1
|
Das D, Lamothe SM, Wong AA, Baronas VA, Kurata HT. Competitive modulation of K V1.2 gating by LMAN2 and Slc7a5. FASEB J 2024; 38:e70243. [PMID: 39659243 PMCID: PMC11632407 DOI: 10.1096/fj.202401737rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/12/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024]
Abstract
KV1.2 is a prominent ion channel in the CNS, where it regulates neuronal excitability. KV1.2 structure and function are well understood, but there is less consensus on mechanisms of regulation of KV1.2 and other potassium channels by auxiliary proteins. We previously identified novel regulators of KV1.2 by a mass spectrometry approach. The neutral amino acid transporter Slc7a5 causes a dramatic hyperpolarizing shift of channel activation. In contrast, the transmembrane lectin LMAN2 is a recently identified candidate regulator that has the opposite effect on gating: large depolarizing voltages are required to activate KV1.2 channels co-expressed with LMAN2. In this study, we characterized the functional interaction between LMAN2 and Slc7a5 on KV1.2 gating properties and identified key structural elements that underlie sensitivity to each regulator. When LMAN2 and Slc7a5 are expressed together, KV1.2 activation exhibits a bi-modal voltage-dependence, suggesting two distinct populations of channels regulated either by LMAN2 or Slc7a5, but not both. Using a KV1.2:1.5 chimeric approach, we identified specific regions between the S1 to S3 segments of the voltage sensing domain (VSD) that are distinct for either Slc7a5 or LMAN2 sensitivity. By replacing either segment with sequence from KV1.5, modulation by the corresponding regulator was selectively abolished. These results suggest that Slc7a5 and LMAN2 compete for interaction with the KV1.2 voltage sensor, leading to complex voltage-dependence of channel activity when both regulators are present in the cell.
Collapse
Affiliation(s)
- Damayantee Das
- Department of Pharmacology, Alberta Diabetes InstituteUniversity of AlbertaEdmontonAlbertaCanada
| | - Shawn M. Lamothe
- Department of Pharmacology, Alberta Diabetes InstituteUniversity of AlbertaEdmontonAlbertaCanada
| | - Anson A. Wong
- Department of Pharmacology, Alberta Diabetes InstituteUniversity of AlbertaEdmontonAlbertaCanada
| | - Victoria A. Baronas
- Department of Pharmacology, Alberta Diabetes InstituteUniversity of AlbertaEdmontonAlbertaCanada
| | - Harley T. Kurata
- Department of Pharmacology, Alberta Diabetes InstituteUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
2
|
Maraslioglu-Sperber A, Pizzi E, Fisch JO, Kattler K, Ritter T, Friauf E. Molecular and functional profiling of cell diversity and identity in the lateral superior olive, an auditory brainstem center with ascending and descending projections. Front Cell Neurosci 2024; 18:1354520. [PMID: 38846638 PMCID: PMC11153811 DOI: 10.3389/fncel.2024.1354520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/15/2024] [Indexed: 06/09/2024] Open
Abstract
The lateral superior olive (LSO), a prominent integration center in the auditory brainstem, contains a remarkably heterogeneous population of neurons. Ascending neurons, predominantly principal neurons (pLSOs), process interaural level differences for sound localization. Descending neurons (lateral olivocochlear neurons, LOCs) provide feedback into the cochlea and are thought to protect against acoustic overload. The molecular determinants of the neuronal diversity in the LSO are largely unknown. Here, we used patch-seq analysis in mice at postnatal days P10-12 to classify developing LSO neurons according to their functional and molecular profiles. Across the entire sample (n = 86 neurons), genes involved in ATP synthesis were particularly highly expressed, confirming the energy expenditure of auditory neurons. Two clusters were identified, pLSOs and LOCs. They were distinguished by 353 differentially expressed genes (DEGs), most of which were novel for the LSO. Electrophysiological analysis confirmed the transcriptomic clustering. We focused on genes affecting neuronal input-output properties and validated some of them by immunohistochemistry, electrophysiology, and pharmacology. These genes encode proteins such as osteopontin, Kv11.3, and Kvβ3 (pLSO-specific), calcitonin-gene-related peptide (LOC-specific), or Kv7.2 and Kv7.3 (no DEGs). We identified 12 "Super DEGs" and 12 genes showing "Cluster similarity." Collectively, we provide fundamental and comprehensive insights into the molecular composition of individual ascending and descending neurons in the juvenile auditory brainstem and how this may relate to their specific functions, including developmental aspects.
Collapse
Affiliation(s)
- Ayse Maraslioglu-Sperber
- Animal Physiology Group, Department of Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Erika Pizzi
- Animal Physiology Group, Department of Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Jonas O. Fisch
- Animal Physiology Group, Department of Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Kathrin Kattler
- Genetics/Epigenetics Group, Department of Biological Sciences, Saarland University, Saarbrücken, Germany
| | - Tamara Ritter
- Animal Physiology Group, Department of Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Eckhard Friauf
- Animal Physiology Group, Department of Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| |
Collapse
|
3
|
Sakano H, Castle MS, Kundu P. Cochlear Nucleus Transcriptome of a Fragile X Mouse Model Reveals Candidate Genes for Hyperacusis. Laryngoscope 2024; 134:1363-1371. [PMID: 37551886 PMCID: PMC10879919 DOI: 10.1002/lary.30936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 08/09/2023]
Abstract
OBJECTIVE Fragile X Syndrome (FXS) is a hereditary form of autism spectrum disorder. It is caused by a trinucleotide repeat expansion in the Fmr1 gene, leading to a loss of Fragile X Protein (FMRP) expression. The loss of FMRP causes auditory hypersensitivity: FXS patients display hyperacusis and the Fmr1- knock-out (KO) mouse model for FXS exhibits auditory seizures. FMRP is strongly expressed in the cochlear nucleus and other auditory brainstem nuclei. We hypothesize that the Fmr1-KO mouse has altered gene expression in the cochlear nucleus that may contribute to auditory hypersensitivity. METHODS RNA was isolated from cochlear nuclei of Fmr1-KO and WT mice. Using next-generation sequencing (RNA-seq), the transcriptomes of Fmr1-KO mice and WT mice (n = 3 each) were compared and analyzed using gene ontology programs. RESULTS We identified 270 unique, differentially expressed genes between Fmr1-KO and WT cochlear nuclei. Upregulated genes (67%) are enriched in those encoding secreted molecules. Downregulated genes (33%) are enriched in neuronal function, including synaptic pathways, some of which are ideal candidate genes that may contribute to hyperacusis. CONCLUSION The loss of FMRP can affect the expression of genes in the cochlear nucleus that are important for neuronal signaling. One of these, Kcnab2, which encodes a subunit of the Shaker voltage-gated potassium channel, is expressed at an abnormally low level in the Fmr1-KO cochlear nucleus. Kcnab2 and other differentially expressed genes may represent pathways for the development of hyperacusis. Future studies will be aimed at investigating the effects of these altered genes on hyperacusis. LEVEL OF EVIDENCE N/A Laryngoscope, 134:1363-1371, 2024.
Collapse
Affiliation(s)
- Hitomi Sakano
- Department of Otolaryngology, University of Rochester Medical Center, Rochester, New York, USA
- Department of Neuroscience, University of Rochester Medical Center, Rochester, New York, USA
- Center for RNA Biology, University of Rochester, Rochester, New York, USA
| | - Michael S Castle
- Department of Otolaryngology, University of Rochester Medical Center, Rochester, New York, USA
| | - Paromita Kundu
- Department of Otolaryngology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
4
|
Diversification of Potassium Currents in Excitable Cells via Kvβ Proteins. Cells 2022; 11:cells11142230. [PMID: 35883673 PMCID: PMC9317154 DOI: 10.3390/cells11142230] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 12/10/2022] Open
Abstract
Excitable cells of the nervous and cardiovascular systems depend on an assortment of plasmalemmal potassium channels to control diverse cellular functions. Voltage-gated potassium (Kv) channels are central to the feedback control of membrane excitability in these processes due to their activation by depolarized membrane potentials permitting K+ efflux. Accordingly, Kv currents are differentially controlled not only by numerous cellular signaling paradigms that influence channel abundance and shape voltage sensitivity, but also by heteromeric configurations of channel complexes. In this context, we discuss the current knowledge related to how intracellular Kvβ proteins interacting with pore complexes of Shaker-related Kv1 channels may establish a modifiable link between excitability and metabolic state. Past studies in heterologous systems have indicated roles for Kvβ proteins in regulating channel stability, trafficking, subcellular targeting, and gating. More recent works identifying potential in vivo physiologic roles are considered in light of these earlier studies and key gaps in knowledge to be addressed by future research are described.
Collapse
|
5
|
Yee JX, Rastani A, Soden ME. The potassium channel auxiliary subunit Kvβ2 ( Kcnab2) regulates Kv1 channels and dopamine neuron firing. J Neurophysiol 2022; 128:62-72. [PMID: 35788155 PMCID: PMC9273274 DOI: 10.1152/jn.00194.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ion channel complexes typically consist of both pore-forming subunits and auxiliary subunits that do not directly conduct current but can regulate trafficking or alter channel properties. Isolating the role of these auxiliary subunits in neurons has proved difficult due to a lack of specific pharmacological agents and the potential for developmental compensation in constitutive knockout models. Here, we use cell-type-specific viral-mediated CRISPR/Cas9 mutagenesis to target the potassium channel auxiliary subunit Kvβ2 (Kcnab2) in dopamine neurons in the adult mouse brain. We find that mutagenesis of Kcnab2 reduces surface expression of Kv1.2, the primary Kv1 pore-forming subunit expressed in dopamine neurons, and shifts the voltage dependence of inactivation of potassium channel currents toward more hyperpolarized potentials. Loss of Kcnab2 broadens the action potential waveform in spontaneously firing dopamine neurons recorded in slice, reduces the afterhyperpolarization amplitude, and increases spike timing irregularity and excitability, all of which is consistent with a reduction in potassium channel current. Similar effects were observed with mutagenesis of the pore-forming subunit Kv1.2 (Kcna2). These results identify Kv1 currents as important contributors to dopamine neuron firing and demonstrate a role for Kvβ2 subunits in regulating the trafficking and gating properties of these ion channels. Furthermore, they demonstrate the utility of CRISPR-mediated mutagenesis in the study of previously difficult to isolate ion channel subunits.NEW & NOTEWORTHY Here, we utilize CRISPR/Cas9-mediated mutagenesis in dopamine neurons in mice to target the gene encoding Kvβ2, an auxiliary subunit that forms a part of Kv1 channel complexes. We find that the absence of Kvβ2 alters action potential properties by reducing surface expression of pore-forming subunits and shifting the voltage dependence of channel inactivation. This work establishes a new function for Kvβ2 subunits and Kv1 complexes in regulating dopamine neuron activity.
