1
|
Morini R, Tagliatti E, Bizzotto M, Matteoli M. Microglial and TREM2 dialogues in the developing brain. Immunity 2025; 58:1068-1084. [PMID: 40324380 DOI: 10.1016/j.immuni.2025.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/04/2025] [Accepted: 04/17/2025] [Indexed: 05/07/2025]
Abstract
From the migration of precursor cells to the refinement of neural circuits, the immune system plays a critical role in the development of the central nervous system. As the brain resident macrophages, microglia are integral to these processes, influencing key developmental stages and contributing to circuit remodeling. Recent years have brought a wealth of new insights into how microglia regulate key stages of brain development, particularly through their continuous crosstalk with various brain cell types. In this review, we synthesize this growing body of literature on microglia and neurodevelopment, highlighting the involvement of the TREM2 receptor, known for its role in aging and neurodegeneration, which profoundly affects the state of microglia and guides target cells by shaping their transcriptional and functional fate. We examine microglial communication with four major cell types-neural precursors, neurons, astrocytes, and oligodendrocytes-also delving into the described mechanisms that underpin these interactions.
Collapse
Affiliation(s)
- Raffaella Morini
- IRCCS Humanitas Research Hospital, via Manzoni, 56, Rozzano, 20089 Milan, Italy
| | - Erica Tagliatti
- IRCCS Humanitas Research Hospital, via Manzoni, 56, Rozzano, 20089 Milan, Italy
| | - Matteo Bizzotto
- IRCCS Humanitas Research Hospital, via Manzoni, 56, Rozzano, 20089 Milan, Italy
| | - Michela Matteoli
- IRCCS Humanitas Research Hospital, via Manzoni, 56, Rozzano, 20089 Milan, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, 4, Pieve Emanuele, 20090 Milan, Italy.
| |
Collapse
|
2
|
Hattori Y. Microglial colonization routes and their impacts on cellular diversity. Neurosci Res 2025:S0168-0102(25)00078-1. [PMID: 40288616 DOI: 10.1016/j.neures.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/15/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Microglia are the resident immune cells of the central nervous system. Unlike other glial cells-such as astrocytes and oligodendrocytes-which originate from neural stem cells alongside neurons, microglia derive from erythromyeloid progenitors that emerge in the yolk sac during early embryonic development. Once they reach the brain, microglia expand their population through proliferation during development. A growing body of research has revealed that microglia play diverse roles throughout life, both in physiological and pathological contexts. With recent advancements in single-cell transcriptomics, it has become increasingly evident that microglia exhibit substantial heterogeneity in their gene expression patterns. While various functions and subtypes of microglia are being uncovered, the mechanisms underlying their diversity remain largely unknown. Two key hypotheses may explain how microglial diversity arises. One possibility is that their diversity is influenced by the different colonization routes they take before settling in the brain. Alternatively, microglia may acquire distinct properties in response to their local environment. This review explores both possibilities, with a particular focus on the first hypothesis, drawing on recent findings that highlight the multiple routes microglia utilize to colonize the brain. It discusses how these processes contribute to the establishment of microglial diversity during brain development.
Collapse
Affiliation(s)
- Yuki Hattori
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan.
| |
Collapse
|
3
|
Sepúlveda-Cuéllar RD, Soria-Medina DA, Cañedo-Solares I, Gómez-Chávez F, Molina-López LM, Cruz-Martínez MY, Correa D. Controversies and insights into cytokine regulation of neurogenesis and behavior in adult rodents. Front Immunol 2025; 16:1550660. [PMID: 40352932 PMCID: PMC12061686 DOI: 10.3389/fimmu.2025.1550660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/24/2025] [Indexed: 05/14/2025] Open
Abstract
Adult learning, memory, and social interaction partially depend on neurogenesis in two regions: the hippocampus and the subventricular zone. There is evidence that the immune system is important for these processes in pathological situations, but there is no review of its role in non-pathological or near-physiological conditions. Although further research is warranted in this area, some conclusions can be drawn. Intrusive LyC6hi monocytes and autoreactive CD4+ T cells have a positive impact on neurogenesis and behavior, but the latter are deleterious if specific to external antigens. Mildly activated microglia play a crucial role in promoting these processes, by eliminating apoptotic neuronal progenitors and producing low levels of interleukins, which increase if the cells are activated, leading to inhibition of neurogenesis. Chemokines are poorly studied, but progenitor cells and neurons express their receptors, which appear important for migration and maturation. The few works that jointly analyzed neurogenesis and behavior showed congruent effects of immune cells and cytokines. In conclusion, the immune system components -mostly local- seem of utmost importance for the control of behavior under non-pathological conditions.
Collapse
Affiliation(s)
- Rodrigo Daniel Sepúlveda-Cuéllar
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México, Huixquilucan, EdoMex, Mexico
| | - Diego Alberto Soria-Medina
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México, Huixquilucan, EdoMex, Mexico
- Facultad de Psicología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Irma Cañedo-Solares
- Laboratorio de Inmunología Experimental, Instituto Nacional de Pediatría (INP), Secretaría de Salud, Ciudad de México, Mexico
| | - Fernando Gómez-Chávez
- Laboratorio de Enfermedades Osteoarticulares e Inmunológicas, Sección de Estudios de Posgrado e Investigación, Escuela Nacional de Medicina y Homeopatía (ENMyH), Instituto Politécnico Nacional (IPN), Ciudad de México, Mexico
| | - Liliana Monserrat Molina-López
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México, Huixquilucan, EdoMex, Mexico
| | - María Yolanda Cruz-Martínez
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México, Huixquilucan, EdoMex, Mexico
| | - Dolores Correa
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México, Huixquilucan, EdoMex, Mexico
| |
Collapse
|
4
|
Latchney SE, Raheja AC, Ruiz Lopez BR, Womble PD, Blandin KJ, Lugo JN. Glial changes in the dentate gyrus of neuronal-specific PTEN knockout mice correlate with changes in cell proliferation. J Neuroimmunol 2025; 404:578604. [PMID: 40188528 DOI: 10.1016/j.jneuroim.2025.578604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/25/2025] [Accepted: 03/29/2025] [Indexed: 04/08/2025]
Abstract
Dysregulated hippocampal neurogenesis is a feature of temporal lobe epilepsy (TLE), marked by increased neuronal proliferation. The tumor suppressor gene phosphatase and tensin homolog (PTEN) regulates neuronal proliferation, and its deletion is implicated in TLE. We have previously shown that deletion of neuronal subset-specific (NS)-PTEN in mice increases the number of proliferating cells throughout the dentate gyrus, including subregions that are typically devoid of neurons but rich in glial cells, most notably the Hilus and Molecular Layer. In this study, we hypothesized that NS-PTEN knockout mice would exhibit increased numbers of microglia and astrocytes in these same dentate gyrus subregions. We performed immunohistochemistry for Iba1 (microglia) and GFAP (reactive astrocytes) on wild-type and NS-PTEN knockout mice at 4 and 10 weeks of age. Our data reveal that NS-PTEN knockout mice exhibit increased Iba1+ cell density at both ages, with some male-specific effects. Subregional analysis of the dentate gyrus showed that at 4 weeks, NS-PTEN knockout mice had greater Iba1+ cell density in the Granule Cell Layer (GCL) and Hilus, and at 10 weeks, increases were observed in the GCL, Hilus, and Molecular Layer. Additionally, we observed an increased number of microglia with an amoeboid morphology and fewer with thin, ramified processes. Contrast to Iba1+ microglia, GFAP+ reactive astrocytes were localized to the neurogenic GCL. Importantly, increases in both glial types strongly correlated with heightened cell proliferation (Ki67+ cells), as reported in our previous study, underscoring the role of glial cells in the spatial dysregulation of neurogenesis in NS-PTEN knockout mice.
Collapse
Affiliation(s)
- Sarah E Latchney
- Department of Biology, St. Mary's College of Maryland, St. Mary's City, MD, USA.
| | - Anjali C Raheja
- Department of Biology, St. Mary's College of Maryland, St. Mary's City, MD, USA
| | - Brayan R Ruiz Lopez
- Department of Biology, St. Mary's College of Maryland, St. Mary's City, MD, USA
| | - Paige D Womble
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA
| | | | - Joaquin N Lugo
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA
| |
Collapse
|
5
|
Zhang Y, Tang Y, Illes P. Modification of Neural Circuit Functions by Microglial P2Y6 Receptors in Health and Neurodegeneration. Mol Neurobiol 2025; 62:4139-4148. [PMID: 39400857 PMCID: PMC11880064 DOI: 10.1007/s12035-024-04531-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024]
Abstract
Neural circuits consisting of neurons and glial cells help to establish all functions of the CNS. Microglia, the resident immunocytes of the CNS, are endowed with UDP-sensitive P2Y6 receptors (P2Y6Rs) which regulate phagocytosis/pruning of excessive synapses during individual development and refine synapses in an activity-dependent manner during adulthood. In addition, this type of receptor plays a decisive role in primary (Alzheimer's disease, Parkinson's disease, neuropathic pain) and secondary (epilepsy, ischemic-, mechanical-, or irradiation-induced) neurodegeneration. A whole range of microglial cytokines controlled by P2Y6Rs, such as the interleukins IL-1β, IL-6, IL-8, and tumor necrosis factor-α (TNF-α), leads to neuroinflammation, resulting in neurodegeneration. Hence, small molecular antagonists of P2Y6Rs and genetic knockdown of this receptor provide feasible ways to alleviate inflammation-induced neurological disorders but might also interfere with the regulation of the synaptic circuitry. The present review aims at investigating this dual role of P2Y6Rs in microglia, both in shaping neural circuits by targeted phagocytosis and promoting neurodegenerative illnesses by fostering neuroinflammation through multiple transduction mechanisms.
Collapse
Affiliation(s)
- Yi Zhang
- International Joint Research Centre on Purinergic Signaling, School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Tang
- International Joint Research Centre on Purinergic Signaling, School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Peter Illes
- International Joint Research Centre on Purinergic Signaling, School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
6
|
Liang Z, Jin N, Guo W. Neural stem cell heterogeneity in adult hippocampus. CELL REGENERATION (LONDON, ENGLAND) 2025; 14:6. [PMID: 40053275 DOI: 10.1186/s13619-025-00222-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 03/10/2025]
Abstract
Adult neurogenesis is a unique cellular process of the ongoing generation of new neurons throughout life, which primarily occurs in the subgranular zone (SGZ) of the dentate gyrus (DG) and the subventricular zone (SVZ) of the lateral ventricle. In the adult DG, newly generated granule cells from neural stem cells (NSCs) integrate into existing neural circuits, significantly contributing to cognitive functions, particularly learning and memory. Recently, more and more studies have shown that rather than being a homogeneous population of identical cells, adult NSCs are composed of multiple subpopulations that differ in their morphology and function. In this study, we provide an overview of the origin, regional characteristics, prototypical morphology, and molecular factors that contribute to NSC heterogeneity. In particular, we discuss the molecular mechanisms underlying the balance between activation and quiescence of NSCs. In summary, this review highlights that deciphering NSC heterogeneity in the adult brain is a challenging but critical step in advancing our understanding of tissue-specific stem cells and the process of neurogenesis in the adult brain.
Collapse
Affiliation(s)
- Ziqi Liang
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100093, China
| | - Nuomeng Jin
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100093, China
| | - Weixiang Guo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
7
|
Marin-Rodero M, Cintado E, Walker AJ, Jayewickreme T, Pinho-Ribeiro FA, Richardson Q, Jackson R, Chiu IM, Benoist C, Stevens B, Trejo JL, Mathis D. The meninges host a distinct compartment of regulatory T cells that preserves brain homeostasis. Sci Immunol 2025; 10:eadu2910. [PMID: 39873623 PMCID: PMC11924117 DOI: 10.1126/sciimmunol.adu2910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/22/2025] [Indexed: 01/30/2025]
Abstract
Our understanding of the meningeal immune system has recently burgeoned, particularly regarding how innate and adaptive effector cells are mobilized to meet brain challenges. However, information on how meningeal immunocytes guard brain homeostasis in healthy individuals remains limited. This study highlights the heterogeneous, polyfunctional regulatory T cell (Treg) compartment in the meninges. A Treg subtype specialized in controlling interferon-γ (IFN-γ) responses and another dedicated to regulating follicular B cell responses were substantial components of this compartment. Accordingly, punctual Treg ablation rapidly unleashed IFN-γ production by meningeal lymphocytes, unlocked access to the brain parenchyma, and altered meningeal B cell profiles. Distally, the hippocampus assumed a reactive state, with morphological and transcriptional changes in multiple glial cell types. Within the dentate gyrus, neural stem cells underwent more death and were blocked from further differentiation, which coincided with impairments in short-term spatial-reference memory. Thus, meningeal Tregs are a multifaceted safeguard of brain homeostasis at steady state.
