1
|
Yang X, Yao K, Zhang M, Zhang W, Zu H. New insight into the role of altered brain cholesterol metabolism in the pathogenesis of AD: A unifying cholesterol hypothesis and new therapeutic approach for AD. Brain Res Bull 2025; 224:111321. [PMID: 40164234 DOI: 10.1016/j.brainresbull.2025.111321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/16/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025]
Abstract
The dysregulation of cholesterol metabolism homeostasis has been universally suggested in the aeotiology of Alzheimer's disease (AD). Initially, studies indicate that alteration of serum cholesterol level might contribute to AD. However, because blood-brain barrier impedes entry of plasma cholesterol, brain cells are not directly influenced by plasma cholesterol. Furthermore, mounting evidences suggest a link between alteration of brain cholesterol metabolism and AD. Interestingly, Amyloid-β proteins (Aβ) can markedly inhibit cellular cholesterol biosynthesis and lower cellular cholesterol content in cultured cells. And Aβ overproduction/overload induces a significant decrease of brain cellular cholesterol content in familial AD (FAD) animals. Importantly, mutations or polymorphisms of genes related to brain cholesterol transportation, such as ApoE4, ATP binding cassette (ABC) transporters, low-density lipoprotein receptor (LDLR) family and Niemann-Pick C disease 1 or 2 (NPC1/2), obviously lead to decreased brain cholesterol transport, resulting in brain cellular cholesterol loss, which could be tightly associated with AD pathological impairments. Additionally, accumulating data show that there are reduction of brain cholesterol biosynthesis and/or disorder of brain cholesterol trafficking in a variety of sporadic AD (SAD) animals and patients. Collectively, compelling evidences indicate that FAD and SAD could share one common and overlapping neurochemical mechanism: brain neuronal/cellular cholesterol deficiency. Therefore, accumulated evidences strongly support a novel hypothesis that deficiency of brain cholesterol contributes to the onset and progression of AD. This review highlights the pivotal role of brain cholesterol deficiency in the pathogenesis of AD. The hypothesis offers valuable insights for the future development of AD treatment.
Collapse
Affiliation(s)
- Xiaobo Yang
- Department of Neurology, Jinshan Hospital affiliated to Fudan University, Shanghai 201508, China; Department of Neurology, Shanghai Xuhui Central Hospital, Fudan University, Shanghai 200237, China
| | - Kai Yao
- Department of Neurology, Jinshan Hospital affiliated to Fudan University, Shanghai 201508, China
| | - Mengqi Zhang
- Department of Neurology, Jinshan Hospital affiliated to Fudan University, Shanghai 201508, China
| | - Wenbin Zhang
- Department of Neurology, Jinshan Hospital affiliated to Fudan University, Shanghai 201508, China
| | - Hengbing Zu
- Department of Neurology, Jinshan Hospital affiliated to Fudan University, Shanghai 201508, China.
| |
Collapse
|
2
|
Fišar Z. Linking the Amyloid, Tau, and Mitochondrial Hypotheses of Alzheimer's Disease and Identifying Promising Drug Targets. Biomolecules 2022; 12:1676. [PMID: 36421690 PMCID: PMC9687482 DOI: 10.3390/biom12111676] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/23/2022] [Accepted: 11/09/2022] [Indexed: 08/27/2023] Open
Abstract
Damage or loss of brain cells and impaired neurochemistry, neurogenesis, and synaptic and nonsynaptic plasticity of the brain lead to dementia in neurodegenerative diseases, such as Alzheimer's disease (AD). Injury to synapses and neurons and accumulation of extracellular amyloid plaques and intracellular neurofibrillary tangles are considered the main morphological and neuropathological features of AD. Age, genetic and epigenetic factors, environmental stressors, and lifestyle contribute to the risk of AD onset and progression. These risk factors are associated with structural and functional changes in the brain, leading to cognitive decline. Biomarkers of AD reflect or cause specific changes in brain function, especially changes in pathways associated with neurotransmission, neuroinflammation, bioenergetics, apoptosis, and oxidative and nitrosative stress. Even in the initial stages, AD is associated with Aβ neurotoxicity, mitochondrial dysfunction, and tau neurotoxicity. The integrative amyloid-tau-mitochondrial hypothesis assumes that the primary cause of AD is the neurotoxicity of Aβ oligomers and tau oligomers, mitochondrial dysfunction, and their mutual synergy. For the development of new efficient AD drugs, targeting the elimination of neurotoxicity, mutual potentiation of effects, and unwanted protein interactions of risk factors and biomarkers (mainly Aβ oligomers, tau oligomers, and mitochondrial dysfunction) in the early stage of the disease seems promising.
Collapse
Affiliation(s)
- Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague, Czech Republic
| |
Collapse
|
3
|
Inuzuka H, Liu J, Wei W, Rezaeian AH. PROTACs technology for treatment of Alzheimer's disease: Advances and perspectives. ACTA MATERIA MEDICA 2022; 1:24-41. [PMID: 35237768 PMCID: PMC8887676 DOI: 10.15212/amm-2021-0001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Neurodegenerative diseases (NDs) are characteristic with progression of neuron degeneration, resulting in dysfunction of cognition and mobility. Many neurodegenerative diseases are because of proteinopathies that results from unusual protein accumulations and aggregations. The aggregation of misfolded proteins like β-amyloid, α-synuclein, tau, and polyglutamates are hallmarked in Alzheimer's disease (AD), which are undruggable targets, and usually do not respond to conventional small-molecule agents. Therefore, developing novel technology and strategy for reducing the levels of protein aggregates would be critical for treatment of AD. Recently, the emerging proteolysis targeting chimeras (PRPTACs) technology has been significantly considered for artificial and selective degradation of aberrant target proteins. These engineered bifunctional molecules engage target proteins to be degraded by either the cellular degradation machinery in the ubiquitin-proteasome system (UPS) or via the autophagy-lysosome degradation pathway. Although the application of PROTACs technology is preferable than oligonucleotide and antibodies for treatment of NDs, many limitations such as their pharmacokinetic properties, tissue distribution and cell permeabilities, still need to be corrected. Herein, we review the recent advances in PROTACs technology with their limitation for pharmaceutical targeting of aberrant proteins involved in Alzheimer's diseases. We also review therapeutic potential of dysregulated signaling such as PI3K/AKT/mTOR axis for the management of AD.
Collapse
Affiliation(s)
- Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Jing Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Corresponding author. Contact: ,
| | - Abdol-Hossein Rezaeian
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Corresponding author. Contact: ,
| |
Collapse
|
4
|
Tripathi MK, Kartawy M, Amal H. The role of nitric oxide in brain disorders: Autism spectrum disorder and other psychiatric, neurological, and neurodegenerative disorders. Redox Biol 2020; 34:101567. [PMID: 32464501 PMCID: PMC7256645 DOI: 10.1016/j.redox.2020.101567] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/21/2022] Open
Abstract
Nitric oxide (NO) is a multifunctional signalling molecule and a neurotransmitter that plays an important role in physiological and pathophysiological processes. In physiological conditions, NO regulates cell survival, differentiation and proliferation of neurons. It also regulates synaptic activity, plasticity and vesicle trafficking. NO affects cellular signalling through protein S-nitrosylation, the NO-mediated posttranslational modification of cysteine thiols (SNO). SNO can affect protein activity, protein-protein interaction and protein localization. Numerous studies have shown that excessive NO and SNO can lead to nitrosative stress in the nervous system, contributing to neuropathology. In this review, we summarize the role of NO and SNO in the progression of neurodevelopmental, psychiatric and neurodegenerative disorders, with special attention to autism spectrum disorder (ASD). We provide mechanistic insights into the contribution of NO in diverse brain disorders. Finally, we suggest that pharmacological agents that can inhibit or augment the production of NO as well as new approaches to modulate the formation of SNO-proteins can serve as a promising approach for the treatment of diverse brain disorders.
Collapse
Affiliation(s)
- Manish Kumar Tripathi
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maryam Kartawy
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Haitham Amal
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
5
|
Kepchia D, Huang L, Dargusch R, Rissman RA, Shokhirev MN, Fischer W, Schubert D. Diverse proteins aggregate in mild cognitive impairment and Alzheimer's disease brain. Alzheimers Res Ther 2020; 12:75. [PMID: 32560738 PMCID: PMC7305608 DOI: 10.1186/s13195-020-00641-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/04/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND All cells accumulate insoluble protein aggregates throughout their lifespan. While many studies have characterized the canonical disease-associated protein aggregates, such as those associated with amyloid plaques, additional, undefined proteins aggregate in the brain and may be directly associated with disease and lifespan. METHODS A proteomics approach was used to identify a large subset of insoluble proteins in the mild cognitively impaired (MCI) and Alzheimer's disease (AD) human brain. Cortical samples from control, MCI, and AD patients were separated into detergent-soluble and detergent-insoluble fractions, and high-resolution LC/MS/MS technology was used to determine which proteins became more insoluble in the disease state. Bioinformatics analyses were used to determine if the alteration of protein aggregation between AD and control patients was associated with any specific biological process. Western blots were used to validate the proteomics data and to assess the levels of secondary protein modifications in MCI and AD. RESULTS There was a stage-dependent increase in detergent-insoluble proteins, with more extreme changes occurring in the AD cohort. Glycolysis was the most significantly overrepresented gene ontology biological process associated with the alteration of protein aggregation between AD and control patients. It was further shown that many low molecular weight proteins that were enriched in the AD brain were also highly aggregated, migrating on SDS-PAGE far above their predicted molecular masses. Glucose-6-phosphate isomerase, ubiquitin carboxyl-terminal hydrolase isoenzyme L1 (UCHL1/PARK5), and the DNA damage repair enzyme KU70 were among the top insoluble proteins identified by proteomics and validated by Western blot to be increased in the insoluble fractions of both MCI and AD brain samples. CONCLUSIONS Diverse proteins became more detergent-insoluble in the brains of both MCI and AD patients compared to age-matched controls, suggesting that multiple proteins aggregate in these diseases, likely posing a direct toxic insult to neurons. Furthermore, detergent-insoluble proteins included those with important biological activities for critical cellular processes such as energetics, proteolysis, and DNA damage repair. Thus, reduced protein solubility likely promotes aggregation and limits functionality, reducing the efficiency of multiple aspects of cell physiology. Pharmaceutical interventions that increase autophagy may provide a useful therapeutic treatment to combat protein aggregation.