Collapse
Affiliation(s)
- Joshua X. Yee
- Department of Pharmacology, University of Washington, Seattle, Washington
| | - Ariana Rastani
- Department of Pharmacology, University of Washington, Seattle, Washington
| | - Marta E. Soden
- Department of Pharmacology, University of Washington, Seattle, Washington
| |
Collapse
|
6
|
Abstract
K+ channels enable potassium to flow across the membrane with great selectivity. There are four K+ channel families: voltage-gated K (Kv), calcium-activated (KCa), inwardly rectifying K (Kir), and two-pore domain potassium (K2P) channels. All four K+ channels are formed by subunits assembling into a classic tetrameric (4x1P = 4P for the Kv, KCa, and Kir channels) or tetramer-like (2x2P = 4P for the K2P channels) architecture. These subunits can either be the same (homomers) or different (heteromers), conferring great diversity to these channels. They share a highly conserved selectivity filter within the pore but show different gating mechanisms adapted for their function. K+ channels play essential roles in controlling neuronal excitability by shaping action potentials, influencing the resting membrane potential, and responding to diverse physicochemical stimuli, such as a voltage change (Kv), intracellular calcium oscillations (KCa), cellular mediators (Kir), or temperature (K2P).
Collapse
|
7
|
Zangrandi A, Gasparini F, Marti A, Bhalla R, Napoli M, Angelini D, Ghidoni E, Rizzi R. A 9-year neuropsychological report of a patient with LGI1-associated limbic encephalitis. J Clin Exp Neuropsychol 2019; 41:749-759. [PMID: 31142216 DOI: 10.1080/13803395.2019.1617836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Introduction: Anti-leucine-rich glioma-inactivated 1 limbic encephalitis (LGI1-LE) is an autoimmune disorder associated with antibodies to voltage-gated potassium channels (VGKC). It is a non-paraneoplastic and partially reversible encephalitis that can be diagnosed via serological testing. Untreated LGI1-LE can be associated with neurocognitive as well as neuropsychiatric sequelae. Here we report the neuropsychological and clinical profile of a patient with LGI1-LE following three different treatment approaches: plasmapheresis (PA), intravenous immunoglobulin (IVIG), and corticosteroids (CO). Method: We investigated our patient with 10 neuropsychological evaluations obtained over a 9-year follow-up period. Multiple MRI scans, EEG recordings, neurological examinations, and serum tests were also obtained. Results: The neurocognitive profile of our patient was characterized by long-term memory impairment (verbal and visual-spatial), and deficits in aspects of executive functioning and language. Neuropsychiatric symptoms of depression and anxiety were noted intermittently. Conclusions: Non-specific treatment prior to diagnosis had marginal effects on neurocognitive profile, neuropsychiatric symptoms, or control of epileptic seizure. In contrast, specific treatments for LGI1-LE following diagnosis resulted in neurocognitive improvement and epileptic control. Among the three treatments, IVIG and CO had the most beneficial impact on neurocognitive status, likely due to the continuity of administration.
Collapse
Affiliation(s)
- Andrea Zangrandi
- a Clinical Neuropsychology, Cognitive Disorders and Dyslexia Unit, Department of Neuro-Motor Diseases , Azienda Unità Sanitaria Locale - IRCCS Reggio Emilia , Reggio Emilia , Italy
| | - Federico Gasparini
- a Clinical Neuropsychology, Cognitive Disorders and Dyslexia Unit, Department of Neuro-Motor Diseases , Azienda Unità Sanitaria Locale - IRCCS Reggio Emilia , Reggio Emilia , Italy
| | - Alessandro Marti
- a Clinical Neuropsychology, Cognitive Disorders and Dyslexia Unit, Department of Neuro-Motor Diseases , Azienda Unità Sanitaria Locale - IRCCS Reggio Emilia , Reggio Emilia , Italy
| | - Rishi Bhalla
- b Department of Psychiatry , University of British Columbia , Vancouver , Canada
| | - Manuela Napoli
- c Neuroradiology Unit, Department of Diagnostic Imaging , Azienda Unità Sanitaria Locale - IRCCS Reggio Emilia , Reggio Emilia , Italy
| | - Damiano Angelini
- a Clinical Neuropsychology, Cognitive Disorders and Dyslexia Unit, Department of Neuro-Motor Diseases , Azienda Unità Sanitaria Locale - IRCCS Reggio Emilia , Reggio Emilia , Italy
| | - Enrico Ghidoni
- a Clinical Neuropsychology, Cognitive Disorders and Dyslexia Unit, Department of Neuro-Motor Diseases , Azienda Unità Sanitaria Locale - IRCCS Reggio Emilia , Reggio Emilia , Italy
| | - Romana Rizzi
- d Neurology Unit, Department of Neuro-Motor Diseases , Azienda Unità Sanitaria Locale - IRCCS Reggio Emilia , Reggio Emilia , Italy
| |
Collapse
|
8
|
Raph SM, Bhatnagar A, Nystoriak MA. Biochemical and physiological properties of K + channel-associated AKR6A (Kvβ) proteins. Chem Biol Interact 2019; 305:21-27. [PMID: 30926318 DOI: 10.1016/j.cbi.2019.03.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/14/2019] [Accepted: 03/25/2019] [Indexed: 11/16/2022]
Abstract
Voltage-gated potassium (Kv) channels play an essential role in the regulation of membrane excitability and thereby control physiological processes such as cardiac excitability, neural communication, muscle contraction, and hormone secretion. Members of the Kv1 and Kv4 families are known to associate with auxiliary intracellular Kvβ subunits, which belong to the aldo-keto reductase superfamily. Electrophysiological studies have shown that these proteins regulate the gating properties of Kv channels. Although the three gene products encoding Kvβ proteins are functional enzymes in that they catalyze the nicotinamide adenine dinucleotide phosphate (NAD[P]H)-dependent reduction of a wide range of aldehyde and ketone substrates, the physiological role for these proteins and how each subtype may perform unique roles in coupling membrane excitability with cellular metabolic processes remains unclear. Here, we discuss current knowledge of the enzymatic properties of Kvβ proteins from biochemical studies with their described and purported physiological and pathophysiological influences.
Collapse
Affiliation(s)
- Sean M Raph
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Aruni Bhatnagar
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, KY, 40202, USA
| | - Matthew A Nystoriak
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
9
|
mTOR-dependent alterations of Kv1.1 subunit expression in the neuronal subset-specific Pten knockout mouse model of cortical dysplasia with epilepsy. Sci Rep 2018; 8:3568. [PMID: 29476105 PMCID: PMC5824782 DOI: 10.1038/s41598-018-21656-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 02/08/2018] [Indexed: 01/03/2023] Open
Abstract
Cortical dysplasia (CD) is a common cause for intractable epilepsy. Hyperactivation of the mechanistic target of rapamycin (mTOR) pathway has been implicated in CD; however, the mechanisms by which mTOR hyperactivation contribute to the epilepsy phenotype remain elusive. Here, we investigated whether constitutive mTOR hyperactivation in the hippocampus is associated with altered voltage-gated ion channel expression in the neuronal subset-specific Pten knockout (NS-Pten KO) mouse model of CD with epilepsy. We found that the protein levels of Kv1.1, but not Kv1.2, Kv1.4, or Kvβ2, potassium channel subunits were increased, along with altered Kv1.1 distribution, within the hippocampus of NS-Pten KO mice. The aberrant Kv1.1 protein levels were present in young adult (≥postnatal week 6) but not juvenile (≤postnatal week 4) NS-Pten KO mice. No changes in hippocampal Kv1.1 mRNA levels were found between NS-Pten KO and WT mice. Interestingly, mTOR inhibition with rapamycin treatment at early and late stages of the pathology normalized Kv1.1 protein levels in NS-Pten KO mice to WT levels. Together, these studies demonstrate altered Kv1.1 protein expression in association with mTOR hyperactivation in NS-Pten KO mice and suggest a role for mTOR signaling in the modulation of voltage-gated ion channel expression in this model.
Collapse
|
10
|
Misonou H. Precise localizations of voltage-gated sodium and potassium channels in neurons. Dev Neurobiol 2017; 78:271-282. [PMID: 29218789 DOI: 10.1002/dneu.22565] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/01/2017] [Accepted: 12/06/2017] [Indexed: 11/08/2022]
Abstract
Neurons are extremely large and complex cells, and they regulate membrane potentials in multiple subcellular compartments using a variety of ion channels. Voltage-gated sodium (Nav) and potassium (Kv) channels are crucial in regulating neuronal membrane excitability owing to their diversity in subtypes, biophysical properties, and localizations. In particular, specific localizations of Nav and Kv channels in specific membrane compartments are essential to achieve a precise control of local membrane excitability. Recent advancement in super-resolution microscopy further substantiated nanoscale localizations of different ion channels in neuronal membranes. New questions arise from these new lines of evidence regarding how Nav and Kv channels are trafficked to a specific location and maintained against lateral diffusion. In this review, the aim is to summarize current information about ion channel localizations at nanoscopic levels and discuss what we can infer regarding the mechanisms. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 271-282, 2018.
Collapse
Affiliation(s)
- Hiroaki Misonou
- Graduate School of Brain Science, Doshisha University, Kyoto, Japan
| |
Collapse
|
11
|
Almog M, Korngreen A. Is realistic neuronal modeling realistic? J Neurophysiol 2016; 116:2180-2209. [PMID: 27535372 DOI: 10.1152/jn.00360.2016] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/17/2016] [Indexed: 11/22/2022] Open
Abstract
Scientific models are abstractions that aim to explain natural phenomena. A successful model shows how a complex phenomenon arises from relatively simple principles while preserving major physical or biological rules and predicting novel experiments. A model should not be a facsimile of reality; it is an aid for understanding it. Contrary to this basic premise, with the 21st century has come a surge in computational efforts to model biological processes in great detail. Here we discuss the oxymoronic, realistic modeling of single neurons. This rapidly advancing field is driven by the discovery that some neurons don't merely sum their inputs and fire if the sum exceeds some threshold. Thus researchers have asked what are the computational abilities of single neurons and attempted to give answers using realistic models. We briefly review the state of the art of compartmental modeling highlighting recent progress and intrinsic flaws. We then attempt to address two fundamental questions. Practically, can we realistically model single neurons? Philosophically, should we realistically model single neurons? We use layer 5 neocortical pyramidal neurons as a test case to examine these issues. We subject three publically available models of layer 5 pyramidal neurons to three simple computational challenges. Based on their performance and a partial survey of published models, we conclude that current compartmental models are ad hoc, unrealistic models functioning poorly once they are stretched beyond the specific problems for which they were designed. We then attempt to plot possible paths for generating realistic single neuron models.
