1
|
Willis A, Jeong D, Liu Y, Lithopoulos MA, Yuzwa SA, Frankland PW, Kaplan DR, Miller FD. Single cell approaches define neural stem cell niches and identify microglial ligands that can enhance precursor-mediated oligodendrogenesis. Cell Rep 2025; 44:115194. [PMID: 39823226 DOI: 10.1016/j.celrep.2024.115194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/24/2024] [Accepted: 12/19/2024] [Indexed: 01/19/2025] Open
Abstract
Here, we used single cell RNA sequencing and single cell spatial transcriptomics to characterize the forebrain neural stem cell (NSC) niche under homeostatic and injury conditions. We defined the dorsal and lateral ventricular-subventricular zones (V-SVZs) as two distinct neighborhoods and showed that, after white matter injury, NSCs are activated to make oligodendrocytes dorsally for remyelination. This activation is coincident with an increase in transcriptionally distinct microglia in the dorsal V-SVZ niche. We modeled ligand-receptor interactions within this changing niche and identified two remyelination-associated microglial ligands, insulin growth factor 1 and oncostatin M, that promote precursor proliferation and oligodendrogenesis in culture. Infusion of either ligand into the lateral ventricles also enhanced oligodendrogenesis, even in the lateral V-SVZ, where NSCs normally make neuroblasts. These data support a model where gliogenesis versus neurogenesis is determined by the local NSC neighborhood and where injury-induced niche alterations promote NSC activation, local oligodendrogenesis, and likely contribute to myelin repair.
Collapse
Affiliation(s)
- Ashleigh Willis
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Danielle Jeong
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Yunlong Liu
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Marissa A Lithopoulos
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Scott A Yuzwa
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Paul W Frankland
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Psychology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - David R Kaplan
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Freda D Miller
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
2
|
Gusella A, Martignoni G, Giacometti C. Behind the Curtain of Abnormal Placentation in Pre-Eclampsia: From Molecular Mechanisms to Histological Hallmarks. Int J Mol Sci 2024; 25:7886. [PMID: 39063129 PMCID: PMC11277090 DOI: 10.3390/ijms25147886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Successful human pregnancy needs several highly controlled steps to guarantee an oocyte's fertilization, the embryo's pre-implantation development, and its subsequent implantation into the uterine wall. The subsequent placenta development ensures adequate fetal nutrition and oxygenation, with the trophoblast being the first cell lineage to differentiate during this process. The placenta sustains the growth of the fetus by providing it with oxygen and nutrients and removing waste products. It is not surprising that issues with the early development of the placenta can lead to common pregnancy disorders, such as recurrent miscarriage, fetal growth restriction, pre-eclampsia, and stillbirth. Understanding the normal development of the human placenta is essential for recognizing and contextualizing any pathological aberrations that may occur. The effects of these issues may not become apparent until later in pregnancy, during the mid or advanced stages. This review discusses the process of the embryo implantation phase, the molecular mechanisms involved, and the abnormalities in those mechanisms that are thought to contribute to the development of pre-eclampsia. The review also covers the histological hallmarks of pre-eclampsia as found during the examination of placental tissue from pre-eclampsia patients.
Collapse
Affiliation(s)
- Anna Gusella
- Pathology Unit, Department of Diagnostic Services, ULLS 6 Euganea, 35131 Padova, Italy;
| | - Guido Martignoni
- Department of Pathology, Pederzoli Hospital, 37019 Peschiera del Garda, Italy;
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, 37129 Verona, Italy
| | - Cinzia Giacometti
- Department of Pathology, Pederzoli Hospital, 37019 Peschiera del Garda, Italy;
| |
Collapse
|
3
|
Potential of Multiscale Astrocyte Imaging for Revealing Mechanisms Underlying Neurodevelopmental Disorders. Int J Mol Sci 2021; 22:ijms221910312. [PMID: 34638653 PMCID: PMC8508625 DOI: 10.3390/ijms221910312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 01/18/2023] Open
Abstract
Astrocytes provide trophic and metabolic support to neurons and modulate circuit formation during development. In addition, astrocytes help maintain neuronal homeostasis through neurovascular coupling, blood-brain barrier maintenance, clearance of metabolites and nonfunctional proteins via the glymphatic system, extracellular potassium buffering, and regulation of synaptic activity. Thus, astrocyte dysfunction may contribute to a myriad of neurological disorders. Indeed, astrocyte dysfunction during development has been implicated in Rett disease, Alexander's disease, epilepsy, and autism, among other disorders. Numerous disease model mice have been established to investigate these diseases, but important preclinical findings on etiology and pathophysiology have not translated into clinical interventions. A multidisciplinary approach is required to elucidate the mechanism of these diseases because astrocyte dysfunction can result in altered neuronal connectivity, morphology, and activity. Recent progress in neuroimaging techniques has enabled noninvasive investigations of brain structure and function at multiple spatiotemporal scales, and these technologies are expected to facilitate the translation of preclinical findings to clinical studies and ultimately to clinical trials. Here, we review recent progress on astrocyte contributions to neurodevelopmental and neuropsychiatric disorders revealed using novel imaging techniques, from microscopy scale to mesoscopic scale.
Collapse
|
4
|
Oproescu AM, Han S, Schuurmans C. New Insights Into the Intricacies of Proneural Gene Regulation in the Embryonic and Adult Cerebral Cortex. Front Mol Neurosci 2021; 14:642016. [PMID: 33658912 PMCID: PMC7917194 DOI: 10.3389/fnmol.2021.642016] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/26/2021] [Indexed: 12/21/2022] Open
Abstract
Historically, the mammalian brain was thought to lack stem cells as no new neurons were found to be made in adulthood. That dogma changed ∼25 years ago with the identification of neural stem cells (NSCs) in the adult rodent forebrain. However, unlike rapidly self-renewing mature tissues (e.g., blood, intestinal crypts, skin), the majority of adult NSCs are quiescent, and those that become 'activated' are restricted to a few neurogenic zones that repopulate specific brain regions. Conversely, embryonic NSCs are actively proliferating and neurogenic. Investigations into the molecular control of the quiescence-to-proliferation-to-differentiation continuum in the embryonic and adult brain have identified proneural genes encoding basic-helix-loop-helix (bHLH) transcription factors (TFs) as critical regulators. These bHLH TFs initiate genetic programs that remove NSCs from quiescence and drive daughter neural progenitor cells (NPCs) to differentiate into specific neural cell subtypes, thereby contributing to the enormous cellular diversity of the adult brain. However, new insights have revealed that proneural gene activities are context-dependent and tightly regulated. Here we review how proneural bHLH TFs are regulated, with a focus on the murine cerebral cortex, drawing parallels where appropriate to other organisms and neural tissues. We discuss upstream regulatory events, post-translational modifications (phosphorylation, ubiquitinylation), protein-protein interactions, epigenetic and metabolic mechanisms that govern bHLH TF expression, stability, localization, and consequent transactivation of downstream target genes. These tight regulatory controls help to explain paradoxical findings of changes to bHLH activity in different cellular contexts.
Collapse
Affiliation(s)
- Ana-Maria Oproescu
- Sunnybrook Research Institute, Biological Sciences Platform, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Sisu Han
- Sunnybrook Research Institute, Biological Sciences Platform, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Carol Schuurmans
- Sunnybrook Research Institute, Biological Sciences Platform, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Ai LQY, Yuan RD, Chen X, Liu YJ, Liu WY, Zhu JY, Zhang Z, Yan J, Chen CL, Lin S, Ye J. Retinal blood vessel-origin yes-associated protein (YAP) governs astrocytic maturation via leukaemia inhibitory factor (LIF). Cell Prolif 2020; 53:e12757. [PMID: 31916327 PMCID: PMC7046482 DOI: 10.1111/cpr.12757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/26/2019] [Accepted: 12/16/2019] [Indexed: 12/31/2022] Open
Abstract
Objectives To testify that endothelial cells (ECs) induce astrocyte maturation by leukaemia inhibitory factor (LIF) secretion. Materials and Methods In vivo experiments, mice bearing floxed alleles of YAP were crossed with mice expressing a Cre recombinase driven by the endothelial Tek promoter (Tek‐Cre) to finally obtain the following three genotypes: YAPf/f, Tek‐Cre; YAPf/w, Tek‐Cre; and YAPf/f. Retinal vascularization and astrocyte network were evaluated by whole‐mount fluorescence and Western blotting. In vitro, experiments were performed in an astrocyte and human microvascular endothelial cell (HMEC‐1) coculture model to analyse the mechanisms underlying the effect of endothelial YAP on astrocytes. Results In vivo, YAPf/f;Tek‐Cre mice showed delayed angiogenesis, sparse vessels and decreased glial fibrillary acidic protein (GFAP)+ astrocytes but aberrant growth of endothelial networks and immature astrocytes (platelet‐derived growth factor A, PDGFRA+ astrocytes) overgrowth. In vitro, Yap deletion attenuated the LIF release that delayed the maturation of retinal astrocyte which was consistent with the results of HMEC‐1—astrocyte coculture. The effect of YAP overexpression on LIF‐LIFR axis in HMEC‐1 interferes the GFAP expression of astrocyte. In contrast, LIF protein rescues the astrocytic GFAP expression when EC YAP was inhibited by siRNAs. Conclusions We show that EC yes‐associated protein (YAP) is not only a critical coactivator of Hippo signalling in retinal vessel development but also plays an essential role in retinal astrocyte maturation by regulating LIF production.
Collapse
Affiliation(s)
- Li-Qian-Yu Ai
- Department of Ophthalmology, Research Institute of Surgery & Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Rong-Di Yuan
- Department of Ophthalmology, XinQiao Hospital, Army Medical University, Chongqing, China
| | - Xi Chen
- Department of Ophthalmology, Research Institute of Surgery & Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Yun-Jia Liu
- Department of Ophthalmology, Research Institute of Surgery & Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Wen-Yi Liu
- Department of Ophthalmology, Research Institute of Surgery & Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Jing-Yi Zhu
- Department of Ophthalmology, Research Institute of Surgery & Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Zhou Zhang
- Department of Ophthalmology, Research Institute of Surgery & Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Jun Yan
- Research Institute of Surgery & Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Chun-Lin Chen
- Department of Ophthalmology, Research Institute of Surgery & Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Sen Lin
- Department of Ophthalmology, Research Institute of Surgery & Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Jian Ye
- Department of Ophthalmology, Research Institute of Surgery & Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| |
Collapse
|
6
|
Robson JP, Wagner B, Glitzner E, Heppner FL, Steinkellner T, Khan D, Petritsch C, Pollak DD, Sitte HH, Sibilia M. Impaired neural stem cell expansion and hypersensitivity to epileptic seizures in mice lacking the EGFR in the brain. FEBS J 2018; 285:3175-3196. [PMID: 30028091 PMCID: PMC6174950 DOI: 10.1111/febs.14603] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/18/2018] [Accepted: 07/17/2018] [Indexed: 12/20/2022]
Abstract
Mice lacking the epidermal growth factor receptor (EGFR) develop an early postnatal degeneration of the frontal cortex and olfactory bulbs and show increased cortical astrocyte apoptosis. The poor health and early lethality of EGFR−/− mice prevented the analysis of mechanisms responsible for the neurodegeneration and function of the EGFR in the adult brain. Here, we show that postnatal EGFR‐deficient neural stem cells are impaired in their self‐renewal potential and lack clonal expansion capacity in vitro. Mice lacking the EGFR in the brain (EGFRΔbrain) show low penetrance of cortical degeneration compared to EGFR−/− mice despite genetic recombination of the conditional allele. Adult EGFRΔ mice establish a proper blood–brain barrier and perform reactive astrogliosis in response to mechanical and infectious brain injury, but are more sensitive to Kainic acid‐induced epileptic seizures. EGFR‐deficient cortical astrocytes, but not midbrain astrocytes, have reduced expression of glutamate transporters Glt1 and Glast, and show reduced glutamate uptake in vitro, illustrating an excitotoxic mechanism to explain the hypersensitivity to Kainic acid and region‐specific neurodegeneration observed in EGFR‐deficient brains.