Collapse
Affiliation(s)
| | - Elisa Cintado
- Cajal Institute, Translational Neuroscience Department, Consejo Superior de Investigaciones Científicas; Madrid, Spain
| | - Alec J. Walker
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School; Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, USA
| | | | | | | | - Ruaidhrí Jackson
- Department of Immunology, Harvard Medical School; Boston, MA, USA
| | - Isaac M. Chiu
- Department of Immunology, Harvard Medical School; Boston, MA, USA
| | | | - Beth Stevens
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School; Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, USA
- Howard Hughes Medical Institute, Boston Children's Hospital; Boston, MA, USA
| | - José Luís Trejo
- Cajal Institute, Translational Neuroscience Department, Consejo Superior de Investigaciones Científicas; Madrid, Spain
| | - Diane Mathis
- Department of Immunology, Harvard Medical School; Boston, MA, USA
| |
Collapse
|
8
|
Alcalá-Lozano R, Carmona-Hernández R, Ocampo-Romero AG, Sosa-Millán AL, Morelos-Santana ED, Abarca DZ, Castro-de-Aquino DV, Cabrera-Muñoz EA, Ramírez-Rodríguez GB, Sosa Ortiz AL, Garza-Villarreal EA, Saracco-Alvarez R, González Olvera JJ. Predicting the Beneficial Effects of Cognitive Stimulation and Transcranial Direct Current Stimulation in Amnestic Mild Cognitive Impairment with Clinical, Inflammation, and Human Microglia Exposed to Serum as Potential Markers: A Double-Blind Placebo-Controlled Randomized Clinical Trial. Int J Mol Sci 2025; 26:1754. [PMID: 40004217 PMCID: PMC11855719 DOI: 10.3390/ijms26041754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
In amnestic mild cognitive impairment (aMCI), neuroinflammation evolves during disease progression, affecting microglial function and potentially accelerating the pathological process. Currently, no effective treatment exists, leading to explorations of various symptomatic approaches, though few target the underlying physiological mechanisms. Modulating inflammatory processes may be critical in slowing disease progression. Cognitive stimulation (CS) and transcranial direct current stimulation (tDCS) applied to the left dorsolateral prefrontal cortex (l-DLPFC) show promise, but the results are heterogeneous. Thus, a randomized, double-blind, placebo-controlled clinical trial is currently underway. The first-stage results were examined after three weeks of intervention in two groups: active tDCS combined with CS and sham tDCS combined with CS. Twenty-two participants underwent two assessments: T0 (baseline) and T1 (after 15 sessions of tDCS, active or sham, and 9 sessions of CS). The results demonstrated that CS improved cognition, increased brain-derived neurotrophic factor (BDNF) levels, and reduced peripheral proinflammatory cytokine levels (interleukin IL-6 and chemokine CX3CL1) in serum. This decrease in IL-6 may promote microglial proliferation and survival as a modulatory effect response, while the increase in BDNF might suggest a regulatory mechanism in microglia-neuron interaction responses. However, tDCS did not enhance the cognitive or modulatory effects of CS, suggesting that longer interventions might be required to achieve substantial benefits.
Collapse
Affiliation(s)
- Ruth Alcalá-Lozano
- Laboratorio de Neuromodulación, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz” (INPRFM), Mexico City 14370, Mexico
- División de Estudios de Posgrado, Facultad de Medicina, Programa de Ciencias Médicas, Odontológicas y de la Salud, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| | - Rocio Carmona-Hernández
- Laboratorio de Neuromodulación, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz” (INPRFM), Mexico City 14370, Mexico
| | - Ana Gabriela Ocampo-Romero
- Laboratorio de Neuromodulación, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz” (INPRFM), Mexico City 14370, Mexico
| | - Adriana Leticia Sosa-Millán
- Laboratorio de Neuromodulación, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz” (INPRFM), Mexico City 14370, Mexico
| | - Erik Daniel Morelos-Santana
- Laboratorio de Neuromodulación, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz” (INPRFM), Mexico City 14370, Mexico
| | - Diana Zapata Abarca
- Dirección de Servicios Clínicos, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz” (INPRFM), Mexico City 14370, Mexico
| | - Dana Vianey Castro-de-Aquino
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz” (INPRFM), Mexico City 14370, Mexico (E.A.C.-M.)
| | - Edith Araceli Cabrera-Muñoz
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz” (INPRFM), Mexico City 14370, Mexico (E.A.C.-M.)
| | - Gerardo Bernabé Ramírez-Rodríguez
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz” (INPRFM), Mexico City 14370, Mexico (E.A.C.-M.)
| | - Ana Luisa Sosa Ortiz
- Laboratorio de Demencias, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco (INNN), Mexico City 14269, Mexico
| | - Eduardo A. Garza-Villarreal
- Instituto de Neurobiología, Universidad Nacional Autónoma de México Campus Juriquilla, Querétaro 76230, Mexico
| | - Ricardo Saracco-Alvarez
- Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz” (INPRFM), Mexico City 14370, Mexico
| | | |
Collapse
|
9
|
Namihira M, Inoue N, Watanabe Y, Hayashi T, Murotomi K, Hirayama K, Sato N. Combination of 3 probiotics restores attenuated adult neurogenesis in germ-free mice. Stem Cells 2025; 43:sxae077. [PMID: 39676242 PMCID: PMC11879180 DOI: 10.1093/stmcls/sxae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 11/04/2024] [Indexed: 12/17/2024]
Abstract
Gut microbiota plays an important role in regulating brain function and adult neurogenesis. Although probiotics have recently been reported as effective against certain psychiatric disorders, the underlying mechanisms remain unclear. In particular, the combination of 3 probiotic strains, Bacillus subtilis TO-A, Enterococcus faecium T-110, and Clostridium butyricum TO-A, hereafter referred to as ProB3, has been reported to potentially alleviate psychiatric symptoms in patients with schizophrenia. Herein, we show that ProB3 promotes adult neurogenesis in mice and restores its dysregulation in germ-free (GF) mice. ProB3 colonization in GF mice enhanced the proliferation of adult neural stem cells compared to specific-pathogen-free and GF mice. Furthermore, ProB3 colonization was sufficient to ameliorate the arrest of newborn neuron maturation and the diminution of quiescent neural stem cells in GF mice. ProB3 colonization in mice increased the levels of several metabolites in the blood, including theanine and 3-hydroxybutyrate, and imidazole peptides, including anserine, which promoted proliferation, neurogenesis, and maturation of newborn neurons in cultured human fetus neural stem cells, as well as mouse adult hippocampal neural stem cells. Collectively, these results indicate that the essential role of the gut microbiota in adult hippocampal neurogenesis can be effectively complemented by the intake of a specific 3-strain probiotic, ProB3, providing novel insights into the brain-gut axis.
Collapse
Affiliation(s)
- Masakazu Namihira
- Molecular Neurophysiology Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-8566, Japan
| | - Nana Inoue
- TOA Biopharma Co. Ltd., Tokyo 151-0073, Japan
| | | | | | - Kazutoshi Murotomi
- Molecular Neurophysiology Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-8566, Japan
| | - Kazuhiro Hirayama
- Laboratory of Veterinary Public Health, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Naoki Sato
- TOA Biopharma Co. Ltd., Tokyo 151-0073, Japan
| |
Collapse
|
10
|
Rodriguez-Iglesias N, Paris I, Valero J, Cañas-Zabala L, Carretero A, Hatje K, Zhang JD, Patsch C, Britschgi M, Gutbier S, Sierra A. A bottom-up approach identifies the antipsychotic and antineoplastic trifluoperazine and the ribose derivative deoxytubercidin as novel microglial phagocytosis inhibitors. Glia 2025; 73:330-351. [PMID: 39495090 DOI: 10.1002/glia.24637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 11/05/2024]
Abstract
Phagocytosis is an indispensable function of microglia, the brain professional phagocytes. Microglia is particularly efficient phagocytosing cells that undergo programmed cell death (apoptosis) in physiological conditions. However, mounting evidence suggests microglial phagocytosis dysfunction in multiple brain disorders. These observations prompted us to search for phagocytosis modulators (enhancers or inhibitors) with therapeutic potential. We used a bottom-up strategy that consisted on the identification of phagocytosis modulators using phenotypic high throughput screenings (HTSs) in cell culture and validation in organotypic cultures and in vivo. We performed two complementary HTS campagnes: at Achucarro, we used primary cultures of mouse microglia and compounds of the Prestwick Chemical Library; at Roche, we used human iPSC derived macrophage-like cells and a proprietary chemo-genomic library with 2200 compounds with known mechanism-of-action. Next, we validated the more robust compounds using hippocampal organotypic cultures and identified two phagocytosis inhibitors: trifluoperazine, a dopaminergic and adrenergic antagonist used as an antipsychotic and antineoplastic; and deoxytubercidin, a ribose derivative. Finally, we tested whether these compounds were able to modulate phagocytosis of apoptotic newborn cells in the adult hippocampal neurogenic niche in vivo by administering them into the mouse hippocampus using osmotic minipumps. We confirmed that both trifluoperazine and deoxytubercidin have anti-phagocytic activity in vivo, and validated our bottom-up strategy to identify novel phagocytosis modulators. These results show that chemical libraries with annotated mechanism of action are an starting point for the pharmacological modulation of microglia in drug discovery projects aiming at the therapeutic manipulation of phagocytosis in brain diseases.
Collapse
Affiliation(s)
- Noelia Rodriguez-Iglesias
- Glial Cell Biology Lab, Achucarro Basque Center for Neuroscience, Leioa, Spain
- Department of Neuroscience, University of the Basque Country EHU/UPV, Leioa, Spain
| | - Iñaki Paris
- Glial Cell Biology Lab, Achucarro Basque Center for Neuroscience, Leioa, Spain
- Department of Neuroscience, University of the Basque Country EHU/UPV, Leioa, Spain
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Jorge Valero
- Glial Cell Biology Lab, Achucarro Basque Center for Neuroscience, Leioa, Spain
- Department of Neuroscience, University of the Basque Country EHU/UPV, Leioa, Spain
- Ikerbasque Foundation, Bilbao, Spain
| | - Lorena Cañas-Zabala
- Glial Cell Biology Lab, Achucarro Basque Center for Neuroscience, Leioa, Spain
- Department of Neuroscience, University of the Basque Country EHU/UPV, Leioa, Spain
| | - Alejandro Carretero
- Glial Cell Biology Lab, Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Klas Hatje
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Jitao David Zhang
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Christoph Patsch
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Markus Britschgi
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Simon Gutbier
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Amanda Sierra
- Glial Cell Biology Lab, Achucarro Basque Center for Neuroscience, Leioa, Spain
- Ikerbasque Foundation, Bilbao, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country EHU/UPV, Leioa, Spain
| |
Collapse
|
11
|
Garcia de Leon R, Hodges TE, Brown HK, Bodnar TS, Galea LAM. Inflammatory signalling during the perinatal period: Implications for short- and long-term disease risk. Psychoneuroendocrinology 2025; 172:107245. [PMID: 39561569 DOI: 10.1016/j.psyneuen.2024.107245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024]
Abstract
During pregnancy and the postpartum, there are dynamic fluctuations in steroid and peptide hormone levels as well as inflammatory signalling. These changes are required for a healthy pregnancy and can persist well beyond the postpartum. Many of the same hormone and inflammatory signalling changes observed during the perinatal period also play a role in symptoms related to autoimmune disorders, psychiatric disorders, and perhaps neurodegenerative disease later in life. In this review, we outline hormonal and immunological shifts linked to pregnancy and the postpartum and discuss the possible role of these shifts in increasing psychiatric, neurodegenerative disease risk and autoimmune symptoms during and following pregnancy. Furthermore, we discuss how key variables such as the number of births (parity) and sex of the fetus can influence inflammatory signalling, and possibly future disease risk, but are not often studied. We conclude by discussing the importance of studying female experiences such as pregnancy and parenting on physiology and disease.
Collapse
Affiliation(s)
- Romina Garcia de Leon
- Centre for Addiction and Mental Health, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada
| | | | | | | | - Liisa A M Galea
- Centre for Addiction and Mental Health, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
12
|
Germelli L, Angeloni E, Da Pozzo E, Tremolanti C, De Felice M, Giacomelli C, Marchetti L, Muscatello B, Barresi E, Taliani S, Da Settimo Passetti F, Trincavelli ML, Martini C, Costa B. 18 kDa TSPO targeting drives polarized human microglia towards a protective and restorative neurosteroidome profile. Cell Mol Life Sci 2025; 82:34. [PMID: 39757281 DOI: 10.1007/s00018-024-05544-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 10/30/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025]
Abstract
An aberrant pro-inflammatory microglia response has been associated with most neurodegenerative disorders. Identifying microglia druggable checkpoints to restore their physiological functions is an emerging challenge. Recent data have shown that microglia produce de novo neurosteroids, endogenous molecules exerting potent anti-inflammatory activity. Here, the role of neurosteroidogenesis in the modulation of microgliosis was explored in human microglia cells. In particular, CYP11A1 inhibition or TSPO pharmacological stimulation, crucial proteins involved in the rate limiting step of the neurosteroidogenic cascade, were employed. CYP11A1 inhibition led microglia to acquire a dysfunctional and hyperreactive phenotype, while selective TSPO ligands promoted the establishment of an anti-inflammatory one. Analysis of specific neurosteroid levels (neurosteroidome) identified allopregnanolone/pregnanolone as crucial metabolites allowing controlled activation of microglia. Importantly, the neurosteroid shift towards a greater androgenic/estrogenic profile supported the transition from pro-inflammatory to neuroprotective microglia, suggesting the therapeutic potential of de novo microglial neurosteroidogenesis stimulation for neuroinflammatory-related disorders.
Collapse
Affiliation(s)
- Lorenzo Germelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Elisa Angeloni
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Eleonora Da Pozzo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy.
- Center for Instrument Sharing, University of Pisa (CISUP), Lungarno Pacinotti, 43/44, 56126, Pisa, Italy.
| | - Chiara Tremolanti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Martina De Felice
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Chiara Giacomelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Laura Marchetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Beatrice Muscatello
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
- Center for Instrument Sharing, University of Pisa (CISUP), Lungarno Pacinotti, 43/44, 56126, Pisa, Italy
| | - Elisabetta Barresi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
- Center for Instrument Sharing, University of Pisa (CISUP), Lungarno Pacinotti, 43/44, 56126, Pisa, Italy
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
- Center for Instrument Sharing, University of Pisa (CISUP), Lungarno Pacinotti, 43/44, 56126, Pisa, Italy
| | - Federico Da Settimo Passetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
- Center for Instrument Sharing, University of Pisa (CISUP), Lungarno Pacinotti, 43/44, 56126, Pisa, Italy
| | - Maria Letizia Trincavelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
- Center for Instrument Sharing, University of Pisa (CISUP), Lungarno Pacinotti, 43/44, 56126, Pisa, Italy
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
- Center for Instrument Sharing, University of Pisa (CISUP), Lungarno Pacinotti, 43/44, 56126, Pisa, Italy
| | - Barbara Costa
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
- Center for Instrument Sharing, University of Pisa (CISUP), Lungarno Pacinotti, 43/44, 56126, Pisa, Italy
| |
Collapse
|
13
|
Ho SY, Lin CH, Huang CC, Lin CH, Lin MT, Wang YJ, Ma JT, Shieh LT, Chang CP, Lin HJ. Hyperbaric oxygen therapy attenuates brain radiation-induced cognitive deficits in rats. Int J Med Sci 2025; 22:283-297. [PMID: 39781518 PMCID: PMC11704689 DOI: 10.7150/ijms.104248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/21/2024] [Indexed: 01/12/2025] Open
Abstract
Effective therapies for cognitive impairments induced by brain irradiation are currently lacking. This study investigated the therapeutic potential of hyperbaric oxygen therapy (HBOT) for radiation-induced brain injury in a randomized controlled experimental model using adult male Wistar rats. Adult male Wistar rats were divided into four experimental groups: 0 Gy whole brain radiotherapy (WBRT) with normal baric air (NBA) treatment, 0 Gy WBRT with HBOT, 10 Gy WBRT with NBA, and 10 Gy WBRT with HBOT. Behavioral tests and histochemical analyses were conducted four weeks post-WBRT to assess cognitive function, hippocampal microgliosis, apoptosis, and lipid peroxidation. Compared with the rats with 0 Gy WBRT on 28 days, the rats with 10 Gy WBRT on 28 days had significantly higher severity of spatial learning and memory dysfunction and hippocampal microgliosis, newborn neuronal apoptosis, and lipid peroxidation. HBOT significantly prevented and reversed WBRT-induced cognitive deficits, hippocampal microgliosis, newborn neuronal apoptosis, and lipid peroxidation. In addition, HBOT prevented and reversed the increased apoptosis among newborn neural stem cells and neuroblasts caused by 10 Gy WBRT on 7 days. The findings suggest that WBRT disrupts neurogenesis and enhance microgliosis, apoptosis of neuronal progenitors, and lipid peroxidation in the dentate gyrus, potentially leading to cognitive deficits and neuronal death. HBOT may offer a protective effect against these cognitive impairments and their underlying mechanisms in adult male rats following WBRT.