Collapse
Affiliation(s)
- Mara Almog
- The Leslie and Susan Gonda Interdisciplinary Brain Research Centre, Bar-Ilan University, Ramat Gan, Israel; and.,The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Alon Korngreen
- The Leslie and Susan Gonda Interdisciplinary Brain Research Centre, Bar-Ilan University, Ramat Gan, Israel; and .,The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
12
|
Ovsepian SV, LeBerre M, Steuber V, O'Leary VB, Leibold C, Oliver Dolly J. Distinctive role of KV1.1 subunit in the biology and functions of low threshold K+ channels with implications for neurological disease. Pharmacol Ther 2016; 159:93-101. [DOI: 10.1016/j.pharmthera.2016.01.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Sleep disturbances in voltage-gated potassium channel antibody syndrome. Sleep Med 2015; 21:171-3. [PMID: 26922624 DOI: 10.1016/j.sleep.2015.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/10/2015] [Accepted: 11/16/2015] [Indexed: 01/17/2023]
Abstract
Voltage-gated potassium channels (VGKCs) are a family of membrane proteins responsible for controlling cell membrane potential. The presence of antibodies (Ab) against neuronal VGKC complexes aids in the diagnosis of idiopathic and paraneoplastic autoimmune neurologic disorders. The diagnosis of VGKC Ab-associated encephalopathy (VCKC Ab syndrome) should be suspected in patients with subacute onset of disorientation, confusion, and memory loss in the presence of seizures or a movement disorder. VGKC Ab syndrome may present with sleep-related symptoms, and the purpose of this communication is to alert sleep and neurology clinicians of this still-under-recognized condition. In this case, we are presenting the VGKC Ab syndrome which improved after treatment with solumedrol. The prompt recognition and treatment of this condition may prevent the morbidity associated with cerebral atrophy and the mortality associated with intractable seizures and electrolyte disturbances.
Collapse
|
14
|
D'Adamo MC, Gallenmüller C, Servettini I, Hartl E, Tucker SJ, Arning L, Biskup S, Grottesi A, Guglielmi L, Imbrici P, Bernasconi P, Di Giovanni G, Franciolini F, Catacuzzeno L, Pessia M, Klopstock T. Novel phenotype associated with a mutation in the KCNA1(Kv1.1) gene. Front Physiol 2015; 5:525. [PMID: 25642194 PMCID: PMC4295438 DOI: 10.3389/fphys.2014.00525] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/20/2014] [Indexed: 11/13/2022] Open
Abstract
Episodic ataxia type 1 (EA1) is an autosomal dominant K(+) channelopathy which manifests with short attacks of cerebellar ataxia and dysarthria, and may also show interictal myokymia. Episodes can be triggered by emotional or physical stress, startle response, sudden postural change or fever. Here we describe a 31-year-old man displaying markedly atypical symptoms, including long-lasting attacks of jerking muscle contractions associated with hyperthermia, severe migraine, and a relatively short-sleep phenotype. A single nucleotide change in KCNA1 (c.555C>G) was identified that changes a highly conserved residue (p.C185W) in the first transmembrane segment of the voltage-gated K(+) channel Kv1.1. The patient is heterozygous and the mutation was inherited from his asymptomatic mother. Next generation sequencing revealed no variations in the CACNA1A, CACNB4, KCNC3, KCNJ10, PRRT2 or SCN8A genes of either the patient or mother, except for a benign variant in SLC1A3. Functional analysis of the p.C185W mutation in KCNA1 demonstrated a deleterious dominant-negative phenotype where the remaining current displayed slower activation kinetics, subtle changes in voltage-dependence and faster recovery from slow inactivation. Structural modeling also predicts the C185W mutation to be functionally deleterious. This description of novel clinical features, associated with a Kv1.1 mutation highlights a possibly unrecognized relationship between K(+) channel dysfunction, hyperthermia and migraine in EA1, and suggests that thorough assessments for these symptoms should be carefully considered for all patients affected by EA1.
Collapse
Affiliation(s)
- Maria C D'Adamo
- Section of Physiology and Biochemistry, Department of Experimental Medicine, School of Medicine, University of Perugia Perugia, Italy ; Section of Neurophysiology and Biophysics, Istituto Euro-Mediterraneo di Scienza e Tecnologia Palermo, Italy
| | - Constanze Gallenmüller
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University Munich, Germany ; German Network for Mitochondrial Disorders (mitoNET) Ludwigshafen, Germany ; DZNE - German Center for Neurodegenerative Diseases Munich, Germany
| | - Ilenio Servettini
- Section of Physiology and Biochemistry, Department of Experimental Medicine, School of Medicine, University of Perugia Perugia, Italy
| | - Elisabeth Hartl
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University Munich, Germany
| | - Stephen J Tucker
- Clarendon Laboratory, Department of Physics, University of Oxford Oxford, UK
| | - Larissa Arning
- Department of Human Genetics, Ruhr-University Bochum Bochum, Germany
| | - Saskia Biskup
- Center for Genomics and Transcriptomics (CeGaT) GmbH Tübingen Tübingen, Germany
| | - Alessandro Grottesi
- Department of Supercomputing Applications and Innovation, CINECA (Consorzio Inter-Universitario per il Calcolo Automatico) Rome, Italy
| | - Luca Guglielmi
- Section of Physiology and Biochemistry, Department of Experimental Medicine, School of Medicine, University of Perugia Perugia, Italy
| | - Paola Imbrici
- Department of Pharmacy, University of Bari Bari, Italy
| | - Pia Bernasconi
- Neurology IV - Neuromuscular Diseases and Neuroimmunology Unit, Foundation IRCCS Neurological Institute "Carlo Besta" Milan, Italy
| | - Giuseppe Di Giovanni
- Section of Neurophysiology and Biophysics, Istituto Euro-Mediterraneo di Scienza e Tecnologia Palermo, Italy ; Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta Msida, Malta
| | - Fabio Franciolini
- Department of Chemistry, Biology and Biotechnology, University of Perugia Perugia, Italy
| | - Luigi Catacuzzeno
- Department of Chemistry, Biology and Biotechnology, University of Perugia Perugia, Italy
| | - Mauro Pessia
- Section of Physiology and Biochemistry, Department of Experimental Medicine, School of Medicine, University of Perugia Perugia, Italy ; Section of Neurophysiology and Biophysics, Istituto Euro-Mediterraneo di Scienza e Tecnologia Palermo, Italy
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University Munich, Germany ; German Network for Mitochondrial Disorders (mitoNET) Ludwigshafen, Germany ; DZNE - German Center for Neurodegenerative Diseases Munich, Germany ; German Center for Vertigo and Balance Disorders Munich, Germany
| |
Collapse
|
15
|
MacKenzie G, Franks NP, Brickley SG. Two-pore domain potassium channels enable action potential generation in the absence of voltage-gated potassium channels. Pflugers Arch 2014; 467:989-99. [PMID: 25482670 PMCID: PMC4428809 DOI: 10.1007/s00424-014-1660-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/13/2014] [Accepted: 11/21/2014] [Indexed: 12/18/2022]
Abstract
In this study, we explored the possibility that two-pore domain potassium (K2P) channels are sufficient to support action potential (AP) generation in the absence of conventional voltage-gated potassium (KV) channels. Hodgkin-Huxley parameters were used to mimic the presence of voltage-gated sodium (NaV) channels in HEK-293 cells. Recombinant expression of either TREK-1 or TASK-3 channels was then used to generate a hyperpolarised resting membrane potential (RMP) leading to the characteristic non-linear current-voltage relationship expected of a K2P-mediated conductance. During conductance simulation experiments, both TASK-3 and TREK-1 channels were able to repolarise the membrane once AP threshold was reached, and at physiologically relevant current densities, this K2P-mediated conductance supported sustained AP firing. Moreover, the magnitude of the conductance correlated with the speed of the AP rise in a manner predicted from our computational studies. We discuss the physiological impact of axonal K2P channels and speculate on the possible clinical relevance of K2P channel modulation when considering the actions of general and local anaesthetics.
Collapse
Affiliation(s)
- Georgina MacKenzie
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, 02111, USA
| | | | | |
Collapse
|
16
|
Bagchi B, Al-Sabi A, Kaza S, Scholz D, O'Leary VB, Dolly JO, Ovsepian SV. Disruption of myelin leads to ectopic expression of K(V)1.1 channels with abnormal conductivity of optic nerve axons in a cuprizone-induced model of demyelination. PLoS One 2014; 9:e87736. [PMID: 24498366 PMCID: PMC3912067 DOI: 10.1371/journal.pone.0087736] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 12/30/2013] [Indexed: 11/19/2022] Open
Abstract
The molecular determinants of abnormal propagation of action potentials along axons and ectopic conductance in demyelinating diseases of the central nervous system, like multiple sclerosis (MS), are poorly defined. Widespread interruption of myelin occurs in several mouse models of demyelination, rendering them useful for research. Herein, considerable myelin loss is shown in the optic nerves of cuprizone-treated demyelinating mice. Immuno-fluorescence confocal analysis of the expression and distribution of voltage-activated K⁺ channels (K(V)1.1 and 1.2 α subunits) revealed their spread from typical juxta-paranodal (JXP) sites to nodes in demyelinated axons, albeit with a disproportionate increase in the level of K(V)1.1 subunit. Functionally, in contrast to monophasic compound action potentials (CAPs) recorded in controls, responses derived from optic nerves of cuprizone-treated mice displayed initial synchronous waveform followed by a dispersed component. Partial restoration of CAPs by broad spectrum (4-aminopyridine) or K(V)1.1-subunit selective (dendrotoxin K) blockers of K⁺ currents suggest enhanced K(V)1.1-mediated conductance in the demyelinated optic nerve. Biophysical profiling of K⁺ currents mediated by recombinant channels comprised of different K(V)1.1 and 1.2 stoichiometries revealed that the enrichment of K(V)1 channels K(V)1.1 subunit endows a decrease in the voltage threshold and accelerates the activation kinetics. Together with the morphometric data, these findings provide important clues to a molecular basis for temporal dispersion of CAPs and reduced excitability of demyelinated optic nerves, which could be of potential relevance to the patho-physiology of MS and related disorders.