Collapse
Affiliation(s)
- Jonathan P Robson
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Austria
| | - Bettina Wagner
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Austria
| | - Elisabeth Glitzner
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Austria
| | - Frank L Heppner
- Department of Neuropathology, Cluster of Excellence, NeuroCure, Charité - Universitätsmedizin Berlin, Germany
| | - Thomas Steinkellner
- Centre for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Austria
| | - Deeba Khan
- Centre for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Austria
| | - Claudia Petritsch
- Department of Neurological Surgery, UCSF Broad Institute of Regeneration Medicine, University of California San Francisco, CA, USA
| | - Daniela D Pollak
- Centre for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Austria
| | - Harald H Sitte
- Centre for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Austria
| | - Maria Sibilia
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Austria
| |
Collapse
|
7
|
Zhou S, Ochalek A, Szczesna K, Avci HX, Kobolák J, Varga E, Rasmussen M, Holst B, Cirera S, Hyttel P, Freude KK, Dinnyés A. The positional identity of iPSC-derived neural progenitor cells along the anterior-posterior axis is controlled in a dosage-dependent manner by bFGF and EGF. Differentiation 2016; 92:183-194. [PMID: 27321088 DOI: 10.1016/j.diff.2016.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 05/30/2016] [Accepted: 06/09/2016] [Indexed: 12/27/2022]
Abstract
Neural rosettes derived from human induced pluripotent stem cells (iPSCs) have been claimed to be a highly robust in vitro cellular model for biomedical application. They are able to propagate in vitro in the presence of mitogens, including basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF). However, these two mitogens are also involved in anterior-posterior patterning in a gradient dependent manner along the neural tube axis. Here, we compared the regional identity of neural rosette cells and specific neural subtypes of their progeny propagated with low and high concentrations of bFGF and EGF. We observed that low concentrations of bFGF and EGF in the culturing system were able to induce forebrain identity of the neural rosettes and promote subsequent cortical neuronal differentiation. On the contrary, high concentrations of these mitogens stimulate a mid-hindbrain fate of the neural rosettes, resulting in subsequent cholinergic neuron differentiation. Thus, our results indicate that different concentrations of bFGF and EGF supplemented during propagation of neural rosettes are involved in altering the identity of the resultant neural cells.
Collapse
Affiliation(s)
- Shuling Zhou
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Anna Ochalek
- BioTalentum Ltd., Gödöllő, Hungary; Molecular Animal Biotechnology Laboratory, Szent Istvan University, Gödöllő, Hungary.
| | | | - Hasan X Avci
- BioTalentum Ltd., Gödöllő, Hungary; Department of Medical Chemistry, University of Szeged, Dóm tér 8, 6720 Szeged, Hungary.
| | | | - Eszter Varga
- BioTalentum Ltd., Gödöllő, Hungary; Molecular Animal Biotechnology Laboratory, Szent Istvan University, Gödöllő, Hungary.
| | | | | | - Susanna Cirera
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Poul Hyttel
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Kristine K Freude
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - András Dinnyés
- BioTalentum Ltd., Gödöllő, Hungary; Molecular Animal Biotechnology Laboratory, Szent Istvan University, Gödöllő, Hungary; Departments of Equine Sciences and Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.
| |
Collapse
|
8
|
Cheng EH, Liu JY, Lee TH, Huang CC, Chen CI, Huang LS, Lee MS. Requirement of Leukemia Inhibitory Factor or Epidermal Growth Factor for Pre-Implantation Embryogenesis via JAK/STAT3 Signaling Pathways. PLoS One 2016; 11:e0153086. [PMID: 27096934 PMCID: PMC4838257 DOI: 10.1371/journal.pone.0153086] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 03/23/2016] [Indexed: 01/16/2023] Open
Abstract
Leukemia inhibitory factor (LIF) plays a key role in the survivability of mouse embryos during pre-implantation. In this study, we verified the role of LIF by detecting gene expression in morula stage embryos through DNA microarray. Our results showed that LIF knockdown affected expression of 369 genes. After LIF supplementation, the epidermal growth factor (EGF) is most affected by LIF expression. To observe the correlation between LIF and EGF, the LIF knockdown embryos were supplemented with various growth factors, including LIF, EGF, GM-CSF, TGF, and IGF II. Only LIF and EGF caused the rate of blastocyst development to recover significantly from 52% of control to 83% and 93%, respectively. All of the variables, including the diameter of blastocysts, the number of blastomeres, and cells in ICM and TE, were almost restored. Moreover, EGF knockdown also impaired blastocyst development, which was reversed by LIF or EGF supplementation. The treatment with various signaling suppressors revealed that both EGF and LIF promoted embryonic development through the JAK/STAT3 signaling pathway. These data suggest that the EGF and LIF can be compensatory to each other during early embryonic development, and at least one of them is necessary for sustaining the normal development of pre-implantation embryos.
Collapse
Affiliation(s)
- En-Hui Cheng
- Division of Infertility Clinic, Lee Women’s Hospital, Taichung, Taiwan
| | - Jer-Yuh Liu
- Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Tsung-Hsein Lee
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chun-Chia Huang
- Division of Infertility Clinic, Lee Women’s Hospital, Taichung, Taiwan
| | - Chung-I Chen
- Division of Infertility Clinic, Lee Women’s Hospital, Taichung, Taiwan
| | - Lii-Sheng Huang
- Division of Infertility Clinic, Lee Women’s Hospital, Taichung, Taiwan
- Department of Nursing, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Maw-Sheng Lee
- Division of Infertility Clinic, Lee Women’s Hospital, Taichung, Taiwan
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
9
|
Fujimoto I, Hasegawa K, Fujiwara K, Yamada M, Yoshikawa K. Necdin controls EGFR signaling linked to astrocyte differentiation in primary cortical progenitor cells. Cell Signal 2015; 28:94-107. [PMID: 26655377 DOI: 10.1016/j.cellsig.2015.11.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/23/2015] [Accepted: 11/30/2015] [Indexed: 11/26/2022]
Abstract
Cellular signaling mediated by the EGF receptor (EGFR) plays a key role in controlling proliferation and differentiation of cortical progenitor cells (CPCs). However, regulatory mechanisms of EGFR signaling in CPCs remain largely unknown. Here we demonstrate that necdin, a MAGE (melanoma antigen) family protein, interacts with EGFR in primary CPCs and represses its downstream signaling linked to astrocyte differentiation. EGFR was autophosphorylated and interacted with necdin in EGF-stimulated CPCs. Necdin bound to autophosphorylated EGFR via its tyrosine kinase domain. EGF-induced phosphorylation of ERK was enhanced in necdin-null CPCs, where the interaction between EGFR and the adaptor protein Grb2 was strengthened, suggesting that endogenous necdin suppresses the EGFR/ERK signaling pathway in CPCs. In necdin-null CPCs, astrocyte differentiation induced by the gliogenic cytokine cardiotrophin-1 was significantly accelerated in the presence of EGF, and inhibition of EGFR/ERK signaling abolished the acceleration. Furthermore, necdin strongly suppressed astrocyte differentiation induced by overexpression of EGFR or its ligand binding-defective mutant equivalent to a glioblastoma-associated EGFR variant. These results suggest that necdin acts as an intrinsic suppressor of the EGFR/ERK signaling pathway in EGF-responsive CPCs to restrain astroglial development in a cell-autonomous manner.
Collapse
Affiliation(s)
- Izumi Fujimoto
- Laboratory of Regulation of Neuronal Development, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Koichi Hasegawa
- Laboratory of Regulation of Neuronal Development, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Kazushiro Fujiwara
- Laboratory of Regulation of Neuronal Development, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Masashi Yamada
- Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Kazuaki Yoshikawa
- Laboratory of Regulation of Neuronal Development, Institute for Protein Research, Osaka University, Osaka, Japan.
| |
Collapse
|
10
|
Falcone C, Mallamaci A. Tuning of neocortical astrogenesis rates by Emx2 in neural stem cells. Neural Regen Res 2015; 10:550-1. [PMID: 26170809 PMCID: PMC4424741 DOI: 10.4103/1673-5374.155418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2015] [Indexed: 11/30/2022] Open
Affiliation(s)
- Carmen Falcone
- Laboratory of Cerebral Cortex Development, SISSA, Triest I-36134, Italy
| | | |
Collapse
|
11
|
Falcone C, Filippis C, Granzotto M, Mallamaci A. Emx2 expression levels in NSCs modulate astrogenesis rates by regulating EgfR and Fgf9. Glia 2014; 63:412-22. [PMID: 25327963 DOI: 10.1002/glia.22761] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 09/29/2014] [Indexed: 01/22/2023]
Abstract
Generation of astrocytes within the developing cerebral cortex is a tightly regulated process, initiating at low level in the middle of neuronogenesis and peaking up after its completion. Astrocytic outputs depend on two primary factors: progression of multipotent precursors toward the astroglial lineage and sizing of the astrogenic proliferating pool. The aim of this study was to investigate the role of the Emx2 homeobox gene in the latter process. We addressed this issue by combined gain- and loss-of-function methods, in vivo as well as in primary cultures of cortico-cerebral precursors. We found that Emx2 overexpression in cortico-cerebral stem cells shrinked the proliferating astrogenic pool, resulting in a severe reduction of the astroglial outcome. We showed that this was caused by EgfR and Fgf9 downregulation and that both phenomena originated from exaggerated Bmp signaling and Sox2 repression. Finally, we provided evidence that in vivo temporal progression of Emx2 levels in cortico-cerebral multipotent precursors contributes to confine the bulk of astrogenesis to postnatal life. Emx2 regulation of astrogenesis adds to a number of earlier developmental processes mastered by this gene. It points to Emx2 as a new promising tool for controlling reactive astrogliosis and optimizing cell-based designs for brain repair.
Collapse
|
12
|
BMP signaling in astrocytes downregulates EGFR to modulate survival and maturation. PLoS One 2014; 9:e110668. [PMID: 25330173 PMCID: PMC4201562 DOI: 10.1371/journal.pone.0110668] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 09/22/2014] [Indexed: 11/19/2022] Open
Abstract
Astrocytes constitute a major cell population in the brain with a myriad of essential functions, yet we know remarkably little about the signaling pathways and mechanisms that direct astrocyte maturation. To explore the signals regulating astrocyte development, we prospectively purified and cultured immature postnatal rodent astrocytes. We identified fibroblast growth factors (FGFs) and bone morphogenetic proteins (BMPs) as robust trophic factors for immature astrocytes. We showed that astrocytes respond directly to BMPs via phosphorylation of the smad1/5/8 pathway. In vitro, BMP signaling promoted immature astrocytes to adopt multiple characteristics of mature astrocytes, including a more process-bearing morphology, aquaporin-4 (AQP4) and S100β immunoreactivity, limited proliferation, and strong downregulation of epidermal growth factor receptor (EGFR). In vivo, activation of the smad1/5/8 pathway in astrocytes was seen during early postnatal development, but inhibition of astrocyte proliferation was not observed. These insights can aid in the further dissection of the mechanisms and pathways controlling astrocyte biology and development.