Collapse
Affiliation(s)
- Sheng-Yow Ho
- Department of Radiation Oncology, Chi Mei Medical Center, Tainan, Taiwan
- Graduate Institute of Medical Sciences, Chang Jung Christian University, Tainan, Taiwan
| | - Chia-Hui Lin
- Department of Radiation Oncology, Chi Mei Medical Center, Tainan, Taiwan
| | - Chien-Cheng Huang
- Department of Emergency Medicine, Chi Mei Medical Center, Tainan, Taiwan
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Emergency Medicine, Kaohsiung Medical University, Kaohsiung 81201, Taiwan
| | - Cheng-Hsien Lin
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Mao-Tsun Lin
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Ying-Jan Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jui-Ti Ma
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Li-Tsun Shieh
- Department of Radiation Oncology, Chi Mei Medical Center, Tainan, Taiwan
| | - Ching-Ping Chang
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Hung-Jung Lin
- Department of Emergency Medicine, Chi Mei Medical Center, Tainan, Taiwan
| |
Collapse
|
14
|
Zhou K, Zisiadis GA, Havermans M, Fragkopoulou A, Dominguez C, Ohshima M, Osman AM, Rodrigues CFD, Blomgren K. Microglia depletion and repopulation do not alter the effects of cranial irradiation on hippocampal neurogenesis. Brain Behav Immun 2025; 123:57-63. [PMID: 39218233 DOI: 10.1016/j.bbi.2024.08.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/03/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Cranial radiotherapy can cause lifelong cognitive complications in childhood brain tumor survivors, and reduced hippocampal neurogenesis is hypothesized to contribute to this. Following irradiation (IR), microglia clear dead neural progenitors and give rise to a neuroinflammatory microenvironment, which promotes a switch in surviving progenitors from neuronal to glial differentiation. Recently, depletion and repopulation of microglia were shown to promote neurogenesis and ameliorate cognitive deficits in various brain injury models. In this study, we utilized the Cx3cr1CreERt2-YFP/+Rosa26DTA/+ transgenic mouse model to deplete microglia in the juvenile mouse brain before subjecting them to whole-brain IR and investigated the short- and long-term effects on hippocampal neurogenesis. Within the initial 24 h after IR, the absence of microglia led to an accumulation of dead cells in the subgranular zone, and 50-fold higher levels of the chemokine C-C motif ligand 2 (CCL2) in sham brains and 7-fold higher levels after IR. The absence of microglia, and the subsequent repopulation within 10 days, did neither affect the loss of proliferating or doublecortin-positive cells, nor the reduced growth of the granule cell layer. Our results argue against a role for a pro-inflammatory microenvironment in the dysregulation of hippocampal neurogenesis and suggest that the observed reduction of neurogenesis was solely due to IR.
Collapse
Affiliation(s)
- Kai Zhou
- Henan Neurodevelopment Engineering Research Center for Children, Zhengzhou Key Laboratory of Pediatric Neurobehavior, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China; Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | | | - Monique Havermans
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | | | - Cecilia Dominguez
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Makiko Ohshima
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Ahmed M Osman
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Carlos F D Rodrigues
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Klas Blomgren
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden; Pediatric Oncology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
15
|
Walker SL, Glasper ER. Unraveling sex differences in maternal and paternal care impacts on social behaviors and neurobiological responses to early-life adversity. Front Neuroendocrinol 2025; 76:101162. [PMID: 39561882 PMCID: PMC11811932 DOI: 10.1016/j.yfrne.2024.101162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/11/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024]
Abstract
Early-life stress (ELS) affects the development of prosocial behaviors and social-cognitive function, often leading to structural brain changes and increased psychosocial disorders. Recent studies suggest that mother- and father-child relationships independently influence social development in a sex-specific manner, but the effects of impaired father-child relationships are often overlooked. This review examines preclinical rodent studies to explore how parental neglect impacts neuroplasticity and social behaviors in offspring. We highlight that disruptions in maternal interactions may affect male pups more in uniparental rodents, while impaired paternal interactions in biparental rodents tend to impact female pups more. Due to limited research, the separate effects of maternal and paternal neglect on brain development and social behaviors in biparental species remain unclear. Addressing these gaps could clarify the sex-specific mechanisms underlying social and neurobiological deficits following parental neglect.
Collapse
Affiliation(s)
- Shakeera L Walker
- Department of Neuroscience, The Ohio State University, Columbus, OH, 43210, United States; Neuroscience Graduate Program, The Ohio State University, Columbus, OH, 43210, United States
| | - Erica R Glasper
- Department of Neuroscience, The Ohio State University, Columbus, OH, 43210, United States; Neuroscience Graduate Program, The Ohio State University, Columbus, OH, 43210, United States; Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, 43210, United States.
| |
Collapse
|
16
|
Pereira-Iglesias M, Maldonado-Teixido J, Melero A, Piriz J, Galea E, Ransohoff RM, Sierra A. Microglia as hunters or gatherers of brain synapses. Nat Neurosci 2025; 28:15-23. [PMID: 39663381 DOI: 10.1038/s41593-024-01818-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 10/02/2024] [Indexed: 12/13/2024]
Abstract
Over a decade ago, it was discovered that microglia, the brain's immune cells, engulf synaptic material in a process named microglial pruning. This term suggests that microglia actively sculpt brain circuits by tagging and phagocytosing unwanted synapses. However, live imaging studies have yet to demonstrate how microglial synapse elimination occurs. To address this issue, we propose a new conceptual framework distinguishing between two potential mechanisms of synapse elimination, culling and scavenging. During culling, microglia may use a contractile ring to sever the neuronal plasma membrane, removing the unwanted synapse. During scavenging, synapse elimination is neuronal-driven, and the neuronal plasma membrane fission machinery sheds off synapses that are later phagocytosed by microglia. We will discuss the current limitations of studying microglial synapse elimination and evaluate evidence supporting either culling or scavenging. Discerning between these mechanisms is essential for determining the therapeutic value of phagocytosis modulators in diseases with altered brain connectivity.
Collapse
Affiliation(s)
- Marta Pereira-Iglesias
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Department of Neuroscience, University of the Basque Country EHU/UPV, Leioa, Spain
| | - Joel Maldonado-Teixido
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Department of Pharmacology, University of the Basque Country EHU/UPV, Leioa, Spain
| | | | - Joaquin Piriz
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Ikerbasque Foundation, Bilbao, Spain
| | - Elena Galea
- Institut de Neurociències and Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Medicina, Universitat Autònoma de Barcelona UAB, Barcelona, Spain
- ICREA, Barcelona, Spain
| | | | - Amanda Sierra
- Achucarro Basque Center for Neuroscience, Leioa, Spain.
- Ikerbasque Foundation, Bilbao, Spain.
- Department of Biochemistry and Molecular Biology, University of the Basque Country EHU/UPV, Leioa, Spain.
| |
Collapse
|
17
|
Abdelbasset M, Saron WAA, Ma D, Rathore APS, Kozaki T, Zhong C, Mantri CK, Tan Y, Tung CC, Tey HL, Chu JJH, Chen J, Ng LG, Wang H, Ginhoux F, St John AL. Differential contributions of fetal mononuclear phagocytes to Zika virus neuroinvasion versus neuroprotection during congenital infection. Cell 2024; 187:7511-7532.e20. [PMID: 39532096 DOI: 10.1016/j.cell.2024.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/08/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Fetal immune cell functions during congenital infections are poorly understood. Zika virus (ZIKV) can vertically transmit from mother to fetus, causing nervous system infection and congenital ZIKV syndrome (CZS). We identified differential functional roles for fetal monocyte/macrophage cell types and microglia in ZIKV dissemination versus clearance using mouse models. Trafficking of ZIKV-infected primitive macrophages from the yolk sac allowed initial fetal virus inoculation, while recruited monocytes promoted non-productive neuroinflammation. Conversely, brain-resident differentiated microglia were protective, limiting infection and neuronal death. Single-cell RNA sequencing identified transcriptional profiles linked to the protective versus detrimental contributions of mononuclear phagocyte subsets. In human brain organoids, microglia also promoted neuroprotective transcriptional changes and infection clearance. Thus, microglia are protective before birth, contrasting with the disease-enhancing roles of primitive macrophages and monocytes. Differential modulation of myeloid cell phenotypes by genetically divergent ZIKVs underscores the potential of immune cells to regulate diverse outcomes during fetal infections.
Collapse
Affiliation(s)
- Muhammad Abdelbasset
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wilfried A A Saron
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Dongliang Ma
- Neuroscience & Behavioral Disorders Programme, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Abhay P S Rathore
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; Department of Pathology, Duke University Medical Center, Durham, NC 27705, USA
| | - Tatsuya Kozaki
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| | - Chengwei Zhong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| | - Chinmay Kumar Mantri
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Yingrou Tan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Singapore; National Skin Centre, National Healthcare Group, Singapore, Singapore
| | - Chi-Ching Tung
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Hong Liang Tey
- National Skin Centre, National Healthcare Group, Singapore, Singapore
| | - Justin Jang Hann Chu
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jinmiao Chen
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| | - Lai Guan Ng
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine affiliated Renji Hospital, Shanghai, China
| | - Hongyan Wang
- Neuroscience & Behavioral Disorders Programme, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Singapore; INSERM U1015, Gustave Roussy Cancer Campus, Villejuif 94800, France; Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Ashley L St John
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Pathology, Duke University Medical Center, Durham, NC 27705, USA; SingHealth Duke-NUS Global Health Institute, Singapore, Singapore.
| |
Collapse
|
18
|
Hu Y, Tao W. Current perspectives on microglia-neuron communication in the central nervous system: Direct and indirect modes of interaction. J Adv Res 2024; 66:251-265. [PMID: 38195039 PMCID: PMC11674795 DOI: 10.1016/j.jare.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 10/05/2023] [Accepted: 01/06/2024] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND The incessant communication that takes place between microglia and neurons is essential the development, maintenance, and pathogenesis of the central nervous system (CNS). As mobile phagocytic cells, microglia serve a critical role in surveilling and scavenging the neuronal milieu to uphold homeostasis. AIM OF REVIEW This review aims to discuss the various mechanisms that govern the interaction between microglia and neurons, from the molecular to the organ system level, and to highlight the importance of these interactions in the development, maintenance, and pathogenesis of the CNS. KEY SCIENTIFIC CONCEPTS OF REVIEW Recent research has revealed that microglia-neuron interaction is vital for regulating fundamental neuronal functions, such as synaptic pruning, axonal remodeling, and neurogenesis. The review will elucidate the intricate signaling pathways involved in these interactions, both direct and indirect, to provide a better understanding of the fundamental mechanisms of brain function. Furthermore, gaining insights into these signals could lead to the development of innovative therapies for neural disorders.
Collapse
Affiliation(s)
- Yue Hu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 220023, China; School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weiwei Tao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 220023, China; School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
19
|
Nishimura H, Li Y. Human pluripotent stem cell-derived models of the hippocampus. Int J Biochem Cell Biol 2024; 177:106695. [PMID: 39557338 DOI: 10.1016/j.biocel.2024.106695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
The hippocampus is a crucial structure of the brain, recognised for its roles in the formation of memory, and our ability to navigate the world. Despite its importance, clear understanding of how the human hippocampus develops and its contribution to disease is limited due to the inaccessible nature of the human brain. In this regard, the advent of human pluripotent stem cell (hPSC) technologies has enabled the study of human biology in an unprecedented manner, through the ability to model development and disease as both 2D monolayers and 3D organoids. In this review, we explore the existing efforts to derive the hippocampal lineage from hPSCs and evaluate the various aspects of the in vivo hippocampus that are replicated in vitro. In addition, we highlight key diseases that have been modelled using hPSC-derived cultures and offer our perspective on future directions for this emerging field.
