1
|
Jiang W, Huang C, Muyldermans S, Jia L. Small but Mighty: Nanobodies in the Fight Against Infectious Diseases. Biomolecules 2025; 15:610. [PMID: 40427503 PMCID: PMC12109223 DOI: 10.3390/biom15050610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/20/2025] [Accepted: 04/21/2025] [Indexed: 05/29/2025] Open
Abstract
Infectious diseases, caused by pathogenic microorganisms and capable of spreading, pose a significant threat to global public health. Developing efficient and cost-effective techniques for treating infectious diseases is crucial in curbing their progression and reducing patients' morbidity and mortality. Nanobodies (Nbs), a novel class of affinity reagents derived from unique heavy chain-only antibodies in camelids, represent the smallest intact and fully functional antigen-binding fragments. Compared with conventional antibodies and their antigen binding fragments, Nbs offer numerous advantages, including high affinity, exceptional target specificity, cost-effective production, easy accessibility, and robust stability, demonstrating immense potential in infectious disease treatment. This review introduces Nbs and focuses on discussing their mechanisms and intervention strategies in the treatment of viral and bacterial infections.
Collapse
Affiliation(s)
- Wenning Jiang
- Department of Public Security Administration, Liaoning Police College, Dalian 116036, China
| | - Chundong Huang
- Dalian Kangyuan Medical Technology Co., Ltd., Dalian 116014, China
| | - Serge Muyldermans
- Dalian Kangyuan Medical Technology Co., Ltd., Dalian 116014, China
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Lingyun Jia
- The School of Bioengineering, Dalian University of Technology, Dalian 116036, China
| |
Collapse
|
2
|
Swart IC, Debski-Antoniak OJ, Zegar A, de Bouter T, Chatziandreou M, van den Berg M, Drulyte I, Pyrć K, de Haan CAM, Hurdiss DL, Bosch BJ, Oliveira S. A bivalent spike-targeting nanobody with anti-sarbecovirus activity. J Nanobiotechnology 2025; 23:196. [PMID: 40059135 PMCID: PMC11892322 DOI: 10.1186/s12951-025-03243-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 02/18/2025] [Indexed: 05/13/2025] Open
Abstract
The continued emergence and zoonotic threat posed by coronaviruses highlight the urgent need for effective antiviral strategies with broad reactivity to counter new emerging strains. Nanobodies (or single-domain antibodies) are promising alternatives to traditional monoclonal antibodies, due to their small size, cost-effectiveness and ease of bioengineering. Here, we describe 7F, a llama-derived nanobody, targeting the spike receptor binding domain of sarbecoviruses and SARS-like coronaviruses. 7F demonstrates potent neutralization against SARS-CoV-2 and cross-neutralizing activity against SARS-CoV and SARS-like CoV WIV16 pseudoviruses. Structural analysis reveals 7F's ability to induce the formation of spike trimer dimers by engaging with two SARS-CoV-2 spike RBDs, targeting the highly conserved class IV region, though concentration dependent. Bivalent 7F constructs substantially enhance neutralization potency and breadth, up to more recent SARS-CoV-2 variants of concern. Furthermore, we demonstrate the therapeutic potential of bivalent 7F against SARS-CoV-2 in the fully differentiated 3D tissue cultures mirroring the epithelium of the human airway ex vivo. The broad sarbecovirus activity and distinctive structural features of bivalent 7F underscore its potential as promising antiviral against emerging and evolving sarbecoviruses.
Collapse
Affiliation(s)
- Iris C Swart
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands
- Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Oliver J Debski-Antoniak
- Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Aneta Zegar
- Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Thijs de Bouter
- Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Marianthi Chatziandreou
- Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Max van den Berg
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands
| | - Ieva Drulyte
- Materials and Structural Analysis, Thermo Fisher Scientific, Eindhoven, The Netherlands
| | - Krzysztof Pyrć
- Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Cornelis A M de Haan
- Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Daniel L Hurdiss
- Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Berend-Jan Bosch
- Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Sabrina Oliveira
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands.
- Pharmaceutics, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
3
|
Aripov VS, Zaykovskaya AV, Mechetina LV, Najakshin AM, Bondar AA, Arkhipov SG, Mustaev EA, Ilyina MG, Borisevich SS, Ilyichev AA, Nesmeyanova VS, Isaeva AA, Volosnikova EA, Shcherbakov DN, Volkova NV. The Use of Heterologous Antigens for Biopanning Enables the Selection of Broadly Neutralizing Nanobodies Against SARS-CoV-2. Antibodies (Basel) 2025; 14:23. [PMID: 40136472 PMCID: PMC11939171 DOI: 10.3390/antib14010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/27/2025] Open
Abstract
Background: Since the emergence of SARS-CoV-2 in the human population, the virus genome has undergone numerous mutations, enabling it to enhance transmissibility and evade acquired immunity. As a result of these mutations, most monoclonal neutralizing antibodies have lost their efficacy, as they are unable to neutralize new variants. Antibodies that neutralize a broad range of SARS-CoV-2 variants are of significant value in combating both current and potential future variants, making the identification and development of such antibodies an ongoing critical goal. This study discusses the strategy of using heterologous antigens in biopanning rounds. Methods: After four rounds of biopanning, nanobody variants were selected from a phage display library. Immunochemical methods were used to evaluate their specificity to the S protein of various SARS-CoV-2 variants, as well as to determine their competitive ability against ACE2. Viral neutralization activity was analyzed. A three-dimensional model of nanobody interaction with RBD was constructed. Results: Four nanobodies were obtained that specifically bind to the receptor-binding domain (RBD) of the SARS-CoV-2 spike glycoprotein and exhibit neutralizing activity against various SARS-CoV-2 strains. Conclusions: The study demonstrates that performing several rounds of biopanning with heterologous antigens allows the selection of nanobodies with a broad reactivity spectrum. However, the fourth round of biopanning does not lead to the identification of nanobodies with improved characteristics.
Collapse
Affiliation(s)
- Vazirbek S. Aripov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Koltsovo 630559, Russia (A.A.I.); (D.N.S.); (N.V.V.)
| | - Anna V. Zaykovskaya
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Koltsovo 630559, Russia (A.A.I.); (D.N.S.); (N.V.V.)
| | - Ludmila V. Mechetina
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Alexander M. Najakshin
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Alexander A. Bondar
- Genomics Core Facility, Institute of Chemical Biology and Fundamental Medicine Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Sergey G. Arkhipov
- Synchrotron Radiation Facility—Siberian Circular Photon Source “SKlF” Boreskov Institute of Catalysis of Siberian Branch of the Russian Academy of Sciences, Koltsovo 630559, Russia; (S.G.A.)
| | - Egor A. Mustaev
- Synchrotron Radiation Facility—Siberian Circular Photon Source “SKlF” Boreskov Institute of Catalysis of Siberian Branch of the Russian Academy of Sciences, Koltsovo 630559, Russia; (S.G.A.)
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Margarita G. Ilyina
- Synchrotron Radiation Facility—Siberian Circular Photon Source “SKlF” Boreskov Institute of Catalysis of Siberian Branch of the Russian Academy of Sciences, Koltsovo 630559, Russia; (S.G.A.)
| | - Sophia S. Borisevich
- Synchrotron Radiation Facility—Siberian Circular Photon Source “SKlF” Boreskov Institute of Catalysis of Siberian Branch of the Russian Academy of Sciences, Koltsovo 630559, Russia; (S.G.A.)
| | - Alexander A. Ilyichev
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Koltsovo 630559, Russia (A.A.I.); (D.N.S.); (N.V.V.)
| | - Valentina S. Nesmeyanova
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Koltsovo 630559, Russia (A.A.I.); (D.N.S.); (N.V.V.)
| | - Anastasia A. Isaeva
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Koltsovo 630559, Russia (A.A.I.); (D.N.S.); (N.V.V.)
| | - Ekaterina A. Volosnikova
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Koltsovo 630559, Russia (A.A.I.); (D.N.S.); (N.V.V.)
| | - Dmitry N. Shcherbakov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Koltsovo 630559, Russia (A.A.I.); (D.N.S.); (N.V.V.)
| | - Natalia V. Volkova
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Koltsovo 630559, Russia (A.A.I.); (D.N.S.); (N.V.V.)
| |
Collapse
|
4
|
Yin Y, Liu C, Ji X, Wang Y, Mongkolsapaya J, Screaton GR, Cui Z, Huang WE. Engineering Genome-Free Bacterial Cells for Effective SARS-COV-2 Neutralisation. Microb Biotechnol 2025; 18:e70109. [PMID: 40042439 PMCID: PMC11881285 DOI: 10.1111/1751-7915.70109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/23/2025] [Accepted: 01/30/2025] [Indexed: 05/13/2025] Open
Abstract
The COVID-19 pandemic has caused unparalleled impacts on global social dynamics, healthcare systems and economies, highlighting the urgent need for effective interventions to address current challenges and future pandemic preparedness. This study introduces a novel virus neutralisation platform based on SimCells (~1 μm) and mini-SimCells (100-200 nm), which are chromosome-free and non-replicating bacteria from an LPS-free Escherichia coli strain (ClearColi). SimCells and mini-SimCells were engineered to display nanobodies on their surface, specifically targeting the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein - a critical immunogenic fragment essential for viral entry into host cells. It was demonstrated that nanobody-expressing SimCells achieved over 90% blocking efficiency against synthesised RBD from both the original Wuhan and the B.1.351 (Beta) variant using competitive enzyme-linked immunosorbent assay (ELISA) assay. More importantly, live virus neutralisation assays demonstrated that NB6 nanobody-presenting mini-SimCells effectively neutralised the live SARS-CoV-2 Victoria variant with an IC50 of 2.95 × 109 ± 1.40 × 108 mini-SimCells/mL. Similarly, VE nanobody-presenting mini-SimCells effectively neutralised the B.1.351 (Beta) variant of the SARS-CoV-2 virus with an IC50 of 5.68 × 109 ± 9.94 × 108 mini-SimCells/mL. The mini-SimCells successfully protected Vero cells, a cell line derived from the kidney of an African green monkey, from infection by the live virus of SARS-CoV-2 and its variants. These results suggest that SimCell-based neutralisation offers a promising strategy for the prevention and treatment of SARS-CoV-2, and potentially other viral infections.
Collapse
Affiliation(s)
- Yutong Yin
- Department of Engineering ScienceUniversity of OxfordOxfordUK
| | - Chang Liu
- Wellcome Centre for Human Genetics, Nuffield Department of MedicineUniversity of OxfordOxfordUK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI)University of OxfordOxfordUK
| | - Xianglin Ji
- Oxford Suzhou Centre for Advanced Research (OSCAR)University of Oxford, Suzhou Industrial ParkSuzhouJiangsuChina
| | - Yun Wang
- Oxford Suzhou Centre for Advanced Research (OSCAR)University of Oxford, Suzhou Industrial ParkSuzhouJiangsuChina
| | - Juthathip Mongkolsapaya
- Wellcome Centre for Human Genetics, Nuffield Department of MedicineUniversity of OxfordOxfordUK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI)University of OxfordOxfordUK
- Mahidol‐Oxford Tropical Medicine Research UnitBangkokThailand
- Department of MedicineUniversity of OxfordOxfordUK
| | - Gavin R. Screaton
- Wellcome Centre for Human Genetics, Nuffield Department of MedicineUniversity of OxfordOxfordUK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI)University of OxfordOxfordUK
| | - Zhanfeng Cui
- Department of Engineering ScienceUniversity of OxfordOxfordUK
- Institute of Biomedical Engineering, Department of Engineering ScienceUniversity of OxfordOxfordUK
| | - Wei E. Huang
- Department of Engineering ScienceUniversity of OxfordOxfordUK
| |
Collapse
|
5
|
Liu J, Wu L, Xie A, Liu W, He Z, Wan Y, Mao W. Unveiling the new chapter in nanobody engineering: advances in traditional construction and AI-driven optimization. J Nanobiotechnology 2025; 23:87. [PMID: 39915791 PMCID: PMC11800653 DOI: 10.1186/s12951-025-03169-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/27/2025] [Indexed: 02/11/2025] Open
Abstract
Nanobodies (Nbs), miniature antibodies consisting solely of the variable region of heavy chains, exhibit unique properties such as small size, high stability, and strong specificity, making them highly promising for disease diagnosis and treatment. The engineering production of Nbs has evolved into a mature process, involving library construction, screening, and expression purification. Different library types, including immune, naïve, and synthetic/semi-synthetic libraries, offer diverse options for various applications, while display platforms like phage display, cell surface display, and non-surface display provide efficient screening of target Nbs. Recent advancements in artificial intelligence (AI) have opened new avenues in Nb engineering. AI's exceptional performance in protein structure prediction and molecular interaction simulation has introduced novel perspectives and tools for Nb design and optimization. Integrating AI with traditional experimental methods is anticipated to enhance the efficiency and precision of Nb development, expediting the transition from basic research to clinical applications. This review comprehensively examines the latest progress in Nb engineering, emphasizing library construction strategies, display platform technologies, and AI applications. It evaluates the strengths and weaknesses of various libraries and display platforms and explores the potential and challenges of AI in predicting Nb structure, antigen-antibody interactions, and optimizing physicochemical properties.
Collapse
Affiliation(s)
- Jiwei Liu
- Department of Thoracic Surgery, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, 214023, China
- Wuxi College of Clinical Medicine, Nanjing Medical University, Wuxi, 214023, China
| | - Lei Wu
- Department of Thoracic Surgery, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, 214023, China
- Wuxi College of Clinical Medicine, Nanjing Medical University, Wuxi, 214023, China
| | - Anqi Xie
- Department of Thoracic Surgery, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, 214023, China
| | - Weici Liu
- Department of Thoracic Surgery, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, 214023, China
- Wuxi College of Clinical Medicine, Nanjing Medical University, Wuxi, 214023, China
| | - Zhao He
- Department of Thoracic Surgery, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, 214023, China
- Wuxi College of Clinical Medicine, Nanjing Medical University, Wuxi, 214023, China
| | - Yuan Wan
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, 13850, USA.
- Department of Biomedical Engineering, The Pq Laboratory of BiomeDx/Rx, Binghamton University, Binghamton, NY, 13902, USA.
| | - Wenjun Mao
- Department of Thoracic Surgery, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, 214023, China.
- Wuxi College of Clinical Medicine, Nanjing Medical University, Wuxi, 214023, China.
