1
|
Day G, Robb K, Oxley A, Telonis-Scott M, Ujvari B. Organisation and evolution of the major histocompatibility complex class I genes in cetaceans. iScience 2024; 27:109590. [PMID: 38632986 PMCID: PMC11022044 DOI: 10.1016/j.isci.2024.109590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/30/2023] [Accepted: 03/25/2024] [Indexed: 04/19/2024] Open
Abstract
A quarter of marine mammals are at risk of extinction, with disease and poor habitat quality contributing to population decline. Investigation of the Major Histocompatibility Complex (MHC) provides insight into species' capacity to respond to immune and environmental challenges. The eighteen available cetacean chromosome level genomes were used to annotate MHC Class I loci, and to reconstruct the phylogenetic relationship of the described loci. The highest number of loci was observed in the striped dolphin (Stenella coeruleoalba), while the least was observed in the pygmy sperm whale (Kogia breviceps) and rough toothed dolphin (Steno bredanensis). Of the species studied, Mysticetes had the most pseudogenes. Evolutionarily, MHC Class I diverged before the speciation of cetaceans. Yet, locus one was genomically and phylogenetically similar in many species, persisting over evolutionary time. This characterisation of MHC Class I in cetaceans lays the groundwork for future population genetics and MHC expression studies.
Collapse
Affiliation(s)
- Grace Day
- School of Life and Environmental Sciences, Deakin University, Geelong 3216, VIC, Australia
- Marine Mammal Foundation, Melbourne 3194, VIC, Australia
| | - Kate Robb
- Marine Mammal Foundation, Melbourne 3194, VIC, Australia
| | - Andrew Oxley
- School of Life and Environmental Sciences, Deakin University, Geelong 3216, VIC, Australia
| | - Marina Telonis-Scott
- School of Life and Environmental Sciences, Deakin University, Melbourne 3125, VIC, Australia
| | - Beata Ujvari
- School of Life and Environmental Sciences, Deakin University, Geelong 3216, VIC, Australia
| |
Collapse
|
2
|
Lam DK, Frantz AC, Burke T, Geffen E, Sin SYW. Both selection and drift drive the spatial pattern of adaptive genetic variation in a wild mammal. Evolution 2023; 77:221-238. [PMID: 36626810 DOI: 10.1093/evolut/qpac014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 10/03/2022] [Accepted: 11/04/2022] [Indexed: 01/12/2023]
Abstract
The major histocompatibility complex (MHC) has been intensively studied for the relative effects of different evolutionary forces in recent decades. Pathogen-mediated balancing selection is generally thought to explain the high polymorphism observed in MHC genes, but it is still unclear to what extent MHC diversity is shaped by selection relative to neutral drift. In this study, we genotyped MHC class II DRB genes and 15 neutral microsatellite loci across 26 geographic populations of European badgers (Meles meles) covering most of their geographic range. By comparing variation of microsatellite and diversity of MHC at different levels, we demonstrate that both balancing selection and drift have shaped the evolution of MHC genes. When only MHC allelic identity was investigated, the spatial pattern of MHC variation was similar to that of microsatellites. By contrast, when functional aspects of the MHC diversity (e.g., immunological supertypes) were considered, balancing selection appears to decrease genetic structuring across populations. Our comprehensive sampling and analytical approach enable us to conclude that the likely mechanisms of selection are heterozygote advantage and/or rare-allele advantage. This study is a clear demonstration of how both balancing selection and genetic drift simultaneously affect the evolution of MHC genes in a widely distributed wild mammal.
Collapse
Affiliation(s)
- Derek Kong Lam
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Alain C Frantz
- Musée National d'Histoire Naturelle, Luxembourg, Luxembourg
| | - Terry Burke
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Eli Geffen
- School of Zoology, Tel Aviv University, Tel Aviv, Israel
| | - Simon Yung Wa Sin
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
3
|
Petitjean Q, Jean S, Côte J, Larcher T, Angelier F, Ribout C, Perrault A, Laffaille P, Jacquin L. Direct and indirect effects of multiple environmental stressors on fish health in human-altered rivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140657. [PMID: 32721751 DOI: 10.1016/j.scitotenv.2020.140657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
Freshwater fish face multiple challenges in human-altered rivers such as trace metal contamination, temperature increase and parasitism. These multiple stressors could have unexpected interactive effects on fish health due to shared physiological pathways, but few studies investigated this question in wild fish populations. In this study, we compared 16 populations of gudgeon (Gobio occitaniae) distributed along perturbation gradients in human-altered rivers in the South of France. We tested the effects of single and combined stressors (i.e., metal contamination, temperature, parasitism) on key traits linked to fish health across different biological levels using a Structural Equation Modelling approach. Parasitism and temperature alone had limited deleterious effects on fish health. In contrast, fish living in metal-contaminated sites had higher metal bioaccumulation and higher levels of cellular damage in the liver through the induction of an inflammatory response. In addition, temperature and contamination had interactive negative effects on growth. These results suggest that trace metal contamination has deleterious effects on fish health at environmentally realistic concentrations and that temperature can modulate the effects of trace metals on fish growth. With this study, we hope to encourage integrative approaches in realistic field conditions to better predict the effects of natural and anthropogenic stressors on aquatic organisms.
Collapse
Affiliation(s)
- Quentin Petitjean
- EcoLab, Laboratoire écologie fonctionnelle et environnement, UMR5245, Université de Toulouse, CNRS, Toulouse, France; EDB, UMR5174 EDB, Université de Toulouse, CNRS, IRD, UPS, 118 route de Narbonne, Toulouse, France; LTSER France, Zone Atelier PYGAR "Pyrénées-Garonne", Auzeville-Tolosane, France.
| | - Séverine Jean
- EcoLab, Laboratoire écologie fonctionnelle et environnement, UMR5245, Université de Toulouse, CNRS, Toulouse, France; LTSER France, Zone Atelier PYGAR "Pyrénées-Garonne", Auzeville-Tolosane, France
| | - Jessica Côte
- EDB, UMR5174 EDB, Université de Toulouse, CNRS, IRD, UPS, 118 route de Narbonne, Toulouse, France; LTSER France, Zone Atelier PYGAR "Pyrénées-Garonne", Auzeville-Tolosane, France
| | - Thibaut Larcher
- INRA-Oniris, PAnTher APEX, La Chantrerie, 44307 Nantes, France
| | - Fréderic Angelier
- Centre d'Etudes Biologiques de Chizé, UMR 7372, Université de la Rochelle, CNRS, Villiers en Bois, France
| | - Cécile Ribout
- Centre d'Etudes Biologiques de Chizé, UMR 7372, Université de la Rochelle, CNRS, Villiers en Bois, France
| | - Annie Perrault
- EcoLab, Laboratoire écologie fonctionnelle et environnement, UMR5245, Université de Toulouse, CNRS, Toulouse, France; LTSER France, Zone Atelier PYGAR "Pyrénées-Garonne", Auzeville-Tolosane, France
| | - Pascal Laffaille
- EcoLab, Laboratoire écologie fonctionnelle et environnement, UMR5245, Université de Toulouse, CNRS, Toulouse, France; LTSER France, Zone Atelier PYGAR "Pyrénées-Garonne", Auzeville-Tolosane, France
| | - Lisa Jacquin
- EDB, UMR5174 EDB, Université de Toulouse, CNRS, IRD, UPS, 118 route de Narbonne, Toulouse, France; LTSER France, Zone Atelier PYGAR "Pyrénées-Garonne", Auzeville-Tolosane, France
| |
Collapse
|
4
|
E GX, Chen LP, Zhou DK, Yang BG, Zhang JH, Zhao YJ, Hong QH, Ma YH, Chu MX, Zhang LP, Basang WD, Zhu YB, Han YG, Na RS, Zeng Y, Zhao ZQ, Huang YF, Han JL. Evolutionary relationship and population structure of domestic Bovidae animals based on MHC-linked and neutral autosomal microsatellite markers. Mol Immunol 2020; 124:83-90. [PMID: 32544655 DOI: 10.1016/j.molimm.2020.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/21/2020] [Accepted: 05/07/2020] [Indexed: 11/26/2022]
Abstract
Major histocompatibility complex (MHC) genes are critical for disease resistance or susceptibility responsible for host-pathogen interactions determined mainly by extensive polymorphisms in the MHC genes. Here, we examined the diversity and phylogenetic pattern of MHC haplotypes reconstructed using three MHC-linked microsatellite markers in 55 populations of five Bovidae species and compared them with those based on neutral autosomal microsatellite markers (NAMs). Three-hundred-and-forty MHC haplotypes were identified in 1453 Bovidae individuals, suggesting significantly higher polymorphism and heterozygosity compared with those based on NAMs. The ambitious boundaries in population differentiation (phylogenetic network, pairwise FST and STRUCTURE analyses) within and between species assessed using the MHC haplotypes were different from those revealed by NAMs associated closely with speciation, geographical distribution, domestication and management histories. In addition, the mean FST was significantly correlated negatively with the number of observed alleles (NA), observed (HO) and expected (HE) heterozygosity and polymorphism information content (PIC) (P < 0.05) in the MHC haplotype dataset while there was no correction of the mean FST estimates (P> 0.05) between the MHC haplotype and NAMs datasets. Analysis of molecular variance (AMOVA) revealed a lower percentage of total variance (PTV) between species/groups based on the MHC-linked microsatellites than NAMs. Therefore, it was inferred that individuals within populations accumulated as many MHC variants as possible to increase their heterozygosity and thus the survival rate of their affiliated populations and species, which eventually reduced population differentiation and thereby complicated their classification and phylogenetic relationship inference. In summary, host-pathogen coevolution and heterozygote advantage, rather than demographic history, act as key driving forces shaping the MHC diversity within the populations and determining the interspecific MHC diversity.
