1
|
Chen C, Bu X, Deng L, Xia J, Wang X, Chen L, Li W, Huang J, Chen Q, Wang C. Astragaloside IV as a promising therapeutic agent for liver diseases: current landscape and future perspectives. Front Pharmacol 2025; 16:1574154. [PMID: 40337517 PMCID: PMC12055773 DOI: 10.3389/fphar.2025.1574154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 04/10/2025] [Indexed: 05/09/2025] Open
Abstract
Astragaloside IV (C41H68O14, AS-IV) is a naturally occurring saponin isolated from the root of Astragalus membranaceus, a widely used traditional Chinese botanical drug in medicine. In recent years, AS-IV has attracted considerable attention for its hepatoprotective properties, which are attributed to its low toxicity as well as its anti-inflammatory, antioxidant and antitumour effects. Numerous preclinical studies have demonstrated its potential in the prevention and treatment of various liver diseases, including multifactorial liver injury, metabolic-associated fatty liver disease, liver fibrosis and liver cancer. Given the promising hepatoprotective potential of AS-IV and the growing interest in its research, this review provides a comprehensive summary of the current state of research on the hepatoprotective effects of AS-IV, based on literature available in databases such as CNKI, PubMed, ScienceDirect, Google Scholar and Web of Science. The hepatoprotective mechanisms of AS-IV are multifaceted, encompassing the inhibition of inflammatory responses, reduction of oxidative stress, improvement of insulin and leptin resistance, modulation of the gut microbiota, suppression of hepatocellular carcinoma cell proliferation and induction of tumour cell apoptosis. Notably, key molecular pathways involved in these effects include Nrf2/HO-1, NF-κB, NLRP3/Caspase-1, JNK/c-Jun/AP-1, PPARα/FSP1 and Akt/GSK-3β/β-catenin. Toxicity studies indicate that AS-IV has a high level of safety. In addition, this review discusses the sources, physicochemical properties, and current challenges in the development and clinical application of AS-IV, providing valuable insights into its potential as a hepatoprotective agent in the pharmaceutical and nutraceutical industries.
Collapse
Affiliation(s)
- Chunyan Chen
- School of Clinical Medical, Chengdu Medical College, Chengdu, China
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xiaolan Bu
- School of Clinical Medical, Chengdu Medical College, Chengdu, China
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Liping Deng
- School of Clinical Medical, Chengdu Medical College, Chengdu, China
- Department of Orthopedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jiayan Xia
- School of Clinical Medical, Chengdu Medical College, Chengdu, China
- Department of Pediatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xinming Wang
- School of Clinical Medical, Chengdu Medical College, Chengdu, China
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Li Chen
- School of Clinical Medical, Chengdu Medical College, Chengdu, China
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Wen Li
- School of Clinical Medical, Chengdu Medical College, Chengdu, China
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jie Huang
- School of Clinical Medical, Chengdu Medical College, Chengdu, China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Qixiang Chen
- School of Clinical Medical, Chengdu Medical College, Chengdu, China
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Cheng Wang
- School of Clinical Medical, Chengdu Medical College, Chengdu, China
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
2
|
Mohebinejad M, Kazeminasab F, Ghanbari Rad M, Bagheri R, Razi M, Willoughby D, Dutheil F. The Combined Effect of High-Intensity Interval Training and Time-Restricted Feeding on the AKT-IGF-1-mTOR Signaling Pathway in the Muscle Tissue of Type 2 Diabetic Rats. Nutrients 2025; 17:1404. [PMID: 40362714 PMCID: PMC12073226 DOI: 10.3390/nu17091404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/16/2025] [Accepted: 04/19/2025] [Indexed: 05/15/2025] Open
Abstract
Background/Objectives: High-intensity interval training (HIIT) and time-restricted feeding (TRF) have shown potential in enhancing glucose metabolism, increasing insulin sensitivity, and promoting muscle health. This study investigates the combined effects of HIIT and TRF on the AKT-IGF-1-mTOR signaling pathway in the muscle tissue of type 2 diabetic (T2D) rats. Methods: 42 male Wistar rats (4-5 weeks of age) were included in the study. The animals were randomly divided into two groups: 1. Standard diet (SD) non-diabetic (n = 7) and 2. High-fat diet (HFD n = 35) for 4 weeks. T2D was induced by intraperitoneal injection (IP) of streptozotocin (STZ) at 35 mg/kg. Animals with blood glucose levels ≥ 250 mg/dL were considered diabetic. Diabetic rats were randomly divided into five groups (n = 7): 1. Diabetes-HIIT (D-HIIT), 2. Diabetes-TRF (D-T), 3. Diabetes-combined TRF and HIIT (D-T+HIIT), 4. Diabetes-Untreated Control (D), and 5. Diabetes with metformin (D-MET). The HIIT protocol and TRF regimen were followed for 10 weeks. Muscle tissue was collected for histological analysis, and the expression of proteins related to the AKT-IGF-1-mTOR pathway was measured. Results: Blood glucose levels, insulin resistance (IR), and markers of muscle degradation were significantly improved in the D-T+HIIT and D-MET groups compared to the non-diabetes group. Furthermore, the activation of the AKT and mTOR signaling proteins, as well as increased IGF-1 expression, was significantly elevated in the D-T+HIIT group compared to the diabetic control group and other treatment groups, and approached levels observed in the non-diabetes group. Additionally, muscle fiber size and overall tissue structure were improved in the treatment groups, particularly in the D-T+HIIT group. Conclusions: The combination of HIIT and TRF appears to offer superior benefits in improving muscle protein synthesis, and glucose regulation in T2D rats, as compared to either HIIT or TRF alone. These findings highlight the potential of this combined approach for addressing muscle-related complications in T2D.
Collapse
Affiliation(s)
- Motahareh Mohebinejad
- Department of Physical Education and Sports Science, Faculty of Humanities, University of Kashan, Kashan 87317-53153, Iran;
| | - Fatemeh Kazeminasab
- Department of Physical Education and Sports Science, Faculty of Humanities, University of Kashan, Kashan 87317-53153, Iran;
| | - Mahtab Ghanbari Rad
- Gerash Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash 58666-74417, Iran;
| | - Reza Bagheri
- Department of Exercise Physiology, University of Isfahan, Isfahan 81746-73441, Iran;
| | - Mazdak Razi
- Division of Comparative Histology and Embryology, Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia 57561-51818, Iran;
| | - Darryn Willoughby
- Department of Education, Innovation, and Technology, Baylor College of Medicine-School of Medicine, Temple, TX 76513, USA;
| | - Fred Dutheil
- Preventive and Occupational Medicine, Université Clermont Auvergne, CNRS, LaPSCo, Physiological and Psychosocial Stress, CHU Clermont-Ferrand, University Hospital of Clermont-Ferrand, Witty Fit, F-63000 Clermont-Ferrand, France;
| |
Collapse
|
3
|
Tao Y, Zeng Y, Zeng R, Gou X, Zhou X, Zhang J, Nhamdriel T, Fan G. The total alkaloids of Berberidis Cortex alleviate type 2 diabetes mellitus by regulating gut microbiota, inflammation and liver gluconeogenesis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118957. [PMID: 39426578 DOI: 10.1016/j.jep.2024.118957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/24/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Type 2 diabetes mellitus (T2DM) has become a public health problem worldwide. There is growing interest in finding drugs to treat T2DM from herbal medicine. Berberidis Cortex is a traditional Tibetan herb commonly used in the treatment of T2DM, and alkaloids are its main active components. However, the anti-diabetic mechanisms of the total alkaloids of Berberidis Cortex (TBC) remain unclear. AIM OF THE STUDY The aim of this study was to evaluate the anti-T2DM efficacy of TBC and reveal the mechanisms behind its effects. MATERIALS AND METHODS UPLC-Q-Exactive Orbitrap MS technology was employed to qualitatively identify alkaloid components in TBC. T2DM rat models were induced by high-fat diet combined with streptozotocin, and then treated with different doses of TBC (43.5, 87, 174 mg/kg/d) for 40 days. Biochemical parameters, such as fasting blood glucose (FBG), oral glucose tolerance test (OGTT), glycated serum protein (GSP), homeostatic model assessment of insulin resistance (HOMA-IR), total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C), alongside H&E and PAS staining were used to evaluate the anti-diabetic activity of TBC. More importantly, metagenomics, transcriptomics, targeted metabolomics, and Western blot analysis were integrated to reveal the underlying mechanisms of TBC for T2DM treatment. RESULTS TBC significantly reduced the levels of FBG, OGTT, GSP, HOMA-IR, TC, TG, and LDL-C, and improved the histopathological alterations of pancreatic and liver tissues in T2D rats. It also reduced serum levels of lipopolysaccharide (LPS) and several pro-inflammatory cytokines (IL-6, IL-1β and TNF-α). Gut microbiome analysis by metagenomics proved that TBC could improve gut microbiota dysbiosis, including an increase in some beneficial bacteria (e.g., Bifidobacterium pseudolongum and Lactobacillus acidophilus) and a decrease in some harmful bacteria (e.g., Marvinbryantia and Parabacteroides). Western blot analysis found that TBC significantly up-regulated the expression of three intestinal barrier related tight junction proteins (ZO-1, occludin, and claudin-1), and effectively suppressed several key proteins in the TLR4/MyD88/NF-κB inflammatory cascade, including TLR4, MyD88 and p-NF-κB p65. Moreover, hepatic transcriptomics analysis further revealed the regulatory role of TBC on gluconeogenesis related genes, such as Pgc, and Creb1. Targeted metabolomics and Western blot analysis showed that TBC improved BAs dysregulation in T2DM rats, specifically increasing TCDCA and CA levels, thereby activating several proteins in the FXR/FGF15 signaling axis (i.e., FXR, FGF15 and FGFR4), and then decreased the expression of p-CREB1 and PGC-1α to inhibit liver gluconeogenesis. CONCLUSIONS TBC can significantly improve hyperglycemia, insulin resistance, hyperlipidemia, and inflammation in T2DM rats. The mechanism is related to the regulation of multiple links, including improving gut microbiota dysbiosis, protecting the intestinal barrier by up-regulating the expression of three tight junction proteins, reducing inflammation by inhibiting the LPS/TLR4/MyD88/NF-κB pathway, and inhibiting liver gluconeogenesis by regulating BAs/FXR/FGF15 and CREB1/PGC-1α signaling pathways.
Collapse
Affiliation(s)
- Yiwen Tao
- School of Ethnic Medicine, School of Pharmacy and Meishan Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yujiao Zeng
- School of Ethnic Medicine, School of Pharmacy and Meishan Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Rui Zeng
- School of Ethnic Medicine, School of Pharmacy and Meishan Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiaoling Gou
- School of Ethnic Medicine, School of Pharmacy and Meishan Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xianhua Zhou
- School of Ethnic Medicine, School of Pharmacy and Meishan Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jing Zhang
- School of Ethnic Medicine, School of Pharmacy and Meishan Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Tsedien Nhamdriel
- Department of Tibetan Medicine, University of Tibetan Medicine, Lhasa, 850000, China.
| | - Gang Fan
- School of Ethnic Medicine, School of Pharmacy and Meishan Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
4
|
Algul S, Ozcelik O. Comprehensive review of animal models in diabetes research using chemical agents. Lab Anim 2025:236772241296199. [PMID: 39817399 DOI: 10.1177/00236772241296199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Diabetes mellitus, characterized by insufficient insulin secretion and impaired insulin efficacy, disrupts carbohydrate, protein, and lipid metabolism. The global diabetic population is expected to double by 2025, from 380 million, posing a significant health challenge. Most diabetic individuals fall into the type 1 or type 2 categories, and diabetes adversely affects various organs, such as the kidneys, liver, nervous system, reproductive system, and eyes.This review focuses on animal models of diabetes induced by chemical agents, which are essential tools for understanding disease mechanisms, investigating complications, and testing antidiabetic drugs. Models include those caused by streptozotocin (STZ), alloxan, ferric nitrilotriacetate (Fe-NTA), dithizone, and anti-insulin serum.Streptozotocin (STZ)-induced diabetes models create type 1 and 2 diabetes by destroying pancreatic beta cells. The combination of STZ with nicotinamide mimics type 2 diabetes phenotypes. Alloxan induces a hyperglycemic state by causing free radical formation that selectively destroys pancreatic beta cells. Fe-NTA and dithizone also create diabetes models by damaging pancreatic beta cells. Anti-insulin serum models induce insulin resistance and hyperglycemia by generating antibodies against insulin receptors, leading to a condition similar to type 1 diabetes.Each model has unique characteristics that make it suitable for different aspects of diabetes research. These models are used to understand the pathogenesis of diabetes, develop new treatment strategies, and evaluate the efficacy of potential drugs.