Collapse
|
13
|
Lillien L. Rostral-caudal distribution of Emx1-lineage stem/transit amplifying cells and lineage progression in embryonic cortex depend on Hedgehog signaling. Dev Neurobiol 2014; 74:1096-109. [PMID: 24771701 DOI: 10.1002/dneu.22186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 04/02/2014] [Accepted: 04/24/2014] [Indexed: 11/09/2022]
Abstract
Lineage progression of neural precursors to an EGF-responsive state can be promoted by several extrinsic signals, including fibroblast growth factor 2 (FGF2) and Hedgehog (Hh). It has been suggested that EGF-responsive precursors in the embryonic cerebral cortex originate in the ventral telencephalon in an FGF-dependent manner and migrate dorsally. To determine whether cortical EGF-responsive cells originate locally from dorsal precursors, we marked these precursors using Emx1-cre and the cre reporter Z/EG and observed a local origin for EGF-responsive cells. We also found a rostral-caudal difference in the abundance of self-renewing, neurogenic Emx1-lineage precursors, with more present rostrally. Deleting the Hh receptor smoothened in Emx-1 lineage cells impaired their progression to an EGF-responsive state. Moreover, loss of smoothened increased the proportion of neurogenic, self-renewing Emx1-lineage cells in caudal regions of cortex, eliminating their asymmetric distribution. Our results support the idea that Hh signaling promotes lineage progression of stem/transit amplifying cells, particularly in caudal regions of the embryonic cortex, leading to rostral-caudal differences in the abundance of neurogenic, self-renewing precursors.
Collapse
Affiliation(s)
- Laura Lillien
- Department of Neurobiology, University of Pittsburgh School of Medicine, W1454 Biomedical Science Tower, Pittsburgh, Pennsylvania, 15261
| |
Collapse
|
14
|
Kotasová H, Procházková J, Pacherník J. Interaction of Notch and gp130 signaling in the maintenance of neural stem and progenitor cells. Cell Mol Neurobiol 2014; 34:1-15. [PMID: 24132391 PMCID: PMC11488917 DOI: 10.1007/s10571-013-9996-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/30/2013] [Indexed: 01/10/2023]
Abstract
Notch and gp130 signaling are involved in the regulation of multiple cellular processes across various tissues during animal ontogenesis. In the developing nervous system, both signaling pathways intervene at many stages to determine cell fate-from the first neural lineage commitment and generation of neuronal precursors, to the terminal specification of cells as neurons and glia. In most cases, the effects of Notch and gp130 signaling in these processes are similar. The aim of the current review was to summarize the knowledge regarding the roles of Notch and gp130 signaling in the maintenance of neural stem and progenitor cells during animal ontogenesis, from early embryo to adult. Recent data show a direct crosstalk between these signaling pathways that seems to be specific for a particular type of neural progenitors.
Collapse
Affiliation(s)
- Hana Kotasová
- Faculty of Science, Institute of Experimental Biology, Masaryk University, Brno, Czech Republic
| | - Jiřina Procházková
- Faculty of Science, Institute of Experimental Biology, Masaryk University, Brno, Czech Republic
| | - Jiří Pacherník
- Faculty of Science, Institute of Experimental Biology, Masaryk University, Brno, Czech Republic
- Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czech Republic
| |
Collapse
|
15
|
Kuo HY, Huang YS, Tseng CH, Chen YC, Chang YW, Shih HM, Wu CW. PML represses lung cancer metastasis by suppressing the nuclear EGFR-mediated transcriptional activation of MMP2. Cell Cycle 2014; 13:3132-3142. [PMID: 25486572 PMCID: PMC4614437 DOI: 10.4161/15384101.2014.949212] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/17/2014] [Accepted: 07/21/2014] [Indexed: 01/14/2023] Open
Abstract
Promyelocytic leukemia protein (PML) is emerging as an important tumor suppressor. Its expression is lost during the progression of several types of cancer, including lung cancer. The EGF receptor (EGFR), a membrane-bound receptor tyrosine kinase, transduces intracellular signals responsible for cell proliferation, differentiation and migration. EGFR activity is frequently abnormally upregulated in lung adenocarcinoma (LAC) and thus is considered to be a driving oncogene for LAC. EGFR translocates into the nucleus and transcriptionally activates genes, such as CCND1, that promote cell growth. Recently, we demonstrated that PML interacted with nuclear EGFR (nEGFR) and suppressed the nEGFR-mediated transcriptional activation of CCND1 in lung cancer cells, thereby restraining cell growth. When we further investigated the interplay between PML and EGFR in lung cancer metastasis, we found that the matrix metalloprotease-2 gene (MMP2) was a novel nEGFR target gene and was repressed by PML. We provide evidence that nEGFR bound to the AT-rich sequence (ATRS) in the MMP2 promoter and enhanced its transcriptional activity. In addition, we demonstrated that PML repressed nEGFR-induced MMP2 transcription and reduced cell invasion. PML was recruited by nEGFR to the MMP2 promoter where it reduced histone acetylation, leading to the transcriptional repression of MMP2. Finally, we demonstrated that PML upregulation by interferon-β (IFNβ) in lung cancer cells decreased MMP2 expression and cell invasion. Together, our results suggested that IFNβ induced PML to inhibit lung cancer metastasis by repressing the nEGFR-mediated transcriptional activation of MMP2.
Collapse
Affiliation(s)
- Hong-Yi Kuo
- Institute of Biochemistry and Molecular Biology; National Yang Ming University; Taipei, Taiwan
| | - Yen-Sung Huang
- Institute of Biomedical Science; Academia Sinica; Taipei, Taiwan
| | - Chin-Hsiu Tseng
- Taiwan International Graduate Program in Molecular Medicine; National Yang-Ming University and Academia Sinica; Taipei, Taiwan
| | - Yi-Chen Chen
- Institute of Biochemistry and Molecular Biology; National Yang Ming University; Taipei, Taiwan
| | - Yu-Wei Chang
- Institute of Biochemistry and Molecular Biology; National Yang Ming University; Taipei, Taiwan
| | - Hsiu-Ming Shih
- Institute of Biomedical Science; Academia Sinica; Taipei, Taiwan
- Graduate Institute of Life Sciences; National Defense Medical Center; Taipei, Taiwan
- Graduate Institute of Translational Medicine; College of Medical Science and Technology; Taipei Medical University; Taipei, Taiwan
- Institute of Molecular Medicine; College of Medicine; National Taiwan University; Taipei, Taiwan
| | - Cheng-Wen Wu
- Institute of Biochemistry and Molecular Biology; National Yang Ming University; Taipei, Taiwan
- Institute of Microbiology and Immunology; National Yang Ming University; Taipei, Taiwan
- Institute of Clinical Medicine; National Yang Ming University; Taipei, Taiwan
- Institute of Biomedical Science; Academia Sinica; Taipei, Taiwan
| |
Collapse
|
16
|
Yan Y, Shin S, Jha BS, Liu Q, Sheng J, Li F, Zhan M, Davis J, Bharti K, Zeng X, Rao M, Malik N, Vemuri MC. Efficient and rapid derivation of primitive neural stem cells and generation of brain subtype neurons from human pluripotent stem cells. Stem Cells Transl Med 2013; 2:862-70. [PMID: 24113065 DOI: 10.5966/sctm.2013-0080] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Human pluripotent stem cells (hPSCs), including human embryonic stem cells and human induced pluripotent stem cells, are unique cell sources for disease modeling, drug discovery screens, and cell therapy applications. The first step in producing neural lineages from hPSCs is the generation of neural stem cells (NSCs). Current methods of NSC derivation involve the time-consuming, labor-intensive steps of an embryoid body generation or coculture with stromal cell lines that result in low-efficiency derivation of NSCs. In this study, we report a highly efficient serum-free pluripotent stem cell neural induction medium that can induce hPSCs into primitive NSCs (pNSCs) in 7 days, obviating the need for time-consuming, laborious embryoid body generation or rosette picking. The pNSCs expressed the neural stem cell markers Pax6, Sox1, Sox2, and Nestin; were negative for Oct4; could be expanded for multiple passages; and could be differentiated into neurons, astrocytes, and oligodendrocytes, in addition to the brain region-specific neuronal subtypes GABAergic, dopaminergic, and motor neurons. Global gene expression of the transcripts of pNSCs was comparable to that of rosette-derived and human fetal-derived NSCs. This work demonstrates an efficient method to generate expandable pNSCs, which can be further differentiated into central nervous system neurons and glia with temporal, spatial, and positional cues of brain regional heterogeneity. This method of pNSC derivation sets the stage for the scalable production of clinically relevant neural cells for cell therapy applications in good manufacturing practice conditions.