Collapse
Affiliation(s)
- Bandita Bagchi
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin, Republic of Ireland
| | - Ahmed Al-Sabi
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin, Republic of Ireland
| | - Seshu Kaza
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin, Republic of Ireland
| | - Dimitri Scholz
- Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Valerie B. O'Leary
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin, Republic of Ireland
| | - J. Oliver Dolly
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin, Republic of Ireland
- * E-mail: (SVO); (JOD)
| | - Saak V. Ovsepian
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin, Republic of Ireland
- Department of Biotechnology, Dublin City University, Glasnevin, Dublin, Republic of Ireland
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Ludwig-Maximilians-Universität München, Zentrum für Neuropathologie, Feodor-Lynen-Str. 23, Munich, Germany
- * E-mail: (SVO); (JOD)
| |
Collapse
|
17
|
Blot A, Barbour B. Ultra-rapid axon-axon ephaptic inhibition of cerebellar Purkinje cells by the pinceau. Nat Neurosci 2014; 17:289-95. [PMID: 24413696 DOI: 10.1038/nn.3624] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 12/10/2013] [Indexed: 11/09/2022]
Abstract
Excitatory synaptic activity in the brain is shaped and balanced by inhibition. Because inhibition cannot propagate, it is often recruited with a synaptic delay by incoming excitation. Cerebellar Purkinje cells are driven by long-range excitatory parallel fiber inputs, which also recruit local inhibitory basket cells. The axon initial segment of each Purkinje cell is ensheathed by basket cell axons in a structure called the pinceau, which is largely devoid of chemical synapses. In mice, we found at the single-cell level that the pinceau mediates ephaptic inhibition of Purkinje cell firing at the site of spike initiation. The reduction of firing rate was synchronous with the presynaptic action potential, eliminating a synaptic delay and allowing granule cells to inhibit Purkinje cells without a preceding phase of excitation. Axon-axon ephaptic intercellular signaling can therefore mediate near-instantaneous feedforward and lateral inhibition.
Collapse
Affiliation(s)
- Antonin Blot
- 1] Ecole Normale Supérieure, IBENS, Paris, France. [2] CNRS, UMR 8197, Paris, France. [3] INSERM, U1024, Paris, France
| | - Boris Barbour
- 1] Ecole Normale Supérieure, IBENS, Paris, France. [2] CNRS, UMR 8197, Paris, France. [3] INSERM, U1024, Paris, France
| |
Collapse
|
18
|
Abstract
Voltage-gated K(+) channels (Kv) represent the largest family of genes in the K(+) channel family. The Kv1 subfamily plays an essential role in the initiation and shaping of action potentials, influencing action potential firing patterns and controlling neuronal excitability. Overlapping patterns with differential expression and precise localization of Kv1.1 and Kv1.2 channels targeted to specialized subcellular compartments contribute to distinctive patterns of neuronal excitability. Dynamic regulation of the components in these subcellular domains help to finely tune the cellular and regional networks. Disruption of the expression, distribution, and density of these channels through deletion or mutation of the genes encoding these channels, Kcna1 and Kcna2, is associated with neurologic pathologies including epilepsy and ataxia in humans and in rodent models. Kv1.1 and Kv1.2 knockout mice both have seizures beginning early in development; however, each express a different seizure type (pathway), although the channels are from the same subfamily and are abundantly coexpressed. Voltage-gated ion channels clustered in specific locations may present a novel therapeutic target for influencing excitability in neurologic disorders associated with some channelopathies.
Collapse
Affiliation(s)
- Carol A Robbins
- Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | |
Collapse
|
19
|
Diverse roles for auxiliary subunits in phosphorylation-dependent regulation of mammalian brain voltage-gated potassium channels. Pflugers Arch 2011; 462:631-43. [PMID: 21822597 DOI: 10.1007/s00424-011-1004-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 07/22/2011] [Accepted: 07/22/2011] [Indexed: 10/17/2022]
Abstract
Voltage-gated ion channels are a diverse family of signaling proteins that mediate rapid electrical signaling events. Among these, voltage-gated potassium or Kv channels are the most diverse partly due to the large number of principal (or α) subunits and auxiliary subunits that can assemble in different combinations to generate Kv channel complexes with distinct structures and functions. The diversity of Kv channels underlies much of the variability in the active properties between different mammalian central neurons and the dynamic changes that lead to experience-dependent plasticity in intrinsic excitability. Recent studies have revealed that Kv channel α subunits and auxiliary subunits are extensively phosphorylated, contributing to additional structural and functional diversity. Here, we highlight recent studies that show that auxiliary subunits exert some of their profound effects on dendritic Kv4 and axonal Kv1 channels through phosphorylation-dependent mechanisms, either due to phosphorylation on the auxiliary subunit itself or by influencing the extent and/or impact of α subunit phosphorylation. The complex effects of auxiliary subunits and phosphorylation provide a potent mechanism to generate additional diversity in the structure and function of Kv4 and Kv1 channels, as well as allowing for dynamic reversible regulation of these important ion channels.
Collapse
|
20
|
Jensen CS, Rasmussen HB, Misonou H. Neuronal trafficking of voltage-gated potassium channels. Mol Cell Neurosci 2011; 48:288-97. [PMID: 21627990 DOI: 10.1016/j.mcn.2011.05.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Revised: 05/01/2011] [Accepted: 05/16/2011] [Indexed: 11/28/2022] Open
Abstract
The computational ability of CNS neurons depends critically on the specific localization of ion channels in the somatodendritic and axonal membranes. Neuronal dendrites receive synaptic inputs at numerous spines and integrate them in time and space. The integration of synaptic potentials is regulated by voltage-gated potassium (Kv) channels, such as Kv4.2, which are specifically localized in the dendritic membrane. The synaptic potentials eventually depolarize the membrane of the axon initial segment, thereby activating voltage-gated sodium channels to generate action potentials. Specific Kv channels localized in the axon initial segment, such as Kv1 and Kv7 channels, determine the shape and the rate of action potentials. Kv1 and Kv7 channels present at or near nodes of Ranvier and in presynaptic terminals also influence the propagation of action potentials and neurotransmitter release. The physiological significance of proper Kv channel localization is emphasized by the fact that defects in the trafficking of Kv channels are observed in several neurological disorders including epilepsy. In this review, we will summarize the current understanding of the mechanisms of Kv channel trafficking and discuss how they contribute to the establishment and maintenance of the specific localization of Kv channels in neurons.
Collapse
Affiliation(s)
- Camilla S Jensen
- Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
21
|
Gu C, Barry J. Function and mechanism of axonal targeting of voltage-sensitive potassium channels. Prog Neurobiol 2011; 94:115-32. [PMID: 21530607 DOI: 10.1016/j.pneurobio.2011.04.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 03/22/2011] [Accepted: 04/01/2011] [Indexed: 12/20/2022]
Abstract
Precise localization of various ion channels into proper subcellular compartments is crucial for neuronal excitability and synaptic transmission. Axonal K(+) channels that are activated by depolarization of the membrane potential participate in the repolarizing phase of the action potential, and hence regulate action potential firing patterns, which encode output signals. Moreover, some of these channels can directly control neurotransmitter release at axonal terminals by constraining local membrane excitability and limiting Ca(2+) influx. K(+) channels differ not only in biophysical and pharmacological properties, but in expression and subcellular distribution as well. Importantly, proper targeting of channel proteins is a prerequisite for electrical and chemical functions of axons. In this review, we first highlight recent studies that demonstrate different roles of axonal K(+) channels in the local regulation of axonal excitability. Next, we focus on research progress in identifying axonal targeting motifs and machinery of several different types of K(+) channels present in axons. Regulation of K(+) channel targeting and activity may underlie a novel form of neuronal plasticity. This research field can contribute to generating novel therapeutic strategies through manipulating neuronal excitability in treating neurological diseases, such as multiple sclerosis, neuropathic pain, and Alzheimer's disease.
Collapse
Affiliation(s)
- Chen Gu
- Department of Neuroscience and Center for Molecular Neurobiology, The Ohio State University, Columbus, USA.
| | | |
Collapse
|
22
|
Oxidation of NADPH on Kvbeta1 inhibits ball-and-chain type inactivation by restraining the chain. Proc Natl Acad Sci U S A 2011; 108:5885-90. [PMID: 21436029 DOI: 10.1073/pnas.1100316108] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Kv1 family voltage-dependent K(+) channels assemble with cytosolic β subunits (Kvβ), which are composed of a flexible N terminus followed by a structured core domain. The N terminus of certain Kvβs inactivates the channel by blocking the ion conduction pore, and the core domain is a functional enzyme that uses NADPH as a cofactor. Oxidation of the Kvβ-bound NADPH inhibits inactivation and potentiates channel current, but the mechanism behind this effect is unknown. Here we show that after oxidation, the core domain binds to part of the N terminus, thus restraining it from blocking the channel. The interaction is partially mediated by two negatively charged residues on the core domain and three positively charged ones on the N terminus. These results provide a molecular basis for the coupling between the cellular redox state and channel activity, and establish Kvβ as a target for pharmacological control of Kv1 channels.
Collapse
|
23
|
Vacher H, Yang JW, Cerda O, Autillo-Touati A, Dargent B, Trimmer JS. Cdk-mediated phosphorylation of the Kvβ2 auxiliary subunit regulates Kv1 channel axonal targeting. ACTA ACUST UNITED AC 2011; 192:813-24. [PMID: 21357749 PMCID: PMC3051814 DOI: 10.1083/jcb.201007113] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phosphorylation of Kvβ2 releases Kv1 channels from microtubules to control their specific distribution at the axonal membrane. Kv1 channels are concentrated at specific sites in the axonal membrane, where they regulate neuronal excitability. Establishing these distributions requires regulated dissociation of Kv1 channels from the neuronal trafficking machinery and their subsequent insertion into the axonal membrane. We find that the auxiliary Kvβ2 subunit of Kv1 channels purified from brain is phosphorylated on serine residues 9 and 31, and that cyclin-dependent kinase (Cdk)–mediated phosphorylation at these sites negatively regulates the interaction of Kvβ2 with the microtubule plus end–tracking protein EB1. Endogenous Cdks, EB1, and Kvβ2 phosphorylated at serine 31 are colocalized in the axons of cultured hippocampal neurons, with enrichment at the axon initial segment (AIS). Acute inhibition of Cdk activity leads to intracellular accumulation of EB1, Kvβ2, and Kv1 channel subunits within the AIS. These studies reveal a new regulatory mechanism for the targeting of Kv1 complexes to the axonal membrane through the reversible Cdk phosphorylation-dependent binding of Kvβ2 to EB1.