- Department of Thoracic Surgery, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, No. 299 Qingyang Rd., Wuxi, 214023, China.
| |
Collapse
|
6
|
Singh V, Choudhary S, Bhutkar M, Nehul S, Ali S, Singla J, Kumar P, Tomar S. Designing and bioengineering of CDRs with higher affinity against receptor-binding domain (RBD) of SARS-CoV-2 Omicron variant. Int J Biol Macromol 2025; 290:138751. [PMID: 39675603 DOI: 10.1016/j.ijbiomac.2024.138751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/01/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
The emergence of the SARS-CoV-2 Omicron variant highlights the need for innovative strategies to address evolving viral threats. This study bioengineered three nanobodies H11-H4, C5, and H3 originally targeting the Wuhan RBD, to bind more effectively to the Omicron RBD. A structure-based in silico affinity maturation pipeline was developed to enhance their binding affinities. The pipeline consists of three key steps: high-throughput in silico mutagenesis of complementarity-determining regions (CDRs), protein-protein docking for screening, and molecular dynamics (MD) simulations for assessment of the complex stability. A total of 741, 551, and 684 mutations were introduced in H11-H4, C5, and H3 nanobodies, respectively. Protein-protein docking and MD simulations shortlisted high-affinity mutants for H11-H4(6), C5(5), and H3(6). Further, recombinant production of H11-H4 mutants and Omicron RBD enabled experimental validation through Isothermal Titration Calorimetry (ITC). The H11-H4 mutants R27E, S57D, S107K, D108W, and A110I exhibited improved binding affinities with dissociation constant (KD) values ranging from ~8.8 to ~27 μM, compared to the H11-H4 nanobody KD of ~32 μM, representing a three-fold enhancement. This study demonstrates the potential of the developed in silico affinity maturation pipeline as a rapid, cost-effective method for repurposing nanobodies, aiding the development of robust prophylactic strategies against evolving SARS-CoV-2 variants and other pathogens.
Collapse
Affiliation(s)
- Vishakha Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Shweta Choudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Mandar Bhutkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Sanketkumar Nehul
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Sabika Ali
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Jitin Singla
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India; Department of Computer Science and Engineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India.
| |
Collapse
|
7
|
Singh V, Bhutkar M, Choudhary S, Nehul S, Kumar R, Singla J, Kumar P, Tomar S. Structure-guided mutations in CDRs for enhancing the affinity of neutralizing SARS-CoV-2 nanobody. Biochem Biophys Res Commun 2024; 734:150746. [PMID: 39366179 DOI: 10.1016/j.bbrc.2024.150746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/05/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024]
Abstract
The optimization of antibodies to attain the desired levels of affinity and specificity holds great promise for the development of next generation therapeutics. This study delves into the refinement and engineering of complementarity-determining regions (CDRs) through in silico affinity maturation followed by binding validation using isothermal titration calorimetry (ITC) and pseudovirus-based neutralization assays. Specifically, it focuses on engineering CDRs targeting the epitopes of receptor-binding domain (RBD) of the spike protein of SARS-CoV-2. A structure-guided virtual library of 112 single mutations in CDRs was generated and screened against RBD to select the potential affinity-enhancing mutations. Protein-protein docking analysis identified 32 single mutants of which nine mutants were selected for molecular dynamics (MD) simulations. Subsequently, biophysical ITC studies provided insights into binding affinity, and consistent with in silico findings, six mutations that demonstrated better binding affinity than native nanobody were further tested in vitro for neutralization activity against SARS-CoV-2 pseudovirus. Leu106Thr mutant was found to be most effective in virus-neutralization with IC50 values of ∼0.03 μM, as compared to the native nanobody (IC50 ∼0.77 μM). Thus, in this study, the developed computational pipeline guided by structure-aided interface profiles and thermodynamic analysis holds promise for the streamlined development of antibody-based therapeutic interventions against emerging variants of SARS-CoV-2 and other infectious pathogens.
Collapse
Affiliation(s)
- Vishakha Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Mandar Bhutkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Shweta Choudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Sanketkumar Nehul
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Rajesh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Jitin Singla
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India; Department of Computer Science and Engineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India.
| |
Collapse
|
8
|
Hennigan JN, Menacho-Melgar R, Sarkar P, Golovsky M, Lynch MD. Scalable, robust, high-throughput expression & purification of nanobodies enabled by 2-stage dynamic control. Metab Eng 2024; 85:116-130. [PMID: 39059674 PMCID: PMC11408108 DOI: 10.1016/j.ymben.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/16/2024] [Accepted: 07/24/2024] [Indexed: 07/28/2024]
Abstract
Nanobodies are single-domain antibody fragments that have garnered considerable use as diagnostic and therapeutic agents as well as research tools. However, obtaining pure VHHs, like many proteins, can be laborious and inconsistent. High level cytoplasmic expression in E. coli can be challenging due to improper folding and insoluble aggregation caused by reduction of the conserved disulfide bond. We report a systems engineering approach leveraging engineered strains of E. coli, in combination with a two-stage process and simplified downstream purification, enabling improved, robust, soluble cytoplasmic nanobody expression, as well as rapid cell autolysis and purification. This approach relies on the dynamic control over the reduction potential of the cytoplasm, incorporates lysis enzymes for purification, and can also integrate dynamic expression of protein folding catalysts. Collectively, the engineered system results in more robust growth and protein expression, enabling efficient scalable nanobody production, and purification from high throughput microtiter plates, to routine shake flask cultures and larger instrumented bioreactors. We expect this system will expedite VHH development.
Collapse
Affiliation(s)
| | | | - Payel Sarkar
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Michael D Lynch
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
9
|
Zettl I, Bauernfeind C, Kollárová J, Flicker S. Single-Domain Antibodies-Novel Tools to Study and Treat Allergies. Int J Mol Sci 2024; 25:7602. [PMID: 39062843 PMCID: PMC11277559 DOI: 10.3390/ijms25147602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
IgE-mediated allergies represent a major health problem in the modern world. Apart from allergen-specific immunotherapy (AIT), the only disease-modifying treatment, researchers focus on biologics that target different key molecules such as allergens, IgE, or type 2 cytokines to ameliorate allergic symptoms. Single-domain antibodies, or nanobodies, are the newcomers in biotherapeutics, and their huge potential is being investigated in various research fields since their discovery 30 years ago. While they are dominantly applied for theranostics of cancer and treatment of infectious diseases, nanobodies have become increasingly substantial in allergology over the last decade. In this review, we discuss the prerequisites that we consider to be important for generating useful nanobody-based drug candidates for treating allergies. We further summarize the available research data on nanobodies used as allergen monitoring and detection probes and for therapeutic approaches. We reflect on the limitations that have to be addressed during the development process, such as in vivo half-life and immunogenicity. Finally, we speculate about novel application formats for allergy treatment that might be available in the future.
Collapse
Affiliation(s)
- Ines Zettl
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Clarissa Bauernfeind
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
- Center for Cancer Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Jessica Kollárová
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Sabine Flicker
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
10
|
Solà Colom M, Fu Z, Gunkel P, Güttler T, Trakhanov S, Srinivasan V, Gregor K, Pleiner T, Görlich D. A checkpoint function for Nup98 in nuclear pore formation suggested by novel inhibitory nanobodies. EMBO J 2024; 43:2198-2232. [PMID: 38649536 PMCID: PMC11148069 DOI: 10.1038/s44318-024-00081-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/25/2024] Open
Abstract
Nuclear pore complex (NPC) biogenesis is a still enigmatic example of protein self-assembly. We now introduce several cross-reacting anti-Nup nanobodies for imaging intact nuclear pore complexes from frog to human. We also report a simplified assay that directly tracks postmitotic NPC assembly with added fluorophore-labeled anti-Nup nanobodies. During interphase, NPCs are inserted into a pre-existing nuclear envelope. Monitoring this process is challenging because newly assembled NPCs are indistinguishable from pre-existing ones. We overcame this problem by inserting Xenopus-derived NPCs into human nuclear envelopes and using frog-specific anti-Nup nanobodies for detection. We further asked whether anti-Nup nanobodies could serve as NPC assembly inhibitors. Using a selection strategy against conserved epitopes, we obtained anti-Nup93, Nup98, and Nup155 nanobodies that block Nup-Nup interfaces and arrest NPC assembly. We solved structures of nanobody-target complexes and identified roles for the Nup93 α-solenoid domain in recruiting Nup358 and the Nup214·88·62 complex, as well as for Nup155 and the Nup98 autoproteolytic domain in NPC scaffold assembly. The latter suggests a checkpoint linking pore formation to the assembly of the Nup98-dominated permeability barrier.
Collapse
Affiliation(s)
- Mireia Solà Colom
- Department of Cellular Logistics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- AI Proteins, 20 Overland St., Boston, MA, USA
| | - Zhenglin Fu
- Department of Cellular Logistics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Philip Gunkel
- Department of Cellular Logistics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Thomas Güttler
- Department of Cellular Logistics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Octapharma Biopharmaceuticals, Im Neuenheimer Feld 590, 69120, Heidelberg, Germany
| | - Sergei Trakhanov
- Department of Cellular Logistics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Vasundara Srinivasan
- Department of Cellular Logistics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Chemistry, Institute of Biochemistry and Molecular Biology, Universität Hamburg, Hamburg, Germany
| | - Kathrin Gregor
- Department of Cellular Logistics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Tino Pleiner
- Department of Cellular Logistics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Dirk Görlich
- Department of Cellular Logistics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
11
|
Kalogriopoulos NA, Tei R, Yan Y, Ravalin M, Li Y, Ting A. Synthetic G protein-coupled receptors for programmable sensing and control of cell behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589622. [PMID: 38659921 PMCID: PMC11042292 DOI: 10.1101/2024.04.15.589622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Synthetic receptors that mediate antigen-dependent cell responses are transforming therapeutics, drug discovery, and basic research. However, established technologies such as chimeric antigen receptors (CARs) can only detect immobilized antigens, have limited output scope, and lack built-in drug control. Here, we engineer synthetic G protein-coupled receptors (GPCRs) capable of driving a wide range of native or nonnative cellular processes in response to user-defined antigen. We achieve modular antigen gating by engineering and fusing a conditional auto-inhibitory domain onto GPCR scaffolds. Antigen binding to a fused nanobody relieves auto-inhibition and enables receptor activation by drug, thus generating Programmable Antigen-gated G protein-coupled Engineered Receptors (PAGERs). We create PAGERs responsive to more than a dozen biologically and therapeutically important soluble and cell surface antigens, in a single step, from corresponding nanobody binders. Different PAGER scaffolds permit antigen binding to drive transgene expression, real-time fluorescence, or endogenous G protein activation, enabling control of cytosolic Ca 2+ , lipid signaling, cAMP, and neuronal activity. Due to its modular design and generalizability, we expect PAGER to have broad utility in discovery and translational science.
Collapse
|
12
|
Park KS, Park TI, Lee JE, Hwang SY, Choi A, Pack SP. Aptamers and Nanobodies as New Bioprobes for SARS-CoV-2 Diagnostic and Therapeutic System Applications. BIOSENSORS 2024; 14:146. [PMID: 38534253 PMCID: PMC10968798 DOI: 10.3390/bios14030146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
The global challenges posed by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic have underscored the critical importance of innovative and efficient control systems for addressing future pandemics. The most effective way to control the pandemic is to rapidly suppress the spread of the virus through early detection using a rapid, accurate, and easy-to-use diagnostic platform. In biosensors that use bioprobes, the binding affinity of molecular recognition elements (MREs) is the primary factor determining the dynamic range of the sensing platform. Furthermore, the sensitivity relies mainly on bioprobe quality with sufficient functionality. This comprehensive review investigates aptamers and nanobodies recently developed as advanced MREs for SARS-CoV-2 diagnostic and therapeutic applications. These bioprobes might be integrated into organic bioelectronic materials and devices, with promising enhanced sensitivity and specificity. This review offers valuable insights into advancing biosensing technologies for infectious disease diagnosis and treatment using aptamers and nanobodies as new bioprobes.
Collapse
Affiliation(s)
| | | | | | | | | | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea; (K.S.P.); (T.-I.P.); (J.E.L.); (S.-Y.H.); (A.C.)
| |
Collapse
|
13
|
Pagneux Q, Garnier N, Fabregue M, Sharkaoui S, Mazzoli S, Engelmann I, Boukherroub R, Strecker M, Cruz E, Ducos P, Szunerits S, Zarubica A, Suderman R. Neutralization of SARS-CoV-2 and Intranasal Protection of Mice with a nanoCLAMP Antibody Mimetic. ACS Pharmacol Transl Sci 2024; 7:757-770. [PMID: 38481677 PMCID: PMC10928885 DOI: 10.1021/acsptsci.3c00306] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 02/03/2025]
Abstract
Intranasal treatment, combined with vaccination, has the potential to slow mutational evolution of viruses by reducing transmission and replication. Here, we illustrate the development of a SARS-CoV-2 receptor-binding domain (RBD) nanoCLAMP and demonstrate its potential as an intranasally administered therapeutic. A multi-epitope nanoCLAMP was made by fusing a pM affinity single-domain nanoCLAMP (P2710) to alternate epitope-binding nanoCLAMP, P2609. The resulting multimerized nanoCLAMP P2712 had sub-pM affinity for the Wuhan and South African (B.1.351) RBD (KD < 1 pM) and decreasing affinity for the Delta (B.1.617.2) and Omicron (B.1.1.529) variants (86 pM and 19.7 nM, respectively). P2712 potently inhibited the ACE2:RBD interaction, suggesting its utility as a therapeutic. With an IC50 = 0.4 ± 0.1 nM obtained from neutralization experiments using pseudoviral particles, nanoCLAMP P2712 protected K18-hACE2 mice from SARS-CoV-2 infection, reduced viral loads in the lungs and brains, and reduced associated upregulation of inflammatory cytokines and chemokines. Together, our findings warrant further investigation into the development of nanoCLAMPs as effective intranasally delivered COVID-19 therapeutics.
Collapse
Affiliation(s)
- Quentin Pagneux
- Univ.
Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France
| | - Nathalie Garnier
- Univ.
Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France
- Laboratoire
de Virologie ULR3610 , Univ. Lille, CHU
Lille, F-59000 Lille, France
| | - Manon Fabregue
- Centre
d’Immunophénomique, Aix Marseille
Université, Inserm, CNRS, PHENOMIN, 13284 Marseille, France
| | - Sarah Sharkaoui
- Centre
d’Immunophénomique, Aix Marseille
Université, Inserm, CNRS, PHENOMIN, 13284 Marseille, France
| | - Sophie Mazzoli
- Centre
d’Immunophénomique, Aix Marseille
Université, Inserm, CNRS, PHENOMIN, 13284 Marseille, France
| | - Ilka Engelmann
- Pathogenesis
and Control of Chronic and Emerging Infections, INSERM, EFS, L'Université des Antilles, Université
de Montpellier, Laboratoire de Virologie, CHU Montellier, 34295 Montpellier, France
| | - Rabah Boukherroub
- Univ.
Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France
| | - Mary Strecker
- Regis
University, Denver, Colorado 80221, United States
| | - Eric Cruz
- Celerion,
Inc., 621 Rose Street, Lincoln, Nebraska 68502, United States
| | - Peter Ducos
- Department
of Biochemistry, Madison, Wisconsin 53706, United States
| | - Sabine Szunerits
- Univ.
Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France
| | - Ana Zarubica
- Centre
d’Immunophénomique, Aix Marseille
Université, Inserm, CNRS, PHENOMIN, 13284 Marseille, France
| | - Richard Suderman
- Nectagen,
Inc., 2029 Becker Drive, Lawrence, Kansas 66047, United States
| |
Collapse
|
14
|
Wang J, Kang G, Lu H, de Marco A, Yuan H, Feng Z, Gao M, Wang X, Wang H, Zhang X, Wang Y, Zhang M, Wang P, Feng Y, Liu Z, Cao X, Huang H. Novel bispecific nanobody mitigates experimental intestinal inflammation in mice by targeting TNF-α and IL-23p19 bioactivities. Clin Transl Med 2024; 14:e1636. [PMID: 38533646 PMCID: PMC10966562 DOI: 10.1002/ctm2.1636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/09/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Inflammatory bowel diseases (IBDs) pose significant challenges in terms of treatment non-response, necessitating the development of novel therapeutic approaches. Although biological medicines that target TNF-α (tumour necrosis factor-α) have shown clinical success in some IBD patients, a substantial proportion still fails to respond. METHODS We designed bispecific nanobodies (BsNbs) with the ability to simultaneously target human macrophage-expressed membrane TNF-α (hmTNF-α) and IL-23. Additionally, we fused the constant region of human IgG1 Fc (hIgG1 Fc) to BsNb to create BsNb-Fc. Our study encompassed in vitro and in vivo characterization of BsNb and BsNb-Fc. RESULTS BsNb-Fc exhibited an improved serum half-life, targeting capability and effector function than BsNb. It's demonstrated that BsNb-Fc exhibited superior anti-inflammatory effects compared to the anti-TNF-α mAb (infliximab, IFX) combined with anti-IL-12/IL-23p40 mAb (ustekinumab, UST) by Transwell co-culture assays. Notably, in murine models of acute colitis brought on by 2,4,6-trinitrobenzene sulfonic acid(TNBS) and dextran sulphate sodium (DSS), BsNb-Fc effectively alleviated colitis severity. Additionally, BsNb-Fc outperformed the IFX&UST combination in TNBS-induced colitis, significantly reducing colon inflammation in mice with colitis produced by TNBS and DSS. CONCLUSION These findings highlight an enhanced efficacy and improved biostability of BsNb-Fc, suggesting its potential as a promising therapeutic option for IBD patients with insufficient response to TNF-α inhibition. KEY POINTS A bispecific nanobody (BsNb) was created to target TNF-α and IL-23p19, exhibiting high affinity and remarkable stability. BsNb-Fc inhibited the release of cytokines in CD4+T cells during co-culture experiments. BsNb-Fc effectively alleviated colitis severity in mouse model with acute colitis induced by DSS or TNBS, outperforming the IFX&UST combination.
Collapse
Affiliation(s)
- Jiewen Wang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
| | - Guangbo Kang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
| | - Huiying Lu
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, The Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Ario de Marco
- Laboratory for Environmental and Life SciencesUniversity of Nova GoricaNova GoricaSlovenia
| | - Haibin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
| | - Zelin Feng
- Department of Gastroenterology and Hepatology, Tianjin Medical University General HospitalTianjin Medical UniversityTianjinChina
| | - Mengxue Gao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
| | - Xiaoli Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General HospitalTianjin Medical UniversityTianjinChina
| | - Huahong Wang
- Department of GastroenterologyPeking University First HospitalBeijingChina
| | - Xiaolan Zhang
- Department of GastroenterologyThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Yuli Wang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
- Tianjin Pharmaceutical Da Ren Tang Group Corporation Limited, Traditional Chinese Pharmacy Research InstituteTianjin Key Laboratory of Quality Control in Chinese MedicineTianjinChina
- State Key Laboratory of Drug Delivery Technology and PharmacokineticsTianjin Institute of Pharmaceutical ResearchTianjinChina
| | - Miao Zhang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
- China Resources Biopharmaceutical Company LimitedBeijingChina
| | - Ping Wang
- New Technology R&D DepartmentTianjin Modern Innovative TCM Technology Company LimitedTianjinChina
| | - Yuanhang Feng
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
| | - Zhanju Liu
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, The Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Xiaocang Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General HospitalTianjin Medical UniversityTianjinChina
| | - He Huang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
| |
Collapse
|
15
|
Chen L, He Y, Liu H, Shang Y, Guo G. Potential immune evasion of the severe acute respiratory syndrome coronavirus 2 Omicron variants. Front Immunol 2024; 15:1339660. [PMID: 38464527 PMCID: PMC10924305 DOI: 10.3389/fimmu.2024.1339660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/05/2024] [Indexed: 03/12/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19), which is caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a global pandemic. The Omicron variant (B.1.1.529) was first discovered in November 2021 in specimens collected from Botswana, South Africa. Omicron has become the dominant variant worldwide, and several sublineages or subvariants have been identified recently. Compared to those of other mutants, the Omicron variant has the most highly expressed amino acid mutations, with almost 60 mutations throughout the genome, most of which are in the spike (S) protein, especially in the receptor-binding domain (RBD). These mutations increase the binding affinity of Omicron variants for the ACE2 receptor, and Omicron variants may also lead to immune escape. Despite causing milder symptoms, epidemiological evidence suggests that Omicron variants have exceptionally higher transmissibility, higher rates of reinfection and greater spread than the prototype strain as well as other preceding variants. Additionally, overwhelming amounts of data suggest that the levels of specific neutralization antibodies against Omicron variants decrease in most vaccinated populations, although CD4+ and CD8+ T-cell responses are maintained. Therefore, the mechanisms underlying Omicron variant evasion are still unclear. In this review, we surveyed the current epidemic status and potential immune escape mechanisms of Omicron variants. Especially, we focused on the potential roles of viral epitope mutations, antigenic drift, hybrid immunity, and "original antigenic sin" in mediating immune evasion. These insights might supply more valuable concise information for us to understand the spreading of Omicron variants.
Collapse
Affiliation(s)
- Luyi Chen
- Chongqing Nankai Secondary School, Chongqing, China
| | - Ying He
- Department of Orthopedics, Kweichow MouTai Hospital, Renhuai, Zunyi, Guizhou, China
| | - Hongye Liu
- Department of Orthopedics, Kweichow MouTai Hospital, Renhuai, Zunyi, Guizhou, China
| | - Yongjun Shang
- Department of Orthopedics, Kweichow MouTai Hospital, Renhuai, Zunyi, Guizhou, China
| | - Guoning Guo
- Department of Orthopedics, Kweichow MouTai Hospital, Renhuai, Zunyi, Guizhou, China
| |
Collapse
|
16
|
Cong Y, Devoogdt N, Lambin P, Dubois LJ, Yaromina A. Promising Diagnostic and Therapeutic Approaches Based on VHHs for Cancer Management. Cancers (Basel) 2024; 16:371. [PMID: 38254860 PMCID: PMC10814765 DOI: 10.3390/cancers16020371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
The discovery of the distinctive structure of heavy chain-only antibodies in species belonging to the Camelidae family has elicited significant interest in their variable antigen binding domain (VHH) and gained attention for various applications, such as cancer diagnosis and treatment. This article presents an overview of the characteristics, advantages, and disadvantages of VHHs as compared to conventional antibodies, and their usage in diverse applications. The singular properties of VHHs are explained, and several strategies that can augment their utility are outlined. The preclinical studies illustrating the diagnostic and therapeutic efficacy of distinct VHHs in diverse formats against solid cancers are summarized, and an overview of the clinical trials assessing VHH-based agents in oncology is provided. These investigations demonstrate the enormous potential of VHHs for medical research and healthcare.
Collapse
Affiliation(s)
- Ying Cong
- The M-Lab, Department of Precision Medicine, GROW—School for Oncology and Reproduction, Maastricht University, 6211 LK Maastricht, The Netherlands; (Y.C.); (P.L.)
| | - Nick Devoogdt
- Molecular Imaging and Therapy Research Group (MITH), Vrije Universiteit Brussel, 1090 Brussels, Belgium;
| | - Philippe Lambin
- The M-Lab, Department of Precision Medicine, GROW—School for Oncology and Reproduction, Maastricht University, 6211 LK Maastricht, The Netherlands; (Y.C.); (P.L.)
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands
| | - Ludwig J. Dubois
- The M-Lab, Department of Precision Medicine, GROW—School for Oncology and Reproduction, Maastricht University, 6211 LK Maastricht, The Netherlands; (Y.C.); (P.L.)
| | - Ala Yaromina
- The M-Lab, Department of Precision Medicine, GROW—School for Oncology and Reproduction, Maastricht University, 6211 LK Maastricht, The Netherlands; (Y.C.); (P.L.)
| |
Collapse
|
17
|
Jiang X, Qin Q, Zhu H, Qian J, Huang Q. Structure-guided design of a trivalent nanobody cluster targeting SARS-CoV-2 spike protein. Int J Biol Macromol 2024; 256:128191. [PMID: 38000614 DOI: 10.1016/j.ijbiomac.2023.128191] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
Nanobodies are natural anti-SARS-CoV-2 drug candidates. Engineering multivalent nanobodies is an effective way to improve the functional binding affinity of natural nanobodies by simultaneously targeting multiple sites on viral proteins. However, multivalent nanobodies have usually been engineered by trial and error, and rational designs are still lacking. Here, we describe a structure-guided design of a self-assembled trivalent nanobody cluster targeting the SARS-CoV-2 spike protein. Using the nanobody Nb6 as a monovalent binder, we first selected a human-derived trimerization scaffold evaluated by molecular dynamics simulations, then selected an optimal linker according to the minimum distance between Nb6 and the trimerization scaffold, and finally successfully engineered a trivalent nanobody cluster called Tribody. Compared with the low-affinity monovalent counterpart (Nb6), Tribody showed much higher target binding affinity (KD < 1 pM) and thus had a 900-fold increase in antiviral neutralization against SARS-CoV-2 pseudovirus. We determined the cryo-EM structure of the Tribody-spike complex and confirmed that all three Nb6 binders of Tribody collectively bind to the three receptor-binding domains (RBDs) of the spike and lock them in a 3-RBD-down conformation, fully consistent with our structure-guided design. This study demonstrates that synthetic nanobody clusters with human-derived self-assembled scaffolds are potential protein drugs against SARS-CoV-2 coronaviruses.
Collapse
Affiliation(s)
- Xinyi Jiang
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qin Qin
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Haixia Zhu
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jiaqiang Qian
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qiang Huang
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China; Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 201203, China.
| |
Collapse
|
18
|
Shinde SH, Sandeep, Pande AH. Polyvalency: an emerging trend in the development of clinical antibodies. Drug Discov Today 2024; 29:103846. [PMID: 38029835 DOI: 10.1016/j.drudis.2023.103846] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/25/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
Medicine has benefited greatly from the development of monoclonal antibody (mAb) technology. First-generation mAbs have seen significant success in the treatment of major diseases, such as autoimmune, inflammation, cancer, infectious, and cardiovascular diseases. Developing next-generation antibodies with improved potency, safety, and non-natural characteristics is a booming field of mAb research. In this review, we discuss the significance of polyvalency and polyvalent antibodies, as well as important findings from preclinical studies and clinical trials involving polyvalent antibodies. We then review the role of tumor necrosis factor-alpha (TNF-α) in inflammatory diseases and the need for polyvalent anti-TNF-α antibodies.
Collapse
Affiliation(s)
- Suraj H Shinde
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India
| | - Sandeep
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India
| | - Abhay H Pande
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India.
| |
Collapse
|
19
|
Aksu M, Kumar P, Güttler T, Taxer W, Gregor K, Mußil B, Rymarenko O, Stegmann KM, Dickmanns A, Gerber S, Reineking W, Schulz C, Henneck T, Mohamed A, Pohlmann G, Ramazanoglu M, Mese K, Groß U, Ben-Yedidia T, Ovadia O, Fischer DW, Kamensky M, Reichman A, Baumgärtner W, von Köckritz-Blickwede M, Dobbelstein M, Görlich D. Nanobodies to multiple spike variants and inhalation of nanobody-containing aerosols neutralize SARS-CoV-2 in cell culture and hamsters. Antiviral Res 2024; 221:105778. [PMID: 38065245 DOI: 10.1016/j.antiviral.2023.105778] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/23/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
The ongoing threat of COVID-19 has highlighted the need for effective prophylaxis and convenient therapies, especially for outpatient settings. We have previously developed highly potent single-domain (VHH) antibodies, also known as nanobodies, that target the Receptor Binding Domain (RBD) of the SARS-CoV-2 Spike protein and neutralize the Wuhan strain of the virus. In this study, we present a new generation of anti-RBD nanobodies with superior properties. The primary representative of this group, Re32D03, neutralizes Alpha to Delta as well as Omicron BA.2.75; other members neutralize, in addition, Omicron BA.1, BA.2, BA.4/5, and XBB.1. Crystal structures of RBD-nanobody complexes reveal how ACE2-binding is blocked and also explain the nanobodies' tolerance to immune escape mutations. Through the cryo-EM structure of the Ma16B06-BA.1 Spike complex, we demonstrated how a single nanobody molecule can neutralize a trimeric spike. We also describe a method for large-scale production of these nanobodies in Pichia pastoris, and for formulating them into aerosols. Exposing hamsters to these aerosols, before or even 24 h after infection with SARS-CoV-2, significantly reduced virus load, weight loss and pathogenicity. These results show the potential of aerosolized nanobodies for prophylaxis and therapy of coronavirus infections.