Collapse
Affiliation(s)
- Yiping Yan
- Primary and Stem Cell Culture Systems, Life Technologies, Frederick, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Serio A, Bilican B, Barmada SJ, Ando DM, Zhao C, Siller R, Burr K, Haghi G, Story D, Nishimura AL, Carrasco MA, Phatnani HP, Shum C, Wilmut I, Maniatis T, Shaw CE, Finkbeiner S, Chandran S. Astrocyte pathology and the absence of non-cell autonomy in an induced pluripotent stem cell model of TDP-43 proteinopathy. Proc Natl Acad Sci U S A 2013; 110:4697-702. [PMID: 23401527 PMCID: PMC3607024 DOI: 10.1073/pnas.1300398110] [Citation(s) in RCA: 280] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glial proliferation and activation are associated with disease progression in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia. In this study, we describe a unique platform to address the question of cell autonomy in transactive response DNA-binding protein (TDP-43) proteinopathies. We generated functional astroglia from human induced pluripotent stem cells carrying an ALS-causing TDP-43 mutation and show that mutant astrocytes exhibit increased levels of TDP-43, subcellular mislocalization of TDP-43, and decreased cell survival. We then performed coculture experiments to evaluate the effects of M337V astrocytes on the survival of wild-type and M337V TDP-43 motor neurons, showing that mutant TDP-43 astrocytes do not adversely affect survival of cocultured neurons. These observations reveal a significant and previously unrecognized glial cell-autonomous pathological phenotype associated with a pathogenic mutation in TDP-43 and show that TDP-43 proteinopathies do not display an astrocyte non-cell-autonomous component in cell culture, as previously described for SOD1 ALS. This study highlights the utility of induced pluripotent stem cell-based in vitro disease models to investigate mechanisms of disease in ALS and other TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Andrea Serio
- Euan MacDonald Centre for Motor Neurone Disease Research, Centre for Neuroregeneration, and Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Bilada Bilican
- Euan MacDonald Centre for Motor Neurone Disease Research, Centre for Neuroregeneration, and Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Sami J. Barmada
- Taube-Koret Center, Hellman Program, and Rodenberry Stem Cell Program, Gladstone Institute of Neurological Disease, San Francisco, CA 94158
- Departments of Neurology and Physiology, University of California, San Francisco, CA 94143
| | - Dale Michael Ando
- Taube-Koret Center, Hellman Program, and Rodenberry Stem Cell Program, Gladstone Institute of Neurological Disease, San Francisco, CA 94158
| | - Chen Zhao
- Euan MacDonald Centre for Motor Neurone Disease Research, Centre for Neuroregeneration, and Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Rick Siller
- Euan MacDonald Centre for Motor Neurone Disease Research, Centre for Neuroregeneration, and Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Karen Burr
- Euan MacDonald Centre for Motor Neurone Disease Research, Centre for Neuroregeneration, and Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Ghazal Haghi
- Euan MacDonald Centre for Motor Neurone Disease Research, Centre for Neuroregeneration, and Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - David Story
- Euan MacDonald Centre for Motor Neurone Disease Research, Centre for Neuroregeneration, and Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Agnes Lumi Nishimura
- Institute of Psychiatry, Medical Research Council Centre for Neurodegeneration Research, King’s College London, London SE5 8AF, United Kingdom; and
| | - Monica A. Carrasco
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032
| | - Hemali P. Phatnani
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032
| | - Carole Shum
- Institute of Psychiatry, Medical Research Council Centre for Neurodegeneration Research, King’s College London, London SE5 8AF, United Kingdom; and
| | - Ian Wilmut
- Euan MacDonald Centre for Motor Neurone Disease Research, Centre for Neuroregeneration, and Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Tom Maniatis
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032
| | - Christopher E. Shaw
- Institute of Psychiatry, Medical Research Council Centre for Neurodegeneration Research, King’s College London, London SE5 8AF, United Kingdom; and
| | - Steven Finkbeiner
- Taube-Koret Center, Hellman Program, and Rodenberry Stem Cell Program, Gladstone Institute of Neurological Disease, San Francisco, CA 94158
- Departments of Neurology and Physiology, University of California, San Francisco, CA 94143
| | - Siddharthan Chandran
- Euan MacDonald Centre for Motor Neurone Disease Research, Centre for Neuroregeneration, and Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| |
Collapse
|
18
|
Stine RR, Matunis EL. JAK-STAT signaling in stem cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 786:247-67. [PMID: 23696361 DOI: 10.1007/978-94-007-6621-1_14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adult stem cells are essential for the regeneration and repair of tissues in an organism. Signals from many different pathways converge to regulate stem cell maintenance and differentiation while preventing overproliferation. Although each population of adult stem cells is unique, common themes arise by comparing the regulation of various stem cell types in an organism or by comparing similar stem cell types across species. The JAK-STAT signaling pathway, identified nearly two decades ago, is now known to be involved in many biological processes including the regulation of stem cells. Studies in Drosophila first implicated JAK-STAT signaling in the control of stem cell maintenance in the male germline stem cell microenvironment, or niche; subsequently it has been shown play a role in other niches in both Drosophila and mammals. In this chapter, we will address the role of JAK-STAT signaling in stem cells in the germline, intestinal, hematopoietic and neuronal niches in Drosophila as well as the hematopoietic and neuronal niches in mammals. We will comment on how the study of JAK-STAT signaling in invertebrate systems has helped to advance our understanding of signaling in vertebrates. In addition to the role of JAK- STAT signaling in stem cell niche homeostasis, we will also discuss the diseases, including cancers, that can arise when this pathway is misregulated.
Collapse
Affiliation(s)
- Rachel R Stine
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD, 21205 USA
| | | |
Collapse
|
19
|
Abstract
We have defined functions of MEK in regulating gliogenesis in developing cerebral cortex using loss- and gain-of-function mouse genetics. Radial progenitors deficient in both Mek1 and Mek2 fail to transition to the gliogenic mode in late embryogenesis, and astrocyte and oligodendroglial precursors fail to appear. In exploring mechanisms, we found that the key cytokine-regulated gliogenic pathway is attenuated. Further, the Ets transcription family member Etv5/Erm is strongly regulated by MEK and Erm overexpression can rescue the gliogenic potential of Mek-deleted progenitors. Remarkably, Mek1/2-deleted mice surviving postnatally exhibit cortices almost devoid of astrocytes and oligodendroglia and exhibit neurodegeneration. Conversely, expression of constitutively active MEK1 leads to a major increase in numbers of astrocytes in the adult brain. We conclude that MEK is essential for acquisition of gliogenic competence by radial progenitors and that levels of MEK activity regulate gliogenesis in the developing cortex.
Collapse
|
20
|
Zhou Y, James I, Besner GE. Heparin-binding epidermal growth factor-like growth factor promotes murine enteric nervous system development and enteric neural crest cell migration. J Pediatr Surg 2012; 47:1865-73. [PMID: 23084199 PMCID: PMC3481188 DOI: 10.1016/j.jpedsurg.2012.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 04/22/2012] [Accepted: 05/03/2012] [Indexed: 11/26/2022]
Abstract
BACKGROUND/PURPOSE Developmental defects of the enteric nervous system lead to a variety of disorders including Hirschprung disease. We have previously shown that heparin-binding epidermal growth factor-like growth factor (HB-EGF) exerts neuroprotective effects on injured neurons. The goals of this study were to assess the role of HB-EGF in enteric nervous system development and to evaluate the effect of HB-EGF on enteric neural crest-derived cell (ENCC) migration in the developing gastrointestinal tract of mice. MATERIALS AND METHODS HB-EGF immunohistochemistry was used to examine HB-EGF protein expression in the hindgut of embryonic mice. Gut specimens were stained for PGP9.5 (a neuronal cell marker) to examine the extent of ENCC migration in the intestine at different embryonic stages in HB-EGF knockout (KO) and wild-type (WT) mice. Embryonic gut organ cultures were established to examine the effect of HB-EGF on ENCC migration. RESULTS The expression of HB-EGF was limited to the endodermal epithelium of the hindgut in early gestation, but rapidly involved the hindgut mesenchyme after ENCC migrated into this region. ENCC migration was significantly delayed in HB-EGF KO compared with WT embryos, leading to defects in neural colonization of the distal gut in postnatal HB-EGF KO mice. Addition of HB-EGF to WT embryonic intestine significantly promoted ENCC migration, as demonstrated by a significant increase in the ratio of ENCC migration distance toward the distal hindgut/total colon length (78% ± 4% vs 53% ± 2%, P = .001). CONCLUSIONS Deletion of the HB-EGF gene leads to enteric nervous system developmental defects. HB-EGF stimulates ENCC migration in the gut, supporting a potential role for administration of HB-EGF in the future for the treatment of patients with intestinal neuronal disorders.
Collapse
Affiliation(s)
| | | | - Gail E. Besner
- Correspondence: Gail E. Besner, MD, Department of Pediatric Surgery, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, Tel: 1-614 722-3900, Fax: 1-614 722-3903,
| |
Collapse
|
21
|
Neuron-astroglial interactions in cell-fate commitment and maturation in the central nervous system. Neurochem Res 2012; 37:2402-18. [PMID: 22614925 DOI: 10.1007/s11064-012-0798-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 04/18/2012] [Accepted: 05/07/2012] [Indexed: 01/24/2023]
Abstract
Neuron-astroglia interactions play a key role in several events of brain development, such as neuronal generation, migration, survival, and differentiation; axonal growth; and synapse formation and function. While there is compelling evidence of the effects of astrocyte factors on neurons, their effects on astrocytes have not been fully determined. In this review, we will focus on the role of neurons in astrocyte generation and maturation. Further, we highlight the great heterogeneity and diversity of astroglial and neural progenitors such as radial glia cells, and discuss the importance of the variety of cellular interactions in controlling the structural and functional organization of the brain. Finally, we present recent data on a new role of astrocytes in neuronal maturation, as mediators of the action of biolipids in the cerebral cortex. We will argue that the functional architecture of the brain depends on an intimate neuron-glia partnership, by briefly discussing the emerging view of how neuron-astrocyte dysfunctions might be associated with neurodegenerative diseases and neurological disorders.
Collapse
|
22
|
Li M, Choi ST, Tsang KS, Shaw PC, Lau KF. DNA Microarray Expression Analysis of Baicalin-Induced Differentiation of C17.2 Neural Stem Cells. Chembiochem 2012; 13:1286-90. [DOI: 10.1002/cbic.201200145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Indexed: 12/30/2022]
|
23
|
Siddiqui S, Fang M, Ni B, Lu D, Martin B, Maudsley S. Central role of the EGF receptor in neurometabolic aging. Int J Endocrinol 2012; 2012:739428. [PMID: 22754566 PMCID: PMC3382947 DOI: 10.1155/2012/739428] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 05/01/2012] [Indexed: 12/20/2022] Open
Abstract
A strong connection between neuronal and metabolic health has been revealed in recent years. It appears that both normal and pathophysiological aging, as well as neurodegenerative disorders, are all profoundly influenced by this "neurometabolic" interface, that is, communication between the brain and metabolic organs. An important aspect of this "neurometabolic" axis that needs to be investigated involves an elucidation of molecular factors that knit these two functional signaling domains, neuronal and metabolic, together. This paper attempts to identify and discuss a potential keystone signaling factor in this "neurometabolic" axis, that is, the epidermal growth factor receptor (EGFR). The EGFR has been previously demonstrated to act as a signaling nexus for many ligand signaling modalities and cellular stressors, for example, radiation and oxidative radicals, linked to aging and degeneration. The EGFR is expressed in a wide variety of cells/tissues that pertain to the coordinated regulation of neurometabolic activity. EGFR signaling has been highlighted directly or indirectly in a spectrum of neurometabolic conditions, for example, metabolic syndrome, diabetes, Alzheimer's disease, cancer, and cardiorespiratory function. Understanding the positioning of the EGFR within the neurometabolic domain will enhance our appreciation of the ability of this receptor system to underpin highly complex physiological paradigms such as aging and neurodegeneration.
Collapse
Affiliation(s)
- Sana Siddiqui
- Receptor Pharmacology Unit, National Institute on Aging, Baltimore, MD 21224, USA
| | - Meng Fang
- Receptor Pharmacology Unit, National Institute on Aging, Baltimore, MD 21224, USA
| | - Bin Ni
- Receptor Pharmacology Unit, National Institute on Aging, Baltimore, MD 21224, USA
| | - Daoyuan Lu
- Receptor Pharmacology Unit, National Institute on Aging, Baltimore, MD 21224, USA
| | - Bronwen Martin
- Metabolism Unit, National Institute on Aging, Baltimore, MD 21224, USA
| | - Stuart Maudsley
- Receptor Pharmacology Unit, National Institute on Aging, Baltimore, MD 21224, USA
- *Stuart Maudsley:
| |
Collapse
|
24
|
Serre A, Snyder EY, Mallet J, Buchet D. Overexpression of basic helix-loop-helix transcription factors enhances neuronal differentiation of fetal human neural progenitor cells in various ways. Stem Cells Dev 2011; 21:539-53. [PMID: 21561385 DOI: 10.1089/scd.2011.0079] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In a perspective of regenerative medicine, multipotent human neural progenitor cells (hNPCs) offer a therapeutic advantage over pluripotent stem cells in that they are already invariantly "neurally committed" and lack tumorigenicity. However, some of their intrinsic properties, such as slow differentiation and uncontrolled multipotency, remain among the obstacles to their routine use for transplantation. Although rodent NPCs have been genetically modified in vitro to overcome some of these limitations, the translation of this strategy to human cells remains in its early stages. In the present study, we compare the actions of 4 basic helix-loop-helix transcription factors on the proliferation, specification, and terminal differentiation of hNPCs isolated from the fetal dorsal telencephalon. Consistent with their proneural activity, Ngn1, Ngn2, Ngn3, and Mash1 prompted rapid commitment of the cells. The Ngns induced a decrease in proliferation, whereas Mash1 maintained committed progenitors in a proliferative state. As opposed to Ngn1 and Ngn3, which had no effect on glial differentiation, Ngn2 induced an increase in astrocytes in addition to neurons, whereas Mash1 led to both neuronal and oligodendroglial specification. GABAergic, cholinergic, and motor neuron differentiations were considerably increased by overexpression of Ngn2 and, to a lesser extent, of Ngn3 and Mash1. Thus, we provide evidence that hNPCs can be efficiently, rapidly, and safely expanded in vitro as well as rapidly differentiated toward mature neural (typically neuronal) lineages by the overexpression of select proneural genes.