Collapse
Affiliation(s)
- Devin Kepchia
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
| | - Ling Huang
- The Razavi Newman Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Richard Dargusch
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Robert A Rissman
- Department of Neurosciences and Shiley-Marcos Alzheimer's Disease Research Center Neuropathology Core, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Maxim N Shokhirev
- The Razavi Newman Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Wolfgang Fischer
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - David Schubert
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| |
Collapse
|
6
|
Guimas Almeida C, Sadat Mirfakhar F, Perdigão C, Burrinha T. Impact of late-onset Alzheimer's genetic risk factors on beta-amyloid endocytic production. Cell Mol Life Sci 2018; 75:2577-2589. [PMID: 29704008 PMCID: PMC11105284 DOI: 10.1007/s00018-018-2825-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 04/04/2018] [Accepted: 04/23/2018] [Indexed: 12/21/2022]
Abstract
The increased production of the 42 aminoacids long beta-amyloid (Aβ42) peptide has been established as a causal mechanism of the familial early onset Alzheimer's disease (AD). In contrast, the causal mechanisms of the late-onset AD (LOAD), that affects most AD patients, remain to be established. Indeed, Aβ42 accumulation has been detected more than 30 years before diagnosis. Thus, the mechanisms that control Aβ accumulation in LOAD likely go awry long before pathogenesis becomes detectable. Early on, APOE4 was identified as the biggest genetic risk factor for LOAD. However, since APOE4 is not present in all LOAD patients, genome-wide association studies of thousands of LOAD patients were undertaken to identify other genetic variants that could explain the development of LOAD. PICALM, BIN1, CD2AP, SORL1, and PLD3 are now with APOE4 among the identified genes at highest risk in LOAD that have been implicated in Aβ42 production. Recent evidence indicates that the regulation of the endocytic trafficking of the amyloid precursor protein (APP) and/or its secretases to and from sorting endosomes is determinant for Aβ42 production. Thus, here, we will review the described mechanisms, whereby these genetic risk factors can contribute to the enhanced endocytic production of Aβ42. Dissecting causal LOAD mechanisms of Aβ42 accumulation, underlying the contribution of each genetic risk factor, will be required to identify therapeutic targets for novel personalized preventive strategies.
Collapse
Affiliation(s)
- Cláudia Guimas Almeida
- Neuronal Trafficking in Aging Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, 1169-056, Lisbon, Portugal.
| | - Farzaneh Sadat Mirfakhar
- Neuronal Trafficking in Aging Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, 1169-056, Lisbon, Portugal
| | - Catarina Perdigão
- Neuronal Trafficking in Aging Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, 1169-056, Lisbon, Portugal
| | - Tatiana Burrinha
- Neuronal Trafficking in Aging Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, 1169-056, Lisbon, Portugal
| |
Collapse
|
7
|
Magnesium Reduces Blood-Brain Barrier Permeability and Regulates Amyloid-β Transcytosis. Mol Neurobiol 2018; 55:7118-7131. [PMID: 29383689 DOI: 10.1007/s12035-018-0896-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 01/09/2018] [Indexed: 10/18/2022]
Abstract
Poor Mg status is a risk factor for Alzheimer's disease (AD), and the underlying mechanisms remain elusive. Here, we provided the first evidence that elevated Mg levels significantly reduced the blood-brain barrier (BBB) permeability and regulated its function in vitro. Transient receptor potential melastatin 7 (TRPM7) and magnesium transporter subtype 1 (MagT1) were two major cellular receptors mediating entry of extracellular Mg2+ into the cells. Elevated Mg levels also induced an accelerated clearance of amyloid-β peptide (Aβ) from the brain to the blood side via BBB transcytosis through low-density lipoprotein receptor-related protein (LRP) and phosphatidylinositol binding clathrin assembly protein (PICALM), while reduced the influx of Aβ from the blood to the brain side involving receptor for advanced glycation end products (RAGE) and caveolae. Mg enhanced BBB barrier properties and overall expression of LRP1 and PICALM whereas reduced that of RAGE and caveolin-1. Apical-to-basolateral and vice versa steady-state Aβ flux achieved an equilibrium of 18 and 0.27 fmol/min/cm2, respectively, about 30 min after the initial addition of physiological levels of free Aβ. Knockdown of caveolin-1 or disruption of caveolae membrane microdomains reduced RAGE-mediated influx significantly, but not LRP1-mediated efflux of Aβ. Stimulating endothelial cells with vascular endothelial growth factor (VEGF) enhanced caveolin-1 phosphorylation and RAGE expression. Co-immunoprecipitation demonstrated that RAGE, but not LRP1, was physically associated with caveolin-1. Thus, Mg can reduce BBB permeability and promote BBB clearance of Aβ from the brain by increasing the expression of LRP1 and PICALM while reducing the level of RAGE and caveolin-1.
Collapse
|
8
|
Hou H, Habib A, Zi D, Tian K, Tian J, Giunta B, Sawmiller D, Tan J. Low-Density Lipoprotein Receptor-Related Protein-1 (LRP1) C4408R Mutant Promotes Amyloid Precursor Protein (APP) α-Cleavage in Vitro. Neuromolecular Med 2017; 19:300-308. [PMID: 28612181 DOI: 10.1007/s12017-017-8446-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 06/06/2017] [Indexed: 12/30/2022]
Abstract
Previous studies have demonstrated that the low-density lipoprotein receptor-related protein-1 (LRP1) plays conflicting roles in Alzheimer's disease (AD) pathogenesis, clearing β-amyloid (Aβ) from the brain while also enhancing APP endocytosis and resultant amyloidogenic processing. We have recently discovered that co-expression of mutant LRP1 C-terminal domain (LRP1-CT C4408R) with Swedish mutant amyloid precursor protein (APPswe) in Chinese hamster ovary (CHO) cells decreases Aβ production, while also increasing sAPPα and APP α-C-terminal fragment (α-CTF), compared with CHO cells expressing APPswe alone. Surprisingly, the location of this mutation on LRP1 corresponded with the α-secretase cleavage site of APP. Further experimentation confirmed that in CHO cells expressing APPswe or wild-type APP (APPwt), co-expression of LRP1-CT C4408R decreases Aβ and increases sAPPα and α-CTF compared with co-expression of wild-type LRP1-CT. In addition, LRP1-CT C4408R enhanced the unglycosylated form of LRP1-CT and reduced APP endocytosis as determined by flow cytometry. This finding identifies a point mutation in LRP1 which slows LRP1-CT-mediated APP endocytosis and amyloidogenic processing, while enhancing APP α-secretase cleavage, thus demonstrating a potential novel target for slowing AD pathogenesis.
Collapse
Affiliation(s)
- Huayan Hou
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Morsani College of Medicine, University of South Florida, Tampa, FL, 33613, USA
| | - Ahsan Habib
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Morsani College of Medicine, University of South Florida, Tampa, FL, 33613, USA
| | - Dan Zi
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Morsani College of Medicine, University of South Florida, Tampa, FL, 33613, USA.,Department of Obstetrics and Gynecology, Guizhou Medical University, Guiyang, 55004, China
| | - Kathy Tian
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Morsani College of Medicine, University of South Florida, Tampa, FL, 33613, USA
| | - Jun Tian
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Morsani College of Medicine, University of South Florida, Tampa, FL, 33613, USA
| | - Brian Giunta
- Neuroimmunology Laboratory, Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, FL, 33613, USA
| | - Darrell Sawmiller
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Morsani College of Medicine, University of South Florida, Tampa, FL, 33613, USA.
| | - Jun Tan
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Morsani College of Medicine, University of South Florida, Tampa, FL, 33613, USA
| |
Collapse
|
9
|
Simonovitch S, Schmukler E, Bespalko A, Iram T, Frenkel D, Holtzman DM, Masliah E, Michaelson DM, Pinkas-Kramarski R. Impaired Autophagy in APOE4 Astrocytes. J Alzheimers Dis 2016; 51:915-27. [PMID: 26923027 DOI: 10.3233/jad-151101] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia in elderly. Genetic studies revealed allelic segregation of the apolipoprotein E (ApoE) gene in sporadic AD and in families with higher risk of AD. The mechanisms underlying the pathological effects of ApoE4 are not yet entirely clear. Several studies indicate that autophagy, which plays an important role in degradation pathways of proteins, organelles and protein aggregates, may be impaired in AD. In the present study, we investigated the effects of ApoE4 versus the ApoE3 isoform on the process of autophagy in mouse-derived astrocytes. The results obtained reveal that under several autophagy-inducing conditions, astrocytes expressing ApoE4 exhibit lower autophagic flux compared to astrocytes expressing ApoE3. Using an in situ model, we examined the role of autophagy and the effects thereon of ApoE4 in the elimination of Aβ plaques from isolated brain sections of transgenic 5xFAD mice. This revealed that ApoE4 astrocytes eliminate Aβ plaques less effectively than the corresponding ApoE3 astrocytes. Additional experiments showed that the autophagy inducer, rapamycin, enhances Aβ plaque degradation by ApoE4 astrocytes whereas the autophagy inhibitor, chloroquine, blocks Aβ plaque degradation by ApoE3 astrocytes. Taken together, these findings show that ApoE4 impairs autophagy in astrocyte cultures and that this effect is associated with reduced capacity to clear Aβ plaques. This suggests that impaired autophagy may play a role in mediating the pathological effects of ApoE4 in AD.
Collapse
Affiliation(s)
| | - Eran Schmukler
- Department of Neurobiology, Tel-Aviv University, Ramat-Aviv, Israel
| | - Alina Bespalko
- Department of Neurobiology, Tel-Aviv University, Ramat-Aviv, Israel
| | - Tal Iram
- Department of Neurobiology, Tel-Aviv University, Ramat-Aviv, Israel
| | - Dan Frenkel
- Department of Neurobiology, Tel-Aviv University, Ramat-Aviv, Israel
| | - David M Holtzman
- Washington University School of Medicine, Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, St. Louis, MO, USA
| | - Eliezer Masliah
- Department of Neuroscience, University of California at San Diego, San Diego, CA, USA
| | | | | |
Collapse
|
10
|
Associations Between Hepatic Functions and Plasma Amyloid-Beta Levels—Implications for the Capacity of Liver in Peripheral Amyloid-Beta Clearance. Mol Neurobiol 2016; 54:2338-2344. [DOI: 10.1007/s12035-016-9826-1] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/03/2016] [Indexed: 12/17/2022]
|
11
|
Han SH, Park JC, Mook-Jung I. Amyloid β-interacting partners in Alzheimer's disease: From accomplices to possible therapeutic targets. Prog Neurobiol 2016; 137:17-38. [DOI: 10.1016/j.pneurobio.2015.12.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 12/02/2015] [Accepted: 12/09/2015] [Indexed: 12/20/2022]
|
12
|
Ali-Rahmani F, Schengrund CL, Connor JR. HFE gene variants, iron, and lipids: a novel connection in Alzheimer's disease. Front Pharmacol 2014; 5:165. [PMID: 25071582 PMCID: PMC4086322 DOI: 10.3389/fphar.2014.00165] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 06/24/2014] [Indexed: 12/14/2022] Open
Abstract
Iron accumulation and associated oxidative stress in the brain have been consistently found in several neurodegenerative diseases. Multiple genetic studies have been undertaken to try to identify a cause of neurodegenerative diseases but direct connections have been rare. In the iron field, variants in the HFE gene that give rise to a protein involved in cellular iron regulation, are associated with iron accumulation in multiple organs including the brain. There is also substantial epidemiological, genetic, and molecular evidence of disruption of cholesterol homeostasis in several neurodegenerative diseases, in particular Alzheimer's disease (AD). Despite the efforts that have been made to identify factors that can trigger the pathological events associated with neurodegenerative diseases they remain mostly unknown. Because molecular phenotypes such as oxidative stress, synaptic failure, neuronal loss, and cognitive decline, characteristics associated with AD, have been shown to result from disruption of a number of pathways, one can easily argue that the phenotype seen may not arise from a linear sequence of events. Therefore, a multi-targeted approach is needed to understand a complex disorder like AD. This can be achieved only when knowledge about interactions between the different pathways and the potential influence of environmental factors on them becomes available. Toward this end, this review discusses what is known about the roles and interactions of iron and cholesterol in neurodegenerative diseases. It highlights the effects of gene variants of HFE (H63D- and C282Y-HFE) on iron and cholesterol metabolism and how they may contribute to understanding the etiology of complex neurodegenerative diseases.