Collapse
Affiliation(s)
- Haruka Nishimura
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Yun Li
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
20
|
Alami M, Boumezough K, Zerif E, Zoubdane N, Khalil A, Bunt T, Laurent B, Witkowski JM, Ramassamy C, Boulbaroud S, Fulop T, Berrougui H. In Vitro Assessment of the Neuroprotective Effects of Pomegranate ( Punica granatum L.) Polyphenols Against Tau Phosphorylation, Neuroinflammation, and Oxidative Stress. Nutrients 2024; 16:3667. [PMID: 39519499 PMCID: PMC11547808 DOI: 10.3390/nu16213667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Oxidative stress and chronic inflammation, at both the systemic and the central level, are critical early events in atherosclerosis and Alzheimer's disease (AD). PURPOSE To investigate the oxidative stress-, inflammation-, and Tau-phosphorylation-lowering effects of pomegranate polyphenols (PPs) (punicalagin, ellagic acid, peel, and aril extracts). METHODS We used flow cytometry to quantify the protein expression of proinflammatory cytokines (IL-1β) and anti-inflammatory mediators (IL-10) in THP-1 macrophages, as well as M1/M2 cell-specific marker (CD86 and CD163) expression in human microglia HMC3 cells. The IL-10 protein expression was also quantified in U373-MG human astrocytes. The effect of PPs on human amyloid beta 1-42 (Aβ1-42)-induced oxidative stress was assessed in the microglia by measuring ROS generation and lipid peroxidation, using 2',7'-dichlorofluorescein diacetate (DCFH-DA) and thiobarbituric acid reactive substance (TBARS) tests, respectively. Neuronal viability and cell apoptotic response to Aβ1-42 toxicity were assayed using the MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) assay and the annexin-V-FITC apoptosis detection kit, respectively. Finally, flow cytometry analysis was also performed to evaluate the ability of PPs to modulate Aβ1-42-induced Tau-181 phosphorylation (pTau-181). RESULTS Our data indicate that PPs are significantly (p < 0.05) effective in countering Aβ1-42-induced inflammation through increasing the anti-inflammatory cytokines (IL-10) in U373-MG astrocytes and THP1 macrophages and decreasing proinflammatory marker (IL-1β) expression in THP1 macrophages. The PPs were also significantly (p < 0.05) effective in inducing the phenotypic transition of THP-1 macrophages and microglial cells from M1 to M2 by decreasing CD86 and increasing CD163 surface receptor expression. Moreover, our treatments have a significant (p < 0.05) beneficial impact on oxidative stress, illustrated in the reduction in TBARS and ROS generation. Our treatments have significant (p < 0.05) cell viability improvement capacities and anti-apoptotic effects on human H4 neurons. Furthermore, our results suggest that Aβ1-42 significantly (p < 0.05) increases pTau-181. This effect is significantly (p < 0.05) attenuated by arils, peels, and punicalagin and drastically reduced by the ellagic acid treatment. CONCLUSION Overall, our results attribute to PPs anti-inflammatory, antioxidant, anti-apoptotic, and anti-Tau-pathology potential. Future studies should aim to extend our knowledge of the potential role of PPs in Aβ1-42-induced neurodegeneration, particularly concerning its association with the tauopathy involved in AD.
Collapse
Affiliation(s)
- Mehdi Alami
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, Beni Mellal 23020, Morocco; (M.A.); (K.B.); (S.B.)
- Research Center on Aging, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (E.Z.); (N.Z.); (A.K.); (B.L.); (T.F.)
| | - Kaoutar Boumezough
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, Beni Mellal 23020, Morocco; (M.A.); (K.B.); (S.B.)
| | - Echarki Zerif
- Research Center on Aging, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (E.Z.); (N.Z.); (A.K.); (B.L.); (T.F.)
| | - Nada Zoubdane
- Research Center on Aging, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (E.Z.); (N.Z.); (A.K.); (B.L.); (T.F.)
| | - Abdelouahed Khalil
- Research Center on Aging, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (E.Z.); (N.Z.); (A.K.); (B.L.); (T.F.)
| | - Ton Bunt
- Izumi Biosciences, Inc., Lexington, MA 02420, USA;
| | - Benoit Laurent
- Research Center on Aging, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (E.Z.); (N.Z.); (A.K.); (B.L.); (T.F.)
| | - Jacek M. Witkowski
- Department of Embryology, Medical University of Gdansk, 80-210 Gdańsk, Poland;
| | - Charles Ramassamy
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada;
| | - Samira Boulbaroud
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, Beni Mellal 23020, Morocco; (M.A.); (K.B.); (S.B.)
| | - Tamas Fulop
- Research Center on Aging, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (E.Z.); (N.Z.); (A.K.); (B.L.); (T.F.)
| | - Hicham Berrougui
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, Beni Mellal 23020, Morocco; (M.A.); (K.B.); (S.B.)
- Research Center on Aging, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (E.Z.); (N.Z.); (A.K.); (B.L.); (T.F.)
| |
Collapse
|
21
|
Ardanaz CG, de la Cruz A, Minhas PS, Hernández-Martín N, Pozo MÁ, Valdecantos MP, Valverde ÁM, Villa-Valverde P, Elizalde-Horcada M, Puerta E, Ramírez MJ, Ortega JE, Urbiola A, Ederra C, Ariz M, Ortiz-de-Solórzano C, Fernández-Irigoyen J, Santamaría E, Karsenty G, Brüning JC, Solas M. Astrocytic GLUT1 reduction paradoxically improves central and peripheral glucose homeostasis. SCIENCE ADVANCES 2024; 10:eadp1115. [PMID: 39423276 PMCID: PMC11488540 DOI: 10.1126/sciadv.adp1115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 09/13/2024] [Indexed: 10/21/2024]
Abstract
Astrocytes are considered an essential source of blood-borne glucose or its metabolites to neurons. Nonetheless, the necessity of the main astrocyte glucose transporter, i.e., GLUT1, for brain glucose metabolism has not been defined. Unexpectedly, we found that brain glucose metabolism was paradoxically augmented in mice with astrocytic GLUT1 reduction (GLUT1ΔGFAP mice). These mice also exhibited improved peripheral glucose metabolism especially in obesity, rendering them metabolically healthier. Mechanistically, we observed that GLUT1-deficient astrocytes exhibited increased insulin receptor-dependent ATP release, and that both astrocyte insulin signaling and brain purinergic signaling are essential for improved brain function and systemic glucose metabolism. Collectively, we demonstrate that astrocytic GLUT1 is central to the regulation of brain energetics, yet its depletion triggers a reprogramming of brain metabolism sufficient to sustain energy requirements, peripheral glucose homeostasis, and cognitive function.
Collapse
Affiliation(s)
- Carlos G. Ardanaz
- Department of Pharmaceutical Sciences, Division of Pharmacology, University of Navarra, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Aida de la Cruz
- Laboratory of Local Translation in Neurons and Glia, Achucarro Basque Centre for Neuroscience, 48940 Leioa, Spain
| | - Paras S. Minhas
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nira Hernández-Martín
- Unidad de Cartografía Cerebral, Instituto Pluridisciplinar, Universidad Complutense de Madrid, 28040 Madrid, Spain
- PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Miguel Ángel Pozo
- Unidad de Cartografía Cerebral, Instituto Pluridisciplinar, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Unidad de Cartografía Cerebral, Instituto de Investigación Sanitaria, Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - M. Pilar Valdecantos
- Instituto de Investigaciones Biomédicas Sols-Morreale, CSIC-UAM, Department of Metabolism and Cellular Signaling, Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid 28029, Spain
- Universidad Francisco de Vitoria, Faculty of Experimental Sciences, Pozuelo de Alarcon, Madrid, Spain
| | - Ángela M. Valverde
- Instituto de Investigaciones Biomédicas Sols-Morreale, CSIC-UAM, Department of Metabolism and Cellular Signaling, Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid 28029, Spain
| | | | | | - Elena Puerta
- Department of Pharmaceutical Sciences, Division of Pharmacology, University of Navarra, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - María J. Ramírez
- Department of Pharmaceutical Sciences, Division of Pharmacology, University of Navarra, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Jorge E. Ortega
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
- Department of Pharmacology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Biobizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Ainhoa Urbiola
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- Imaging Platform, Foundation for Applied Medical Research (FIMA), University of Navarra (UNAV), 31008 Pamplona, Spain
| | - Cristina Ederra
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- Imaging Platform, Foundation for Applied Medical Research (FIMA), University of Navarra (UNAV), 31008 Pamplona, Spain
| | - Mikel Ariz
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- Imaging Platform, Foundation for Applied Medical Research (FIMA), University of Navarra (UNAV), 31008 Pamplona, Spain
- Department of Electrical, Electronic and Communications Engineering, Public University of Navarra, 31006 Pamplona, Spain
| | - Carlos Ortiz-de-Solórzano
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- Imaging Platform, Foundation for Applied Medical Research (FIMA), University of Navarra (UNAV), 31008 Pamplona, Spain
| | - Joaquín Fernández-Irigoyen
- Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, 31008 Pamplona, Spain
| | - Enrique Santamaría
- Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, 31008 Pamplona, Spain
| | - Gerard Karsenty
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, 701 West 168th Street, New York, NY, USA
| | - Jens C. Brüning
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, 50931 Cologne, Germany
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, 50924 Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
- National Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Maite Solas
- Department of Pharmaceutical Sciences, Division of Pharmacology, University of Navarra, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| |
Collapse
|
22
|
Kang JY, Lee JS, Wang JH, Son CG. Sleep deprivation in adolescent mice impairs long-term memory till early adulthood via suppression of hippocampal astrocytes. Sleep 2024; 47:zsae143. [PMID: 38934552 PMCID: PMC11467059 DOI: 10.1093/sleep/zsae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Sleep deficiency is a rampant issue in modern society, serving as a pathogenic element contributing to learning and memory impairment, with heightened sensitivity observed in children. Clinical observations suggest that learning disabilities associated with insufficient sleep during adolescence can persist through adulthood, but experimental evidence for this is lacking. In this study, we examined the impact of early-life sleep deprivation (SD) on both short-term and long-term memory, tracking the effects sequentially into adulthood. We employed a modified multiple-platform method mouse model to investigate these outcomes. SD induced over a 14-day period, beginning on postnatal day 28 (PND28) in mice, led to significant impairment in long-term memory (while short-term memory remained unaffected) at PND42. Notably, this dysfunction persisted into adulthood at PND85. The specific impairment observed in long-term memory was elucidated through histopathological alterations in hippocampal neurogenesis, as evidenced by bromodeoxyuridine (BrdU) signals, observed both at PND42 and PND85. Furthermore, the hippocampal region exhibited significantly diminished protein expressions of astrocytes, characterized by lowered levels of aquaporin 4 (AQP4), a representative molecule involved in brain clearance processes, and reduced protein expressions of brain-derived neurotrophic factors. In conclusion, we have presented experimental evidence indicating that sleep deficiency-related impairment of long-term memory in adolescence can endure into adulthood. The corresponding mechanisms may indicate that the modification of astrocyte-related molecules has led to changes in hippocampal neurogenesis.
Collapse
Affiliation(s)
- Ji-Yun Kang
- Institute of Bioscience & Integrative Medicine, Daejeon Hospital of Daejeon University, Daejeon, South Korea
| | - Jin-Seok Lee
- Institute of Bioscience & Integrative Medicine, Daejeon Hospital of Daejeon University, Daejeon, South Korea
- Research Center for CFS/ME, Daejeon Hospital of Daejeon University, Daejeon, Republic of Korea
| | - Jing-Hua Wang
- Institute of Bioscience & Integrative Medicine, Daejeon Hospital of Daejeon University, Daejeon, South Korea
- Research Center for CFS/ME, Daejeon Hospital of Daejeon University, Daejeon, Republic of Korea
| | - Chang-Gue Son
- Institute of Bioscience & Integrative Medicine, Daejeon Hospital of Daejeon University, Daejeon, South Korea
- Research Center for CFS/ME, Daejeon Hospital of Daejeon University, Daejeon, Republic of Korea
| |
Collapse
|
23
|
Jurcau MC, Jurcau A, Cristian A, Hogea VO, Diaconu RG, Nunkoo VS. Inflammaging and Brain Aging. Int J Mol Sci 2024; 25:10535. [PMID: 39408862 PMCID: PMC11476611 DOI: 10.3390/ijms251910535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Progress made by the medical community in increasing lifespans comes with the costs of increasing the incidence and prevalence of age-related diseases, neurodegenerative ones included. Aging is associated with a series of morphological changes at the tissue and cellular levels in the brain, as well as impairments in signaling pathways and gene transcription, which lead to synaptic dysfunction and cognitive decline. Although we are not able to pinpoint the exact differences between healthy aging and neurodegeneration, research increasingly highlights the involvement of neuroinflammation and chronic systemic inflammation (inflammaging) in the development of age-associated impairments via a series of pathogenic cascades, triggered by dysfunctions of the circadian clock, gut dysbiosis, immunosenescence, or impaired cholinergic signaling. In addition, gender differences in the susceptibility and course of neurodegeneration that appear to be mediated by glial cells emphasize the need for future research in this area and an individualized therapeutic approach. Although rejuvenation research is still in its very early infancy, accumulated knowledge on the various signaling pathways involved in promoting cellular senescence opens the perspective of interfering with these pathways and preventing or delaying senescence.
Collapse
Affiliation(s)
| | - Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, University of Oradea, 410087 Oradea, Romania
| | - Alexander Cristian
- Department of Psycho-Neurosciences and Rehabilitation, University of Oradea, 410087 Oradea, Romania
| | - Vlad Octavian Hogea
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | | | | |
Collapse
|
24
|
Chaves-Filho A, Eyres C, Blöbaum L, Landwehr A, Tremblay MÈ. The emerging neuroimmune hypothesis of bipolar disorder: An updated overview of neuroimmune and microglial findings. J Neurochem 2024; 168:1780-1816. [PMID: 38504593 DOI: 10.1111/jnc.16098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/21/2024]
Abstract
Bipolar disorder (BD) is a severe and multifactorial disease, with onset usually in young adulthood, which follows a progressive course throughout life. Replicated epidemiological studies have suggested inflammatory mechanisms and neuroimmune risk factors as primary contributors to the onset and development of BD. While not all patients display overt markers of inflammation, significant evidence suggests that aberrant immune signaling contributes to all stages of the disease and seems to be mood phase dependent, likely explaining the heterogeneity of findings observed in this population. As the brain's immune cells, microglia orchestrate the brain's immune response and play a critical role in maintaining the brain's health across the lifespan. Microglia are also highly sensitive to environmental changes and respond to physiological and pathological events by adapting their functions, structure, and molecular expression. Recently, it has been highlighted that instead of a single population of cells, microglia comprise a heterogeneous community with specialized states adjusted according to the local molecular cues and intercellular interactions. Early evidence has highlighted the contribution of microglia to BD neuropathology, notably for severe outcomes, such as suicidality. However, the roles and diversity of microglial states in this disease are still largely undermined. This review brings an updated overview of current literature on the contribution of neuroimmune risk factors for the onset and progression of BD, the most prominent neuroimmune abnormalities (including biomarker, neuroimaging, ex vivo studies) and the most recent findings of microglial involvement in BD neuropathology. Combining these different shreds of evidence, we aim to propose a unifying hypothesis for BD pathophysiology centered on neuroimmune abnormalities and microglia. Also, we highlight the urgent need to apply novel multi-system biology approaches to characterize the diversity of microglial states and functions involved in this enigmatic disorder, which can open bright perspectives for novel biomarkers and therapeutic discoveries.
