1
|
Diering GH. miR218-5p tips the scales. Proc Natl Acad Sci U S A 2025; 122:e2506039122. [PMID: 40324096 DOI: 10.1073/pnas.2506039122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025] Open
Affiliation(s)
- Graham H Diering
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Carolina Institute for Developmental Disabilities, Carrboro, NC 27510
| |
Collapse
|
2
|
Colameo D, Maley SM, Winterer J, ElGrawani W, Gilardi C, Galkin S, Fiore R, Brown SA, Schratt G. microRNA-218-5p coordinates scaling of excitatory and inhibitory synapses during homeostatic synaptic plasticity. Proc Natl Acad Sci U S A 2025; 122:e2500880122. [PMID: 40172961 PMCID: PMC12002172 DOI: 10.1073/pnas.2500880122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 02/28/2025] [Indexed: 04/04/2025] Open
Abstract
Homeostatic synaptic plasticity (HSP) is a neuronal mechanism that allows networks to compensate for prolonged changes in activity by adjusting synaptic strength. This process is crucial for maintaining stable brain function and has been implicated in memory consolidation during sleep. While scaling of both excitatory and inhibitory synapses plays an important role during homeostatic synaptic plasticity, molecules coordinating these processes are unknown. In this study, we investigate the role of miR-218-5p as a regulator of inhibitory and excitatory synapses in the context of picrotoxin (PTX)-induced homeostatic synaptic downscaling (HSD) in rat hippocampal neurons. Using enrichment analysis of microRNA-binding sites in genes changing upon PTX-induced HSD, we bioinformatically predict and experimentally validate increased miR-218-5p activity upon PTX treatment. By electrophysiological recordings and confocal microscopy, we demonstrate that inhibiting miR-218-5p activity exerts a dual effect during HSD: It occludes the downscaling of excitatory synapses and dendritic spines, while at the same time attenuating inhibitory synapse upscaling. Furthermore, we identify the Neuroligin2 interacting molecule Mdga1 as a direct miR-218-5p target which potentially mediates the effect of miR-218-5p on homeostatic upscaling of inhibitory synapses. By performing long-term electroencephalographic recordings, we further reveal that local inhibition of miR-218-5p in the somatosensory cortex reduces local slow-wave activity during non-rapid-eye-movement sleep. In summary, this study uncovers miR-218-5p as a key player in coordinating inhibitory and excitatory synapses during homeostatic plasticity and sleep. Our findings contribute to a deeper understanding of how neural circuits maintain stability in the face of activity-induced perturbations, with implications for pathophysiology.
Collapse
Affiliation(s)
- David Colameo
- Laboratory of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, ETH Zurich, Zurich8057, Switzerland
| | - Sara M. Maley
- Laboratory of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, ETH Zurich, Zurich8057, Switzerland
- Chronobiology and Sleep Research Group, Institute for Pharmacology and Toxicology, University of Zurich, Zurich8057, Switzerland
| | - Jochen Winterer
- Laboratory of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, ETH Zurich, Zurich8057, Switzerland
| | - Waleed ElGrawani
- Chronobiology and Sleep Research Group, Institute for Pharmacology and Toxicology, University of Zurich, Zurich8057, Switzerland
| | - Carlotta Gilardi
- Laboratory of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, ETH Zurich, Zurich8057, Switzerland
| | - Simon Galkin
- Laboratory of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, ETH Zurich, Zurich8057, Switzerland
| | - Roberto Fiore
- Laboratory of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, ETH Zurich, Zurich8057, Switzerland
| | - Steven A. Brown
- Chronobiology and Sleep Research Group, Institute for Pharmacology and Toxicology, University of Zurich, Zurich8057, Switzerland
| | - Gerhard Schratt
- Laboratory of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, ETH Zurich, Zurich8057, Switzerland
| |
Collapse
|
3
|
Welle TM, Smith KR. Release your inhibitions: The cell biology of GABAergic postsynaptic plasticity. Curr Opin Neurobiol 2025; 90:102952. [PMID: 39721557 PMCID: PMC11839402 DOI: 10.1016/j.conb.2024.102952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/22/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024]
Abstract
GABAergic synaptic inhibition controls circuit function by regulating neuronal plasticity, excitability, and firing. To achieve these goals, inhibitory synapses themselves undergo several forms of plasticity via diverse mechanisms, strengthening and weakening phasic inhibition in response to numerous activity-induced stimuli. These mechanisms include changing the number and arrangement of functional GABAARs within the inhibitory postsynaptic domain (iPSD), which can profoundly regulate inhibitory synapse strength. Here, we explore recent advances in our molecular understanding of inhibitory postsynaptic plasticity, with a focus on modulation of the trafficking, protein-protein interactions, nanoscale-organization, and posttranscriptional regulation of GABAARs and iPSD proteins. What has emerged is a complex mechanistic picture of how synaptic inhibition is controlled, with critical ramifications for cognition under typical and pathogenic conditions.
Collapse
Affiliation(s)
- Theresa M Welle
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA
| | - Katharine R Smith
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA.
| |
Collapse
|
4
|
Wen W, Turrigiano GG. Keeping Your Brain in Balance: Homeostatic Regulation of Network Function. Annu Rev Neurosci 2024; 47:41-61. [PMID: 38382543 DOI: 10.1146/annurev-neuro-092523-110001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
To perform computations with the efficiency necessary for animal survival, neocortical microcircuits must be capable of reconfiguring in response to experience, while carefully regulating excitatory and inhibitory connectivity to maintain stable function. This dynamic fine-tuning is accomplished through a rich array of cellular homeostatic plasticity mechanisms that stabilize important cellular and network features such as firing rates, information flow, and sensory tuning properties. Further, these functional network properties can be stabilized by different forms of homeostatic plasticity, including mechanisms that target excitatory or inhibitory synapses, or that regulate intrinsic neuronal excitability. Here we discuss which aspects of neocortical circuit function are under homeostatic control, how this homeostasis is realized on the cellular and molecular levels, and the pathological consequences when circuit homeostasis is impaired. A remaining challenge is to elucidate how these diverse homeostatic mechanisms cooperate within complex circuits to enable them to be both flexible and stable.
Collapse
Affiliation(s)
- Wei Wen
- Department of Biology, Brandeis University, Waltham, Massachusetts, USA;
| | - Gina G Turrigiano
- Department of Biology, Brandeis University, Waltham, Massachusetts, USA;
| |
Collapse
|
5
|
Masri S, Mowery TM, Fair R, Sanes DH. Developmental hearing loss-induced perceptual deficits are rescued by genetic restoration of cortical inhibition. Proc Natl Acad Sci U S A 2024; 121:e2311570121. [PMID: 38830095 PMCID: PMC11181144 DOI: 10.1073/pnas.2311570121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 04/25/2024] [Indexed: 06/05/2024] Open
Abstract
Even a transient period of hearing loss during the developmental critical period can induce long-lasting deficits in temporal and spectral perception. These perceptual deficits correlate with speech perception in humans. In gerbils, these hearing loss-induced perceptual deficits are correlated with a reduction of both ionotropic GABAA and metabotropic GABAB receptor-mediated synaptic inhibition in auditory cortex, but most research on critical period plasticity has focused on GABAA receptors. Therefore, we developed viral vectors to express proteins that would upregulate gerbil postsynaptic inhibitory receptor subunits (GABAA, Gabra1; GABAB, Gabbr1b) in pyramidal neurons, and an enzyme that mediates GABA synthesis (GAD65) presynaptically in parvalbumin-expressing interneurons. A transient period of developmental hearing loss during the auditory critical period significantly impaired perceptual performance on two auditory tasks: amplitude modulation depth detection and spectral modulation depth detection. We then tested the capacity of each vector to restore perceptual performance on these auditory tasks. While both GABA receptor vectors increased the amplitude of cortical inhibitory postsynaptic potentials, only viral expression of postsynaptic GABAB receptors improved perceptual thresholds to control levels. Similarly, presynaptic GAD65 expression improved perceptual performance on spectral modulation detection. These findings suggest that recovering performance on auditory perceptual tasks depends on GABAB receptor-dependent transmission at the auditory cortex parvalbumin to pyramidal synapse and point to potential therapeutic targets for developmental sensory disorders.
Collapse
Affiliation(s)
- Samer Masri
- Center for Neural Science, New York University, New York, NY10003
| | - Todd M. Mowery
- Department of Otolaryngology, Rutgers, New Brunswick, NJ08901
| | - Regan Fair
- Center for Neural Science, New York University, New York, NY10003
| | - Dan H. Sanes
- Center for Neural Science, New York University, New York, NY10003
- Department of Psychology, New York University, New York, NY10003
- Department of Biology, New York University, New York, NY10003
- Neuroscience Institute at New York University Langone School of Medicine, New York, NY10016
| |
Collapse
|
6
|
Wise DL, Greene SB, Escobedo-Lozoya Y, Van Hooser SD, Nelson SB. Progressive Circuit Hyperexcitability in Mouse Neocortical Slice Cultures with Increasing Duration of Activity Silencing. eNeuro 2024; 11:ENEURO.0362-23.2024. [PMID: 38653560 PMCID: PMC11079856 DOI: 10.1523/eneuro.0362-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
Forebrain neurons deprived of activity become hyperactive when activity is restored. Rebound activity has been linked to spontaneous seizures in vivo following prolonged activity blockade. Here, we measured the time course of rebound activity and the contributing circuit mechanisms using calcium imaging, synaptic staining, and whole-cell patch clamp in organotypic slice cultures of mouse neocortex. Calcium imaging revealed hypersynchronous activity increasing in intensity with longer periods of deprivation. While activity partially recovered 3 d after slices were released from 5 d of deprivation, they were less able to recover after 10 d of deprivation. However, even after the longer period of deprivation, activity patterns eventually returned to baseline levels. The degree of deprivation-induced rebound was age-dependent, with the greatest effects occurring when silencing began in the second week. Pharmacological blockade of NMDA receptors indicated that hypersynchronous rebound activity did not require activation of Hebbian plasticity. In single-neuron recordings, input resistance roughly doubled with a concomitant increase in intrinsic excitability. Synaptic imaging of pre- and postsynaptic proteins revealed dramatic reductions in the number of presumptive synapses with a larger effect on inhibitory than excitatory synapses. Putative excitatory synapses colocalizing PSD-95 and Bassoon declined by 39 and 56% following 5 and 10 d of deprivation, but presumptive inhibitory synapses colocalizing gephyrin and VGAT declined by 55 and 73%, respectively. The results suggest that with prolonged deprivation, a progressive reduction in synapse number is accompanied by a shift in the balance between excitation and inhibition and increased cellular excitability.
Collapse
Affiliation(s)
- Derek L Wise
- Department of Biology, Brandeis University, Waltham, Massachusetts 02454
| | - Samuel B Greene
- Department of Biology, Brandeis University, Waltham, Massachusetts 02454
| | | | | | - Sacha B Nelson
- Department of Biology, Brandeis University, Waltham, Massachusetts 02454
| |
Collapse
|
7
|
Masri S, Fair R, Mowery TM, Sanes DH. Developmental hearing loss-induced perceptual deficits are rescued by cortical expression of GABA B receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.10.523440. [PMID: 36711464 PMCID: PMC9882079 DOI: 10.1101/2023.01.10.523440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Even transient periods of developmental hearing loss during the developmental critical period have been linked to long-lasting deficits in auditory perception, including temporal and spectral processing, which correlate with speech perception and educational attainment. In gerbils, hearing loss-induced perceptual deficits are correlated with a reduction of both ionotropic GABAA and metabotropic GABAB receptor-mediated synaptic inhibition in auditory cortex, but most research on critical period plasticity has focused on GABAA receptors. We developed viral vectors to express both endogenous GABAA or GABAB receptor subunits in auditory cortex and tested their capacity to restore perception of temporal and spectral auditory cues following critical period hearing loss in the Mongolian gerbil. HL significantly impaired perception of both temporal and spectral auditory cues. While both vectors similarly increased IPSCs in auditory cortex, only overexpression of GABAB receptors improved perceptual thresholds after HL to be similar to those of animals without developmental hearing loss. These findings identify the GABAB receptor as an important regulator of sensory perception in cortex and point to potential therapeutic targets for developmental sensory disorders.