Collapse
Affiliation(s)
- Hélène Vacher
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Kudryashova IV. Structural and functional characteristics of potassium channels and their role in neuroplasticity. NEUROCHEM J+ 2010. [DOI: 10.1134/s1819712410030013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Norris AJ, Foeger NC, Nerbonne JM. Neuronal voltage-gated K+ (Kv) channels function in macromolecular complexes. Neurosci Lett 2010; 486:73-7. [PMID: 20813163 DOI: 10.1016/j.neulet.2010.08.067] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 08/14/2010] [Accepted: 08/23/2010] [Indexed: 01/17/2023]
Abstract
Considerable evidence indicates that native neuronal voltage-gated K+ (Kv) currents reflect the functioning of macromolecular Kv channel complexes, composed of pore-forming (α)-subunits, cytosolic and transmembrane accessory subunits, together with regulatory and scaffolding proteins. The individual components of these macromolecular complexes appear to influence the stability, the trafficking, the localization and/or the biophysical properties of the channels. Recent studies suggest that Kv channel accessory subunits subserve multiple roles in the generation of native neuronal Kv channels. Additional recent findings suggest that Kv channel accessory subunits can respond to changes in intracellular Ca(2+) or metabolism and thereby integrate signaling pathways to regulate Kv channel expression and properties. Although studies in heterologous cells have provided important insights into the effects of accessory subunits on Kv channel expression/properties, it has become increasingly clear that experiments in neurons are required to define the physiological roles of Kv channel accessory and associated proteins. A number of technological and experimental hurdles remain that must be overcome in the design, execution and interpretation of experiments aimed at detailing the functional roles of accessory subunits and associated proteins in the generation of native neuronal Kv channels. With the increasing association of altered Kv channel functioning with neurological disorders, the potential impact of these efforts is clear.
Collapse
Affiliation(s)
- Aaron J Norris
- Department of Developmental Biology, Washington University School of Medicine, Campus Box 8103, 660 South Euclid Avenue, St. Louis, MO 63110, United States
| | | | | |
Collapse
|
26
|
Abstract
Since the first discovery of Kvbeta-subunits more than 15 years ago, many more ancillary Kv channel subunits were characterized, for example, KChIPs, KCNEs, and BKbeta-subunits. The ancillary subunits are often integral parts of native Kv channels, which, therefore, are mostly multiprotein complexes composed of voltage-sensing and pore-forming Kvalpha-subunits and of ancillary or beta-subunits. Apparently, Kv channels need the ancillary subunits to fulfill their many different cell physiological roles. This is reflected by the large structural diversity observed with ancillary subunit structures. They range from proteins with transmembrane segments and extracellular domains to purely cytoplasmic proteins. Ancillary subunits modulate Kv channel gating but can also have a great impact on channel assembly, on channel trafficking to and from the cellular surface, and on targeting Kv channels to different cellular compartments. The importance of the role of accessory subunits is further emphasized by the number of mutations that are associated in both humans and animals with diseases like hypertension, epilepsy, arrhythmogenesis, periodic paralysis, and hypothyroidism. Interestingly, several ancillary subunits have in vitro enzymatic activity; for example, Kvbeta-subunits are oxidoreductases, or modulate enzymatic activity, i.e., KChIP3 modulates presenilin activity. Thus different modes of beta-subunit association and of functional impact on Kv channels can be delineated, making it difficult to extract common principles underlying Kvalpha- and beta-subunit interactions. We critically review present knowledge on the physiological role of ancillary Kv channel subunits and their effects on Kv channel properties.
Collapse
Affiliation(s)
- Olaf Pongs
- Institut für Neurale Signalverarbeitung, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Universität Hamburg, Hamburg, Germany.
| | | |
Collapse
|
27
|
Oxidation of potassium channels by ROS: a general mechanism of aging and neurodegeneration? Trends Cell Biol 2010; 20:45-51. [DOI: 10.1016/j.tcb.2009.09.008] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 09/23/2009] [Accepted: 09/24/2009] [Indexed: 12/13/2022]
|
28
|
Kufahl PR, Zavala AR, Singh A, Thiel KJ, Dickey ED, Joyce JN, Neisewander JL. c-Fos expression associated with reinstatement of cocaine-seeking behavior by response-contingent conditioned cues. Synapse 2009; 63:823-35. [PMID: 19533625 DOI: 10.1002/syn.20666] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The capability of cocaine cues to generate craving in cocaine-dependent humans, even after extended abstinence, is modeled in rats using cue reinstatement of extinguished cocaine-seeking behavior. We investigated neural activity associated with incentive motivational effects of cocaine cues using c-fos mRNA and Fos protein expression as markers. Unlike preceding studies, we used response-contingent presentation of discrete cues to elicit cocaine seeking. Rats were first trained to press a lever, resulting in cocaine reinforcement and light and tone cues. Rats then underwent extinction training, during which lever presses decreased. On the test day, rats either received response-contingent cocaine cues or received no cues. The cues reinstated extinguished cocaine-seeking behavior on the test day. In general, cue-elicited c-fos mRNA and protein expression were similar and both were enhanced in the prefrontal cortex, ventral tegmental area (VTA), dorsal striatum, and nucleus accumbens. Cues elicited more widespread Fos protein expression relative to our previous research in which cues were presented noncontingently without prior extinction training, including increases in the VTA, substantia nigra, ventral subiculum, and lateral entorhinal cortex. We also observed a correlation between cocaine-seeking behavior and Fos in the agranular insula (AgI) and basolateral amygdala (BLA). The findings suggest that connections between BLA and AgI play a role in cue-elicited incentive motivation for cocaine and that reinstatement of cocaine seeking by response-contingent cues activates a similar corticolimbic circuit as that observed with other modes of cue presentation; however, activation of midbrain and ventral hippocampal regions may be unique to reinstatement by response-contingent cues.
Collapse
Affiliation(s)
- Peter R Kufahl
- Department of Psychology, Arizona State University, PO Box 871104, Tempe, Arizona 85287-1104, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Vacher H, Mohapatra DP, Trimmer JS. Localization and targeting of voltage-dependent ion channels in mammalian central neurons. Physiol Rev 2008; 88:1407-47. [PMID: 18923186 DOI: 10.1152/physrev.00002.2008] [Citation(s) in RCA: 359] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The intrinsic electrical properties and the synaptic input-output relationships of neurons are governed by the action of voltage-dependent ion channels. The localization of specific populations of ion channels with distinct functional properties at discrete sites in neurons dramatically impacts excitability and synaptic transmission. Molecular cloning studies have revealed a large family of genes encoding voltage-dependent ion channel principal and auxiliary subunits, most of which are expressed in mammalian central neurons. Much recent effort has focused on determining which of these subunits coassemble into native neuronal channel complexes, and the cellular and subcellular distributions of these complexes, as a crucial step in understanding the contribution of these channels to specific aspects of neuronal function. Here we review progress made on recent studies aimed to determine the cellular and subcellular distribution of specific ion channel subunits in mammalian brain neurons using in situ hybridization and immunohistochemistry. We also discuss the repertoire of ion channel subunits in specific neuronal compartments and implications for neuronal physiology. Finally, we discuss the emerging mechanisms for determining the discrete subcellular distributions observed for many neuronal ion channels.
Collapse
Affiliation(s)
- Helene Vacher
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California, Davis, California 95616-8519, USA
| | | | | |
Collapse
|
30
|
Pan Y, Weng J, Kabaleeswaran V, Li H, Cao Y, Bhosle RC, Zhou M. Cortisone dissociates the Shaker family K+ channels from their beta subunits. Nat Chem Biol 2008; 4:708-14. [PMID: 18806782 DOI: 10.1038/nchembio.114] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 09/02/2008] [Indexed: 11/09/2022]
Abstract
The Shaker family voltage-dependent potassium channels (Kv1) are expressed in a wide variety of cells and are essential for cellular excitability. In humans, loss-of-function mutations of Kv1 channels lead to hyperexcitability and are directly linked to episodic ataxia and atrial fibrillation. All Kv1 channels assemble with beta subunits (Kv betas), and certain Kv betas, for example Kv beta 1, have an N-terminal segment that closes the channel by the N-type inactivation mechanism. In principle, dissociation of Kv beta 1, although never reported, should eliminate inactivation and thus potentiate Kv1 current. We found that cortisone increases rat Kv1 channel activity by binding to Kv beta 1. A crystal structure of the Kv beta-cortisone complex was solved to 1.82-A resolution and revealed novel cortisone binding sites. Further studies demonstrated that cortisone promotes dissociation of Kv beta. The new mode of channel modulation may be explored by native or synthetic ligands to fine-tune cellular excitability.
Collapse
Affiliation(s)
- Yaping Pan
- Department of Physiology and Cellular Biophysics, Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, New York 10032, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Pineda RH, Knoeckel CS, Taylor AD, Estrada-Bernal A, Ribera AB. Kv1 potassium channel complexes in vivo require Kvbeta2 subunits in dorsal spinal neurons. J Neurophysiol 2008; 100:2125-36. [PMID: 18684900 DOI: 10.1152/jn.90667.2008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Whereas Kvbeta2 subunits modulate potassium current properties carried by Kv1 channel complexes in heterologous systems, little is known about the contributions of Kvbeta2 subunits to native potassium channel function. Using antisense approaches and in situ recordings from Xenopus embryo spinal cord neurons, we tested the in vivo roles of Kvbeta2 subunits in modulation of voltage-dependent potassium current (IKv). We focused on 1) two different populations of dorsal spinal neurons that express both Kvbeta2 and Kv1 alpha-subunit genes and 2) the 24- and 48-h developmental period, during which IKv undergoes developmental regulation. At both 24 and 48 h, antisense methods produced efficient knock-down of both Kvbeta2 protein and IKv. At both times, dominant negative suppression of Kv1 channels also eliminated IKv, indicating that Kv1 channels require Kvbeta2 subunits to function in dorsal spinal neurons. Even though Kv1 channels determined the IKv values of both dorsal neuron types, comparisons of their IKv properties revealed important differences at both developmental stages. The latter results support the notion that different Kv1 alpha-subunits and/or posttranslational modifications underlie the IKv values of the two dorsal neuron types. Overall, the results demonstrate that Kvbeta2 subunits function in vivo as obligatory subunits of Kv1 channels in at least two neuron types and two different developmental stages.