Collapse
Affiliation(s)
- Fatima Ali-Rahmani
- Departments of Neurosurgery, Neural and Behavioral Sciences and Pediatrics, Center for Aging and Neurodegenerative Diseases, Penn State Hershey Medical CenterHershey, PA, USA
- Departments of Biochemistry and Molecular Biology, The Pennsylvania State University College of MedicineHershey, PA, USA
| | - Cara-Lynne Schengrund
- Departments of Biochemistry and Molecular Biology, The Pennsylvania State University College of MedicineHershey, PA, USA
| | - James R. Connor
- Departments of Neurosurgery, Neural and Behavioral Sciences and Pediatrics, Center for Aging and Neurodegenerative Diseases, Penn State Hershey Medical CenterHershey, PA, USA
| |
Collapse
|
13
|
Liu YH, Wang YR, Xiang Y, Zhou HD, Giunta B, Mañucat-Tan NB, Tan J, Zhou XF, Wang YJ. Clearance of Amyloid-Beta in Alzheimer’s Disease: Shifting the Action Site from Center to Periphery. Mol Neurobiol 2014; 51:1-7. [DOI: 10.1007/s12035-014-8694-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/24/2014] [Indexed: 12/28/2022]
|
14
|
Hunter S, Arendt T, Brayne C. The senescence hypothesis of disease progression in Alzheimer disease: an integrated matrix of disease pathways for FAD and SAD. Mol Neurobiol 2013; 48:556-70. [PMID: 23546742 DOI: 10.1007/s12035-013-8445-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 03/13/2013] [Indexed: 12/24/2022]
Abstract
Alzheimer disease (AD) is a progressive, neurodegenerative disease characterised in life by cognitive decline and behavioural symptoms and post-mortem by the neuropathological hallmarks including the microtubule-associated protein tau-reactive tangles and neuritic plaques and amyloid-beta-protein-reactive senile plaques. Greater than 95 % of AD cases are sporadic (SAD) with a late onset and <5 % of AD cases are familial (FAD) with an early onset. FAD is associated with various genetic mutations in the amyloid precursor protein (APP) and the presenilins (PS)1 and PS2. As yet, no disease pathway has been fully accepted and there are no treatments that prevent, stop or reverse the cognitive decline associated with AD. Here, we review and integrate available environmental and genetic evidence associated with all forms of AD. We present the senescence hypothesis of AD progression, suggesting that factors associated with AD can be seen as partial stressors within the matrix of signalling pathways that underlie cell survival and function. Senescence pathways are triggered when stressors exceed the cells ability to compensate for them. The APP proteolytic system has many interactions with pathways involved in programmed senescence and APP proteolysis can both respond to and be driven by senescence-associated signalling. Disease pathways associated with sporadic disease may be different to those involving familial genetic mutations. The interpretation we provide strongly points to senescence as an additional underlying causal process in dementia progression in both SAD and FAD via multiple disease pathways.
Collapse
Affiliation(s)
- Sally Hunter
- Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 0SR, UK,
| | | | | |
Collapse
|
15
|
Sagare AP, Bell RD, Zlokovic BV. Neurovascular defects and faulty amyloid-β vascular clearance in Alzheimer's disease. J Alzheimers Dis 2013; 33 Suppl 1:S87-100. [PMID: 22751174 PMCID: PMC4416477 DOI: 10.3233/jad-2012-129037] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The evidence that neurovascular dysfunction is an integral part of Alzheimer's disease (AD) pathogenesis has continued to emerge in the last decade. Changes in the brain vasculature have been shown to contribute to the onset and progression of the pathological processes associated with AD, such as microvascular reductions, blood brain barrier (BBB) breakdown, and faulty clearance of amyloid β-peptide (Aβ) from the brain. Herein, we review the role of the neurovascular unit and molecular mechanisms in cerebral vascular cells behind the pathogenesis of AD. In particular, we focus on molecular pathways within cerebral vascular cells and the systemic circulation that contribute to BBB dysfunction, brain hypoperfusion, and impaired clearance of Aβ from the brain. We aim to provide a summary of recent research findings implicated in neurovascular defects and faulty Aβ vascular clearance contributing to AD pathogenesis.
Collapse
Affiliation(s)
- Abhay P. Sagare
- Zilkha Neurogenetic Institute and Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Robert D. Bell
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Berislav V. Zlokovic
- Zilkha Neurogenetic Institute and Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
16
|
Sagare AP, Bell RD, Zlokovic BV. Neurovascular dysfunction and faulty amyloid β-peptide clearance in Alzheimer disease. Cold Spring Harb Perspect Med 2012; 2:cshperspect.a011452. [PMID: 23028132 DOI: 10.1101/cshperspect.a011452] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurovascular dysfunction is an integral part of Alzheimer disease (AD). Changes in the brain vascular system may contribute in a significant way to the onset and progression of cognitive decline and the development of a chronic neurodegenerative process associated with accumulation of amyloid β-peptide (Aβ) in brain and cerebral vessels in AD individuals and AD animal models. Here, we review the role of the neurovascular unit and molecular mechanisms in cerebral vascular cells behind the pathogenesis of AD. In particular, we focus on blood-brain barrier (BBB) dysfunction, decreased cerebral blood flow, and impaired vascular clearance of Aβ from brain. The data reviewed here support an essential role of the neurovascular and BBB mechanisms in AD pathogenesis.
Collapse
Affiliation(s)
- Abhay P Sagare
- Center for Neurodegenerative and Vascular Brain Disorders and Interdisciplinary Program in Dementia Research, Arthur Kornberg Medical Research Building, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | |
Collapse
|
17
|
Sagare AP, Deane R, Zlokovic BV. Low-density lipoprotein receptor-related protein 1: a physiological Aβ homeostatic mechanism with multiple therapeutic opportunities. Pharmacol Ther 2012; 136:94-105. [PMID: 22820095 PMCID: PMC3432694 DOI: 10.1016/j.pharmthera.2012.07.008] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 07/03/2012] [Indexed: 11/29/2022]
Abstract
Low-density lipoprotein receptor-related protein-1 (LRP1) is the main cell surface receptor involved in brain and systemic clearance of the Alzheimer's disease (AD) toxin amyloid-beta (Aβ). In plasma, a soluble form of LRP1 (sLRP1) is the major transport protein for peripheral Aβ. LRP1 in brain endothelium and mural cells mediates Aβ efflux from brain by providing a transport mechanism for Aβ across the blood-brain barrier (BBB). sLRP1 maintains a plasma 'sink' activity for Aβ through binding of peripheral Aβ which in turn inhibits re-entry of free plasma Aβ into the brain. LRP1 in the liver mediates systemic clearance of Aβ. In AD, LRP1 expression at the BBB is reduced and Aβ binding to circulating sLRP1 is compromised by oxidation. Cell surface LRP1 and circulating sLRP1 represent druggable targets which can be therapeutically modified to restore the physiological mechanisms of brain Aβ homeostasis. In this review, we discuss how increasing LRP1 expression at the BBB and liver with lifestyle changes, statins, plant-based active principles and/or gene therapy on one hand, and how replacing dysfunctional plasma sLRP1 on the other regulate Aβ clearance from brain ultimately controlling the onset and/or progression of AD.
Collapse
Affiliation(s)
- Abhay P. Sagare
- Department of Physiology and Biophysics, and Center for Neurodegeneration and Regeneration at the Zilkha Neurogenetic Institute, University of Southern California, Keck School of Medicine, 1501 San Pablo Street, Los Angeles, CA 90089, United States
| | - Rashid Deane
- Department of Neurosurgery, Arthur Kornberg Medical Research Building, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Berislav V. Zlokovic
- Department of Physiology and Biophysics, and Center for Neurodegeneration and Regeneration at the Zilkha Neurogenetic Institute, University of Southern California, Keck School of Medicine, 1501 San Pablo Street, Los Angeles, CA 90089, United States
| |
Collapse
|
18
|
Wilhelmus MMM, Bol JGJM, Van Haastert ES, Rozemuller AJM, Bu G, Drukarch B, Hoozemans JJM. Apolipoprotein E and LRP1 Increase Early in Parkinson's Disease Pathogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2152-6. [PMID: 21907175 DOI: 10.1016/j.ajpath.2011.07.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 06/30/2011] [Accepted: 07/07/2011] [Indexed: 11/28/2022]
Abstract
Parkinson's disease (PD) is characterized by α-synuclein-containing Lewy bodies (LBs) and loss of melanized neurons in the substantia nigra (SN). Recently, a link between apolipoprotein E (ApoE) expression, α-synuclein aggregation, and neurodegeneration was suggested. Here, we report on ApoE expression appearing in melanized neurons of the SN and in LBs in both PD and incidental LB disease cases. Interestingly, increased expression of the low-density lipoprotein receptor-related protein 1 (the receptor for ApoE) was also observed in incidental LB disease and PD. Our data suggest that alterations in lipoprotein homeostasis/signaling in melanized neurons of the SN are an early event during PD pathogenesis.