Collapse
Affiliation(s)
- Guang-Xin E
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivores, Chongqing Engineering Research Centre for Herbivore Resource Protection and Utilization, Southwest University, Chongqing 400716, China
| | - Li-Peng Chen
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivores, Chongqing Engineering Research Centre for Herbivore Resource Protection and Utilization, Southwest University, Chongqing 400716, China
| | - Dong-Ke Zhou
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivores, Chongqing Engineering Research Centre for Herbivore Resource Protection and Utilization, Southwest University, Chongqing 400716, China
| | - Bai-Gao Yang
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivores, Chongqing Engineering Research Centre for Herbivore Resource Protection and Utilization, Southwest University, Chongqing 400716, China
| | - Jia-Hua Zhang
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivores, Chongqing Engineering Research Centre for Herbivore Resource Protection and Utilization, Southwest University, Chongqing 400716, China
| | - Yong-Ju Zhao
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivores, Chongqing Engineering Research Centre for Herbivore Resource Protection and Utilization, Southwest University, Chongqing 400716, China
| | - Qiong-Hua Hong
- Yunnan Animal Science and Veterinary Institute, Kunming 650224, China
| | - Yue-Hui Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Ming-Xing Chu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Lu-Pei Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Wang-Dui Basang
- State Key Laboratory of Barley and Yak Germplasm Resources and Genetic Improvement (Tibet Academy of Agricultural and Animal Husbandry Science (TAAAS)), Lhasa 850002, China
| | - Yan-Bin Zhu
- State Key Laboratory of Barley and Yak Germplasm Resources and Genetic Improvement (Tibet Academy of Agricultural and Animal Husbandry Science (TAAAS)), Lhasa 850002, China
| | - Yan-Guo Han
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivores, Chongqing Engineering Research Centre for Herbivore Resource Protection and Utilization, Southwest University, Chongqing 400716, China
| | - Ri-Su Na
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivores, Chongqing Engineering Research Centre for Herbivore Resource Protection and Utilization, Southwest University, Chongqing 400716, China
| | - Yan Zeng
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivores, Chongqing Engineering Research Centre for Herbivore Resource Protection and Utilization, Southwest University, Chongqing 400716, China
| | - Zhong-Quan Zhao
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivores, Chongqing Engineering Research Centre for Herbivore Resource Protection and Utilization, Southwest University, Chongqing 400716, China
| | - Yong-Fu Huang
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivores, Chongqing Engineering Research Centre for Herbivore Resource Protection and Utilization, Southwest University, Chongqing 400716, China.
| | - Jian-Lin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; Livestock Genetics Program, International Livestock Research Institute (ILRI), Nairobi 00100, Kenya.
| |
Collapse
|
5
|
O'Connor EA, Hasselquist D, Nilsson JÅ, Westerdahl H, Cornwallis CK. Wetter climates select for higher immune gene diversity in resident, but not migratory, songbirds. Proc Biol Sci 2020; 287:20192675. [PMID: 31992169 PMCID: PMC7015325 DOI: 10.1098/rspb.2019.2675] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Pathogen communities can vary substantially between geographical regions due to different environmental conditions. However, little is known about how host immune systems respond to environmental variation across macro-ecological and evolutionary scales. Here, we select 37 species of songbird that inhabit diverse environments, including African and Palaearctic residents and Afro-Palaearctic migrants, to address how climate and habitat have influenced the evolution of key immune genes, the major histocompatibility complex class I (MHC-I). Resident species living in wetter regions, especially in Africa, had higher MHC-I diversity than species living in drier regions, irrespective of the habitats they occupy. By contrast, no relationship was found between MHC-I diversity and precipitation in migrants. Our results suggest that the immune system of birds has evolved greater pathogen recognition in wetter tropical regions. Furthermore, evolving transcontinental migration appears to have enabled species to escape wet, pathogen-rich areas at key periods of the year, relaxing selection for diversity in immune genes and potentially reducing immune system costs.
Collapse
|
6
|
Arauco-Shapiro G, Schumacher KI, Boersma D, Bouzat JL. The role of demographic history and selection in shaping genetic diversity of the Galápagos penguin (Spheniscus mendiculus). PLoS One 2020; 15:e0226439. [PMID: 31910443 PMCID: PMC6946592 DOI: 10.1371/journal.pone.0226439] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/26/2019] [Indexed: 11/25/2022] Open
Abstract
Although many studies have documented the effects of demographic bottlenecks on the genetic diversity of natural populations, there is conflicting evidence of the roles that genetic drift and selection may play in driving changes in genetic variation at adaptive loci. We analyzed genetic variation at microsatellite and mitochondrial loci in conjunction with an adaptive MHC class II locus in the Galápagos penguin (Spheniscus mendiculus), a species that has undergone serial demographic bottlenecks associated with El Niño events through its evolutionary history. We compared levels of variation in the Galápagos penguin to those of its congener, the Magellanic penguin (Spheniscus magellanicus), which has consistently maintained a large population size and thus was used as a non-bottlenecked control. The comparison of neutral and adaptive markers in these two demographically distinct species allowed assessment of the potential role of balancing selection in maintaining levels of MHC variation during bottleneck events. Our analysis suggests that the lack of genetic diversity at both neutral and adaptive loci in the Galápagos penguin likely resulted from its restricted range, relatively low abundance, and history of demographic bottlenecks. The Galápagos penguin revealed two MHC alleles, one mitochondrial haplotype, and six alleles across five microsatellite loci, which represents only a small fraction of the diversity detected in Magellanic penguins. Despite the decreased genetic diversity in the Galápagos penguin, results revealed signals of balancing selection at the MHC, which suggest that selection can mitigate some of the effects of genetic drift during bottleneck events. Although Galápagos penguin populations have persisted for a long time, increased frequency of El Niño events due to global climate change, as well as the low diversity exhibited at immunological loci, may put this species at further risk of extinction.
Collapse
Affiliation(s)
- Gabriella Arauco-Shapiro
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, United States of America
| | - Katelyn I. Schumacher
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, United States of America
| | - Dee Boersma
- Center for Ecosystem Sentinels and Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Juan L. Bouzat
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, United States of America
| |
Collapse
|
7
|
Mohammed RS, King SD, Bentzen P, Marcogliese D, van Oosterhout C, Lighten J. Parasite diversity and ecology in a model species, the guppy ( Poecilia reticulata) in Trinidad. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191112. [PMID: 32218941 PMCID: PMC7029902 DOI: 10.1098/rsos.191112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
The guppy (Poecilia reticulata) is a model species in ecology and evolution. Many studies have examined effects of predators on guppy behaviour, reproduction, survival strategies, feeding and other life-history traits, but few have studied variation in their parasite diversity. We surveyed parasites of 18 Trinidadian populations of guppy, to provide insight on the geographical mosaic of parasite variability, which may act as a source of natural selection acting on guppies. We found 21 parasite species, including five new records for Trinidad. Spatial variation in parasite diversity was significantly higher than that of piscine predators, and significant variation in parasite richness among individuals and populations was correlated with: (i) host size, (ii) snail species richness, and (iii) the distance between populations. Differences in parasite species richness are likely to play an important, yet underestimated role in the biology of this model species of vertebrate ecology and evolution.
Collapse
Affiliation(s)
- Ryan S. Mohammed
- Department of Life Sciences, The University of the West Indies, St Augustine, Trinidad and Tobago
| | - Stanley D. King
- Biology Department, Dalhousie University, 1355 Oxford Street, Halifax, Nova Scotia, Canada B3H4R2
| | - Paul Bentzen
- Biology Department, Dalhousie University, 1355 Oxford Street, Halifax, Nova Scotia, Canada B3H4R2
| | - David Marcogliese
- Environment and Climate Change Canada, St Lawrence Centre, 105 McGill, Montreal, Quebec, Canada HY2 2E7
- St Andrews Biological Station, Department of Fisheries and Oceans Canada, 125 Marine Science Drive, St Andrews, New Brunswick, Canada E5B 0E4
| | - Cock van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Jackie Lighten
- Biosciences, University of Exeter, Stocker Road, Exeter EX4 4PY, UK
| |
Collapse
|
8
|
Wang XH, Li J, Zhang LM, He ZW, Mei QM, Gong X, Jian SG. Population Differentiation and Demographic History of the Cycas taiwaniana Complex (Cycadaceae) Endemic to South China as Indicated by DNA Sequences and Microsatellite Markers. Front Genet 2019; 10:1238. [PMID: 31921292 PMCID: PMC6935862 DOI: 10.3389/fgene.2019.01238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/08/2019] [Indexed: 11/13/2022] Open
Abstract
Historical geology, climatic oscillations, and seed dispersal capabilities are thought to influence the population dynamics and genetics of plants, especially for distribution-restricted and threatened species. Investigating the genetic resources within and among taxa is a prerequisite for conservation management. The Cycas taiwaniana complex consists of six endangered species that are endemic to South China. In this study, we investigated the relationship between phylogeographic history and the genetic structure of the C. taiwaniana complex. To estimate the phylogeographic history of the complex, we assessed the genetic structure and divergence time, and performed phylogenetic and demographic historical analyses. Two chloroplast DNA intergenic regions (cpDNA), two single-copy nuclear genes (SCNGs), and six microsatellite loci (SSR) were sequenced for 18 populations. The SCNG data indicated a high genetic diversity within populations, a low genetic diversity among populations, and significant genetic differentiation among populations. Significant phylogeographical structure was detected. Structure and phylogenetic analyses both revealed that the 18 populations of the C. taiwaniana complex have two main lineages, which were estimated to diverge in the Middle Pleistocene. We propose that Cycas fairylakea was incorporated into Cycas szechuanensis and that the other populations, which are mainly located on Hainan Island, merged into one lineage. Bayesian skyline plot analyses revealed that the C. taiwaniana complex experienced a recent decline, suggesting that the complex probably experienced a bottleneck event. We infer that the genetic structure of the C. taiwaniana complex has been affected by Pleistocene climate shifts, sea-level oscillations, and human activities. In addition to providing new insights into the evolutionary legacy of the genus, the genetic characterizations will be useful for the conservation of Cycas species.