Collapse
Affiliation(s)
- Sermin Algul
- Van Yuzuncu Yil University, Faculty of Medicine, Department of Physiology, Van, Turkey
| | - Oguz Ozcelik
- Kastamonu University, Faculty of Medicine, Department of Physiology, Kastamonu, Turkey
| |
Collapse
|
5
|
Hamed AM, Elbahy DA, Ahmed ARH, Thabet SA, Refaei RA, Ragab I, Elmahdy SM, Osman AS, Abouelella AMA. Comparison of the efficacy of curcumin and its nano formulation on dexamethasone-induced hepatic steatosis, dyslipidemia, and hyperglycemia in Wistar rats. Heliyon 2024; 10:e41043. [PMID: 39759349 PMCID: PMC11696662 DOI: 10.1016/j.heliyon.2024.e41043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 01/07/2025] Open
Abstract
Background and objective Insulin resistance is a primary feature of type 2 diabetes. This study compared the effects of curcumin and its nanoformulation on insulin resistance, fasting blood sugar, liver function, GLUT4, lipid profile, and oxidative stress in the liver and pancreas in a diabetic model. Methods Thirty male Wistar rats were divided into five groups: a control group, a diabetic group, a diabetic group treated with metformin (40 mg/kg), a diabetic group treated with curcumin (100 mg/kg), and a diabetic group treated with curcumin NPs (100 mg/kg). Diabetes was induced by injecting dexamethasone daily for 14 days. Treatment with curcumin and curcumin NPs was administered by gavage for 14 days. Body weight and fasting blood sugar levels were measured on days 1, 14, and 28. Results The metformin, curcumin, and curcumin NPs groups showed significantly greater body weight gain than the untreated diabetic group (P < 0.001). In diabetic rats treated with curcumin and curcumin NPs, insulin resistance decreased by approximately 40 %, while fasting blood sugar levels dropped by 35-40 % (P < 0.001). The levels of liver enzymes (AST, ALT), cholesterol, triglycerides, LDL, and the oxidative stress marker MDA in liver and pancreatic tissues were reduced by 30-50 %. Additionally, beneficial markers such as albumin, HDL, antioxidants (GSH, SOD), and GLUT4 levels were increased by 25-45 % (P < 0.001). Nano-curcumin consistently showed greater improvements than curcumin, especially in reducing oxidative stress and supporting liver and pancreatic health. Conclusion This study demonstrates that curcumin NPs has a superior effect on reducing oxidative stress and improving metabolic parameters in diabetes compared to curcumin. by enhancing the bioavailability and stability of curcumin, the nanoformulation showed stronger therapeutic potential for managing high blood sugar, cholesterol issues, and liver health, positioning curcumin NPs as a promising alternative to conventional treatments for diabetes and its complications.
Collapse
Affiliation(s)
- Amany M. Hamed
- Chemistry Department, Faculty of Science, Sohag University, Sohag, Egypt
| | - Dalia A. Elbahy
- Department of Clinical Pharmacology, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Ahmed RH. Ahmed
- Department of Pathology, faculty of medicine, Sohag University, Sohag, Egypt
| | - Shymaa A. Thabet
- Central Research Center, Faculty of Medicine, Sohag University, Sohag, Egypt
| | | | - Islam Ragab
- Department of Chemistry, College of Science, Qassim University, Buraidah, 51452, Saudi Arabia
| | | | - Ahmed S. Osman
- Department of Biochemistry, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| | - Azza MA. Abouelella
- Department of Clinical Pharmacology, Faculty of Medicine, Sohag University, Sohag, Egypt
| |
Collapse
|
6
|
Odetayo AF, Ajibare AJ, Okesina KB, Akhigbe TM, Olugbogi EA, Olayaki LA. Orange peel ethanolic extract and physical exercise prevent testicular toxicity in streptozocin and high fat diet-induced type 2 diabetes rats via Nrf2/NF-kB signaling: In silico and in vivo studies. Heliyon 2024; 10:e39780. [PMID: 39553579 PMCID: PMC11567124 DOI: 10.1016/j.heliyon.2024.e39780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/20/2024] [Accepted: 10/23/2024] [Indexed: 11/19/2024] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) is a significant health issue affecting the quality of life including male reproductive functions. Orange peel ethanolic extract (OPEE) has been established to have antioxidant properties and has been shown to alleviate diabetic complications. This study determined to establish OPEE effect and physical exercise (EX) in T2DM-induced testicular dysfunction. Materials and methods Thirty male Wistar rats were randomly distributed in five groups as follows: control group (received 1 ml/b.w of normal saline), and groups 2-5 were induced with diabetes, with group 2 left untreated, group 3 received 600 mg/kg b.w OPEE, group 4 was subjected to EX while group 5 was treated with OPEE alongside EX. Results OPEE + EX ameliorated T2DM-induced decrease in sperm motility, count, and morphology and increased testicular lactate dehydrogenase, alkaline phosphate, gamma-glutamyl transferase, and lactate. T2DM-induced disruption of gonadotropin-releasing hormone, luteinizing hormone, follicle-stimulating hormone and, testosterone was also mitigated by OPEE + EX. In addition, OPEE + EX blunted T2DM-induced increase in oxidative stress, inflammatory, and apoptotic markers and the accompanied decrease in testicular nuclear factor erythroid 2-related factor 2 (Nrf2) and increase in nuclear factor kappa B (NF-κB). Also, OPEE + EX reversed T2DM-induced testicular histology distortion. Conclusions The outcome of this study revealed that the combination of OPEE and EX ameliorated T2DM-mediated testicular damage via Nrf2/NF-κB signaling.
Collapse
Affiliation(s)
- Adeyemi Fatai Odetayo
- Department of Physiology, University of Ilorin, Ilorin, Nigeria
- Department of Physiology, Federal University of Health Sciences, Ila Orangun, Nigeria
| | | | - Kazeem Bidemi Okesina
- Department of Medical Physiology, Faculty of Medicine and Pharmacy, University of Rwanda, Kigali, Rwanda
| | | | | | | |
Collapse
|
7
|
Fikry H, Saleh LA, Mohammed OA, Doghish AS, Elsakka EGE, Hashish AA, Alfaifi J, Alamri MMS, Adam MIE, Atti MA, Mahmoud FA, Alkhalek HAA. Agmatine alleviates diabetic-induced hyposalivation in rats: A histological and biochemical study. Life Sci 2024; 359:123220. [PMID: 39505296 DOI: 10.1016/j.lfs.2024.123220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/03/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
Diabetic patients commonly experience hyposalivation, which can cause challenges with eating, swallowing, dry mouth, and speaking. It also raises the likelihood of developing periodontal disease. This study aimed to evaluate if agmatine could improve the rate of salivation in rats with hyposalivation induced by streptozotocin (STZ). Five groups of Wistar rats were utilized with 10 animals in each group. They were classified as follows; Negative control group (G1), agmatine (G2) group, and Nicotinamide (NA)-STZ (G3) group; received a single intraperitoneal dose of 65 mg/kg of STZ after NA injection. NA was administered to protect residual β cells and enhance their insulin secretion; NA-STZ + Metformin (G4) Metformin-treated diabetic group; at day 10 diabetic rats received 50mg/kg orally for 28 days, and NA-STZ + Agmatine (G5) at day 10 diabetic rats received a daily intraperitoneal dose of 300 mg/kg Agmatine for 28 days. The salivary flow rate was assessed weekly. Then, the animals were euthanized, both parotid (PG) and submandibular (SMG) salivary glands were dissected, and the following parameters were assessed; salivary glands' histopathology, aquaporin 5 (AQP5), caspase-3, E-cadherin expressions, inflammatory markers and finally, salivary glands' oxidative stress status. Agmatine has alleviated the salivary glands' dysfunction in STZ-induced diabetic rats. It normalized diabetes mellitus-associated salivary glands' abnormalities including histopathological abnormalities, decreased AQP5 and E-cadherin expressions, increased caspase-3 expression, and oxidative stress and inflammatory parameters. Agmatine alleviates diabetes mellitus-associated hyposalivation. It can promote PGs and SMGs function through its histological and AQP5 expression improvements.
Collapse
Affiliation(s)
- Heba Fikry
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt.
| | - Lobna A Saleh
- Department of Clinical Pharmacology. Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt; Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Osama A Mohammed
- Department of Clinical Pharmacology. Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt.
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Abdullah A Hashish
- Department of Pathology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Jaber Alfaifi
- Department of Child Health, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mohannad Mohammad S Alamri
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Masoud I E Adam
- Department of Medical Education and Internal Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mohammed A Atti
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Diriyiah, Riyadh 13713, Saudi Arabia; Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Faten A Mahmoud
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Hadwa Ali Abd Alkhalek
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
8
|
Silva DNA, Monajemzadeh S, Casarin M, Chalmers J, Lubben J, Magyar CE, Tetradis S, Pirih FQ. Diabetes mellitus exacerbates inflammation in a murine model of ligature-induced peri-implantitis: A histological and microtomographic study. J Clin Periodontol 2024; 51:1511-1523. [PMID: 39135333 PMCID: PMC11487626 DOI: 10.1111/jcpe.14051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 10/19/2024]
Abstract
AIM To investigate the influence of diabetes mellitus (DM) in a murine model of peri-implantitis (PI). MATERIALS AND METHODS Twenty-seven 4-week-old C57BL/6J male mice had their first and second maxillary left molars extracted. Eight weeks later, one machined implant was placed in each mouse. Four weeks after osseointegration, the mice were divided into three groups: (a) control (C), (b) PI and (c) DM + PI. DM was induced by streptozotocin (STZ) administration. After DM induction, PI was induced using ligatures for 2 weeks. The hemimaxillae were collected for micro-CT and histological analyses. The primary outcomes consisted of linear (mm) and volumetric (mm3) bone loss. Secondary outcomes were based on histological analysis and included inflammatory infiltrate, osteoclastic activity, matrix organization, composition and remodelling. Data are presented as means ± SEM. Statistical analyses were performed using one-way ANOVA, followed by Tukey's test. RESULTS Gingival tissue oedema was detected in the PI and DM + PI groups. Micro-CT showed significantly increased linear and volumetric bone loss in the DM + PI group compared to the C and PI groups. H&E staining showed greater inflammatory response and bone resorption in the PI and DM + PI groups than in the C group. The DM + PI group had significantly higher osteoclast numbers than the C and PI groups. Picrosirius red stained less for types I and III collagen in the PI and DM + PI groups than in the C group. There was a significant increase in monocyte/macrophage (CD-11b) counts and matrix metalloproteinases (MMP-2 and MMP-8) marker levels and a significant decrease in the matrix metalloproteinases inhibition marker (TIMP-2) levels in the DM + PI group compared to the C and PI groups. CONCLUSIONS DM exacerbates PI-induced soft-tissue inflammation, matrix degradation and bone loss.
Collapse
Affiliation(s)
- Davi N. A. Silva
- Section of Periodontics, School of Dentistry, University of
California, Los Angeles, CA, USA
| | - Sepehr Monajemzadeh
- Section of Periodontics, School of Dentistry, University of
California, Los Angeles, CA, USA
| | - Maísa Casarin
- School of Dentistry, Federal University of Pelotas,
Pelotas, Brazil
| | - Jaclyn Chalmers
- Section of Periodontics, School of Dentistry, University of
California, Los Angeles, CA, USA
| | - Jacob Lubben
- Section of Periodontics, School of Dentistry, University of
California, Los Angeles, CA, USA
| | - Clara E. Magyar
- Department of Pathology and Laboratory Medicine, David
Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA,
USA
| | - Sotirios Tetradis
- Section of Oral and Maxillofacial Radiology, University of
California, Los Angeles, CA, USA
| | - Flavia Q. Pirih
- Section of Periodontics, School of Dentistry, University of
California, Los Angeles, CA, USA
| |
Collapse
|
9
|
Pinto S, Viegas J, Cristelo C, Pacheco C, Barros S, Buckley ST, Garousi J, Gräslund T, Santos HA, Sarmento B. Bioengineered Nanomedicines Targeting the Intestinal Fc Receptor Achieve the Improved Glucoregulatory Effect of Semaglutide in a Type 2 Diabetic Mice Model. ACS NANO 2024; 18:28406-28424. [PMID: 39356547 DOI: 10.1021/acsnano.4c11172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
The oral administration of the glucagon-like peptide-1 analogue, semaglutide, remains a hurdle due to its limited bioavailability. Herein, neonatal Fc receptor (FcRn)-targeted nanoparticles (NPs) were designed to enhance the oral delivery of semaglutide. The nanocarriers were covalently linked to the FcRn-binding peptide FcBP or the affibody molecule ZFcRn that specifically binds to the human FcRn (hFcRn) in a pH-dependent manner. These FcRn-targeted ligands were selected over the endogenous ligands of the receptor (albumin and IgG) due to their smaller size and simpler structure, which could facilitate the transport of functionalized NPs through the tissues. The capacity of FcRn-targeted semaglutide-NPs in controlling the blood glucose levels was evaluated in an hFcRn transgenic mice model, where type 2 diabetes mellitus (T2DM) was induced via intraperitoneal injection of nicotinamide followed by streptozotocin. The encapsulation of semaglutide into FcRn-targeted NPs was translated in an improved glucoregulatory effect in T2DM-induced mice when compared to the oral free semaglutide or nontargeted NP groups, after daily oral administrations for 7 days. Notably, a similar glucose-lowering response was observed between both FcRn-targeted NPs and the subcutaneous semaglutide groups. An increase in insulin pancreatic content and a recovery in β cell mass were visualized in the mice treated with FcRn-targeted semaglutide-NPs. The biodistribution of fluorescently labeled NPs through the gastrointestinal tract demonstrated that the nanosystems targeting the hFcRn are retained longer in the ileum and colorectum, where the expression of FcRn is more prevalent, than nontargeted NPs. Therefore, FcRn-targeted nanocarriers proved to be an effective platform for improving the pharmacological effect of semaglutide in a T2DM-induced mice model.