Collapse
Affiliation(s)
- Adriano Chaves-Filho
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- Women Health Research Institute, Vancouver, British Columbia, Canada
- Brain Health Cluster at the Institute on Aging & Lifelong Health (IALH), Victoria, British Columbia, Canada
| | - Capri Eyres
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Leonie Blöbaum
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Antonia Landwehr
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- Women Health Research Institute, Vancouver, British Columbia, Canada
- Brain Health Cluster at the Institute on Aging & Lifelong Health (IALH), Victoria, British Columbia, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Neurology and Neurosurgery Department, McGill University, Montréal, Quebec, Canada
- Department of Molecular Medicine, Université Laval, Québec City, Quebec, Canada
| |
Collapse
|
25
|
Zou J, McNair E, DeCastro S, Lyons SP, Mordant A, Herring LE, Vetreno RP, Coleman LG. Microglia either promote or restrain TRAIL-mediated excitotoxicity caused by Aβ 1-42 oligomers. J Neuroinflammation 2024; 21:215. [PMID: 39218898 PMCID: PMC11367981 DOI: 10.1186/s12974-024-03208-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) features progressive neurodegeneration and microglial activation that results in dementia and cognitive decline. The release of soluble amyloid (Aβ) oligomers into the extracellular space is an early feature of AD pathology. This can promote excitotoxicity and microglial activation. Microglia can adopt several activation states with various functional outcomes. Protective microglial activation states have been identified in response to Aβ plaque pathology in vivo. However, the role of microglia and immune mediators in neurotoxicity induced by soluble Aβ oligomers is unclear. Further, there remains a need to identify druggable molecular targets that promote protective microglial states to slow or prevent the progression of AD. METHODS Hippocampal entorhinal brain slice culture (HEBSC) was employed to study mechanisms of Aβ1-42 oligomer-induced neurotoxicity as well as the role of microglia. The roles of glutamate hyperexcitation and immune signaling in Aβ-induced neurotoxicity were assessed using MK801 and neutralizing antibodies to the TNF-related apoptosis-inducing ligand (TRAIL) respectively. Microglial activation state was manipulated using Gi-hM4di designer receptor exclusively activated by designer drugs (DREADDs), microglial depletion with the colony-stimulating factor 1 receptor (CSF1R) antagonist PLX3397, and microglial repopulation (PLX3397 withdrawal). Proteomic changes were assessed by LC-MS/MS in microglia isolated from control, repopulated, or Aβ-treated HEBSCs. RESULTS Neurotoxicity induced by soluble Aβ1-42 oligomers involves glutamatergic hyperexcitation caused by the proinflammatory mediator and death receptor ligand TRAIL. Microglia were found to have the ability to both promote and restrain Aβ-induced toxicity. Induction of microglial Gi-signaling with hM4di to prevent pro-inflammatory activation blunted Aβ neurotoxicity, while microglial depletion with CSF1R antagonism worsened neurotoxicity caused by Aβ as well as TRAIL. HEBSCs with repopulated microglia, however, showed a near complete resistance to Aβ-induced neurotoxicity. Comparison of microglial proteomes revealed that repopulated microglia have a baseline anti-inflammatory and trophic phenotype with a predicted pathway activation that is nearly opposite that of Aβ-exposed microglia. mTORC2 and IRF7 were identified as potential targets for intervention. CONCLUSION Microglia are key mediators of both protection and neurodegeneration in response to Aβ. Polarizing microglia toward a protective state could be used as a preventative strategy against Aβ-induced neurotoxicity.
Collapse
Affiliation(s)
- Jian Zou
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Elizabeth McNair
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Sagan DeCastro
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Scott P Lyons
- Department of Pharmacology, UNC Proteomics Core, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Angie Mordant
- Department of Pharmacology, UNC Proteomics Core, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Laura E Herring
- Department of Pharmacology, UNC Proteomics Core, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Ryan P Vetreno
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Leon G Coleman
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA.
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
26
|
Subramani M, Lambrecht B, Ahmad I. Human microglia-derived proinflammatory cytokines facilitate human retinal ganglion cell development and regeneration. Stem Cell Reports 2024; 19:1092-1106. [PMID: 39059376 PMCID: PMC11368696 DOI: 10.1016/j.stemcr.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/28/2024] Open
Abstract
Microglia (μG), the resident immune cells in the central nervous system, surveil the parenchyma to maintain the structural and functional homeostasis of neurons. Besides, they influence neurogenesis and synaptogenesis through complement-mediated phagocytosis. Emerging evidence suggests that μG may also influence development through proinflammatory cytokines. Here, we examined the premise that tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β), the two most prominent components of the μG secretome, influence retinal development, specifically the morphological and functional differentiation of human retinal ganglion cells (hRGCs). Using controlled generation of hRGCs and human μG (hμG) from pluripotent stem cells, we demonstrate that TNF-α and IL-1β secreted by unchallenged hμG did not influence hRGC generation. However, their presence significantly facilitated neuritogenesis along with the basal function of hRGCs, which involved the recruitment of the AKT/mTOR pathway. We present ex vivo evidence that proinflammatory cytokines may play an important role in the morphological and physiological maturation of hRGCs, which may be recapitulated for regeneration.
Collapse
Affiliation(s)
- Murali Subramani
- Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, Omaha, NE, USA
| | - Brandon Lambrecht
- Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, Omaha, NE, USA
| | - Iqbal Ahmad
- Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
27
|
Sierra A, Miron VE, Paolicelli RC, Ransohoff RM. Microglia in Health and Diseases: Integrative Hubs of the Central Nervous System (CNS). Cold Spring Harb Perspect Biol 2024; 16:a041366. [PMID: 38438189 PMCID: PMC11293550 DOI: 10.1101/cshperspect.a041366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Microglia are usually referred to as "the innate immune cells of the brain," "the resident macrophages of the central nervous system" (CNS), or "CNS parenchymal macrophages." These labels allude to their inherent immune function, related to their macrophage lineage. However, beyond their classic innate immune responses, microglia also play physiological roles crucial for proper brain development and maintenance of adult brain homeostasis. Microglia sense both external and local stimuli through a variety of surface receptors. Thus, they might serve as integrative hubs at the interface between the external environment and the CNS, able to decode, filter, and buffer cues from outside, with the aim of preserving and maintaining brain homeostasis. In this perspective, we will cast a critical look at how these multiple microglial functions are acquired and coordinated, and we will speculate on their impact on human brain physiology and pathology.
Collapse
Affiliation(s)
- Amanda Sierra
- Achucarro Basque Center for Neuroscience, Glial Cell Biology Laboratory, Science Park of UPV/EHU, E-48940 Leioa, Bizkaia, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country EHU/UPV, 48940 Leioa, Spain
- Ikerbasque Foundation, Bilbao 48009, Spain
| | - Veronique E Miron
- BARLO Multiple Sclerosis Centre, Keenan Research Centre for Biomedical Science at St. Michael's Hospital, Toronto M5B 1T8, Canada
- Department of Immunology, University of Toronto, Toronto M5S 1A8, Canada
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4TJ, United Kingdom
| | - Rosa C Paolicelli
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, CH-1005 Lausanne, Switzerland
| | | |
Collapse
|
28
|
Alonso M, Petit AC, Lledo PM. The impact of adult neurogenesis on affective functions: of mice and men. Mol Psychiatry 2024; 29:2527-2542. [PMID: 38499657 DOI: 10.1038/s41380-024-02504-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/20/2024]
Abstract
In most mammals, new neurons are not only produced during embryogenesis but also after birth. Soon after adult neurogenesis was discovered, the influence of recruiting new neurons on cognitive functions, especially on memory, was documented. Likewise, the late process of neuronal production also contributes to affective functions, but this outcome was recognized with more difficulty. This review covers hypes and hopes of discovering the influence of newly-generated neurons on brain circuits devoted to affective functions. If the possibility of integrating new neurons into the adult brain is a commonly accepted faculty in the realm of mammals, the reluctance is strong when it comes to translating this concept to humans. Compiling data suggest now that new neurons are derived not only from stem cells, but also from a population of neuroblasts displaying a protracted maturation and ready to be engaged in adult brain circuits, under specific signals. Here, we discuss the significance of recruiting new neurons in the adult brain circuits, specifically in the context of affective outcomes. We also discuss the fact that adult neurogenesis could be the ultimate cellular process that integrates elements from both the internal and external environment to adjust brain functions. While we must be critical and beware of the unreal promises that Science could generate sometimes, it is important to continue exploring the potential of neural recruitment in adult primates. Reporting adult neurogenesis in humankind contributes to a new vision of humans as mammals whose brain continues to develop throughout life. This peculiar faculty could one day become the target of treatment for mental health, cognitive disorders, and elderly-associated diseases. The vision of an adult brain which never stops integrating new neurons is a real game changer for designing new therapeutic interventions to treat mental disorders associated with substantial morbidity, mortality, and social costs.
Collapse
Affiliation(s)
- Mariana Alonso
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Perception and Action Unit, F-75015, Paris, France
| | - Anne-Cécile Petit
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Perception and Action Unit, F-75015, Paris, France
- Pôle Hospitalo-Universitaire Psychiatrie Paris 15, GHU Paris Psychiatry and Neurosciences, Hôpital Sainte-Anne, Paris, France
| | - Pierre-Marie Lledo
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Perception and Action Unit, F-75015, Paris, France.
| |
Collapse
|
29
|
Głowacka P, Oszajca K, Pudlarz A, Szemraj J, Witusik-Perkowska M. Postbiotics as Molecules Targeting Cellular Events of Aging Brain-The Role in Pathogenesis, Prophylaxis and Treatment of Neurodegenerative Diseases. Nutrients 2024; 16:2244. [PMID: 39064687 PMCID: PMC11279795 DOI: 10.3390/nu16142244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Aging is the most prominent risk factor for neurodegeneration occurrence. The most common neurodegenerative diseases (NDs), Alzheimer's (AD) and Parkinson's (PD) diseases, are characterized by the incidence of proteinopathy, abnormal activation of glial cells, oxidative stress, neuroinflammation, impaired autophagy and cellular senescence excessive for the patient's age. Moreover, mitochondrial disfunction, epigenetic alterations and neurogenesis inhibition, together with increased blood-brain barrier permeability and gut dysbiosis, have been linked to ND pathogenesis. Since NDs still lack curative treatment, recent research has sought therapeutic options in restoring gut microbiota and supplementing probiotic bacteria-derived metabolites with beneficial action to the host-so called postbiotics. The current review focuses on literature explaining cellular mechanisms involved in ND pathogenesis and research addressing the impact that postbiotics as a whole mixture and particular metabolites, such as short-chain fatty acids (SCFAs), lactate, polyamines, polyphenols, tryptophan metabolites, exopolysaccharides and bacterial extracellular vesicles, have on the ageing-associated processes underlying ND occurrence. The review also discusses the issue of implementing postbiotics into ND prophylaxis and therapy, depicting them as compounds addressing senescence-triggered dysfunctions that are worth translating from bench to pharmaceutical market in response to "silver consumers" demands.
Collapse
Affiliation(s)
- Pola Głowacka
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland; (P.G.); (K.O.); (A.P.); (J.S.)
- International Doctoral School, Medical University of Lodz, 90-419 Lodz, Poland
| | - Katarzyna Oszajca
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland; (P.G.); (K.O.); (A.P.); (J.S.)
| | - Agnieszka Pudlarz
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland; (P.G.); (K.O.); (A.P.); (J.S.)
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland; (P.G.); (K.O.); (A.P.); (J.S.)
| | - Monika Witusik-Perkowska
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland; (P.G.); (K.O.); (A.P.); (J.S.)
| |
Collapse
|
30
|
Sahebi K, Foroozand H, Amirsoleymani M, Eslamzadeh S, Negahdaripour M, Tajbakhsh A, Rahimi Jaberi A, Savardashtaki A. Advancing stroke recovery: unlocking the potential of cellular dynamics in stroke recovery. Cell Death Discov 2024; 10:321. [PMID: 38992073 PMCID: PMC11239950 DOI: 10.1038/s41420-024-02049-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 07/13/2024] Open
Abstract
Stroke stands as a predominant cause of mortality and morbidity worldwide, and there is a pressing need for effective therapies to improve outcomes and enhance the quality of life for stroke survivors. In this line, effective efferocytosis, the clearance of apoptotic cells, plays a crucial role in neuroprotection and immunoregulation. This process involves specialized phagocytes known as "professional phagocytes" and consists of four steps: "Find-Me," "Eat-Me," engulfment/digestion, and anti-inflammatory responses. Impaired efferocytosis can lead to secondary necrosis and inflammation, resulting in adverse outcomes following brain pathologies. Enhancing efferocytosis presents a potential avenue for improving post-stroke recovery. Several therapeutic targets have been identified, including osteopontin, cysteinyl leukotriene 2 receptor, the µ opioid receptor antagonist β-funaltrexamine, and PPARγ and RXR agonists. Ferroptosis, defined as iron-dependent cell death, is now emerging as a novel target to attenuate post-stroke tissue damage and neuronal loss. Additionally, several biomarkers, most importantly CD163, may serve as potential biomarkers and therapeutic targets for acute ischemic stroke, aiding in stroke diagnosis and prognosis. Non-pharmacological approaches involve physical rehabilitation, hypoxia, and hypothermia. Mitochondrial dysfunction is now recognized as a major contributor to the poor outcomes of brain stroke, and medications targeting mitochondria may exhibit beneficial effects. These strategies aim to polarize efferocytes toward an anti-inflammatory phenotype, limit the ingestion of distressed but viable neurons, and stimulate efferocytosis in the late phase of stroke to enhance post-stroke recovery. These findings highlight promising directions for future research and development of effective stroke recovery therapies.