Collapse
Affiliation(s)
- Xin-Hui Wang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Jie Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Li-Min Zhang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Zi-Wen He
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qi-Ming Mei
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xun Gong
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Shu-Guang Jian
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
9
|
Talarico L, Babik W, Marta S, Pietrocini V, Mattoccia M. MHC structuring and divergent allele advantage in a urodele amphibian: a hierarchical multi-scale approach. Heredity (Edinb) 2019; 123:593-607. [PMID: 31036951 PMCID: PMC6972932 DOI: 10.1038/s41437-019-0221-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/31/2019] [Accepted: 03/31/2019] [Indexed: 12/27/2022] Open
Abstract
Proteins encoded by extraordinarily polymorphic major histocompatibility complex (MHC) genes are involved in the adaptive immune response. Balancing selection is believed to maintain MHC polymorphism in the long term, although neutral processes also play a role in shaping MHC diversity. However, the relative contribution of these processes is poorly understood. Here we characterized MHC class II variation of a low-dispersal, pond-breeding newt (Triturus carnifex) over a restricted, geographically structured area. We aimed to (1) evaluate the contribution of selection and neutral processes to shaping MHC diversity at two geographic scales, and (2) test for signatures of divergent allele advantage (DAA), which is a potentially important mechanism of balancing selection. The dominant role of selection in shaping MHC variation was suggested by the lack of correlation between MHC and neutral (microsatellite) variation. Although most variation occurred within populations for both types of markers, they differed in the extent of structuring at the two spatial scales. MHC structuring was more pronounced at local scales, suggesting the role of local selection, while structuring was not detectable at a larger scale, possibly due to the effect of balancing selection. Microsatellites showed the opposite pattern. As expected under DAA, the observed genotypes combined more sequence diversity than expected under a random association of alleles. Thus, DAA may contribute to maintaining MHC polymorphism, which is ancient, as supported by signatures of historical positive selection and trans-species polymorphism. Our results point to the importance of a multi-scale approach in studying MHC variation, especially in low-dispersal taxa, which are genetically structured at fine spatial scales.
Collapse
Affiliation(s)
- Lorenzo Talarico
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, Rome, 00133, Italy.
| | - Wiesław Babik
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Silvio Marta
- Department of Environmental Sciences and Policy, University of Milan, Via G. Celoria 26, Milan, 20133, Italy
| | - Venusta Pietrocini
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, Rome, 00133, Italy
| | - Marco Mattoccia
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, Rome, 00133, Italy
| |
Collapse
|
10
|
Blondel L, Baillie L, Quinton J, Alemu JB, Paterson I, Hendry AP, Bentzen P. Evidence for contemporary and historical gene flow between guppy populations in different watersheds, with a test for associations with adaptive traits. Ecol Evol 2019; 9:4504-4517. [PMID: 31031923 PMCID: PMC6476793 DOI: 10.1002/ece3.5033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 01/18/2023] Open
Abstract
In dendritic river systems, gene flow is expected to occur primarily within watersheds. Yet, rare cross-watershed transfers can also occur, whether mediated by (often historical) geological events or (often contemporary) human activities. We explored these events and their potential evolutionary consequences by analyzing patterns of neutral genetic variation (microsatellites) and adaptive phenotypic variation (male color) in wild guppies (Poecilia reticulata) distributed across two watersheds in northern Trinidad. We found the expected signatures of within-watershed gene flow; yet we also inferred at least two instances of cross-watershed gene flow-one in the upstream reaches and one further downstream. The upstream cross-watershed event appears to be very recent (41 ± 13 years), suggesting dispersal via recent flooding or undocumented human-mediated transport. The downstream cross-watershed event appears to be considerably older (577 ± 265 years), suggesting a role for rare geological or climatological events. Alongside these strong signatures of both contemporary and historical gene flow, we found little evidence of impacts on presumably adaptive phenotypic differentiation, except perhaps in the one instance of very recent cross-watershed gene flow. Selection in this system seems to overpower gene flow-at least on the spatiotemporal scales investigated here.
Collapse
Affiliation(s)
- Léa Blondel
- Redpath Museum and Department of BiologyMcGill UniversityMontrealQuébecCanada
| | - Lyndsey Baillie
- University of British ColumbiaVancouverBritish ColumbiaCanada
| | - Jessica Quinton
- Department of BiologyDalhousie UniversityHalifaxNova ScotiaCanada
| | - Jahson B. Alemu
- Department of Life SciencesThe University of the West IndiesSt. AugustineTrinidad and Tobago
| | - Ian Paterson
- Department of BiologyDalhousie UniversityHalifaxNova ScotiaCanada
| | - Andrew P. Hendry
- Redpath Museum and Department of BiologyMcGill UniversityMontrealQuébecCanada
| | - Paul Bentzen
- Department of BiologyDalhousie UniversityHalifaxNova ScotiaCanada
| |
Collapse
|
11
|
Montero BK, Refaly E, Ramanamanjato J, Randriatafika F, Rakotondranary SJ, Wilhelm K, Ganzhorn JU, Sommer S. Challenges of next-generation sequencing in conservation management: Insights from long-term monitoring of corridor effects on the genetic diversity of mouse lemurs in a fragmented landscape. Evol Appl 2019; 12:425-442. [PMID: 30828365 PMCID: PMC6383737 DOI: 10.1111/eva.12723] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 09/24/2018] [Accepted: 09/30/2018] [Indexed: 01/30/2023] Open
Abstract
Long-term genetic monitoring of populations is essential for efforts aimed at preserving genetic diversity of endangered species. Here, we employ a framework of long-term genetic monitoring to evaluate the effects of fragmentation and the effectiveness of the establishment of corridors in restoring population connectivity and genetic diversity of mouse lemurs Microcebus ganzhorni. To this end, we supplement estimates of neutral genetic diversity with the assessment of adaptive genetic variability of the major histocompatibility complex (MHC). In addition, we address the challenges of long-term genetic monitoring of functional diversity by comparing the genotyping performance and estimates of MHC variability generated by single-stranded conformation polymorphism (SSCP)/Sanger sequencing with those obtained by high-throughput sequencing (next-generation sequencing [NGS], Illumina), an issue that is particularly relevant when previous work serves as a baseline for planning management strategies that aim to ensure the viability of a population. We report that SSCP greatly underestimates individual diversity and that discrepancies in estimates of MHC diversity attributable to the comparisons of traditional and NGS genotyping techniques can influence the conclusions drawn from conservation management scenarios. Evidence of migration among fragments in Mandena suggests that mouse lemurs are robust to the process of fragmentation and that the effect of corridors is masked by ongoing gene flow. Nonetheless, results based on a larger number of shared private alleles at neutral loci between fragment pairs found after the establishment of corridors in Mandena suggest that gene flow is augmented as a result of enhanced connectivity. Our data point out that despite low effective population size, M. ganzhorni maintains high individual heterozygosity at neutral loci and at MHC II DRB gene and that selection plays a predominant role in maintaining MHC diversity. These findings highlight the importance of long-term genetic monitoring in order to disentangle between the processes of drift and selection maintaining adaptive genetic diversity in small populations.
Collapse
Affiliation(s)
- B. Karina Montero
- Animal Ecology and ConservationHamburg UniversityHamburgGermany
- Institute of Evolutionary Ecology and Conservation GenomicsUniversity of UlmUlmGermany
| | | | | | | | | | - Kerstin Wilhelm
- Institute of Evolutionary Ecology and Conservation GenomicsUniversity of UlmUlmGermany
| | | | - Simone Sommer
- Institute of Evolutionary Ecology and Conservation GenomicsUniversity of UlmUlmGermany
| |
Collapse
|
12
|
Heimeier D, Alexander A, Hamner RM, Pichler F, Baker CS. The Influence of Selection on MHC DQA and DQB Haplotypes in the Endemic New Zealand Hector’s and Māui Dolphins. J Hered 2018; 109:744-756. [DOI: 10.1093/jhered/esy050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 09/19/2018] [Indexed: 01/15/2023] Open
Affiliation(s)
- Dorothea Heimeier
- School of Biological Sciences, University of Auckland, Private Bag, Auckland, New Zealand
| | - Alana Alexander
- Biodiversity Institute, University of Kansas, Jayhawk Boulevard, Lawrence, KS
| | - Rebecca M Hamner
- Marine Mammal Institute and Department of Fisheries and Wildlife, Hatfield Marine Science Center, Oregon State University, SE Marine Science Drive, Newport, OR
- School of Biological Sciences, University of Auckland, Private Bag, Auckland, New Zealand
| | - Franz Pichler
- School of Biological Sciences, University of Auckland, Private Bag, Auckland, New Zealand
| | - C Scott Baker
- Marine Mammal Institute and Department of Fisheries and Wildlife, Hatfield Marine Science Center, Oregon State University, SE Marine Science Drive, Newport, OR
- School of Biological Sciences, University of Auckland, Private Bag, Auckland, New Zealand
| |
Collapse
|
13
|
O’Connor EA, Cornwallis CK, Hasselquist D, Nilsson JÅ, Westerdahl H. The evolution of immunity in relation to colonization and migration. Nat Ecol Evol 2018; 2:841-849. [DOI: 10.1038/s41559-018-0509-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 02/19/2018] [Indexed: 12/12/2022]
|
14
|
Lighten J, Papadopulos AST, Mohammed RS, Ward BJ, G Paterson I, Baillie L, Bradbury IR, Hendry AP, Bentzen P, van Oosterhout C. Evolutionary genetics of immunological supertypes reveals two faces of the Red Queen. Nat Commun 2017; 8:1294. [PMID: 29101318 PMCID: PMC5670221 DOI: 10.1038/s41467-017-01183-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 08/23/2017] [Indexed: 11/09/2022] Open
Abstract
Red Queen host-parasite co-evolution can drive adaptations of immune genes by positive selection that erodes genetic variation (Red Queen arms race) or results in a balanced polymorphism (Red Queen dynamics) and long-term preservation of genetic variation (trans-species polymorphism). These two Red Queen processes are opposite extremes of the co-evolutionary spectrum. Here we show that both Red Queen processes can operate simultaneously by analysing the major histocompatibility complex (MHC) in guppies (Poecilia reticulata and P. obscura) and swamp guppies (Micropoecilia picta). Sub-functionalisation of MHC alleles into 'supertypes' explains how polymorphisms persist during rapid host-parasite co-evolution. Simulations show the maintenance of supertypes as balanced polymorphisms, consistent with Red Queen dynamics, whereas alleles within supertypes are subject to positive selection in a Red Queen arms race. Building on the divergent allele advantage hypothesis, we show that functional aspects of allelic diversity help to elucidate the evolution of polymorphic genes involved in Red Queen co-evolution.
