin activities. Importantly, cathepsin S inhibitors blocked reduction of MHCII alphabeta dimer, Ii, and H2-DM in the IL-6-treated DCs. Overexpression of cystatin C suppressed IL-6-STAT3-mediated increase of cathepsin S activity and reduction of MHCII alphabeta dimer, Ii, and H2-DM levels in DCs. Cathepsin S overexpression in DCs decreased intracellular MHCII alphabeta dimer, Ii, and H2-DM levels, LPS-mediated surface expression of MHCII and suppressed CD4(+) T cell activation. IL-6-gp130-STAT3 signaling in vivo decreased cystatin C expression and MHCII alphabeta dimer level in DCs. Thus, IL-6-STAT3-mediated increase of cathepsin S activity reduces the MHCII alphabeta dimer, Ii, and H2-DM levels in DCs, and suppresses CD4(+) T cell-mediated immune responses.
Collapse
Affiliation(s)
- Hidemitsu Kitamura
- Laboratory for Cytokine Signaling, RIKEN Research Center for Allergy and Immunology, Yokohama 230-0045, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Zheng T, Kang MJ, Crothers K, Zhu Z, Liu W, Lee CG, Rabach LA, Chapman HA, Homer RJ, Aldous D, De Sanctis GT, Desanctis G, Underwood S, Graupe M, Flavell RA, Schmidt JA, Elias JA. Role of cathepsin S-dependent epithelial cell apoptosis in IFN-gamma-induced alveolar remodeling and pulmonary emphysema. THE JOURNAL OF IMMUNOLOGY 2005; 174:8106-15. [PMID: 15944319 DOI: 10.4049/jimmunol.174.12.8106] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Th1/Tc1 inflammation and remodeling responses characterized by tissue atrophy and destruction frequently coexist in human diseases and disorders. However, the mechanisms that are used by Th1/Tc1 cytokines, like IFN-gamma, to induce these responses have not been defined. To elucidate the mechanism(s) of IFN-gamma-induced tissue remodeling and destruction, we characterized the pathway that lung-targeted, transgenic IFN-gamma uses to induce alveolar remodeling in a murine pulmonary emphysema modeling system. In these mice, transgenic IFN-gamma caused epithelial cell DNA injury and apoptosis detectable with TUNEL (Roche) and dual annexin V and propidium iodide staining. These responses were associated with death receptor and mitochondrial apoptosis pathway activation. Importantly, apoptosis inhibition with a caspase inhibitor (N-benzylcarboxy-Val-Ala-Asp-fluoromethyl-ketone) or a null mutation of caspase-3 blocked this DNA injury and apoptosis response and significantly ameliorated IFN-gamma-induced emphysema. These interventions also ameliorated IFN-gamma-induced inflammation and decreased pulmonary protease burden. Selective cathepsin S inhibition and a null mutation of cathepsin S also decreased IFN-gamma-induced DNA injury, apoptosis, emphysema, inflammation, and protease accumulation. These studies demonstrate that cathepsin S-dependent epithelial cell apoptosis is a critical event in the pathogenesis of IFN-gamma-induced alveolar remodeling and emphysema. They also link inflammation, protease/antiprotease alterations, and protease-dependent apoptosis in the pathogenesis of Th1/Tc1 cytokine-induced tissue remodeling and destructive responses.