Collapse
Affiliation(s)
- Metin Aksu
- Max Planck Institute for Multidisciplinary Sciences, Dept. of Cellular Logistics, Am Fassberg 11, 37077 Göttingen, Germany
| | - Priya Kumar
- University Medical Center Göttingen, Dept. of Molecular Oncology, Justus von Liebig Weg 11, 37077 Göttingen, Germany
| | - Thomas Güttler
- Max Planck Institute for Multidisciplinary Sciences, Dept. of Cellular Logistics, Am Fassberg 11, 37077 Göttingen, Germany; Octapharma Biopharmaceuticals GmbH, Im Neuenheimer Feld 590, 69120 Heidelberg, Germany
| | - Waltraud Taxer
- Max Planck Institute for Multidisciplinary Sciences, Dept. of Cellular Logistics, Am Fassberg 11, 37077 Göttingen, Germany
| | - Kathrin Gregor
- Max Planck Institute for Multidisciplinary Sciences, Dept. of Cellular Logistics, Am Fassberg 11, 37077 Göttingen, Germany
| | - Bianka Mußil
- Max Planck Institute for Multidisciplinary Sciences, Dept. of Cellular Logistics, Am Fassberg 11, 37077 Göttingen, Germany
| | - Oleh Rymarenko
- Max Planck Institute for Multidisciplinary Sciences, Dept. of Cellular Logistics, Am Fassberg 11, 37077 Göttingen, Germany
| | - Kim M Stegmann
- University Medical Center Göttingen, Dept. of Molecular Oncology, Justus von Liebig Weg 11, 37077 Göttingen, Germany
| | - Antje Dickmanns
- University Medical Center Göttingen, Dept. of Molecular Oncology, Justus von Liebig Weg 11, 37077 Göttingen, Germany
| | - Sabrina Gerber
- University Medical Center Göttingen, Dept. of Molecular Oncology, Justus von Liebig Weg 11, 37077 Göttingen, Germany
| | - Wencke Reineking
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany
| | - Claudia Schulz
- Research Center for Emerging Infections and Zoonosis (RIZ), University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany
| | - Timo Henneck
- Research Center for Emerging Infections and Zoonosis (RIZ), University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; Department of Biochemistry, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany
| | - Ahmed Mohamed
- Research Center for Emerging Infections and Zoonosis (RIZ), University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; Department of Biochemistry, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany
| | - Gerhard Pohlmann
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs Str. 1, 30625 Hannover, Germany
| | - Mehmet Ramazanoglu
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs Str. 1, 30625 Hannover, Germany
| | - Kemal Mese
- University Medical Center Göttingen, Dept. of Medical Microbiology and Virology, Kreuzbergring 57, 37075 Göttingen, Germany
| | - Uwe Groß
- University Medical Center Göttingen, Dept. of Medical Microbiology and Virology, Kreuzbergring 57, 37075 Göttingen, Germany
| | - Tamar Ben-Yedidia
- Scinai Immunotherapeutics Ltd., Jerusalem BioPark, Hadassah Ein Kerem, Jerusalem, 9112001, Israel
| | - Oded Ovadia
- Scinai Immunotherapeutics Ltd., Jerusalem BioPark, Hadassah Ein Kerem, Jerusalem, 9112001, Israel
| | - Dalit Weinstein Fischer
- Scinai Immunotherapeutics Ltd., Jerusalem BioPark, Hadassah Ein Kerem, Jerusalem, 9112001, Israel
| | - Merav Kamensky
- Scinai Immunotherapeutics Ltd., Jerusalem BioPark, Hadassah Ein Kerem, Jerusalem, 9112001, Israel
| | - Amir Reichman
- Scinai Immunotherapeutics Ltd., Jerusalem BioPark, Hadassah Ein Kerem, Jerusalem, 9112001, Israel
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany
| | - Maren von Köckritz-Blickwede
- Research Center for Emerging Infections and Zoonosis (RIZ), University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; Department of Biochemistry, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany
| | - Matthias Dobbelstein
- Max Planck Institute for Multidisciplinary Sciences, Dept. of Cellular Logistics, Am Fassberg 11, 37077 Göttingen, Germany; University Medical Center Göttingen, Dept. of Molecular Oncology, Justus von Liebig Weg 11, 37077 Göttingen, Germany.
| | - Dirk Görlich
- Max Planck Institute for Multidisciplinary Sciences, Dept. of Cellular Logistics, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
20
|
Mia ME, Howlader M, Akter F, Hossain MM. Preclinical and Clinical Investigations of Potential Drugs and Vaccines for COVID-19 Therapy: A Comprehensive Review With Recent Update. CLINICAL PATHOLOGY (THOUSAND OAKS, VENTURA COUNTY, CALIF.) 2024; 17:2632010X241263054. [PMID: 39070952 PMCID: PMC11282570 DOI: 10.1177/2632010x241263054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 06/03/2024] [Indexed: 07/30/2024]
Abstract
The COVID-19 pandemic-led worldwide healthcare crisis necessitates prompt societal, ecological, and medical efforts to stop or reduce the rising number of fatalities. Numerous mRNA based vaccines and vaccines for viral vectors have been licensed for use in emergencies which showed 90% to 95% efficacy in preventing SARS-CoV-2 infection. However, safety issues, vaccine reluctance, and skepticism remain major concerns for making mass vaccination a successful approach to treat COVID-19. Hence, alternative therapeutics is needed for eradicating the global burden of COVID-19 from developed and low-resource countries. Repurposing current medications and drug candidates could be a more viable option for treating SARS-CoV-2 as these therapies have previously passed a number of significant checkpoints for drug development and patient care. Besides vaccines, this review focused on the potential usage of alternative therapeutic agents including antiviral, antiparasitic, and antibacterial drugs, protease inhibitors, neuraminidase inhibitors, and monoclonal antibodies that are currently undergoing preclinical and clinical investigations to assess their effectiveness and safety in the treatment of COVID-19. Among the repurposed drugs, remdesivir is considered as the most promising agent, while favipiravir, molnupiravir, paxlovid, and lopinavir/ritonavir exhibited improved therapeutic effects in terms of elimination of viruses. However, the outcomes of treatment with oseltamivir, umifenovir, disulfiram, teicoplanin, and ivermectin were not significant. It is noteworthy that combining multiple drugs as therapy showcases impressive effectiveness in managing individuals with COVID-19. Tocilizumab is presently employed for the treatment of patients who exhibit COVID-19-related pneumonia. Numerous antiviral drugs such as galidesivir, griffithsin, and thapsigargin are under clinical trials which could be promising for treating COVID-19 individuals with severe symptoms. Supportive treatment for patients of COVID-19 may involve the use of corticosteroids, convalescent plasma, stem cells, pooled antibodies, vitamins, and natural substances. This study provides an updated progress in SARS-CoV-2 medications and a crucial guide for inventing novel interventions against COVID-19.
Collapse
Affiliation(s)
- Md. Easin Mia
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Mithu Howlader
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Farzana Akter
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md. Murad Hossain
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| |
Collapse
|
21
|
Panda M, Kalita E, Singh S, Kumar K, Prajapati VK. Nanobody-peptide-conjugate (NPC) for passive immunotherapy against SARS-CoV-2 variants of concern (VoC): a prospective pan-coronavirus therapeutics. Mol Divers 2023; 27:2577-2603. [PMID: 36400898 PMCID: PMC9676808 DOI: 10.1007/s11030-022-10570-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022]
Abstract
The COVID-19 crisis, incited by the zoonotic SARS-CoV-2 virus, has quickly escalated into a catastrophic public health issue and a grave threat to humankind owing to the advent of mutant viruses. Multiple pharmaceutical therapies or biologics envision stopping the virus from spreading further; however, WHO has voiced concerns about the variants of concern (VoCs) inability to respond. Nanobodies are a new class of antibody mimics with binding affinity and specificity similar to classical mAbs, as well as the privileges of a small molecular weight, ease of entry into solid tissues, and binding cryptic epitopes of the antigen. Herein, we investigated multiple putative anti-SARS-CoV-2 nanobodies targeting the Receptor binding domain of the WHO-listed SARS-CoV-2 variants of concern using a comprehensive computational immunoinformatics methodology. With affinity maturation via alanine scanning mutagenesis, we remodeled an ultrapotent nanobody with substantial breadth and potency, exhibiting pico-molar binding affinities against all the VoCs. An antiviral peptide with specificity for ACE-2 receptors was affixed to make it multispecific and discourage viral entry. Collectively, we constructed a broad-spectrum therapeutic biparatopic nanobody-peptide conjugate (NPC) extending coverage to SARS-CoV-2 VoCs RBDs. We PEGylated the biparatopic construct with 20kD maleimide-terminated PEG (MAL-(PEG)n-OMe) to improve its clinical efficacy limiting rapid renal clearance, and performed in silico cloning to facilitate future experimental studies. Our findings suggest that combining biparatopic nanobody conjugate with standard treatment may be a promising bivariate tool for combating viral entry during COVID-19 illness.
Collapse
Affiliation(s)
- Mamta Panda
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Elora Kalita
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Satyendra Singh
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Ketan Kumar
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
22
|
Lázaro-Gorines R, Pérez P, Heras-Murillo I, Adán-Barrientos I, Albericio G, Astorgano D, Flores S, Luczkowiak J, Labiod N, Harwood SL, Segura-Tudela A, Rubio-Pérez L, Nugraha Y, Shang X, Li Y, Alfonso C, Adipietro KA, Abeyawardhane DL, Navarro R, Compte M, Yu W, MacKerell AD, Sanz L, Weber DJ, Blanco FJ, Esteban M, Pozharski E, Godoy-Ruiz R, Muñoz IG, Delgado R, Sancho D, García-Arriaza J, Álvarez-Vallina L. Dendritic Cell-Mediated Cross-Priming by a Bispecific Neutralizing Antibody Boosts Cytotoxic T Cell Responses and Protects Mice against SARS-CoV-2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304818. [PMID: 37863812 PMCID: PMC10700188 DOI: 10.1002/advs.202304818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/24/2023] [Indexed: 10/22/2023]
Abstract
Administration of neutralizing antibodies (nAbs) has proved to be effective by providing immediate protection against SARS-CoV-2. However, dual strategies combining virus neutralization and immune response stimulation to enhance specific cytotoxic T cell responses, such as dendritic cell (DC) cross-priming, represent a promising field but have not yet been explored. Here, a broadly nAb, TNT , are first generated by grafting an anti-RBD biparatopic tandem nanobody onto a trimerbody scaffold. Cryo-EM data show that the TNT structure allows simultaneous binding to all six RBD epitopes, demonstrating a high-avidity neutralizing interaction. Then, by C-terminal fusion of an anti-DNGR-1 scFv to TNT , the bispecific trimerbody TNT DNGR-1 is generated to target neutralized virions to type 1 conventional DCs (cDC1s) and promote T cell cross-priming. Therapeutic administration of TNT DNGR-1, but not TNT , protects K18-hACE2 mice from a lethal SARS-CoV-2 infection, boosting virus-specific humoral responses and CD8+ T cell responses. These results further strengthen the central role of interactions with immune cells in the virus-neutralizing antibody activity and demonstrate the therapeutic potential of the Fc-free strategy that can be used advantageously to provide both immediate and long-term protection against SARS-CoV-2 and other viral infections.
Collapse
Affiliation(s)
- Rodrigo Lázaro-Gorines
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, 28041, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, 28029, Spain
| | - Patricia Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, 28049, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, 28029, Spain
| | - Ignacio Heras-Murillo
- Immunobiology lab, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - Irene Adán-Barrientos
- Immunobiology lab, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - Guillermo Albericio
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, 28049, Spain
| | - David Astorgano
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, 28049, Spain
| | - Sara Flores
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, 28049, Spain
| | - Joanna Luczkowiak
- Virology and HIV/AIDS Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, 28041, Spain
| | - Nuria Labiod
- Virology and HIV/AIDS Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, 28041, Spain
| | - Seandean L Harwood
- Department of Molecular Biology and Genetics - Protein Science, Aarhus University, Aarhus, 80000, Denmark
| | - Alejandro Segura-Tudela
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, 28041, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, 28029, Spain
| | - Laura Rubio-Pérez
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, 28041, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, 28029, Spain
- Chair for Immunology UFV/Merck, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Yudhi Nugraha
- Protein Crystallography Unit, Structural Biology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, 28029, Spain
| | - Xiaoran Shang
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, 20850, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Yuxing Li
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, 20850, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- The Center for Biomolecular Therapeutics, Rockville, MD, 20850, USA
| | - Carlos Alfonso
- Centro de Investigaciones Biológicas Margarita Salas (CIB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, 28040, Spain
| | - Kaylin A Adipietro
- The Center for Biomolecular Therapeutics, Rockville, MD, 20850, USA
- Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Dinendra L Abeyawardhane
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, 20850, USA
- The Center for Biomolecular Therapeutics, Rockville, MD, 20850, USA
- Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Rocío Navarro
- Department of Antibody Engineering, Leadartis SL, Tres Cantos, Madrid, 28002, Spain
| | - Marta Compte
- Department of Antibody Engineering, Leadartis SL, Tres Cantos, Madrid, 28002, Spain
| | - Wenbo Yu
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, 20850, USA
| | - Alexander D MacKerell
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, 20850, USA
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, 21201, USA
- Center for Biomolecular Therapeutics (CBT), University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Laura Sanz
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Madrid, 28220, Spain
| | - David J Weber
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, 20850, USA
- The Center for Biomolecular Therapeutics, Rockville, MD, 20850, USA
| | - Francisco J Blanco
- Centro de Investigaciones Biológicas Margarita Salas (CIB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, 28040, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, 28049, Spain
| | - Edwin Pozharski
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, 20850, USA
- The Center for Biomolecular Therapeutics, Rockville, MD, 20850, USA
| | - Raquel Godoy-Ruiz
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, 20850, USA
- The Center for Biomolecular Therapeutics, Rockville, MD, 20850, USA
| | - Inés G Muñoz
- Protein Crystallography Unit, Structural Biology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, 28029, Spain
| | - Rafael Delgado
- Virology and HIV/AIDS Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, 28041, Spain
- Department of Microbiology, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain
- Department of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - David Sancho
- Immunobiology lab, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, 28049, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, 28029, Spain
| | - Luis Álvarez-Vallina
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, 28041, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, 28029, Spain
- Chair for Immunology UFV/Merck, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, Madrid, 28223, Spain
| |
Collapse
|
23
|
Zibat A, Zhang X, Dickmanns A, Stegmann KM, Dobbelstein AW, Alachram H, Soliwoda R, Salinas G, Groß U, Görlich D, Kschischo M, Wollnik B, Dobbelstein M. N4-hydroxycytidine, the active compound of Molnupiravir, promotes SARS-CoV-2 mutagenesis and escape from a neutralizing nanobody. iScience 2023; 26:107786. [PMID: 37731621 PMCID: PMC10507161 DOI: 10.1016/j.isci.2023.107786] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/27/2023] [Accepted: 08/28/2023] [Indexed: 09/22/2023] Open
Abstract
N4-hydroxycytidine (NHC), the active compound of the drug Molnupiravir, is incorporated into SARS-CoV-2 RNA, causing false base pairing. The desired result is an "error catastrophe," but this bears the risk of mutated virus progeny. To address this experimentally, we propagated the initial SARS-CoV-2 strain in the presence of NHC. Deep sequencing revealed numerous NHC-induced mutations and host-cell-adapted virus variants. The presence of the neutralizing nanobody Re5D06 selected for immune escape mutations, in particular p.E484K and p.F490S, which are key mutations of the Beta/Gamma and Omicron-XBB strains, respectively. With NHC treatment, nanobody resistance occurred two passages earlier than without. Thus, within the limitations of this purely in vitro study, we conclude that the combined action of Molnupiravir and a spike-neutralizing antagonist leads to the rapid emergence of escape mutants. We propose caution use and supervision when using Molnupiravir, especially when patients are still at risk of spreading virus.