Collapse
Affiliation(s)
- Keivan Sahebi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Foroozand
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Saghi Eslamzadeh
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Abbas Rahimi Jaberi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
31
|
Crisci I, Bonzano S, Nicolas Z, Dallorto E, Peretto P, Krezel W, De Marchis S. Tamoxifen exerts direct and microglia-mediated effects preventing neuroinflammatory changes in the adult mouse hippocampal neurogenic niche. Glia 2024; 72:1273-1289. [PMID: 38515286 DOI: 10.1002/glia.24526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 03/23/2024]
Abstract
Tamoxifen-inducible systems are widely used in research to control Cre-mediated gene deletion in genetically modified animals. Beyond Cre activation, tamoxifen also exerts off-target effects, whose consequences are still poorly addressed. Here, we investigated the impact of tamoxifen on lipopolysaccharide (LPS)-induced neuroinflammatory responses, focusing on the neurogenic activity in the adult mouse dentate gyrus. We demonstrated that a four-day LPS treatment led to an increase in microglia, astrocytes and radial glial cells with concomitant reduction of newborn neurons. These effects were counteracted by a two-day tamoxifen pre-treatment. Through selective microglia depletion, we elucidated that both LPS and tamoxifen influenced astrogliogenesis via microglia mediated mechanisms, while the effects on neurogenesis persisted even in a microglia-depleted environment. Notably, changes in radial glial cells resulted from a combination of microglia-dependent and -independent mechanisms. Overall, our data reveal that tamoxifen treatment per se does not alter the balance between adult neurogenesis and astrogliogenesis but does modulate cellular responses to inflammatory stimuli exerting a protective role within the adult hippocampal neurogenic niche.
Collapse
Affiliation(s)
- Isabella Crisci
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
- NICO-Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, Italy
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Sara Bonzano
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
- NICO-Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, Italy
| | - Zinter Nicolas
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Eleonora Dallorto
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
- NICO-Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, Italy
| | - Paolo Peretto
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
- NICO-Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, Italy
| | - Wojciech Krezel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Silvia De Marchis
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
- NICO-Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, Italy
| |
Collapse
|
32
|
Chauquet S, Willis EF, Grice L, Harley SBR, Powell JE, Wray NR, Nguyen Q, Ruitenberg MJ, Shah S, Vukovic J. Exercise rejuvenates microglia and reverses T cell accumulation in the aged female mouse brain. Aging Cell 2024; 23:e14172. [PMID: 38747044 PMCID: PMC11258432 DOI: 10.1111/acel.14172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/16/2024] [Accepted: 04/01/2024] [Indexed: 07/21/2024] Open
Abstract
Slowing and/or reversing brain ageing may alleviate cognitive impairments. Previous studies have found that exercise may mitigate cognitive decline, but the mechanisms underlying this remain largely unclear. Here we provide unbiased analyses of single-cell RNA sequencing data, showing the impacts of exercise and ageing on specific cell types in the mouse hippocampus. We demonstrate that exercise has a profound and selective effect on aged microglia, reverting their gene expression signature to that of young microglia. Pharmacologic depletion of microglia further demonstrated that these cells are required for the stimulatory effects of exercise on hippocampal neurogenesis but not cognition. Strikingly, allowing 18-month-old mice access to a running wheel did by and large also prevent and/or revert T cell presence in the ageing hippocampus. Taken together, our data highlight the profound impact of exercise in rejuvenating aged microglia, associated pro-neurogenic effects and on peripheral immune cell presence in the ageing female mouse brain.
Collapse
Affiliation(s)
- Solal Chauquet
- Institute for Molecular Bioscience, the University of QueenslandSaint LuciaQueenslandAustralia
| | - Emily F. Willis
- School of Biomedical Sciences, Faculty of MedicineThe University of QueenslandSaint LuciaQueenslandAustralia
| | - Laura Grice
- Institute for Molecular Bioscience, the University of QueenslandSaint LuciaQueenslandAustralia
| | - Samuel B. R. Harley
- Queensland Brain Institute, the University of QueenslandSaint LuciaQueenslandAustralia
| | - Joseph E. Powell
- Institute for Molecular Bioscience, the University of QueenslandSaint LuciaQueenslandAustralia
| | - Naomi R. Wray
- Institute for Molecular Bioscience, the University of QueenslandSaint LuciaQueenslandAustralia
- Department of PsychiatryUniversity of OxfordOxfordUK
- Oxford Big Data Institute, Li Ka Shing Centre for Health Information and DiscoveryUniversity of OxfordOxfordUK
| | - Quan Nguyen
- Institute for Molecular Bioscience, the University of QueenslandSaint LuciaQueenslandAustralia
| | - Marc J. Ruitenberg
- School of Biomedical Sciences, Faculty of MedicineThe University of QueenslandSaint LuciaQueenslandAustralia
| | - Sonia Shah
- Institute for Molecular Bioscience, the University of QueenslandSaint LuciaQueenslandAustralia
| | - Jana Vukovic
- School of Biomedical Sciences, Faculty of MedicineThe University of QueenslandSaint LuciaQueenslandAustralia
- Queensland Brain Institute, the University of QueenslandSaint LuciaQueenslandAustralia
| |
Collapse
|
33
|
Li H, Zhuang Y, Zhang B, Xu X, Liu B. Application of Lineage Tracing in Central Nervous System Development and Regeneration. Mol Biotechnol 2024; 66:1552-1562. [PMID: 37335434 PMCID: PMC11217125 DOI: 10.1007/s12033-023-00769-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/09/2023] [Indexed: 06/21/2023]
Abstract
The central nervous system (CNS) is a complicated neural network. The origin and evolution of functional neurons and glia cells remain unclear, as do the cellular alterations that occur during the course of cerebral disease rehabilitation. Lineage tracing is a valuable method for tracing specific cells and achieving a better understanding of the CNS. Recently, various technological breakthroughs have been made in lineage tracing, such as the application of various combinations of fluorescent reporters and advances in barcode technology. The development of lineage tracing has given us a deeper understanding of the normal physiology of the CNS, especially the pathological processes. In this review, we summarize these advances of lineage tracing and their applications in CNS. We focus on the use of lineage tracing techniques to elucidate the process CNS development and especially the mechanism of injury repair. Deep understanding of the central nervous system will help us to use existing technologies to diagnose and treat diseases.
Collapse
Affiliation(s)
- Hao Li
- Department of Neurosurgery, Beijing Tian tan Hospital, Capital Medical University, Beijing, China
| | - Yuan Zhuang
- Department of Neurosurgery, Beijing Tian tan Hospital, Capital Medical University, Beijing, China
| | - Bin Zhang
- Department of Intensive Care Unit, Beijing Tian tan Hospital, Capital Medical University, Beijing, China
| | - Xiaojian Xu
- Beijing Key Laboratory of Central Nervous System Injury, Department of Neurotrauma, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Baiyun Liu
- Department of Neurosurgery, Beijing Tian tan Hospital, Capital Medical University, Beijing, China.
- Beijing Key Laboratory of Central Nervous System Injury, Department of Neurotrauma, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
- Center for Nerve Injury and Repair, Beijing Institute of Brain Disorders, Beijing, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
| |
Collapse
|
34
|
Bedolla A, Wegman E, Weed M, Stevens MK, Ware K, Paranjpe A, Alkhimovitch A, Ifergan I, Taranov A, Peter JD, Gonzalez RMS, Robinson JE, McClain L, Roskin KM, Greig NH, Luo Y. Adult microglial TGFβ1 is required for microglia homeostasis via an autocrine mechanism to maintain cognitive function in mice. Nat Commun 2024; 15:5306. [PMID: 38906887 PMCID: PMC11192737 DOI: 10.1038/s41467-024-49596-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/11/2024] [Indexed: 06/23/2024] Open
Abstract
While TGF-β signaling is essential for microglial function, the cellular source of TGF-β1 ligand and its spatial regulation remains unclear in the adult CNS. Our data supports that microglia but not astrocytes or neurons are the primary producers of TGF-β1 ligands needed for microglial homeostasis. Microglia-Tgfb1 KO leads to the activation of microglia featuring a dyshomeostatic transcriptome that resembles disease-associated, injury-associated, and aged microglia, suggesting microglial self-produced TGF-β1 ligands are important in the adult CNS. Astrocytes in MG-Tgfb1 inducible (i)KO mice show a transcriptome profile that is closely aligned with an LPS-associated astrocyte profile. Additionally, using sparse mosaic single-cell microglia KO of TGF-β1 ligand we established an autocrine mechanism for signaling. Here we show that MG-Tgfb1 iKO mice present cognitive deficits, supporting that precise spatial regulation of TGF-β1 ligand derived from microglia is required for the maintenance of brain homeostasis and normal cognitive function in the adult brain.
Collapse
Affiliation(s)
- Alicia Bedolla
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH, USA
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, USA
| | - Elliot Wegman
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH, USA
| | - Max Weed
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH, USA
| | | | - Kierra Ware
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH, USA
| | - Aditi Paranjpe
- Information Services for Research, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Anastasia Alkhimovitch
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH, USA
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Igal Ifergan
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH, USA
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, USA
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Aleksandr Taranov
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH, USA
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, USA
| | - Joshua D Peter
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH, USA
| | - Rosa Maria Salazar Gonzalez
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, US
| | - J Elliott Robinson
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, US
| | - Lucas McClain
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH, USA
| | - Krishna M Roskin
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, US
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Nigel H Greig
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Yu Luo
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH, USA.
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, USA.
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
35
|
Marin-Rodero M, Reyes EC, Walker AJ, Jayewickreme T, Pinho-Ribeiro FA, Richardson Q, Jackson R, Chiu IM, Benoist C, Stevens B, Trejo JL, Mathis D. The meninges host a unique compartment of regulatory T cells that bulwarks adult hippocampal neurogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599387. [PMID: 38948783 PMCID: PMC11212874 DOI: 10.1101/2024.06.17.599387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Our knowledge about the meningeal immune system has recently burgeoned, particularly our understanding of how innate and adaptive effector cells are mobilized to meet brain challenges. However, information on how meningeal immunocytes guard brain homeostasis in healthy individuals remains sparse. This study highlights the heterogeneous and polyfunctional regulatory-T (Treg) cell compartment in the meninges. A Treg subtype specialized in controlling Th1-cell responses and another known to control responses in B-cell follicles were substantial components of this compartment, foretelling that punctual Treg-cell ablation rapidly unleashed interferon-gamma production by meningeal lymphocytes, unlocked their access to the brain parenchyma, and altered meningeal B-cell profiles. Distally, the hippocampus assumed a reactive state, with morphological and transcriptional changes in multiple glial-cell types; within the dentate gyrus, neural stem cells showed exacerbated death and desisted from further differentiation, associated with inhibition of spatial-reference memory. Thus, meningeal Treg cells are a multifaceted bulwark to brain homeostasis at steady-state. One sentence summary A distinct population of regulatory T cells in the murine meninges safeguards homeostasis by keeping local interferon-γ-producing lymphocytes in check, thereby preventing their invasion of the parenchyma, activation of hippocampal glial cells, death of neural stem cells, and memory decay.
Collapse
|
36
|
Haniff ZR, Bocharova M, Mantingh T, Rucker JJ, Velayudhan L, Taylor DM, Young AH, Aarsland D, Vernon AC, Thuret S. Psilocybin for dementia prevention? The potential role of psilocybin to alter mechanisms associated with major depression and neurodegenerative diseases. Pharmacol Ther 2024; 258:108641. [PMID: 38583670 PMCID: PMC11847495 DOI: 10.1016/j.pharmthera.2024.108641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Major depression is an established risk factor for subsequent dementia, and depression in late life may also represent a prodromal state of dementia. Considering current challenges in the clinical development of disease modifying therapies for dementia, the focus of research is shifting towards prevention and modification of risk factors to alter the neurodegenerative disease trajectory. Understanding mechanistic commonalities underlying affective symptoms and cognitive decline may reveal biomarkers to aid early identification of those at risk of progressing to dementia during the preclinical phase of disease, thus allowing for timely intervention. Adult hippocampal neurogenesis (AHN) is a phenomenon that describes the birth of new neurons in the dentate gyrus throughout life and it is associated with spatial learning, memory and mood regulation. Microglia are innate immune system macrophages in the central nervous system that carefully regulate AHN via multiple mechanisms. Disruption in AHN is associated with both dementia and major depression and microgliosis is a hallmark of several neurodegenerative diseases. Emerging evidence suggests that psychedelics promote neuroplasticity, including neurogenesis, and may also be immunomodulatory. In this context, psilocybin, a serotonergic agonist with rapid-acting antidepressant properties has the potential to ameliorate intersecting pathophysiological processes relevant for both major depression and neurodegenerative diseases. In this narrative review, we focus on the evidence base for the effects of psilocybin on adult hippocampal neurogenesis and microglial form and function; which may suggest that psilocybin has the potential to modulate multiple mechanisms of action, and may have implications in altering the progression from major depression to dementia in those at risk.
Collapse
Affiliation(s)
- Zarah R Haniff
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom.
| | - Mariia Bocharova
- Department of Old Age Psychiatry, Division of Academic Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Tim Mantingh
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - James J Rucker
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; South London and Maudsley NHS Foundation Trust, Maudsley Hospital, Denmark Hill, London, United Kingdom
| | - Latha Velayudhan
- Department of Old Age Psychiatry, Division of Academic Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - David M Taylor
- South London and Maudsley NHS Foundation Trust, Maudsley Hospital, Denmark Hill, London, United Kingdom
| | - Allan H Young
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Monks Orchard Road, Beckenham, Kent, United Kingdom
| | - Dag Aarsland
- Department of Old Age Psychiatry, Division of Academic Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; Wolfson Centre for Age Related Diseases, Division of Neuroscience of the Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; Stavanger University Hospital, Stavanger, Norway
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, United Kingdom.
| | - Sandrine Thuret
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom.
| |
Collapse
|
37
|
Iovino L, VanderZwaag J, Kaur G, Khakpour M, Giusti V, Donadon M, Chiavegato A, Tenorio-Lopes L, Greggio E, Tremblay ME, Civiero L. Investigation of microglial diversity in a LRRK2 G2019S mouse model of Parkinson's disease. Neurobiol Dis 2024; 195:106481. [PMID: 38527708 DOI: 10.1016/j.nbd.2024.106481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/15/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024] Open
Abstract
Microglia contribute to the outcomes of various pathological conditions including Parkinson's disease (PD). Microglia are heterogenous, with a variety of states recently identified in aging and neurodegenerative disease models. Here, we delved into the diversity of microglia in a preclinical PD model featuring the G2019S mutation in LRRK2, a known pathological mutation associated with PD. Specifically, we investigated the 'dark microglia' (DM) and the 'disease-associated microglia' (DAM) which present a selective enrichment of CLEC7A expression. In the dorsal striatum - a region affected by PD pathology - extensive ultrastructural features of cellular stress as well as reduced direct cellular contacts, were observed for microglia from old LRRK2 G2019S mice versus controls. In addition, DM were more prevalent while CLEC7A-positive microglia had extensive phagocytic ultrastructural characteristics in the LRRK2 G2019S mice. Furthermore, our findings revealed a higher proportion of DM in LRRK2 G2019S mice, and an increased number of CLEC7A-positive cells with age, exacerbated by the pathological mutation. These CLEC7A-positive cells exhibited a selective enrichment of ameboid morphology and tended to cluster in the affected animals. In summary, we provide novel insights into the occurrence and features of recently defined microglial states, CLEC7A-positive cells and DM, in the context of LRRK2 G2019S PD pathology.