Collapse
Affiliation(s)
- Samer Masri
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003
| | - Regan Fair
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003
| | - Todd M. Mowery
- Brain Health Institute & Department of Otolaryngology, Rutgers University
| | - Dan H. Sanes
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003
- Department of Psychology, New York University
- Department of Biology, New York University
- Neuroscience Institute, New York University Langone Medical Center
| |
Collapse
|
8
|
Chan ES, Ge Y, So YW, Bai YF, Liu L, Wang YT. Allosteric potentiation of GABAA receptor single-channel conductance by netrin-1 during neuronal-excitation-induced inhibitory synaptic homeostasis. Cell Rep 2022; 41:111584. [DOI: 10.1016/j.celrep.2022.111584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/13/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022] Open
|
9
|
Rue MC, Alonso LM, Marder E. Repeated applications of high potassium elicit long-term changes in a motor circuit from the crab, Cancer borealis. iScience 2022; 25:104919. [PMID: 36060056 PMCID: PMC9436765 DOI: 10.1016/j.isci.2022.104919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/12/2022] [Accepted: 08/08/2022] [Indexed: 12/04/2022] Open
Abstract
We examined the effects of altered extracellular potassium concentration on the output of the well-studied pyloric circuit in the crab, Cancer borealis. Pyloric neurons initially become quiescent, then recover spiking and bursting activity in high potassium saline (2.5x[K+]). These changes in circuit robustness are maintained after the perturbation is removed; pyloric neurons are more robust to subsequent potassium perturbations even after several hours of wash in control saline. Despite this long-term "memory" of the stimulus history, we found no differences in neuronal activity in control saline. The circuit's adaptation is erased by both low potassium saline (0.4x[K+]) and direct hyperpolarizing current. Initial sensitivity of PD neurons to high potassium saline also varies seasonally, indicating that changes in robustness may reflect natural changes in circuit states. Thus, perturbation, followed by recovery of normal activity, can hide cryptic changes in neuronal properties that are only revealed by subsequent challenges.
Collapse
Affiliation(s)
- Mara C.P. Rue
- Biology Department and Volen Center, Brandeis University, Waltham, MA 02454, USA
| | - Leandro M. Alonso
- Biology Department and Volen Center, Brandeis University, Waltham, MA 02454, USA
| | - Eve Marder
- Biology Department and Volen Center, Brandeis University, Waltham, MA 02454, USA,Corresponding author
| |
Collapse
|
10
|
Kudryashova IV. Inhibitory Control of Short-Term Plasticity during Paired Pulse Stimulation Depends on Actin Polymerization. NEUROCHEM J+ 2022. [DOI: 10.1134/s1819712422020106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Chen H, Xie L, Wang Y, Zhang H. Postsynaptic Potential Energy as Determinant of Synaptic Plasticity. Front Comput Neurosci 2022; 16:804604. [PMID: 35250524 PMCID: PMC8891168 DOI: 10.3389/fncom.2022.804604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/13/2022] [Indexed: 02/06/2023] Open
Abstract
Metabolic energy can be used as a unifying principle to control neuronal activity. However, whether and how metabolic energy alone can determine the outcome of synaptic plasticity remains unclear. This study proposes a computational model of synaptic plasticity that is completely determined by energy. A simple quantitative relationship between synaptic plasticity and postsynaptic potential energy is established. Synaptic weight is directly proportional to the difference between the baseline potential energy and the suprathreshold potential energy and is constrained by the maximum energy supply. Results show that the energy constraint improves the performance of synaptic plasticity and avoids setting the hard boundary of synaptic weights. With the same set of model parameters, our model can reproduce several classical experiments in homo- and heterosynaptic plasticity. The proposed model can explain the interaction mechanism of Hebbian and homeostatic plasticity at the cellular level. Homeostatic synaptic plasticity at different time scales coexists. Homeostatic plasticity operating on a long time scale is caused by heterosynaptic plasticity and, on the same time scale as Hebbian synaptic plasticity, is caused by the constraint of energy supply.
Collapse
Affiliation(s)
- Huanwen Chen
- School of Automation, Central South University, Changsha, China
- *Correspondence: Huanwen Chen
| | - Lijuan Xie
- Institute of Physiology and Psychology, School of Marxism, Changsha University of Science and Technology, Changsha, China
| | - Yijun Wang
- School of Automation, Central South University, Changsha, China
| | - Hang Zhang
- School of Automation, Central South University, Changsha, China
| |
Collapse
|
12
|
Ravasenga T, Ruben M, Regio V, Polenghi A, Petrini EM, Barberis A. Spatial regulation of coordinated excitatory and inhibitory synaptic plasticity at dendritic synapses. Cell Rep 2022; 38:110347. [PMID: 35139381 PMCID: PMC8844559 DOI: 10.1016/j.celrep.2022.110347] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 09/16/2021] [Accepted: 01/14/2022] [Indexed: 12/02/2022] Open
Abstract
The induction of synaptic plasticity at an individual dendritic glutamatergic spine can affect neighboring spines. This local modulation generates dendritic plasticity microdomains believed to expand the neuronal computational capacity. Here, we investigate whether local modulation of plasticity can also occur between glutamatergic synapses and adjacent GABAergic synapses. We find that the induction of long-term potentiation at an individual glutamatergic spine causes the depression of nearby GABAergic inhibitory synapses (within 3 μm), whereas more distant ones are potentiated. Notably, L-type calcium channels and calpain are required for this plasticity spreading. Overall, our data support a model whereby input-specific glutamatergic postsynaptic potentiation induces a spatially regulated rearrangement of inhibitory synaptic strength in the surrounding area through short-range heterosynaptic interactions. Such local coordination of excitatory and inhibitory synaptic plasticity is expected to influence dendritic information processing and integration. LTP of individual dendritic spines causes iLTD at neighboring GABAergic synapses Interaction between single-spine LTP and iLTD occurs in the spatial range of ±3 μm This iLTD depends on the local dendritic calcium increase and calpain activation iLTD is associated with reduced gephyrin clustering and increased GABAAR mobility
Collapse
Affiliation(s)
- Tiziana Ravasenga
- Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Massimo Ruben
- Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Vincenzo Regio
- Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Alice Polenghi
- Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Enrica Maria Petrini
- Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Andrea Barberis
- Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| |
Collapse
|
13
|
The role of GABAergic signalling in neurodevelopmental disorders. Nat Rev Neurosci 2021; 22:290-307. [PMID: 33772226 PMCID: PMC9001156 DOI: 10.1038/s41583-021-00443-x] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2021] [Indexed: 02/08/2023]
Abstract
GABAergic inhibition shapes the connectivity, activity and plasticity of the brain. A series of exciting new discoveries provides compelling evidence that disruptions in a number of key facets of GABAergic inhibition have critical roles in the aetiology of neurodevelopmental disorders (NDDs). These facets include the generation, migration and survival of GABAergic neurons, the formation of GABAergic synapses and circuit connectivity, and the dynamic regulation of the efficacy of GABAergic signalling through neuronal chloride transporters. In this Review, we discuss recent work that elucidates the functions and dysfunctions of GABAergic signalling in health and disease, that uncovers the contribution of GABAergic neural circuit dysfunction to NDD aetiology and that leverages such mechanistic insights to advance precision medicine for the treatment of NDDs.
Collapse
|
14
|
Kapur J, Joshi S. Progesterone modulates neuronal excitability bidirectionally. Neurosci Lett 2021; 744:135619. [PMID: 33421486 PMCID: PMC7821816 DOI: 10.1016/j.neulet.2020.135619] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 11/16/2022]
Abstract
Progesterone acts on neurons directly by activating its receptor and through metabolic conversion to neurosteroids. There is emerging evidence that progesterone exerts excitatory effects by activating its cognate receptors (progesterone receptors, PRs) through enhanced expression of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs). Progesterone metabolite 5α,3α-tetrahydro-progesterone (allopregnanolone, THP) mediates its anxiolytic and sedative actions through the potentiation of synaptic and extrasynaptic γ-aminobutyric acid type-A receptors (GABAARs). Here, we review progesterone's neuromodulatory actions exerted through PRs and THP and their opposing role in regulating seizures, catamenial epilepsy, and seizure exacerbation associated with progesterone withdrawal.
Collapse
Affiliation(s)
- Jaideep Kapur
- Department of Neurology, University of Virginia-HSC, Charlottesville, VA, 22908, United States; Department of Neuroscience, University of Virginia-HSC, Charlottesville, VA, 22908, United States; UVA Brain Institute, University of Virginia-HSC, Charlottesville, VA, 22908, United States
| | - Suchitra Joshi
- Department of Neurology, University of Virginia-HSC, Charlottesville, VA, 22908, United States.
| |
Collapse
|
15
|
Lage-Rupprecht V, Zhou L, Bianchini G, Aghvami SS, Mueller M, Rózsa B, Sassoè-Pognetto M, Egger V. Presynaptic NMDARs cooperate with local spikes toward GABA release from the reciprocal olfactory bulb granule cell spine. eLife 2020; 9:e63737. [PMID: 33252329 PMCID: PMC7704106 DOI: 10.7554/elife.63737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022] Open
Abstract
In the rodent olfactory bulb the smooth dendrites of the principal glutamatergic mitral cells (MCs) form reciprocal dendrodendritic synapses with large spines on GABAergic granule cells (GC), where unitary release of glutamate can trigger postsynaptic local activation of voltage-gated Na+-channels (Navs), that is a spine spike. Can such single MC input evoke reciprocal release? We find that unitary-like activation via two-photon uncaging of glutamate causes GC spines to release GABA both synchronously and asynchronously onto MC dendrites. This release indeed requires activation of Navs and high-voltage-activated Ca2+-channels (HVACCs), but also of NMDA receptors (NMDAR). Simulations show temporally overlapping HVACC- and NMDAR-mediated Ca2+-currents during the spine spike, and ultrastructural data prove NMDAR presence within the GABAergic presynapse. This cooperative action of presynaptic NMDARs allows to implement synapse-specific, activity-dependent lateral inhibition, and thus could provide an efficient solution to combinatorial percept synthesis in a sensory system with many receptor channels.
Collapse
Affiliation(s)
- Vanessa Lage-Rupprecht
- Neurophysiology, Institute of Zoology, Universität RegensburgRegensburgGermany
- Department of Bioinformatics, Fraunhofer SCAISankt AugustinGermany
| | - Li Zhou
- Neurophysiology, Institute of Zoology, Universität RegensburgRegensburgGermany
| | - Gaia Bianchini
- Neurophysiology, Institute of Zoology, Universität RegensburgRegensburgGermany
| | - S Sara Aghvami
- Neurophysiology, Institute of Zoology, Universität RegensburgRegensburgGermany
- School of Electrical and Computer Engineering, University of TehranTehranIslamic Republic of Iran
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM)TehranIslamic Republic of Iran
| | - Max Mueller
- Neurophysiology, Institute of Zoology, Universität RegensburgRegensburgGermany
| | - Balázs Rózsa
- Two-Photon Imaging Center, Institute of Experimental Medicine, Hungarian Academy of SciencesBudapestHungary
| | | | - Veronica Egger
- Neurophysiology, Institute of Zoology, Universität RegensburgRegensburgGermany
| |
Collapse
|
16
|
Francavilla R, Guet-McCreight A, Amalyan S, Hui CW, Topolnik D, Michaud F, Marino B, Tremblay MÈ, Skinner FK, Topolnik L. Alterations in Intrinsic and Synaptic Properties of Hippocampal CA1 VIP Interneurons During Aging. Front Cell Neurosci 2020; 14:554405. [PMID: 33173468 PMCID: PMC7591401 DOI: 10.3389/fncel.2020.554405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/10/2020] [Indexed: 12/21/2022] Open
Abstract
Learning and memory deficits are hallmarks of the aging brain, with cortical neuronal circuits representing the main target in cognitive deterioration. While GABAergic inhibitory and disinhibitory circuits are critical in supporting cognitive processes, their roles in age-related cognitive decline remain largely unknown. Here, we examined the morphological and physiological properties of the hippocampal CA1 vasoactive intestinal peptide/calretinin-expressing (VIP+/CR+) type 3 interneuron-specific (I-S3) cells across mouse lifespan. Our data showed that while the number and morphological features of I-S3 cells remained unchanged, their firing and synaptic properties were significantly altered in old animals. In particular, the action potential duration and the level of steady-state depolarization were significantly increased in old animals in parallel with a significant decrease in the maximal firing frequency. Reducing the fast-delayed rectifier potassium or transient sodium conductances in I-S3 cell computational models could reproduce the age-related changes in I-S3 cell firing properties. However, experimental data revealed no difference in the activation properties of the Kv3.1 and A-type potassium currents, indicating that transient sodium together with other ion conductances may be responsible for the observed phenomena. Furthermore, I-S3 cells in aged mice received a stronger inhibitory drive due to concomitant increase in the amplitude and frequency of spontaneous inhibitory currents. These age-associated changes in the I-S3 cell properties occurred in parallel with an increased inhibition of their target interneurons and were associated with spatial memory deficits and increased anxiety. Taken together, these data indicate that VIP+/CR+ interneurons responsible for local circuit disinhibition survive during aging but exhibit significantly altered physiological properties, which may result in the increased inhibition of hippocampal interneurons and distorted mnemonic functions.