Collapse
Affiliation(s)
- Arne Zibat
- Department of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Xiaoxiao Zhang
- Department of Mathematics and Technology, University of Applied Sciences Koblenz, 53424 Remagen, Germany
- Department of Informatics, Technical University of Munich, 81675 Munich, Germany
| | - Antje Dickmanns
- Department of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Kim M. Stegmann
- Department of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, 37077 Göttingen, Germany
| | | | - Halima Alachram
- Department of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Rebecca Soliwoda
- Department of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Gabriela Salinas
- NGS Integrative Genomics Core Unit, Department of Human Genetics, University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Uwe Groß
- Department of Medical Microbiology and Virology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Dirk Görlich
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Maik Kschischo
- Department of Mathematics and Technology, University of Applied Sciences Koblenz, 53424 Remagen, Germany
| | - Bernd Wollnik
- Department of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37075 Göttingen, Germany
| | - Matthias Dobbelstein
- Department of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
24
|
Li Z, Zhang W, Zhang Q, Li P, Tang X. Self-Assembly Multivalent Fluorescence-Nanobody Coupled Multifunctional Nanomaterial with Colorimetric Fluorescence and Photothermal to Enhance Immunochromatographic Assay. ACS NANO 2023; 17:19359-19371. [PMID: 37782130 DOI: 10.1021/acsnano.3c06930] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The multimodal lateral flow immunoassay (LFIA) has provided accurate and reliable results for fast and immediate detection. Nonetheless, multimodal LFIA remains challenging to develop biosensors with high sensitivity and tolerance to matrix interference in agro-food. In this study, we developed a self-assembled multivalent fluorescence-nanobody (Nb26-EGFP-H6) with 16.5-fold and 30-fold higher affinity and sensitivity than a monovalent nanobody (Nb26). Based on the Nb26-EGFP-H6, we synthesized enhanced immune-probes Zn-CN@Nb26-EGFP-H6 by pyrolyzing and oxidizing an imidazolating zeolite framework-8 (ZIF-8) to obtain photothermal metal-carbon nanomaterials (Zn-CN) for immobilizing Nb26-EGFP-H6. The rough and porous structure of Zn-CN with a large surface area facilitates the enrichment and immobilization of antibodies. A trimodal lateral flow immunoassay (tLFIA) with colorimetric, fluorescent, and photothermal triple signal outputs was constructed for the detection of aflatoxin B1 (AFB1) in maize. Attractively, the Zn-CN-based tLFIA's multiplex guarantees accurate and sensitive detection of AFB1, with triple signal detection limits of 0.0012 ng/mL (colorimetric signals), 0.0094 ng/mL (fluorescent signals), and 0.252 ng/mL (photothermal signals). The sensitivity of the trimode immunosensor was 628-fold and 42-fold higher than that of the original Nb26-based ELISA (IC50) and the unimodal LFIA (LOD). This work provides an idea for constructing a sensitive, tolerant matrix and efficient and accurate analytical platform for rapidly detecting AFB1 in food.
Collapse
Affiliation(s)
- Zhiqiang Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Wen Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Qi Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Food Safety Research Institute, HuBei University, Wuhan 430062, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Peiwu Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Food Safety Research Institute, HuBei University, Wuhan 430062, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- Xianghu Laboratory, Hangzhou, 311231, China
| | - Xiaoqian Tang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Food Safety Research Institute, HuBei University, Wuhan 430062, China
| |
Collapse
|
25
|
Nguyen H, Nguyen HL, Lan PD, Thai NQ, Sikora M, Li MS. Interaction of SARS-CoV-2 with host cells and antibodies: experiment and simulation. Chem Soc Rev 2023; 52:6497-6553. [PMID: 37650302 DOI: 10.1039/d1cs01170g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the devastating global COVID-19 pandemic announced by WHO in March 2020. Through unprecedented scientific effort, several vaccines, drugs and antibodies have been developed, saving millions of lives, but the fight against COVID-19 continues as immune escape variants of concern such as Delta and Omicron emerge. To develop more effective treatments and to elucidate the side effects caused by vaccines and therapeutic agents, a deeper understanding of the molecular interactions of SARS-CoV-2 with them and human cells is required. With special interest in computational approaches, we will focus on the structure of SARS-CoV-2 and the interaction of its spike protein with human angiotensin-converting enzyme-2 (ACE2) as a prime entry point of the virus into host cells. In addition, other possible viral receptors will be considered. The fusion of viral and human membranes and the interaction of the spike protein with antibodies and nanobodies will be discussed, as well as the effect of SARS-CoV-2 on protein synthesis in host cells.
Collapse
Affiliation(s)
- Hung Nguyen
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland.
| | - Hoang Linh Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam
- Faculty of Environmental and Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| | - Pham Dang Lan
- Life Science Lab, Institute for Computational Science and Technology, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, 729110 Ho Chi Minh City, Vietnam
- Faculty of Physics and Engineering Physics, VNUHCM-University of Science, 227, Nguyen Van Cu Street, District 5, 749000 Ho Chi Minh City, Vietnam
| | - Nguyen Quoc Thai
- Dong Thap University, 783 Pham Huu Lau Street, Ward 6, Cao Lanh City, Dong Thap, Vietnam
| | - Mateusz Sikora
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland.
| |
Collapse
|
26
|
Abreu C, Ortega C, Olivero-Deibe N, Carrión F, Gaete-Argel A, Valiente-Echeverría F, Soto-Rifo R, Milan Bonotto R, Marcello A, Pantano S. Customizably designed multibodies neutralize SARS-CoV-2 in a variant-insensitive manner. Front Immunol 2023; 14:1226880. [PMID: 37638023 PMCID: PMC10447908 DOI: 10.3389/fimmu.2023.1226880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/20/2023] [Indexed: 08/29/2023] Open
Abstract
The COVID-19 pandemic evolves constantly, requiring adaptable solutions to combat emerging SARS-CoV-2 variants. To address this, we created a pentameric scaffold based on a mammalian protein, which can be customized with up to 10 protein binding modules. This molecular scaffold spans roughly 20 nm and can simultaneously neutralize SARS-CoV-2 Spike proteins from one or multiple viral particles. Using only two different modules targeting the Spike's RBD domain, this construct outcompetes human antibodies from vaccinated individuals' serum and blocks in vitro cell attachment and pseudotyped virus entry. Additionally, the multibodies inhibit viral replication at low picomolar concentrations, regardless of the variant. This customizable multibody can be easily produced in procaryote systems, providing a new avenue for therapeutic development and detection devices, and contributing to preparedness against rapidly evolving pathogens.
Collapse
Affiliation(s)
| | | | | | | | - Aracelly Gaete-Argel
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Fernando Valiente-Echeverría
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Ricardo Soto-Rifo
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Rafaela Milan Bonotto
- Laboratory of Molecular Virology, The International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Alessandro Marcello
- Laboratory of Molecular Virology, The International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | | |
Collapse
|
27
|
Stahl P, Kollenda S, Sager J, Schmidt L, Schroer MA, Stauber RH, Epple M, Knauer SK. Tuning Nanobodies' Bioactivity: Coupling to Ultrasmall Gold Nanoparticles Allows the Intracellular Interference with Survivin. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300871. [PMID: 37035950 DOI: 10.1002/smll.202300871] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Nanobodies are highly affine binders, often used to track disease-relevant proteins inside cells. However, they often fail to interfere with pathobiological functions, required for their clinical exploitation. Here, a nanobody targeting the disease-relevant apoptosis inhibitor and mitosis regulator Survivin (SuN) is utilized. Survivin's multifaceted functions are regulated by an interplay of dynamic cellular localization, dimerization, and protein-protein interactions. However, as Survivin harbors no classical "druggable" binding pocket, one must aim at blocking extended protein surface areas. Comprehensive experimental evidence demonstrates that intracellular expression of SuN allows to track Survivin at low nanomolar concentrations but failed to inhibit its biological functions. Small angle X-ray scattering of the Survivin-SuN complex locates the proposed interaction interface between the C-terminus and the globular domain, as such not blocking any pivotal interaction. By clicking multiple SuN to ultrasmall (2 nm) gold nanoparticles (SuN-N), not only intracellular uptake is enabled, but additionally, Survivin crosslinking and interference with mitotic progression in living cells are also enabled. In sum, it is demonstrated that coupling of nanobodies to nanosized scaffolds can be universally applicable to improve their function and therapeutic applicability.
Collapse
Affiliation(s)
- Paul Stahl
- Molecular Biology II, Department of Biology, Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5, 45141, Essen, Germany
| | - Sebastian Kollenda
- Inorganic Chemistry, Department of Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
| | - Jonas Sager
- Inorganic Chemistry, Department of Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
| | - Laura Schmidt
- Molecular Biology II, Department of Biology, Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5, 45141, Essen, Germany
| | - Martin A Schroer
- Nanoparticle Process Technology, Department of Engineering, University of Duisburg-Essen, Lotharstr. 1, 47057, Duisburg, Germany
| | - Roland H Stauber
- Molecular and Cellular Oncology/ENT, University Medical Center Mainz (UMM), Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Matthias Epple
- Inorganic Chemistry, Department of Chemistry, Center for Nanointegration Duisburg-Essen (CENIDE) and Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
| | - Shirley K Knauer
- Molecular Biology II, Department of Biology, Center of Medical Biotechnology (ZMB) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 5, 45141, Essen, Germany
| |
Collapse
|
28
|
Hurley K, Cao M, Huang H, Wang Y. Targeted Alpha Therapy (TAT) with Single-Domain Antibodies (Nanobodies). Cancers (Basel) 2023; 15:3493. [PMID: 37444603 DOI: 10.3390/cancers15133493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/23/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
The persistent threat of cancer necessitates the development of improved and more efficient therapeutic strategies that limit damage to healthy tissues. Targeted alpha therapy (TαT), a novel form of radioimmuno-therapy (RIT), utilizes a targeting vehicle, commonly antibodies, to deliver high-energy, but short-range, alpha-emitting particles specifically to cancer cells, thereby reducing toxicity to surrounding normal tissues. Although full-length antibodies are often employed as targeting vehicles for TαT, their high molecular weight and the presence of an Fc-region lead to a long blood half-life, increased bone marrow toxicity, and accumulation in other tissues such as the kidney, liver, and spleen. The discovery of single-domain antibodies (sdAbs), or nanobodies, naturally occurring in camelids and sharks, has introduced a novel antigen-specific vehicle for molecular imaging and TαT. Given that nanobodies are the smallest naturally occurring antigen-binding fragments, they exhibit shorter relative blood half-lives, enhanced tumor uptake, and equivalent or superior binding affinity and specificity. Nanobody technology could provide a viable solution for the off-target toxicity observed with full-length antibody-based TαT. Notably, the pharmacokinetic properties of nanobodies align better with the decay characteristics of many short-lived α-emitting radionuclides. This review aims to encapsulate recent advancements in the use of nanobodies as a vehicle for TαT.
Collapse
Affiliation(s)
- Kate Hurley
- Radiobiology and Health, Canadian Nuclear Laboratories, Chalk River, ON K0J 1J0, Canada
| | - Meiyun Cao
- Radiobiology and Health, Canadian Nuclear Laboratories, Chalk River, ON K0J 1J0, Canada
| | - Haiming Huang
- Research Center, Forlong Biotechnology Inc., Suzhou 215004, China
| | - Yi Wang
- Radiobiology and Health, Canadian Nuclear Laboratories, Chalk River, ON K0J 1J0, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
29
|
Pavan MF, Bok M, Juan RBS, Malito JP, Marcoppido GA, Franco DR, Militello DA, Schammas JM, Bari S, Stone WB, López K, Porier DL, Muller J, Auguste AJ, Yuan L, Wigdorovitz A, Parreño V, Ibañez LI. Nanobodies against SARS-CoV-2 reduced virus load in the brain of challenged mice and neutralized Wuhan, Delta and Omicron Variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532528. [PMID: 36993215 PMCID: PMC10054972 DOI: 10.1101/2023.03.14.532528] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
In this work, we developed llama-derived nanobodies (Nbs) directed to the receptor binding domain (RBD) and other domains of the Spike (S) protein of SARS-CoV-2. Nanobodies were selected after the biopanning of two VHH-libraries, one of which was generated after the immunization of a llama (lama glama) with the bovine coronavirus (BCoV) Mebus, and another with the full-length pre-fused locked S protein (S-2P) and the RBD from the SARS-CoV-2 Wuhan strain (WT). Most of the neutralizing Nbs selected with either RBD or S-2P from SARS-CoV-2 were directed to RBD and were able to block S-2P/ACE2 interaction. Three Nbs recognized the N-terminal domain (NTD) of the S-2P protein as measured by competition with biliverdin, while some non-neutralizing Nbs recognize epitopes in the S2 domain. One Nb from the BCoV immune library was directed to RBD but was non-neutralizing. Intranasal administration of Nbs induced protection ranging from 40% to 80% against COVID-19 death in k18-hACE2 mice challenged with the WT strain. Interestingly, protection was not only associated with a significant reduction of virus replication in nasal turbinates and lungs, but also with a reduction of virus load in the brain. Employing pseudovirus neutralization assays, we were able to identify Nbs with neutralizing capacity against the Alpha, Beta, Delta and Omicron variants. Furthermore, cocktails of different Nbs performed better than individual Nbs to neutralize two Omicron variants (B.1.529 and BA.2). Altogether, the data suggest these Nbs can potentially be used as a cocktail for intranasal treatment to prevent or treat COVID-19 encephalitis, or modified for prophylactic administration to fight this disease.