Collapse
Affiliation(s)
- Micha M M Wilhelmus
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
19
|
Zlokovic BV, Deane R, Sagare AP, Bell RD, Winkler EA. Low-density lipoprotein receptor-related protein-1: a serial clearance homeostatic mechanism controlling Alzheimer's amyloid β-peptide elimination from the brain. J Neurochem 2010; 115:1077-89. [PMID: 20854368 PMCID: PMC2972355 DOI: 10.1111/j.1471-4159.2010.07002.x] [Citation(s) in RCA: 215] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Low-density lipoprotein receptor-related protein-1 (LRP1), a member of the low-density lipoprotein receptor family, has major roles in the cellular transport of cholesterol, endocytosis of 40 structurally diverse ligands, transcytosis of ligands across the blood-brain barrier, and transmembrane and nuclear signaling. Recent evidence indicates that LRP1 regulates brain and systemic clearance of Alzheimer's disease (AD) amyloid β-peptide (Aβ). According to the two-hit vascular hypothesis for AD, vascular damage precedes cerebrovascular and brain Aβ accumulation (hit 1) which then further amplifies neurovascular dysfunction (hit 2) preceding neurodegeneration. In this study, we discuss the roles of LRP1 during the hit 1 and hit 2 stage of AD pathogenesis and describe a three-level serial LRP1-dependent homeostatic control of Aβ clearance including (i) cell-surface LRP1 at the blood-brain barrier and cerebrovascular cells mediating brain-to-blood Aβ clearance (ii) circulating LRP1 providing a key endogenous peripheral 'sink' activity for plasma Aβ which prevents free Aβ access to the brain, and (iii) LRP1 in the liver mediating systemic Aβ clearance. Pitfalls in experimental Aβ brain clearance measurements with the concurrent use of peptides/proteins such as receptor-associated protein and aprotinin are also discussed. We suggest that LRP1 has a critical role in AD pathogenesis and is an important therapeutic target in AD.
Collapse
Affiliation(s)
- Berislav V Zlokovic
- Center for Neurodegenerative and Vascular Brain Disorders, University of Rochester Medical Center, Rochester, New York 14642,, USA.
| | | | | | | | | |
Collapse
|
20
|
Lee CYD, Landreth GE. The role of microglia in amyloid clearance from the AD brain. J Neural Transm (Vienna) 2010; 117:949-60. [PMID: 20552234 DOI: 10.1007/s00702-010-0433-4] [Citation(s) in RCA: 521] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 05/26/2010] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD), the most prominent cause of senile dementia, is clinically characterized by the extracellular deposition of beta-amyloid (Abeta) and the intracellular neurofibrillary tangles. It has been well accepted that AD pathogenesis arises from perturbation in the homeostasis of Abeta in the brain. Abeta is normally produced at high levels in the brain and cleared in an equivalent rate. Thus, even a moderate decrease in the clearance leads to the accumulation of Abeta and subsequent amyloid deposition. Microglia are the tissue macrophages in the central nervous system (CNS) and have been shown to play major roles in internalization and degradation of Abeta. Abeta exists in the brain both in soluble and in fibrillar forms. Microglia interact with these two forms of Abeta in different ways. They take up soluble forms of Abeta through macropinocytosis and LDL receptor-related proteins (LRPs) mediated pathway. Fibrillar forms of Abeta interact with the cell surface innate immune receptor complex, initiating intracellular signaling cascades that stimulate phagocytosis. Inflammatory responses influence the activation status of microglia and subsequently regulate their ability to take up and degrade Abeta. ApoE and its receptors have been shown to play critical roles in these processes. In this review, we will explore the mechanisms that microglia utilize to clear Abeta and the effectors that modulate the processes.
Collapse
Affiliation(s)
- C Y Daniel Lee
- School of Medicine, Case Western Reserve University, SOM E649, 10900 Euclid Avenue, Cleveland, OH 44106-4928, USA.
| | | |
Collapse
|
21
|
Chen X, Wagener JF, Morgan DH, Hui L, Ghribi O, Geiger JD. Endolysosome mechanisms associated with Alzheimer's disease-like pathology in rabbits ingesting cholesterol-enriched diet. J Alzheimers Dis 2010; 22:1289-303. [PMID: 20930277 PMCID: PMC3095894 DOI: 10.3233/jad-2010-101323] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease (AD) is characterized clinically by progressive disturbances in memory, judgment, reasoning, and olfaction, and pathologically by loss of synaptic integrity, extracellular accumulations of amyloid-β (Aβ) containing plaques, and intraneuronal tangles composed of hyperphosphorylated tau. Endolysosome dysfunction is one of the earliest pathological features of AD and cholesterol, a known risk factor for sporadic AD, is up-taken into neurons via receptor-mediated endocytosis. Accordingly, we determined the extent to which endolysosome dysfunction is associated with pathological features observed in rabbits fed cholesterol-enriched diet; a well-characterized model of sporadic AD. Olfactory bulbs were taken from rabbits fed for 12 weeks a diet enriched with 2% cholesterol and endolysosome morphology and function as well as AD-like pathology were investigated using enzyme activity measurements, immunoblotting and immunostaining techniques. In olfactory bulbs of rabbits fed cholesterol-enriched diet, we observed enlarged endolysosomes containing increased accumulations of ApoB containing cholesterol and increased accumulations of synaptophysin, Aβ, and phosphorylated tau. The cholesterol-enriched diet also significantly decreased specific enzyme activities of the endolysosome enzymes acid phosphatase and cathepsin D. Decreased synaptic area was present in olfactory bulbs of cholesterol-fed rabbits as indicated by significant decreases in protein expression levels of the synaptic area marker protein synaptophysin. Our results suggest strongly that elevated circulating cholesterol plays an important role in the pathogenesis of AD, and that alterations in endolysosome structure and function are associated with cholesterol diet-induced AD-like pathology.
Collapse
Affiliation(s)
- Xuesong Chen
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | | | | | | | | | | |
Collapse
|
22
|
Amyloid seeds formed by cellular uptake, concentration, and aggregation of the amyloid-beta peptide. Proc Natl Acad Sci U S A 2009; 106:20324-9. [PMID: 19910533 DOI: 10.1073/pnas.0911281106] [Citation(s) in RCA: 330] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
One of the neuropathological hallmarks of Alzheimer's disease (AD) is the amyloid plaque, primarily composed of aggregated amyloid-beta (Abeta) peptide. In vitro, Abeta(1-42), the major alloform of Abeta found in plaques, self-assembles into fibrils at micromolar concentrations and acidic pH. Such conditions do not exist in the extracellular fluid of the brain where the pH is neutral and Abeta concentrations are in the nanomolar range. Here, we show that extracellular soluble Abeta (sAbeta) at concentrations as low as 1 nM was taken up by murine cortical neurons and neuroblastoma (SHSY5Y) cells but not by human embryonic kidney (HEK293) cells. Following uptake, Abeta accumulated in Lysotracker-positive acidic vesicles (likely late endosomes or lysosomes) where effective concentrations (>2.5 microM) were greater than two orders of magnitude higher than that in the extracellular fluid (25 nM), as quantified by fluorescence intensity using laser scanning confocal microscopy. Furthermore, SHSY5Y cells incubated with 1 muM Abeta(1-42) for several days demonstrated a time-dependent increase in intracellular high molecular weight (HMW) (>200 kDa) aggregates, which were absent in cells grown in the presence of Abeta(1-40). Homogenates from these Abeta(1-42)-loaded cells were capable of seeding amyloid fibril growth. These results demonstrate that Abeta can be taken up by certain cells at low physiologically relevant concentrations of extracellular Abeta, and then concentrated into endosomes/lysosomes. At high concentrations, vesicular Abeta aggregates to form HMW species which are capable of seeding amyloid fibril growth. We speculate that extrusion of these aggregates may seed extracellular amyloid plaque formation during AD pathogenesis.
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Aberrations in cerebral cholesterol homeostasis can lead to severe neurological diseases and have been linked to Alzheimer's disease. Many proteins involved in peripheral cholesterol metabolism are also present in the brain. Yet, brain cholesterol metabolism is very different from that in the remainder of the body. This review reports on present insights into the regulation of cerebral cholesterol homeostasis, focusing on cholesterol trafficking between astrocytes and neurons. RECENT FINDINGS Astrocytes are a major site of cholesterol synthesis. They secrete cholesterol in the form of apolipoprotein E-containing HDL-like particles. After birth, neurons are thought to reduce their cholesterol synthesis and rely predominantly on astrocytes for their cholesterol supply. How exactly neurons regulate their cholesterol supply is largely unknown. A role for the brain-specific cholesterol metabolite, 24(S)-hydroxycholesterol, in this process was recently proposed. Recent findings strengthen the link between brain cholesterol metabolism and factors involved in synaptic plasticity, a process essential for learning and memory functions, as well as regeneration, which are affected in Alzheimer's disease. SUMMARY Insight into the regulation of cerebral cholesterol homeostasis will provide possibilities to modulate the key steps involved and may lead to the development of therapies for the prevention as well as treatment of neurodegenerative diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- Monique Mulder
- Department of Internal Medicine and Division of Pharmacology, Vascular and Metabolic diseases, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
24
|
Deane R, Bell RD, Sagare A, Zlokovic BV. Clearance of amyloid-beta peptide across the blood-brain barrier: implication for therapies in Alzheimer's disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2009; 8:16-30. [PMID: 19275634 PMCID: PMC2872930 DOI: 10.2174/187152709787601867] [Citation(s) in RCA: 417] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The main receptors for amyloid-beta peptide (Abeta) transport across the blood-brain barrier (BBB) from brain to blood and blood to brain are low-density lipoprotein receptor related protein-1 (LRP1) and receptor for advanced glycation end products (RAGE), respectively. In normal human plasma a soluble form of LRP1 (sLRP1) is a major endogenous brain Abeta 'sinker' that sequesters some 70 to 90 % of plasma Abeta peptides. In Alzheimer's disease (AD), the levels of sLRP1 and its capacity to bind Abeta are reduced which increases free Abeta fraction in plasma. This in turn may increase brain Abeta burden through decreased Abeta efflux and/or increased Abeta influx across the BBB. In Abeta immunotherapy, anti-Abeta antibody sequestration of plasma Abeta enhances the peripheral Abeta 'sink action'. However, in contrast to endogenous sLRP1 which does not penetrate the BBB, some anti-Abeta antibodies may slowly enter the brain which reduces the effectiveness of their sink action and may contribute to neuroinflammation and intracerebral hemorrhage. Anti-Abeta antibody/Abeta immune complexes are rapidly cleared from brain to blood via FcRn (neonatal Fc receptor) across the BBB. In a mouse model of AD, restoring plasma sLRP1 with recombinant LRP-IV cluster reduces brain Abeta burden and improves functional changes in cerebral blood flow (CBF) and behavioral responses, without causing neuroinflammation and/or hemorrhage. The C-terminal sequence of Abeta is required for its direct interaction with sLRP and LRP-IV cluster which is completely blocked by the receptor-associated protein (RAP) that does not directly bind Abeta. Therapies to increase LRP1 expression or reduce RAGE activity at the BBB and/or restore the peripheral Abeta 'sink' action, hold potential to reduce brain Abeta and inflammation, and improve CBF and functional recovery in AD models, and by extension in AD patients.