Collapse
Affiliation(s)
- Jackie Lighten
- School of Environmental Sciences, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK.
| | - Alexander S T Papadopulos
- Molecular Ecology and Fisheries Genetics Laboratory, Environment Centre Wales, School of Biological Sciences, Bangor University, Bangor, LL57 2UW, UK
| | - Ryan S Mohammed
- Department of Life Sciences, The University of the West Indies, St Augustine, Trinidad and Tobago
| | - Ben J Ward
- Earlham Institute, Norwich Research Park Innovation Centre, Colney Lane, Norwich, NR4 7UZ, UK
| | - Ian G Paterson
- Marine Gene Probe Laboratory, Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, NS, Canada, B3H 4R2
| | - Lyndsey Baillie
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, Canada, V6T 1Z4
| | - Ian R Bradbury
- Marine Gene Probe Laboratory, Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, NS, Canada, B3H 4R2.,Science Branch, Department of Fisheries and Oceans Canada, 80 East White Hills Road, St. John's, NL, Canada, A1C 5X1
| | - Andrew P Hendry
- McGill University, 859 Sherbrooke Street West, Montreal, QC, Canada, H3A 0C4.,Redpath Museum, McGill University, 859 Sherbrooke Street West, Montreal, QC, Canada, H3A 0C4
| | - Paul Bentzen
- Marine Gene Probe Laboratory, Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, NS, Canada, B3H 4R2
| | - Cock van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK.
| |
Collapse
|
15
|
Hook, Line and Infection: A Guide to Culturing Parasites, Establishing Infections and Assessing Immune Responses in the Three-Spined Stickleback. ADVANCES IN PARASITOLOGY 2017; 98:39-109. [PMID: 28942772 DOI: 10.1016/bs.apar.2017.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The three-spined stickleback (Gasterosteus aculeatus) is a model organism with an extremely well-characterized ecology, evolutionary history, behavioural repertoire and parasitology that is coupled with published genomic data. These small temperate zone fish therefore provide an ideal experimental system to study common diseases of coldwater fish, including those of aquacultural importance. However, detailed information on the culture of stickleback parasites, the establishment and maintenance of infections and the quantification of host responses is scattered between primary and grey literature resources, some of which is not readily accessible. Our aim is to lay out a framework of techniques based on our experience to inform new and established laboratories about culture techniques and recent advances in the field. Here, essential knowledge on the biology, capture and laboratory maintenance of sticklebacks, and their commonly studied parasites is drawn together, highlighting recent advances in our understanding of the associated immune responses. In compiling this guide on the maintenance of sticklebacks and a range of common, taxonomically diverse parasites in the laboratory, we aim to engage a broader interdisciplinary community to consider this highly tractable model when addressing pressing questions in evolution, infection and aquaculture.
Collapse
|
16
|
Marmesat E, Schmidt K, Saveljev AP, Seryodkin IV, Godoy JA. Retention of functional variation despite extreme genomic erosion: MHC allelic repertoires in the Lynx genus. BMC Evol Biol 2017; 17:158. [PMID: 28676046 PMCID: PMC5496644 DOI: 10.1186/s12862-017-1006-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/23/2017] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Demographic bottlenecks erode genetic diversity and may increase endangered species' extinction risk via decreased fitness and adaptive potential. The genetic status of species is generally assessed using neutral markers, whose dynamic can differ from that of functional variation due to selection. The MHC is a multigene family described as the most important genetic component of the mammalian immune system, with broad implications in ecology and evolution. The genus Lynx includes four species differing immensely in demographic history and population size, which provides a suitable model to study the genetic consequences of demographic declines: the Iberian lynx being an extremely bottlenecked species and the three remaining ones representing common and widely distributed species. We compared variation in the most variable exon of the MHCI and MHCII-DRB loci among the four species of the Lynx genus. RESULTS The Iberian lynx was characterised by lower number of MHC alleles than its sister species (the Eurasian lynx). However, it maintained most of the functional genetic variation at MHC loci present in the remaining and genetically healthier lynx species at all nucleotide, amino acid, and supertype levels. CONCLUSIONS Species-wide functional genetic diversity can be maintained even in the face of severe population bottlenecks, which caused devastating whole genome genetic erosion. This could be the consequence of divergent alleles being retained across paralogous loci, an outcome that, in the face of frequent gene conversion, may have been favoured by balancing selection.
Collapse
Affiliation(s)
- Elena Marmesat
- Department of Integrative Ecology, Estación Biológica de Doñana (CSIC), C/Américo Vespucio, 26, 41092, Sevilla, Spain
| | - Krzysztof Schmidt
- Mammal Research Institute, Polish Academy of Sciences, 17-230, Białowieża, Poland
| | - Alexander P Saveljev
- Department of Animal Ecology, Russian Research Institute of Game Management and Fur Farming, 79 Preobrazhenskaya Str, Kirov, 610000, Russia
| | - Ivan V Seryodkin
- Laboratory of Ecology and Conservation of Animals, Pacific Institute of Geography of Far East Branch of Russian Academy of Sciences, 7 Radio Street, Vladivostok, 690041, Russia
- Far Eastern Federal University, 8 Sukhanova Street, Vladivostok, 690091, Russia
| | - José A Godoy
- Department of Integrative Ecology, Estación Biológica de Doñana (CSIC), C/Américo Vespucio, 26, 41092, Sevilla, Spain.
| |
Collapse
|
17
|
Small-scale intraspecific patterns of adaptive immunogenetic polymorphisms and neutral variation in Lake Superior lake trout. Immunogenetics 2017; 70:53-66. [PMID: 28547520 DOI: 10.1007/s00251-017-0996-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 04/26/2017] [Indexed: 10/19/2022]
Abstract
Many fishes express high levels of intraspecific variability, often linked to resource partitioning. Several studies show that a species' evolutionary trajectory of adaptive divergence can undergo reversals caused by changes in its environment. Such a reversal in neutral genetic and morphological variation among lake trout Salvelinus namaycush ecomorphs appears to be underway in Lake Superior. However, a water depth gradient in neutral genetic divergence was found to be associated with intraspecific diversity in the lake. To investigate patterns of adaptive immunogenetic variation among lake trout ecomorphs, we used Illumina high-throughput sequencing. The population's genetic structure of the major histocompatibility complex (MHC Class IIβ exon 2) and 18 microsatellite loci were compared to disentangle neutral and selective processes at a small geographic scale. Both MHC and microsatellite variation were partitioned more by water depth stratum than by ecomorph. Several metrics showed strong clustering by water depth in MHC alleles, but not microsatellites. We report a 75% increase in the number of MHC alleles shared between the predominant shallow and deep water ecomorphs since a previous lake trout MHC study at the same locale (c. 1990s data). This result is consistent with the reverse speciation hypothesis, although adaptive MHC polymorphisms persist along an ecological gradient. Finally, results suggested that the lake trout have multiple copies of the MHC II locus consistent with a historic genomic duplication event. Our findings indicated that conservation approaches for this species could focus on managing various ecological habitats by depth, in addition to regulating the fisheries specific to ecomorphs.
Collapse
|
18
|
Tentelier C, Barroso-Gomila O, Lepais O, Manicki A, Romero-Garmendia I, Jugo BM. Testing mate choice and overdominance at MH in natural families of Atlantic salmon Salmo salar. JOURNAL OF FISH BIOLOGY 2017; 90:1644-1659. [PMID: 28097664 DOI: 10.1111/jfb.13260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/30/2016] [Indexed: 06/06/2023]
Abstract
This study aimed to test mate choice and selection during early life stages on major histocompatibility (MH) genotype in natural families of Atlantic salmon Salmo salar spawners and juveniles, using nine microsatellites to reconstruct families, one microsatellite linked to an MH class I gene and one minisatellite linked to an MH class II gene. MH-based mate choice was only detected for the class I locus on the first year, with lower expected heterozygosity in the offspring of actually mated pairs than predicted under random mating. The genotype frequencies of MH-linked loci observed in the juveniles were compared with frequencies expected from Mendelian inheritance of parental alleles to detect selection during early life stages. No selection was detected on the locus linked to class I gene. For the locus linked to class II gene, observed heterozygosity was higher than expected in the first year and lower in the second year, suggesting overdominance and underdominance, respectively. Within family, juveniles' body size was linked to heterozygosity at the same locus, with longer heterozygotes in the first year and longer homozygotes in the second year. Selection therefore seems to differ from one locus to the other and from year to year.
Collapse
Affiliation(s)
- C Tentelier
- ECOBIOP, INRA, Univ. Pau & Pays Adour, 64310, Saint-Pée-sur-Nivelle, France
| | - O Barroso-Gomila
- Euskal Herriko Unibertsitatea UPV EHU, Zientzia & Teknol Fak, Genet Antropol Fis & Animalien Fisiol Saila, E-48080, Bilbao, Spain
| | - O Lepais
- ECOBIOP, INRA, Univ. Pau & Pays Adour, 64310, Saint-Pée-sur-Nivelle, France
| | - A Manicki
- ECOBIOP, INRA, Univ. Pau & Pays Adour, 64310, Saint-Pée-sur-Nivelle, France
| | - I Romero-Garmendia
- Euskal Herriko Unibertsitatea UPV EHU, Zientzia & Teknol Fak, Genet Antropol Fis & Animalien Fisiol Saila, E-48080, Bilbao, Spain
| | - B M Jugo
- Euskal Herriko Unibertsitatea UPV EHU, Zientzia & Teknol Fak, Genet Antropol Fis & Animalien Fisiol Saila, E-48080, Bilbao, Spain
| |
Collapse
|
19
|
Lillie M, Dubey S, Shine R, Belov K. Variation in Major Histocompatibility Complex diversity in invasive cane toad populations. WILDLIFE RESEARCH 2017. [DOI: 10.1071/wr17055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context The cane toad (Rhinella marina), a native species of central and southern America, was introduced to Australia in 1935 as a biocontrol agent after a complex history of prior introductions. The population rapidly expanded and has since spread through much of the Australian landmass, with severe impacts on the endemic wildlife, primarily via toxicity to predators. The invasion process has taken its toll on the cane toad, with changes in the immunological capacity across the Australian invasive population. Aims To investigate the immunogenetic underpinnings of these changes, we studied the diversity of the Major Histocompatiblity Complex (MHC) genes in introduced cane toad populations. Methods We studied the diversity of two MHC genes (the classical class I UA locus and a class II DAB locus) and compared these with neutral microsatellite markers in toads from the Australian site of introduction and the Australian invasion front. We also included toads from Hawai’i, the original source of the Australian toads, to infer founder effect. Key results Diversity across all markers was low across Australian and Hawai’ian samples, consistent with a reduction in genetic diversity through multiple founder effects during the course of the successive translocations. In Australia, allelic diversity at the microsatellite markers and the UA locus was reduced at the invasion front, whereas all three alleles at the DAB locus were maintained in the invasion-front toads. Conclusions Loss of allelic diversity observed at the microsatellite markers and the UA locus could be the result of drift and bottlenecking along the invasion process, however, the persistence of DAB diversity warrants further investigation to disentangle the evolutionary forces influencing this locus. Implications Through the use of different molecular markers, we provide a preliminary description of the adaptive genetic processes occurring in this invasive population. The extremely limited MHC diversity may represent low immunogenetic competence across the Australian population, which could be exploited for invasive species management.