Collapse
Affiliation(s)
- Ruggiero Francavilla
- Department of Biochemistry, Microbiology and Bioinformatics, Faculty of Science and Engineering, Université Laval, Québec, QC, Canada
- Neuroscience Axis, Centre Hospitalier Universitaire (CHU) de Québec Research Center – Université Laval, Québec, QC, Canada
| | - Alexandre Guet-McCreight
- Krembil Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Sona Amalyan
- Department of Biochemistry, Microbiology and Bioinformatics, Faculty of Science and Engineering, Université Laval, Québec, QC, Canada
- Neuroscience Axis, Centre Hospitalier Universitaire (CHU) de Québec Research Center – Université Laval, Québec, QC, Canada
| | - Chin Wai Hui
- Neuroscience Axis, Centre Hospitalier Universitaire (CHU) de Québec Research Center – Université Laval, Québec, QC, Canada
| | - Dimitry Topolnik
- Neuroscience Axis, Centre Hospitalier Universitaire (CHU) de Québec Research Center – Université Laval, Québec, QC, Canada
| | - Félix Michaud
- Department of Biochemistry, Microbiology and Bioinformatics, Faculty of Science and Engineering, Université Laval, Québec, QC, Canada
- Neuroscience Axis, Centre Hospitalier Universitaire (CHU) de Québec Research Center – Université Laval, Québec, QC, Canada
| | - Beatrice Marino
- Department of Biochemistry, Microbiology and Bioinformatics, Faculty of Science and Engineering, Université Laval, Québec, QC, Canada
- Neuroscience Axis, Centre Hospitalier Universitaire (CHU) de Québec Research Center – Université Laval, Québec, QC, Canada
| | - Marie-Ève Tremblay
- Neuroscience Axis, Centre Hospitalier Universitaire (CHU) de Québec Research Center – Université Laval, Québec, QC, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Frances K. Skinner
- Krembil Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Departments of Medicine (Neurology) and Physiology, University of Toronto, Toronto, ON, Canada
| | - Lisa Topolnik
- Department of Biochemistry, Microbiology and Bioinformatics, Faculty of Science and Engineering, Université Laval, Québec, QC, Canada
- Neuroscience Axis, Centre Hospitalier Universitaire (CHU) de Québec Research Center – Université Laval, Québec, QC, Canada
| |
Collapse
|
17
|
Crosby KC, Gookin SE, Garcia JD, Hahm KM, Dell'Acqua ML, Smith KR. Nanoscale Subsynaptic Domains Underlie the Organization of the Inhibitory Synapse. Cell Rep 2020; 26:3284-3297.e3. [PMID: 30893601 DOI: 10.1016/j.celrep.2019.02.070] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/03/2019] [Accepted: 02/19/2019] [Indexed: 12/15/2022] Open
Abstract
Inhibitory synapses mediate the majority of synaptic inhibition in the brain, thereby controlling neuronal excitability, firing, and plasticity. Although essential for neuronal function, the central question of how these synapses are organized at the subsynaptic level remains unanswered. Here, we use three-dimensional (3D) super-resolution microscopy to image key components of the inhibitory postsynaptic domain and presynaptic terminal, revealing that inhibitory synapses are organized into nanoscale subsynaptic domains (SSDs) of the gephyrin scaffold, GABAARs and the active-zone protein Rab3-interacting molecule (RIM). Gephyrin SSDs cluster GABAAR SSDs, demonstrating nanoscale architectural interdependence between scaffold and receptor. GABAAR SSDs strongly associate with active-zone RIM SSDs, indicating an important role for GABAAR nanoscale organization near sites of GABA release. Finally, we find that in response to elevated activity, synapse growth is mediated by an increase in the number of postsynaptic SSDs, suggesting a modular mechanism for increasing inhibitory synaptic strength.
Collapse
Affiliation(s)
- Kevin C Crosby
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Sara E Gookin
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Joshua D Garcia
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Katlin M Hahm
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Mark L Dell'Acqua
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Katharine R Smith
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
18
|
Joshi S, Roden WH, Kapur J, Jansen LA. Reduced neurosteroid potentiation of GABA A receptors in epilepsy and depolarized hippocampal neurons. Ann Clin Transl Neurol 2020; 7:527-542. [PMID: 32243088 PMCID: PMC7187710 DOI: 10.1002/acn3.51023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/03/2020] [Accepted: 03/10/2020] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVE Neurosteroids regulate neuronal excitability by potentiating γ-aminobutyric acid type-A receptors (GABARs). In animal models of temporal lobe epilepsy, the neurosteroid sensitivity of GABARs is diminished and GABAR subunit composition is altered. We tested whether similar changes occur in patients with epilepsy and if depolarization-induced increases in neuronal activity can replicate this effect. METHODS We determined GABAR α4 subunit expression in cortical tissue resected from pediatric epilepsy patients. Modulation of human GABARs by allopregnanolone and Ro15-4513 was measured in Xenopus oocytes using whole-cell patch clamp. To extend the findings obtained using tissue from epilepsy patients, we evaluated GABAR expression and modulation by allopregnanolone and Ro15-4513 in cultured rat hippocampal neurons exposed to high extracellular potassium (HK) to increase neuronal activity. RESULTS Expression of α4 subunits was increased in pediatric cortical epilepsy specimens encompassing multiple pathologies. The potentiation of GABA-evoked currents by the neurosteroid allopregnanolone was decreased in Xenopus oocytes expressing GABARs isolated from epilepsy patients. Furthermore, receptors isolated from epilepsy but not control tissue were sensitive to potentiation by Ro15-4513, indicating higher expression of α4 βx γ2 subunit-containing receptors. Correspondingly, increasing the activity of cultured rat hippocampal neurons reduced allopregnanolone potentiation of miniature inhibitory postsynaptic currents (mIPSCs), increased modulation of tonic GABAR current by Ro15-4513, upregulated the surface expression of α4 and γ2 subunits, and increased the colocalization of α4 and γ2 subunit immunoreactivity. INTERPRETATION These findings suggest that seizure activity-induced upregulation of α4 βx γ2 subunit-containing GABARs could affect the anticonvulsant actions of neurosteroids.
Collapse
Affiliation(s)
- Suchitra Joshi
- Department of NeurologyUniversity of VirginiaCharlottesvilleVirginia
| | | | - Jaideep Kapur
- Department of NeurologyUniversity of VirginiaCharlottesvilleVirginia
- Department of NeuroscienceUniversity of VirginiaCharlottesvilleVirginia
- UVA Brain InstituteUniversity of VirginiaCharlottesvilleVirginia
| | - Laura A. Jansen
- Department of NeurologyUniversity of VirginiaCharlottesvilleVirginia
- Seattle Children’s Research InstituteSeattleWashington
- Department of NeurologyWashington University School of MedicineSt. LouisWashington
| |
Collapse
|
19
|
Galanis C, Vlachos A. Hebbian and Homeostatic Synaptic Plasticity-Do Alterations of One Reflect Enhancement of the Other? Front Cell Neurosci 2020; 14:50. [PMID: 32256317 PMCID: PMC7093376 DOI: 10.3389/fncel.2020.00050] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/21/2020] [Indexed: 01/07/2023] Open
Abstract
During the past 50 years, the cellular and molecular mechanisms of synaptic plasticity have been studied in great detail. A plethora of signaling pathways have been identified that account for synaptic changes based on positive and negative feedback mechanisms. Yet, the biological significance of Hebbian synaptic plasticity (= positive feedback) and homeostatic synaptic plasticity (= negative feedback) remains a matter of debate. Specifically, it is unclear how these opposing forms of plasticity, which share common downstream mechanisms, operate in the same networks, neurons, and synapses. Based on the observation that rapid and input-specific homeostatic mechanisms exist, we here discuss a model that is based on signaling pathways that may adjust a balance between Hebbian and homeostatic synaptic plasticity. Hence, “alterations” in Hebbian plasticity may, in fact, resemble “enhanced” homeostasis, which rapidly returns synaptic strength to baseline. In turn, long-lasting experience-dependent synaptic changes may require attenuation of homeostatic mechanisms or the adjustment of homeostatic setpoints at the single-synapse level. In this context, we propose a role for the proteolytic processing of the amyloid precursor protein (APP) in setting a balance between the ability of neurons to express Hebbian and homeostatic synaptic plasticity.
Collapse
Affiliation(s)
- Christos Galanis
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
20
|
Pernia M, Díaz I, Colmenárez-Raga AC, Rivadulla C, Cudeiro J, Plaza I, Merchán MA. Cross-modal reaction of auditory and visual cortices after long-term bilateral hearing deprivation in the rat. Brain Struct Funct 2020; 225:129-148. [PMID: 31781971 PMCID: PMC6957565 DOI: 10.1007/s00429-019-01991-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 11/21/2019] [Indexed: 12/26/2022]
Abstract
Visual cortex (VC) over-activation analysed by evoked responses has been demonstrated in congenital deafness and after long-term acquired hearing loss in humans. However, permanent hearing deprivation has not yet been explored in animal models. Thus, the present study aimed to examine functional and molecular changes underlying the visual and auditory cross-modal reaction. For such purpose, we analysed cortical visual evoked potentials (VEPs) and the gene expression (RT-qPCR) of a set of markers for neuronal activation (c-Fos) and activity-dependent homeostatic compensation (Arc/Arg3.1). To determine the state of excitation and inhibition, we performed RT-qPCR and quantitative immunocytochemistry for excitatory (receptor subunits GluA2/3) and inhibitory (GABAA-α1, GABAB-R2, GAD65/67 and parvalbumin-PV) markers. VC over-activation was demonstrated by a significant increase in VEPs wave N1 and by up-regulation of the activity-dependent early genes c-Fos and Arc/Arg3.1 (thus confirming, by RT-qPCR, our previously published immunocytochemical results). GluA2 gene and protein expression were significantly increased in the auditory cortex (AC), particularly in layers 2/3 pyramidal neurons, but inhibitory markers (GAD65/67 and PV-GABA interneurons) were also significantly upregulated in the AC, indicating a concurrent increase in inhibition. Therefore, after permanent hearing loss in the rat, the VC is not only over-activated but also potentially balanced by homeostatic regulation, while excitatory and inhibitory markers remain imbalanced in the AC, most likely resulting from changes in horizontal intermodal regulation.
Collapse
Affiliation(s)
- M Pernia
- Instituto de Neurociencias of Castilla y León-INCyL, Universidad de Salamanca, Salamanca, Spain
| | - I Díaz
- Instituto de Neurociencias of Castilla y León-INCyL, Universidad de Salamanca, Salamanca, Spain
| | - A C Colmenárez-Raga
- Instituto de Neurociencias of Castilla y León-INCyL, Universidad de Salamanca, Salamanca, Spain
| | - C Rivadulla
- Centro de Investigaciones Científicas Avanzadas (CICA), Facultad de Ciencias de la Salud, Universidad de A Coruña and Instituto de Investigaciones Biomédicas de A Coruña (INIBIC), A Coruña, Spain
| | - J Cudeiro
- Centro de Investigaciones Científicas Avanzadas (CICA), Facultad de Ciencias de la Salud, Universidad de A Coruña and Instituto de Investigaciones Biomédicas de A Coruña (INIBIC), A Coruña, Spain
| | - I Plaza
- Instituto de Neurociencias of Castilla y León-INCyL, Universidad de Salamanca, Salamanca, Spain
| | - M A Merchán
- Instituto de Neurociencias of Castilla y León-INCyL, Universidad de Salamanca, Salamanca, Spain.
| |
Collapse
|
21
|
Chiu CQ, Barberis A, Higley MJ. Preserving the balance: diverse forms of long-term GABAergic synaptic plasticity. Nat Rev Neurosci 2019; 20:272-281. [PMID: 30837689 DOI: 10.1038/s41583-019-0141-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cellular mechanisms that regulate the interplay of synaptic excitation and inhibition are thought to be central to the functional stability of healthy neuronal circuits. A growing body of literature demonstrates the capacity for inhibitory GABAergic synapses to exhibit long-term plasticity in response to changes in neuronal activity. Here, we review this expanding field of research, focusing on the diversity of mechanisms that link glutamatergic signalling, postsynaptic action potentials and inhibitory synaptic strength. Several lines of evidence indicate that multiple, parallel forms of plasticity serve to regulate activity at both the input and output domains of individual neurons. Overall, these varied phenomena serve to promote both stability and flexibility over the life of the organism.