Collapse
Affiliation(s)
- Ricardo H Pineda
- Department of Physiology and Biophysics MS8307, 12800 East 19th Avenue, University of Colorado Denver at AMC, Aurora, CO 80045, USA
| | | | | | | | | |
Collapse
|
32
|
Rhodes KJ, Trimmer JS. Antibody-based validation of CNS ion channel drug targets. ACTA ACUST UNITED AC 2008; 131:407-13. [PMID: 18411328 PMCID: PMC2346570 DOI: 10.1085/jgp.200709926] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Ramos A, Ballenilla F, Martin P. Uncommon epiloptogenic lesions affecting the temporal lobe. Semin Ultrasound CT MR 2008; 29:47-59. [PMID: 18383907 DOI: 10.1053/j.sult.2007.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
There are several processes implicated as uncommon causes of temporal lobe epilepsy. Trauma is the leading cause of epilepsy in young adults, intracerebral blood collection being the most consistent risk factor of seizures, especially subdural hematomas and brain contusions. Infarction is the entity most commonly related to epilepsy in the elderly population. Seizures usually present as complex seizures with high recurrence between 6 months and 2 years after stroke. There are some radiological characteristics of the affectation associated with high risk of early and late seizures. Noninfectious limbic encephalitis is a syndrome characterized by seizures, memory loss, and confusion. It includes paraneoplasic and non-paraneoplasic limbic encephalitis, both presenting as hyperintense lesion affecting temporobasal regions more evident with fluid-attenuated inversion recovery sequences. Paraneoplasic limbic encephalitis is associated with several types of tumor-induced autoimmunity against the nervous system. The tumors most frequently implicated are the lungs, testis, and breast, including Hodgkin's lymphoma, teratoma, and thymoma in young patients. Once a tumor is excluded, non-paraneoplasic limbic encephalitis has to be considered by investigating the presence of antibodies against voltage-gated potassium channels. It is associated with hyponatremia and responds to regimens of steroids, plasma exchange, and intravenous immunoglobulins. Finally, herpetic limbic encephalitis is also associated with seizures, accompanied by fever and neurologic symptoms. It presents characteristic findings and distribution on magnetic resonance imaging, which shows abnormalities in more than 90% of patients with proven Herpes simplex virus type 1.
Collapse
Affiliation(s)
- Ana Ramos
- Neuroradiology Section, Radiology Department, Hospital Doce de Octubre, Madrid, Spain.
| | | | | |
Collapse
|
34
|
Ueda A, Wu CF. Effects of hyperkinetic, a beta subunit of Shaker voltage-dependent K+ channels, on the oxidation state of presynaptic nerve terminals. J Neurogenet 2008; 22:1-13. [PMID: 18428031 PMCID: PMC2716212 DOI: 10.1080/01677060701807954] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The Drosophila Hyperkinetic (Hk) gene encodes a beta subunit of Shaker (Sh) K+ channels and shows high sequence homology to aldoketoreductase. Hk mutations are known to modify the voltage dependence and kinetics of Sh currents, which are also influenced by the oxidative state of the N-terminus region of the Sh channel, as demonstrated in heterologous expression experiments in frog oocytes. However, an in vivo role of Hk in cellular reduction/oxidation (redox) has not been demonstrated. By using a fluorescent indicator of reactive oxygen species (ROS), dihydrorhodamine-123 (DHR), we show that the presynaptic nerve terminal of larval motor axons is metabolically active, with more rapid accumulation of ROS in comparison with muscle cells. In Hk terminals, DHR fluorescence was greatly enhanced, indicating increased ROS levels. This observation implicates a role of the Hk beta subunit in redox regulation in presynaptic terminals. This phenomenon was paralleled by the expected effects of the mutations affecting glutathione S-transferase S1 as well as applying H2O2 to wild-type synaptic terminals. Thus, our results also establish DHR as a useful tool for detecting ROS levels in the Drosophila neuromuscular junction.
Collapse
Affiliation(s)
- Atsushi Ueda
- Department of Biological Sciences, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
35
|
Smith RC, McClure MC, Smith MA, Abel PW, Bradley ME. The role of voltage-gated potassium channels in the regulation of mouse uterine contractility. Reprod Biol Endocrinol 2007; 5:41. [PMID: 17980032 PMCID: PMC2186335 DOI: 10.1186/1477-7827-5-41] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Accepted: 11/02/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Uterine smooth muscle cells exhibit ionic currents that appear to be important in the control of uterine contractility, but how these currents might produce the changes in contractile activity seen in pregnant myometrium has not been established. There are conflicting reports concerning the role of voltage-gated potassium (Kv) channels and large-conductance, calcium-activated potassium (BK) channels in the regulation of uterine contractility. In this study we provide molecular and functional evidence for a role for Kv channels in the regulation of spontaneous contractile activity in mouse myometrium, and also demonstrate a change in Kv channel regulation of contractility in pregnant mouse myometrium. METHODS Functional assays which evaluated the effects of channel blockers and various contractile agonists were accomplished by quantifying contractility of isolated uterine smooth muscle obtained from nonpregnant mice as well as mice at various stages of pregnancy. Expression of Kv channel proteins in isolated uterine smooth muscle was evaluated by Western blots. RESULTS The Kv channel blocker 4-aminopyridine (4-AP) caused contractions in nonpregnant mouse myometrium (EC50 = 54 micromolar, maximal effect at 300 micromolar) but this effect disappeared in pregnant mice; similarly, the Kv4.2/Kv4.3 blocker phrixotoxin-2 caused contractions in nonpregnant, but not pregnant, myometrium. Contractile responses to 4-AP were not dependent upon nerves, as neither tetrodotoxin nor storage of tissues at room temperature significantly altered these responses, nor were responses dependent upon the presence of the endometrium. Spontaneous contractions and contractions in response to 4-AP did not appear to be mediated by BK, as the BK channel-selective blockers iberiotoxin, verruculogen, or tetraethylammonium failed to affect either spontaneous contractions or 4-AP-elicited responses. A number of different Kv channel alpha subunit proteins were found in isolated myometrium from both nonpregnant and term-pregnant mice, and one of these proteins - Kv4.3 - was found to disappear in term-pregnant tissues. CONCLUSION These findings suggest a role for Kv channels in the regulation of uterine contractility, and that changes in the expression and/or function of specific Kv channels may account for the functional changes seen in pregnant myometrium.
Collapse
Affiliation(s)
- Ryan C Smith
- Department of Pharmacology, Creighton University Medical Center, Omaha, USA, NE 68178
| | - Marisa C McClure
- Department of Pharmacology, Creighton University Medical Center, Omaha, USA, NE 68178
| | - Margaret A Smith
- Department of Pharmacology, Creighton University Medical Center, Omaha, USA, NE 68178
| | - Peter W Abel
- Department of Pharmacology, Creighton University Medical Center, Omaha, USA, NE 68178
| | - Michael E Bradley
- Department of Pharmacology, Creighton University Medical Center, Omaha, USA, NE 68178
| |
Collapse
|
36
|
Vacher H, Diochot S, Bougis PE, Martin-Eauclaire MF, Mourre C. Kv4 channels sensitive to BmTX3 in rat nervous system: autoradiographic analysis of their distribution during brain ontogenesis. Eur J Neurosci 2006; 24:1325-40. [PMID: 16987219 DOI: 10.1111/j.1460-9568.2006.05020.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The binding site distribution of sBmTX3, a chemically synthesized toxin originally purified from the venom of the scorpion Buthus martensi, was investigated in adult and developing rat brain, using patch-clamp experiments and quantitative autoradiography. The molecular basis of these sBmTX3 sites was analysed by electrophysiology on transient Kv currents recorded in mammalian transfected cells. The rapidly activating and inactivating Kv4.1 current was inhibited by sBmTX3 (IC50, 105 nM). The inhibition was less effective on Kv4.2 and Kv4.3 channels and the toxin did not affect other transient currents such as Kv1.4 and Kv3.4. The distribution of the 125I-sBmTX3 binding sites was heterogeneous, with a 113-fold difference between the highest and the lowest densities in adult rat brain. The site density was particularly important in the caudate-putamen and accumbens nucleus, thalamus, hippocampal formation and cerebellum. The affinity of sBmTX3 remained constant during brain ontogenesis. The level of sBmTX3 binding sites was very low in prenatal and postnatal stages to postnatal day (P)12 but drastically increased from P15 in the major part of the studied structures except in the CA3 hippocampal field where the density was very high from P6. Thus, the distribution of sBmTX3 binding sites in rat brain and its electrophysiological characteristics suggest that sBmTX3 specifically binds to the Kv4 subfamily of K channels.
Collapse
Affiliation(s)
- Hélène Vacher
- CNRS, UMR 6149, Neurobiologie des Processus Mnésiques, Université de Provence, Pôle 3C, Centre St Charles, 3 Place Victor Hugo, 13331 Marseille cedex 03, France
| | | | | | | | | |
Collapse
|
37
|
Oyama F, Miyazaki H, Sakamoto N, Becquet C, Machida Y, Kaneko K, Uchikawa C, Suzuki T, Kurosawa M, Ikeda T, Tamaoka A, Sakurai T, Nukina N. Sodium channel beta4 subunit: down-regulation and possible involvement in neuritic degeneration in Huntington's disease transgenic mice. J Neurochem 2006; 98:518-29. [PMID: 16805843 DOI: 10.1111/j.1471-4159.2006.03893.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sodium channel beta4 is a very recently identified auxiliary subunit of the voltage-gated sodium channels. To find the primarily affected gene in Huntington's disease (HD) pathogenesis, we profiled HD transgenic mice using a high-density oligonucleotide array and identified beta4 as an expressed sequence tag (EST) that was significantly down-regulated in the striatum of HD model mice and patients. Reduction in beta4 started at a presymptomatic stage in HD mice, whereas other voltage-gated ion channel subunits were decreased later. In contrast, spinal cord neurons, which generate only negligible levels of expanded polyglutamine aggregates, maintained normal levels of beta4 expression even at the symptomatic stage. Overexpression of beta4 induced neurite outgrowth in Neuro2a cells, and caused a thickening of dendrites and increased density of dendritic spines in hippocampal primary neurons, indicating that beta4 modulates neurite outgrowth activities. These results suggest that down-regulation of beta4 may lead to abnormalities of sodium channel and neurite degeneration in the striatum of HD transgenic mice and patients with HD.