Collapse
Affiliation(s)
- R Deane
- Center for Neurodegenerative and Vascular Brain Disorders, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | | | | | | |
Collapse
|
25
|
Cedazo-Mínguez A. Apolipoprotein E and Alzheimer's disease: molecular mechanisms and therapeutic opportunities. J Cell Mol Med 2008; 11:1227-38. [PMID: 18205697 PMCID: PMC4401287 DOI: 10.1111/j.1582-4934.2007.00130.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Multiple genetic and environmental factors are likely to contribute to the development of Alzheimer's disease (AD). The most important known risk factor for AD is presence of the E4 isoform of apolipoprotein E (apoE). Epidemiological studies demonstrated that apoE4 carriers have a higher risk and develop the disease and an early onset. Moreover, apoE4 is the only molecule that has been associated with all the biochemical disturbances characteristic of the disease: amyloid-beta (Abeta) deposition, tangle formation, oxidative stress, lipid homeostasis deregulation, synaptic plasticity loss and cholinergic dysfunction. This large body of evidence suggest that apoE is a key player in the pathogenesis of AD. This short review examines the current facts and hypotheses of the association between apoE4 and AD, as well as the therapeutic possibilities that apoE might offer for the treatment of this disease.
Collapse
Affiliation(s)
- Angel Cedazo-Mínguez
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, KI-Alzheimer's Disease Research Center, NOVUM, Stockholm, Sweden.
| |
Collapse
|
26
|
Apolipoprotein E, amyloid-beta, and blood-brain barrier permeability in Alzheimer disease. J Neuropathol Exp Neurol 2008; 67:261-70. [PMID: 18379441 DOI: 10.1097/nen.0b013e31816a0dc8] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
There is increasing evidence for blood-brain barrier (BBB) compromise in Alzheimer disease (AD). The presence of the epsilon4 allele of the apolipoprotein E (apoE) gene is a risk factor for sporadic AD. Apolipoprotein E is essential both for maintenance of BBB integrity and for the deposition of fibrillar amyloid-beta (Abeta) that leads to the development of Abeta plaques in AD and to cerebral amyloid angiopathy. This review investigates the relationships between apoE, Abeta, and the BBB in AD. Alterations in the expression and distribution of the BBB Abeta transporters receptor for advanced glycation end-products and low-density lipoprotein receptor-related protein 1 in AD and the potential roles of apoE4 expression in adversely influencing Abeta burden and BBB permeability are also examined. Because both apoE and Abeta are ligands for low-density lipoprotein receptor-related protein 1, all 3 molecules are present in AD plaques, and most AD plaques are located close to the cerebral microvasculature. The interactions of these molecules at the BBB likely influence metabolism and clearance of Abeta and contribute to AD pathogenesis. Therapeutic alternatives targeting apoE/Abeta and sealing a compromised BBB are under development for the treatment of AD.
Collapse
|
27
|
Mateos L, Akterin S, Gil-Bea FJ, Spulber S, Rahman A, Björkhem I, Schultzberg M, Flores-Morales A, Cedazo-Mínguez A. Activity-regulated cytoskeleton-associated protein in rodent brain is down-regulated by high fat diet in vivo and by 27-hydroxycholesterol in vitro. Brain Pathol 2008; 19:69-80. [PMID: 18503570 DOI: 10.1111/j.1750-3639.2008.00174.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Growing evidence strongly suggests that high fat diet (HFD) has an important role in some neurodegenerative disorders, including Alzheimer's disease (AD). To identify new cellular pathways linking hypercholesterolemia and neurodegeneration, we analyzed the effects of HFD on gene expression in mouse brain. Using cDNA microarrays and real time RT-PCR, we found that HFD has a mild, but significant effect on the expression of several genes. The altered genes include molecules linked to AD pathology and others of potential interest for neurodegeneration. We further investigated the effect of HFD on the activity-regulated cytoskeleton-associated protein (Arc). Expression of Arc was decreased in cerebral cortex and hippocampus of HFD-fed animals. From the known regulatory mechanisms of Arc expression, HFD reduced N-methyl-D-aspartate receptor (NMDAR) activity, as seen by decreases in tyrosine phosphorylation of NMDAR2A and levels of NMDAR1. Additionally, we demonstrated that 27-hydroxycholesterol, a cholesterol metabolite that enters the brain from the blood, decreases Arc levels as well as NMDAR and Src kinase activities in rat primary hippocampal neurons. Finally, we showed that Arc levels are decreased in the cortex of AD brains. We propose that one of the mechanisms, by which hypercholesterolemia contributes to neurodegenerative diseases, could be through Arc down-regulation caused by 27-hydroxycholesterol.
Collapse
Affiliation(s)
- Laura Mateos
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Alzheimer's Disease Research Center, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kleinman MT, Araujo J, Nel A, Sioutas C, Campbell A, Cong PQ, Li H, Bondy SC. Inhaled ultrafine particulate matter affects CNS inflammatory processes and may act via MAP kinase signaling pathways. Toxicol Lett 2008; 178:127-30. [PMID: 18420360 PMCID: PMC2397447 DOI: 10.1016/j.toxlet.2008.03.001] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 03/01/2008] [Accepted: 03/01/2008] [Indexed: 01/29/2023]
Abstract
In addition to evidence that inhalation of ambient particulate matter (PM) can increase cardiopulmonary morbidity and mortality, the brain may also constitute a site adversely effected by the environmental presence of airborne particulate matter. We have examined the association between exposure to PM and adverse CNS effects in apolipoprotein E knockout (ApoE-/-) mice exposed to two levels of concentrated ultrafine particulate matter in central Los Angeles. Mice were euthanized 24h after the last exposure and brain, liver, heart, lung and spleen tissues were collected and frozen for subsequent bioassays. There was clear evidence of aberrant immune activation in the brains of exposed animals as judged by a dose-related increase in nuclear translocation of two key transcription factors, NF-kappaB and AP-1. These factors are involved in the promotion of inflammation. Increased levels of glial fibrillary acidic protein (GFAP) were also found consequent to particulate inhalation suggesting that glial activation was taking place. In order to determine the mechanism by which these events occurred, levels of several MAP kinases involved in activation of these transcription factors were assayed by Western blotting. There were no significant changes in the proportion of active (phosphorylated) forms of ERK-1, IkB and p38. However, the fraction of JNK in the active form was significantly increased in animals receiving the lower concentration of concentrated ambient particles (CAPs). This suggests that the signaling pathway by which these transcription factors are activated involves the activation of JNK.
Collapse
Affiliation(s)
- M. T. Kleinman
- Department of Community and Environmental Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - J. Araujo
- Department of Cardiology, University of California, Los Angeles, CA 90095, USA
| | - A. Nel
- Department of Medicine-Nanomedicine, University of California, Los Angeles, CA 90095, USA
| | - C. Sioutas
- Department of Civil/Environmental Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - A. Campbell
- Pharmaceutical Sciences, Western University of Health Sciences, Pomona, California 91766, USA
| | - P. Q. Cong
- Department of Community and Environmental Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - H. Li
- Department of Community and Environmental Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - S. C. Bondy
- Department of Community and Environmental Medicine, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
29
|
Gaultier A, Arandjelovic S, Li X, Janes J, Dragojlovic N, Zhou GP, Dolkas J, Myers RR, Gonias SL, Campana WM. A shed form of LDL receptor-related protein-1 regulates peripheral nerve injury and neuropathic pain in rodents. J Clin Invest 2008; 118:161-72. [PMID: 18060043 DOI: 10.1172/jci32371] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 10/03/2007] [Indexed: 12/11/2022] Open
Abstract
Injury to the peripheral nervous system (PNS) initiates a response controlled by multiple extracellular mediators, many of which contribute to the development of neuropathic pain. Schwann cells in an injured nerve demonstrate increased expression of LDL receptor-related protein-1 (LRP1), an endocytic receptor for diverse ligands and a cell survival factor. Here we report that a fragment of LRP1, in which a soluble or shed form of LRP1 with an intact alpha-chain (sLRP-alpha), was shed by Schwann cells in vitro and in the PNS after injury. Injection of purified sLRP-alpha into mouse sciatic nerves prior to chronic constriction injury (CCI) inhibited p38 MAPK activation (P-p38) and decreased expression of TNF-alpha and IL-1beta locally. sLRP-alpha also inhibited CCI-induced spontaneous neuropathic pain and decreased inflammatory cytokine expression in the spinal dorsal horn, where neuropathic pain processing occurs. In cultures of Schwann cells, astrocytes, and microglia, sLRP-alpha inhibited TNF-alpha-induced activation of p38 MAPK and ERK/MAPK. The activity of sLRP-alpha did not involve TNF-alpha binding, but rather glial cell preconditioning, so that the subsequent response to TNF-alpha was inhibited. Our results show that sLRP-alpha is biologically active and may attenuate neuropathic pain. In the PNS, the function of LRP1 may reflect the integrated activities of the membrane-anchored and shed forms of LRP1.
Collapse
Affiliation(s)
- Alban Gaultier
- Department of Pathology, UCSD School of Medicine, La Jolla, California 92093-0629, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Flotillin-dependent clustering of the amyloid precursor protein regulates its endocytosis and amyloidogenic processing in neurons. J Neurosci 2008; 28:2874-82. [PMID: 18337418 DOI: 10.1523/jneurosci.5345-07.2008] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The flotillins/reggie proteins are associated with noncaveolar membrane microdomains and have been implicated in the regulation of a clathrin- and caveolin-independent endocytosis pathway. Endocytosis is required for the amyloidogenic processing of the amyloid precursor protein (APP) and thus to initiate the release of the neurotoxic beta-amyloid peptide (Abeta), the major component of extracellular plaques found in the brains of Alzheimer's disease patients. Here, we report that small interference RNA-mediated downregulation of flotillin-2 impairs the endocytosis of APP, in both neuroblastoma cells and primary cultures of hippocampal neurons, and reduces the production of Abeta. Similar to tetanus neurotoxin endocytosis, but unlike the internalization of transferrin, clathrin-dependent endocytosis of APP requires cholesterol and adaptor protein-2 but is independent of epsin1 function. Moreover, on a nanoscale resolution using stimulated emission depletion microscopy and by Förster resonance energy transfer with fluorescence lifetime imaging microscopy, we provide evidence that flotillin-2 promotes the clustering of APP at the cell surface. We show that the interaction of flotillin-2 with APP is dependent on cholesterol and that clustering of APP enhances its endocytosis rate. Together, our data suggest that cholesterol/flotillin-dependent clustering of APP may stimulate the internalization into a specialized clathrin-dependent endocytosis pathway to promote amyloidogenic processing.