Collapse
|
20
|
Stephenson JF, van Oosterhout C, Cable J. Pace of life, predators and parasites: predator-induced life-history evolution in Trinidadian guppies predicts decrease in parasite tolerance. Biol Lett 2016; 11:rsbl.2015.0806. [PMID: 26538541 DOI: 10.1098/rsbl.2015.0806] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A common evolutionary response to predation pressure is increased investment in reproduction, ultimately resulting in a fast life history. Theory and comparative studies suggest that short-lived organisms invest less in defence against parasites than those that are longer lived (the pace of life hypothesis). Combining these tenets of evolutionary theory leads to the specific, untested prediction that within species, populations experiencing higher predation pressure invest less in defence against parasites. The Trinidadian guppy, Poecilia reticulata, presents an excellent opportunity to test this prediction: guppy populations in lower courses of rivers experience higher predation pressure, and as a consequence have evolved faster life histories, than those in upper courses. Data from a large-scale field survey showed that fish infected with Gyrodactylus parasites were of a lower body condition (quantified using the scaled mass index) than uninfected fish, but only in lower course populations. Although the evidence we present is correlational, it suggests that upper course guppies sustain lower fitness costs of infection, i.e. are more tolerant, than lower course guppies. The data are therefore consistent with the pace of life hypothesis of parasite defence allocation, and suggest that life-history traits mediate the indirect effect of predators on the parasites of their prey.
Collapse
Affiliation(s)
| | - C van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - J Cable
- School of Biosciences, Cardiff University, Cardiff, UK
| |
Collapse
|
21
|
Rico Y, Ethier DM, Davy CM, Sayers J, Weir RD, Swanson BJ, Nocera JJ, Kyle CJ. Spatial patterns of immunogenetic and neutral variation underscore the conservation value of small, isolated American badger populations. Evol Appl 2016; 9:1271-1284. [PMID: 27877205 PMCID: PMC5108218 DOI: 10.1111/eva.12410] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 07/14/2016] [Indexed: 12/29/2022] Open
Abstract
Small and isolated populations often exhibit low genetic diversity due to drift and inbreeding, but may simultaneously harbour adaptive variation. We investigate spatial distributions of immunogenetic variation in American badger subspecies (Taxidea taxus), as a proxy for evaluating their evolutionary potential across the northern extent of the species' range. We compared genetic structure of 20 microsatellites and the major histocompatibility complex (MHC DRB exon 2) to evaluate whether small, isolated populations show low adaptive polymorphism relative to large and well-connected populations. Our results suggest that gene flow plays a prominent role in shaping MHC polymorphism across large spatial scales, while the interplay between gene flow and selection was stronger towards the northern peripheries. The similarity of MHC alleles within subspecies relative to their neutral genetic differentiation suggests that adaptive divergence among subspecies can be maintained despite ongoing gene flow along subspecies boundaries. Neutral genetic diversity was low in small relative to large populations, but MHC diversity within individuals was high in small populations. Despite reduced neutral genetic variation, small and isolated populations harbour functional variation that likely contribute to the species evolutionary potential at the northern range. Our findings suggest that conservation approaches should focus on managing adaptive variation across the species range rather than protecting subspecies per se.
Collapse
Affiliation(s)
- Yessica Rico
- Forensic Science DepartmentTrent UniversityPeterboroughONCanada
- Natural Resources DNA Profiling and Forensics CentreTrent UniversityPeterboroughONCanada
- Present address: CONACYTInstituto de Ecología A.C.Centro Regional del BajíoAvenida Lázaro Cárdenas 253PátzcuaroMichoacán61600México
| | - Danielle M. Ethier
- Ontario Badger ProjectGuelphONCanada
- Department of Integrative BiologyUniversity of GuelphGuelphONCanada
| | - Christina M. Davy
- Forensic Science DepartmentTrent UniversityPeterboroughONCanada
- Natural Resources DNA Profiling and Forensics CentreTrent UniversityPeterboroughONCanada
| | | | - Richard D. Weir
- Ecosystems Protection & Sustainability BranchMinistry of EnvironmentVictoriaBCCanada
| | | | - Joseph J. Nocera
- Wildlife Research and Monitoring SectionMinistry of Natural Resources & ForestryPeterboroughONCanada
| | - Christopher J. Kyle
- Forensic Science DepartmentTrent UniversityPeterboroughONCanada
- Natural Resources DNA Profiling and Forensics CentreTrent UniversityPeterboroughONCanada
| |
Collapse
|
22
|
Schwensow N, Mazzoni CJ, Marmesat E, Fickel J, Peacock D, Kovaliski J, Sinclair R, Cassey P, Cooke B, Sommer S. High adaptive variability and virus-driven selection on major histocompatibility complex (MHC) genes in invasive wild rabbits in Australia. Biol Invasions 2016. [DOI: 10.1007/s10530-016-1329-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Ishibashi Y, Oi T, Arimoto I, Fujii T, Mamiya K, Nishi N, Sawada S, Tado H, Yamada T. Loss of allelic diversity in the MHC class II DQB gene in western populations of the Japanese black bear Ursus thibetanus japonicus. CONSERV GENET 2016. [DOI: 10.1007/s10592-016-0897-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Gilroy D, van Oosterhout C, Komdeur J, Richardson DS. Avian β-defensin variation in bottlenecked populations: the Seychelles warbler and other congeners. CONSERV GENET 2016. [DOI: 10.1007/s10592-016-0813-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
25
|
Adaptive and neutral genetic differentiation among Scottish and endangered Irish red grouse (Lagopus lagopus scotica). CONSERV GENET 2016. [DOI: 10.1007/s10592-016-0810-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Knafler GJ, Ortiz-Catedral L, Jackson B, Varsani A, Grueber CE, Robertson BC, Jamieson IG. Comparison of beak and feather disease virus prevalence and immunity-associated genetic diversity over time in an island population of red-crowned parakeets. Arch Virol 2015; 161:811-20. [PMID: 26699786 DOI: 10.1007/s00705-015-2717-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 12/03/2015] [Indexed: 11/30/2022]
Abstract
Pathogen outbreaks in the wild can contribute to a population's extinction risk. Concern over the effects of pathogen outbreaks in wildlife is amplified in small, threatened populations, where degradation of genetic diversity may hinder natural selection for enhanced immunocompetence. Beak and feather disease virus (BFDV) was detected for the first time in an island population of red-crowned parakeets (Cyanoramphus novaezelandiae) in 2008 on Little Barrier Island (Hauturu-o-Toi) of New Zealand. By 2013, the prevalence of the viral infection had significantly decreased within the population. We tested whether the population of red-crowned parakeets showed a selective response to BFDV, using neutral microsatellite and two immunity-associated genetic markers, the major histocompatibility complex (MHC) and Toll-like receptors (TLRs). We found evidence for selection at viral-associated TLR3; however, the ability of TLR3 to elicit an immune response in the presence of BFDV warrants confirmation. Alternatively, because red-crowned parakeet populations are prone to fluctuations in size, the decrease in BFDV prevalence over time may be attributed to the Little Barrier Island population dropping below the density threshold for viral maintenance. Our results highlight that natural processes such as adaptation for enhanced immunocompetence and/or density fluctuations are efficient mechanisms for reducing pathogen prevalence in a threatened, isolated population.
Collapse
Affiliation(s)
- Gabrielle J Knafler
- Department of Zoology, University of Otago, PO Box 56, Dunedin, 9054, New Zealand.
| | - Luis Ortiz-Catedral
- Ecology and Conservation Group, Institute of Natural and Mathematical Sciences, Massey University, Private Bag 102-904, Auckland, New Zealand
| | - Bethany Jackson
- College of Veterinary Medicine, Murdoch University, Perth, WA, Australia
| | - Arvind Varsani
- Centre for Integrative Ecology, Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
- Structural Biology Research Unit, Division of Medical Biochemistry, Department of Clinical Laboratory Sciences, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
- Department of Plant Pathology and Emerging Pathogens Institute, University of Florida, Gainesville, USA
| | - Catherine E Grueber
- Department of Zoology, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW, Australia
- San Diego Zoo Global, San Diego, USA
| | - Bruce C Robertson
- Department of Zoology, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Ian G Jamieson
- Department of Zoology, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| |
Collapse
|
27
|
Cai R, Shafer ABA, Laguardia A, Lin Z, Liu S, Hu D. Recombination and selection in the major histocompatibility complex of the endangered forest musk deer (Moschus berezovskii). Sci Rep 2015; 5:17285. [PMID: 26603338 PMCID: PMC4658564 DOI: 10.1038/srep17285] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 10/28/2015] [Indexed: 11/18/2022] Open
Abstract
The forest musk deer (Moschus berezovskii) is a high elevation species distributed across western China and northern Vietnam. Once abundant, habitat loss and poaching has led to a dramatic decrease in population numbers prompting the IUCN to list the species as endangered. Here, we characterized the genetic diversity of a Major Histocompatibility Complex (MHC) locus and teased apart driving factors shaping its variation. Seven DRB exon 2 alleles were identified among a group of randomly sampled forest musk deer from a captive population in the Sichuan province of China. Compared to other endangered or captive ungulates, forest musk deer have relatively low levels of MHC genetic diversity. Non-synonymous substitutions primarily occurred in the putative peptide-binding region (PBR), with analyses suggesting that recombination and selection has shaped the genetic diversity across the locus. Specifically, inter-allelic recombination generated novel allelic combinations, with evidence for both positive selection acting on the PBR and negative selection on the non-PBR. An improved understanding of functional genetic variability of the MHC will facilitate better design and management of captive breeding programs for this endangered species.