Collapse
Affiliation(s)
- Tao Zheng
- Department of Internal Medicine, Yale University School of Medicine, Section of Pulmonary and Critical Care Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Benson JM, Hahn FF, March TH, McDonald JD, Gomez AP, Sopori MJ, Bourdelais AJ, Naar J, Zaias J, Bossart GD, Baden DG. Inhalation toxicity of brevetoxin 3 in rats exposed for twenty-two days. ENVIRONMENTAL HEALTH PERSPECTIVES 2005; 113:626-31. [PMID: 15866775 PMCID: PMC1257559 DOI: 10.1289/ehp.7497] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Brevetoxins are potent neurotoxins produced by the marine dinoflagellate Karenia brevis. Exposure to brevetoxins may occur during a K. brevis red tide when the compounds become aerosolized by wind and surf. This study assessed possible adverse health effects associated with inhalation exposure to brevetoxin 3, one of the major brevetoxins produced by K. brevis and present in aerosols collected along beaches affected by red tide. Male F344 rats were exposed to brevetoxin 3 at 0, 37, and 237 microg/m3 by nose-only inhalation 2 hr/day, 5 days/week for up to 22 exposure days. Estimated deposited brevetoxin 3 doses were 0.9 and 5.8 microg/kg/day for the low- and high-dose groups, respectively. Body weights of the high-dose group were significantly below control values. There were no clinical signs of toxicity. Terminal body weights of both low- and high-dose-group rats were significantly below control values. Minimal alveolar macrophage hyperplasia was observed in three of six and six of six of the low- and high-dose groups, respectively. No histopathologic lesions were observed in the nose, brain, liver, or bone marrow of any group. Reticulocyte numbers in whole blood were significantly increased in the high-dose group, and mean corpuscular volume showed a significant decreasing trend with increasing exposure concentration. Humoral-mediated immunity was suppressed in brevetoxin-exposed rats as indicated by significant reduction in splenic plaque-forming cells in both low- and high-dose-group rats compared with controls. Results indicate that the immune system is the primary target for toxicity in rats after repeated inhalation exposure to relatively high concentrations of brevetoxins.
Collapse
Affiliation(s)
- Janet M Benson
- Lovelace Respiratory Research Institute, 2425 Ridgecrest Drive SE, Albuquerque, NM 87108, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Benson J, Hahn F, March T, McDonald J, Sopori M, Seagrave J, Gomez A, Bourdelais A, Naar J, Zaias J, Bossart G, Baden D. Inhalation toxicity of brevetoxin 3 in rats exposed for 5 days. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2004; 67:1443-56. [PMID: 15371231 PMCID: PMC2846653 DOI: 10.1080/15287390490483809] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Brevetoxins are potent neurotoxins produced by the marine dinoflagellate Karenia brevis. Exposure to brevetoxins may occur during a K. brevis red tide when the compounds become aerosolized by wind and surf. This study assesses possible adverse health effects associated with short-term inhalation exposure to brevetoxin 3. Male F344/Crl/Br rats were exposed to 500 microg brevetoxin 3/m3 by nose-only inhalation for 0.5 or 2 h/d for 5 consecutive days. Control rats were sham exposed for 2 h to vehicle. Calculated deposited brevetoxin doses were 8.3 and 33 microg/kg/d for the low- and high-dose groups, respectively. At the termination of exposures, only body weights of the high-dose group (Group B) were significantly below control values. By immunohistochemistry (IHC), small numbers of splenic and peribronchiolar lymphoid tissue macrophages stained positive for brevetoxin, while nasal mucosa, liver, and brain were IHC negative for brevetoxin. No gross or microscopic lesions were observed in any tissue examined. There was no biochemical evidence of cytotoxicity or inflammation in bronchoalveolar lavage fluid. Alveolar macrophages showed some evidence of activation following brevetoxin exposure. Humoral-mediated immunity was suppressed in brevetoxin-exposed rats as indicated by a >70% reduction in splenic plaque-forming cells in brevetoxin-exposed animals compared to controls. Results suggest that the immune system may be a target of toxicity following brevetoxin inhalation. Future studies will focus on identification of a no-effect level and mechanisms underlying brevetoxin-induced immune suppression.
Collapse
Affiliation(s)
- Janet Benson
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico 87108, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
For many years apoptosis research has focused on caspases and their putative role as sole executioners of programmed cell death. Accumulating information now suggests that lysosomal cathepsins are also pivotally involved in this process, especially in pathological conditions. In particular, the role of lysosomes and lysosomal enzymes in initiation and execution of the apoptotic program has become clear in several models, to the point that the existence of a 'lysosomal pathway of apoptosis' is now generally accepted. This pathway of apoptosis can be activated by death receptors, lipid mediators, and photodamage. Lysosomal proteases can be released from the lysosomes into the cytosol, where they contribute to the apoptotic cascade upstream of mitochondria. This review focuses on the players and the molecular mechanisms involved in the lysosomal pathway of apoptosis as well as on the importance of this pathway in development and pathology.
Collapse
|