Collapse
Affiliation(s)
- Chiayu Q Chiu
- Centro Interdisciplinario de Neurociencia de Valparaiso, Universidad de Valparaiso, Valparaiso, Chile
| | | | - Michael J Higley
- Department of Neuroscience, Yale University, New Haven, CT, USA.
| |
Collapse
|
22
|
Dubes S, Favereaux A, Thoumine O, Letellier M. miRNA-Dependent Control of Homeostatic Plasticity in Neurons. Front Cell Neurosci 2019; 13:536. [PMID: 31866828 PMCID: PMC6906196 DOI: 10.3389/fncel.2019.00536] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/19/2019] [Indexed: 11/13/2022] Open
Abstract
Homeostatic plasticity is a form of plasticity in which neurons compensate for changes in neuronal activity through the control of key physiological parameters such as the number and the strength of their synaptic inputs and intrinsic excitability. Recent studies revealed that miRNAs, which are small non-coding RNAs repressing mRNA translation, participate in this process by controlling the translation of multiple effectors such as glutamate transporters, receptors, signaling molecules and voltage-gated ion channels. In this review, we present and discuss the role of miRNAs in both cell-wide and compartmentalized forms of homeostatic plasticity as well as their implication in pathological processes associated with homeostatic failure.
Collapse
Affiliation(s)
- Sandra Dubes
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
| | - Alexandre Favereaux
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
| | - Olivier Thoumine
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
| | - Mathieu Letellier
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
| |
Collapse
|
23
|
SIRT3 mediates hippocampal synaptic adaptations to intermittent fasting and ameliorates deficits in APP mutant mice. Nat Commun 2019; 10:1886. [PMID: 31015456 PMCID: PMC6478744 DOI: 10.1038/s41467-019-09897-1] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 03/27/2019] [Indexed: 12/19/2022] Open
Abstract
Intermittent food deprivation (fasting, IF) improves mood and cognition and protects neurons against excitotoxic degeneration in animal models of epilepsy and Alzheimer’s disease (AD). The mechanisms by which neuronal networks adapt to IF and how such adaptations impact neuropathological processes are unknown. We show that hippocampal neuronal networks adapt to IF by enhancing GABAergic tone, which is associated with reduced anxiety-like behaviors and improved hippocampus-dependent memory. These neuronal network and behavioral adaptations require the mitochondrial protein deacetylase SIRT3 as they are abolished in SIRT3-deficient mice and wild type mice in which SIRT3 is selectively depleted from hippocampal neurons. In the AppNL-G-F mouse model of AD, IF reduces neuronal network hyperexcitability and ameliorates deficits in hippocampal synaptic plasticity in a SIRT3-dependent manner. These findings demonstrate a role for a mitochondrial protein deacetylase in hippocampal neurons in behavioral and GABAergic synaptic adaptations to IF. Intermittent fasting has been shown to have beneficial effects on hippocampal function in rodents, but the underlying mechanism is not fully understood. Here the authors show that the mitochondrial protein SIRT3 contributes to the beneficial cognitive and synaptic effects of intermittent fasting in mice.
Collapse
|
24
|
Cardenas A, Blanca M, Dimitrov E. Persistent pain intensifies recall of consolidated fear memories. Neurobiol Stress 2019; 10:100163. [PMID: 31193505 PMCID: PMC6535623 DOI: 10.1016/j.ynstr.2019.100163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 04/04/2019] [Accepted: 04/04/2019] [Indexed: 12/04/2022] Open
Abstract
Ensembles of principal neurons in the basolateral amygdala (BLA) generate the initial engrams for fear memories, while projections from the BLA to the medial prefrontal cortex (mPFC) are essential for the encoding, transfer and storage of remote fear memories. We tested the effects of chronic pain on remote fear memories in mice. Male mice underwent classic fear conditioning by pairing a single tone (conditional stimulus, CS) with a single electric foot shock (unconditional stimulus, US). Sciatic nerve constriction was used to induce neuropathic pain at various time points before or after the fear conditioning. The mice with sciatic nerve cuffs implanted 48 h after the fear conditioning showed an increased freezing response to CS when compared to mice without cuffs or when compared to mice in which the nerve cuffing was performed 48 h before the fear conditioning. The enhancing effect of pain on consolidated fear memory was further tested and mice in which the nerve cuffing was performed 14 days after the fear conditioning also showed an increased fear response when tested 56 days later. We used immunostaining to detect morphological changes in the BLA that could suggest a mechanism for the observed increase in fear response. We found an increased number of calbindin/parvalbumin positive neurons in the BLA and increased perisomatic density of GAD65 on projection neurons that connect BLA to mPFC in mice with nerve cuffs. Despite the strong increase of c-Fos expression in BLA and mPFC that was induced by fear recall, neither the BLA to mPFC nor the mPFC to BLA projection neurons were activated in mice with nerve cuffs. Furthermore, non-injured mice had an increased fear response when BLA to mPFC projections were inhibited by a chemogenetic method. In conclusion, this study provides evidence that persistent pain has a significant impact on consolidated fear memories. Very likely the underlying mechanism for this phenomenon is increased inhibitory input onto the BLA to mPFC projection neurons, possibly from neurons with induced parvalbumin expression. Conceivably, the increased fear response to consolidated fear memory is a harbinger for the later development of anxiety and depression symptoms associated with chronic pain.
Collapse
Affiliation(s)
- Andrea Cardenas
- Department of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Michelle Blanca
- Department of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Eugene Dimitrov
- Department of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| |
Collapse
|
25
|
Fan J, Li D, Chen HS, Huang JG, Xu JF, Zhu WW, Chen JG, Wang F. Metformin produces anxiolytic-like effects in rats by facilitating GABA A receptor trafficking to membrane. Br J Pharmacol 2018; 176:297-316. [PMID: 30318707 DOI: 10.1111/bph.14519] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 09/15/2018] [Accepted: 09/19/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND AND PURPOSE Altered function or expression of GABAA receptors contributes to anxiety disorders. Benzodiazepines are widely prescribed for the treatment of anxiety. However, the long-term use of benzodiazepines increases the risk of developing drug dependence and tolerance. Thus, it is urgent to explore new therapeutic approaches. Metformin is widely used to treat Type 2 diabetes and other metabolic syndromes. However, the role of metformin in psychiatric disorders, especially anxiety, remains largely unknown. EXPERIMENTAL APPROACH We examined the effects of metformin on anxiety-like behaviour of rats in open field test and elevated plus maze test. We also observed the effect of metformin (10 μM, in vitro; 100 mg·kg-1 , in vivo) on the trafficking of GABAA receptors, as mechanisms underlying the anxiolytic effects of metformin. KEY RESULTS Metformin (100 mg·kg-1 , i.p. 30 min) displayed a robust and rapid anxiolytic effect, without tolerance. Metformin up-regulated the surface expression of GABAA receptors and increased miniature inhibitory postsynaptic currents (mIPSCs). AMP-activated protein kinase (AMPK) activated by metformin-induced stimulation of forkhead box O3a (FoxO3a) transcriptional activity, followed by increased expression of GABAA receptor-associated protein (GABARAP) and its binding to GABAA receptors finally resulted in the membrane insertion of GABAA receptors. CONCLUSIONS AND IMPLICATIONS Metformin increased mIPSCs by up-regulating the membrane insertion of GABAA receptors, via a pathway involving AMPK, FoxO3a, and the GABAA receptor-associated protein. Thus metformin has a potential new use in the treatment of anxiety disorders.
Collapse
Affiliation(s)
- Jun Fan
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Sheng Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Geng Huang
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun-Feng Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen-Wen Zhu
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Guo Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, China.,Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation (HUST), Wuhan, China.,Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China.,The Collaborative-Innovation Center for Brain Science, Wuhan, China
| | - Fang Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, China.,Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation (HUST), Wuhan, China.,Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China.,The Collaborative-Innovation Center for Brain Science, Wuhan, China
| |
Collapse
|
26
|
Caverzasio S, Amato N, Manconi M, Prosperetti C, Kaelin-Lang A, Hutchison WD, Galati S. Brain plasticity and sleep: Implication for movement disorders. Neurosci Biobehav Rev 2018; 86:21-35. [DOI: 10.1016/j.neubiorev.2017.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 12/31/2022]
|
27
|
Ge Y, Kang Y, Cassidy RM, Moon KM, Lewis R, Wong ROL, Foster LJ, Craig AM. Clptm1 Limits Forward Trafficking of GABA A Receptors to Scale Inhibitory Synaptic Strength. Neuron 2018; 97:596-610.e8. [PMID: 29395912 DOI: 10.1016/j.neuron.2017.12.038] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 11/17/2017] [Accepted: 12/22/2017] [Indexed: 12/11/2022]
Abstract
In contrast with numerous studies of glutamate receptor-associated proteins and their involvement in the modulation of excitatory synapses, much less is known about mechanisms controlling postsynaptic GABAA receptor (GABAAR) numbers. Using tandem affinity purification from tagged GABAAR γ2 subunit transgenic mice and proteomic analysis, we isolated several GABAAR-associated proteins, including Cleft lip and palate transmembrane protein 1 (Clptm1). Clptm1 interacted with all GABAAR subunits tested and promoted GABAAR trapping in the endoplasmic reticulum. Overexpression of Clptm1 reduced GABAAR-mediated currents in a recombinant system, in cultured hippocampal neurons, and in brain, with no effect on glycine or AMPA receptor-mediated currents. Conversely, knockdown of Clptm1 increased phasic and tonic inhibitory transmission with no effect on excitatory synaptic transmission. Furthermore, altering the expression level of Clptm1 mimicked activity-induced inhibitory synaptic scaling. Thus, in complement to other GABAAR-associated proteins that promote receptor surface expression, Clptm1 limits GABAAR forward trafficking and regulates inhibitory homeostatic plasticity.
Collapse
Affiliation(s)
- Yuan Ge
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Yunhee Kang
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Robert M Cassidy
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Kyung-Mee Moon
- Department of Biochemistry and Molecular Biology and Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Renate Lewis
- Department of Anatomy and Neurobiology, Washington University, St. Louis, MO 63110, USA
| | - Rachel O L Wong
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology and Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Ann Marie Craig
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B5, Canada.
| |
Collapse
|
28
|
Activity-Dependent Inhibitory Synapse Scaling Is Determined by Gephyrin Phosphorylation and Subsequent Regulation of GABA A Receptor Diffusion. eNeuro 2018; 5:eN-NWR-0203-17. [PMID: 29379879 PMCID: PMC5780843 DOI: 10.1523/eneuro.0203-17.2017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 12/14/2017] [Accepted: 12/21/2017] [Indexed: 12/21/2022] Open
Abstract
Synaptic plasticity relies on the rapid changes in neurotransmitter receptor number at postsynaptic sites. Using superresolution photoactivatable localization microscopy imaging and quantum dot-based single-particle tracking in rat hippocampal cultured neurons, we investigated whether the phosphorylation status of the main scaffolding protein gephyrin influenced the organization of the gephyrin scaffold and GABAA receptor (GABAAR) membrane dynamics. We found that gephyrin phosphorylation regulates gephyrin microdomain compaction. Extracellular signal-regulated kinase 1/2 and glycogen synthase kinase 3β (GSK3β) signaling alter the gephyrin scaffold mesh differentially. Differences in scaffold organization similarly affected the diffusion of synaptic GABAARs, suggesting reduced gephyrin receptor-binding properties. In the context of synaptic scaling, our results identify a novel role of the GSK3β signaling pathway in the activity-dependent regulation of extrasynaptic receptor surface trafficking and GSK3β, protein kinase A, and calcium/calmodulin-dependent protein kinase IIα pathways in facilitating adaptations of synaptic receptors.
Collapse
|
29
|
Gao M, Whitt JL, Huang S, Lee A, Mihalas S, Kirkwood A, Lee HK. Experience-dependent homeostasis of 'noise' at inhibitory synapses preserves information coding in adult visual cortex. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0156. [PMID: 28093550 DOI: 10.1098/rstb.2016.0156] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2016] [Indexed: 02/05/2023] Open
Abstract
Synapses are intrinsically 'noisy' in that neurotransmitter is occasionally released in the absence of an action potential. At inhibitory synapses, the frequency of action potential-independent release is orders of magnitude higher than that at excitatory synapses raising speculations that it may serve a function. Here we report that the frequency of action potential-independent inhibitory synaptic 'noise' (i.e. miniature inhibitory postsynaptic currents, mIPSCs) is highly regulated by sensory experience in visual cortex. Importantly, regulation of mIPSC frequency is so far the predominant form of functional plasticity at inhibitory synapses in adults during the refractory period for plasticity and is a locus of rapid non-genomic actions of oestrogen. Models predict that regulating the frequency of mIPSCs, together with the previously characterized synaptic scaling of miniature excitatory PSCs, allows homeostatic maintenance of both the mean and variance of inputs to a neuron, a necessary feature of probabilistic population codes. Furthermore, mIPSC frequency regulation allows preservation of the temporal profile of neural responses while homeostatically regulating the overall firing rate. Our results suggest that the control of inhibitory 'noise' allows adaptive maintenance of adult cortical function in tune with the sensory environment.This article is part of the themed issue 'Integrating Hebbian and homeostatic plasticity'.