Collapse
Affiliation(s)
- Angéline Serre
- Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière, Université Pierre et Marie Curie-Paris 6, UMR-S975, Paris, France
| | | | | | | |
Collapse
|
25
|
Cheng PY, Lin YP, Chen YL, Lee YC, Tai CC, Wang YT, Chen YJ, Kao CF, Yu J. Interplay between SIN3A and STAT3 mediates chromatin conformational changes and GFAP expression during cellular differentiation. PLoS One 2011; 6:e22018. [PMID: 21779366 PMCID: PMC3136934 DOI: 10.1371/journal.pone.0022018] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 06/12/2011] [Indexed: 01/28/2023] Open
Abstract
Background Neurons and astrocytes are generated from common neural precursors, yet neurogenesis precedes astrocyte formation during embryogenesis. The mechanisms of neural development underlying suppression and de-suppression of differentiation- related genes for cell fate specifications are not well understood. Methodology/Principal Findings By using an in vitro system in which NTera-2 cells were induced to differentiate into an astrocyte-like lineage, we revealed a novel role for Sin3A in maintaining the suppression of GFAP in NTera-2 cells. Sin3A coupled with MeCP2 bound to the GFAP promoter and their occupancies were correlated with repression of GFAP transcription. The repression by Sin3A and MeCP2 may be an essential mechanism underlying the inhibition of cell differentiation. Upon commitment toward an astrocyte-like lineage, Sin3A- MeCP2 departed from the promoter and activated STAT3 simultaneously bound to the promoter and exon 1 of GFAP; meanwhile, olig2 was exported from nuclei to the cytoplasm. This suggested that a three-dimensional or higher-order structure was provoked by STAT3 binding between the promoter and proximal coding regions. STAT3 then recruited CBP/p300 to exon 1 and targeted the promoter for histone H3K9 and H3K14 acetylation. The CBP/p300-mediated histone modification further facilitates chromatin remodeling, thereby enhancing H3K4 trimethylation and recruitment of RNA polymerase II to activate GFAP gene transcription. Conclusions/Significance These results provide evidence that exchange of repressor and activator complexes and epigenetic modifications are critical strategies for cellular differentiation and lineage-specific gene expression.
Collapse
Affiliation(s)
- Pei-Yi Cheng
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Ping Lin
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Ya-Ling Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Ching Lee
- Institute of Biomedical Science, Academia Sinica, Taipei, Taiwan
| | - Chia-Chen Tai
- Institute of Biomedical Science, Academia Sinica, Taipei, Taiwan
| | - Yi-Ting Wang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Cheng-Fu Kao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- * E-mail: (JY); (CFK)
| | - John Yu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- * E-mail: (JY); (CFK)
| |
Collapse
|
26
|
Chen C, Zhou Z, Zhong M, Li M, Yang X, Zhang Y, Wang Y, Wei A, Qu M, Zhang L, Xu S, Chen S, Yu Z. Excess thyroid hormone inhibits embryonic neural stem/progenitor cells proliferation and maintenance through STAT3 signalling pathway. Neurotox Res 2010; 20:15-25. [PMID: 20711698 DOI: 10.1007/s12640-010-9214-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 07/31/2010] [Accepted: 08/04/2010] [Indexed: 01/15/2023]
Abstract
Hyperthyroidism is prevalent during pregnancy, but little is known about the effects of excess thyroid hormone on the development of embryonic neural stem/progenitor cells (NSCs), and the mechanisms underlying these effects. Previous studies indicate that STAT3 plays a crucial role in determining NSC fate during neurodevelopment. In this study, we investigated the effects of a supraphysiological dose of 3,5,3'-L-triiodothyronine (T3) on the proliferation and maintenance of NSCs derived from embryonic day 13.5 mouse neocortex, and the involvement of STAT3 in this process. Our results suggest that excess T3 treatment inhibits NSC proliferation and maintenance. T3 decreased tyrosine phosphorylation of JAK1, JAK2 and STAT3, and subsequently inhibited STAT3-DNA binding activity. Furthermore, proliferation and maintenance of NSCs were decreased by inhibitors of JAKs and STAT3, indicating that the STAT3 signalling pathway is involved in the process of NSC proliferation and maintenance. Taken together, these results suggest that the STAT3 signalling pathway is involved in the process of T3-induced inhibition of embryonic NSC proliferation and maintenance. These findings provide data for understanding the effects of hyperthyroidism during pregnancy on fetal brain development, and the mechanisms underlying these effects.
Collapse
Affiliation(s)
- Chunhai Chen
- Department of Occupational Health, Faculty of Preventive Medicine, Third Military Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Gonzalez-Perez O, Quiñones-Hinojosa A. Dose-dependent effect of EGF on migration and differentiation of adult subventricular zone astrocytes. Glia 2010; 58:975-83. [PMID: 20187143 PMCID: PMC2915565 DOI: 10.1002/glia.20979] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Adult neural stem cells (NSCs) are located in the subventricular zone (SVZ), a specialized brain niche located on the walls of the lateral ventricle. Under physiological conditions, NSCs generate a large number of young neurons and some oligodendrocytes, however the mechanisms controlling cell proliferation and migration are unclear. In vitro, epidermal growth factor (EGF) signaling has been shown to be an important mediator of cell proliferation and migration in the adult brain; however, the primary SVZ progenitors that respond to EGF are not well known. In this study, we isolated SVZ type-B astrocytes and cultured them under different EGF concentrations. We found a dose-dependent effect of EGF on proliferation rates and migration of SVZ type-B astrocytes. We found that GFAP+ type-B astrocytes gave rise to highly migratory and proliferating cells that expressed Olig2 and NG2. After EGF withdrawal, a significant number of EGF-stimulated cells differentiated into S100beta+/O4+ oligodendrocytes. This study provides new insights about the production of oligodendrocytes derived from the astrocyte NSCs residing in the adult SVZ. To be able to manipulate the endogenous adult progenitors, it is crucial to identify and isolate the responding primary precursors and determine the extracellular signals that regulate their cell division, migration, and fate.
Collapse
Affiliation(s)
- Oscar Gonzalez-Perez
- Laboratory of Neuroscience, Facultad de Psicología, Universidad de Colima. Colima, Col. México 28040
| | - Alfredo Quiñones-Hinojosa
- Department of Neurosurgery and Oncology, Brain Tumor Surgery Program, Johns Hopkins University, School of Medicine. Baltimore, MD, USA 21205
| |
Collapse
|
28
|
Abstract
Cytokines are pleotrophic proteins that coordinate the host response to infection as well as mediate normal, ongoing signaling between cells of nonimmune tissues, including the nervous system. As a consequence of this dual role, cytokines induced in response to maternal infection or prenatal hypoxia can profoundly impact fetal neurodevelopment. The neurodevelopmental roles of individual cytokine signaling pathways are being elucidated through gain- and loss-of-function studies in cell culture and model organisms. We review this work with a particular emphasis on studies where cytokines, their receptors, or components of their signaling pathways have been altered in vivo. The extensive and diverse requirements for properly regulated cytokine signaling during normal nervous system development revealed by these studies sets the foundation for ongoing and future work aimed at understanding how cytokines induced normally and pathologically during critical stages of fetal development alter nervous system function and behavior later in life.
Collapse
Affiliation(s)
- Benjamin E Deverman
- Division of Biology, California Institute of Technology, 1200 East California Boulevard M/C 216-76, Pasadena, CA 91125, USA
| | | |
Collapse
|
29
|
Gonzalez-Perez O, Romero-Rodriguez R, Soriano-Navarro M, Garcia-Verdugo JM, Alvarez-Buylla A. Epidermal growth factor induces the progeny of subventricular zone type B cells to migrate and differentiate into oligodendrocytes. Stem Cells 2009; 27:2032-43. [PMID: 19544429 PMCID: PMC3346259 DOI: 10.1002/stem.119] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
New neurons and oligodendrocytes are continuously produced in the subventricular zone (SVZ) of adult mammalian brains. Under normal conditions, the SVZ primary precursors (type B1 cells) generate type C cells, most of which differentiate into neurons, with a small subpopulation giving rise to oligodendrocytes. Epidermal growth factor (EGF) signaling induces dramatic proliferation and migration of SVZ progenitors, a process that could have therapeutic applications. However, the fate of cells derived from adult neural stem cells after EGF stimulation remains unknown. Here, we specifically labeled SVZ B1 cells and followed their progeny after a 7-day intraventricular infusion of EGF. Cells derived from SVZ B1 cells invaded the parenchyma around the SVZ into the striatum, septum, corpus callosum, and fimbria-fornix. Most of these B1-derived cells gave rise to cells in the oligodendrocyte lineage, including local NG2+ progenitors, and pre-myelinating and myelinating oligodendrocytes. SVZ B1 cells also gave rise to a population of highly-branched S100beta+/glial fibrillary acidic protein (GFAP)+ cells in the striatum and septum, but no neuronal differentiation was observed. Interestingly, when demyelination was induced in the corpus callosum by a local injection of lysolecithin, an increased number of cells derived from SVZ B1 cells and stimulated to migrate and proliferate by EGF infusion differentiated into oligodendrocytes at the lesion site. This work indicates that EGF infusion can greatly expand the number of progenitors derived from the SVZ primary progenitors which migrate and differentiate into oligodendroglial cells. This expanded population could be used for the repair of white matter lesions.
Collapse
Affiliation(s)
- Oscar Gonzalez-Perez
- Department of Neurological Surgery. Brain Tumor Research Center. Institute for Regeneration Medicine. University of California, San Francisco, 94143. U.S.A
- Laboratory of Neuroscience. School of Psychology. University of Colima. Colima, Col. 28040, Mexico
- Neuroscience Department, CUCS. University of Guadalajara. Guadalajara, Jal 44340, Mexico
| | - Ricardo Romero-Rodriguez
- Department of Neurological Surgery. Brain Tumor Research Center. Institute for Regeneration Medicine. University of California, San Francisco, 94143. U.S.A
| | - Mario Soriano-Navarro
- Laboratorio de Morfología Celular. Unidad Mixta CIPF-UVEG. 46013 Valencia, CIBERNED, Spain
| | | | - Arturo Alvarez-Buylla
- Department of Neurological Surgery. Brain Tumor Research Center. Institute for Regeneration Medicine. University of California, San Francisco, 94143. U.S.A
| |
Collapse
|
30
|
Lipid rafts enriched in phosphatidylglucoside direct astroglial differentiation by regulating tyrosine kinase activity of epidermal growth factor receptors. Biochem J 2009; 419:565-75. [DOI: 10.1042/bj20081896] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Membrane lipid rafts provide a specialized microenvironment enriched with sphingolipids and phospholipids containing saturated fatty acids and serve as a platform for various intracellular signalling pathways. PtdGlc (phosphatidylglucoside) is a type of glycophospholipid localized in the outer leaflet of the plasma membrane. Owing to PtdGlc's unique fatty acid composition, exclusively composed of C18:0 at sn-1 and C20:0 at sn-2 of the glycerol backbone, it tends to form PGLRs (PtdGlc-enriched lipid rafts). Previously, we demonstrated that PGLRs reside on the cell surface of astroglial cells from fetal rat brain [Nagatsuka, Horibata, Yamazaki, Kinoshita, Shinoda, Hashikawa, Koshino, Nakamura and Hirabayashi (2006) Biochemistry 45, 8742–8750]. In the present study, we observed PGLRs in astroglial lineage cells at mid-embryonic to early-postnatal stages of developing mouse cortex. This suggests that PGLRs are developmentally correlated with astroglial differentiation during fetal cortical development. Our cell culture studies with multipotent neural progenitor cells prepared from fetal mouse telencephalon demonstrated that treatment with EGF (epidermal growth factor) or anti-PtdGlc antibody caused recruitment of EGFRs (EGF receptors) into lipid raft compartments, leading to activation of EGFRs. Moreover, the activation of EGFRs by antibody triggered downstream tyrosine kinase signalling and induced marked GFAP (glial fibrillary acidic protein) expression via the JAK (Janus kinase)/STAT (signal transducer and activator of transcription) signalling pathway. These findings strongly suggest that PGLRs are physiologically coupled to activated EGFRs on neural progenitor cells during fetal cortical development, and thereby play a distinct role in mediating astrogliogenesis.