Collapse
Affiliation(s)
- Soraia Pinto
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, Porto 4050-313, Portugal
| | - Juliana Viegas
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
| | - Cecília Cristelo
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, Porto 4050-313, Portugal
| | - Catarina Pacheco
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
- Instituto Universitário de Ciências da Saúde (IUCS-CESPU), Rua Central de Gandra 1317, Gandra 4585-116, Portugal
| | - Sofia Barros
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, Porto 4050-313, Portugal
| | - Stephen T Buckley
- Global Research Technologies, Novo Nordisk, Novo Nordisk Park 1, Måløv 2760, Denmark
| | - Javad Garousi
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Roslagstullsbacken 21, Stockholm 114 17, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75185, Sweden
| | - Torbjörn Gräslund
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Roslagstullsbacken 21, Stockholm 114 17, Sweden
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, AV Groningen 9713, the Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, Helsinki FI-00014, Finland
| | - Bruno Sarmento
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
- Instituto Universitário de Ciências da Saúde (IUCS-CESPU), Rua Central de Gandra 1317, Gandra 4585-116, Portugal
| |
Collapse
|
10
|
Kitphati W, Sato VH, Peungvicha P, Saengklub N, Chewchinda S, Kongkiatpaiboon S, Goli AS, Sangfuang M, Nontakham J, Chatsumpun N, Mangmool S, Sato H. Antihyperglycemic activity of a novel polyherbal formula (HF344), a mixture of fifteen herb extracts, for the management of type 2 diabetes: Evidence from in vitro, ex vivo, and in vivo studies. Heliyon 2024; 10:e38703. [PMID: 39421370 PMCID: PMC11483321 DOI: 10.1016/j.heliyon.2024.e38703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/03/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
Antihyperglycemic effects of a novel polyherbal formula (HF344), comprising fifteen Thai herbal extracts, were elucidated for pharmacological mechanisms and potential for managing type 2 diabetes mellitus, by employing in vitro, ex vivo, and in vivo approaches. LC/MS analysis of HF344 extract revealed several phytoconstituents, with piperine identified as the major active compound. HF344 extract significantly enhanced insulin secretion in RINm5F cells in vitro and inhibited glucose uptake into the everted sacs of the mouse small intestine ex vivo in a concentration-dependent manner compared to the control (p < 0.05). It exhibited potent α-glucosidase inhibition in vitro, with an IC50 of 96.74 μg/mL. Moreover, HF344 extract upregulated mRNA levels of GLUT1 in L6 skeletal myoblasts, suggesting increased glucose uptake into skeletal muscle. In addition, in vivo antihyperglycemic effects were assessed in streptozotocin (STZ)-nicotinamide (NA)-induced diabetic mice. Acute oral toxicity testing confirmed the HF344 extract's safety, with an LD50 exceeding 2000 mg/kg. Oral administration of HF344 extract (500 and 1000 mg/kg) in STZ-NA-induced diabetic mice significantly reduced the area under the fasting blood glucose (FBG)-time curve (AUC) in the oral glucose tolerance test (OGTT) model and treatment for 28-day reduced the FBG levels as compared with control (p < 0.05). This was accompanied by increased serum insulin levels and improved insulin resistance. HF344 extract also demonstrated a concentration-dependent inhibitory effect on malondialdehyde (MDA) production in vitro, with an IC50 of 7.24 μg/mL. Oral treatment with HF344 extract decreased MDA production in the homogenized muscle ex vivo collected from STZ-NA-induced mice. Furthermore, pretreatment with HF344 extract effectively restored the survival of RINm5F cells from STZ-induced damage. These findings suggest that HF344 is a promising polyherbal formula for managing blood glucose levels, enhancing insulin production, and providing antioxidant benefits in T2DM. Further research is required to evaluate the clinical efficacy and safety profiles of HF344.
Collapse
Affiliation(s)
- Worawan Kitphati
- Department of Physiology, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | | | - Penchom Peungvicha
- Department of Physiology, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Nakkawee Saengklub
- Department of Physiology, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Savita Chewchinda
- Department of Food Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Sumet Kongkiatpaiboon
- Drug Discovery and Development Center, Office of Advanced Science and Technology, Thammasat University (Rangsit Campus), Pathum Thani, 12121, Thailand
| | - Arman Syah Goli
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Manaw Sangfuang
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Jannarin Nontakham
- Clinical Research Section, Division of Research and Academic Support, National Cancer Institute, Bangkok, 10400, Thailand
| | - Nutputsorn Chatsumpun
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Supachoke Mangmool
- Department of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Hitoshi Sato
- Division of Pharmacokinetics and Pharmacodynamics, Department of Pharmacology, Toxicology and Therapeutics, School of Pharmacy, Showa University, Tokyo, 142-855, Japan
| |
Collapse
|
11
|
Yadav H, Maiti S. Poly(allylamine)-adorned heptylcarboxymethyl galactomannan nanocarriers of canagliflozin for controlling type-2 diabetes: Optimization by Box-Behnken design and in vivo performance. Int J Biol Macromol 2024; 277:134253. [PMID: 39084426 DOI: 10.1016/j.ijbiomac.2024.134253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/10/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
In the past three decades, the prevalence of type-2 diabetes has arisen dramatically in countries of all income levels. A novel, most effective nanotechnology-based strategy may reduce the prevalence of diabetes. Recently, the shell-crosslinked polysaccharide-based micellar nanocarriers (MNCs) have shown great promise in terms of stability, controlled drug release, and improved in vivo performance. In this study, heptyl carboxymethyl guar gum was synthesized and characterized by ATR-FTIR, 1HNMR spectroscopy, surface charge, critical micelle concentration (23.9 μg/mL), and cytotoxicity analysis. Box-Behnken design was used to optimize the diameter, zeta potential, drug entrapment efficiency (DEE), and drug release characteristics of poly (allylamine)-crosslinked MNCs containing canagliflozin. The optimized MNCs revealed spherical morphology under TEM and had 149.3 nm diameter (PDI 21.2 %), +53.8 mV zeta potential, and 84 % DEE. The MNCs released about 63 % of the drug in 12 h under varying pH of the simulated gastrointestinal fluid. DSC and x-ray analyses suggested amorphous dispersion of drugs in the MNCs. CAM assay demonstrated the biocompatibility of the MNCs. The MNCs showed hemolysis of <1 %, 85 % mucin adsorption, and stability over three months. The MNCs demonstrated excellent anti-diabetic efficacy in streptozotocin-nicotinamide-induced diabetic rats, continuously lowering blood glucose levels up to 12 h.
Collapse
Affiliation(s)
- Harsh Yadav
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh 484887, India
| | - Sabyasachi Maiti
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh 484887, India.
| |
Collapse
|
12
|
Belousova AV, Sokolova KV, Danilova IG, Chereshnev VA, Abidov MT. Effect of Sodium Aminophthalhydrazide on Structural and Functional Characteristics of Pancreatic Islands in Experimental Type 2 Diabetes Mellitus. Bull Exp Biol Med 2024; 177:721-724. [PMID: 39441438 DOI: 10.1007/s10517-024-06257-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Indexed: 10/25/2024]
Abstract
Under the influence of inflammation, pancreatic β cells can transdifferentiate into cells with a different phenotype. When inflammation decreases, the opposite process is possible. We studied the effect of intramuscular injection of 5-amino-2,3-dihydrophthalazine-1,4-dione sodium salt (APH) on the structural and functional characteristics of the pancreatic islets in rats with experimental type 2 diabetes mellitus. Insulin-producing, glucagon-producing, and proliferating cells were identified by immunohistochemistry. After APH administration, an increase in the number of β cells, a decrease in the number of α cells and cells synthesizing both insulin and glucagon (insulin-glucagon-positive) were observed; mitotic activity of β cells did not change. It is likely that APH promotes transdifferentiation of α cells into β cells by changing the microenvironment of endocrine cells and reducing inflammation in pancreatic islets.
Collapse
Affiliation(s)
- A V Belousova
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia.
| | - K V Sokolova
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - I G Danilova
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - V A Chereshnev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - M T Abidov
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| |
Collapse
|
13
|
Han S, Zhang X, Li Z, Cui G, Xue B, Yu Y, Guo J, Zhang H, Yang J, Teng L. A ginsenoside G-Rg3 PEGylated long-circulating liposome for hyperglycemia and insulin resistance therapy in streptozotocin-induced type 2 diabetes mice. Eur J Pharm Biopharm 2024; 201:114350. [PMID: 38848783 DOI: 10.1016/j.ejpb.2024.114350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/21/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Ginsenoside (GS), one of the main active components in ginseng, can enhance insulin sensitivity, improve the function of islet β cells, and reduce cell apoptosis in the treatment of diabetes. However, the drawbacks of high lipid solubility, poor water solubility, and low oral availability in Ginsenoside Rg3 (G-Rg3) seriously limit further application of GS. In this work, a G-Rg3 PEGylated long-circulating liposome (PEG-L-Rg3) is designed and developed to improve symptoms in type 2 diabetic mice. The as-prepared PEG-L-Rg3 with a spherical structure shows a particle size of ∼ 140.5 ± 1.4 nm, the zeta potential of -0.10 ± 0.05 mV, and a high encapsulation rate of 99.8 %. Notably, in vivo experimental results demonstrate that PEG-L-Rg3 exhibits efficient ability to improve body weight and food intake in streptozotocin-induced type 2 diabetic mice. Moreover, PEG-L-Rg3 also enhances fasting insulin (FINS) and insulin sensitivity index (ISI). In addition, the glucose tolerance of mice is significantly improved after the treatment of PEG-L-Rg3, indicating that PEG-L-Rg3 can be a potential drug for the treatment of type 2 diabetes, which provides a new way for the treatment of type 2 diabetes using ginsenosides.
Collapse
Affiliation(s)
- Songren Han
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Xueyan Zhang
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Ziwei Li
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Guilin Cui
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Beilin Xue
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Yang Yu
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Jiaqing Guo
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Huan Zhang
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Jie Yang
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Lesheng Teng
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| |
Collapse
|
14
|
Mahmoud HM, Abdel-Razik ARH, Elrehany MA, Othman EM, Bekhit AA. Modified Citrus Pectin (MCP) Confers a Renoprotective Effect on Early-Stage Nephropathy in Type-2 Diabetic Mice. Chem Biodivers 2024; 21:e202400104. [PMID: 38588017 DOI: 10.1002/cbdv.202400104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/10/2024]
Abstract
Diabetic nephropathy (DN) is a significant global health concern with a high morbidity rate. Accumulating evidence reveals that Galectin-3 (Gal-3), a β-galactoside-binding lectin, is a biomarker in kidney diseases. Our study aimed to assess the advantageous impacts of modified citrus pectin (MCP) as an alternative therapeutic strategy for the initial and ongoing progression of DN in mice with type 2 diabetes mellitus (T2DM). The animal model has been split into four groups: control group, T2DM group (mice received intraperitoneal injections of nicotinamide (NA) and streptozotocin (STZ), T2DM+MCP group (mice received 100 mg/kg/day MCP following T2DM induction), and MCP group (mice received 100 mg/kg/day). After 4 weeks, kidney weight, blood glucose level, serum kidney function tests, histopathological structure alterations, oxidative stress, inflammation, apoptosis, and fibrosis parameters were determined in renal tissues. Our findings demonstrated that MCP treatment reduced blood glucose levels, renal histological damage, and restored kidney weight and kidney function tests. Additionally, MCP reduced malondialdehyde level and restored glutathione level, and catalase activity. MCP demonstrated a notable reduction in inflammatory and apoptosis mediators TNF-α, iNOS, TGF-βRII and caspase-3. Overall, MCP could alleviate renal injury in an experimental model of DN by suppressing renal oxidative stress, inflammation, fibrosis, and apoptosis mediators.
Collapse
Affiliation(s)
| | | | - Mahmoud A Elrehany
- Biochemistry Department, Faculty of Pharmacy, Deraya University, New Mina, Egypt
| | - Eman M Othman
- Biochemistry Department, Faculty of Pharmacy, Minia University, 65111, Minia, Egypt E-mail: amany
- Cancer Therapy Research Center, Biochemistry Department -I, Biocenter, University of Wuerzburg, Am Hubland, 97074, Würzburg, Germany
- Bioinformatics Department, Biocenter, University of Wuerzburg, Am Hubland, 97074, Würzburg, Germany
| | - Amany A Bekhit
- Biochemistry Department, Faculty of Pharmacy, Minia University, 65111, Minia, Egypt E-mail: amany
| |
Collapse
|
15
|
Tao Y, Peng F, Wang L, Sun J, Ding Y, Xiong S, Tenzin U, MiMa, Nhamdriel T, Fan G. Ji-Ni-De-Xie ameliorates type 2 diabetes mellitus by modulating the bile acids metabolism and FXR/FGF15 signaling pathway. Front Pharmacol 2024; 15:1383896. [PMID: 38835663 PMCID: PMC11148236 DOI: 10.3389/fphar.2024.1383896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/22/2024] [Indexed: 06/06/2024] Open
Abstract
Introduction: Ji-Ni-De-Xie (JNDX) is a traditional herbal preparation in China. It is widely used to treat type 2 diabetes mellitus (T2DM) in traditional Tibetan medicine system. However, its antidiabetic mechanisms have not been elucidated. The aim of this study is to elucidate the underlying mechanism of JNDX on bile acids (BAs) metabolism and FXR/FGF15 signaling pathway in T2DM rats. Methods: High-performance liquid chromatography-triple quadrupole mass spectrometry (HPLC-QQQ-MS) and UPLC-Q-Exactive Orbitrap MS technology were used to identify the constituents in JNDX. High-fat diet (HFD) combined with streptozotocin (45 mg∙kg-1) (STZ) was used to establish a T2DM rat model, and the levels of fasting blood-glucose (FBG), glycosylated serum protein (GSP), homeostasis model assessment of insulin resistance (HOMA-IR), LPS, TNF-α, IL-1β, IL-6, TG, TC, LDL-C, HDL-C, and insulin sensitivity index (ISI) were measured to evaluate the anti-diabetic activity of JNDX. In addition, metagenomic analysis was performed to detect changes in gut microbiota. The metabolic profile of BAs was analyzed by HPLC-QQQ-MS. Moreover, the protein and mRNA expressions of FXR and FGF15 in the colon and the protein expressions of FGF15 and CYP7A1 in the liver of T2DM rats were measured by western blot and RT-qPCR. Results: A total of 12 constituents were identified by HPLC-QQQ-MS in JNDX. Furthermore, 45 chemical components in serum were identified from JNDX via UPLC-Q-Exactive Orbitrap MS technology, including 22 prototype components and 23 metabolites. Using a T2DM rat model, we found that JNDX (0.083, 0.165 and 0.33 g/kg) reduced the levels of FBG, GSP, HOMA-IR, LPS, TNF-α, IL-1β, IL-6, TG, TC, and LDL-C, and increased ISI and HDL-C levels in T2DM rats. Metagenomic results demonstrated that JNDX treatment effectively improved gut microbiota dysbiosis, including altering some bacteria (e.g., Streptococcus and Bacteroides) associated with BAs metabolism. Additionally, JNDX improved BAs disorder in T2DM rats, especially significantly increasing cholic acid (CA) levels and decreasing ursodeoxycholic acid (UDCA) levels. Moreover, the protein and mRNA expressions of FXR and FGF15 of T2DM rats were significantly increased, while the expression of CYP7A1 protein in the liver was markedly inhibited by JNDX. Discussion: JNDX can effectively improve insulin resistance, hyperglycemia, hyperlipidemia, and inflammation in T2DM rats. The mechanism is related to its regulation of BAs metabolism and activation of FXR/FGF15 signaling pathway.