Collapse
Affiliation(s)
- L Iovino
- National Research Council (CNR), Institute of Neuroscience, Pisa, Italy; Stella Maris Foundation, IRCCS, Calambrone, Pisa, Italy
| | - J VanderZwaag
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada
| | - G Kaur
- University of Padua, Department of Biology, Padova, Italy
| | - M Khakpour
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - V Giusti
- University of Padua, Department of Biology, Padova, Italy; San Camillo Hospital srl Società unipersonale, IRCCS, Venice, Italy
| | - M Donadon
- University of Padua, Department of Biology, Padova, Italy
| | - A Chiavegato
- National Research Council (CNR), Neuroscience Institute, Section of Padova, Padova, Italy; Università degli Studi di Padova, Department of Biomedical Sciences, Padova, Italy
| | - L Tenorio-Lopes
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - E Greggio
- University of Padua, Department of Biology, Padova, Italy; University of Padova, Study Center for Neurodegeneration (CESNE), Padova, Italy
| | - M E Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Département de médecine moléculaire, Université Laval, Québec City, QC, Canada; Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada; Neurology and Neurosurgery Department, McGill University, Montreal, QC, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada; Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada; Institute for Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
| | - L Civiero
- University of Padua, Department of Biology, Padova, Italy; San Camillo Hospital srl Società unipersonale, IRCCS, Venice, Italy.
| |
Collapse
|
38
|
Zhang Y, Li S, Li L, Huang H, Fu Z, Hua Z. Inhibition of Microglial Activation Ameliorates Inflammation, Reduced Neurogenesis in the hippocampus, and Impaired Brain Function in a Rat Model of Bilirubin Encephalopathy. J Neuroimmune Pharmacol 2024; 19:23. [PMID: 38775885 DOI: 10.1007/s11481-024-10124-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/13/2024] [Indexed: 01/15/2025]
Abstract
Hyperbilirubinemia is one of the most common occurrence in newborns and is toxic to the brain, resulting in neurological sequelae such as auditory impairment, with potential to evolve to chronic bilirubin encephalopathy and long-term cognitive impairment in adults. In the early postnatal period, neurogenesis is rigorous and neuroinflammation is detrimental to the brain. What are the alterations in neurogenesis and the underlying mechanisms of bilirubin encephalopathy during the early postnatal period? This study found that, there were a reduction in the number of neuronal stem/progenitor cells, an increase in microglia in the dentate gyrus (DG) and an inflammatory state in the hippocampus, characterized by increased levels of IL-6, TNF-α, and IL-1β, as well as a decreased level of IL-10 in a rat model of bilirubin encephalopathy (BE). Furthermore, there was a significant decrease in the number of newborn neurons and the expression of neuronal differentiation-associated genes (NeuroD and Ascl1) in the BE group. Additionally, cognitive impairment was observed in this group. The administration of minocycline, an inhibitor of microglial activation, resulted in a reduction of inflammation in the hippocampus, an enhancement of neurogenesis, an increase in the expression of neuron-related genes (NeuroD and Ascl1), and an improvement in cognitive function in the BE group. These results demonstrate that microglia play a critical role in reduced neurogenesis and impaired brain function resulting from bilirubin encephalopathy model, which could inspire the development of novel pharmaceutical and therapeutic strategies.
Collapse
Affiliation(s)
- Yan Zhang
- Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Siyu Li
- Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Ling Li
- Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Hongmei Huang
- Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Zhou Fu
- Department of Respiratory Diseases, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| | - Ziyu Hua
- Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
39
|
Lénárt N, Cserép C, Császár E, Pósfai B, Dénes Á. Microglia-neuron-vascular interactions in ischemia. Glia 2024; 72:833-856. [PMID: 37964690 DOI: 10.1002/glia.24487] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023]
Abstract
Cerebral ischemia is a devastating condition that results in impaired blood flow in the brain leading to acute brain injury. As the most common form of stroke, occlusion of cerebral arteries leads to a characteristic sequence of pathophysiological changes in the brain tissue. The mechanisms involved, and comorbidities that determine outcome after an ischemic event appear to be highly heterogeneous. On their own, the processes leading to neuronal injury in the absence of sufficient blood supply to meet the metabolic demand of the cells are complex and manifest at different temporal and spatial scales. While the contribution of non-neuronal cells to stroke pathophysiology is increasingly recognized, recent data show that microglia, the main immune cells of the central nervous system parenchyma, play previously unrecognized roles in basic physiological processes beyond their inflammatory functions, which markedly change during ischemic conditions. In this review, we aim to discuss some of the known microglia-neuron-vascular interactions assumed to contribute to the acute and delayed pathologies after cerebral ischemia. Because the mechanisms of neuronal injury have been extensively discussed in several excellent previous reviews, here we focus on some recently explored pathways that may directly or indirectly shape neuronal injury through microglia-related actions. These discoveries suggest that modulating gliovascular processes in different forms of stroke and other neurological disorders might have presently unexplored therapeutic potential in combination with neuroprotective and flow restoration strategies.
Collapse
Affiliation(s)
- Nikolett Lénárt
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Csaba Cserép
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Eszter Császár
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Balázs Pósfai
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Ádám Dénes
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
40
|
Xiao Y, Chen Y, Huang S, He H, Hu N, Lin S, You Z. The reduction of microglial efferocytosis is concomitant with depressive-like behavior in CUMS-treated mice. J Affect Disord 2024; 352:76-86. [PMID: 38360363 DOI: 10.1016/j.jad.2024.02.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND Microglial efferocytosis plays a crucial role in facilitating and sustaining homeostasis in the central nervous system, and it is involved in neuropsychiatric disorders. How microglial efferocytosis is affected under the condition of major depressive disorder (MDD) remains elusive. In this study, we hypothesized that microglial efferocytosis in the hippocampus is impaired in the chronic unpredicted mild stress (CUMS) model of MDD, which is involved in the development of MDD. METHOD Depressive-like behavior in adult male mice was induced by CUMS and confirmed by behavioral tests. Microglial efferocytosis was evaluated using immunofluorescence staining of hippocampal slices and primary microglia co-cultured with apoptotic cells. The protein and mRNA levels of phagocytosis-related molecules and inflammation-related cytokines were detected using western blotting and RT-qPCR, respectively. Annexin V was injected to mimic impairment of microglial efferocytosis. TREM2-siRNA was further used on primary microglia to examine efferocytosis-related signaling pathways. RESULTS Microglia were activated and the expression of proinflammatory cytokines was increased in CUMS mice, while microglial efferocytosis and efferocytosis-related molecules were decreased. Inhibition of the TREM2/Rac1 pathway impaired microglial efferocytosis. Annexin V injection inhibited microglial efferocytosis, increased inflammation in the hippocampus and depressive-like behavior. LIMITATIONS The potential antidepressant effect of the upregulation of the TREM2/Rac1 pathway was not evaluated. CONCLUSIONS Impairment of microglial efferocytosis is involved in the development of depressive-like behavior, with downregulation of the TREM2/Rac1 pathway and increased inflammation. These results may increase our understanding of the pathophysiological mechanisms associated with MDD and provide novel targets for therapeutic interventions.
Collapse
Affiliation(s)
- Ying Xiao
- Laboratory of Aging Research, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Yuxiang Chen
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Shiqi Huang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Hui He
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Nan Hu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Shanyu Lin
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Zili You
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|
41
|
Surala M, Soso-Zdravkovic L, Munro D, Rifat A, Ouk K, Vida I, Priller J, Madry C. Lifelong absence of microglia alters hippocampal glutamatergic networks but not synapse and spine density. EMBO Rep 2024; 25:2348-2374. [PMID: 38589666 PMCID: PMC11094096 DOI: 10.1038/s44319-024-00130-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/10/2024] Open
Abstract
Microglia sculpt developing neural circuits by eliminating excess synapses in a process called synaptic pruning, by removing apoptotic neurons, and by promoting neuronal survival. To elucidate the role of microglia during embryonic and postnatal brain development, we used a mouse model deficient in microglia throughout life by deletion of the fms-intronic regulatory element (FIRE) in the Csf1r locus. Surprisingly, young adult Csf1rΔFIRE/ΔFIRE mice display no changes in excitatory and inhibitory synapse number and spine density of CA1 hippocampal neurons compared with Csf1r+/+ littermates. However, CA1 neurons are less excitable, receive less CA3 excitatory input and show altered synaptic properties, but this does not affect novel object recognition. Cytokine profiling indicates an anti-inflammatory state along with increases in ApoE levels and reactive astrocytes containing synaptic markers in Csf1rΔFIRE/ΔFIRE mice. Notably, these changes in Csf1rΔFIRE/ΔFIRE mice closely resemble the effects of acute microglial depletion in adult mice after normal development. Our findings suggest that microglia are not mandatory for synaptic pruning, and that in their absence pruning can be achieved by other mechanisms.
Collapse
Affiliation(s)
- Michael Surala
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Neurophysiology, Charitéplatz 1, 10117, Berlin, Germany
| | - Luna Soso-Zdravkovic
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Neurophysiology, Charitéplatz 1, 10117, Berlin, Germany
| | - David Munro
- University of Edinburgh and UK Dementia Research Institute, Edinburgh, EH16 4TJ, UK
| | - Ali Rifat
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Neurophysiology, Charitéplatz 1, 10117, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Koliane Ouk
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Neuropsychiatry and Laboratory of Molecular Psychiatry, Charitéplatz 1, 10117, Berlin, Germany
| | - Imre Vida
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute for Integrative Neuroanatomy, Charitéplatz 1, 10117, Berlin, Germany
| | - Josef Priller
- University of Edinburgh and UK Dementia Research Institute, Edinburgh, EH16 4TJ, UK.
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Neuropsychiatry and Laboratory of Molecular Psychiatry, Charitéplatz 1, 10117, Berlin, Germany.
- DZNE Berlin, 10117, Berlin, Germany.
- Department of Psychiatry and Psychotherapy; School of Medicine and Health, Technical University of Munich and German Center for Mental Health (DZPG), 81675, Munich, Germany.
| | - Christian Madry
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Neurophysiology, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
42
|
Coleman LG. From the dust: extracellular vesicles as regulators of development and neuroregeneration. Neural Regen Res 2024; 19:933-934. [PMID: 37862175 PMCID: PMC10749604 DOI: 10.4103/1673-5374.382243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/27/2023] [Accepted: 07/11/2023] [Indexed: 10/22/2023] Open
Affiliation(s)
- Leon G. Coleman
- The University of North Carolina at Chapel Hill, School of Medicine, Department of Pharmacology, Bowles Center for Alcohol Studies, Chapel Hill, NC, USA
| |
Collapse
|
43
|
Muzio L, Perego J. CNS Resident Innate Immune Cells: Guardians of CNS Homeostasis. Int J Mol Sci 2024; 25:4865. [PMID: 38732082 PMCID: PMC11084235 DOI: 10.3390/ijms25094865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Although the CNS has been considered for a long time an immune-privileged organ, it is now well known that both the parenchyma and non-parenchymal tissue (meninges, perivascular space, and choroid plexus) are richly populated in resident immune cells. The advent of more powerful tools for multiplex immunophenotyping, such as single-cell RNA sequencing technique and upscale multiparametric flow and mass spectrometry, helped in discriminating between resident and infiltrating cells and, above all, the different spectrum of phenotypes distinguishing border-associated macrophages. Here, we focus our attention on resident innate immune players and their primary role in both CNS homeostasis and pathological neuroinflammation and neurodegeneration, two key interconnected aspects of the immunopathology of multiple sclerosis.
Collapse
Affiliation(s)
- Luca Muzio
- Neuroimmunology Lab, IRCCS San Raffaele Scientific Institute, Institute of Experimental Neurology, 20133 Milan, Italy;
| | | |
Collapse
|
44
|
Escoubas CC, Dorman LC, Nguyen PT, Lagares-Linares C, Nakajo H, Anderson SR, Barron JJ, Wade SD, Cuevas B, Vainchtein ID, Silva NJ, Guajardo R, Xiao Y, Lidsky PV, Wang EY, Rivera BM, Taloma SE, Kim DK, Kaminskaya E, Nakao-Inoue H, Schwer B, Arnold TD, Molofsky AB, Condello C, Andino R, Nowakowski TJ, Molofsky AV. Type-I-interferon-responsive microglia shape cortical development and behavior. Cell 2024; 187:1936-1954.e24. [PMID: 38490196 PMCID: PMC11015974 DOI: 10.1016/j.cell.2024.02.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/31/2023] [Accepted: 02/19/2024] [Indexed: 03/17/2024]
Abstract
Microglia are brain-resident macrophages that shape neural circuit development and are implicated in neurodevelopmental diseases. Multiple microglial transcriptional states have been defined, but their functional significance is unclear. Here, we identify a type I interferon (IFN-I)-responsive microglial state in the developing somatosensory cortex (postnatal day 5) that is actively engulfing whole neurons. This population expands during cortical remodeling induced by partial whisker deprivation. Global or microglial-specific loss of the IFN-I receptor resulted in microglia with phagolysosomal dysfunction and an accumulation of neurons with nuclear DNA damage. IFN-I gain of function increased neuronal engulfment by microglia in both mouse and zebrafish and restricted the accumulation of DNA-damaged neurons. Finally, IFN-I deficiency resulted in excess cortical excitatory neurons and tactile hypersensitivity. These data define a role for neuron-engulfing microglia during a critical window of brain development and reveal homeostatic functions of a canonical antiviral signaling pathway in the brain.