Collapse
|
31
|
Herczenik E, Gebbink MFBG. Molecular and cellular aspects of protein misfolding and disease. FASEB J 2008; 22:2115-33. [PMID: 18303094 DOI: 10.1096/fj.07-099671] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteins are essential elements for life. They are building blocks of all organisms and the operators of cellular functions. Humans produce a repertoire of at least 30,000 different proteins, each with a different role. Each protein has its own unique sequence and shape (native conformation) to fulfill its specific function. The appearance of incorrectly shaped (misfolded) proteins occurs on exposure to environmental changes. Protein misfolding and the subsequent aggregation is associated with various, often highly debilitating, diseases for which no sufficient cure is available yet. In the first part of this review we summarize the structural composition of proteins and the current knowledge of underlying forces that lead proteins to lose their native structure. In the second and third parts we describe the molecular and cellular mechanisms that are associated with protein misfolding in disease. Finally, in the last part we portray recent efforts to develop treatments for protein misfolding diseases.
Collapse
Affiliation(s)
- Eszter Herczenik
- Laboratory of Thrombosis and Haemostasis, Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | | |
Collapse
|
32
|
Laskowitz DT, Vitek MP. Apolipoprotein E and neurological disease: therapeutic potential and pharmacogenomic interactions. Pharmacogenomics 2008; 8:959-69. [PMID: 17716229 DOI: 10.2217/14622416.8.8.959] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The apolipoprotein E (apoE) polymorphism is emerging as a uniquely important genetic modifier that affects functional outcome from both acute and chronic neurological injuries. Recent attention has focused on common denominator mechanisms by which apoE might affect brain injury and/or brain repair responses in clinically diverse diseases. Although endogenous apoE likely serves several adaptive functions in the injured CNS, there is growing evidence that its effect on modifying brain inflammatory responses and providing protection from excitotoxic injury may be central to its protective properties. A more complete understanding of the role that apoE plays in the injured brain has led to novel therapeutic strategies for both acute and chronic neurological disease.
Collapse
Affiliation(s)
- Daniel T Laskowitz
- Duke University Medical Center, Department of Medicine (Neurology), Box 2900, Durham, NC 27710, USA.
| | | |
Collapse
|
33
|
Deane R, Sagare A, Zlokovic B. The role of the cell surface LRP and soluble LRP in blood-brain barrier Abeta clearance in Alzheimer's disease. Curr Pharm Des 2008; 14:1601-5. [PMID: 18673201 PMCID: PMC2895311 DOI: 10.2174/138161208784705487] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Low-density lipoprotein receptor related protein-1 (LRP) is a member of the low-density lipoprotein (LDL) receptor family which has been linked to Alzheimer's disease (AD) by biochemical and genetic evidence. Levels of neurotoxic amyloid beta-peptide (Abeta) in the brain are elevated in AD contributing to the disease process and neuropathology. Faulty Abeta clearance from the brain appears to mediate focal Abeta accumulations in AD. Central and peripheral production of Abeta from Abeta-precursor protein (APP), transport of peripheral Abeta into the brain across the blood-brain barrier (BBB) via receptor for advanced glycation end products (RAGE), enzymatic Abeta degradation, Abeta oligomerization and aggregation, neuroinflammatory changes and microglia activation, and Abeta elimination from brain across the BBB by cell surface LRP; all may control brain Abeta levels. Recently, we have shown that a soluble form of LRP (sLRP) binds 70 to 90 % of plasma Abeta, preventing its access to the brain. In AD individuals, the levels of LRP at the BBB are reduced, as are levels of Abeta binding to sLRP in plasma. This, in turn, may increase Abeta brain levels through a decreased efflux of brain Abeta at the BBB and/or reduced sequestration of plasma Abeta associated with re-entry of free Abeta into the brain via RAGE. Thus, therapies which increase LRP expression at the BBB and/or enhance the peripheral Abeta "sink" activity of sLRP, hold potential to control brain Abeta accumulations, neuroinflammation and cerebral blood flow reductions in AD.
Collapse
Affiliation(s)
- R. Deane
- Center for Neurodegenerative and vascular brain disorders, University of Rochester, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - A. Sagare
- Center for Neurodegenerative and vascular brain disorders, University of Rochester, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - B. Zlokovic
- Center for Neurodegenerative and vascular brain disorders, University of Rochester, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| |
Collapse
|
34
|
Zannis VI, Koukos G, Drosatos K, Vezeridis A, Zanni EE, Kypreos KE, Chroni A. Discrete roles of apoA-I and apoE in the biogenesis of HDL species: lessons learned from gene transfer studies in different mouse models. Ann Med 2008; 40 Suppl 1:14-28. [PMID: 18246469 DOI: 10.1080/07853890701687219] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Using adenovirus-mediated gene transfer in apolipoprotein A-I (apoA-I)-deficient mice, we have established that apoA-I mutations inhibit discrete steps in a pathway that leads to the biogenesis and remodeling of high-density lipoprotein (HDL). To this point, five discrete categories of apoA-I mutants have been characterized that may affect the interactions of apoA-I with ATP-binding cassette superfamily A, member 1 (ABCA1) or lecithin:cholesterol acyl transferase (LCAT) or may influence the plasma phospholipid transfer protein activity or may cause various forms of dyslipidemia. Biogenesis of HDL is not a unique property of apoA-I. Using adenovirus-mediated gene transfer of apoE in apoA-I- or ABCA1-deficient mice, we have established that apolipoprotein E (apoE) also participates in a novel pathway of biogenesis of apoE-containing HDL particles. This process requires the functions of the ABCA1 lipid transporter and LCAT, and it is promoted by substitution of hydrophobic residues in the 261 to 269 region of apoE by Ala. The apoE-containing HDL particles formed in the circulation may have atheroprotective properties. ApoE-containing HDL may also have important biological functions in the brain that confer protection from Alzheimer's disease.
Collapse
Affiliation(s)
- Vassilis I Zannis
- Molecular Genetics, Whitaker Cardiovascular Institute, Departments of Medicine and Biochemistry, Boston University School of Medicine, Boston, MA 02118-2394, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
Levi O, Dolev I, Belinson H, Michaelson DM. Intraneuronal amyloid-β plays a role in mediating the synergistic pathological effects of apoE4 and environmental stimulation. J Neurochem 2007; 103:1031-40. [PMID: 17666042 DOI: 10.1111/j.1471-4159.2007.04810.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The allele E4 of apolipoprotein E4 (apoE4), which is the most prevalent genetic risk factor of Alzheimer's disease (AD), inhibits synaptogenesis and neurogenesis and stimulates apoptosis in brains of apoE4 transgenic mice that have been exposed to an enriched environment. In the present study, we investigated the hypothesis that the brain activity-dependent impairments in neuronal plasticity, induced by apoE4, are mediated via the amyloid cascade. Importantly, we found that exposure of mice transgenic for either apoE4, or the Alzheimer's disease benign allele apoE3, to an enriched environment elevates similarly the hippocampal levels of amyloid-beta peptide (Abeta) and apoE of these mice, but that the degree of aggregation and spatial distribution of Abeta in these mice are markedly affected by the apoE genotype. Accordingly, environmental stimulation triggered the formation of extracellular plaque-like Abeta deposits and the accumulation of intra-neuronal oligomerized Abeta specifically in brains of apoE4 mice. Further experiments revealed that hippocampal dentate gyrus neurons are particularly susceptible to apoE4 and environmental stimulation and that these neurons are specifically enriched in both oligomerized Abeta and apoE. These findings show that the impairments in neuroplasticity which are induced by apoE4 following environmental stimulation are associated with the accumulation of intraneuronal Abeta and suggest that oligomerized Abeta mediates the synergistic pathological effects of apoE4 and environmental stimulation.
Collapse
Affiliation(s)
- Ofir Levi
- Department of Neurobiochemistry, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | | | | |
Collapse
|
36
|
Liu Q, Zerbinatti CV, Zhang J, Hoe HS, Wang B, Cole SL, Herz J, Muglia L, Bu G. Amyloid precursor protein regulates brain apolipoprotein E and cholesterol metabolism through lipoprotein receptor LRP1. Neuron 2007; 56:66-78. [PMID: 17920016 PMCID: PMC2045076 DOI: 10.1016/j.neuron.2007.08.008] [Citation(s) in RCA: 285] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 07/06/2007] [Accepted: 08/13/2007] [Indexed: 12/13/2022]
Abstract
Mutations in the amyloid precursor protein (APP) cause early-onset Alzheimer's disease (AD), but the only genetic risk factor for late-onset AD is the varepsilon4 allele of apolipoprotein E (apoE), a major cholesterol carrier. Using Cre-lox conditional knockout mice, we demonstrate that lipoprotein receptor LRP1 expression regulates apoE and cholesterol levels within the CNS. We also found that deletion of APP and its homolog APLP2, or components of the gamma-secretase complex, significantly enhanced the expression and function of LRP1, which was reversed by forced expression of the APP intracellular domain (AICD). We further show that AICD, together with Fe65 and Tip60, interacts with the LRP1 promoter and suppresses its transcription. Together, our findings support that the gamma-secretase cleavage of APP plays a central role in regulating apoE and cholesterol metabolism in the CNS via LRP1 and establish a biological linkage between APP and apoE, the two major genetic determinants of AD.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Zhang W, Dallas S, Zhang D, Guo JP, Pang H, Wilson B, Miller DS, Chen B, Zhang W, McGeer PL, Hong JS, Zhang J. Microglial PHOX and Mac-1 are essential to the enhanced dopaminergic neurodegeneration elicited by A30P and A53T mutant alpha-synuclein. Glia 2007; 55:1178-88. [PMID: 17600340 DOI: 10.1002/glia.20532] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
alpha-Synuclein, a gene whose mutations, duplication, and triplication has been linked to autosomal dominant familial Parkinson's disease (fPD), appears to play a central role in the pathogenesis of sporadic PD (sPD) as well. Enhancement of neurodegeneration induced by mutant alpha-synuclein has been attributed to date largely to faster formation of alpha-synuclein aggregates in neurons. Recently, we reported that microglial activation enhances wild type (WT) alpha-synuclein-elicited dopaminergic neurodegeneration. In the present study, using a primary mesencephalic culture system, we tested whether mutated alpha-synuclein could activate microglia more powerfully than WT alpha-synuclein, thereby contributing to the accelerated neurodegeneration observed in fPD. The results showed that alpha-synuclein with the A30P or A53T mutations caused greater microglial activation than WT alpha-synuclein. Furthermore, the extent of microglial activation paralleled the degree of dopaminergic neurotoxicity induced by WT and mutant alpha-synuclein. Mutant alpha-synuclein also induced greater production of reactive oxygen species than WT alpha-synuclein by NADPH oxidase (PHOX), and PHOX activation was linked to direct activation of macrophage antigen-1 (Mac-1) receptor, rather than alpha-synuclein internalization via scavenger receptors. These results have, for the first time, demonstrated that microglia are also critical in enhanced neurotoxicity induced by mutant alpha-synuclein.