Collapse
Affiliation(s)
- María Florencia Pavan
- CONICET Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE)
| | - Marina Bok
- Incuinta, Instituto Nacional de Tecnología Agropecuaria (INTA)
- Instituto de Virología e Innovaciones Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (IVIT-CONICET)
| | - Rafael Betanzos San Juan
- Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Juan Pablo Malito
- Incuinta, Instituto Nacional de Tecnología Agropecuaria (INTA)
- Instituto de Virología e Innovaciones Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (IVIT-CONICET)
| | - Gisela Ariana Marcoppido
- Instituto de Investigación Patobiología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA)
| | - Diego Rafael Franco
- Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA)
| | - Daniela Ayelen Militello
- CONICET Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE)
| | - Juan Manuel Schammas
- Instituto de Virología e Innovaciones Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (IVIT-CONICET)
| | - Sara Bari
- CONICET Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE)
| | - William B Stone
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, USA
| | - Krisangel López
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, USA
| | - Danielle L Porier
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, USA
| | - John Muller
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, USA
| | - Albert J Auguste
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, USA
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, USA
| | - Lijuan Yuan
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, USA
| | - Andrés Wigdorovitz
- Incuinta, Instituto Nacional de Tecnología Agropecuaria (INTA)
- Instituto de Virología e Innovaciones Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (IVIT-CONICET)
| | - Viviana Parreño
- Incuinta, Instituto Nacional de Tecnología Agropecuaria (INTA)
- Instituto de Virología e Innovaciones Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (IVIT-CONICET)
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, USA
| | - Lorena Itatí Ibañez
- CONICET Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE)
| |
Collapse
|
30
|
Naidoo DB, Chuturgoon AA. The Potential of Nanobodies for COVID-19 Diagnostics and Therapeutics. Mol Diagn Ther 2023; 27:193-226. [PMID: 36656511 PMCID: PMC9850341 DOI: 10.1007/s40291-022-00634-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 01/20/2023]
Abstract
The infectious severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative agent for coronavirus disease 2019 (COVID-19). Globally, there have been millions of infections and fatalities. Unfortunately, the virus has been persistent and a contributing factor is the emergence of several variants. The urgency to combat COVID-19 led to the identification/development of various diagnosis (polymerase chain reaction and antigen tests) and treatment (repurposed drugs, convalescent plasma, antibodies and vaccines) options. These treatments may treat mild symptoms and decrease the risk of life-threatening disease. Although these options have been fairly beneficial, there are some challenges and limitations, such as cost of tests/drugs, specificity, large treatment dosages, intravenous administration, need for trained personal, lengthy production time, high manufacturing costs, and limited availability. Therefore, the development of more efficient COVID-19 diagnostic and therapeutic options are vital. Nanobodies (Nbs) are novel monomeric antigen-binding fragments derived from camelid antibodies. Advantages of Nbs include low immunogenicity, high specificity, stability and affinity. These characteristics allow for rapid Nb generation, inexpensive large-scale production, effective storage, and transportation, which is essential during pandemics. Additionally, the potential aerosolization and inhalation delivery of Nbs allows for targeted treatment delivery as well as patient self-administration. Therefore, Nbs are a viable option to target SARS-CoV-2 and overcome COVID-19. In this review we discuss (1) COVID-19; (2) SARS-CoV-2; (3) the present conventional COVID-19 diagnostics and therapeutics, including their challenges and limitations; (4) advantages of Nbs; and (5) the numerous Nbs generated against SARS-CoV-2 as well as their diagnostic and therapeutic potential.
Collapse
Affiliation(s)
- Dhaneshree Bestinee Naidoo
- Discipline of Medical Biochemistry and Chemical Pathology, Faculty of Health Sciences, Howard College, University of Kwa-Zulu Natal, Durban, 4013, South Africa
| | - Anil Amichund Chuturgoon
- Discipline of Medical Biochemistry and Chemical Pathology, Faculty of Health Sciences, Howard College, University of Kwa-Zulu Natal, Durban, 4013, South Africa.
| |
Collapse
|
31
|
General Trends of the Camelidae Antibody V HHs Domain Dynamics. Int J Mol Sci 2023; 24:ijms24054511. [PMID: 36901942 PMCID: PMC10003728 DOI: 10.3390/ijms24054511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Conformational flexibility plays an essential role in antibodies' functional and structural stability. They facilitate and determine the strength of antigen-antibody interactions. Camelidae express an interesting subtype of single-chain antibody, named Heavy Chain only Antibody. They have only one N-terminal Variable domain (VHH) per chain, composed of Frameworks (FRs) and Complementarity Determining regions (CDRs) like their VH and VL counterparts in IgG. Even when expressed independently, VHH domains display excellent solubility and (thermo)stability, which helps them to retain their impressive interaction capabilities. Sequence and structural features of VHH domains contributing to these abilities have already been studied compared to classical antibodies. To have the broadest view and understand the changes in dynamics of these macromolecules, large-scale molecular dynamics simulations for a large number of non-redundant VHH structures have been performed for the first time. This analysis reveals the most prevalent movements in these domains. It reveals the four main classes of VHHs dynamics. Diverse local changes were observed in CDRs with various intensities. Similarly, different types of constraints were observed in CDRs, while FRs close to CDRs were sometimes primarily impacted. This study sheds light on the changes in flexibility in different regions of VHH that may impact their in silico design.
Collapse
|
32
|
Wang X, Liu W, Zuo H, Shen W, Zhang Y, Liu R, Geng L, Wang W, Shao C, Sun T. Development of a magnetic separation immunoassay with high sensitivity and time-saving for detecting aflatoxin B1 in agricultural crops using nanobody. Eur Food Res Technol 2023. [DOI: 10.1007/s00217-023-04202-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
33
|
Yamaguchi K, Anzai I, Maeda R, Moriguchi M, Watanabe T, Imura A, Takaori-Kondo A, Inoue T. Structural insights into the rational design of a nanobody that binds with high affinity to the SARS-CoV-2 spike variant. J Biochem 2023; 173:115-127. [PMID: 36413757 DOI: 10.1093/jb/mvac096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 11/23/2022] Open
Abstract
The continuous emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants associated with the adaptive evolution of the virus is prolonging the global coronavirus disease 2019 (COVID-19) pandemic. The modification of neutralizing antibodies based on structural information is expected to be a useful approach to rapidly combat emerging variants. A dimerized variable domain of heavy chain of heavy chain antibody (VHH) P17 that has highly potent neutralizing activity against SARS-CoV-2 has been reported but the mode of interaction with the epitope remains unclear. Here, we report the X-ray crystal structure of the complex of monomerized P17 bound to the SARS-CoV-2 receptor binding domain (RBD) and investigated the binding activity of P17 toward various variants of concern (VOCs) using kinetics measurements. The structure revealed details of the binding interface and showed that P17 had an appropriate linker length to have an avidity effect and recognize a wide range of RBD orientations. Furthermore, we identified mutations in known VOCs that decrease the binding affinity of P17 and proposed methods for the acquisition of affinity toward the Omicron RBD because Omicron is currently the most predominant VOC. This study provides information for the rational design of effective VHHs for emerging VOCs.
Collapse
Key Words
- Crystal structure
Abbreviations: ACE2, angiotensin converting enzyme 2; BLI, biolayer interferometry; CDR, complementarity-determining region; COVID-19, coronavirus disease 2019; cryo-EM, cryo-electron microscopy; EDTA, ethylenediaminetetraacetic acid; IPTG, Isopropyl β-d-1-thiogalactopyranoside; mAb, monoclonal antibody; PBS, phosphate-buffered saline; RBD, receptor binding domain;
SARS-CoV-2, severe acute respiratory syndrome coronavirus-2; VdW, Van der Waals; VHH, variable domain of heavy chain of heavy chain antibody; VOC, variants of concern
- SARS-CoV-2
- VHH
- recognition mechanism
Collapse
Affiliation(s)
- Keishi Yamaguchi
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Itsuki Anzai
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Ryota Maeda
- COGNANO Inc., 64-101 Kamitakano Higashiyama, Sakyo-ku, Kyoto, 601-1255, Japan
| | - Maiko Moriguchi
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Tokiko Watanabe
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Akihiro Imura
- COGNANO Inc., 64-101 Kamitakano Higashiyama, Sakyo-ku, Kyoto, 601-1255, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Tsuyoshi Inoue
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
34
|
Vorobyev PO, Tillib SV. Single-domain antibody for binding the conserved epitope in the SARS-CoV-2 spike protein receptor-binding domain. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2023. [DOI: 10.24075/brsmu.2023.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Several COVID-19 vaccines have been developed in the last three years using various tecnhiques. Multiple virus-neutralizing antibodies against SARS-CoV-2 have been also obtained to combat the pandemic. However, the use of these medications for prevention and potential treatment faces significant challenges due to the emergence of new mutant virus variants, both more contagious and escaping neutralization by the immune system, that is why it is necessary to continuously renew the vaccines and develop new therapeutic antibodies. The study was aimed to use the technology of generating single-domain antibodies (nanobodies) to target the surface spike (S) protein RBD conserved epitope of the broad spectrum of SARS-CoV-2 variants. Recombinant proteins that corresponded to RBDs of three important SARS-СoV-2 strains and the full-length S protein (Wuhan) were used as antigens for immunization of a camel in order to induce production of appropriate antibodies and/or as immobilized proteins for further cross selection of the nanobody clones with pre-set specificity by the phage display. A nanobody capable of effectively recognizing the conservative region in the S protein RBDs of the broad spectrum of pandemic SARS-CoV-2 variants, including Omicron, was selected from the generated immune library. Along with conventional use in immunoassays and diagnosis, the generated nanobody can be potentially used as a module for target-specific binding used to trap coronavirus in human upper airways during the development of novel combination antiviral drugs.
Collapse
Affiliation(s)
- PO Vorobyev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - SV Tillib
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
35
|
Therapeutic Phage Display-Derived Single-Domain Antibodies for Pandemic Preparedness. Antibodies (Basel) 2023; 12:antib12010007. [PMID: 36648891 PMCID: PMC9887586 DOI: 10.3390/antib12010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/31/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Driven by necessity, the COVID-19 pandemic caused by SARS-CoV-2 has accelerated the development and implementation of new vaccine platforms and other viral therapeutics. Among these is the therapeutic use of antibodies including single-domain antibodies, in particular the camelid variable heavy-chain fragment (VHH). Such therapies can provide a critical interim intervention when vaccines have not yet been developed for an emerging virus. It is evident that an increasing number of different viruses are emerging and causing epidemics and pandemics with increasing frequency. It is therefore imperative that we capitalize on the experience and knowledge gained from combatting COVID-19 to be better prepared for the next pandemic.
Collapse
|
36
|
Chi H, Wang L, Liu C, Cheng X, Zheng H, Lv L, Tan Y, Zhang N, Zhao S, Wu M, Luo D, Qiu H, Feng R, Fu W, Zhang J, Xiong X, Zhang Y, Zu S, Chen Q, Ye Q, Yan X, Hu Y, Zhang Z, Yan R, Yin J, Lei P, Wang W, Lang G, Shao J, Deng Y, Wang X, Qin C. An Engineered IgG-VHH Bispecific Antibody against SARS-CoV-2 and Its Variants. SMALL METHODS 2022; 6:e2200932. [PMID: 36300882 PMCID: PMC9874498 DOI: 10.1002/smtd.202200932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) neutralizing antibodies are shown to be effective therapeutics for providing coronavirus disease 2019 (COVID-19) protection. However, recurrent variants arise and facilitate significant escape from current antibody therapeutics. Bispecific antibodies (bsAbs) represent a unique platform to increase antibody breadth and to reduce neutralization escape. Herein, a novel immunoglobulin G-variable domains of heavy-chain-only antibody (IgG-VHH) format bsAb derived from a potent human antibody R15-F7 and a humanized nanobody P14-F8-35 are rationally engineered. The resulting bsAb SYZJ001 efficiently neutralizes wild-type SARS-CoV-2 as well as the alpha, beta, gamma, and delta variants, with superior efficacy to its parental antibodies. Cryo-electron microscopy structural analysis reveals that R15-F7 and P14-F8-35 bind to nonoverlapping epitopes within the RBD and sterically hindered ACE2 receptor binding. Most importantly, SYZJ001 shows potent prophylactic and therapeutic efficacy against SARS-CoV-2 in three established mouse models. Collectively, the current results demonstrate that the novel bsAb format is feasible and effective, suggesting great potential as an inspiring antiviral strategy.
Collapse
Affiliation(s)
- Hang Chi
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyAMMSBeijing100071China
| | - Lei Wang
- CAS Key Laboratory of Infection and ImmunityNational Laboratory of MacromoleculesInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Chanjuan Liu
- Department of Innovation Research and DevelopmentSanyou Biopharmaceuticals (Shanghai) Co., LtdShanghai201114China
| | - Xiaohe Cheng
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyAMMSBeijing100071China
| | - Hailiang Zheng
- Department of Innovation Research and DevelopmentSanyou Biopharmaceuticals (Shanghai) Co., LtdShanghai201114China
| | - Lilang Lv
- ZJ Bio‐Tech InstituteShanghai ZJ Bio‐Tech Co., Ltd.Shanghai201114China
| | - Yongcong Tan
- Department of Innovation Research and DevelopmentSanyou Biopharmaceuticals (Shanghai) Co., LtdShanghai201114China
| | - Nana Zhang
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyAMMSBeijing100071China
| | - Suoqun Zhao
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyAMMSBeijing100071China
| | - Mei Wu
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyAMMSBeijing100071China
| | - Dan Luo
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyAMMSBeijing100071China
| | - Hongying Qiu
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyAMMSBeijing100071China
| | - Rui Feng
- CAS Key Laboratory of Infection and ImmunityNational Laboratory of MacromoleculesInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Wangjun Fu
- CAS Key Laboratory of Infection and ImmunityNational Laboratory of MacromoleculesInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Jie Zhang
- ZJ Bio‐Tech InstituteShanghai ZJ Bio‐Tech Co., Ltd.Shanghai201114China
| | - Xiaochuan Xiong
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyAMMSBeijing100071China
| | - Yifei Zhang
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyAMMSBeijing100071China
| | - Shulong Zu
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyAMMSBeijing100071China
| | - Qi Chen
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyAMMSBeijing100071China
| | - Qing Ye
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyAMMSBeijing100071China
| | - Xintian Yan
- Department of Innovation Research and DevelopmentSanyou Biopharmaceuticals (Shanghai) Co., LtdShanghai201114China
| | - Yuhao Hu
- Department of Innovation Research and DevelopmentSanyou Biopharmaceuticals (Shanghai) Co., LtdShanghai201114China
| | - Zhen Zhang
- Department of Innovation Research and DevelopmentSanyou Biopharmaceuticals (Shanghai) Co., LtdShanghai201114China
| | - Run Yan
- Department of Innovation Research and DevelopmentSanyou Biopharmaceuticals (Shanghai) Co., LtdShanghai201114China
| | - Jiangfeng Yin
- Department of Innovation Research and DevelopmentSanyou Biopharmaceuticals (Shanghai) Co., LtdShanghai201114China
| | - Pan Lei
- Department of Innovation Research and DevelopmentSanyou Biopharmaceuticals (Shanghai) Co., LtdShanghai201114China
| | - Wanjing Wang
- Department of Innovation Research and DevelopmentSanyou Biopharmaceuticals (Shanghai) Co., LtdShanghai201114China
| | - Guojun Lang
- Department of Innovation Research and DevelopmentSanyou Biopharmaceuticals (Shanghai) Co., LtdShanghai201114China
| | - Junbin Shao
- ZJ Bio‐Tech InstituteShanghai ZJ Bio‐Tech Co., Ltd.Shanghai201114China
| | - Yongqiang Deng
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyAMMSBeijing100071China
| | - Xiangxi Wang
- CAS Key Laboratory of Infection and ImmunityNational Laboratory of MacromoleculesInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Chengfeng Qin
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyAMMSBeijing100071China
| |
Collapse
|
37
|
Zhao J, Zhu J, Huang C, Zhu X, Zhu Z, Wu Q, Yuan R. Uncovering the information immunology journals transmitted for COVID-19: A bibliometric and visualization analysis. Front Immunol 2022; 13:1035151. [PMID: 36405695 PMCID: PMC9670819 DOI: 10.3389/fimmu.2022.1035151] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/17/2022] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Since the global epidemic of the coronavirus disease 2019 (COVID-19), a large number of immunological studies related to COVID-19 have been published in various immunology journals. However, the results from these studies were discrete, and no study summarized the important immunological information about COVID-19 released by these immunology journals. This study aimed to comprehensively summarize the knowledge structure and research hotspots of COVID-19 published in major immunology journals through bibliometrics. METHODS Publications on COVID-19 in major immunology journals were obtained from the Web of Science Core Collection. CiteSpace, VOSviewer, and R-bibliometrix were comprehensively used for bibliometric and visual analysis. RESULTS 1,331 and 5,000 publications of 10 journals with high impact factors and 10 journals with the most papers were included, respectively. The USA, China, England, and Italy made the most significant contributions to these papers. University College London, National Institute of Allergy and Infectious Diseases, Harvard Medical School, University California San Diego, and University of Pennsylvania played a central role in international cooperation in the immunology research field of COVID-19. Yuen Kwok Yung was the most important author in terms of the number of publications and citations, and the H-index. CLINICAL INFECTIOUS DISEASES and FRONTIERS IN IMMUNOLOGY were the most essential immunology journals. These immunology journals mostly focused on the following topics: "Delta/Omicron variants", "cytokine storm", "neutralization/neutralizing antibody", "T cell", "BNT162b2", "mRNA vaccine", "vaccine effectiveness/safety", and "long COVID". CONCLUSION This study systematically uncovered a holistic picture of the current research on COVID-19 published in major immunology journals from the perspective of bibliometrics, which will provide a reference for future research in this field.