Collapse
Affiliation(s)
- Yiwen Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lijie Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiayi Sun
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yin Ding
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuangfeng Xiong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ugen Tenzin
- Dege County Tibetan Hospital (Institute of Tibetan Medicine), Dege, China
| | - MiMa
- Department of Tibetan Medicine, University of Tibetan Medicine, Lhasa, China
| | - Tsedien Nhamdriel
- Department of Tibetan Medicine, University of Tibetan Medicine, Lhasa, China
| | - Gang Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, China
| |
Collapse
|
16
|
Hernández-Martín M, Bocanegra A, Garcimartín A, Issa JÁ, Redondo-Castillejo R, Macho-González A, Benedí J, Sánchez Muniz FJ, López-Oliva ME. Analysis of immunohistomorphological changes in the colonic mucosa in a high-saturated fat and high-cholesterol fed streptozotocin/nicotinamide diabetic rat model. Methods Cell Biol 2024; 185:165-195. [PMID: 38556447 DOI: 10.1016/bs.mcb.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The mucosal surface of gastrointestinal tract is lined with epithelial cells that establish an effective barrier between the lumen and internal environment through intercellular junctions, preventing the passage of potentially harmful substances. The "intestinal barrier function" consist of a defensive system that prevent the passage of antigens, toxins, and microbial products, while maintains the correct development of the epithelial barrier, the immune system and the acquisition of tolerance toward dietary antigens and intestinal microbiota. Intestinal morphology changes subsequent to nutritional variations, stress, aging or diseases, which can also affect the composition of the microbiota, altering the homeostasis of the intestine. A growing body of evidence suggests that alterations in intestinal barrier function favor the development of exaggerated immune responses, leading to metabolic endotoxemia, which seems to be the origin of many chronic metabolic diseases such as type 2 diabetes mellitus (T2DM). Although the mechanisms are still unknown, the interaction between dietary patterns, gut microbiota, intestinal mucosa, and metabolic inflammation seems to be a key factor for the development of T2DM, among other diseases. This chapter details the different techniques that allow evaluating the morphological and molecular alterations that lead of the intestinal barrier dysfunction in a T2DM experimental model. To induce both diabetic metabolic disturbances and gut barrier disruption, Wistar rats were fed a high-saturated fat and high-cholesterol diet and received a single dose of streptozotocin/nicotinamide. This animal model may contribute to clarify the understanding of the role of intestinal barrier dysfunction on the late-stage T2DM etiology.
Collapse
Affiliation(s)
- Marina Hernández-Martín
- Departmental Section of Physiology, Pharmacy School, Complutense University of Madrid, Madrid, Spain; AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Aránzazu Bocanegra
- Department of Pharmacology, Pharmacy School, Complutense University of Madrid, Madrid, Spain; AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Alba Garcimartín
- Department of Pharmacology, Pharmacy School, Complutense University of Madrid, Madrid, Spain; AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Jousef Ángel Issa
- Departmental Section of Physiology, Pharmacy School, Complutense University of Madrid, Madrid, Spain
| | - Rocío Redondo-Castillejo
- Department of Pharmacology, Pharmacy School, Complutense University of Madrid, Madrid, Spain; AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Adrián Macho-González
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain; Department of Nutrition, Pharmacy School, Complutense University of Madrid, Madrid, Spain
| | - Juana Benedí
- Department of Pharmacology, Pharmacy School, Complutense University of Madrid, Madrid, Spain; AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Francisco José Sánchez Muniz
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain; Department of Nutrition, Pharmacy School, Complutense University of Madrid, Madrid, Spain
| | - María Elvira López-Oliva
- Departmental Section of Physiology, Pharmacy School, Complutense University of Madrid, Madrid, Spain; AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain.
| |
Collapse
|
17
|
Wang F, Han S, Fang L, Lin X. A fetal rat model of ventricular noncompaction caused by intrauterine hyperglycemia. Cardiovasc Pathol 2024; 69:107601. [PMID: 38072092 DOI: 10.1016/j.carpath.2023.107601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/17/2023] [Accepted: 12/05/2023] [Indexed: 12/25/2023] Open
Abstract
BACKGROUND This study aims to develop a fetal rat model of ventricular noncompaction (NVM) using streptozotocin (STZ)-induced gestational hyperglycemia and compare it with a retinoic acid (RA) model. METHODS Female SD rats were categorized into STZ, RA, and normal control (NC) groups. The STZ group was given a high-fat diet pre-pregnancy and 35 mg/kg of 2% STZ postpregnancy. The RA group received a 90 mg/kg dose of RA on day 13 postpregnancy. Embryonic myocardial morphology was analyzed through HE staining, and embryonic cardiomyocyte ultrastructures were studied using electron microscopy. Diagnoses of NVM were based on a ratio of noncompact myocardium (N) to compact myocardium (C) >1.4, accompanied by thick myocardial trabeculae and a thin myocardial compaction layer. Kruskal-Wallis test determined N/C ratio differences among groups. RESULTS Both STZ and RA groups displayed significant NVM characteristics. The left ventricular (LV) N/C in the STZ, RA, and NC groups were 1.983 (1.423-3.527), 1.640 (1.197-2.895), and 0.927 (0.806-1.087), respectively, with a statistically significant difference (P<0.001). The right ventricular (RV) N/C in the STZ, RA, and NC groups were 2.097 (1.364-3.081), 1.897 (1.337-2.662), and 0.869 (0.732-1.022), respectively, with a significant difference (P<0.001). Electron microscopy highlighted marked endoplasmic reticulum swelling in embryonic cardiomyocytes from both STZ and RA groups. CONCLUSION Our model underscores the pivotal role of an adverse intrauterine developmental environment in the onset of NVM. This insight holds significant implications for future studies exploring the pathogenesis of NVM.
Collapse
Affiliation(s)
- Fanglu Wang
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Songbo Han
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Ligang Fang
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Xue Lin
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
18
|
Manjit M, Kumar K, Kumar M, Jha A, Bharti K, Tiwari P, Tilak R, Singh V, Koch B, Mishra B. Fabrication of gelatin coated polycaprolactone nanofiber scaffolds co-loaded with luliconazole and naringenin for treatment of Candida infected diabetic wounds. Int J Biol Macromol 2024; 261:129621. [PMID: 38278381 DOI: 10.1016/j.ijbiomac.2024.129621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
The current study focuses on the development of gelatin-coated polycaprolactone (PCL) nanofibers co-loaded with luliconazole and naringenin for accelerated healing of infected diabetic wounds. Inherently, PCL nanofibers have excellent biocompatibility and biodegradation profiles but lack bioadhesion characteristics, which limits their use as dressing materials. So, coating them with a biocompatible and hydrophilic material like gelatin can improve bioadhesion. The preparation of nanofibers was done with the electrospinning technique. The solid state characterization and in-vitro performance assessment of nanofibers indicate the formation of uniformly interconnected nanofibers of 200-400 nm in diameter with smooth surface topography, excellent drug entrapment, and a surface pH of 5.6-6.8. The antifungal study showed that the nanofiber matrix exhibits excellent biofilm inhibition activity against several strains of Candida. Further, in-vivo assessment of nanofiber performance on C. albicans infected wounds in diabetic rats indicated accelerated wound healing efficacy in comparison to gauge-treated groups. Additionally, a higher blood flow and rapid re-epithelialization of wound tissue in the treatment group corroborated with the results obtained in the wound closure study. Overall, the developed dual-drug-loaded electrospun nanofiber mats have good compatibility, surface properties, and excellent wound healing potential, which can provide an extra edge in the management of complex diabetic wounds.
Collapse
Affiliation(s)
- Manjit Manjit
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, (BHU), Varanasi 221005, Uttar Pradesh, India.
| | - Krishan Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, (BHU), Varanasi 221005, Uttar Pradesh, India.
| | - Manish Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, (BHU), Varanasi 221005, Uttar Pradesh, India.
| | - Abhishek Jha
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, (BHU), Varanasi 221005, Uttar Pradesh, India.
| | - Kanchan Bharti
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, (BHU), Varanasi 221005, Uttar Pradesh, India.
| | - Punit Tiwari
- Department of Microbiology, Institute of Medical Science, Banaras Hindu University, Varanasi 221005, India
| | - Ragini Tilak
- Department of Microbiology, Institute of Medical Science, Banaras Hindu University, Varanasi 221005, India
| | - Virendra Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Biplob Koch
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Brahmeshwar Mishra
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, (BHU), Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
19
|
Manjit M, Kumar M, Jha A, Bharti K, Kumar K, Tiwari P, Tilak R, Singh V, Koch B, Mishra B. Formulation and characterization of polyvinyl alcohol/chitosan composite nanofiber co-loaded with silver nanoparticle & luliconazole encapsulated poly lactic-co-glycolic acid nanoparticle for treatment of diabetic foot ulcer. Int J Biol Macromol 2024; 258:128978. [PMID: 38145692 DOI: 10.1016/j.ijbiomac.2023.128978] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/30/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
Chronic wounds are prone to fungal infections, possess a significant challenge, and result in substantial mortality. Diabetic wounds infected with Candida strains are extremely common. It can create biofilm at the wound site, which can lead to antibiotic resistance. As a result, developing innovative dressing materials that combat fungal infections while also providing wound healing is a viable strategy to treat infected wounds and address the issue of antibiotic resistance. Present work proposed anti-infective dressing material for the treatment of fungal strains Candida-infected diabetic foot ulcer (DFU). The nanofiber was fabricated using polyvinyl Alcohol/chitosan as hydrogel base and co-loaded with silver nanoparticles (AgNP) and luliconazole-nanoparticles (LZNP) nanoparticles, prepared using PLGA. Fabricated nanofibers had pH close to target area and exhibited hydrophilic surface suitable for adhesion to wound area. The nanofibers showed strong antifungal and antibiofilm properties against different strains of Candida; mainly C. albicans, C. auris, C. krusei, C. parapsilosis and C. tropicalis. Nanofibers exhibited excellent water retention potential and water vapour transmission rate. The nanofibers had sufficient payload capacity towards AgNP and LZNP, and provided controlled release of payload, which was also confirmed by in-vivo imaging. In-vitro studies confirmed the biocompatibility and enhanced proliferation of Human keratinocytes cells (HaCaT). In-vivo studies showed accelerated wound closure by providing ant-infective action, supporting cellular proliferation and improving blood flow, all collectively contributing in expedited wound healing.
Collapse
Affiliation(s)
- Manjit Manjit
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India.
| | - Manish Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India.
| | - Abhishek Jha
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India.
| | - Kanchan Bharti
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India.
| | - Krishan Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India.
| | - Punit Tiwari
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Ragini Tilak
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Virendra Singh
- Cancer Biology Laboratory, Department of Zoology Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Biplob Koch
- Cancer Biology Laboratory, Department of Zoology Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Brahmeshwar Mishra
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
20
|
Shahdadi S, Hamidi F, Fathi B. The effect of Iranian snake, Naja naja oxiana venom on the blood glucose concentration and some biochemical parameters of experimental diabetic rats. Heliyon 2024; 10:e24436. [PMID: 38288016 PMCID: PMC10823082 DOI: 10.1016/j.heliyon.2024.e24436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/31/2024] Open
Abstract
Diabetes is a chronic disease resulting from impaired insulin production and function; leading to hyperglycaemia and long-term complications. The treatment for Type I diabetes treatment involves insulin injections while Type II diabetes treatments include drugs such as metformin and sulfonylureas, along with lifestyle changes. These medicines can be expensive and may have adverse effects. Therefore, the search for new therapeutic agents continues. Venoms from various animals yield numerous pharmacologically active compounds. In this study, we investigated the effects of the venom from an Iranian snake, Naja naja oxiana, on blood glucose concentration and certain serum biochemical parameters in male rats with induced diabetes. Diabetes was induced in male rats using either a single injection of streptozotocin (STZ) alone (55 mg/kg i. p.) or STZ (65 mg/kg i. p.) preceded by nicotinamide (230/kg i. p.) administered 15 min earlier. The diabetic rats produced by either method received a single injection of either vehicle or venom (0.2 or 0.4 mg/kg i. p.). In the STZ rats, this was done 13 days after diabetes induction, while in the STZ-nicotinamide rats, venom was injected 3 days after diabetes induction. The venom from Naja naja oxiana significantly reduced blood glucose levels in male rats with diabetes induced by either method. Additionally, the venom decreased serum cholesterol and triglycerides concentrations. However, the venom had no effect on the blood glucose levels of healthy male rats. Pretreatment with the venom did not prevent the induction of diabetes by STZ. These findings suggest that Naja naja oxiana venom exhibits an anti-diabetic effect and could be a potential candidate for effectively controlling diabetes.