Collapse
Affiliation(s)
- Fumitaka Oyama
- Laboratory for Structural Neuropathology, RIKEN Brain Science Institute, Saitama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Judge SIV, Bever CT. Potassium channel blockers in multiple sclerosis: Neuronal Kv channels and effects of symptomatic treatment. Pharmacol Ther 2006; 111:224-59. [PMID: 16472864 DOI: 10.1016/j.pharmthera.2005.10.006] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Accepted: 10/12/2005] [Indexed: 02/07/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS) characterized by demyelination, with a relative sparing of axons. In MS patients, many neurologic signs and symptoms have been attributed to the underlying conduction deficits. The idea that neurologic function might be improved if conduction could be restored in CNS demyelinated axons led to the testing of potassium (K(+)) channel blockers as a symptomatic treatment. To date, only 2 broad-spectrum K(+) channel blockers, 4-aminopyridine (4-AP) and 3,4-diaminopyridine (3,4-DAP), have been tested in MS patients. Although both 4-AP and 3,4-DAP produce clear neurologic benefits, their use has been limited by toxicity. Here we review the current status of basic science and clinical research related to the therapeutic targeting of voltage-gated K(+) channels (K(v)) in MS. By bringing together 3 distinct but interrelated disciplines, we aim to provide perspective on a vast body of work highlighting the lengthy and ongoing process entailed in translating fundamental K(v) channel knowledge into new clinical treatments for patients with MS and other demyelinating diseases. Covered are (1) K(v) channel nomenclature, structure, function, and pharmacology; (2) classic and current experimental morphology and neurophysiology studies of demyelination and conduction deficits; and (3) a comprehensive overview of clinical trials utilizing 4-AP and 3,4-DAP in MS patients.
Collapse
Affiliation(s)
- Susan I V Judge
- MS Center of Excellence-East, Research and Neurology Services, VA Maryland Health Care System, USA.
| | | |
Collapse
|
39
|
Yang B, Leveck DE, Ferguson AV. Transient potassium conductances protect nucleus tractus solitarius neurons from NMDA induced excitotoxic plateau depolarizations. Brain Res 2005; 1056:1-9. [PMID: 16122718 DOI: 10.1016/j.brainres.2005.06.079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Revised: 06/24/2005] [Accepted: 06/25/2005] [Indexed: 10/25/2022]
Abstract
Ischemic insults, followed by excessive accumulation of extracellular glutamate, destroy most, but not all, neurons in affected area(s) of the central nervous system (CNS). Characterization of the unique properties of cells resistant to such excitotoxic challenge may identify novel preventive/therapeutic strategies to reduce cell death. We have previously reported that transient potassium conductances expressed in magnocellular neurons of the paraventricular nucleus protect these cells from excitotoxic cell death. In the present study, in vitro patch-clamp recording techniques were used to assess the roles of similar potassium conductances in protecting delayed excitation (DE) neurons of the nucleus tractus solitarius (NTS) from over-excitation after N-methyl-d-aspartate (NMDA) receptor activation. DE neurons show a reduced sensitivity (compared to NTS neurons which lack these potassium conductances) to NMDA receptor activation which protects against long duration plateau depolarizations (LDPDs). We identify two types of transient K(+) conductances (I(A) and I(D)), which contribute to the rapid repolarization of the membrane after a strong depolarization, and show that inhibition of these currents with 4-aminopyridine increases neuronal excitability after NMDA receptor activation such that DE cells now respond with LDPDs. In contrast, lower concentrations of 4-AP (100 mM) which inhibit only the I(D) have no effect on NMDA induced depolarization. These results suggest that the reduced sensitivity of DE neurons in NTS to NMDA receptor activation is the result of the large transient potassium conductance I(A) expressed in these neurons, and identify this as a common mechanism protecting against NMDA receptor mediated excitotoxicity in both PVN and NTS neurons.
Collapse
Affiliation(s)
- Bo Yang
- Department of Physiology, Queen's University, Kingston, ON, Canada K7L 3N6
| | | | | |
Collapse
|
40
|
McKay BE, Turner RW. Physiological and morphological development of the rat cerebellar Purkinje cell. J Physiol 2005; 567:829-50. [PMID: 16002452 PMCID: PMC1474219 DOI: 10.1113/jphysiol.2005.089383] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Cerebellar Purkinje cells integrate multimodal afferent inputs and, as the only projection neurones of the cerebellar cortex, are key to the coordination of a variety of motor- and learning-related behaviours. In the neonatal rat the cerebellum is undeveloped, but over the first few postnatal weeks both the structure of the cerebellum and cerebellar-dependent behaviours mature rapidly. Maturation of Purkinje cell physiology is expected to contribute significantly to the development of cerebellar output. However, the ontogeny of the electrophysiological properties of the Purkinje cell and its relationship to maturation of cell morphology is incompletely understood. To address this problem we performed a detailed in vitro electrophysiological analysis of the spontaneous and intracellularly evoked intrinsic properties of Purkinje cells obtained from postnatal rats (P0 to P90) using whole-cell patch clamp recordings. Cells were filled with neurobiotin to enable subsequent morphological comparisons. Three stages of physiological and structural development were identified. During the early postnatal period (P0 to approximately P9) Purkinje cells were characterized by an immature pattern of Na(+)-spike discharge, and possessed only short multipolar dendrites. This was followed by a period of rapid maturation (from approximately P12 to approximately P18), consisting of changes in Na(+)-spike discharge, emergence of repetitive bursts of Na(+) spikes terminated by Ca(2+) spikes (Ca(2+)-Na(+) bursts), generation of the trimodal pattern, and a significant expansion of the dendritic tree. During the final stage (> P18 to P90) there were minor refinements of cell output and a plateau in dendritic area. Our results reveal a rapid transition of the Purkinje cell from morphological and physiological immaturity to adult characteristics over a short developmental window, with a close correspondence between changes in cell output and dendritic growth. The development of Purkinje cell intrinsic electrophysiological properties further matches the time course of other measures of cerebellar structural and functional maturation.
Collapse
Affiliation(s)
- Bruce E McKay
- Hotchkiss Brain Institute, University of Calgary, Alberta, Canada
| | | |
Collapse
|
41
|
Connor JX, McCormack K, Pletsch A, Gaeta S, Ganetzky B, Chiu SY, Messing A. Genetic modifiers of the Kv beta2-null phenotype in mice. GENES BRAIN AND BEHAVIOR 2005; 4:77-88. [PMID: 15720404 DOI: 10.1111/j.1601-183x.2004.00094.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Shaker-type potassium (K+) channels are composed of pore-forming alpha subunits associated with cytoplasmic beta subunits. Kv beta2 is the predominant Kv beta subunit in the mammalian nervous system, but its functions in vivo are not clear. Kv beta2-null mice have been previously characterized in our laboratory as having reduced lifespans, cold swim-induced tremors and occasional seizures, but no apparent defect in Kv alpha-subunit trafficking. To test whether strain differences might influence the severity of this phenotype, we analyzed Kv beta2-null mice in different strain backgrounds: 129/SvEv (129), C57BL/6J (B6) and two mixed B6/129 backgrounds. We found that strain differences significantly affected survival, body weight and thermoregulation in Kv beta2-null mice. B6 nulls had a more severe phenotype than 129 nulls in these measures; this dramatic difference did not reflect alterations in seizure thresholds but may relate to strain differences we observed in cerebellar Kv1.2 expression. To specifically test whether Kv beta1 is a genetic modifier of the Kv beta2-null phenotype, we generated Kv beta1.1-deficient mice by gene targeting and bred them to Kv beta2-null mice. Kv beta1.1/Kv beta2 double knockouts had significantly increased mortality compared with either single knockout but still maintained surface expression of Kv1.2, indicating that trafficking of this alpha subunit does not require either Kv beta subunit. Our results suggest that genetic differences between 129/SvEv and C57Bl/6J are key determinants of the severity of defects seen in Kv beta2-null mice and that Kv beta1.1 is a specific although not strain-dependent modifier.
Collapse
Affiliation(s)
- J X Connor
- Department of Pathobiological Sciences and Waisman Center, University of Wisconsin, Madison, WI 53705-2280, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Misonou H, Trimmer JS. Determinants of voltage-gated potassium channel surface expression and localization in Mammalian neurons. Crit Rev Biochem Mol Biol 2005; 39:125-45. [PMID: 15596548 DOI: 10.1080/10409230490475417] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neurons strictly regulate expression of a wide variety of voltage-dependent ion channels in their surface membranes to achieve precise yet dynamic control of intrinsic membrane excitability. Neurons also exhibit extreme morphological complexity that underlies diverse aspects of their function. Most ion channels are preferentially targeted to either the axonal or somatodendritic compartments, where they become further localized to discrete membrane subdomains. This restricted accumulation of ion channels enables local control of membrane signaling events in specific microdomains of a given compartment. Voltage-dependent K+ (Kv) channels act as potent modulators of diverse excitatory events such as action potentials, excitatory synaptic potentials, and Ca2+ influx. Kv channels exhibit diverse patterns of cellular expression, and distinct subtype-specific localization, in mammalian central neurons. Here we review the mechanisms regulating the abundance and distribution of Kv channels in mammalian neurons and discuss how dynamic regulation of these events impacts neuronal signaling.
Collapse
Affiliation(s)
- Hiroaki Misonou
- Department of Pharmacology, School of Medicine, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
43
|
Sokolowski B, Harvey M, Venkataramu C, Duzhyy D. Protein-protein interactions of a Kv? subunit in the cochlea. J Neurosci Res 2005; 79:459-67. [PMID: 15641109 DOI: 10.1002/jnr.20376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Accessory subunits associated with voltage-gated potassium (Kv) channels can influence the biophysical properties and promote the surface expression of channel-forming alpha-subunits. Previously, we cloned several alpha-subunits and a beta-subunit from a cDNA library of the chicken cochlea. In the present study, we raised an antibody against the N-terminus of chicken Kvbeta1.1 (cKvbeta1.1) and characterized the Kvbeta-related polypeptide in cochlear tissues and heterologous cells. The anti-cKvbeta1.1 antibody recognizes a 45-kDa polypeptide in chick cochlear extracts as well as in Chinese hamster ovary (CHO) cells transfected with cKvbeta1.1. The accessory subunit was localized to the ganglion cells of the chick cochlea using immunohistochemistry and in situ hybridization. Coimmunoprecipitation studies show that Kvbeta1.1 interacts with Shaker channel members Kvalpha1.2 and 1.3, both of which colocalize with beta to the cochlear ganglion cells. Additionally, coimmunoprecipitation studies show that Kvalpha1.2 and 1.3 interact with each other, suggesting that these ion channels are formed by heteromultimers. In comparison, Kvbeta did not coprecipitate with a member of the Shal subfamily. The presence of Kvbeta in the cochlea suggests that this subunit contributes to the modulation of auditory signals in the ganglion cells, presumably by regulating properties of inactivation as well as surface expression of Kvalpha channels.