Collapse
Affiliation(s)
- Wei Zhang
- Neuropharmacology Section, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, North Carolina, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Sagare A, Deane R, Bell RD, Johnson B, Hamm K, Pendu R, Marky A, Lenting PJ, Wu Z, Zarcone T, Goate A, Mayo K, Perlmutter D, Coma M, Zhong Z, Zlokovic BV. Clearance of amyloid-beta by circulating lipoprotein receptors. Nat Med 2007; 13:1029-31. [PMID: 17694066 PMCID: PMC2936449 DOI: 10.1038/nm1635] [Citation(s) in RCA: 334] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Accepted: 07/18/2007] [Indexed: 11/09/2022]
Abstract
Low-density lipoprotein receptor-related protein-1 (LRP) on brain capillaries clears amyloid beta-peptide (Abeta) from brain. Here, we show that soluble circulating LRP (sLRP) provides key endogenous peripheral 'sink' activity for Abeta in humans. Recombinant LRP cluster IV (LRP-IV) bound Abeta in plasma in mice and Alzheimer's disease-affected humans with compromised sLRP-mediated Abeta binding, and reduced Abeta-related pathology and dysfunction in a mouse model of Alzheimer disease, suggesting that LRP-IV can effectively replace native sLRP and clear Abeta.
Collapse
Affiliation(s)
- Abhay Sagare
- Frank P. Smith Laboratory for Neuroscience and Neurosurgical Research, Department of Neurosurgery, University of Rochester Medical School, Rochester, New York 14642, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Weeraratna AT, Kalehua A, DeLeon I, Bertak D, Maher G, Wade MS, Lustig A, Becker KG, Wood W, Walker DG, Beach TG, Taub DD. Alterations in immunological and neurological gene expression patterns in Alzheimer's disease tissues. Exp Cell Res 2007; 313:450-61. [PMID: 17188679 PMCID: PMC2565515 DOI: 10.1016/j.yexcr.2006.10.028] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 09/28/2006] [Accepted: 10/02/2006] [Indexed: 11/18/2022]
Abstract
Microarray technology was utilized to isolate disease-specific changes in gene expression by sampling across inferior parietal lobes of patients suffering from late onset AD or non-AD-associated dementia and non-demented controls. Primary focus was placed on understanding how inflammation plays a role in AD pathogenesis. Gene ontology analysis revealed that the most differentially expressed genes related to nervous system development and function and neurological disease followed by genes involved in inflammation and immunological signaling. Pathway analysis also implicated a role for chemokines and their receptors, specifically CXCR4 and CCR3, in AD. Immunohistological analysis revealed that these chemokine receptors are upregulated in AD patients. Western analysis demonstrated an increased activation of PKC, a downstream mediator of chemokine receptor signaling, in the majority of AD patients. A very specific cohort of genes related to amyloid beta accumulation and clearance were found to be significantly altered in AD. The most significantly downregulated gene in this data set was the endothelin converting enzyme 2 (ECE2), implicated in amyloid beta clearance. These data were subsequently confirmed by real-time PCR and Western blot analysis. Together, these findings open up new avenues of investigation and possible therapeutic strategies targeting inflammation and amyloid clearance in AD patients.
Collapse
Affiliation(s)
- Ashani T. Weeraratna
- Laboratory of Immunology, National Institutes of Health, Baltimore, MD 21224, USA
| | - Audrey Kalehua
- Laboratory of Immunology, National Institutes of Health, Baltimore, MD 21224, USA
| | - Isoke DeLeon
- Laboratory of Immunology, National Institutes of Health, Baltimore, MD 21224, USA
| | - Dorothy Bertak
- Laboratory of Immunology, National Institutes of Health, Baltimore, MD 21224, USA
| | - Gregory Maher
- Laboratory of Immunology, National Institutes of Health, Baltimore, MD 21224, USA
| | - Michael S. Wade
- Laboratory of Immunology, National Institutes of Health, Baltimore, MD 21224, USA
| | | | - Kevin G. Becker
- Research Resources Branch, National Institute of Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - William Wood
- Research Resources Branch, National Institute of Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | - Dennis D. Taub
- Laboratory of Immunology, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
40
|
Waldron E, Jaeger S, Pietrzik CU. Functional role of the low-density lipoprotein receptor-related protein in Alzheimer's disease. NEURODEGENER DIS 2006; 3:233-8. [PMID: 17047362 DOI: 10.1159/000095261] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder, characterized by neuronal loss, neurofibrillary tangle formation and the extracellular deposition of amyloid-beta (Abeta) plaques. The amyloid precursor protein (APP) and the enzymes responsible for Abeta generation seem to be the base elements triggering the destructive processes. Initially, the low-density lipoprotein receptor-related protein (LRP) was genetically linked to AD and later it emerged to impact on many fundamental events related to this disease. LRP is not only involved in Abeta clearance but is also the major receptor of several AD-associated ligands, e.g. apolipoprotein E and alpha2-macroglobulin. APP processing is mediated by LRP on many levels. Enhanced APP internalization through LRP decreases cell surface APP levels and thereby reduces APP shedding. As a consequence of increased APP internalization LRP enhances Abeta secretion. These effects could be attributed to the cytoplasmic tails of LRP and APP. The receptors bind via their NPXY motifs to the two PID domains of FE65 and form a tripartite complex. However, it appears that the second NPVY motif of LRP is the one responsible for the observed influence over APP metabolism. A more in-depth knowledge of the mechanisms regulating APP cleavage may offer additional targets for therapeutic intervention.
Collapse
Affiliation(s)
- Elaine Waldron
- Institute of Physiological Chemistry and Pathobiochemistry, Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | |
Collapse
|
41
|
Donahue JE, Flaherty SL, Johanson CE, Duncan JA, Silverberg GD, Miller MC, Tavares R, Yang W, Wu Q, Sabo E, Hovanesian V, Stopa EG. RAGE, LRP-1, and amyloid-beta protein in Alzheimer's disease. Acta Neuropathol 2006; 112:405-15. [PMID: 16865397 DOI: 10.1007/s00401-006-0115-3] [Citation(s) in RCA: 377] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Revised: 06/30/2006] [Accepted: 07/01/2006] [Indexed: 11/28/2022]
Abstract
The receptor for advanced glycation end products (RAGE) is thought to be a primary transporter of beta-amyloid across the blood-brain barrier (BBB) into the brain from the systemic circulation, while the low-density lipoprotein receptor-related protein (LRP)-1 mediates transport of beta-amyloid out of the brain. To determine whether there are Alzheimer's disease (AD)-related changes in these BBB-associated beta-amyloid receptors, we studied RAGE, LRP-1, and beta-amyloid in human elderly control and AD hippocampi. In control hippocampi, there was robust RAGE immunoreactivity in neurons, whereas microvascular staining was barely detectable. LRP-1 staining, in contrast, was clearly evident within microvessels but only weakly stained neurons. In AD cases, neuronal RAGE immunoreactivity was significantly decreased. An unexpected finding was the strongly positive microvascular RAGE immunoreactivity. No evidence for colocalization of RAGE and beta-amyloid was seen within either microvessels or senile plaques. A reversed pattern was evident for LRP-1 in AD. There was very strong staining for LRP-1 in neurons, with minimal microvascular staining. Unlike RAGE, colocalization of LRP-1 and beta-amyloid was clearly present within senile plaques but not microvessels. Western blot analysis revealed a much higher concentration of RAGE protein in AD hippocampi as compared with controls. Concentration of LRP-1 was increased in AD hippocampi, likely secondary to its colocalization with senile plaques. These data confirm that AD is associated with changes in the relative distribution of RAGE and LRP-1 receptors in human hippocampus. They also suggest that the proportion of amyloid within the brains of AD patients that is derived from the systemic circulation may be significant.
Collapse
Affiliation(s)
- John E Donahue
- Department of Clinical Neurosciences, Rhode Island Hospital and Brown Medical School, Providence, RI 02903, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Martins-Silva C, Ferreira LT, Cyr M, Koenen J, Fernandes DR, Carvalho NR, Ribeiro CBF, Marion S, Chavez-Olortegui C, Prado MAM, Prado VF. A rat homologue of CED-6 is expressed in neurons and interacts with clathrin. Brain Res 2006; 1119:1-12. [PMID: 17007823 DOI: 10.1016/j.brainres.2006.08.064] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 08/05/2006] [Accepted: 08/10/2006] [Indexed: 10/24/2022]
Abstract
We isolated from a brain library a cDNA encoding an isoform of rat CED-6 that has not been previously described. This transcript results from alternative splicing of the ced-6 gene present on chromosome 9. We expressed this isoform as his-tagged protein in E. coli and used the purified protein to raise antibodies to investigate the expression of CED-6 in rat brain. Immunoblot analysis showed the presence of CED-6 as a doublet of approximately 34 and 33 kDa in cortex, hippocampus and cerebellum, indicating that the protein was present in different regions of the brain. Subcellular fractionation experiments showed that CED-6 immunoreactivity did not concentrate in GFAP-containing glial vesicles, whereas it showed a distribution similar to the synaptotagmin in synaptosomes-enriched fractions, suggesting that CED-6 is present in neurons. CED-6 immunoreactivity was also investigated using immunohistochemistry analysis and it was found in several brain regions, being particularly strong in the cell body of some groups of neurons such as Purkinje cell layer of cerebellum, and pyramidal cells of the hippocampal formation and also in epithelial cells from the choroid plexus. Importantly, CED-6 immunoreactivity colocalized with a neuronal marker but not with a glial marker. Considering that several PTB-containing proteins bind clathrin, we investigated whether rat CED-6 would also have this property. Yeast two-hybrid and GST pull-down analysis indicated that ratCED-6 interacts with clathrin and in cultured cells we detected colocalization between CED-6 and clathrin-coated vesicles. The present findings suggest that CED-6 may have a role in endocytic trafficking or signaling in neurons.