Collapse
Affiliation(s)
- Ruibo Cai
- College of Nature Conservation, Beijing Forestry University, China
| | | | - Alice Laguardia
- College of Nature Conservation, Beijing Forestry University, China
| | - Zhenzhen Lin
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shuqiang Liu
- College of Nature Conservation, Beijing Forestry University, China
| | - Defu Hu
- College of Nature Conservation, Beijing Forestry University, China
| |
Collapse
|
28
|
Lack of Spatial Immunogenetic Structure among Wolverine (Gulo gulo) Populations Suggestive of Broad Scale Balancing Selection. PLoS One 2015; 10:e0140170. [PMID: 26448462 PMCID: PMC4598017 DOI: 10.1371/journal.pone.0140170] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/22/2015] [Indexed: 11/19/2022] Open
Abstract
Elucidating the adaptive genetic potential of wildlife populations to environmental selective pressures is fundamental for species conservation. Genes of the major histocompatibility complex (MHC) are highly polymorphic, and play a key role in the adaptive immune response against pathogens. MHC polymorphism has been linked to balancing selection or heterogeneous selection promoting local adaptation. However, spatial patterns of MHC polymorphism are also influenced by gene flow and drift. Wolverines are highly vagile, inhabiting varied ecoregions that include boreal forest, taiga, tundra, and high alpine ecosystems. Here, we investigated the immunogenetic variation of wolverines in Canada as a surrogate for identifying local adaptation by contrasting the genetic structure at MHC relative to the structure at 11 neutral microsatellites to account for gene flow and drift. Evidence of historical positive selection was detected at MHC using maximum likelihood codon-based methods. Bayesian and multivariate cluster analyses revealed weaker population genetic differentiation at MHC relative to the increasing microsatellite genetic structure towards the eastern wolverine distribution. Mantel correlations of MHC against geographical distances showed no pattern of isolation by distance (IBD: r = -0.03, p = 0.9), whereas for microsatellites we found a relatively strong and significant IBD (r = 0.54, p = 0.01). Moreover, we found a significant correlation between microsatellite allelic richness and the mean number of MHC alleles, but we did not observe low MHC diversity in small populations. Overall these results suggest that MHC polymorphism has been influenced primarily by balancing selection and to a lesser extent by neutral processes such as genetic drift, with no clear evidence for local adaptation. This study contributes to our understanding of how vulnerable populations of wolverines may respond to selective pressures across their range.
Collapse
|
29
|
Stephenson JF, van Oosterhout C, Mohammed RS, Cable J. Parasites of Trinidadian guppies: evidence for sex- and age-specific trait-mediated indirect effects of predators. Ecology 2015; 96:489-98. [PMID: 26240870 DOI: 10.1890/14-0495.1] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Predation pressure can alter the morphology, physiology, life history, and behavior of prey; each of these in turn can change how surviving prey interact with parasites. These trait-mediated indirect effects may change in direction or intensity during growth or, in sexually dimorphic species, between the sexes. The Trinidadian guppy, Poecilia reticulata presents a unique opportunity to examine these interactions; its behavioral ecology has been intensively studied in wild populations with well-characterized predator faunas. Predation pressure is known to have driven the evolution of many guppy traits; for example, in high-predation sites, females (but not males) tend to shoal, and this anti-predator behavior facilitates parasite transmission. To test for evidence of predator-driven differences in infection in natural populations, we collected 4715 guppies from 62 sites across Trinidad between 2003 and 2009 and screened them for ectosymbionts, including Gyrodactylus. A novel model-averaging analysis revealed that females were more likely to be infected with Gyrodactylus parasites than males, but only in populations with both high predation pressure and high infection prevalence. We propose that the difference in shoaling tendency between the sexes could explain the observed difference in infection prevalence between males and females in high-predation sites. The infection rate of juveniles did not vary with predation regime, probably because juveniles face constant predation pressure from conspecific adults and therefore tend to shoal in both high- and low-predation sites. This represents the first evidence for age- and sex-specific trait-mediated indirect effects of predators on the probability of infection in their prey.
Collapse
|
30
|
Lillie M, Grueber CE, Sutton JT, Howitt R, Bishop PJ, Gleeson D, Belov K. Selection on MHC class II supertypes in the New Zealand endemic Hochstetter's frog. BMC Evol Biol 2015; 15:63. [PMID: 25886729 PMCID: PMC4415247 DOI: 10.1186/s12862-015-0342-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 03/27/2015] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The New Zealand native frogs, family Leiopelmatidae, are among the most archaic in the world. Leiopelma hochstetteri (Hochstetter's frog) is a small, semi-aquatic frog with numerous, fragmented populations scattered across New Zealand's North Island. We characterized a major histocompatibility complex (MHC) class II B gene (DAB) in L. hochstetteri from a spleen transcriptome, and then compared its diversity to neutral microsatellite markers to assess the adaptive genetic diversity of five populations ("evolutionarily significant units", ESUs). RESULTS L. hochstetteri possessed very high MHC diversity, with 74 DAB alleles characterized. Extremely high differentiation was observed at the DAB locus, with only two alleles shared between populations, a pattern that was not reflected in the microsatellites. Clustering analysis on putative peptide binding residues of the DAB alleles indicated four functional supertypes, all of which were represented in 4 of 5 populations, albeit at different frequencies. Otawa was an exception to these observations, with only two DAB alleles present. CONCLUSIONS This study of MHC diversity highlights extreme population differentiation at this functional locus. Supertype differentiation was high among populations, suggesting spatial and/or temporal variation in selection pressures. Low DAB diversity in Otawa may limit this population's adaptive potential to future pathogenic challenges.
Collapse
Affiliation(s)
- Mette Lillie
- Faculty of Veterinary Science, University of Sydney, Sydney, Australia.
| | - Catherine E Grueber
- Faculty of Veterinary Science, University of Sydney, Sydney, Australia.
- San Diego Zoo Global, San Diego, USA.
| | - Jolene T Sutton
- Department of Biology, University of Hawai'i at Mānoa, Honolulu, USA.
| | | | - Phillip J Bishop
- Department of Biology, University of Otago, Dunedin, New Zealand.
| | - Dianne Gleeson
- Landcare Research, Auckland, New Zealand.
- Institute for Applied Ecology, University of Canberra, Bruce, Australia.
| | - Katherine Belov
- Faculty of Veterinary Science, University of Sydney, Sydney, Australia.
| |
Collapse
|
31
|
Background risk and recent experience influences retention of neophobic responses to predators. Behav Ecol Sociobiol 2015. [DOI: 10.1007/s00265-015-1888-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
Pechouskova E, Dammhahn M, Brameier M, Fichtel C, Kappeler PM, Huchard E. MHC class II variation in a rare and ecological specialist mouse lemur reveals lower allelic richness and contrasting selection patterns compared to a generalist and widespread sympatric congener. Immunogenetics 2015; 67:229-45. [PMID: 25687337 PMCID: PMC4357647 DOI: 10.1007/s00251-015-0827-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/30/2015] [Indexed: 11/20/2022]
Abstract
The polymorphism of immunogenes of the major histocompatibility complex (MHC) is thought to influence the functional plasticity of immune responses and, consequently, the fitness of populations facing heterogeneous pathogenic pressures. Here, we evaluated MHC variation (allelic richness and divergence) and patterns of selection acting on the two highly polymorphic MHC class II loci (DRB and DQB) in the endangered primate Madame Berthe’s mouse lemur (Microcebus berthae). Using 454 pyrosequencing, we examined MHC variation in a total of 100 individuals sampled over 9 years in Kirindy Forest, Western Madagascar, and compared our findings with data obtained previously for its sympatric congener, the grey mouse lemur (Microcebus murinus). These species exhibit a contrasting ecology and demography that were expected to affect MHC variation and molecular signatures of selection. We found a lower allelic richness concordant with its low population density, but a similar level of allelic divergence and signals of historical selection in the rare feeding specialist M. berthae compared to the widespread generalist M. murinus. These findings suggest that demographic factors may exert a stronger influence than pathogen-driven selection on current levels of allelic richness in M. berthae. Despite a high sequence similarity between the two congeners, contrasting selection patterns detected at DQB suggest its potential functional divergence. This study represents a first step toward unravelling factors influencing the adaptive divergence of MHC genes between closely related but ecologically differentiated sympatric lemurs and opens new questions regarding potential functional discrepancy that would explain contrasting selection patterns detected at DQB.
Collapse
Affiliation(s)
- Eva Pechouskova
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Kellnerweg 4, Göttingen, Germany,
| | | | | | | | | | | |
Collapse
|
33
|
Evidence for cryptic speciation in directly transmitted gyrodactylid parasites of Trinidadian guppies. PLoS One 2015; 10:e0117096. [PMID: 25574955 PMCID: PMC4289073 DOI: 10.1371/journal.pone.0117096] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 12/18/2014] [Indexed: 11/19/2022] Open
Abstract
Cryptic species complexes are common among parasites, which tend to have large populations and are subject to rapid evolution. Such complexes may arise through host-parasite co-evolution and/or host switching. For parasites that reproduce directly on their host, there might be increased opportunities for sympatric speciation, either by exploiting different hosts or different micro-habitats within the same host. The genus Gyrodactylus is a specious group of viviparous monogeneans. These ectoparasites transfer between teleosts during social contact and cause significant host mortality. Their impact on the guppy (Poecilia reticulata), an iconic evolutionary and ecological model species, is well established and yet the population genetics and phylogenetics of these parasites remains understudied. Using mtDNA sequencing of the host and its parasites, we provide evidence of cryptic speciation in Gyrodactylus bullatarudis, G. poeciliae and G. turnbulli. For the COII gene, genetic divergence of lineages within each parasite species ranged between 5.7 and 17.2%, which is typical of the divergence observed between described species in this genus. Different lineages of G. turnbulli and G. poeciliae appear geographically isolated, which could imply allopatric speciation. In addition, for G. poeciliae, co-evolution with a different host species cannot be discarded due to its host range. This parasite was originally described on P. caucana, but for the first time here it is also recorded on the guppy. The two cryptic lineages of G. bullatarudis showed considerable geographic overlap. G. bullatarudis has a known wide host range and it can also utilize a killifish (Anablepsoides hartii) as a temporary host. This killifish is capable of migrating overland and it could act as a transmission vector between otherwise isolated populations. Additional genetic markers are needed to confirm the presence of these cryptic Gyrodactylus species complexes, potentially leading to more in-depth genetic, ecological and evolutionary analyses on this multi-host-parasite system.