Collapse
Affiliation(s)
- Bernd Sokolowski
- Department of Otolaryngology-Head and Neck Surgery, Department of Physiology and Biophysics, University of South Florida College of Medicine, Tampa, Florida 33612, USA.
| | | | | | | |
Collapse
|
44
|
Iranzo A, Graus F, Clover L, Morera J, Bruna J, Vilar C, Martínez-Rodriguez JE, Vincent A, Santamaría J. Rapid eye movement sleep behavior disorder and potassium channel antibody-associated limbic encephalitis. Ann Neurol 2005; 59:178-81. [PMID: 16278841 DOI: 10.1002/ana.20693] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Of six patients registered in our center with nonparaneoplastic limbic encephalitis associated with antibodies to voltage-gated potassium channels, the five men had rapid eye movement sleep behavior disorder (RBD) coincident with voltage-gated potassium channel antibody-associated limbic encephalitis onset. In three patients, immunosuppression resulted in resolution of RBD in parallel with remission of the limbic syndrome. RBD persisted in two patients with partial resolution of the limbic syndrome. Our findings suggest that RBD is frequent in the setting of voltage-gated potassium channel antibody-associated limbic encephalitis and can be related to autoimmune-mediated mechanisms. In addition, these observations suggest that impairment of the limbic system may play a role in the pathogenesis of RBD.
Collapse
Affiliation(s)
- Alex Iranzo
- Neurology Service, Hospital Clínic and Institut d'Investigació Biomèdiques August Pi i Sunyer, C/Villaroel 170, 08036 Barcelona, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Gold SJ, Zachariou V. In situ hybridization analysis of RGS mRNA regulation and behavioral phenotyping of RGS mutant mice. Methods Enzymol 2004; 389:205-29. [PMID: 15313568 DOI: 10.1016/s0076-6879(04)89013-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
To elucidate the functional role of regulators of G-protein signaling (RGS) in vivo, it will be critical to (i) determine how RGS activity is altered in response to a variety of manipulations and (ii) observe how the system is changed when RGS protein function is altered genetically. To facilitate studies of dynamic regulation of RGS protein activity, this article describes detailed methods for radioisotopic in situ hybridization for semiquantitative analyses of RGS mRNA abundances. Toward characterizing the functional differences in mice with genetically altered RGS activities, this article describes a subset of behavioral tests suitable for assaying sensitivities to drugs of abuse. These protocols should provide valuable guidance for investigators to establish these methodologies independently in their own laboratories and, over time, increase our understanding of RGS function in vivo.
Collapse
Affiliation(s)
- Stephen J Gold
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas 75390, USA
| | | |
Collapse
|
46
|
Beyer CE, Ghavami A, Lin Q, Sung A, Rhodes KJ, Dawson LA, Schechter LE, Young KH. Regulators of G-protein signaling 4: modulation of 5-HT1A-mediated neurotransmitter release in vivo. Brain Res 2004; 1022:214-20. [PMID: 15353231 DOI: 10.1016/j.brainres.2004.06.073] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2004] [Indexed: 11/30/2022]
Abstract
Regulators of G-protein signaling (RGS) play a key role in the signal transduction of G-protein-coupled receptors (GPCRs). Specifically, RGS proteins function as GTPase accelerating proteins (GAPs) to dampen or "negatively regulate" GPCR-mediated signaling. Our group recently showed that RGS4 effectively GAPs Galpha(i)-mediated signaling in CHO cells expressing the serotonin-1A (5-HT(1A)) receptor. However, whether a similar relationship exists in vivo has yet to be identified. In present studies, a replication-deficient herpes simplex virus (HSV) was used to elevate RGS4 mRNA in the rat dorsal raphe nuclei (DRN) while extracellular levels of 5-HT in the striatum were monitored by in vivo microdialysis. Initial experiments conducted with noninfected rats showed that acute administration of 8-OH-DPAT (0.01-0.3 mg/kg, subcutaneous [s.c.]) dose dependently decreased striatal levels of 5-HT, an effect postulated to result from activation of somatodendritic 5-HT(1A) autoreceptors in the DRN. In control rats receiving a single intra-DRN infusion of HSV-LacZ, 8-OH-DPAT (0.03 mg/kg, s.c.) decreased 5-HT levels to an extent similar to that observed in noninfected animals. Conversely, rats infected with HSV-RGS4 in the DRN showed a blunted neurochemical response to 8-OH-DPAT (0.03 mg/kg, s.c.); however, increasing the dose to 0.3 mg/kg reversed this effect. Together, these findings represent the first in vivo evidence demonstrating that RGS4 functions to GAP Galpha(i)-coupled receptors and suggest that drug discovery efforts targeting RGS proteins may represent a novel mechanism to manipulate 5-HT(1A)-mediated neurotransmitter release.
Collapse
Affiliation(s)
- Chad E Beyer
- Neuroscience Discovery Research, Wyeth Research, CN 8000, Princeton, NJ 08543-8000, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Manganas LN, Trimmer JS. Calnexin regulates mammalian Kv1 channel trafficking. Biochem Biophys Res Commun 2004; 322:577-84. [PMID: 15325269 DOI: 10.1016/j.bbrc.2004.06.182] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Indexed: 10/26/2022]
Abstract
Voltage-gated Kv1 channels are key factors regulating excitability in the mammalian central nervous system. Diverse posttranslational regulatory mechanisms operate to determine the density, subunit composition, and localization of Kv1 channel complexes in the neuronal plasma membrane. In this study, we investigated the role of the endoplasmic reticulum chaperone calnexin in the intracellular trafficking of Kv1 channels. We found that coexpressing calnexin with the Kv1.2alpha subunit in transfected mammalian COS-1 cells produced a dramatic dose-dependent increase in cell surface Kv1.2 channel complexes. In calnexin-transfected COS-1 cells, the proportion of Kv1.2 channels with mature N-linked oligosaccharide chains was comparable to that observed in neurons. In contrast, calnexin coexpression exerted no effects on trafficking of the intracellularly retained Kv1.1 or Kv1.6alpha subunits. We also found that calnexin and auxiliary Kvbeta2 subunit coexpression was epistatic, suggesting that they share a common pathway for promoting Kv1.2 channel surface expression. These results provide yet another component in the elaborate repertoire of determinants regulating the density of Kv1 channels in the plasma membrane.
Collapse
Affiliation(s)
- Louis N Manganas
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794, USA
| | | |
Collapse
|
48
|
Bähring R, Vardanyan V, Pongs O. Differential modulation of Kv1 channel-mediated currents by co-expression of Kvbeta3 subunit in a mammalian cell-line. Mol Membr Biol 2004; 21:19-25. [PMID: 14668135 DOI: 10.1080/09687680310001597749] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The effect of Kvbeta3 subunit co-expression on currents mediated by the Shaker-related channels Kv1.1 to Kv1.6 in Chinese hamster ovary (CHO) cells was studied with patch-clamp techniques. In the presence of Kvbeta3, differences in the voltage dependence of activation for Kv1.1, Kv1.3 and Kv1.6 were detected, but not for Kv1.2- and Kv1.4-mediated currents. Co-expression of Kvbeta3 did not cause a significant increase in current density for any of the tested channels. In contrast to previous studies in Xenopus oocyte expression system, Kvbeta3 confered a rapid inactivation to all except Kv1.3 channels. Also, Kv1.6 channels that possess an N-type inactivation prevention (NIP) domain for Kvbeta1.1, inactivated rapidly when co-expressed with Kvbeta3. Onset and recovery kinetics of channel inactivation distinctly differed for the various Kv1alpha/Kvbeta3 subunit combinations investigated in this study. The results indicate that the choice of expression system may critically determine Kvbeta3 inactivating activity. This suggests that the presence of an inactivating domain and a receptor in a channel pore, although necessary, may not be sufficient for an effective rapid N-type inactivation of Kv1 channels in heterologous expression systems.
Collapse
Affiliation(s)
- Robert Bähring
- Institut für Neurale Signalverarbeitung, Zentrum für Molekulare Neurobiologie der Universität Hamburg, Germany.
| | | | | |
Collapse
|
49
|
Birnbaum SG, Varga AW, Yuan LL, Anderson AE, Sweatt JD, Schrader LA. Structure and function of Kv4-family transient potassium channels. Physiol Rev 2004; 84:803-33. [PMID: 15269337 DOI: 10.1152/physrev.00039.2003] [Citation(s) in RCA: 268] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Shal-type (Kv4.x) K(+) channels are expressed in a variety of tissue, with particularly high levels in the brain and heart. These channels are the primary subunits that contribute to transient, voltage-dependent K(+) currents in the nervous system (A currents) and the heart (transient outward current). Recent studies have revealed an enormous degree of complexity in the regulation of these channels. In this review, we describe the surprisingly large number of ancillary subunits and scaffolding proteins that can interact with the primary subunits, resulting in alterations in channel trafficking and kinetic properties. Furthermore, we discuss posttranslational modification of Kv4.x channel function with an emphasis on the role of kinase modulation of these channels in regulating membrane properties. This concept is especially intriguing as Kv4.2 channels may integrate a variety of intracellular signaling cascades into a coordinated output that dynamically modulates membrane excitability. Finally, the pathophysiology that may arise from dysregulation of these channels is also reviewed.
Collapse
Affiliation(s)
- Shari G Birnbaum
- Div. of Neuroscience, S607, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
The intrinsic electrical properties of neurons are shaped in large part by the action of voltage-gated ion channels. Molecular cloning studies have revealed a large family of ion channel genes, many of which are expressed in mammalian brain. Much recent effort has focused on determining the contribution of the protein products of these genes to neuronal function. This requires knowledge of the abundance and distribution of the constituent subunits of the channels in specific mammalian central neurons. Here we review progress made in recent studies aimed at localizing specific ion channel subunits using in situ hybridization and immunohistochemistry. We then discuss the implications of these results in terms of neuronal physiology and neuronal mechanisms underlying the observed patterns of expression.
Collapse
Affiliation(s)
- James S Trimmer
- Department of Pharmacology, School of Medicine, University of California, Davis, California 95616-8635, USA.
| | | |
Collapse
|