Collapse
|
43
|
Wilsie LC, Gonzales AM, Orlando RA. Syndecan-1 mediates internalization of apoE-VLDL through a low density lipoprotein receptor-related protein (LRP)-independent, non-clathrin-mediated pathway. Lipids Health Dis 2006; 5:23. [PMID: 16945147 PMCID: PMC1592478 DOI: 10.1186/1476-511x-5-23] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 08/31/2006] [Indexed: 01/20/2023] Open
Abstract
Background Triacylglyerol-rich very low density lipoprotein (VLDL) particles are the primary carriers of fatty acids in the circulation and as such serve as a rich energy source for peripheral tissues. Receptor-mediated uptake of these particles is dependent upon prior association with apolipoprotein E (apoE-VLDL) and is brought about by cell surface heparan sulfate proteoglycans (HSPG) in some cell types and by the low density lipoprotein receptor-related protein (LRP) in others. Although LRP's role in apoE-VLDL uptake has been well studied, the identity of the HSPG family member that mediates apoE-VLDL uptake has not been established. We investigated if syndecan-1 (Syn-1), a transmembrane cell surface HSPG, is able to mediate the internalization of apoE-VLDL and examined the relationship between Syn-1 and LRP toward apoE-VLDL uptake. For this study, we used a human fibroblast cell line (GM00701) that expresses large amounts of LRP, but possesses no LDL receptor activity to eliminate its contributions toward apoE-VLDL uptake. Results Although LRP in these cells is fully active as established by substantial α2macroglobulin binding and internalization, uptake of apoE-VLDL is absent. Expression of human Syn-1 cDNA restored apoE-VLDL binding and uptake by these cells. Competition for this uptake with an LRP ligand-binding antagonist had little or no effect, whereas co-incubation with heparin abolished apoE-VLDL internalization. Depleting Syn-1 expressing cells of K+, to block clathrin-mediated endocytosis, showed no inhibition of Syn-1 internalization of apoE-VLDL. By contrast, treatment of cells with nystatin to inhibit lipid raft function, prevented the uptake of apoE-VLDL by Syn-1. Conclusion These data demonstrate that Syn-1 is able to mediate apoE-VLDL uptake in human fibroblasts with little or no contribution from LRP and that the endocytic path taken by Syn-1 is clathrin-independent and relies upon lipid raft function. These data are consistent with previous studies demonstrating Syn-1 association with lipid raft domains.
Collapse
Affiliation(s)
- Larissa C Wilsie
- Department of Biochemistry and Molecular Biology, University of New Mexico, School of Medicine, MSC08 4670 1 University of New Mexico, Albuquerque, New Mexico, 87131, USA
| | - Amanda M Gonzales
- Department of Biochemistry and Molecular Biology, University of New Mexico, School of Medicine, MSC08 4670 1 University of New Mexico, Albuquerque, New Mexico, 87131, USA
| | - Robert A Orlando
- Department of Biochemistry and Molecular Biology, University of New Mexico, School of Medicine, MSC08 4670 1 University of New Mexico, Albuquerque, New Mexico, 87131, USA
| |
Collapse
|
44
|
Martins IJ, Hone E, Foster JK, Sünram-Lea SI, Gnjec A, Fuller SJ, Nolan D, Gandy SE, Martins RN. Apolipoprotein E, cholesterol metabolism, diabetes, and the convergence of risk factors for Alzheimer's disease and cardiovascular disease. Mol Psychiatry 2006; 11:721-36. [PMID: 16786033 DOI: 10.1038/sj.mp.4001854] [Citation(s) in RCA: 250] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Revised: 05/23/2006] [Accepted: 05/24/2006] [Indexed: 02/08/2023]
Abstract
High fat diets and sedentary lifestyles are becoming major concerns for Western countries. They have led to a growing incidence of obesity, dyslipidemia, high blood pressure, and a condition known as the insulin-resistance syndrome or metabolic syndrome. These health conditions are well known to develop along with, or be precursors to atherosclerosis, cardiovascular disease, and diabetes. Recent studies have found that most of these disorders can also be linked to an increased risk of Alzheimer's disease (AD). To complicate matters, possession of one or more apolipoprotein E epsilon4 (APOE epsilon4) alleles further increases the risk or severity of many of these conditions, including AD. ApoE has roles in cholesterol metabolism and Abeta clearance, both of which are thought to be significant in AD pathogenesis. The apparent inadequacies of ApoE epsilon4 in these roles may explain the increased risk of AD in subjects carrying one or more APOE epsilon4 alleles. This review describes some of the physiological and biochemical changes that the above conditions cause, and how they are related to the risk of AD. A diversity of topics is covered, including cholesterol metabolism, glucose regulation, diabetes, insulin, ApoE function, amyloid precursor protein metabolism, and in particular their relevance to AD. It can be seen that abnormal lipid, cholesterol and glucose metabolism are consistently indicated as central in the pathophysiology, and possibly the pathogenesis of AD. As diagnosis of mild cognitive impairment and early AD are becoming more reliable, and as evidence is accumulating that health conditions such as diabetes, obesity, and coronary artery disease are risk factors for AD, appropriate changes to diets and lifestyles will likely reduce AD risk, and also improve the prognosis for people already suffering from such conditions.
Collapse
Affiliation(s)
- I J Martins
- Alzheimer's and Ageing, School of Biomedical and Sports Science, Edith Cowan University, Perth, WA, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abdulkarim Y, Hameed Z. Is the LDL receptor involved in cortical amyloid protein clearance? Neurochem Res 2006; 31:839-47. [PMID: 16841190 DOI: 10.1007/s11064-006-9084-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2006] [Indexed: 10/24/2022]
Abstract
This article puts forward the hypothesis that the Low Density Lipid Receptor (LDLR) is one of the molecules that is involved in the clearance of amyloid proteins in the brain and that it may play a role in Alzheimer's Disease (AD) via its up-regulation by statins. The hypothesis is built on the following observations: a-statins (which have been shown to increase LDLR in astrocytes, see below) have a beneficial role in AD, b-defects in the LDL receptor gene are found in AD, c-molecules with similar structure to the LDLR have been shown to clear amyloid protein from the brain.
Collapse
|
46
|
Affiliation(s)
- Lary C Walker
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA.
| | | |
Collapse
|
47
|
Herzig MC, Van Nostrand WE, Jucker M. Mechanism of cerebral beta-amyloid angiopathy: murine and cellular models. Brain Pathol 2006; 16:40-54. [PMID: 16612981 PMCID: PMC8095938 DOI: 10.1111/j.1750-3639.2006.tb00560.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cerebral amyloid angiopathy of the beta-amyloid type (Abeta-CAA) is a risk factor for hemorrhagic stroke and independently is believed to contribute to dementia. Naturally occurring animal models of Abeta-CAA are scarce and not well suited for the laboratory. To this end, a variety of transgenic mouse models have been developed that, similar to cerebral Abeta-amyloidosis in humans, develop either Abeta-CAA only or both Abeta-CAA and parenchymal amyloid, or primarily parenchymal amyloid with only scarce Abeta-CAA. The lessons learned from these mouse models are: i) Abeta-CAA alone is sufficient to induce cerebral hemorrhage and associate pathologies including neuroinflammation, ii) the origin of vascular amyloid is mainly neuronal, iii) Abeta-CAA results largely from impaired Abeta clearance, iv) a high ratio Abeta40:42 favors vascular over parenchymal amyloidosis, and v) genetic risk factors such as ApoE modulate Abeta-CAA and CAA-induced hemorrhages. Therapeutic strategies to inhibit Abeta-CAA are poor at the present time. Once Abeta-CAA is present current Abeta immunotherapy strategies have failed to clear vascular amyloid and even run the risk of serious side effects. Despite this progress in deciphering the pathomechanism of Abeta-CAA, with these first generation mouse models of Abeta-CAA, refining these models is needed and will help to understand the emerging importance of Abeta-CAA for dementia and to develop biomarkers and therapeutic strategies.
Collapse
Affiliation(s)
- Martin C. Herzig
- Department of Cellular Neurology, Hertie‐Institute for Clinical Brain Research, University of Tübingen, Germany
- Department of Neuropathology, Institute of Pathology, University of Basel, Switzerland
| | | | - Mathias Jucker
- Department of Cellular Neurology, Hertie‐Institute for Clinical Brain Research, University of Tübingen, Germany
| |
Collapse
|
48
|
King JE, Eugenin EA, Buckner CM, Berman JW. HIV tat and neurotoxicity. Microbes Infect 2006; 8:1347-57. [PMID: 16697675 DOI: 10.1016/j.micinf.2005.11.014] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Accepted: 11/29/2005] [Indexed: 01/13/2023]
Abstract
HIV tat is the transactivator of HIV-1, supporting efficient viral replication by stabilizing the transcription of viral genes. Tat can be released from HIV-infected cells and alter several functions in uninfected cells. In the brain, tat induces neuronal dysfunction/toxicity, even though neurons cannot be directly infected with HIV, resulting in CNS pathology, such as the dementia and encephalitis associated with NeuroAIDS. This review discusses the most recent data addressing tat-induced neurotoxicity and integrates these new findings in the context of NeuroAIDS.
Collapse
Affiliation(s)
- J E King
- Department of Pathology, F727, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
49
|
Hirsch-Reinshagen V, Maia LF, Burgess BL, Blain JF, Naus KE, McIsaac SA, Parkinson PF, Chan JY, Tansley GH, Hayden MR, Poirier J, Van Nostrand W, Wellington CL. The absence of ABCA1 decreases soluble ApoE levels but does not diminish amyloid deposition in two murine models of Alzheimer disease. J Biol Chem 2005; 280:43243-56. [PMID: 16207707 DOI: 10.1074/jbc.m508781200] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ABCA1, a cholesterol transporter expressed in the brain, has been shown recently to be required to maintain normal apoE levels and lipidation in the central nervous system. In addition, ABCA1 has been reported to modulate beta-amyloid (Abeta) production in vitro. These observations raise the possibility that ABCA1 may play a role in the pathogenesis of Alzheimer disease. Here we report that the deficiency of ABCA1 does not affect soluble or guanidine-extractable Abeta levels in Tg-SwDI/B or amyloid precursor protein/presenilin 1 (APP/PS1) mice, but rather is associated with a dramatic reduction in soluble apoE levels in brain. Although this reduction in apoE was expected to reduce the amyloid burden in vivo, we observed that the parenchymal and vascular amyloid load was increased in Tg-SwDI/B animals and was not diminished in APP/PS1 mice. Furthermore, we observed an increase in the proportion of apoE retained in the insoluble fraction, particularly in the APP/PS1 model. These data suggested that ABCA1-mediated effects on apoE levels and lipidation influenced amyloidogenesis in vivo.
Collapse
Affiliation(s)
- Veronica Hirsch-Reinshagen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V4Z 5H5, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|