Collapse
|
34
|
Role of selection versus neutral processes determining genetic variation in a small mammal along a climatic gradient in southern Africa. Evol Ecol 2014. [DOI: 10.1007/s10682-014-9731-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
35
|
Lighten J, van Oosterhout C, Bentzen P. Critical review of NGS analyses for de novo genotyping multigene families. Mol Ecol 2014; 23:3957-72. [DOI: 10.1111/mec.12843] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/08/2014] [Accepted: 06/17/2014] [Indexed: 01/16/2023]
Affiliation(s)
- Jackie Lighten
- Department of Biology; Marine Gene Probe Laboratory; Dalhousie University; Halifax Nova Scotia Canada
| | - Cock van Oosterhout
- School of Environmental Sciences; University of East Anglia; Norwich Research Park; Norwich UK
| | - Paul Bentzen
- Department of Biology; Marine Gene Probe Laboratory; Dalhousie University; Halifax Nova Scotia Canada
| |
Collapse
|
36
|
Winternitz JC, Wares JP, Yabsley MJ, Altizer S. Wild cyclic voles maintain high neutral and MHC diversity without strong evidence for parasite-mediated selection. Evol Ecol 2014. [DOI: 10.1007/s10682-014-9709-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
37
|
Tezuka A, Kasagi S, van Oosterhout C, McMullan M, Iwasaki WM, Kasai D, Yamamichi M, Innan H, Kawamura S, Kawata M. Divergent selection for opsin gene variation in guppy (Poecilia reticulata) populations of Trinidad and Tobago. Heredity (Edinb) 2014; 113:381-9. [PMID: 24690753 DOI: 10.1038/hdy.2014.35] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 12/03/2013] [Accepted: 02/24/2014] [Indexed: 11/09/2022] Open
Abstract
The guppy is known to exhibit remarkable interindividual variations in spectral sensitivity of middle to long wavelength-sensitive (M/LWS) cone photoreceptor cells. The guppy has four M/LWS-type opsin genes (LWS-1, LWS-2, LWS-3 and LWS-4) that are considered to be responsible for this sensory variation. However, the allelic variation of the opsin genes, particularly in terms of their absorption spectrum, has not been explored in wild populations. Thus, we examined nucleotide variations in the four M/LWS opsin genes as well as blue-sensitive SWS2-B and ultraviolet-sensitive SWS1 opsin genes for comparison and seven non-opsin nuclear loci as reference genes in 10 guppy populations from various light environments in Trinidad and Tobago. For the first time, we discovered a potential spectral variation (180 Ser/Ala) in LWS-1 that differed at an amino acid site known to affect the absorption spectra of opsins. Based on a coalescent simulation of the nucleotide variation of the reference genes, we showed that the interpopulation genetic differentiation of two opsin genes was significantly larger than the neutral expectation. Furthermore, this genetic differentiation was significantly related to differences in dissolved oxygen (DO) level, and it was not explained by the spatial distance between populations. The DO levels are correlated with eutrophication that possibly affects the color of aquatic environments. These results suggest that the population diversity of opsin genes is significantly driven by natural selection and that the guppy could adapt to various light environments through color vision changes.
Collapse
Affiliation(s)
- A Tezuka
- Department of Ecology and Evolutionary Biology, Graduate School of Science, Tohoku University, Sendai, Japan
| | - S Kasagi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan
| | - C van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - M McMullan
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - W M Iwasaki
- Department of Ecology and Evolutionary Biology, Graduate School of Science, Tohoku University, Sendai, Japan
| | - D Kasai
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan
| | - M Yamamichi
- Department of Evolutionary Studies of Biosystems, Graduate University for Advanced Studies (Sokendai), Hayama, Japan
| | - H Innan
- Department of Evolutionary Studies of Biosystems, Graduate University for Advanced Studies (Sokendai), Hayama, Japan
| | - S Kawamura
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan
| | - M Kawata
- Department of Ecology and Evolutionary Biology, Graduate School of Science, Tohoku University, Sendai, Japan
| |
Collapse
|
38
|
Genetic variability, evidence of potential recombinational event and selection of LEI0258 in chicken. Gene 2013; 537:126-31. [PMID: 24374474 DOI: 10.1016/j.gene.2013.12.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/16/2013] [Accepted: 12/17/2013] [Indexed: 01/18/2023]
Abstract
The chicken major histocompatibility complex (MHC) plays an important role in the immune response, disease resistance, productivity, and other important economic traits of the chicken. Therefore, a description of the polymorphisms of this region is crucial for understanding the genetic pattern of the MHC. The tandem repeat LEI0258 is located within the B region of the chicken MHC and is surprisingly strongly associated with serology. This marker has been used worldwide to provide a picture of the core area of the chicken MHC-B region and to categorize chicken MHC haplotypes. Thus, insight into the evolutionary pattern of LEI0258 may be useful for understanding MHC diversity. In the current study, 30 alleles of LEI0258 from 12 populations were screened and sequenced, and alleles that have previously been published in GenBank were also analyzed. The resulting 124 alleles were classified into four clusters according to the SNPs and indels found within the sequences flanking the repeats. Furthermore, a recombination region was identified between -30 and +43 that suggests that recombination may have played a role in the evolution of this MHC. Finally, strong evidence regarding the selection and evolutionary dynamics of the LEI0258 region is presented. Generally speaking, microsatellite is a classic anonymous marker which changes by genetic drift rather than by direct selection. Although, the genotypes of LEI0258 in MHC-B correlate with serology, its mechanism of inheritance and evolution was unclear. This study not only establishes a framework of further diversity or association studies in LEI0258, but also unraveling the reason what driving force and formulate the evolutionary dynamics of this region.
Collapse
|
39
|
Osborne AJ, Zavodna M, Chilvers BL, Robertson BC, Negro SS, Kennedy MA, Gemmell NJ. Extensive variation at MHC DRB in the New Zealand sea lion (Phocarctos hookeri) provides evidence for balancing selection. Heredity (Edinb) 2013; 111:44-56. [PMID: 23572124 PMCID: PMC3692317 DOI: 10.1038/hdy.2013.18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Revised: 12/20/2012] [Accepted: 01/28/2013] [Indexed: 11/09/2022] Open
Abstract
Marine mammals are often reported to possess reduced variation of major histocompatibility complex (MHC) genes compared with their terrestrial counterparts. We evaluated diversity at two MHC class II B genes, DQB and DRB, in the New Zealand sea lion (Phocarctos hookeri, NZSL) a species that has suffered high mortality owing to bacterial epizootics, using Sanger sequencing and haplotype reconstruction, together with next-generation sequencing. Despite this species' prolonged history of small population size and highly restricted distribution, we demonstrate extensive diversity at MHC DRB with 26 alleles, whereas MHC DQB is dimorphic. We identify four DRB codons, predicted to be involved in antigen binding, that are evolving under adaptive evolution. Our data suggest diversity at DRB may be maintained by balancing selection, consistent with the role of this locus as an antigen-binding region and the species' recent history of mass mortality during a series of bacterial epizootics. Phylogenetic analyses of DQB and DRB sequences from pinnipeds and other carnivores revealed significant allelic diversity, but little phylogenetic depth or structure among pinniped alleles; thus, we could neither confirm nor refute the possibility of trans-species polymorphism in this group. The phylogenetic pattern observed however, suggests some significant evolutionary constraint on these loci in the recent past, with the pattern consistent with that expected following an epizootic event. These data may help further elucidate some of the genetic factors underlying the unusually high susceptibility to bacterial infection of the threatened NZSL, and help us to better understand the extent and pattern of MHC diversity in pinnipeds.
Collapse
Affiliation(s)
- A J Osborne
- Centre for Reproduction and Genomics, Department of Anatomy, University of Otago, Dunedin, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
40
|
Dargent F, Torres-Dowdall J, Scott ME, Ramnarine I, Fussmann GF. Can mixed-species groups reduce individual parasite load? A field test with two closely related poeciliid fishes (Poecilia reticulata and Poecilia picta). PLoS One 2013; 8:e56789. [PMID: 23437237 PMCID: PMC3577744 DOI: 10.1371/journal.pone.0056789] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 01/15/2013] [Indexed: 11/22/2022] Open
Abstract
Predation and parasitism are two of the most important sources of mortality in nature. By forming groups, individuals can gain protection against predators but may increase their risk of being infected with contagious parasites. Animals might resolve this conflict by forming mixed-species groups thereby reducing the costs associated with parasites through a relative decrease in available hosts. We tested this hypothesis in a system with two closely related poeciliid fishes (Poecilia reticulata and Poecilia picta) and their host-specific monogenean ectoparasites (Gyrodactylus spp.) in Trinidad. Fish from three different rivers were sampled from single and mixed-species groups, measured and scanned for Gyrodactylus. The presence and abundance of Gyrodactylus were lower when fish of both species were part of mixed-species groups relative to single-species groups. This is consistent with the hypothesis that mixed-species groups provide a level of protection against contagious parasites. We discuss the importance of potentially confounding factors such as salinity and individual fish size.
Collapse
Affiliation(s)
- Felipe Dargent
- Department of Biology, McGill University, Montreal, Quebec, Canada.
| | | | | | | | | |
Collapse
|
41
|
Brown GE, Ferrari MCO, Elvidge CK, Ramnarine I, Chivers DP. Phenotypically plastic neophobia: a response to variable predation risk. Proc Biol Sci 2013; 280:20122712. [PMID: 23390103 DOI: 10.1098/rspb.2012.2712] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Prey species possess a variety of morphological, life history and behavioural adaptations to evade predators. While specific evolutionary conditions have led to the expression of permanent, non-plastic anti-predator traits, the vast majority of prey species rely on experience to express adaptive anti-predator defences. While ecologists have identified highly sophisticated means through which naive prey can deal with predation threats, the potential for death upon the first encounter with a predator is still a remarkably important unresolved issue. Here, we used both laboratory and field studies to provide the first evidence for risk-induced neophobia in two taxa (fish and amphibians), and argue that phenotypically plastic neophobia acts as an adaptive anti-predator strategy for vulnerable prey dealing with spatial and temporal variation in predation risk. Our study also illustrates how risk-free maintenance conditions used in laboratory studies may blind researchers to adaptive anti-predator strategies that are only expressed in high-risk conditions.