Collapse
Affiliation(s)
- Ming Gao
- Solomon H. Snyder Department of Neuroscience, Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jessica L Whitt
- Solomon H. Snyder Department of Neuroscience, Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Shiyong Huang
- Solomon H. Snyder Department of Neuroscience, Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Angela Lee
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Stefan Mihalas
- Allen Institute for Brain Science, Seattle, WA 98103, USA
| | - Alfredo Kirkwood
- Solomon H. Snyder Department of Neuroscience, Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Hey-Kyoung Lee
- Solomon H. Snyder Department of Neuroscience, Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA .,Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
30
|
Xiong W, Ping X, Ripsch MS, Chavez GSC, Hannon HE, Jiang K, Bao C, Jadhav V, Chen L, Chai Z, Ma C, Wu H, Feng J, Blesch A, White FA, Jin X. Enhancing excitatory activity of somatosensory cortex alleviates neuropathic pain through regulating homeostatic plasticity. Sci Rep 2017; 7:12743. [PMID: 28986567 PMCID: PMC5630599 DOI: 10.1038/s41598-017-12972-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 09/18/2017] [Indexed: 01/06/2023] Open
Abstract
Central sensitization and network hyperexcitability of the nociceptive system is a basic mechanism of neuropathic pain. We hypothesize that development of cortical hyperexcitability underlying neuropathic pain may involve homeostatic plasticity in response to lesion-induced somatosensory deprivation and activity loss, and can be controlled by enhancing cortical activity. In a mouse model of neuropathic pain, in vivo two-photon imaging and patch clamp recording showed initial loss and subsequent recovery and enhancement of spontaneous firings of somatosensory cortical pyramidal neurons. Unilateral optogenetic stimulation of cortical pyramidal neurons both prevented and reduced pain-like behavior as detected by bilateral mechanical hypersensitivity of hindlimbs, but corpus callosotomy eliminated the analgesic effect that was ipsilateral, but not contralateral, to optogenetic stimulation, suggesting involvement of inter-hemispheric excitatory drive in this effect. Enhancing activity by focally blocking cortical GABAergic inhibition had a similar relieving effect on the pain-like behavior. Patch clamp recordings from layer V pyramidal neurons showed that optogenetic stimulation normalized cortical hyperexcitability through changing neuronal membrane properties and reducing frequency of excitatory postsynaptic events. We conclude that development of neuropathic pain involves abnormal homeostatic activity regulation of somatosensory cortex, and that enhancing cortical excitatory activity may be a novel strategy for preventing and controlling neuropathic pain.
Collapse
Affiliation(s)
- Wenhui Xiong
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute. Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Xingjie Ping
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute. Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Matthew S Ripsch
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Grace Santa Cruz Chavez
- Department of Biomedical Engineering, Purdue School of Engineering and Technology. IUPUI, Indianapolis, USA
| | - Heidi Elise Hannon
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute. Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Kewen Jiang
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chunhui Bao
- Shanghai Research Institute of Acupuncture-Moxibustion and Meridian, Shanghai, China
| | - Vaishnavi Jadhav
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Lifang Chen
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Acupuncture, Zhejiang Traditional Chinese Medical University and the Third Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Zhi Chai
- Research Center of Neurobiology, Shanxi University of Traditional Chinese Medicine, Taiyuan, China
| | - Cungen Ma
- Research Center of Neurobiology, Shanxi University of Traditional Chinese Medicine, Taiyuan, China
| | - Huangan Wu
- Shanghai Research Institute of Acupuncture-Moxibustion and Meridian, Shanghai, China
| | - Jianqiao Feng
- Department of Acupuncture, Zhejiang Traditional Chinese Medical University and the Third Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Armin Blesch
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute. Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Fletcher A White
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Research and Development Services, Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA.
| | - Xiaoming Jin
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute. Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
31
|
Puentes-Mestril C, Aton SJ. Linking Network Activity to Synaptic Plasticity during Sleep: Hypotheses and Recent Data. Front Neural Circuits 2017; 11:61. [PMID: 28932187 PMCID: PMC5592216 DOI: 10.3389/fncir.2017.00061] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/23/2017] [Indexed: 12/22/2022] Open
Abstract
Research findings over the past two decades have supported a link between sleep states and synaptic plasticity. Numerous mechanistic hypotheses have been put forth to explain this relationship. For example, multiple studies have shown structural alterations to synapses (including changes in synaptic volume, spine density, and receptor composition) indicative of synaptic weakening after a period of sleep. Direct measures of neuronal activity and synaptic strength support the idea that a period of sleep can reduce synaptic strength. This has led to the synaptic homeostasis hypothesis (SHY), which asserts that during slow wave sleep, synapses are downscaled throughout the brain to counteract net strengthening of network synapses during waking experience (e.g., during learning). However, neither the cellular mechanisms mediating these synaptic changes, nor the sleep-dependent activity changes driving those cellular events are well-defined. Here we discuss potential cellular and network dynamic mechanisms which could underlie reductions in synaptic strength during sleep. We also discuss recent findings demonstrating circuit-specific synaptic strengthening (rather than weakening) during sleep. Based on these data, we explore the hypothetical role of sleep-associated network activity patterns in driving synaptic strengthening. We propose an alternative to SHY—namely that depending on experience during prior wake, a variety of plasticity mechanisms may operate in the brain during sleep. We conclude that either synaptic strengthening or synaptic weakening can occur across sleep, depending on changes to specific neural circuits (such as gene expression and protein translation) induced by experiences in wake. Clarifying the mechanisms underlying these different forms of sleep-dependent plasticity will significantly advance our understanding of how sleep benefits various cognitive functions.
Collapse
Affiliation(s)
- Carlos Puentes-Mestril
- Neuroscience Graduate Program, Department of Molecular, Cellular, and Developmental Biology, University of MichiganAnn Arbor, MI, United States
| | - Sara J Aton
- Neuroscience Graduate Program, Department of Molecular, Cellular, and Developmental Biology, University of MichiganAnn Arbor, MI, United States
| |
Collapse
|
32
|
Erbb4 Deletion from Medium Spiny Neurons of the Nucleus Accumbens Core Induces Schizophrenia-Like Behaviors via Elevated GABA A Receptor α1 Subunit Expression. J Neurosci 2017; 37:7450-7464. [PMID: 28667174 DOI: 10.1523/jneurosci.3948-16.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 06/03/2017] [Accepted: 06/19/2017] [Indexed: 12/21/2022] Open
Abstract
Medium spiny neurons (MSNs), the major GABAergic projection neurons in the striatum, are implicated in many neuropsychiatric diseases such as schizophrenia, but the underlying mechanisms remain unclear. We found that a deficiency in Erbb4, a schizophrenia risk gene, in MSNs of the nucleus accumbens (NAc) core, but not the dorsomedial striatum, markedly induced schizophrenia-like behaviors such as hyperactivity, abnormal marble-burying behavior, damaged social novelty recognition, and impaired sensorimotor gating function in male mice. Using immunohistochemistry, Western blot, RNA interference, electrophysiology, and behavior test studies, we found that these phenomena were mediated by increased GABAA receptor α1 subunit (GABAAR α1) expression, which enhanced inhibitory synaptic transmission on MSNs. These results suggest that Erbb4 in MSNs of the NAc core may contribute to the pathogenesis of schizophrenia by regulating GABAergic transmission and raise the possibility that GABAAR α1 may therefore serve as a new therapeutic target for schizophrenia.SIGNIFICANCE STATEMENT Although ErbB4 is highly expressed in striatal medium spiny neurons (MSNs), its role in this type of neuron has not been reported previously. The present study demonstrates that Erbb4 deletion in nucleus accumbens (NAc) core MSNs can induce schizophrenia-like behaviors via elevated GABAA receptor α1 subunit (GABAAR α1) expression. To our knowledge, this is the first evidence that ErbB4 signaling in the MSNs is involved in the pathology of schizophrenia. Furthermore, restoration of GABAAR α1 in the NAc core, but not the dorsal medium striatum, alleviated the abnormal behaviors. Here, we highlight the role of the NAc core in the pathogenesis of schizophrenia and suggest that GABAAR α1 may be a potential pharmacological target for its treatment.
Collapse
|
33
|
Nakahata Y, Eto K, Murakoshi H, Watanabe M, Kuriu T, Hirata H, Moorhouse AJ, Ishibashi H, Nabekura J. Activation-Dependent Rapid Postsynaptic Clustering of Glycine Receptors in Mature Spinal Cord Neurons. eNeuro 2017; 4:ENEURO.0194-16.2017. [PMID: 28197549 PMCID: PMC5292596 DOI: 10.1523/eneuro.0194-16.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 01/05/2017] [Accepted: 01/17/2017] [Indexed: 12/02/2022] Open
Abstract
Inhibitory synapses are established during development but continue to be generated and modulated in strength in the mature nervous system. In the spinal cord and brainstem, presynaptically released inhibitory neurotransmitter dominantly switches from GABA to glycine during normal development in vivo. While presynaptic mechanisms of the shift of inhibitory neurotransmission are well investigated, the contribution of postsynaptic neurotransmitter receptors to this shift is not fully elucidated. Synaptic clustering of glycine receptors (GlyRs) is regulated by activation-dependent depolarization in early development. However, GlyR activation induces hyperpolarization after the first postnatal week, and little is known whether and how presynaptically released glycine regulates postsynaptic receptors in a depolarization-independent manner in mature developmental stage. Here we developed spinal cord neuronal culture of rodents using chronic strychnine application to investigate whether initial activation of GlyRs in mature stage could change postsynaptic localization of GlyRs. Immunocytochemical analyses demonstrate that chronic blockade of GlyR activation until mature developmental stage resulted in smaller clusters of postsynaptic GlyRs that could be enlarged upon receptor activation for 1 h in the mature stage. Furthermore, live cell-imaging techniques show that GlyR activation decreases its lateral diffusion at synapses, and this phenomenon is dependent on PKC, but neither Ca2+ nor CaMKII activity. These results suggest that the GlyR activation can regulate receptor diffusion and cluster size at inhibitory synapses in mature stage, providing not only new insights into the postsynaptic mechanism of shifting inhibitory neurotransmission but also the inhibitory synaptic plasticity in mature nervous system.