Collapse
|
31
|
Hádinger N, Varga BV, Berzsenyi S, Környei Z, Madarász E, Herberth B. Astroglia genesis in vitro: distinct effects of retinoic acid in different phases of neural stem cell differentiation. Int J Dev Neurosci 2009; 27:365-75. [PMID: 19460631 DOI: 10.1016/j.ijdevneu.2009.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 02/06/2009] [Accepted: 02/26/2009] [Indexed: 11/19/2022] Open
Abstract
In the developing CNS, the manifestation of the macro-glial phenotypes is delayed behind the formation of neurons. The "neurons first--glia second" principle seems to be valid for neural tissue differentiation throughout the neuraxis, but the reasons behind are far from clear. In the presented study, the mechanisms of this timing were investigated in vitro, in the course of the neural differentiation of one cell derived NE-4C neuroectodermal stem and P19 embryonic carcinoma cells. The data demonstrated that astrocyte formation coincided in time with the maturation of postmitotic neurons, but the close vicinity of neurons did not initiate astrocyte formation before schedule. All-trans retinoic acid, a well-known inducer of neuronal differentiation, on the other hand, blocked effectively the astroglia production if present in defined stages of the in vitro neuroectodermal cell differentiation. According to the data, retinoic acid plays at least a dual role in astrogliogenesis: while it is needed for committing neural progenitors for a future production of astrocytes, it prevents premature astrogliogenesis by inhibiting the differentiation of primed glial progenitors.
Collapse
Affiliation(s)
- Nóra Hádinger
- Institute of Experimental Medicine of Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
32
|
Vallejo M. PACAP signaling to DREAM: a cAMP-dependent pathway that regulates cortical astrogliogenesis. Mol Neurobiol 2009; 39:90-100. [PMID: 19238593 DOI: 10.1007/s12035-009-8055-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Accepted: 01/19/2009] [Indexed: 12/23/2022]
Abstract
Astrocytes constitute a very abundant cell type in the mammalian central nervous system and play critical roles in brain function. During development, astrocytes are generated from neural progenitor cells only after these cells have generated neurons. This so called gliogenic switch is tightly regulated by intrinsic factors that inhibit the generation of astrocytes during the neurogenic period. Once neural progenitors acquire gliogenic competence, they differentiate into astrocytes in response to specific extracellular signals. Some of these signals are delivered by neurotrophic cytokines via activation of the gp130-JAK-signal transducer and activator of transcription system, whereas others depend on the activity of pituitary adenylate cyclase-activating polypeptide (PACAP) on specific PAC1 receptors that stimulate the production of cAMP. This results in the activation of the small GTPases Rap1 and Ras, and in the cAMP-dependent entry of extracellular calcium into the cell. Calcium, in turn, stimulates the transcription factor downstream regulatory element antagonist modulator (DREAM), which is bound to specific sites of the promoter of the glial fibrillary acidic protein gene, stimulating its expression during astrocyte differentiation. Lack of DREAM in vivo results in alterations in the number of neurons and astrocytes generated during development. Thus, the PACAP-cAMP-Ca(2+)-DREAM signaling cascade constitutes an important pathway to activate glial-specific gene expression during astrocyte differentiation.
Collapse
Affiliation(s)
- Mario Vallejo
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid, 28029, Madrid, Spain.
| |
Collapse
|
33
|
Nagao M, Campbell K, Burns K, Kuan CY, Trumpp A, Nakafuku M. Coordinated control of self-renewal and differentiation of neural stem cells by Myc and the p19ARF-p53 pathway. ACTA ACUST UNITED AC 2009; 183:1243-57. [PMID: 19114593 PMCID: PMC2606961 DOI: 10.1083/jcb.200807130] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The modes of proliferation and differentiation of neural stem cells (NSCs) are coordinately controlled during development, but the underlying mechanisms remain largely unknown. In this study, we show that the protooncoprotein Myc and the tumor suppressor p19(ARF) regulate both NSC self-renewal and their neuronal and glial fate in a developmental stage-dependent manner. Early-stage NSCs have low p19(ARF) expression and retain a high self-renewal and neurogenic capacity, whereas late-stage NSCs with higher p19(ARF) expression possess a lower self-renewal capacity and predominantly generate glia. Overexpression of Myc or inactivation of p19(ARF) reverts the properties of late-stage NSCs to those of early-stage cells. Conversely, inactivation of Myc or forced p19(ARF) expression attenuates self-renewal and induces precocious gliogenesis through modulation of the responsiveness to gliogenic signals. These actions of p19(ARF) in NSCs are mainly mediated by p53. We propose that opposing actions of Myc and the p19(ARF)-p53 pathway have important functions in coordinated developmental control of self-renewal and cell fate choices in NSCs.
Collapse
Affiliation(s)
- Motoshi Nagao
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | | | | | | | | | | |
Collapse
|
34
|
Kwon IS, Cho SK, Kim MJ, Tsai MJ, Mitsuda N, Suh-Kim H, Lee YD. Expression of Disabled 1 suppresses astroglial differentiation in neural stem cells. Mol Cell Neurosci 2009; 40:50-61. [PMID: 18848628 PMCID: PMC2820303 DOI: 10.1016/j.mcn.2008.08.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 08/24/2008] [Accepted: 08/29/2008] [Indexed: 11/29/2022] Open
Abstract
Disabled 1 (Dab1), a cytoplasmic adaptor protein expressed predominantly in the CNS, transduces a Reelin-initiated signaling that controls neuronal migration and positioning during brain development. To determine the role of Dab1 in neural stem cell (NSC) differentiation, we established a culture of neurospheres derived from the embryonic forebrain of the Dab1(-/-) mice, yotari. Differentiating Dab1(-/-) neurospheres exhibited a higher expression of GFAP, an astrocytic marker, at the expense of neuronal markers. Under Dab1-deficient condition, the expression of NeuroD, a transcription factor for neuronal differentiation, was decreased and the JAK-STAT pathway was evidently increased during differentiation of NSC, suggesting the possible involvement of Dab1 in astrocyte differentiation via JAK-STAT pathway. Notably, expression of neural and glial markers and the level of JAK-STAT signaling molecules were not changed in differentiating NSC by Reelin treatment, indicating that differentiation of NSC is Reelin-independent. Immunohistochemical analyses showed a decrease in the number of neurons and an increase in the number of GFAP-positive cells in developing yotari brains. Our results suggest that Dab1 participates in the differentiation of NSCs into a specific cell lineage, thereby maintaining a balance between neurogenesis and gliogenesis.
Collapse
Affiliation(s)
- Il-Sun Kwon
- Department of Anatomy, School of Medicine, Ajou University, Suwon, 443-749, South Korea
| | - Sung-Kuk Cho
- Department of Anatomy, School of Medicine, Ajou University, Suwon, 443-749, South Korea
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, South Korea
| | - Min-Ji Kim
- Department of Radiology, School of Medicine, Ajou University, Suwon 443-749, South Korea
| | - Ming-Jer Tsai
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Noriaki Mitsuda
- Department of Physiology, Graduate School of Medicine, Ehime University, Shitsukawa, Ehime, 791-0295, Japan
| | - Haeyoung Suh-Kim
- Department of Anatomy, School of Medicine, Ajou University, Suwon, 443-749, South Korea
- BK21, Division of Cell Transformation and Restoration, School of Medicine, Ajou University, Suwon 443-749, South Korea
| | - Young-Don Lee
- Department of Anatomy, School of Medicine, Ajou University, Suwon, 443-749, South Korea
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, South Korea
| |
Collapse
|
35
|
Faigle R, Liu L, Cundiff P, Funa K, Xia Z. Opposing effects of retinoid signaling on astrogliogenesis in embryonic day 13 and 17 cortical progenitor cells. J Neurochem 2008; 106:1681-98. [PMID: 18564368 PMCID: PMC2581522 DOI: 10.1111/j.1471-4159.2008.05525.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
All-trans retinoic acid (RA) is a differentiation factor in many tissues. However, its role in astrogliogenesis has not been extensively studied. Here, we investigated the effect of RA on the regulation of astrogliogenesis at different cortical developmental stages. We prepared rat cortical progenitor cells from embryonic day (E) 13 and E17, which correspond to the beginning of neurogenic and astrogliogenic periods, respectively. Surprisingly, RA promoted astrogliogenesis at E17 but inhibited astrogliogenesis induced by ciliary neurotrophic factor (CNTF) at E13. The inhibitory effect of RA on astrogliogenesis at E13 was not due to premature commitment of progenitors to a neuronal or oligodendroglial lineage. Rather, RA retained more progenitors in a proliferative state. Furthermore, RA inhibition of astrogliogenesis at E13 was independent of STAT3 signaling and required the function of the alpha and beta isoforms of the RA receptors (RAR). Moreover, the differential response of E13 and E17 progenitors to RA was due to differences in the intrinsic properties of these cells that are preserved in vitro. The inhibitory effect of RA on cytokine-induced astrogliogenesis at E13 may contribute to silencing of any potential precocious astrogliogenesis during the neurogenic period.