Collapse
Affiliation(s)
- Shiva Shahdadi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Farshid Hamidi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Behrooz Fathi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
21
|
Park SB, Yang SJ. Ketogenic diet preserves muscle mass and strength in a mouse model of type 2 diabetes. PLoS One 2024; 19:e0296651. [PMID: 38198459 PMCID: PMC10781088 DOI: 10.1371/journal.pone.0296651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Diabetes is often associated with reduced muscle mass and function. The ketogenic diet (KD) may improve muscle mass and function via the induction of nutritional ketosis. To test whether the KD is able to preserve muscle mass and strength in a mouse model of type 2 diabetes (T2DM), C57BL/6J mice were assigned to lean control, diabetes control, and KD groups. The mice were fed a standard diet (10% kcal from fat) or a high-fat diet (HFD) (60% kcal from fat). The diabetic condition was induced by a single injection of streptozotocin (STZ; 100 mg/kg) and nicotinamide (NAM; 120 mg/kg) into HFD-fed mice. After 8-week HFD feeding, the KD (90% kcal from fat) was fed to the KD group for the following 6 weeks. After the 14-week experimental period, an oral glucose tolerance test and grip strength test were conducted. Type 2 diabetic condition induced by HFD feeding and STZ/NAM injection resulted in reduced muscle mass and grip strength, and smaller muscle fiber areas. The KD nutritional intervention improved these effects. Additionally, the KD altered the gene expression of nucleotide-binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome- and endoplasmic reticulum (ER) stress-related markers in the muscles of diabetic mice. Collectively, KD improved muscle mass and function with alterations in NLRP3 inflammasome and ER stress.
Collapse
Affiliation(s)
- Sol Been Park
- Department of Food and Nutrition, Seoul Women’s University, Seoul, Republic of Korea
| | - Soo Jin Yang
- Department of Food and Nutrition, Seoul Women’s University, Seoul, Republic of Korea
| |
Collapse
|
22
|
Qamar F, Sultana S, Sharma M. Animal models for induction of diabetes and its complications. J Diabetes Metab Disord 2023; 22:1021-1028. [PMID: 37975101 PMCID: PMC10638335 DOI: 10.1007/s40200-023-01277-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 08/03/2023] [Indexed: 11/19/2023]
Abstract
Objectives Animal models are widely used to develop newer drugs for treatment of diabetes and its complications. We conducted a systematic review to find various animal models to induce diabetes and also the suitable methods in various diabetic complications. With an emphasis on the animal models of diabetes induction, this review provides a basic overview of diabetes and its various types. It focused on the use of rats and mice for chemical, spontaneous, surgical, genetic, viral, and hormonal induction approaches. Methods All observations and research conducted on Diabetes and its complications published up to 18 May 2023 in PubMed, Web of Science, Scopus and Conchrane Library databases were included. Main outcome measures were reporting the induction of diabetes in experimental animals, the various animal models for diabetic complications including diabetic nephropathy, diabetic retinopathy, diabetic neuropathy and diabetic osteopathy. The quality of reporting of included articles and risk of bias were assessed. Results We reached various articles and found that rats and mice are the most frequently used animals for inducing diabetes. Chemical induction is the most commonly used followed by spontaneous and surgical methods. With slight modification various breeds and species are developed to study and induce specific complications on eyes, kidneys, neurons and bones. Conclusions Our review suggested that rats and mice are the most suitable animals. Furthermore, chemical induction is the method frequently used by experimenters. Moreover, high quality studies are required to find the suitable methods for diabetic complications.
Collapse
Affiliation(s)
- Faiz Qamar
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, Delhi, New Delhi, 110062 India
| | - Shirin Sultana
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, Delhi, New Delhi, 110062 India
| | - Manju Sharma
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, Delhi, New Delhi, 110062 India
| |
Collapse
|
23
|
Suvarna R, Suryakanth VB, Bakthavatchalam P, Kalthur G, Nayak M D, Prabhu MM, Hadapad BS, Shenoy RP. Acute and sub-chronic toxicity of Liberin, an anti-diabetic polyherbal formulation in rats. J Ayurveda Integr Med 2023; 14:100804. [PMID: 37847964 PMCID: PMC10585375 DOI: 10.1016/j.jaim.2023.100804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND The polyherbal formulation (PHF) liberin, is known to exert anti-hyperglycemic effects in type 2 diabetes mellitus. Hence, it is important to study the safety profile of PHF in the current study through acute and chronic toxicity evaluation. OBJECTIVES This research aims to assess the acute and sub-chronic toxicity of PHF in rats. MATERIALS AND METHODS PHF was administered once orally (1000 mg/kg body weight), and the rats (male and female) were monitored for toxicity signs for a 14-day period. For a 28-day chronic toxicity study, rats were daily administered with PHF dose of 500 mg/kg and 1000 mg/kg body weight. Rats were followed up for mortality, weight changes, and other morbidities. Further haematological, biochemical, and histopathological changes were assessed. RESULTS No death related to treatment or toxicity signs were recorded in the acute single-dose administration group. The results showed that the PHF was tolerated well up to a dose of 1000 mg/kg body weight. Even at the high dose of 1000 mg/kg body weight, sub-chronic tests did not show any significant difference between the dosed and normal groups. No significant changes were seen in the histopathological analysis of the liver, spleen, and kidney as well as haematological and biochemical parameters in acute, sub-chronic and satellite groups following the administration of PHF. CONCLUSION The results confirmed that there was no adverse effect of this PHF at the maximum dose of 1000 mg/kg body weight in Wistar rats. Further, no adverse delayed effects related to PHF were observed in the satellite group. Therefore, this PHF appears safe for therapeutic purposes in the Ayurvedic medicinal system.
Collapse
Affiliation(s)
- Renuka Suvarna
- Division of Ayurveda, Centre for Integrative Medicine and Research, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Varashree Bolar Suryakanth
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Pugazhandhi Bakthavatchalam
- Department of Anatomy, Melaka Manipal Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Guruprasad Kalthur
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Deepak Nayak M
- Department of Pathology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - M Mukhyaprana Prabhu
- Department of General Medicine, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Basavaraj S Hadapad
- Division of Ayurveda, Centre for Integrative Medicine and Research, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Revathi P Shenoy
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
24
|
Sadikan MZ, Abdul Nasir NA, Lambuk L, Mohamud R, Reshidan NH, Low E, Singar SA, Mohmad Sabere AS, Iezhitsa I, Agarwal R. Diabetic retinopathy: a comprehensive update on in vivo, in vitro and ex vivo experimental models. BMC Ophthalmol 2023; 23:421. [PMID: 37858128 PMCID: PMC10588156 DOI: 10.1186/s12886-023-03155-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/26/2023] [Indexed: 10/21/2023] Open
Abstract
Diabetic retinopathy (DR), one of the leading causes of visual impairment and blindness worldwide, is one of the major microvascular complications in diabetes mellitus (DM). Globally, DR prevalence among DM patients is 25%, and 6% have vision-threatening problems among them. With the higher incidence of DM globally, more DR cases are expected to be seen in the future. In order to comprehend the pathophysiological mechanism of DR in humans and discover potential novel substances for the treatment of DR, investigations are typically conducted using various experimental models. Among the experimental models, in vivo models have contributed significantly to understanding DR pathogenesis. There are several types of in vivo models for DR research, which include chemical-induced, surgical-induced, diet-induced, and genetic models. Similarly, for the in vitro models, there are several cell types that are utilised in DR research, such as retinal endothelial cells, Müller cells, and glial cells. With the advancement of DR research, it is essential to have a comprehensive update on the various experimental models utilised to mimic DR environment. This review provides the update on the in vitro, in vivo, and ex vivo models used in DR research, focusing on their features, advantages, and limitations.
Collapse
Affiliation(s)
- Muhammad Zulfiqah Sadikan
- Department of Pharmacology, Faculty of Medicine, Manipal University College Malaysia (MUCM), Bukit Baru, 75150, Melaka, Malaysia
| | - Nurul Alimah Abdul Nasir
- Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, 47000, Sungai Buloh, Selangor, Malaysia.
| | - Lidawani Lambuk
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Nur Hidayah Reshidan
- School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
| | - Evon Low
- Ageing Biology Centre, Newcastle University, NE1 7RU, Newcastle upon Tyne, UK
| | - Saiful Anuar Singar
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, 32306, Tallahassee, FL, USA
| | - Awis Sukarni Mohmad Sabere
- Kulliyyah of Pharmacy, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200, Kuantan, Pahang, Malaysia
| | - Igor Iezhitsa
- School of Medicine, International Medical University, 57000, Bukit Jalil, Kuala Lumpur, Malaysia
- Department of Pharmacology and Bioinformatics, Volgograd State Medical University, Pavshikh Bortsov sq. 1, 400131 , Volgograd, Russian Federation
| | - Renu Agarwal
- School of Medicine, International Medical University, 57000, Bukit Jalil, Kuala Lumpur, Malaysia
| |
Collapse
|
25
|
Cristelo C, Nunes R, Pinto S, Marques JM, Gama FM, Sarmento B. Targeting β Cells with Cathelicidin Nanomedicines Improves Insulin Function and Pancreas Regeneration in Type 1 Diabetic Rats. ACS Pharmacol Transl Sci 2023; 6:1544-1560. [PMID: 37854630 PMCID: PMC10580391 DOI: 10.1021/acsptsci.3c00218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Indexed: 10/20/2023]
Abstract
Type 1 diabetes (T1D) is an incurable condition with an increasing incidence worldwide, in which the hallmark is the autoimmune destruction of pancreatic insulin-producing β cells. Cathelicidin-based peptides have been shown to improve β cell function and neogenesis and may thus be relevant while developing T1D therapeutics. In this work, a cathelicidin-derived peptide, LLKKK18, was loaded in poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs), surface-functionalized with exenatide toward a GLP-1 receptor, aiming the β cell-targeted delivery of the peptide. The NPs present a mean size of around 100 nm and showed long-term stability, narrow size distribution, and negative ζ-potential (-10 mV). The LLKKK18 association efficiency and loading were 62 and 2.9%, respectively, presenting slow and sustained in vitro release under simulated physiologic fluids. Glucose-stimulated insulin release in the INS-1E cell line was observed in the presence of the peptide. In addition, NPs showed a strong association with β cells from isolated rat islets. After administration to diabetic rats, NPs induced a significant reduction of the hyperglycemic state, an improvement in the pancreatic insulin content, and glucose tolerance. Also remarkable, a considerable increase in the β cell mass in the pancreas was observed. Overall, this novel and versatile nanomedicine showed glucoregulatory ability and can pave the way for the development of a new generation of therapeutic approaches for T1D treatment.
Collapse
Affiliation(s)
- Cecília Cristelo
- i3S
− Instituto de Investigação e Inovação
em Saúde, Universidade do Porto, Porto 4200-135, Portugal
- Centro
de Engenharia Biológica, Universidade
do Minho, Campus de Gualtar, Braga 4710-057, Portugal
- ICBAS
− Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto 4050-313, Portugal
| | - Rute Nunes
- i3S
− Instituto de Investigação e Inovação
em Saúde, Universidade do Porto, Porto 4200-135, Portugal
- IUCS-CESPU, Instituto
Universitário de Ciências
da Saúde, Gandra 4585-116, Portugal
| | - Soraia Pinto
- i3S
− Instituto de Investigação e Inovação
em Saúde, Universidade do Porto, Porto 4200-135, Portugal
- ICBAS
− Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto 4050-313, Portugal
| | - Joana Moreira Marques
- i3S
− Instituto de Investigação e Inovação
em Saúde, Universidade do Porto, Porto 4200-135, Portugal
- Faculdade
de Farmácia, Universidade do Porto, Porto 4099-002, Portugal
| | - Francisco Miguel Gama
- Centro
de Engenharia Biológica, Universidade
do Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Bruno Sarmento
- i3S
− Instituto de Investigação e Inovação
em Saúde, Universidade do Porto, Porto 4200-135, Portugal
- IUCS-CESPU, Instituto
Universitário de Ciências
da Saúde, Gandra 4585-116, Portugal
| |
Collapse
|
26
|
Madeswaran A, Mohan S. Neuroprotective effects of terpenoids against streptozotocin-nicotinamide-induced diabetic rats: An in silico, in vitro and in vivo study. Int J Biol Macromol 2023; 247:125817. [PMID: 37455002 DOI: 10.1016/j.ijbiomac.2023.125817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
The present study focused to determine the neuroprotective effects of terpenoids in streptozotocin & nicotinamide-induced type-2 diabetes in rats. The in silico studies were carried out for 68 terpenoids using AutoDock 4.2. The in vitro cholinestrerase, α-amylase enzyme inhibitory assays were perfomed using standard procedures. For in vivo neuroprotective studies, male wistar rats were separated into five groups and each group comprised of six animals. Treatment groups were received low dose and high dose α-Bisabolol 100 and 200 mg/kg respectively, and the standard groups received rivastigmine 2 mg/kg, p.o. and metformin group 100 mg/kg, p.o. for 30 consecutive days. Administration of streptozotocin (45 mg/kg, i.p.) and nicotinamide (110 mg/kg, i.p.)-induced the type 2 diabetes in all groups except the control. The behavioural assessments such as Morris water maze, and open field test were performed and biochemical parameters such as acetylcholinesterase levels and enzymatic antioxidants and reduced glutathione level were estimated from brain homogenates. Treatment of diabetic rats with α-Bisabolol was lowered blood glucose level, improved spatial recognition memory in behavioural assessments in a concentration dependent manner. It can be concluded that α-Bisabolol could act as a potential drug candidate in the management of diabetic Alzheimer's disease.