Collapse
Affiliation(s)
- Jiefeng Zhao
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jinfeng Zhu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Chao Huang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaojian Zhu
- Center for Digestive Disease, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Zhengming Zhu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qinrong Wu
- Department of General Surgery, Yingtan City People’s Hospital, Yingtan, Jiangxi, China
| | - Rongfa Yuan
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
38
|
Antoine D, Mohammadi M, McDermott CE, Walsh E, Johnson PA, Wawrousek KE, Wall JG. Isolation of SARS-CoV-2-blocking recombinant antibody fragments and characterisation of their binding to variant spike proteins. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.1028186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
COVID-19 is a severe acute respiratory disease caused by SARS-CoV-2. From its initial appearance in Wuhan, China in 2019, it developed rapidly into a global pandemic. In addition to vaccines, therapeutic antibodies play an important role in immediately treating susceptible individuals to lessen severity of the disease. In this study, phage display technology was utilised to isolate human scFv antibody fragments that bind the receptor-binding domain (RBD) of SARS-CoV-2 Wuhan-Hu-1 spike protein. Of eight RBD-binding scFvs isolated, two inhibited interaction of RBD with ACE2 protein on VeroE6 cells. Both scFvs also exhibited binding to SARS-CoV-2 Delta variant spike protein but not to Omicron variant spike protein in a Raman spectroscopy immunotest. The study demonstrates the potential of recombinant antibody approaches to rapidly isolate antibody moieties with virus neutralisation potential.
Collapse
|
39
|
Huang X, Kon E, Han X, Zhang X, Kong N, Mitchell MJ, Peer D, Tao W. Nanotechnology-based strategies against SARS-CoV-2 variants. NATURE NANOTECHNOLOGY 2022; 17:1027-1037. [PMID: 35982317 DOI: 10.1038/s41565-022-01174-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has already infected more than 500 million people globally (as of May 2022), creating the coronavirus disease 2019 (COVID-19) pandemic. Nanotechnology has played a pivotal role in the fight against SARS-CoV-2 in various aspects, with the successful development of the two highly effective nanotechnology-based messenger RNA vaccines being the most profound. Despite the remarkable efficacy of mRNA vaccines against the original SARS-CoV-2 strain, hopes for quickly ending this pandemic have been dampened by the emerging SARS-CoV-2 variants, which have brought several new pandemic waves. Thus, novel strategies should be proposed to tackle the crisis presented by existing and emerging SARS-CoV-2 variants. Here, we discuss the SARS-CoV-2 variants from biological and immunological perspectives, and the rational design and development of novel and potential nanotechnology-based strategies to combat existing and possible future SARS-CoV-2 variants. The lessons learnt and design strategies developed from this battle against SARS-CoV-2 variants could also inspire innovation in the development of nanotechnology-based strategies for tackling other global infectious diseases and their future variants.
Collapse
Affiliation(s)
- Xiangang Huang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Edo Kon
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Xuexiang Han
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Xingcai Zhang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Na Kong
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Dan Peer
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel.
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel.
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel.
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
40
|
Niu Z, Luo Z, Sun P, Ning L, Jin X, Chen G, Guo C, Zhi L, Chang W, Zhu W. In Vitro Nanobody Library Construction by Using Gene Designated-Region Pan-Editing Technology. BIODESIGN RESEARCH 2022; 2022:9823578. [PMID: 37850144 PMCID: PMC10521727 DOI: 10.34133/2022/9823578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 06/09/2022] [Indexed: 10/19/2023] Open
Abstract
Camelid single-domain antibody fragments (nanobodies) are an emerging force in therapeutic biopharmaceuticals and clinical diagnostic reagents in recent years. Nearly all nanobodies available to date have been obtained by animal immunization, a bottleneck restricting the large-scale application of nanobodies. In this study, we developed three kinds of gene designated-region pan-editing (GDP) technologies to introduce multiple mutations in complementarity-determining regions (CDRs) of nanobodies in vitro. Including the integration of G-quadruplex fragments in CDRs, which induces the spontaneous multiple mutations in CDRs; however, these mutant sequences are highly similar, resulting in a lack of sequences diversity in the CDRs. We also used CDR-targeting traditional gRNA-guided base-editors, which effectively diversify the CDRs. And most importantly, we developed the self-assembling gRNAs, which are generated by reprogrammed tracrRNA hijacking of endogenous mRNAs as crRNAs. Using base-editors guided by self-assembling gRNAs, we can realize the iteratively diversify the CDRs. And we believe the last GDP technology is highly promising in immunization-free nanobody library construction, and the full development of this novel nanobody discovery platform can realize the synthetic evolution of nanobodies in vitro.
Collapse
Affiliation(s)
- Zhiyuan Niu
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003 Henan, China
| | - Zhixia Luo
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003 Henan, China
| | - Pengyang Sun
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003 Henan, China
| | - Linwei Ning
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003 Henan, China
| | - Xinru Jin
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003 Henan, China
| | - Guanxu Chen
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003 Henan, China
| | - Changjiang Guo
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003 Henan, China
| | - Lingtong Zhi
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003 Henan, China
| | - Wei Chang
- Department of Oncology, Xinxiang First People’s Hospital, The Affiliated People’s Hospital of Xinxiang Medical University, Xinxiang 453000China
| | - Wuling Zhu
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003 Henan, China
| |
Collapse
|
41
|
Hetero-bivalent nanobodies provide broad-spectrum protection against SARS-CoV-2 variants of concern including Omicron. Cell Res 2022; 32:831-842. [PMID: 35906408 PMCID: PMC9334538 DOI: 10.1038/s41422-022-00700-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/06/2022] [Indexed: 12/23/2022] Open
Abstract
SARS-CoV-2 variants with adaptive mutations have continued to emerge, causing fresh waves of infection even amongst vaccinated population. The development of broad-spectrum antivirals is thus urgently needed. We previously developed two hetero-bivalent nanobodies (Nbs), aRBD-2-5 and aRBD-2-7, with potent neutralization activity against the wild-type (WT) Wuhan isolated SARS-CoV-2, by fusing aRBD-2 with aRBD-5 and aRBD-7, respectively. Here, we resolved the crystal structures of these Nbs in complex with the receptor-binding domain (RBD) of the spike protein, and found that aRBD-2 contacts with highly-conserved RBD residues and retains binding to the RBD of the Alpha, Beta, Gamma, Delta, Delta plus, Kappa, Lambda, Omicron BA.1, and BA.2 variants. In contrast, aRBD-5 and aRBD-7 bind to less-conserved RBD epitopes non-overlapping with the epitope of aRBD-2, and do not show apparent binding to the RBD of some variants. However, when fused with aRBD-2, they effectively enhance the overall binding affinity. Consistently, aRBD-2-5-Fc and aRBD-2-7-Fc potently neutralized all of the tested authentic or pseudotyped viruses, including WT, Alpha, Beta, Gamma, Delta, and Omicron BA.1, BA.1.1 and BA.2. Furthermore, aRBD-2-5-Fc provided prophylactic protection against the WT and mouse-adapted SARS-CoV-2 in mice, and conferred protection against the Omicron BA.1 variant in hamsters prophylactically and therapeutically, indicating that aRBD-2-5-Fc could potentially benefit the prevention and treatment of COVID-19 caused by the emerging variants of concern. Our strategy provides new solutions in the development of broad-spectrum therapeutic antibodies for COVID-19.
Collapse
|
42
|
Maeda R, Fujita J, Konishi Y, Kazuma Y, Yamazaki H, Anzai I, Watanabe T, Yamaguchi K, Kasai K, Nagata K, Yamaoka Y, Miyakawa K, Ryo A, Shirakawa K, Sato K, Makino F, Matsuura Y, Inoue T, Imura A, Namba K, Takaori-Kondo A. A panel of nanobodies recognizing conserved hidden clefts of all SARS-CoV-2 spike variants including Omicron. Commun Biol 2022; 5:669. [PMID: 35794202 PMCID: PMC9257560 DOI: 10.1038/s42003-022-03630-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 06/24/2022] [Indexed: 12/15/2022] Open
Abstract
We are amid the historic coronavirus infectious disease 2019 (COVID-19) pandemic. Imbalances in the accessibility of vaccines, medicines, and diagnostics among countries, regions, and populations, and those in war crises, have been problematic. Nanobodies are small, stable, customizable, and inexpensive to produce. Herein, we present a panel of nanobodies that can detect the spike proteins of five SARS-CoV-2 variants of concern (VOCs) including Omicron. Here we show via ELISA, lateral flow, kinetic, flow cytometric, microscopy, and Western blotting assays that our nanobodies can quantify the spike variants. This panel of nanobodies broadly neutralizes viral infection caused by pseudotyped and authentic SARS-CoV-2 VOCs. Structural analyses show that the P86 clone targets epitopes that are conserved yet unclassified on the receptor-binding domain (RBD) and contacts the N-terminal domain (NTD). Human antibodies rarely access both regions; consequently, the clone buries hidden crevasses of SARS-CoV-2 spike proteins that go undetected by conventional antibodies. A panel of nanobodies are presented that can detect the spike proteins of five SARS-CoV-2 variants of concern and structural analyses show that one clone targets conserved epitopes on the receptor-binding domain and contacts the N-terminal domain.
Collapse
|
43
|
Xiang Y, Huang W, Liu H, Sang Z, Nambulli S, Tubiana J, Williams KL, Duprex WP, Schneidman-Duhovny D, Wilson IA, Taylor DJ, Shi Y. Superimmunity by pan-sarbecovirus nanobodies. Cell Rep 2022; 39:111004. [PMID: 35738279 PMCID: PMC9174178 DOI: 10.1016/j.celrep.2022.111004] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/09/2022] [Accepted: 06/03/2022] [Indexed: 11/23/2022] Open
Abstract
Vaccine boosters and infection can facilitate the development of SARS-CoV-2 antibodies with improved potency and breadth. Here, we observe superimmunity in a camelid extensively immunized with the SARS-CoV-2 receptor-binding domain (RBD). We rapidly isolate a large repertoire of specific ultra-high-affinity nanobodies that bind strongly to all known sarbecovirus clades using integrative proteomics. These pan-sarbecovirus nanobodies (psNbs) are highly effective against SARS-CoV and SARS-CoV-2 variants, including Omicron, with the best median neutralization potency at single-digit nanograms per milliliter. A highly potent, inhalable, and bispecific psNb (PiN-31) is also developed. Structural determinations of 13 psNbs with the SARS-CoV-2 spike or RBD reveal five epitope classes, providing insights into the mechanisms and evolution of their broad activities. The highly evolved psNbs target small, flat, and flexible epitopes that contain over 75% of conserved RBD surface residues. Their potencies are strongly and negatively correlated with the distance of the epitopes from the receptor binding sites.
Collapse
Affiliation(s)
- Yufei Xiang
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Wei Huang
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Hejun Liu
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
| | - Zhe Sang
- The University of Pittsburgh and Carnegie Mellon University Program for Computational Biology, Pittsburgh, PA 15213, USA
| | - Sham Nambulli
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jérôme Tubiana
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel; Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Kevin L Williams
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - W Paul Duprex
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Dina Schneidman-Duhovny
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, Scripps Research, La Jolla, CA 92037, USA
| | - Derek J Taylor
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Yi Shi
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA; The University of Pittsburgh and Carnegie Mellon University Program for Computational Biology, Pittsburgh, PA 15213, USA; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
44
|
Li T, Zhou B, Luo Z, Lai Y, Huang S, Zhou Y, Li Y, Gautam A, Bourgeau S, Wang S, Bao J, Tan J, Lavillette D, Li D. Structural Characterization of a Neutralizing Nanobody With Broad Activity Against SARS-CoV-2 Variants. Front Microbiol 2022; 13:875840. [PMID: 35722331 PMCID: PMC9201380 DOI: 10.3389/fmicb.2022.875840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
SARS-CoV-2 and its variants, such as the Omicron continue to threaten public health. The virus recognizes the host cell by attaching its Spike (S) receptor-binding domain (RBD) to the host receptor, ACE2. Therefore, RBD is a primary target for neutralizing antibodies and vaccines. Here, we report the isolation and biological and structural characterization of a single-chain antibody (nanobody) from RBD-immunized alpaca. The nanobody, named DL28, binds to RBD tightly with a KD of 1.56 nM and neutralizes the original SARS-CoV-2 strain with an IC50 of 0.41 μg mL−1. Neutralization assays with a panel of variants of concern (VOCs) reveal its wide-spectrum activity with IC50 values ranging from 0.35 to 1.66 μg mL−1 for the Alpha/Beta/Gamma/Delta and an IC50 of 0.66 μg mL−1 for the currently prevalent Omicron. Competition binding assays show that DL28 blocks ACE2-binding. However, structural characterizations and mutagenesis suggest that unlike most antibodies, the blockage by DL28 does not involve direct competition or steric hindrance. Rather, DL28 may use a “conformation competition” mechanism where it excludes ACE2 by keeping an RBD loop in a conformation incompatible with ACE2-binding.