Collapse
Affiliation(s)
- Yoshihisa Nakahata
- Division of Homeostatic Development, Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
- Department of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
| | - Kei Eto
- Division of Homeostatic Development, Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
- Department of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
| | - Hideji Murakoshi
- Department of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
- Supportive Center for Brain Research, National Institute for Physiological Science, Okazaki 444-8585, Japan
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi 332-0012, Japan
| | - Miho Watanabe
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Toshihiko Kuriu
- Department of Neurophysiology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 769-2193, Japan
| | - Hiromi Hirata
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi 332-0012, Japan
- Division of Molecular and Developmental Biology, National Institute of Genetics, Mishima 411-8540, Japan
- Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima 411-8540, Japan
- Department of Chemistry and Biological Science, Graduate School of Science and Engineering, Aoyama Gakuin University, Sagamihara 252-5258, Japan
| | - Andrew J. Moorhouse
- Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney 2052, Australia
| | - Hitoshi Ishibashi
- Division of Homeostatic Development, Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
- Department of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
- Department of Physiology, Kitasato University School of Allied Health Sciences, Sagamihara 252-0373, Japan
| | - Junichi Nabekura
- Division of Homeostatic Development, Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
- Department of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
- CREST, Japan Science and Technology Agency (JST), Kawaguchi 332-0012, Japan
| |
Collapse
|
34
|
The Impact of Structural Heterogeneity on Excitation-Inhibition Balance in Cortical Networks. Neuron 2016; 92:1106-1121. [PMID: 27866797 PMCID: PMC5158120 DOI: 10.1016/j.neuron.2016.10.027] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 08/26/2016] [Accepted: 09/29/2016] [Indexed: 11/21/2022]
Abstract
Models of cortical dynamics often assume a homogeneous connectivity structure. However, we show that heterogeneous input connectivity can prevent the dynamic balance between excitation and inhibition, a hallmark of cortical dynamics, and yield unrealistically sparse and temporally regular firing. Anatomically based estimates of the connectivity of layer 4 (L4) rat barrel cortex and numerical simulations of this circuit indicate that the local network possesses substantial heterogeneity in input connectivity, sufficient to disrupt excitation-inhibition balance. We show that homeostatic plasticity in inhibitory synapses can align the functional connectivity to compensate for structural heterogeneity. Alternatively, spike-frequency adaptation can give rise to a novel state in which local firing rates adjust dynamically so that adaptation currents and synaptic inputs are balanced. This theory is supported by simulations of L4 barrel cortex during spontaneous and stimulus-evoked conditions. Our study shows how synaptic and cellular mechanisms yield fluctuation-driven dynamics despite structural heterogeneity in cortical circuits. Structural heterogeneity threatens the dynamic balance of excitation and inhibition Reconstruction of cortical networks reveals significant structural heterogeneity Spike-frequency adaptation can act locally to facilitate global balance Inhibitory homeostatic plasticity can compensate for structural imbalance
Collapse
|
35
|
Ren Z, Pribiag H, Jefferson SJ, Shorey M, Fuchs T, Stellwagen D, Luscher B. Bidirectional Homeostatic Regulation of a Depression-Related Brain State by Gamma-Aminobutyric Acidergic Deficits and Ketamine Treatment. Biol Psychiatry 2016; 80:457-468. [PMID: 27062563 PMCID: PMC4983262 DOI: 10.1016/j.biopsych.2016.02.009] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/06/2016] [Accepted: 02/08/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND Major depressive disorder is increasingly recognized to involve functional deficits in both gamma-aminobutyric acid (GABA)ergic and glutamatergic synaptic transmission. To elucidate the relationship between these phenotypes, we used GABAA receptor γ2 subunit heterozygous (γ2(+/-)) mice, which we previously characterized as a model animal with construct, face, and predictive validity for major depressive disorder. METHODS To assess possible consequences of GABAergic deficits on glutamatergic transmission, we quantitated the cell surface expression of N-methyl-D-aspartate (NMDA)-type and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-type glutamate receptors and the function of synapses in the hippocampus and medial prefrontal cortex of γ2(+/-) mice. We also analyzed the effects of an acute dose of the experimental antidepressant ketamine on all these parameters in γ2(+/-) versus wild-type mice. RESULTS Modest defects in GABAergic synaptic transmission of γ2(+/-) mice resulted in a strikingly prominent homeostatic-like reduction in the cell surface expression of NMDA-type and AMPA-type glutamate receptors, along with prominent functional impairment of glutamatergic synapses in the hippocampus and medial prefrontal cortex. A single subanesthetic dose of ketamine normalized glutamate receptor expression and synaptic function of γ2(+/-) mice to wild-type levels for a prolonged period, along with antidepressant-like behavioral consequences selectively in γ2(+/-) mice. The GABAergic synapses of γ2(+/-) mice were potentiated by ketamine in parallel but only in the medial prefrontal cortex. CONCLUSIONS Depressive-like brain states that are caused by GABAergic deficits involve a homeostatic-like reduction of glutamatergic transmission that is reversible by an acute, subanesthetic dose of ketamine, along with regionally selective potentiation of GABAergic synapses. The data merge the GABAergic and glutamatergic deficit hypotheses of major depressive disorder.
Collapse
Affiliation(s)
- Zhen Ren
- Department of Biology, Pennsylvania State University, University Park, PA 16802
| | - Horia Pribiag
- Center for Research in Neuroscience, McGill University, Montreal General Hospital, L7-132, 1650 Cedar Av, Montreal, QC H3G 1A4, Canada
| | - Sarah J. Jefferson
- Department of Biology, Pennsylvania State University, University Park, PA 16802
| | - Matthew Shorey
- Department of Biology, Pennsylvania State University, University Park, PA 16802
| | - Thomas Fuchs
- Department of Biology, Pennsylvania State University, University Park, PA 16802
| | - David Stellwagen
- Center for Research in Neuroscience, McGill University, Montreal General Hospital, L7-132, 1650 Cedar Av, Montreal, QC H3G 1A4, Canada
| | - Bernhard Luscher
- Departments of Biology, Pennsylvania State University, University Park, Pennsylvania; Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania; Center for Molecular Investigation of Neurological Disorders, Pennsylvania State University, University Park, Pennsylvania.
| |
Collapse
|
36
|
Fernandes D, Carvalho AL. Mechanisms of homeostatic plasticity in the excitatory synapse. J Neurochem 2016; 139:973-996. [PMID: 27241695 DOI: 10.1111/jnc.13687] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/25/2016] [Accepted: 05/27/2016] [Indexed: 11/30/2022]
Abstract
Brain development, sensory information processing, and learning and memory processes depend on Hebbian forms of synaptic plasticity, and on the remodeling and pruning of synaptic connections. Neurons in networks implicated in these processes carry out their functions while facing constant perturbation; homeostatic responses are therefore required to maintain neuronal activity within functional ranges for proper brain function. Here, we will review in vitro and in vivo studies demonstrating that several mechanisms underlie homeostatic plasticity of excitatory synapses, and identifying participant molecular players. Emerging evidence suggests a link between disrupted homeostatic synaptic plasticity and neuropsychiatric and neurologic disorders. Hebbian forms of synaptic plasticity, such as long-term potentiation (LTP), induce long-lasting changes in synaptic strength, which can be destabilizing and drive activity to saturation. Conversely, homeostatic plasticity operates to compensate for prolonged activity changes, stabilizing neuronal firing within a dynamic physiological range. We review mechanisms underlying homeostatic plasticity, and address how neurons integrate distinct forms of plasticity for proper brain function. This article is part of a mini review series: "Synaptic Function and Dysfunction in Brain Diseases".
Collapse
Affiliation(s)
- Dominique Fernandes
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,PDBEB-Doctoral Program in Experimental Biology and Biomedicine, Interdisciplinary Research Institute (III-UC), University of Coimbra, Coimbra, Portugal
| | - Ana Luísa Carvalho
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
37
|
Hinton AO, He Y, Xia Y, Xu P, Yang Y, Saito K, Wang C, Yan X, Shu G, Henderson A, Clegg DJ, Khan SA, Reynolds C, Wu Q, Tong Q, Xu Y. Estrogen Receptor-α in the Medial Amygdala Prevents Stress-Induced Elevations in Blood Pressure in Females. Hypertension 2016; 67:1321-30. [PMID: 27091896 DOI: 10.1161/hypertensionaha.116.07175] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 03/16/2016] [Indexed: 11/16/2022]
Abstract
Psychological stress contributes to the development of hypertension in humans. The ovarian hormone, estrogen, has been shown to prevent stress-induced pressor responses in females by unknown mechanisms. Here, we showed that the antihypertensive effects of estrogen during stress were blunted in female mice lacking estrogen receptor-α in the brain medial amygdala. Deletion of estrogen receptor-α in medial amygdala neurons also resulted in increased excitability of these neurons, associated with elevated ionotropic glutamate receptor expression. We further demonstrated that selective activation of medial amygdala neurons mimicked effects of stress to increase blood pressure in mice. Together, our results support a model where estrogen acts on estrogen receptor-α expressed by medial amygdala neurons to prevent stress-induced activation of these neurons, and therefore prevents pressor responses to stress.
Collapse
Affiliation(s)
- Antentor Othrell Hinton
- From the Department of Pediatrics, Children's Nutrition Research Center (A.O.H., Y.H., Y.X., P.X., Y.Y., K.S., C.W., X.Y., G.S., A.H., Q.W., Y.X.), Advanced Technology/Core Laboratory (C.R.), and Department of Molecular and Cellular Biology (Y.X.), Baylor College of Medicine, One Baylor Plaza, Houston, TX; Department of Biomedical Research, Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA (D.J.C.); Department of Cell and Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati, College of Medicine, OH (S.A.K.); and Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston (Q.T.)
| | - Yanlin He
- From the Department of Pediatrics, Children's Nutrition Research Center (A.O.H., Y.H., Y.X., P.X., Y.Y., K.S., C.W., X.Y., G.S., A.H., Q.W., Y.X.), Advanced Technology/Core Laboratory (C.R.), and Department of Molecular and Cellular Biology (Y.X.), Baylor College of Medicine, One Baylor Plaza, Houston, TX; Department of Biomedical Research, Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA (D.J.C.); Department of Cell and Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati, College of Medicine, OH (S.A.K.); and Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston (Q.T.)
| | - Yan Xia
- From the Department of Pediatrics, Children's Nutrition Research Center (A.O.H., Y.H., Y.X., P.X., Y.Y., K.S., C.W., X.Y., G.S., A.H., Q.W., Y.X.), Advanced Technology/Core Laboratory (C.R.), and Department of Molecular and Cellular Biology (Y.X.), Baylor College of Medicine, One Baylor Plaza, Houston, TX; Department of Biomedical Research, Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA (D.J.C.); Department of Cell and Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati, College of Medicine, OH (S.A.K.); and Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston (Q.T.)
| | - Pingwen Xu
- From the Department of Pediatrics, Children's Nutrition Research Center (A.O.H., Y.H., Y.X., P.X., Y.Y., K.S., C.W., X.Y., G.S., A.H., Q.W., Y.X.), Advanced Technology/Core Laboratory (C.R.), and Department of Molecular and Cellular Biology (Y.X.), Baylor College of Medicine, One Baylor Plaza, Houston, TX; Department of Biomedical Research, Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA (D.J.C.); Department of Cell and Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati, College of Medicine, OH (S.A.K.); and Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston (Q.T.)
| | - Yongjie Yang
- From the Department of Pediatrics, Children's Nutrition Research Center (A.O.H., Y.H., Y.X., P.X., Y.Y., K.S., C.W., X.Y., G.S., A.H., Q.W., Y.X.), Advanced Technology/Core Laboratory (C.R.), and Department of Molecular and Cellular Biology (Y.X.), Baylor College of Medicine, One Baylor Plaza, Houston, TX; Department of Biomedical Research, Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA (D.J.C.); Department of Cell and Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati, College of Medicine, OH (S.A.K.); and Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston (Q.T.)
| | - Kenji Saito
- From the Department of Pediatrics, Children's Nutrition Research Center (A.O.H., Y.H., Y.X., P.X., Y.Y., K.S., C.W., X.Y., G.S., A.H., Q.W., Y.X.), Advanced Technology/Core Laboratory (C.R.), and Department of Molecular and Cellular Biology (Y.X.), Baylor College of Medicine, One Baylor Plaza, Houston, TX; Department of Biomedical Research, Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA (D.J.C.); Department of Cell and Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati, College of Medicine, OH (S.A.K.); and Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston (Q.T.)
| | - Chunmei Wang
- From the Department of Pediatrics, Children's Nutrition Research Center (A.O.H., Y.H., Y.X., P.X., Y.Y., K.S., C.W., X.Y., G.S., A.H., Q.W., Y.X.), Advanced Technology/Core Laboratory (C.R.), and Department of Molecular and Cellular Biology (Y.X.), Baylor College of Medicine, One Baylor Plaza, Houston, TX; Department of Biomedical Research, Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA (D.J.C.); Department of Cell and Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati, College of Medicine, OH (S.A.K.); and Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston (Q.T.)
| | - Xiaofeng Yan
- From the Department of Pediatrics, Children's Nutrition Research Center (A.O.H., Y.H., Y.X., P.X., Y.Y., K.S., C.W., X.Y., G.S., A.H., Q.W., Y.X.), Advanced Technology/Core Laboratory (C.R.), and Department of Molecular and Cellular Biology (Y.X.), Baylor College of Medicine, One Baylor Plaza, Houston, TX; Department of Biomedical Research, Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA (D.J.C.); Department of Cell and Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati, College of Medicine, OH (S.A.K.); and Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston (Q.T.)
| | - Gang Shu
- From the Department of Pediatrics, Children's Nutrition Research Center (A.O.H., Y.H., Y.X., P.X., Y.Y., K.S., C.W., X.Y., G.S., A.H., Q.W., Y.X.), Advanced Technology/Core Laboratory (C.R.), and Department of Molecular and Cellular Biology (Y.X.), Baylor College of Medicine, One Baylor Plaza, Houston, TX; Department of Biomedical Research, Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA (D.J.C.); Department of Cell and Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati, College of Medicine, OH (S.A.K.); and Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston (Q.T.)
| | - Alexander Henderson
- From the Department of Pediatrics, Children's Nutrition Research Center (A.O.H., Y.H., Y.X., P.X., Y.Y., K.S., C.W., X.Y., G.S., A.H., Q.W., Y.X.), Advanced Technology/Core Laboratory (C.R.), and Department of Molecular and Cellular Biology (Y.X.), Baylor College of Medicine, One Baylor Plaza, Houston, TX; Department of Biomedical Research, Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA (D.J.C.); Department of Cell and Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati, College of Medicine, OH (S.A.K.); and Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston (Q.T.)
| | - Deborah J Clegg
- From the Department of Pediatrics, Children's Nutrition Research Center (A.O.H., Y.H., Y.X., P.X., Y.Y., K.S., C.W., X.Y., G.S., A.H., Q.W., Y.X.), Advanced Technology/Core Laboratory (C.R.), and Department of Molecular and Cellular Biology (Y.X.), Baylor College of Medicine, One Baylor Plaza, Houston, TX; Department of Biomedical Research, Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA (D.J.C.); Department of Cell and Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati, College of Medicine, OH (S.A.K.); and Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston (Q.T.)