Collapse
Affiliation(s)
- Arumugam Madeswaran
- Department of Pharmacology, Karpagam College of Pharmacy, Affiliated to The Tamil Nadu Dr. MGR Medical University, Coimbatore, Tamil Nadu, India.
| | - Selleppan Mohan
- Karpagam College of Pharmacy, Affiliated to The Tamil Nadu Dr. MGR Medical University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
27
|
Olayaki LA, Okesina KB, Jesubowale JD, Ajibare AJ, Odetayo AF. Orange Peel Extract and Physical Exercise Synergistically Ameliorate Type 2 Diabetes Mellitus-Induced Dysmetabolism by Upregulating GLUT4 Concentration in Male Wistar Rats. J Med Food 2023; 26:470-479. [PMID: 37379466 DOI: 10.1089/jmf.2023.0061] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023] Open
Abstract
Diabetes mellitus (DM) is a chronic disease and one of the oldest known disorders. It is characterized by dysglycemia, dyslipidemia, insulin resistance (IR), and pancreatic cell dysfunction. Although different drugs, metformin (MET), glipizide, glimepiride, etc., have been introduced to treat type 2 DM (T2DM), these drugs are not without side effects. Scientists are now seeking natural treatments such as lifestyle modification and organic products known with limited side effects. Thirty-six male Wistar rats were randomized into six groups (n = 6 per group): control, DM untreated rats, DM+orange peel extract (OPE), DM+exercise (EX), DM+OPE +EX, and DM+MET. The administration was once daily through the oral route and lasted for 28 days. EX and OPE synergistically ameliorated the diabetic-induced increase in fasting blood sugar, homeostatic model assessment for insulin resistance (HOMA IR), total cholesterol (TC) and triglyceride (TG), TC/high-density lipoprotein (HDL), TG/HDL, triglyceride glucose (TyG) index, and hepatic lactate dehydrogenase, alanine transaminase, malondialdehyde, c-reactive protein, and tumour necrosis factor α when compared with the diabetic untreated group. Also, EX+OPE blunted DM-induced decrease in serum insulin, homeostasis model assessment of β-cell function (HOMA-B), homeostasis model assessment of insulin sensitivity (HOMA S), quantitative insulin-sensitivity check index (QUICK 1), HDL, total antioxidant capacity, superoxide dismutase, and hepatic glycogen. Furthermore, EX+OPE ameliorated the observed DM-induced decrease in glucose transporter type 4 (GLUT 4), expression. This study showed that OPE and EX synergistically ameliorate T2DM-induced dysglycaemia, dyslipidaemia, and down-regulation of GLUT4 expression.
Collapse
Affiliation(s)
| | - Kazeem Bidemi Okesina
- Department of Physiology, School of Medicine and Pharmaceutical Sciences, College of Medicine and Health Sciences, University of Rwanda, Butare, Rwanda
| | | | | | - Adeyemi Fatai Odetayo
- Department of Physiology, University of Ilorin, Ilorin, Nigeria
- Department of Physiology, Federal University of Health Sciences, Ila Orangun, Nigeria
| |
Collapse
|
28
|
Attaallah A, Elmrazeky AR, El-Beltagy AEFBM, Abdelaziz KK, Soliman MF. Modulatory role of Coriandrum sativum (coriander) extract against diabetic complications on the gonads of female rats and their offspring. Tissue Cell 2023; 83:102127. [PMID: 37331322 DOI: 10.1016/j.tice.2023.102127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/10/2023] [Accepted: 06/06/2023] [Indexed: 06/20/2023]
Abstract
It is well known that diabetes is associated with impairment of ovarian and testicular structure and function. Coriander (Coriandrum sativum L.) is identified as one of the oldest herbal plants valued for its nutritional and medicinal properties. This work is mainly designed to evaluate the possible modulatory role of dry coriander fruit extract against gonadal impairments associated with diabetes in female rats and their pups. Twenty-four pregnant rats were divided into four groups (n = 6): group I served as control, group II was administered daily with coriander fruit extract (250 mg/kg b.wt), group III was injected interaperitoneally with a single dose of streptozotocin (STZ) (80 mg/kg b.wt), and group IV was injected with single dose of STZ and post administered coriander extract. The experiment was conducted from the 4th day of gestation till the end of weaning. At the end of the experiment, the mothers' rats and their offspring were weighed, sacrificed, the ovaries from mothers as well as ovaries and testes from offspring were immediately excised, and processed for histological, immunohistochemical and evaluation of apoptosis and transforming growth factorβ (TGF-β). Also, blood samples were collected and analyzed to estimate the levels of sex hormones as well as antioxidants.In STZ induced diabetes in mother's rats and their offspring, the ovarian sections revealed severe histopathological signs included several atretic follicles, dilated and congested blood capillaries. Additionally, the testicular sections of offspring appeared with destructive seminiferous tubules. Immunohistochemically, the ovarian sections displayed weak to negative expression for calretinin marker however the testicular sections showed strong expression for Bax protein (apoptotic marker) and weak to negative expression for Ki67 protein (proliferative marker). Also, the mean % values of positively expressed cells for TGF-β and annexin-v markers (late and early apoptosis indicator) were significantly elevated in the ovarian and testicular tissues of STZ-induced group of mother's rats and their pups if compared with control. Further results revealed that the levels of insulin, FSH, LH, estrogen, SOD and CAT were significantly decreased if compared with control however the levels of MDA and NO were significantly elevated. Administration of coriander fruit extract to diabetic rats successfully alleviated most of the altered histological, immunohistochemical, biochemical, and apoptotic changes induced by diabetes. Coriandrum sativum fruit extract has a powerful ameliorative role against STZ-induced diabetic gonadal dysfunctions in female rats and their offspring.
Collapse
Affiliation(s)
- Amany Attaallah
- Zoology Department, Faculty of Science, Damanhur University, Egypt.
| | | | | | | | - Mona Fm Soliman
- Histology Department, Faculty of Medicine, Mansoura University, Egypt
| |
Collapse
|
29
|
Aguayo-Morales H, Sierra-Rivera CA, Claudio-Rizo JA, Cobos-Puc LE. Horsetail (Equisetum hyemale) Extract Accelerates Wound Healing in Diabetic Rats by Modulating IL-10 and MCP-1 Release and Collagen Synthesis. Pharmaceuticals (Basel) 2023; 16:ph16040514. [PMID: 37111271 PMCID: PMC10141616 DOI: 10.3390/ph16040514] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/12/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Traditionally, Equisetum hyemale has been used for wound healing. However, its mechanism of action remains to be elucidated. For this purpose, a 40% ethanolic extract of E. hyemale was prepared. Phytochemical screening revealed the presence of minerals, sterols, phenolic acids, flavonols, a lignan, and a phenylpropenoid. The extract reduced the viability of RAW 264.7 cells and skin fibroblasts at all times evaluated. On the third day of treatment, this reduction was 30–40% and 15–40%, respectively. In contrast, the extract increased the proliferation of skin fibroblasts only after 48 h. In addition, the extract increased IL-10 release and inhibited MCP-1 release. However, the extract did not affect both TGF-β1 and TNF-α released by RAW 264.7 cells. The higher release of IL-10 could be related to the up-/downregulation of inflammatory pathways mediated by the extract components associated with their bioactivity. The extract inhibited the growth of Staphylococcus aureus and Escherichia coli. Topical application of the extract accelerated wound healing in diabetic rats by increasing fibroblast collagen synthesis. These results suggest that E. hyemale extract has great potential for use in the treatment of wounds thanks to its phytochemical composition that modulates cytokine secretion, collagen synthesis, and bacterial growth.
Collapse
Affiliation(s)
- Hilda Aguayo-Morales
- Facultad de Ciencias Químicas, Unidad Saltillo, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza S/N Esquina con Ing. José Cárdenas Valdés, República Oriente, Saltillo 25290, Mexico
| | - Crystel A. Sierra-Rivera
- Facultad de Ciencias Químicas, Unidad Saltillo, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza S/N Esquina con Ing. José Cárdenas Valdés, República Oriente, Saltillo 25290, Mexico
| | - Jesús A. Claudio-Rizo
- Facultad de Ciencias Químicas, Unidad Saltillo, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza S/N Esquina con Ing. José Cárdenas Valdés, República Oriente, Saltillo 25290, Mexico
| | - Luis E. Cobos-Puc
- Facultad de Ciencias Químicas, Unidad Saltillo, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza S/N Esquina con Ing. José Cárdenas Valdés, República Oriente, Saltillo 25290, Mexico
| |
Collapse
|
30
|
Yousefzadeh N, Jeddi S, Zarkesh M, Kashfi K, Ghasemi A. Altered sialin mRNA gene expression in type 2 diabetic male Wistar rats: implications for nitric oxide deficiency. Sci Rep 2023; 13:4013. [PMID: 36899088 PMCID: PMC10006425 DOI: 10.1038/s41598-023-31240-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Nitrate therapy has been suggested to boost nitric oxide (NO) levels in type 2 diabetes (T2D); however, little is known about nitrate transport across the membranes. This study aimed to assess changes in the mRNA expression of sialin, as a nitrate transporter, in the main tissues of rats with T2D. Rats were divided into two groups (n = 6/group): Control and T2D. A high-fat diet combined with a low dose of streptozotocin (STZ, 30 mg/kg) was used to induce T2D. At month 6, samples from the main tissues of rats were used to measure the mRNA expression of sialin and levels of NO metabolites. Rats with T2D had lower nitrate levels in the soleus muscle (66%), lung (48%), kidney (43%), aorta (30%), adrenal gland (58%), epididymal adipose tissue (eAT) (61%), and heart (37%) and had lower nitrite levels in the pancreas (47%), kidney (42%), aorta (33%), liver (28%), eAT (34%), and heart (32%). The order of sialin gene expression in control rats was: soleus muscle > kidney > pancreas > lung > liver > adrenal gland > brain > eAT > intestine > stomach > aorta > heart. Compared to controls, rats with T2D had higher sialin mRNA expressions in the stomach (2.1), eAT (2.0), adrenal gland (1.7), liver (8.9), and soleus muscle (3.4), and lower sialin expression in the intestine (0.56), pancreas (0.42), and kidney (0.44), all P values < 0.05. These findings indicate altered sialin mRNA expression in the main tissues of male T2D rats and may have implications for future NO-based treatment of T2D.
Collapse
Affiliation(s)
- Nasibeh Yousefzadeh
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 24, Arabi Street, Daneshjoo Blvd, Velenjak, P.O. Box 19395-4763, Tehran, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 24, Arabi Street, Daneshjoo Blvd, Velenjak, P.O. Box 19395-4763, Tehran, Iran
| | - Maryam Zarkesh
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 24, Arabi Street, Daneshjoo Blvd, Velenjak, P.O. Box 19395-4763, Tehran, Iran.
| |
Collapse
|
31
|
Kurhaluk N, Tkachenko H, Tomin V. Invitro impact of a combination of red and infrared LEDs, infrared laser and magnetic field on biomarkers of oxidative stress and hemolysis of erythrocytes sampled from healthy individuals and diabetes patients. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 242:112685. [PMID: 36921401 DOI: 10.1016/j.jphotobiol.2023.112685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023]
Abstract
AIMS Low-intensity infrared laser irradiation with output emissions of the laser and LED for in vitro irradiation of plasma and erythrocyte samples collected from healthy individuals and diabetes mellitus (DM) patients was used in the current study. METHODS The generated emission was in the range 0.85-0.89 nm with pulse duration near 130 ns and repetition rates of pulses 50, 150, 600, and 1500 Hz, average power 0, 50, or 100 mW, in the range of 1-9 min for different 30 variants of irradiation. The levels of 2-thiobarbituric-acid reactive substances (TBARS), aldehydic and ketonic derivatives of oxidatively modified proteins (OMP), total antioxidant capacity (TAC), acid-induced resistance of erythrocytes, and activities of the main antioxidant enzymes were assessed in erythrocyte and plasma samples after irradiation. RESULTS The low-intensity infrared laser irradiation and low-intensity light emitted by a red LED decreased the lipid peroxidation levels in the erythrocytes of both healthy individuals and DM patients. A statistically significant decrease in TBARS and OMP levels and an increase in the TAC level were observed at the irradiation energy of 34.39 and 68.79 J/cm2 for samples collected from both healthy individuals and DM patients. The effects of the irradiation were accompanied by a statistically significant decrease in catalase activity of both healthy individuals and DM patients. CONCLUSIONS In many variants of the laser irradiation and low-intensity light emitted by a red LED used in our study, a decrease in the percent of hemolyzed erythrocytes was observed, suggesting that laser therapy protocols should take into account fluencies, frequencies, and wavelengths of the laser before the beginning of treatment, especially in DM patients.