Collapse
Affiliation(s)
- Tingting Li
- State Key Laboratory of Molecular Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Bingjie Zhou
- University of CAS, Beijing, China.,CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai CAS, Shanghai, China
| | - Zhipu Luo
- Institute of Molecular Enzymology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Yanling Lai
- State Key Laboratory of Molecular Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.,University of CAS, Beijing, China
| | - Suqiong Huang
- University of CAS, Beijing, China.,CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai CAS, Shanghai, China.,College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Yuanze Zhou
- Nanjing Crycision Biotech Co., Ltd., Nanjing, China
| | - Yaning Li
- State Key Laboratory of Molecular Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.,University of CAS, Beijing, China
| | - Anupriya Gautam
- University of CAS, Beijing, China.,CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai CAS, Shanghai, China
| | - Salome Bourgeau
- University of CAS, Beijing, China.,CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai CAS, Shanghai, China.,Institut National de la Santé et de la Recherche Médicale, École des Hautes Etudes en Santé Publique, Institut de Recherche en Santé, Environnement et Travail, Université de Rennes, Rennes, France
| | - Shurui Wang
- Nanjing Crycision Biotech Co., Ltd., Nanjing, China
| | - Juan Bao
- State Key Laboratory of Molecular Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Jingquan Tan
- Nanjing Crycision Biotech Co., Ltd., Nanjing, China
| | - Dimitri Lavillette
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai CAS, Shanghai, China.,Pasteurien College, Soochow University, Suzhou, China
| | - Dianfan Li
- State Key Laboratory of Molecular Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
45
|
Li T, Zhou B, Li Y, Huang S, Luo Z, Zhou Y, Lai Y, Gautam A, Bourgeau S, Wang S, Bao J, Tan J, Lavillette D, Li D. Isolation, characterization, and structure-based engineering of a neutralizing nanobody against SARS-CoV-2. Int J Biol Macromol 2022; 209:1379-1388. [PMID: 35460753 PMCID: PMC9020654 DOI: 10.1016/j.ijbiomac.2022.04.096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/06/2022] [Accepted: 04/13/2022] [Indexed: 11/29/2022]
Abstract
SARS-CoV-2 engages with human cells through the binding of its Spike receptor-binding domain (S-RBD) to the receptor ACE2. Molecular blocking of this engagement represents a proven strategy to treat COVID-19. Here, we report a single-chain antibody (nanobody, DL4) isolated from immunized alpaca with picomolar affinity to RBD. DL4 neutralizes SARS-CoV-2 pseudoviruses with an IC50 of 0.101 μg mL-1 (6.2 nM). A crystal structure of the DL4-RBD complex at 1.75-Å resolution unveils the interaction detail and reveals a direct competition mechanism for DL4's ACE2-blocking and hence neutralizing activity. The structural information allows us to rationally design a mutant with higher potency. Our work adds diversity of neutralizing nanobodies against SARS-CoV-2 and should encourage protein engineering to improve antibody affinities in general.
Collapse
Affiliation(s)
- Tingting Li
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), 320 Yueyang Road, Shanghai 200030, China
| | - Bingjie Zhou
- University of CAS, Beijing 101408, China,CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai CAS, 320 Yueyang Road, Shanghai 200031, China
| | - Yaning Li
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), 320 Yueyang Road, Shanghai 200030, China,University of CAS, Beijing 101408, China
| | - Suqiong Huang
- University of CAS, Beijing 101408, China,CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai CAS, 320 Yueyang Road, Shanghai 200031, China,College of Pharmacy, Chongqing Medical University, China
| | - Zhipu Luo
- Institute of Molecular Enzymology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Yuanze Zhou
- Nanjing Crycision Biotech Co., Ltd., Nanjing, China
| | - Yanling Lai
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), 320 Yueyang Road, Shanghai 200030, China,University of CAS, Beijing 101408, China
| | - Anupriya Gautam
- University of CAS, Beijing 101408, China,CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai CAS, 320 Yueyang Road, Shanghai 200031, China
| | - Salome Bourgeau
- University of CAS, Beijing 101408, China,CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai CAS, 320 Yueyang Road, Shanghai 200031, China,Institut National de la Santé et de la Recherche Médicale, École des Hautes Etudes en Santé Publique, Institut de Recherche en Santé, Environnement et Travail, Université de Rennes, F-35000 Rennes, France
| | - Shurui Wang
- Nanjing Crycision Biotech Co., Ltd., Nanjing, China
| | - Juan Bao
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), 320 Yueyang Road, Shanghai 200030, China
| | - Jingquan Tan
- Nanjing Crycision Biotech Co., Ltd., Nanjing, China
| | - Dimitri Lavillette
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai CAS, 320 Yueyang Road, Shanghai 200031, China; Pasteurien College, Soochow University, Jiangsu, China.
| | - Dianfan Li
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), 320 Yueyang Road, Shanghai 200030, China.
| |
Collapse
|
46
|
Huang K, Ying T, Wu Y. Single-Domain Antibodies as Therapeutics for Respiratory RNA Virus Infections. Viruses 2022; 14:1162. [PMID: 35746634 PMCID: PMC9230756 DOI: 10.3390/v14061162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/21/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022] Open
Abstract
Over the years, infectious diseases with high morbidity and mortality disrupted human healthcare systems and devastated economies globally. Respiratory viruses, especially emerging or re-emerging RNA viruses, including influenza and human coronavirus, are the main pathogens of acute respiratory diseases that cause epidemics or even global pandemics. Importantly, due to the rapid mutation of viruses, there are few effective drugs and vaccines for the treatment and prevention of these RNA virus infections. Of note, a class of antibodies derived from camelid and shark, named nanobody or single-domain antibody (sdAb), was characterized by smaller size, lower production costs, more accessible binding epitopes, and inhalable properties, which have advantages in the treatment of respiratory diseases compared to conventional antibodies. Currently, a number of sdAbs have been developed against various respiratory RNA viruses and demonstrated potent therapeutic efficacy in mouse models. Here, we review the current status of the development of antiviral sdAb and discuss their potential as therapeutics for respiratory RNA viral diseases.
Collapse
Affiliation(s)
- Keke Huang
- MOE/NHC Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China;
| | - Tianlei Ying
- MOE/NHC Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China;
- Shanghai Engineering Research Center for Synthetic Immunology, Shanghai 200032, China
| | - Yanling Wu
- MOE/NHC Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China;
- Shanghai Engineering Research Center for Synthetic Immunology, Shanghai 200032, China
| |
Collapse
|
47
|
Casasnovas JM, Margolles Y, Noriega MA, Guzmán M, Arranz R, Melero R, Casanova M, Corbera JA, Jiménez-de-Oya N, Gastaminza P, Garaigorta U, Saiz JC, Martín-Acebes MÁ, Fernández LÁ. Nanobodies Protecting From Lethal SARS-CoV-2 Infection Target Receptor Binding Epitopes Preserved in Virus Variants Other Than Omicron. Front Immunol 2022; 13:863831. [PMID: 35547740 PMCID: PMC9082315 DOI: 10.3389/fimmu.2022.863831] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/28/2022] [Indexed: 11/28/2022] Open
Abstract
The emergence of SARS-CoV-2 variants that escape from immune neutralization are challenging vaccines and antibodies developed to stop the COVID-19 pandemic. Thus, it is important to establish therapeutics directed toward multiple or specific SARS-CoV-2 variants. The envelope spike (S) glycoprotein of SARS-CoV-2 is the key target of neutralizing antibodies (Abs). We selected a panel of nine nanobodies (Nbs) from dromedary camels immunized with the receptor-binding domain (RBD) of the S, and engineered Nb fusions as humanized heavy chain Abs (hcAbs). Nbs and derived hcAbs bound with subnanomolar or picomolar affinities to the S and its RBD, and S-binding cross-competition clustered them in two different groups. Most of the hcAbs hindered RBD binding to its human ACE2 (hACE2) receptor, blocked cell entry of viruses pseudotyped with the S protein and neutralized SARS-CoV-2 infection in cell cultures. Four potent neutralizing hcAbs prevented the progression to lethal SARS-CoV-2 infection in hACE2-transgenic mice, demonstrating their therapeutic potential. Cryo-electron microscopy identified Nb binding epitopes in and out the receptor binding motif (RBM), and showed different ways to prevent virus binding to its cell entry receptor. The Nb binding modes were consistent with its recognition of SARS-CoV-2 RBD variants; mono and bispecific hcAbs efficiently bound all variants of concern except omicron, which emphasized the immune escape capacity of this latest variant.
Collapse
Affiliation(s)
- José M Casasnovas
- Departments of Macromolecule Structure, Microbial Biotechnology, and Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Yago Margolles
- Departments of Macromolecule Structure, Microbial Biotechnology, and Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - María A Noriega
- Departments of Macromolecule Structure, Microbial Biotechnology, and Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - María Guzmán
- Departments of Macromolecule Structure, Microbial Biotechnology, and Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Rocío Arranz
- Departments of Macromolecule Structure, Microbial Biotechnology, and Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Roberto Melero
- Departments of Macromolecule Structure, Microbial Biotechnology, and Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Mercedes Casanova
- Departments of Macromolecule Structure, Microbial Biotechnology, and Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Juan Alberto Corbera
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria (ULPGC), Campus Universitario de Arucas, Arucas, Spain
| | - Nereida Jiménez-de-Oya
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA, CSIC), Madrid, Spain
| | - Pablo Gastaminza
- Departments of Macromolecule Structure, Microbial Biotechnology, and Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Urtzi Garaigorta
- Departments of Macromolecule Structure, Microbial Biotechnology, and Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Juan Carlos Saiz
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA, CSIC), Madrid, Spain
| | - Miguel Ángel Martín-Acebes
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA, CSIC), Madrid, Spain
| | - Luis Ángel Fernández
- Departments of Macromolecule Structure, Microbial Biotechnology, and Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| |
Collapse
|
48
|
Compte M, Sanz L, Álvarez-Vallina L. Applications of trimerbodies in cancer immunotherapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 369:71-87. [PMID: 35777865 DOI: 10.1016/bs.ircmb.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Trimerbodies, with their unique structural and functional properties, are the basis of a new generation of therapeutic antibodies, which due to their small size and plasticity are ideal for the generation of novel biological protein drugs with multiple competitive advantages over conventional full-length monoclonal antibodies. Since their emergence, trimerbodies have been used in preclinical cancer diagnosis and therapy. Trimerbodies are highly adaptable molecules, as they allow target-specific modulation of T cell-mediated anti-tumor immunity to enhance preexisting responses or to generate de novo immune responses. In fact, a tumor-specific humanized 4-1BB-agonistic trimerbody has shown a rather impressive safety and efficacy profile in preclinical studies making it a realistic option for clinical development. Moreover, thanks to the avidity effect they are endowed with considerable therapeutic potential as carriers to deliver cytotoxic payloads to tumors. In addition, molecular imaging studies could benefit from some intermediate-sized trivalent trimerbodies as promising candidates for targeted therapy and tumor imaging.
Collapse
Affiliation(s)
- Marta Compte
- Department of Antibody Engineering, Leadartis S.L., Madrid, Spain
| | - Laura Sanz
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Madrid, Spain
| | - Luis Álvarez-Vallina
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario12 de Octubre, Madrid, Spain; Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain.
| |
Collapse
|
49
|
Strohl WR, Ku Z, An Z, Carroll SF, Keyt BA, Strohl LM. Passive Immunotherapy Against SARS-CoV-2: From Plasma-Based Therapy to Single Potent Antibodies in the Race to Stay Ahead of the Variants. BioDrugs 2022; 36:231-323. [PMID: 35476216 PMCID: PMC9043892 DOI: 10.1007/s40259-022-00529-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 12/15/2022]
Abstract
The COVID-19 pandemic is now approaching 2 years old, with more than 440 million people infected and nearly six million dead worldwide, making it the most significant pandemic since the 1918 influenza pandemic. The severity and significance of SARS-CoV-2 was recognized immediately upon discovery, leading to innumerable companies and institutes designing and generating vaccines and therapeutic antibodies literally as soon as recombinant SARS-CoV-2 spike protein sequence was available. Within months of the pandemic start, several antibodies had been generated, tested, and moved into clinical trials, including Eli Lilly's bamlanivimab and etesevimab, Regeneron's mixture of imdevimab and casirivimab, Vir's sotrovimab, Celltrion's regdanvimab, and Lilly's bebtelovimab. These antibodies all have now received at least Emergency Use Authorizations (EUAs) and some have received full approval in select countries. To date, more than three dozen antibodies or antibody combinations have been forwarded into clinical trials. These antibodies to SARS-CoV-2 all target the receptor-binding domain (RBD), with some blocking the ability of the RBD to bind human ACE2, while others bind core regions of the RBD to modulate spike stability or ability to fuse to host cell membranes. While these antibodies were being discovered and developed, new variants of SARS-CoV-2 have cropped up in real time, altering the antibody landscape on a moving basis. Over the past year, the search has widened to find antibodies capable of neutralizing the wide array of variants that have arisen, including Alpha, Beta, Gamma, Delta, and Omicron. The recent rise and dominance of the Omicron family of variants, including the rather disparate BA.1 and BA.2 variants, demonstrate the need to continue to find new approaches to neutralize the rapidly evolving SARS-CoV-2 virus. This review highlights both convalescent plasma- and polyclonal antibody-based approaches as well as the top approximately 50 antibodies to SARS-CoV-2, their epitopes, their ability to bind to SARS-CoV-2 variants, and how they are delivered. New approaches to antibody constructs, including single domain antibodies, bispecific antibodies, IgA- and IgM-based antibodies, and modified ACE2-Fc fusion proteins, are also described. Finally, antibodies being developed for palliative care of COVID-19 disease, including the ramifications of cytokine release syndrome (CRS) and acute respiratory distress syndrome (ARDS), are described.
Collapse
Affiliation(s)
| | - Zhiqiang Ku
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Sciences Center, Houston, TX USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Sciences Center, Houston, TX USA
| | | | | | | |
Collapse
|
50
|
Camelid Single-Domain Antibodies: Promises and Challenges as Lifesaving Treatments. Int J Mol Sci 2022; 23:ijms23095009. [PMID: 35563400 PMCID: PMC9100996 DOI: 10.3390/ijms23095009] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 02/07/2023] Open
Abstract
Since the discovery of camelid heavy-chain antibodies in 1993, there has been tremendous excitement for these antibody domains (VHHs/sdAbs/nanobodies) as research tools, diagnostics, and therapeutics. Commercially, several patents were granted to pioneering research groups in Belgium and the Netherlands between 1996–2001. Ablynx was established in 2001 with the aim of exploring the therapeutic applications and development of nanobody drugs. Extensive efforts over two decades at Ablynx led to the first approved nanobody drug, caplacizumab (Cablivi) by the EMA and FDA (2018–2019) for the treatment of rare blood clotting disorders in adults with acquired thrombotic thrombocytopenic purpura (TPP). The relatively long development time between camelid sdAb discovery and their entry into the market reflects the novelty of the approach, together with intellectual property restrictions and freedom-to-operate issues. The approval of the first sdAb drug, together with the expiration of key patents, may open a new horizon for the emergence of camelid sdAbs as mainstream biotherapeutics in the years to come. It remains to be seen if nanobody-based drugs will be cheaper than traditional antibodies. In this review, I provide critical perspectives on camelid sdAbs and present the promises and challenges to their widespread adoption as diagnostic and therapeutic agents.
Collapse
|