| | - Sohaib A Khan
- From the Department of Pediatrics, Children's Nutrition Research Center (A.O.H., Y.H., Y.X., P.X., Y.Y., K.S., C.W., X.Y., G.S., A.H., Q.W., Y.X.), Advanced Technology/Core Laboratory (C.R.), and Department of Molecular and Cellular Biology (Y.X.), Baylor College of Medicine, One Baylor Plaza, Houston, TX; Department of Biomedical Research, Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA (D.J.C.); Department of Cell and Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati, College of Medicine, OH (S.A.K.); and Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston (Q.T.)
| | - Corey Reynolds
- From the Department of Pediatrics, Children's Nutrition Research Center (A.O.H., Y.H., Y.X., P.X., Y.Y., K.S., C.W., X.Y., G.S., A.H., Q.W., Y.X.), Advanced Technology/Core Laboratory (C.R.), and Department of Molecular and Cellular Biology (Y.X.), Baylor College of Medicine, One Baylor Plaza, Houston, TX; Department of Biomedical Research, Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA (D.J.C.); Department of Cell and Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati, College of Medicine, OH (S.A.K.); and Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston (Q.T.)
| | - Qi Wu
- From the Department of Pediatrics, Children's Nutrition Research Center (A.O.H., Y.H., Y.X., P.X., Y.Y., K.S., C.W., X.Y., G.S., A.H., Q.W., Y.X.), Advanced Technology/Core Laboratory (C.R.), and Department of Molecular and Cellular Biology (Y.X.), Baylor College of Medicine, One Baylor Plaza, Houston, TX; Department of Biomedical Research, Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA (D.J.C.); Department of Cell and Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati, College of Medicine, OH (S.A.K.); and Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston (Q.T.)
| | - Qingchun Tong
- From the Department of Pediatrics, Children's Nutrition Research Center (A.O.H., Y.H., Y.X., P.X., Y.Y., K.S., C.W., X.Y., G.S., A.H., Q.W., Y.X.), Advanced Technology/Core Laboratory (C.R.), and Department of Molecular and Cellular Biology (Y.X.), Baylor College of Medicine, One Baylor Plaza, Houston, TX; Department of Biomedical Research, Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA (D.J.C.); Department of Cell and Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati, College of Medicine, OH (S.A.K.); and Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston (Q.T.)
| | - Yong Xu
- From the Department of Pediatrics, Children's Nutrition Research Center (A.O.H., Y.H., Y.X., P.X., Y.Y., K.S., C.W., X.Y., G.S., A.H., Q.W., Y.X.), Advanced Technology/Core Laboratory (C.R.), and Department of Molecular and Cellular Biology (Y.X.), Baylor College of Medicine, One Baylor Plaza, Houston, TX; Department of Biomedical Research, Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA (D.J.C.); Department of Cell and Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati, College of Medicine, OH (S.A.K.); and Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston (Q.T.).
| |
Collapse
|
38
|
Buckmaster PS, Yamawaki R, Thind K. More Docked Vesicles and Larger Active Zones at Basket Cell-to-Granule Cell Synapses in a Rat Model of Temporal Lobe Epilepsy. J Neurosci 2016; 36:3295-308. [PMID: 26985038 PMCID: PMC4792940 DOI: 10.1523/jneurosci.4049-15.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/20/2016] [Accepted: 02/04/2016] [Indexed: 11/21/2022] Open
Abstract
Temporal lobe epilepsy is a common and challenging clinical problem, and its pathophysiological mechanisms remain unclear. One possibility is insufficient inhibition in the hippocampal formation where seizures tend to initiate. Normally, hippocampal basket cells provide strong and reliable synaptic inhibition at principal cell somata. In a rat model of temporal lobe epilepsy, basket cell-to-granule cell (BC→GC) synaptic transmission is more likely to fail, but the underlying cause is unknown. At some synapses, probability of release correlates with bouton size, active zone area, and number of docked vesicles. The present study tested the hypothesis that impaired GABAergic transmission at BC→GC synapses is attributable to ultrastructural changes. Boutons making axosomatic symmetric synapses in the granule cell layer were reconstructed from serial electron micrographs. BC→GC boutons were predicted to be smaller in volume, have fewer and smaller active zones, and contain fewer vesicles, including fewer docked vesicles. Results revealed the opposite. Compared with controls, epileptic pilocarpine-treated rats displayed boutons with over twice the average volume, active zone area, total vesicles, and docked vesicles and with more vesicles closer to active zones. Larger active zones in epileptic rats are consistent with previous reports of larger amplitude miniature IPSCs and larger BC→GC quantal size. Results of this study indicate that transmission failures at BC→GC synapses in epileptic pilocarpine-treated rats are not attributable to smaller boutons or fewer docked vesicles. Instead, processes following vesicle docking, including priming, Ca(2+) entry, or Ca(2+) coupling with exocytosis, might be responsible. SIGNIFICANCE STATEMENT One in 26 people develops epilepsy, and temporal lobe epilepsy is a common form. Up to one-third of patients are resistant to currently available treatments. This study tested a potential underlying mechanism for previously reported impaired inhibition in epileptic animals at basket cell-to-granule cell (BC→GC) synapses, which normally are reliable and strong. Electron microscopy was used to evaluate 3D ultrastructure of BC→GC synapses in a rat model of temporal lobe epilepsy. The hypothesis was that impaired synaptic transmission is attributable to smaller boutons, smaller synapses, and abnormally low numbers of synaptic vesicles. Results revealed the opposite. These findings suggest that impaired transmission at BC→GC synapses in epileptic rats is attributable to later steps in exocytosis following vesicle docking.
Collapse
Affiliation(s)
- Paul S Buckmaster
- Departments of Comparative Medicine and Neurology and Neurological Sciences, Stanford University, Stanford, California 94305
| | | | | |
Collapse
|
39
|
Abstract
Over the past decade, since epigenetic mechanisms were first implicated in memory formation and synaptic plasticity, dynamic DNA methylation reactions have been identified as integral to long-term memory formation, maintenance, and recall. This review incorporates various new findings that DNA methylation mechanisms are important regulators of non-Hebbian plasticity mechanisms, suggesting that these epigenetic mechanisms are a fundamental link between synaptic plasticity and metaplasticity. Because the field of neuroepigenetics is so young and the biochemical tools necessary to probe gene-specific questions are just now being developed and used, this review also speculates about the direction and potential of therapeutics that target epigenetic mechanisms in the central nervous system and the unique pharmacokinetic and pharmacodynamic properties that epigenetic therapies may possess. Mapping the dynamics of the epigenome in response to experiential learning, even a single epigenetic mark in isolation, remains a significant technical and bioinformatic hurdle facing the field, but will be necessary to identify changes to the methylome that govern memory-associated gene expression and effectively drug the epigenome.
Collapse
Affiliation(s)
- Andrew J Kennedy
- a Department of Neurobiology , University of Alabama at Birmingham , Birmingham , AL , USA
| | - J David Sweatt
- a Department of Neurobiology , University of Alabama at Birmingham , Birmingham , AL , USA
| |
Collapse
|
40
|
The pervasive reduction of GABA-mediated synaptic inhibition of principal neurons in the hippocampus during status epilepticus. Epilepsy Res 2015; 119:30-3. [PMID: 26656782 DOI: 10.1016/j.eplepsyres.2015.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 08/19/2015] [Accepted: 11/09/2015] [Indexed: 11/20/2022]
Abstract
The goal of this study was to determine whether there are region-specific or time-dependent changes in GABA-mediated synaptic inhibition of principal neurons in the hippocampus during in vivo status epilepticus. Standard whole cell patch clamp electrophysiological techniques were used to characterize miniature inhibitory postsynaptic currents (mIPSCs) in recordings from the principal neurons (PNs) of the dentate gyrus, CA1, and CA3 in acutely-obtained hippocampal slices from control and lithium/pilocarpine-induced status epilepticus(SE)-treated animals. The reduction in mIPSC amplitude was pervasive across the 3 regions examined in hippocampal slices obtained after 60 min (late) or just 15 min after the onset of SE. The mIPSC frequency was reduced in all 3 regions after 60 min and 2 regions (dentate, CA1) after 15 min. These findings lend further support to the hypothesis that a rapid modification of the postsynaptic GABAA receptor population leads to a widespread decline in GABA-mediated inhibition that, in part, contributes to both the self-sustaining nature of SE and to the decrease in the efficacy of benzodiazepines.
Collapse
|
41
|
α6-Containing GABAA Receptors Are the Principal Mediators of Inhibitory Synapse Strengthening by Insulin in Cerebellar Granule Cells. J Neurosci 2015; 35:9676-88. [PMID: 26134650 DOI: 10.1523/jneurosci.0513-15.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Activity-dependent strengthening of central synapses is a key factor driving neuronal circuit behavior in the vertebrate CNS. At fast inhibitory synapses, strengthening is thought to occur by increasing the number of GABAA receptors (GABARs) of the same subunit composition to preexisting synapses. Here, we show that strengthening of mouse cerebellar granule cell GABAergic synapses occurs by a different mechanism. Specifically, we show that the neuropeptide hormone, insulin, strengthens inhibitory synapses by recruiting α6-containing GABARs rather than accumulating more α1-containing receptors that are resident to the synapse. Because α6-receptors are targeted to functionally distinct postsynaptic sites from α1-receptors, we conclude that only a subset of all inhibitory synapses are strengthened. Together with our recent findings on stellate cells, we propose a general mechanism by which mature inhibitory synapses are strengthened. In this scenario, α1-GABARs resident to inhibitory synapses form the hardwiring of neuronal circuits with receptors of a different composition fulfilling a fundamental, but unappreciated, role in synapse strengthening.
Collapse
|
42
|
Kudryashova IV. The plasticity of inhibitory synapses as a factor of long-term modifications. NEUROCHEM J+ 2015. [DOI: 10.1134/s1819712415030058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Fetoni AR, Troiani D, Petrosini L, Paludetti G. Cochlear injury and adaptive plasticity of the auditory cortex. Front Aging Neurosci 2015; 7:8. [PMID: 25698966 PMCID: PMC4318425 DOI: 10.3389/fnagi.2015.00008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/21/2015] [Indexed: 12/20/2022] Open
Abstract
Growing evidence suggests that cochlear stressors as noise exposure and aging can induce homeostatic/maladaptive changes in the central auditory system from the brainstem to the cortex. Studies centered on such changes have revealed several mechanisms that operate in the context of sensory disruption after insult (noise trauma, drug-, or age-related injury). The oxidative stress is central to current theories of induced sensory-neural hearing loss and aging, and interventions to attenuate the hearing loss are based on antioxidant agent. The present review addresses the recent literature on the alterations in hair cells and spiral ganglion neurons due to noise-induced oxidative stress in the cochlea, as well on the impact of cochlear damage on the auditory cortex neurons. The emerging image emphasizes that noise-induced deafferentation and upward spread of cochlear damage is associated with the altered dendritic architecture of auditory pyramidal neurons. The cortical modifications may be reversed by treatment with antioxidants counteracting the cochlear redox imbalance. These findings open new therapeutic approaches to treat the functional consequences of the cortical reorganization following cochlear damage.
Collapse
Affiliation(s)
- Anna Rita Fetoni
- Department of Head and Neck Surgery, Medical School, Catholic University of the Sacred Heart, Rome, Italy
| | - Diana Troiani
- Institute of Human Physiology, Medical School, Catholic University of the Sacred Heart, Rome, Italy
| | - Laura Petrosini
- Department of Psychology, Sapienza University of Rome and IRCCS Santa Lucia Foundation, Rome, Italy
| | - Gaetano Paludetti
- Department of Head and Neck Surgery, Medical School, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
44
|
Peng X, Hughes EG, Moscato EH, Parsons TD, Dalmau J, Balice-Gordon RJ. Cellular plasticity induced by anti-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor encephalitis antibodies. Ann Neurol 2015; 77:381-98. [PMID: 25369168 PMCID: PMC4365686 DOI: 10.1002/ana.24293] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 09/19/2014] [Accepted: 10/22/2014] [Indexed: 02/06/2023]
Abstract
Objective Autoimmune-mediated anti–α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) encephalitis is a severe but treatment-responsive disorder with prominent short-term memory loss and seizures. The mechanisms by which patient antibodies affect synapses and neurons leading to symptoms are poorly understood. Methods The effects of patient antibodies on cultures of live rat hippocampal neurons were determined with immunostaining, Western blot, and electrophysiological analyses. Results We show that patient antibodies cause a selective decrease in the total surface amount and synaptic localization of GluA1- and GluA2-containing AMPARs, regardless of receptor subunit binding specificity, through increased internalization and degradation of surface AMPAR clusters. In contrast, patient antibodies do not alter the density of excitatory synapses, N-methyl-D-aspartate receptor (NMDAR) clusters, or cell viability. Commercially available AMPAR antibodies directed against extracellular epitopes do not result in a loss of surface and synaptic receptor clusters, suggesting specific effects of patient antibodies. Whole-cell patch clamp recordings of spontaneous miniature postsynaptic currents show that patient antibodies decrease AMPAR-mediated currents, but not NMDAR-mediated currents. Interestingly, several functional properties of neurons are also altered: inhibitory synaptic currents and vesicular γ-aminobutyric acid transporter (vGAT) staining intensity decrease, whereas the intrinsic excitability of neurons and short-interval firing increase. Interpretation These results establish that antibodies from patients with anti-AMPAR encephalitis selectively eliminate surface and synaptic AMPARs, resulting in a homeostatic decrease in inhibitory synaptic transmission and increased intrinsic excitability, which may contribute to the memory deficits and epilepsy that are prominent in patients with this disorder.