Collapse
Affiliation(s)
- Roland Faigle
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195-7234, USA
- Department of Pharmacology, University of Washington, Seattle, WA 98195-7234, USA
- Institute of Biomedicine, Department of Medical Chemistry and Cell Biology, Göteborg University, Box 420, SE-405 30 Gothenburg, Sweden
| | - Lidong Liu
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195-7234, USA
- Department of Pharmacology, University of Washington, Seattle, WA 98195-7234, USA
| | - Paige Cundiff
- Department of Pharmacology, University of Washington, Seattle, WA 98195-7234, USA
| | - Keiko Funa
- Institute of Biomedicine, Department of Medical Chemistry and Cell Biology, Göteborg University, Box 420, SE-405 30 Gothenburg, Sweden
| | - Zhengui Xia
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195-7234, USA
- Department of Pharmacology, University of Washington, Seattle, WA 98195-7234, USA
| |
Collapse
|
36
|
Port MD, Laszlo GS, Nathanson NM. Transregulation of leukemia inhibitory [corrected] factor receptor expression and function by growth factors in neuroblastoma cells. J Neurochem 2008; 106:1941-51. [PMID: 18624908 PMCID: PMC2615047 DOI: 10.1111/j.1471-4159.2008.05535.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The cytokines that signal through the leukemia inhibitory factor (LIF) receptor are members of the neuropoietic cytokine family and have varied and numerous roles in the nervous system. In this report, we have determined the effects of growth factor stimulation on LIF receptor (LIFR) expression and signal transduction in the human neuroblastoma cell line NBFL. We show here that stimulation of NBFL cells with either epidermal growth factor or fibroblast growth factor decreases the level of LIFR in an extracellular signal-regulated kinase (Erk)1/2-dependent manner and that this down-regulation is due to an increase in the apparent rate of lysosomal LIFR degradation. Growth factor-induced decreases in LIFR level inhibit both LIF-stimulated phosphorylation of signal transducers and activators of transcription 3 and LIFR-mediated gene induction. We also show that Ser1044 of LIFR, which we have previously shown to be phosphorylated by Erk1/2, is required for the inhibitory effects of growth factors. Neurons are exposed to varying combinations and concentrations of growth factors and cytokines that influence their growth, development, differentiation, and repair in vivo. These findings demonstrate that LIFR expression and signaling in neuroblastoma cells can be regulated by growth factors that are potent activators of the mitogen-activated protein kinase pathway, and thus illustrate a fundamental mechanism that underlies crosstalk between receptor tyrosine kinase and neuropoietic cytokine signaling pathways.
Collapse
Affiliation(s)
- Martha D Port
- Department of Pharmacology, University of Washington, School of Medicine, Seattle, Washington, USA
| | | | | |
Collapse
|
37
|
Lastres-Becker I, Fernández-Pérez A, Cebolla B, Vallejo M. Pituitary adenylate cyclase-activating polypeptide stimulates glial fibrillary acidic protein gene expression in cortical precursor cells by activating Ras and Rap1. Mol Cell Neurosci 2008; 39:291-301. [PMID: 18707003 DOI: 10.1016/j.mcn.2008.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 04/23/2008] [Accepted: 07/08/2008] [Indexed: 11/15/2022] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) acts on cortical precursor cells to trigger glial fibrillary acidic protein (GFAP) gene expression and astrocyte differentiation by stimulation of intracellular cAMP production. Here, we show that as expected, PACAP activates cAMP-dependent protein kinase A. However, inhibition of protein kinase A does not prevent PACAP-induced GFAP gene expression or astrocytogenesis. PACAP also activates the small GTPases Rap1 and Ras, but either activation of Rap1 alone by selective stimulation of the guanine nucleotide exchange factor Epac, or expression of a constitutively active form of Ras, do not induce GFAP gene expression. Ras is activated by PACAP in a cAMP-dependent manner, and inhibition of Ras and/or Rap1 decreases PACAP-induced GFAP promoter stimulation. Thus, cAMP-dependent PACAP-induced GFAP expression during astrocytogenesis involves the coordinated activation of both Ras and Rap1, but activation of either one of them in isolation is not sufficient to trigger this response.
Collapse
Affiliation(s)
- Isabel Lastres-Becker
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain
| | | | | | | |
Collapse
|
38
|
Agasse F, Bernardino L, Silva B, Ferreira R, Grade S, Malva JO. Response to Histamine Allows the Functional Identification of Neuronal Progenitors, Neurons, Astrocytes, and Immature Cells in Subventricular Zone Cell Cultures. Rejuvenation Res 2008; 11:187-200. [DOI: 10.1089/rej.2007.0600] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Fabienne Agasse
- Neuroprotection and Neurogenesis in Brain Repair Group, Center for Neuroscience and Cell Biology, Institute of Biochemistry, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Liliana Bernardino
- Neuroprotection and Neurogenesis in Brain Repair Group, Center for Neuroscience and Cell Biology, Institute of Biochemistry, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Bruno Silva
- Neuroprotection and Neurogenesis in Brain Repair Group, Center for Neuroscience and Cell Biology, Institute of Biochemistry, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Raquel Ferreira
- Neuroprotection and Neurogenesis in Brain Repair Group, Center for Neuroscience and Cell Biology, Institute of Biochemistry, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Sofia Grade
- Neuroprotection and Neurogenesis in Brain Repair Group, Center for Neuroscience and Cell Biology, Institute of Biochemistry, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - João O. Malva
- Neuroprotection and Neurogenesis in Brain Repair Group, Center for Neuroscience and Cell Biology, Institute of Biochemistry, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
39
|
Lee J, Son MJ, Woolard K, Donin NM, Li A, Cheng CH, Kotliarova S, Kotliarov Y, Walling J, Ahn S, Kim M, Totonchy M, Cusack T, Ene C, Ma H, Su Q, Zenklusen JC, Zhang W, Maric D, Fine HA. Epigenetic-mediated dysfunction of the bone morphogenetic protein pathway inhibits differentiation of glioblastoma-initiating cells. Cancer Cell 2008; 13:69-80. [PMID: 18167341 PMCID: PMC2835498 DOI: 10.1016/j.ccr.2007.12.005] [Citation(s) in RCA: 344] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 10/11/2007] [Accepted: 12/06/2007] [Indexed: 12/25/2022]
Abstract
Despite similarities between tumor-initiating cells with stem-like properties (TICs) and normal neural stem cells, we hypothesized that there may be differences in their differentiation potentials. We now demonstrate that both bone morphogenetic protein (BMP)-mediated and ciliary neurotrophic factor (CNTF)-mediated Jak/STAT-dependent astroglial differentiation is impaired due to EZH2-dependent epigenetic silencing of BMP receptor 1B (BMPR1B) in a subset of glioblastoma TICs. Forced expression of BMPR1B either by transgene expression or demethylation of the promoter restores their differentiation capabilities and induces loss of their tumorigenicity. We propose that deregulation of the BMP developmental pathway in a subset of glioblastoma TICs contributes to their tumorigenicity both by desensitizing TICs to normal differentiation cues and by converting otherwise cytostatic signals to proproliferative signals.
Collapse
Affiliation(s)
- Jeongwu Lee
- Neuro-Oncology Branch, National Cancer Institute, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Normal development of the nervous system relies on the spatially and temporally well-controlled differentiation of neurons and glia. Here, we discuss the intra- and extracellular molecular mechanisms that underlie the sequential genesis of neurons and glia, emphasizing recent studies describing the role of a signaling molecule, the tyrosine phosphatase SHP2, in normal brain development. Activation of SHP2 simultaneously enhances downstream activation of the MEK-ERK pathway, which subsequently promotes neurogenesis, while inhibiting the JAK-STAT pathway, which is critical for astroglial differentiation. Mutations in SHP2 that increase its tyrosine phosphatase activity cause a mental retardation-related disorder, Noonan syndrome. An imbalance in neurogenesis versus gliogenesis due to SHP2 mutations may contribute to Noonan syndrome.
Collapse
Affiliation(s)
- Volkan Coskun
- Mental Retardation Research Center, Department of Molecular and Medical Pharmacology, Neuropsychiatric Institute, David Geffen School of Medicine, University of California Los Angeles, 635 Charles E. Young Drive South, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
41
|
Analysis of leukemia inhibitory factor and leukemia inhibitory factor receptor in embryonic and adult zebrafish (Danio rerio). Dev Biol 2007; 314:250-60. [PMID: 18201692 DOI: 10.1016/j.ydbio.2007.10.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2007] [Revised: 10/07/2007] [Accepted: 10/12/2007] [Indexed: 01/13/2023]
Abstract
Leukemia inhibitory factor (LIF) is a member of the IL-6 cytokine family that functions in the survival, repair and formation of neurons as well as in the maintenance of neural and embryonic stem cells. The functions of LIF have been well documented in mammals, however until recently, the presence of IL-6 family cytokines in ectothermic vertebrates has only been speculated. We report on the identification of lif and lifr transcripts in the zebrafish and document the expression of these molecules in the developing embryos and tissues of adult zebrafish. We also examined the phylogenetic relationship between these molecules and other IL-6 cytokine family members known in mammals. In adult zebrafish, lif is expressed in the kidney and brain while lifr is expressed in the kidney, gill, brain, spleen and liver. During zebrafish embryogenesis, lif and lifr are both expressed as early as 12 hours postfertilization (hpf). In developing zebrafish, lif is expressed in the otic vesicle, retina and cranial sensory ganglia, and lifr is strongly expressed in the notochord, forebrain, otic vesicle, cranial ganglia and the retina. Morpholino knockdown of Lif and Lifr in developing embryos suggests that Lifr, but not Lif is required for proper neural development. lifr morpholino-injected embryos exhibit defects in the trigeminal, facial and vagal branchiomotor neurons, and improper axonal development as measured by acetylated tubulin staining. These embryos also display severe hydrocephaly by 48 hpf. This suggests that Lifrs are involved in proper neural development in zebrafish. This is the first evidence of the expression and role of an LIFR-like molecule in developing fish.
Collapse
|
42
|
Bonaguidi MA, McGuire T, Hu M, Kan L, Samanta J, Kessler JA. LIF and BMP signaling generate separate and discrete types of GFAP-expressing cells. Development 2007; 132:5503-14. [PMID: 16314487 DOI: 10.1242/dev.02166] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bone morphogenetic protein (BMP) and leukemia inhibitory factor (LIF) signaling both promote the differentiation of neural stem/progenitor cells into glial fibrillary acidic protein (GFAP) immunoreactive cells. This study compares the cellular and molecular characteristics, and the potentiality, of GFAP(+) cells generated by these different signaling pathways. Treatment of cultured embryonic subventricular zone (SVZ) progenitor cells with LIF generates GFAP(+) cells that have a bipolar/tripolar morphology, remain in cell cycle, contain progenitor cell markers and demonstrate self-renewal with enhanced neurogenesis - characteristics that are typical of adult SVZ and subgranular zone (SGZ) stem cells/astrocytes. By contrast, BMP-induced GFAP(+) cells are stellate, exit the cell cycle, and lack progenitor traits and self-renewal--characteristics that are typical of astrocytes in the non-neurogenic adult cortex. In vivo, transgenic overexpression of BMP4 increases the number of GFAP(+) astrocytes but depletes the GFAP(+) progenitor cell pool, whereas transgenic inhibition of BMP signaling increases the size of the GFAP(+) progenitor cell pool but reduces the overall numbers of astrocytes. We conclude that LIF and BMP signaling generate different astrocytic cell types, and propose that these cells are, respectively, adult progenitor cells and mature astrocytes.
Collapse
Affiliation(s)
- Michael A Bonaguidi
- Davee Department of Neurology, Northwestern University's Feinberg School of Medicine, Chicago, IL 60611, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
During development of the mammalian nervous system, neural stem cells generate neurons first and glia second, thereby allowing the initial establishment of neural circuitry, and subsequent matching of glial numbers and position to that circuitry. Here, we have reviewed work addressing the mechanisms underlying this timed cell genesis, with a particular focus on the developing cortex. These studies have defined an intriguing interplay between intrinsic epigenetic status, transcription factors, and environmental cues, all of which work together to establish this fascinating and complex biological timing mechanism.