Collapse
Affiliation(s)
- Caroline C Escoubas
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Leah C Dorman
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Phi T Nguyen
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Christian Lagares-Linares
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Haruna Nakajo
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sarah R Anderson
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jerika J Barron
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sarah D Wade
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Beatriz Cuevas
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ilia D Vainchtein
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nicholas J Silva
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ricardo Guajardo
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yinghong Xiao
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Peter V Lidsky
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ellen Y Wang
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; UCSF SRTP program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Brianna M Rivera
- Institute for Neurodegenerative Diseases/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sunrae E Taloma
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Dong Kyu Kim
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Elizaveta Kaminskaya
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hiromi Nakao-Inoue
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Bjoern Schwer
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Thomas D Arnold
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ari B Molofsky
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Carlo Condello
- Institute for Neurodegenerative Diseases/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Tomasz J Nowakowski
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA; Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Anna V Molofsky
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
45
|
Binder LB, Rosa PB, de Sousa BM, Chagas LS, Dubljević O, Martineau FS, Mottarlini F, Castany S, Morton L, Krstanović F, Tassinari ID, Choconta JL, Pereira-Santos AR, Weinhard L, Pallegar PN, Vahsen BF, Lepiarz-Raba I, Compagnion AC, Lorente-Picón M. Neuro-immune interactions in health and disease: Insights from FENS-Hertie 2022 Winter School. Eur J Neurosci 2024; 59:1977-1992. [PMID: 38311960 DOI: 10.1111/ejn.16262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/16/2023] [Accepted: 01/07/2024] [Indexed: 02/06/2024]
Abstract
In a great partnership, the Federation of European Neuroscience Societies (FENS) and the Hertie Foundation organized the FENS-Hertie 2022 Winter School on 'Neuro-immune interactions in health and disease'. The school selected 27 PhD students and 13 postdoctoral fellows from 20 countries and involved 14 faculty members experts in the field. The Winter School focused on a rising field of research, the interactions between the nervous and both innate and adaptive immune systems under pathological and physiological conditions. A fine-tuned neuro-immune crosstalk is fundamental for healthy development, while disrupted neuro-immune communication might play a role in neurodegeneration, neuroinflammation and aging. However, much is yet to be understood about the underlying mechanisms of these neuro-immune interactions in the healthy brain and under pathological scenarios. In addition to new findings in this emerging field, novel methodologies and animal models were presented to foment research on neuro-immunology. The FENS-Hertie 2022 Winter School provided an insightful knowledge exchange between students and faculty focusing on the latest discoveries in the biology of neuro-immune interactions while fostering great academic and professional opportunities for early-career neuroscientists from around the world.
Collapse
Affiliation(s)
- Luisa B Binder
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada
| | - Priscila B Rosa
- Center for Social and Affective Neuroscience (CSAN), Linköping University, Linköping, Sweden
| | - Bárbara M de Sousa
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, Universidade de Aveiro, Aveiro, Portugal
| | - Luana S Chagas
- Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | - Olga Dubljević
- Department of Neurobiology, Univerzitet u Beogradu Institut za Biološka Istraživanja Siniša Stanković, Institute for Biological Research, Beograd, Republic of Serbia
| | | | - Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
| | - Sílvia Castany
- Center for Social and Affective Neuroscience (CSAN), Linköping University, Linköping, Sweden
| | - Lorena Morton
- Faculty of Medicine, Institute of Inflammation and Neurodegeneration, Otto-von-Guericke University, Magdeburg, Germany
| | - Fran Krstanović
- Faculty of Medicine, Center for Proteomics, University of Rijeka, Rijeka, Croatia
| | - Isadora D Tassinari
- Department of Physiology, Graduate Program in Physiology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Jeiny L Choconta
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ana Raquel Pereira-Santos
- Center for Neuroscience and Cell Biology (CNC), CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | | | | | - Björn F Vahsen
- Nuffield Department of Clinical Neurosciences, Oxford Motor Neuron Disease Centre, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Izabela Lepiarz-Raba
- BRAINCITY: Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology PAS, Warsaw, Poland
| | | | - Marina Lorente-Picón
- Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| |
Collapse
|
46
|
Sheridan SD, Horng JE, Yeh H, McCrea L, Wang J, Fu T, Perlis RH. Loss of Function in the Neurodevelopmental Disease and Schizophrenia-Associated Gene CYFIP1 in Human Microglia-like Cells Supports a Functional Role in Synaptic Engulfment. Biol Psychiatry 2024; 95:676-686. [PMID: 37573007 PMCID: PMC10874584 DOI: 10.1016/j.biopsych.2023.07.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 07/18/2023] [Accepted: 07/23/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND The CYFIP1 gene, located in the neurodevelopmental risk locus 15q11.2, is highly expressed in microglia, but its role in human microglial function as it relates to neurodevelopment is not well understood. METHODS We generated multiple CRISPR (clustered regularly interspaced short palindromic repeat) knockouts of CYFIP1 in patient-derived models of microglia to characterize function and phenotype. Using microglia-like cells reprogrammed from peripheral blood mononuclear cells, we quantified phagocytosis of synaptosomes (isolated and purified synaptic vesicles) from human induced pluripotent stem cell (iPSC)-derived neuronal cultures as an in vitro model of synaptic pruning. We repeated these analyses in human iPSC-derived microglia-like cells derived from 3 isogenic wild-type/knockout line pairs derived from 2 donors and further characterized microglial development and function through morphology and motility. RESULTS CYFIP1 knockout using orthogonal CRISPR constructs in multiple patient-derived cell lines was associated with a statistically significant decrease in synaptic vesicle phagocytosis in microglia-like cell models derived from both peripheral blood mononuclear cells and iPSCs. Morphology was also shifted toward a more ramified profile, and motility was significantly reduced. However, iPSC-CYFIP1 knockout lines retained the ability to differentiate to functional microglia. CONCLUSIONS The changes in microglial phenotype and function due to the loss of function of CYFIP1 observed in this study implicate a potential impact on processes such as synaptic pruning that may contribute to CYFIP1-related neurodevelopmental disorders. Investigating risk genes in a range of central nervous system cell types, not solely neurons, may be required to fully understand the way in which common and rare variants intersect to yield neuropsychiatric disorders.
Collapse
Affiliation(s)
- Steven D Sheridan
- Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Joy E Horng
- Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Hana Yeh
- Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Liam McCrea
- Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Jennifer Wang
- Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Ting Fu
- Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Roy H Perlis
- Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
47
|
Ahmed S, Ma N, Kawanokuchi J, Matsuoka K, Oikawa S, Kobayashi H, Hiraku Y, Murata M. Taurine reduces microglia activation in the brain of aged senescence-accelerated mice by increasing the level of TREM2. Sci Rep 2024; 14:7427. [PMID: 38548872 PMCID: PMC10978912 DOI: 10.1038/s41598-024-57973-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/23/2024] [Indexed: 04/01/2024] Open
Abstract
Alzheimer's disease (AD), a chronic neurodegenerative disorder, is the leading cause of dementia. Over-activated microglia is related to amyloid-beta (Aβ) and phosphorylated tau (phospho-tau) accumulation in the AD brain. Taurine is an amino acid with multiple physiological functions including anti-inflammatory effects, and has been reported to be neuroprotective in AD. However, the role of taurine in microglia-mediated AD remains unclear. Here, we examined the effects of taurine on the brains of senescence-accelerated mouse prone 8 (SAMP8) mice by comparing those administered 1% taurine water with those administered distilled water (DW). We observed increased levels of taurine and taurine transporter (TAUT) in the brains of the taurine-treated mice compared with those of control mice. Immunohistochemical and Western blot analyses revealed that taurine significantly reduced the number of activated microglia, levels of phospho-tau and Aβ deposit in the hippocampus and cortex. Triggering receptors expressed on myeloid cells-2 (TREM2) are known to protect against AD pathogenesis. Taurine upregulated TREM2 expression in the hippocampus and cortex. In conclusion, the present study suggests that taurine treatment may upregulate TREM2 to protect against microglia over-activation by decreasing the accumulation of phospho-tau and Aβ; providing an insight into a novel preventive strategy in AD.
Collapse
Affiliation(s)
- Sharif Ahmed
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
- Department of Environmental Health, University of Fukui School of Medical Sciences, Eiheiji, Fukui, Japan
| | - Ning Ma
- Graduate School of Health Science, Suzuka University of Medical Science, Suzuka, Mie, Japan
- Institute of Traditional Chinese Medicine, Suzuka University of Medical Science, Suzuka, Mie, Japan
- Department of Acupuncture and Moxibution Science, Faculty of Health Science, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Jun Kawanokuchi
- Graduate School of Health Science, Suzuka University of Medical Science, Suzuka, Mie, Japan
- Institute of Traditional Chinese Medicine, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Keiya Matsuoka
- Department of Acupuncture and Moxibution Science, Faculty of Health Science, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Shinji Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Hatasu Kobayashi
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yusuke Hiraku
- Department of Environmental Health, University of Fukui School of Medical Sciences, Eiheiji, Fukui, Japan
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
48
|
Loh JS, Mak WQ, Tan LKS, Ng CX, Chan HH, Yeow SH, Foo JB, Ong YS, How CW, Khaw KY. Microbiota-gut-brain axis and its therapeutic applications in neurodegenerative diseases. Signal Transduct Target Ther 2024; 9:37. [PMID: 38360862 PMCID: PMC10869798 DOI: 10.1038/s41392-024-01743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/02/2024] [Accepted: 01/14/2024] [Indexed: 02/17/2024] Open
Abstract
The human gastrointestinal tract is populated with a diverse microbial community. The vast genetic and metabolic potential of the gut microbiome underpins its ubiquity in nearly every aspect of human biology, including health maintenance, development, aging, and disease. The advent of new sequencing technologies and culture-independent methods has allowed researchers to move beyond correlative studies toward mechanistic explorations to shed light on microbiome-host interactions. Evidence has unveiled the bidirectional communication between the gut microbiome and the central nervous system, referred to as the "microbiota-gut-brain axis". The microbiota-gut-brain axis represents an important regulator of glial functions, making it an actionable target to ameliorate the development and progression of neurodegenerative diseases. In this review, we discuss the mechanisms of the microbiota-gut-brain axis in neurodegenerative diseases. As the gut microbiome provides essential cues to microglia, astrocytes, and oligodendrocytes, we examine the communications between gut microbiota and these glial cells during healthy states and neurodegenerative diseases. Subsequently, we discuss the mechanisms of the microbiota-gut-brain axis in neurodegenerative diseases using a metabolite-centric approach, while also examining the role of gut microbiota-related neurotransmitters and gut hormones. Next, we examine the potential of targeting the intestinal barrier, blood-brain barrier, meninges, and peripheral immune system to counteract glial dysfunction in neurodegeneration. Finally, we conclude by assessing the pre-clinical and clinical evidence of probiotics, prebiotics, and fecal microbiota transplantation in neurodegenerative diseases. A thorough comprehension of the microbiota-gut-brain axis will foster the development of effective therapeutic interventions for the management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jian Sheng Loh
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Wen Qi Mak
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Li Kar Stella Tan
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
- Digital Health & Medical Advancements, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Chu Xin Ng
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Hong Hao Chan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Shiau Hueh Yeow
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
- Digital Health & Medical Advancements, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Yong Sze Ong
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| | - Kooi Yeong Khaw
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
49
|
Rastoldo G, Tighilet B. The Vestibular Nuclei: A Cerebral Reservoir of Stem Cells Involved in Balance Function in Normal and Pathological Conditions. Int J Mol Sci 2024; 25:1422. [PMID: 38338702 PMCID: PMC10855768 DOI: 10.3390/ijms25031422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
In this review, we explore the intriguing realm of neurogenesis in the vestibular nuclei-a critical brainstem region governing balance and spatial orientation. We retrace almost 20 years of research into vestibular neurogenesis, from its discovery in the feline model in 2007 to the recent discovery of a vestibular neural stem cell niche. We explore the reasons why neurogenesis is important in the vestibular nuclei and the triggers for activating the vestibular neurogenic niche. We develop the symbiotic relationship between neurogenesis and gliogenesis to promote vestibular compensation. Finally, we examine the potential impact of reactive neurogenesis on vestibular compensation, highlighting its role in restoring balance through various mechanisms.
Collapse
Affiliation(s)
- Guillaume Rastoldo
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, 13331 Marseille, France;
| | - Brahim Tighilet
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, 13331 Marseille, France;
- GDR Vertige CNRS Unité GDR2074, 13331 Marseille, France
| |
Collapse
|
50
|
Luo Y, Wang Z. The Impact of Microglia on Neurodevelopment and Brain Function in Autism. Biomedicines 2024; 12:210. [PMID: 38255315 PMCID: PMC10813633 DOI: 10.3390/biomedicines12010210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Microglia, as one of the main types of glial cells in the central nervous system (CNS), are widely distributed throughout the brain and spinal cord. The normal number and function of microglia are very important for maintaining homeostasis in the CNS. In recent years, scientists have paid widespread attention to the role of microglia in the CNS. Autism spectrum disorder (ASD) is a highly heterogeneous neurodevelopmental disorder, and patients with ASD have severe deficits in behavior, social skills, and communication. Most previous studies on ASD have focused on neuronal pathological changes, such as increased cell proliferation, accelerated neuronal differentiation, impaired synaptic development, and reduced neuronal spontaneous and synchronous activity. Currently, more and more research has found that microglia, as immune cells, can promote neurogenesis and synaptic pruning to maintain CNS homeostasis. They can usually reduce unnecessary synaptic connections early in life. Some researchers have proposed that many pathological phenotypes of ASD may be caused by microglial abnormalities. Based on this, we summarize recent research on microglia in ASD, focusing on the function of microglia and neurodevelopmental abnormalities. We aim to clarify the essential factors influenced by microglia in ASD and explore the possibility of microglia-related pathways as potential research targets for ASD.
Collapse
Affiliation(s)
- Yuyi Luo
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China;
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Zhengbo Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China;
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| |
Collapse
|