Collapse
Affiliation(s)
- Natalia Kurhaluk
- Department of Biology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Słupsk, Poland.
| | - Halyna Tkachenko
- Department of Biology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Słupsk, Poland
| | - Vladimir Tomin
- Department of Physics, Institute of Science and Technology, Pomeranian University in Słupsk, Słupsk, Poland
| |
Collapse
|
32
|
Rashmi P, Urmila A, Likhit A, Subhash B, Shailendra G. Rodent models for diabetes. 3 Biotech 2023; 13:80. [PMID: 36778766 PMCID: PMC9908807 DOI: 10.1007/s13205-023-03488-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
Diabetes mellitus (DM) is associated with many health complications and is potentially a morbid condition. As prevalence increases at an alarming rate around the world, research into new antidiabetic compounds with different mechanisms is the top priority. Therefore, the preclinical experimental induction of DM is imperative for advancing knowledge, understanding pathogenesis, and developing new drugs. Efforts have been made to examine recent literature on the various induction methods of Type I and Type II DM. The review summarizes the different in vivo models of DM induced by chemical, surgical, and genetic (immunological) manipulations and the use of pathogens such as viruses. For good preclinical assessment, the animal model must exhibit face, predictive, and construct validity. Among all reported models, chemically induced DM with streptozotocin was found to be the most preferred model. However, the purpose of the research and the outcomes to be achieved should be taken into account. This review was aimed at bringing together models, benefits, limitations, species, and strains. It will help the researcher to understand the pathophysiology of DM and to choose appropriate animal models.
Collapse
Affiliation(s)
- Patil Rashmi
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Paud Road, Erandwane, Pune, 411038 India
| | - Aswar Urmila
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Paud Road, Erandwane, Pune, 411038 India
| | - Akotkar Likhit
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Paud Road, Erandwane, Pune, 411038 India
| | - Bodhankar Subhash
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Paud Road, Erandwane, Pune, 411038 India
| | - Gurav Shailendra
- Department of Pharmacognosy, Goa College of Pharmacy, Goa University, Panaji, Goa India
| |
Collapse
|
33
|
Sun M, Li D, Hua M, Miao X, Su Y, Chi Y, Li Y, Sun R, Niu H, Wang J. Analysis of the alleviating effect of black bean peel anthocyanins on type 2 diabetes based on gut microbiota and serum metabolome. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
|
34
|
Khalifa MK, Dawaba AM, Dawaba HM, Al-Najjar AH, Elzaitony AS, Fouad FA, Soliman MM, Nasr ZA. Fabrication, optimization, and eco-friendly micellar HPLC determination of alogliptin/dapagliflozin pullulan-based sublingual films for therapeutic efficacy improvement in diabetic rats. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
35
|
Xiong S, Mo D, Wu Y, Wu P, Hu Y, Gong F. The effect of dapagliflozin on myocardial ischemia-reperfusion injury in diabetic rats. Can J Physiol Pharmacol 2023; 101:80-89. [PMID: 36621925 DOI: 10.1139/cjpp-2022-0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The incidence of ischemic heart disease is 2-3 times higher in diabetic patients. However, the effect of dapagliflozin on ischemia-reperfusion myocardial injury in diabetic rats has not been studied. We examined the effects of dapagliflozin on myocardial IR injury in streptozotocin-nicotinamide-induced diabetic rats. Rats were divided into four groups (n = 7 in each group): control, control-dapagliflozin, diabetes, and diabetes-dapagliflozin. Dapagliflozin (1.5 mg/kg/day) was administered concomitantly in drinking water for 2 months. The hearts were perfused in a Langendorff's apparatus at 2 months and assessed before (baseline) and after myocardial IR for the following parameters: left ventricular developed pressure (LVDP), minimum and maximum rates of pressure change in the left ventricle (±dP/dt), endothelial nitric oxide (NO) synthase (eNOS) and inducible NO synthase (iNOS) mRNA expressions, creatine kinase MB (CK-MB) and troponin imyocardial enzyme extravasation, and lactate dehydrogenase. The recovery of LVDP and ±dP/dt in diabetic rats was lower than that in controls but near normal after dapagliflozin treatment. Diabetic rats had decreased eNOS expression and increased iNOS expression at baseline and after IR, whereas dapagliflozin normalized these parameters after IR. Compared with controls, cardiac NOx levels were initially lower in diabetic patients but higher after IR. Baseline MDA levels were higher in diabetic rats after IR, whereas cardiac NOx levels decreased after treatment with dapagliflozin. Dapagliflozin protects the diabetic rat heart from ischemia-reperfusion myocardial injury by regulating the expression of eNOS and iNOS and inhibiting cardiac lipid peroxidation.
Collapse
Affiliation(s)
- Shilong Xiong
- Department of Laboratory Diagnostics, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 511447, People's Republic of China
| | - Donghua Mo
- Department of Laboratory Diagnostics, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 511447, People's Republic of China
| | - Yingjun Wu
- Department of Laboratory Diagnostics, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 511447, People's Republic of China
| | - Peng Wu
- Department of Laboratory Diagnostics, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 511447, People's Republic of China
| | - YuanMing Hu
- Department of Laboratory Diagnostics, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 511447, People's Republic of China
| | - Fang Gong
- ECG Lab, The Second Affiliated Hospital of Guangzhou Medical University, Panyu, Guangzhou, Guangdong 511447, People's Republic of China
| |
Collapse
|
36
|
Yun J, Park S, Park HY, Lee KA. Efficacy of Polydeoxyribonucleotide in Promoting the Healing of Diabetic Wounds in a Murine Model of Streptozotocin-Induced Diabetes: A Pilot Experiment. Int J Mol Sci 2023; 24:ijms24031932. [PMID: 36768255 PMCID: PMC9916466 DOI: 10.3390/ijms24031932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023] Open
Abstract
We assessed the efficacy of polydeoxyribonucleotide (PDRN) in accelerating the healing of diabetic wounds in a murine model of streptozotocin (STZ)-induced diabetes. After the creation of diabetic wounds, the mice of the PDRN SC, PDRN IP and PBS groups received a subcutaneous, an intra-peritoneal injection of PDRN and a subcutaneous injection of PBS, respectively. After euthanasia, time-dependent changes in the wound diameter and histologic scores were measured and vascular endothelial growth factor (VEGF), transforming growth factor-β1 (TGF-β1) and collagen types I and III were assessed for their expression levels. The PDRN SC and the PDRN IP groups showed a significantly smaller diameter of diabetic wounds, significantly higher histologic scores, a significantly greater expression of VEGF, a significantly lower expression of TGF-β1 and a significantly greater expression of collagen types I and III as compared with the PBS group (p < 0.05 or 0.0001). In conclusion, PDRN might be effective in promoting the healing of diabetic wounds in a murine model of STZ-induced diabetes.
Collapse
Affiliation(s)
- Jiyoung Yun
- Department of Plastic and Reconstructive Surgery, Inje University Busan Paik Hospital, College of Medicine, Inje University, Busan 47392, Republic of Korea
| | - SaeGwang Park
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan 47392, Republic of Korea
- Innovative Therapeutic Research Institute, Inje University Busan Paik Hospital, College of Medicine, Inje University, Busan 47392, Republic of Korea
| | - Ha Young Park
- Department of Pathology, Inje University Busan Paik Hospital, College of Medicine, Inje University, Busan 47392, Republic of Korea
| | - Kyung Ah Lee
- Department of Plastic and Reconstructive Surgery, Inje University Haeundae Paik Hospital, College of Medicine, Inje University, Busan 48108, Republic of Korea
- Correspondence:
| |
Collapse
|
37
|
Chanu KD, Sharma N, Kshetrimayum V, Chaudhary SK, Ghosh S, Haldar PK, Mukherjee PK. Ageratina adenophora (Spreng.) King & H. Rob. Standardized leaf extract as an antidiabetic agent for type 2 diabetes: An in vitro and in vivo evaluation. Front Pharmacol 2023; 14:1178904. [PMID: 37138848 PMCID: PMC10149788 DOI: 10.3389/fphar.2023.1178904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/04/2023] [Indexed: 05/05/2023] Open
Abstract
Type 2 diabetes has become one of the major health concerns of the 21st century, marked by hyperglycemia or glycosuria, and is associated with the development of several secondary health complications. Due to the fact that chemically synthesized drugs lead to several inevitable side effects, new antidiabetic medications from plants have gained substantial attention. Thus, the current study aims to evaluate the antidiabetic capacity of the Ageratina adenophora hydroalcoholic (AAHY) extract in streptozotocin-nicotinamide (STZ-NA)-induced diabetic Wistar albino rats. The rats were segregated randomly into five groups with six rats each. Group I was normal control, and the other four groups were STZ-NA-induced. Group II was designated diabetic control, and group III, IV, and V received metformin (150 mg/kg b.w.) and AAHY extract (200 and 400 mg/kg b.w.) for 28 days. Fasting blood glucose, serum biochemicals, liver and kidney antioxidant parameters, and pancreatic histopathology were observed after the experimental design. The study concludes that the AAHY extract has a significant blood glucose lowering capacity on normoglycemic (87.01 ± 0.54 to 57.21 ± 0.31), diabetic (324 ± 2.94 to 93 ± 2.04), and oral glucose-loaded (117.75 ± 3.35 to 92.75 ± 2.09) Wistar albino rats. The in vitro studies show that the AAHY extract has α-glucosidase and α-amylase inhibitory activities which can restore the altered blood glucose level, glycated hemoglobin, body weight, and serum enzymes such as serum glutamic pyruvic transaminase, serum glutamic oxaloacetic transaminase, serum alkaline phosphatase, total protein, urea, and creatinine levels close to the normal range in the treated STZ-NA-induced diabetic rats. The evaluation of these serum biochemicals is crucial for monitoring the diabetic condition. The AAHY extract has significantly enhanced tissue antioxidant parameters, such as superoxide dismutase, glutathione, and lipid peroxidation, close to normal levels. The presence of high-quantity chlorogenic (6.47% w/w) and caffeic (3.28% w/w) acids as some of the major phytoconstituents may contribute to the improvement of insulin resistance and oxidative stress. The study provides scientific support for the utilization of A. adenophora to treat type 2 diabetes in the STZ-NA-induced diabetic rat model. Although the preventive role of the AAHY extract in treating Wistar albino rat models against type 2 diabetes mellitus is undeniable, further elaborative research is required for efficacy and safety assessment in human beings.
Collapse
Affiliation(s)
- Khaidem Devika Chanu
- Institute of Bio-resources and Sustainable Development (IBSD), Imphal, Manipur, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Bhubaneswar, Odisha, India
| | - Nanaocha Sharma
- Institute of Bio-resources and Sustainable Development (IBSD), Imphal, Manipur, India
- *Correspondence: Nanaocha Sharma,
| | - Vimi Kshetrimayum
- Institute of Bio-resources and Sustainable Development (IBSD), Imphal, Manipur, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Bhubaneswar, Odisha, India
| | | | - Suparna Ghosh
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University (JU), Kolkata, West Bengal, India
| | - Pallab Kanti Haldar
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University (JU), Kolkata, West Bengal, India
| | - Pulok K. Mukherjee
- Institute of Bio-resources and Sustainable Development (IBSD), Imphal, Manipur, India
| |
Collapse
|
38
|
Husain A, Alouffi S, Khanam A, Akasha R, Farooqui A, Ahmad S. Therapeutic Efficacy of Natural Product 'C-Phycocyanin' in Alleviating Streptozotocin-Induced Diabetes via the Inhibition of Glycation Reaction in Rats. Int J Mol Sci 2022; 23:ijms232214235. [PMID: 36430714 PMCID: PMC9698742 DOI: 10.3390/ijms232214235] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/19/2022] Open
Abstract
Diabetes is a long-term metabolic disorder characterized by persistently elevated blood sugar levels. Chronic hyperglycemia enhances glucose-protein interactions, leading to the formation of advanced glycation end products (AGEs), which form irreversible cross-links with a wide variety of macromolecules, and accumulate rapidly in the body tissues. Thus, the objective of this study was to assess the therapeutic properties of C-phycocyanin (C-PC) obtained from Plectonema species against oxidative stress, glycation, and type 2 diabetes mellitus (T2DM) in a streptozotocin (STZ)-induced diabetic Wistar rat. Forty-five days of C-PC administration decreased levels of triglycerides (TGs), blood glucose, glycosylated hemoglobin, (HbA1c), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), liver and kidney function indices, and raised body weight in diabetic rats. C-PC suppressed biochemical glycation markers, as well as serum carboxymethyllysine (CML) and fluorescent AGEs. Additionally, C-PC maintained the redox state by lowering lipid peroxidation and protein-bound carbonyl content (CC), enhancing the activity of high-density lipoprotein cholesterol (HDL-C) and renal antioxidant enzymes, and preserving retinal and renal histopathological characteristics. Thus, we infer that C-PC possesses antidiabetic and antiglycation effects in diabetic rats. C-PC may also act as an antidiabetic and antiglycation agent in vivo that may reduce the risk of secondary diabetic complications.