Collapse
Affiliation(s)
- Freda D Miller
- Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto M5G 1X8, Canada.
| | | |
Collapse
|
44
|
Nagao M, Sugimori M, Nakafuku M. Cross talk between notch and growth factor/cytokine signaling pathways in neural stem cells. Mol Cell Biol 2007; 27:3982-94. [PMID: 17371842 PMCID: PMC1900030 DOI: 10.1128/mcb.00170-07] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Precise control of proliferation and differentiation of multipotent neural stem cells (NSCs) is crucial for proper development of the nervous system. Although signaling through the cell surface receptor Notch has been implicated in many aspects of neural development, its role in NSCs remains elusive. Here we examined how the Notch pathway cross talks with signaling for growth factors and cytokines in controlling the self-renewal and differentiation of NSCs. Both Notch and growth factors were required for active proliferation of NSCs, but each of these signals was sufficient and independent of the other to inhibit differentiation of neurons and glia. Moreover, Notch signals could support the clonal self-renewing growth of NSCs in the absence of growth factors. This growth factor-independent action of Notch involved the regulation of the cell cycle and cell-cell interactions. During differentiation of NSCs, Notch signals promoted the generation of astrocytes in collaboration with ciliary neurotrophic factor and growth factors. Their cooperative actions were likely through synergistic phosphorylation of signal transducer and activator of transcription 3 on tyrosine at position 705 and serine at position 727. Our data suggest that distinct intracellular signaling pathways operate downstream of Notch for the self-renewal of NSCs and stimulation of astrogenesis.
Collapse
Affiliation(s)
- Motoshi Nagao
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | | | | |
Collapse
|
45
|
Bauer S, Kerr BJ, Patterson PH. The neuropoietic cytokine family in development, plasticity, disease and injury. Nat Rev Neurosci 2007; 8:221-32. [PMID: 17311007 DOI: 10.1038/nrn2054] [Citation(s) in RCA: 297] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Neuropoietic cytokines are well known for their role in the control of neuronal, glial and immune responses to injury or disease. Since this discovery, it has emerged that several of these proteins are also involved in nervous system development, in particular in the regulation of neurogenesis and stem cell fate. Recent data indicate that these proteins have yet more functions, as key modulators of synaptic plasticity and of various behaviours. In addition, neuropoietic cytokines might be a factor in the aetiology of psychiatric disorders.
Collapse
Affiliation(s)
- Sylvian Bauer
- Physiologie Neurovégétative, UMR 6153 CNRS, 1147 INRA, Université Paul Cézanne-Aix-Marseille-3, Ave. Escadrille Normandie-Niemen, BP 351-352, 13397 Marseille Cedex 20, France
| | | | | |
Collapse
|
46
|
Schneider BL, Seehus CR, Capowski EE, Aebischer P, Zhang SC, Svendsen CN. Over-expression of alpha-synuclein in human neural progenitors leads to specific changes in fate and differentiation. Hum Mol Genet 2007; 16:651-66. [PMID: 17309880 DOI: 10.1093/hmg/ddm008] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Missense mutations and extra copies of the alpha-Synuclein gene result in Parkinson disease (PD). Human stem and progenitor cells can be expanded from embryonic tissues and provide a source of non-transformed neural cells to explore the effects of these pathogenic mutations specifically in human nervous tissue. We over-expressed the wild type, A53T and A30P forms of alpha-synuclein in expanded populations of progenitors derived from the human fetal cortex. The protein localized in the nucleus and around microvesicles. Only the A53T form was acutely toxic, suggesting a unique vulnerability of these progenitors to this mutation. Interestingly, constitutive over-expression of wild-type alpha-synuclein progressively impaired the innate ability of progenitors to switch toward gliogenesis at later passages. To explore the effect of alpha-synuclein on neuronal subtypes selectively affected in PD, such as dopaminergic neurons, alpha-synuclein and its mutations were also over-expressed in terminally differentiating neuroectodermal cultures derived from human embryonic stem cells (hESC). Alpha-synuclein induced acute cytotoxicity and reduced the number of neurons expressing either tyrosine hydroxylase or gamma-aminobutyric acid over time. Consistent with the selective vulnerability of ventral midbrain dopaminergic neurons, alpha-synuclein cytotoxicity appeared most pronounced following FGF8/SHH specification and was decreased by inhibition of dopamine synthesis. Together, these data show that alpha-synuclein over-expressed in human neural embryonic cells results in patterns of degeneration that in some cases match features of Parkinson Disease. Thus, neural cells derived from hESC provide a useful model system to understand the development of alpha-synuclein-related pathologies and allow therapeutic drug screening.
Collapse
Affiliation(s)
- Bernard L Schneider
- Waisman Center and Department of Anatomy, University of Wisconsin, Madison, WI 53705, USA
| | | | | | | | | | | |
Collapse
|
47
|
Li H, Grumet M. BMP and LIF signaling coordinately regulate lineage restriction of radial glia in the developing forebrain. Glia 2007; 55:24-35. [PMID: 17001659 DOI: 10.1002/glia.20434] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The earliest radial glia are neural stem cells that guide neural cell migration away from ventricular zones. Subsequently, radial glia become lineage restricted during development before they differentiate into more mature cell types in the CNS. We have previously shown that subpopulations of radial glial cells express markers for glial and neuronal restricted precursors (GRPs and NRPs) in expression patterns that are temporally and spatially regulated during CNS development. To characterize further the mechanism of this regulation in rat forebrain, we tested whether secreted factors that are present during development effect lineage restriction of radial glia. We show here that in radial glial cultures LIF/CNTF up-regulates, whereas BMP2 down-regulates GRP antigens recognized by monoclonal antibodies A2B5/4D4. These activities combined with secretion of BMPs dorsally and LIF/CNTF from the choroid plexus provide an explanation for the graded distribution pattern of A2B5/4D4 in dorso-lateral ventricular regions in vivo. The regulation by LIF/CNTF of A2B5/4D4 is mediated through the JAK-STAT pathway. BMP2 promotes expression on radial glial cells of the NRP marker polysialic acid most likely by regulating N-CAM expression itself, as well as at least one polysialyl transferase responsible for synthesis of polysialic acid on N-CAM. Taken together, these results suggest that generation of lineage-restricted precursors is coordinately regulated by gradients of the secreted factors BMPs and LIF/CNTF during development of dorsal forebrain.
Collapse
Affiliation(s)
- Hedong Li
- Department of Cell Biology and Neuroscience, W. M. Keck Center for Collaborative Neuroscience, Rutgers, State University of New Jersey, Piscataway, New Jersey 08854-8082, USA
| | | |
Collapse
|
48
|
Duparc RH, Abdouh M, David J, Lépine M, Tétreault N, Bernier G. Pax6 controls the proliferation rate of neuroepithelial progenitors from the mouse optic vesicle. Dev Biol 2007; 301:374-87. [PMID: 17157287 DOI: 10.1016/j.ydbio.2006.11.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 09/07/2006] [Accepted: 11/04/2006] [Indexed: 11/25/2022]
Abstract
In vertebrates, a limited number of homeobox-containing transcription factors are expressed in the optic vesicle primordium and are required and sufficient for eye formation. At present, little is known about the distinct functions of these factors in optic vesicle growth and on the nature of the main neuroepithelial (NE) progenitor population present in this organ. We have characterized a multipotent cell population present in the mouse optic vesicle that shows extensive proliferation potential and which expresses NE progenitor and retinal markers in vitro. In Pax6 mutant embryos, which form an optic vesicle, we found that the number of resident NE progenitors was greater than normal. In vitro, Pax6-null NE progenitors overproliferate and display reduced p16(Ink4a), p19(Arf), p27(kip1), p57(kip2), and p21(cip1) expression. Pax6 overexpression repressed cellular proliferation and secondary colonies formation, supporting the hypothesis that Pax6 acts cell-autonomously on NE progenitors cell cycle. Notably, these in vitro data correlated with aberrant numbers of mitosis observed in the optic vesicle of early stage Pax6 mutants, with Pax6 association with the chromatin upstream of p27(kip1) promoter region, and with reduced expression levels of p27(kip1), p57(kip2), and p21(cip1) in the primitive forebrain of Pax6 mutants. Taken together, our results suggest that, prior to retinal progenitor cell identity and neurogenesis, Pax6 is required to regulate the proliferation rate of NE progenitors present in the mouse optic vesicle.
Collapse
Affiliation(s)
- Robert-Hugues Duparc
- Developmental Biology Laboratory, Maisonneuve-Rosemont Hospital, 5415 Boul. l'Assomption, Montreal, Canada H1T 2M4
| | | | | | | | | | | |
Collapse
|
49
|
Mizoguchi M, Betensky RA, Batchelor TT, Bernay DC, Louis DN, Nutt CL. Activation of STAT3, MAPK, and AKT in Malignant Astrocytic Gliomas. J Neuropathol Exp Neurol 2006; 65:1181-8. [PMID: 17146292 DOI: 10.1097/01.jnen.0000248549.14962.b2] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Diffuse astrocytic gliomas are the most common human glial tumors with glioblastoma being the most malignant form. Epidermal growth factor receptor (EGFR) gene amplification is one of the most common genetic changes in glioblastoma and can lead to the activation of various downstream signaling molecules, including STAT3, MAPK, and AKT. In this study, we investigated the activation status of these 3 signaling molecules as well as wild-type (EGFRwt) and mutant (EGFRvIII) EGFR in 82 malignant astrocytic gliomas (55 glioblastomas and 27 anaplastic astrocytomas) using immunohistochemistry. The presence of EGFRwt, but not EGFRvIII, immunopositivity correlated significantly with prevalent EGFR gene amplification in glioblastomas. STAT3 and AKT activation correlated significantly with EGFR status, although the correlation for p-STAT3 was attributed exclusively to EGFRvIII. The distribution of these 3 activated molecules varied significantly with tumor grade; although activation of STAT3 was essentially identical between anaplastic astrocytomas and glioblastomas, an increase in the activation of MAPK and AKT appeared to correlate with the progression of anaplastic astrocytoma to glioblastoma. Finally, activated STAT3 and AKT were marginally predictive of improved and worse prognosis, respectively. Taken together, these findings begin to elucidate the interrelationship between these signaling pathways in astrocytic gliomas in vivo.
Collapse
Affiliation(s)
- Masahiro Mizoguchi
- Molecular Pathology Unit and Molecular Neuro-Oncology Laboratory, Department of Pathology, Cancer Center and Neurosurgical Service, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA
| | | | | | | | | | | |
Collapse
|
50
|
Chen HL, Panchision DM. Concise Review: Bone Morphogenetic Protein Pleiotropism in Neural Stem Cells and Their Derivatives-Alternative Pathways, Convergent Signals. Stem Cells 2006; 25:63-8. [PMID: 16973830 DOI: 10.1634/stemcells.2006-0339] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bone morphogenetic proteins (BMPs) are a class of morphogens that are critical regulators of the central nervous system (CNS), peripheral nervous system, and craniofacial development. Modulation of BMP signaling also appears to be an important component of the postnatal stem cell niche. However, describing a comprehensive model of BMP actions is complicated by their paradoxical effects in precursor cells, which include dorsal specification, promoting proliferation or mitotic arrest, cell survival or death, and neuronal or glial fate. In addition, in postmitotic neurons BMPs can promote dendritic growth, act as axonal chemorepellants, and stabilize synapses. Although many of these responses depend on interactions with other incoming signals, some reflect the recruitment of distinct BMP signal transduction pathways. In this review, we classify the diverse effects of BMPs on neural cells, focus on the known mechanisms that specify distinct responses, and discuss the remaining challenges in identifying the cellular basis of BMP pleiotropism. Addressing these issues may have importance for stem cell mobilization, differentiation, and cell integration/survival in reparative therapies.
Collapse
Affiliation(s)
- Hui-Ling Chen
- Center for Neuroscience Research, Children's National Medical Center, Washington, DC 20010, USA
| | | |
Collapse
|