Collapse
Affiliation(s)
- Grant E Brown
- Department of Biology, Concordia University, 7141 Sherbrooke St West, Montreal, Qubec, Canada H4B 1R6.
| | | | | | | | | |
Collapse
|
42
|
Luo MF, Pan HJ, Liu ZJ, Li M. Balancing selection and genetic drift at major histocompatibility complex class II genes in isolated populations of golden snub-nosed monkey (Rhinopithecus roxellana). BMC Evol Biol 2012; 12:207. [PMID: 23083308 PMCID: PMC3532231 DOI: 10.1186/1471-2148-12-207] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 10/05/2012] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Small, isolated populations often experience loss of genetic variation due to random genetic drift. Unlike neutral or nearly neutral markers (such as mitochondrial genes or microsatellites), major histocompatibility complex (MHC) genes in these populations may retain high levels of polymorphism due to balancing selection. The relative roles of balancing selection and genetic drift in either small isolated or bottlenecked populations remain controversial. In this study, we examined the mechanisms maintaining polymorphisms of MHC genes in small isolated populations of the endangered golden snub-nosed monkey (Rhinopithecus roxellana) by comparing genetic variation found in MHC and microsatellite loci. There are few studies of this kind conducted on highly endangered primate species. RESULTS Two MHC genes were sequenced and sixteen microsatellite loci were genotyped from samples representing three isolated populations. We isolated nine DQA1 alleles and sixteen DQB1 alleles and validated expression of the alleles. Lowest genetic variation for both MHC and microsatellites was found in the Shennongjia (SNJ) population. Historical balancing selection was revealed at both the DQA1 and DQB1 loci, as revealed by excess non-synonymous substitutions at antigen binding sites (ABS) and maximum-likelihood-based random-site models. Patterns of microsatellite variation revealed population structure. FST outlier analysis showed that population differentiation at the two MHC loci was similar to the microsatellite loci. CONCLUSIONS MHC genes and microsatellite loci showed the same allelic richness pattern with the lowest genetic variation occurring in SNJ, suggesting that genetic drift played a prominent role in these isolated populations. As MHC genes are subject to selective pressures, the maintenance of genetic variation is of particular interest in small, long-isolated populations. The results of this study may contribute to captive breeding and translocation programs for endangered species.
Collapse
Affiliation(s)
- Mao-Fang Luo
- Key laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beixhenxi Road, Chaoyang, Beijing, 100101, China
- Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Graduate School of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui-Juan Pan
- College of Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Zhi-Jin Liu
- Key laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beixhenxi Road, Chaoyang, Beijing, 100101, China
| | - Ming Li
- Key laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beixhenxi Road, Chaoyang, Beijing, 100101, China
| |
Collapse
|
43
|
Gotanda KM, Delaire LC, Raeymaekers JAM, Pérez-Jvostov F, Dargent F, Bentzen P, Scott ME, Fussmann GF, Hendry AP. Adding parasites to the guppy-predation story: insights from field surveys. Oecologia 2012; 172:155-66. [DOI: 10.1007/s00442-012-2485-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 09/18/2012] [Indexed: 11/24/2022]
|
44
|
O'Farrell B, Dennis C, Benzie JA, McGinnity P, Carlsson J, de Eyto E, Coughlan JP, Igoe F, Meehan R, Cross TF. Balancing selection on MHC class I in wild brown trout Salmo trutta. JOURNAL OF FISH BIOLOGY 2012; 81:1357-1374. [PMID: 22957875 DOI: 10.1111/j.1095-8649.2012.03421.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Evidence is reported for balancing selection acting on variation at major histocompatibility complex (MHC) in wild populations of brown trout Salmo trutta. First, variation at an MHC class I (satr-uba)-linked microsatellite locus (mhc1) is retained in small S. trutta populations isolated above waterfalls although variation is lost at neutral microsatellite markers. Second, populations across several catchments are less differentiated at mhc1 than at neutral markers, as predicted by theory. The population structure of these fish was also elucidated.
Collapse
Affiliation(s)
- B O'Farrell
- Environmental Research Institute, University College Cork, Cork, Ireland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Taylor SS, Jenkins DA, Arcese P. Loss of MHC and neutral variation in Peary caribou: genetic drift is not mitigated by balancing selection or exacerbated by MHC allele distributions. PLoS One 2012; 7:e36748. [PMID: 22655029 PMCID: PMC3360046 DOI: 10.1371/journal.pone.0036748] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 04/09/2012] [Indexed: 11/18/2022] Open
Abstract
Theory and empirical results suggest that the rate of loss of variation at Mhc and neutral microsatellite loci may differ because selection influences Mhc genes, and because a high proportion of rare alleles at Mhc loci may result in high rates of loss via drift. Most published studies compare Mhc and microsatellite variation in various contemporary populations to infer the effects of population size on genetic variation, even though different populations are likely to have different demographic histories that may also affect contemporary genetic variation. We directly compared loss of variation at Mhc and microsatellite loci in Peary caribou by comparing historical and contemporary samples. We observed that similar proportions of genetic variation were lost over time at each type of marker despite strong evidence for selection at Mhc genes. These results suggest that microsatellites can be used to estimate genome-wide levels of variation, but also that adaptive potential is likely to be lost following population bottlenecks. However, gene conversion and recombination at Mhc loci may act to increase variation following bottlenecks.
Collapse
Affiliation(s)
- Sabrina S Taylor
- School of Renewable Natural Resources, Louisiana State University AgCenter, Baton Rouge, Louisiana, United States of America.
| | | | | |
Collapse
|
46
|
Kiemnec-Tyburczy KM, Richmond JQ, Savage AE, Lips KR, Zamudio KR. Genetic diversity of MHC class I loci in six non-model frogs is shaped by positive selection and gene duplication. Heredity (Edinb) 2012; 109:146-55. [PMID: 22549517 DOI: 10.1038/hdy.2012.22] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Comparative studies of major histocompatibility complex (MHC) genes across vertebrate species can reveal the evolutionary processes that shape the structure and function of immune regulatory proteins. In this study, we characterized MHC class I sequences from six frog species representing three anuran families (Hylidae, Centrolenidae and Ranidae). Using cDNA from our focal species, we amplified a total of 79 unique sequences spanning exons 2-4 that encode the extracellular domains of the functional alpha chain protein. We compared intra- and interspecific nucleotide and amino-acid divergence, tested for recombination, and identified codon sites under selection by estimating the rate of non-synonymous to synonymous substitutions with multiple codon-based maximum likelihood methods. We determined that positive (diversifying) selection was acting on specific amino-acid sites located within the domains that bind pathogen-derived peptides. We also found significant signals of recombination across the physical distance of the genes. Finally, we determined that all the six species expressed two or three putative classical class I loci, in contrast to the single locus condition of Xenopus laevis. Our results suggest that MHC evolution in anurans is a dynamic process and that variation in numbers of loci and genetic diversity can exist among taxa. Thus, the accumulation of genetic data for more species will be useful in further characterizing the relative importance of processes such as selection, recombination and gene duplication in shaping MHC loci among amphibian lineages.
Collapse
Affiliation(s)
- K M Kiemnec-Tyburczy
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | |
Collapse
|
47
|
Are host–parasite interactions influenced by adaptation to predators? A test with guppies and Gyrodactylus in experimental stream channels. Oecologia 2012; 170:77-88. [DOI: 10.1007/s00442-012-2289-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 02/21/2012] [Indexed: 10/28/2022]
|
48
|
Strand TM, Segelbacher G, Quintela M, Xiao L, Axelsson T, Höglund J. Can balancing selection on MHC loci counteract genetic drift in small fragmented populations of black grouse? Ecol Evol 2012; 2:341-53. [PMID: 22423328 PMCID: PMC3298947 DOI: 10.1002/ece3.86] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 11/06/2011] [Indexed: 11/18/2022] Open
Abstract
The ability of natural populations to adapt to new environmental conditions is crucial for their survival and partly determined by the standing genetic variation in each population. Populations with higher genetic diversity are more likely to contain individuals that are better adapted to new circumstances than populations with lower genetic diversity. Here, we use both neutral and major histocompatibility complex (MHC) markers to test whether small and highly fragmented populations hold lower genetic diversity than large ones. We use black grouse as it is distributed across Europe and found in populations with varying degrees of isolation and size. We sampled 11 different populations; five continuous, three isolated, and three small and isolated. We tested patterns of genetic variation in these populations using three different types of genetic markers: nine microsatellites and 21 single nucleotide polymorphisms (SNPs) which both were found to be neutral, and two functional MHC genes that are presumably under selection. The small isolated populations displayed significantly lower neutral genetic diversity compared to continuous populations. A similar trend, but not as pronounced, was found for genotypes at MHC class II loci. Populations were less divergent at MHC genes compared to neutral markers. Measures of genetic diversity and population genetic structure were positively correlated among microsatellites and SNPs, but none of them were correlated to MHC when comparing all populations. Our results suggest that balancing selection at MHC loci does not counteract the power of genetic drift when populations get small and fragmented.
Collapse
Affiliation(s)
- Tanja M Strand
- Population Biology and Conservation Biology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala UniversityNorbyvägen 18D, SE-752 36 Uppsala, Sweden
| | - Gernot Segelbacher
- Population Biology and Conservation Biology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala UniversityNorbyvägen 18D, SE-752 36 Uppsala, Sweden
- Department Wildlife Ecology and Management, University FreiburgTennenbacher Str. 4, D-79106 Freiburg, Germany
| | - María Quintela
- Population Biology and Conservation Biology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala UniversityNorbyvägen 18D, SE-752 36 Uppsala, Sweden
- Faculty of Science, Department of Animal Biology, Plant Biology and Ecology, University of A CoruñaCampus da Zapateira, E-15171 A Coruña, Spain
| | - Lingyun Xiao
- Population Biology and Conservation Biology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala UniversityNorbyvägen 18D, SE-752 36 Uppsala, Sweden
| | - Tomas Axelsson
- Department of Medical Sciences, Molecular Medicine, Uppsala UniversityAkademiska sjukhuset ing. 70, SE-751 85 Uppsala, Sweden
| | - Jacob Höglund
- Population Biology and Conservation Biology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala UniversityNorbyvägen 18D, SE-752 36 Uppsala, Sweden
| |
Collapse
|
49
|
Spurgin LG, van Oosterhout C, Illera JC, Bridgett S, Gharbi K, Emerson BC, Richardson DS. Gene conversion rapidly generates major histocompatibility complex diversity in recently founded bird populations. Mol Ecol 2011; 20:5213-25. [PMID: 22106868 DOI: 10.1111/j.1365-294x.2011.05367.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lewis G Spurgin
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | | | | | | | | | | | | |
Collapse
|
50
|
Sutton JT, Nakagawa S, Robertson BC, Jamieson IG. Disentangling the roles of natural selection and genetic drift in shaping variation at MHC immunity genes. Mol Ecol 2011; 20:4408-20. [PMID: 21981032 DOI: 10.1111/j.1365-294x.2011.05292.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jolene T Sutton
- Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | | | | | | |
Collapse
|