Collapse
Affiliation(s)
- Xiaoyu Peng
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | | | | | | | | | | |
Collapse
|
45
|
Zhou C, Ding L, Deel ME, Ferrick EA, Emeson RB, Gallagher MJ. Altered intrathalamic GABAA neurotransmission in a mouse model of a human genetic absence epilepsy syndrome. Neurobiol Dis 2014; 73:407-17. [PMID: 25447232 DOI: 10.1016/j.nbd.2014.10.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/07/2014] [Accepted: 10/29/2014] [Indexed: 02/07/2023] Open
Abstract
We previously demonstrated that heterozygous deletion of Gabra1, the mouse homolog of the human absence epilepsy gene that encodes the GABAA receptor (GABAAR) α1 subunit, causes absence seizures. We showed that cortex partially compensates for this deletion by increasing the cell surface expression of residual α1 subunit and by increasing α3 subunit expression. Absence seizures also involve two thalamic nuclei: the ventrobasal (VB) nucleus, which expresses only the α1 and α4 subtypes of GABAAR α subunits, and the reticular (nRT) nucleus, which expresses only the α3 subunit subtype. Here, we found that, unlike cortex, VB exhibited significantly reduced total and synaptic α1 subunit expression. In addition, heterozygous α1 subunit deletion substantially reduced miniature inhibitory postsynaptic current (mIPSC) peak amplitudes and frequency in VB. However, there was no change in the expression of the extrasynaptic α4 or δ subunits in VB and, unlike other models of absence epilepsy, no change in tonic GABAAR currents. Although heterozygous α1 subunit knockout increased α3 subunit expression in medial thalamic nuclei, it did not alter α3 subunit expression in nRT. However, it did enlarge the presynaptic vesicular inhibitory amino acid transporter puncta and lengthen the time constant of mIPSC decay in nRT. We conclude that increased tonic GABAA currents are not necessary for absence seizures. In addition, heterozygous loss of α1 subunit disinhibits VB by substantially reducing phasic GABAergic currents and surprisingly, it also increases nRT inhibition by prolonging phasic currents. The increased inhibition in nRT likely represents a partial compensation that helps reduce absence seizures.
Collapse
Affiliation(s)
- Chengwen Zhou
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, TN 37232 USA
| | - Li Ding
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, TN 37232 USA
| | - M Elizabeth Deel
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, TN 37232 USA
| | - Elizabeth A Ferrick
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, USA
| | - Ronald B Emeson
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, USA; Department of Pharmacology, Vanderbilt University School of Medicine, USA; Department of Psychiatry, Vanderbilt University School of Medicine, USA
| | - Martin J Gallagher
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, TN 37232 USA.
| |
Collapse
|
46
|
Postsynaptic activity reverses the sign of the acetylcholine-induced long-term plasticity of GABAA inhibition. Proc Natl Acad Sci U S A 2014; 111:E2741-50. [PMID: 24938789 DOI: 10.1073/pnas.1321777111] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Acetylcholine (ACh) regulates forms of plasticity that control cognitive functions but the underlying mechanisms remain largely unknown. ACh controls the intrinsic excitability, as well as the synaptic excitation and inhibition of CA1 hippocampal pyramidal cells (PCs), cells known to participate in circuits involved in cognition and spatial navigation. However, how ACh regulates inhibition in function of postsynaptic activity has not been well studied. Here we show that in rat PCs, a brief pulse of ACh or a brief stimulation of cholinergic septal fibers combined with repeated depolarization induces strong long-term enhancement of GABAA inhibition (GABAA-LTP). Indeed, this enhanced inhibition is due to the increased activation of α5βγ2 subunit-containing GABAA receptors by the GABA released. GABAA-LTP requires the activation of M1-muscarinic receptors and an increase in cytosolic Ca(2+). In the absence of PC depolarization ACh triggered a presynaptic depolarization-induced suppression of inhibition (DSI), revealing that postsynaptic activity gates the effects of ACh from presynaptic DSI to postsynaptic LTP. These results provide key insights into mechanisms potentially linked with cognitive functions, spatial navigation, and the homeostatic control of abnormal hyperexcitable states.
Collapse
|
47
|
Dystroglycan mediates homeostatic synaptic plasticity at GABAergic synapses. Proc Natl Acad Sci U S A 2014; 111:6810-5. [PMID: 24753587 DOI: 10.1073/pnas.1321774111] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Dystroglycan (DG), a cell adhesion molecule well known to be essential for skeletal muscle integrity and formation of neuromuscular synapses, is also present at inhibitory synapses in the central nervous system. Mutations that affect DG function not only result in muscular dystrophies, but also in severe cognitive deficits and epilepsy. Here we demonstrate a role of DG during activity-dependent homeostatic regulation of hippocampal inhibitory synapses. Prolonged elevation of neuronal activity up-regulates DG expression and glycosylation, and its localization to inhibitory synapses. Inhibition of protein synthesis prevents the activity-dependent increase in synaptic DG and GABAA receptors (GABAARs), as well as the homeostatic scaling up of GABAergic synaptic transmission. RNAi-mediated knockdown of DG blocks homeostatic scaling up of inhibitory synaptic strength, as does knockdown of like-acetylglucosaminyltransferase (LARGE)--a glycosyltransferase critical for DG function. In contrast, DG is not required for the bicuculline-induced scaling down of excitatory synaptic strength or the tetrodotoxin-induced scaling down of inhibitory synaptic strength. The DG ligand agrin increases GABAergic synaptic strength in a DG-dependent manner that mimics homeostatic scaling up induced by increased activity, indicating that activation of this pathway alone is sufficient to regulate GABAAR trafficking. These data demonstrate that DG is regulated in a physiologically relevant manner in neurons and that DG and its glycosylation are essential for homeostatic plasticity at inhibitory synapses.
Collapse
|
48
|
Guzman-Karlsson MC, Meadows JP, Gavin CF, Hablitz JJ, Sweatt JD. Transcriptional and epigenetic regulation of Hebbian and non-Hebbian plasticity. Neuropharmacology 2014; 80:3-17. [PMID: 24418102 DOI: 10.1016/j.neuropharm.2014.01.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 12/30/2013] [Accepted: 01/01/2014] [Indexed: 01/02/2023]
Abstract
The epigenome is uniquely positioned as a point of convergence, integrating multiple intracellular signaling cascades into a cohesive gene expression profile necessary for long-term behavioral change. The last decade of neuroepigenetic research has primarily focused on learning-induced changes in DNA methylation and chromatin modifications. Numerous studies have independently demonstrated the importance of epigenetic modifications in memory formation and retention as well as Hebbian plasticity. However, how these mechanisms operate in the context of other forms of plasticity is largely unknown. In this review, we examine evidence for epigenetic regulation of Hebbian plasticity. We then discuss how non-Hebbian forms of plasticity, such as intrinsic plasticity and synaptic scaling, may also be involved in producing the cellular adaptations necessary for learning-related behavioral change. Furthermore, we consider the likely roles for transcriptional and epigenetic mechanisms in the regulation of these plasticities. In doing so, we aim to expand upon the idea that epigenetic mechanisms are critical regulators of both Hebbian and non-Hebbian forms of plasticity that ultimately drive learning and memory.
Collapse
Affiliation(s)
| | - Jarrod P Meadows
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Cristin F Gavin
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John J Hablitz
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - J David Sweatt
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
49
|
Kowalski JR, Dube H, Touroutine D, Rush KM, Goodwin PR, Carozza M, Didier Z, Francis MM, Juo P. The Anaphase-Promoting Complex (APC) ubiquitin ligase regulates GABA transmission at the C. elegans neuromuscular junction. Mol Cell Neurosci 2014; 58:62-75. [PMID: 24321454 PMCID: PMC4036811 DOI: 10.1016/j.mcn.2013.12.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 11/23/2013] [Accepted: 12/02/2013] [Indexed: 01/05/2023] Open
Abstract
Regulation of both excitatory and inhibitory synaptic transmission is critical for proper nervous system function. Aberrant synaptic signaling, including altered excitatory to inhibitory balance, is observed in numerous neurological diseases. The ubiquitin enzyme system controls the abundance of many synaptic proteins and thus plays a key role in regulating synaptic transmission. The Anaphase-Promoting Complex (APC) is a multi-subunit ubiquitin ligase that was originally discovered as a key regulator of protein turnover during the cell cycle. More recently, the APC has been shown to function in postmitotic neurons, where it regulates diverse processes such as synapse development and synaptic transmission at glutamatergic synapses. Here we report that the APC regulates synaptic GABA signaling by acting in motor neurons to control the balance of excitatory (acetylcholine) to inhibitory (GABA) transmission at the Caenorhabditis elegans neuromuscular junction (NMJ). Loss-of-function mutants in multiple APC subunits have increased muscle excitation at the NMJ; this phenotype is rescued by expression of the missing subunit in GABA neurons. Quantitative imaging and electrophysiological analyses indicate that APC mutants have decreased GABA release but normal cholinergic transmission. Consistent with this, APC mutants exhibit convulsions in a seizure assay sensitive to reductions in GABA signaling. Previous studies in other systems showed that the APC can negatively regulate the levels of the active zone protein SYD-2 Liprin-α. Similarly, we found that SYD-2 accumulates in APC mutants at GABAergic presynaptic sites. Finally, we found that the APC subunit EMB-27 CDC16 can localize to presynapses in GABA neurons. Together, our data suggest a model in which the APC acts at GABAergic presynapses to promote GABA release and inhibit muscle excitation. These findings are the first evidence that the APC regulates transmission at inhibitory synapses and have implications for understanding nervous system pathologies, such as epilepsy, that are characterized by misregulated GABA signaling.
Collapse
Affiliation(s)
- Jennifer R Kowalski
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208 USA.
| | - Hitesh Dube
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208 USA.
| | - Denis Touroutine
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Kristen M Rush
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208 USA.
| | - Patricia R Goodwin
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA.
| | - Marc Carozza
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208 USA.
| | - Zachary Didier
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208 USA.
| | - Michael M Francis
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Peter Juo
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
50
|
Human immunodeficiency virus-1 Tat protein increases the number of inhibitory synapses between hippocampal neurons in culture. J Neurosci 2013; 33:17908-20. [PMID: 24198379 DOI: 10.1523/jneurosci.1312-13.2013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synaptodendritic damage correlates with cognitive decline in many neurodegenerative diseases, including human immunodeficiency virus-1 (HIV-1)-associated neurocognitive disorders (HAND). Because HIV-1 does not infect neurons, viral-mediated toxicity is indirect, resulting from released neurotoxins such as the HIV-1 protein transactivator of transcription (Tat). We compared the effects of Tat on inhibitory and excitatory synaptic connections between rat hippocampal neurons using an imaging-based assay that quantified clusters of the scaffolding proteins gephyrin or PSD95 fused to GFP. Tat (24 h) increased the number of GFP-gephyrin puncta and decreased the number of PSD95-GFP puncta. The effects of Tat on inhibitory and excitatory synapse number were mediated via the low-density lipoprotein receptor-related protein and subsequent Ca(2+) influx through GluN2A-containing NMDA receptors (NMDARs). The effects of Tat on synapse number required cell-autonomous activation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). Ca(2+) buffering experiments suggested that loss of excitatory synapses required activation of CaMKII in close apposition to the NMDAR, whereas the increase in inhibitory synapses required Ca(2+) diffusion to a more distal site. The increase in inhibitory synapses was prevented by inhibiting the insertion of GABAA receptors into the membrane. Synaptic changes induced by Tat (16 h) were reversed by blocking either GluN2B-containing NMDARs or neuronal nitric oxide synthase, indicating changing roles for pathways activated by NMDAR subtypes during the neurotoxic process. Compensatory changes in the number of inhibitory and excitatory synapses may serve as a novel mechanism to reduce network excitability in the presence of HIV-1 neurotoxins; these changes may inform the development of treatments for HAND.
Collapse
|