Collapse
Affiliation(s)
- Arbab Husain
- Department of Biosciences, Faculty of Sciences, Integral University, Lucknow 226026, India
- Department of Biotechnology and Life Sciences, Institute of Biomedical Education and Research, Mangalayatan University, Aligarh 202145, India
| | - Sultan Alouffi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 2440, Saudi Arabia
- Molecular Diagnostic & Personalized Therapeutic Unit, University of Hail, Hail 2440, Saudi Arabia
- Correspondence: (S.A.); (A.F.)
| | - Afreen Khanam
- Department of Biosciences, Faculty of Sciences, Integral University, Lucknow 226026, India
- Department of Biotechnology and Life Sciences, Institute of Biomedical Education and Research, Mangalayatan University, Aligarh 202145, India
| | - Rihab Akasha
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 2440, Saudi Arabia
| | - Alvina Farooqui
- Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow 226026, India
- Correspondence: (S.A.); (A.F.)
| | - Saheem Ahmad
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 2440, Saudi Arabia
- Molecular Diagnostic & Personalized Therapeutic Unit, University of Hail, Hail 2440, Saudi Arabia
| |
Collapse
|
39
|
Palm Oil Derived Tocotrienol-Rich Fraction Attenuates Vascular Dementia in Type 2 Diabetic Rats. Int J Mol Sci 2022; 23:ijms232113531. [PMID: 36362316 PMCID: PMC9653761 DOI: 10.3390/ijms232113531] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Vascular dementia (VaD) is a serious global health issue and type 2 diabetes mellitus (T2DM) patients are at higher risk. Palm oil tocotrienol-rich fraction (TRF) exhibits neuroprotective properties; however, its effect on VaD is not reported. Hence, we evaluated TRF effectiveness in T2DM-induced VaD rats. Rats were given a single dose of streptozotocin (STZ) and nicotinamide (NA) to develop T2DM. Seven days later, diabetic rats were given TRF doses of 30, 60, and 120 mg/kg orally for 21 days. The Morris water maze (MWM) test was performed for memory assessment. Biochemical parameters such as blood glucose, plasma homocysteine (HCY) level, acetylcholinesterase (AChE) activity, reduced glutathione (GSH), superoxide dismutase (SOD) level, and histopathological changes in brain hippocampus and immunohistochemistry for platelet-derived growth factor-C (PDGF-C) expression were evaluated. VaD rats had significantly reduced memory, higher plasma HCY, increased AChE activity, and decreased GSH and SOD levels. However, treatment with TRF significantly attenuated the biochemical parameters and prevented memory loss. Moreover, histopathological changes were attenuated and there was increased PDGF-C expression in the hippocampus of VaD rats treated with TRF, indicating neuroprotective action. In conclusion, this research paves the way for future studies and benefits in understanding the potential effects of TRF in VaD rats.
Collapse
|
40
|
Zehra SA, Bhattarai P, Zhang J, Liu Y, Parveen Z, Sajid M, Zhu L. In Vitro and In Vivo Evaluation of the Antidiabetic Activity of Solidago virgaurea Extracts. CURRENT BIOACTIVE COMPOUNDS 2022; 19:e150622206034. [PMID: 37900701 PMCID: PMC10601339 DOI: 10.2174/1573407218666220615143502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/12/2022] [Accepted: 05/09/2022] [Indexed: 10/31/2023]
Abstract
Background Solidago virgaurea (Asteraceae) has been used for more than 700 years for treating cystitis, chronic nephritis, urolithiasis, rheumatism, and inflammatory diseases. However, the antidiabetic activity of Solidago virgaurea has been rarely studied. Methods Three extracts of Solidago virgaurea were prepared, and their antidiabetic potentials were evaluated by various cell-free, cell-based, and in vivo studies. Results We found that the Solidago virgaurea contained multiple bioactive phytochemicals based on the GC-MS analysis. The Solidago virgaurea extracts effectively inhibited the functions of the carbohydrate digestive enzyme (α-glucosidase) and protein tyrosine phosphatase 1B (PTP1B), as well as decreased the amount of advanced glycation end products (AGEs). In the L6 myotubes, the Solidago virgaurea methanolic extract remarkably enhanced the glucose uptake via the upregulation of glucose transporter type 4 (GLUT4). The extract also significantly downregulated the expression of PTP1B. In the streptozotocin-nicotinamide induced diabetic mice, the daily intraperitoneal injection of 100 mg/kg Solidago virgaurea methanolic extract for 24 days, substantially lowered the postprandial blood glucose level with no obvious toxicity. The extract's anti-hyperglycemic effect was comparable to that of the glibenclamide treatment. Conclusion Our findings suggested that the Solidago virgaurea extract might have great potential in the prevention and treatment of diabetes.
Collapse
Affiliation(s)
- Syeda Andleeb Zehra
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, 78363, USA
- Department of Biochemistry, Faculty of Health Sciences, Hazara University, Mansehra, 21300, Pakistan
| | - Prapanna Bhattarai
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, 78363, USA
| | - Jian Zhang
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, 78363, USA
| | - Yin Liu
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, 78363, USA
| | - Zahida Parveen
- Department of Biochemistry, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Muhammad Sajid
- Department of Biochemistry, Faculty of Health Sciences, Hazara University, Mansehra, 21300, Pakistan
| | - Lin Zhu
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, 78363, USA
| |
Collapse
|
41
|
M E, Swaroop AK, Patnaik SK, Kumar R R, T K P, Naik MR, S J. A novel family of small molecule HIF-1 alpha stabilizers for the treatment of diabetic wounds; an integrated in silico, in vitro, and in vivo strategy. RSC Adv 2022; 12:31293-31302. [PMID: 36349012 PMCID: PMC9623456 DOI: 10.1039/d2ra05364k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/20/2022] [Indexed: 11/24/2022] Open
Abstract
Hypoxia-inducible factor-1 alpha (HIF-1α) is a crucial regulator of wound healing, which includes epithelialization, angiogenesis, granulation, tissue development, and wound contraction. Even though diabetic wounds are hypoxic, HIF-1α levels are decreased during healing. Diabetic wound healing necessitates the modulation of hypoxia-induced responses by VHL-HIF-1α protein-protein inhibition. Our proposed hypothesis is to increase HIF-1α levels by inhibiting VHL and HIF-1α interactions by novel small bioactive molecules, accelerating diabetic wound healing. A three features (two aromatic rings and one hydrogen bond acceptor) pharmacophore hypothesis was generated from the existing HIF-1α modulators. Virtual screening was done based on the generated pharmacophore, and a library consisting of the top 20 out of 3728 compounds was selected using ZINCPharmer. Of the top 20 molecules, the pyrazole moiety was identified as the top "HIT". Five analogues of pyrazole were designed, and Scifinder ascertained the novelty. The designed compounds were synthesized and characterized by IR, Mass, and NMR. Preliminarily, we have carried out a scratch wound assay using 3T3L1 cell lines. All the synthesized compounds showed significant wound healing activity. Further, to validate the in vitro assay, the compound CI, which showed effective in vitro results was used for in vivo study. Using the diabetes mouse model, comprising streptozotocin-induced (STZ) diabetic mice and scratch wound assay, we demonstrated that inhibiting the VHL and HIF-1α connection is a promising strategy for treating diabetic ulcers. Molecules CI and CP were found to have substantial in silico, in vitro, and in vivo outcomes.
Collapse
Affiliation(s)
- Esakkimuthukumar M
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research Ooty Tamilnadu India
| | - Akey Krishna Swaroop
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research Ooty Tamilnadu India
| | - Sunil Kumar Patnaik
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research Ooty Tamilnadu India
| | - Rajesh Kumar R
- Department of Pharmaceutical Biotechnology, JSS College of Pharmacy, JSS Academy of Higher Education and Research Ooty Tamilnadu India
| | - Praveen T K
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research Ooty Tamilnadu India
| | - Mudavath Ravi Naik
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research Ooty Tamilnadu India
| | - Jubie S
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research Ooty Tamilnadu India
| |
Collapse
|
42
|
Hosni A, Abdel-Moneim A, Hussien M, Zanaty MI, Eldin ZE, El-Shahawy AAG. Therapeutic significance of thymoquinone-loaded chitosan nanoparticles on streptozotocin/nicotinamide-induced diabetic rats: In vitro and in vivo functional analysis. Int J Biol Macromol 2022; 221:1415-1427. [PMID: 36096255 DOI: 10.1016/j.ijbiomac.2022.09.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/15/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022]
Abstract
To overcome the low bioavailability of lipophilic free thymoquinone (TQ), this study aims to evaluate a novel oral formula of TQ-loaded chitosan nanoparticles (TQ-CsNPs) for the effective treatment of diabetes. The XRD, FTIR, FESEM, HRTEM, and dynamic light scattering were all conducted on the prepared formula. The release pattern of TQ, cytotoxicity against MRC-5 cell line (human lung fibroblast cells), and antidiabetic activity on streptozotocin/nicotinamide (STZ/NA) rat model of diabetes were investigated. The results confirmed the formation of TQ-CsNPs with an entrapment efficiency of 75.7 ± 6.52 %, a mean Zetasizer distribution of 84.25 nm, and an average particle size of about 50 nm. After 24 h, the percentage of free TQ-cumulative release was approximately 35.8 %, whereas TQ-CsNPs showed a sustained release pattern of 78.5 %. The investigated formula was not toxic to normal lung cells, and more efficient in ameliorating the altered glycemia, dyslipidemia, inflammation, and oxidative stress induced by STZ/NA than free TQ, blank CsNPs, and metformin-HCl (as a reference drug). Additionally, TQ-CsNPs restored the normal pancreatic islets' configuration and morphometry, suggesting a potent insulinotropic action. In conclusion, the antidiabetic efficacy of TQ was improved by engaging TQ with CsNPs as an excellent nanoplatform to enhance the oral bioavailability of TQ.
Collapse
Affiliation(s)
- Ahmed Hosni
- Molecular Physiology Division, Faculty of Science, Beni-Suef University, 62511 Beni-Suef, Egypt
| | - Adel Abdel-Moneim
- Molecular Physiology Division, Faculty of Science, Beni-Suef University, 62511 Beni-Suef, Egypt.
| | - Mohammed Hussien
- Department of Biotechnology, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Egypt
| | - Mohamed I Zanaty
- Department of Biotechnology, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Egypt
| | - Zienab E Eldin
- Faculty of Veterinary Medicine, Beni-Suef University, Egypt
| | - Ahmed A G El-Shahawy
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, 62511 Beni-Suef, Egypt
| |
Collapse
|
43
|
Yan LJ. The Nicotinamide/Streptozotocin Rodent Model of Type 2 Diabetes: Renal Pathophysiology and Redox Imbalance Features. Biomolecules 2022; 12:biom12091225. [PMID: 36139064 PMCID: PMC9496087 DOI: 10.3390/biom12091225] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetic nephropathy (DN) is a common complication of diabetes mellitus. While there has been a great advance in our understanding of the pathogenesis of DN, no effective managements of this chronic kidney disease are currently available. Therefore, continuing to elucidate the underlying biochemical and molecular mechanisms of DN remains a constant need. In this regard, animal models of diabetes are indispensable tools. This review article highlights a widely used rodent model of non-obese type 2 diabetes induced by nicotinamide (NA) and streptozotocin (STZ). The mechanism underlying diabetes induction by combining the two chemicals involves blunting the toxic effect of STZ by NA so that only a percentage of β cells are destroyed and the remaining viable β cells can still respond to glucose stimulation. This NA-STZ animal model, as a platform for the testing of numerous antidiabetic and renoprotective materials, is also discussed. In comparison with other type 2 diabetic animal models, such as high-fat-diet/STZ models and genetically engineered rodent models, the NA-STZ model is non-obese and is less time-consuming and less expensive to create. Given that this unique model mimics certain pathological features of human DN, this model should continue to find its applications in the field of diabetes research.
Collapse
Affiliation(s)
- Liang-Jun Yan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
44
|
Huang CH, Lin CH, Huang HH, Tsai GJ. Development of Fermented Shrimp Shell Product with Hypoglycemic and Hypolipidemic Effects on Diabetic Rats. Metabolites 2022; 12:metabo12080695. [PMID: 35893262 PMCID: PMC9332839 DOI: 10.3390/metabo12080695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/16/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023] Open
Abstract
In 2020, approximately 9.3 billion tons of crustaceans were consumed, and 45–48% of shrimp shell (SS) by-products were discarded as waste. In this study, the SS of Litopenaeus vannamei was fermented by Lactobacillus plantarum LV33204, Stenotrophomonas maltophilia LV2122 (strong proteolytic activity), and Aeromonas dhakensis LV1111 (chitin-degrading activity), and the optimal fermentation conditions of liquid-fermented SS was established. Contents of total peptide, astaxanthin, and total phenolic content of the fermented SS were significantly higher than that of unfermented SS. In the presence of fermented SS, glucose uptake and insulin resistance of TNF-α-stimulated FL83B hepatocytes were markedly improved. Furthermore, daily oral supplement of fermented SS to streptozotocin (STZ)/nicotinamide (NA)-induced diabetic rats for 7 weeks significantly reduced plasma glucose and insulin resistance. Meanwhile, ingestion of fermented SS might enhance hepatic catabolism of glucose by increasing hexokinase and glucose-6-phosphate dehydrogenase activity and decreasing glucose-6-phosphatase activity. In addition, the fermented SS downregulated plasma total cholesterol (TG), triglycerides (TCs), low-density lipoprotein cholesterol (LDL-C), liver TG, and TC and lipid peroxidation levels in diabetic rats. In conclusion, a biorefinery process for waste SS was established through mixed strain fermentation. The in vitro and in vivo data reveal that the fermented SS is a promising functional food for the management of diabetic hyperglycemia and hyperlipidemia.
Collapse
Affiliation(s)
- Chung-Hsiung Huang
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan; (C.-H.H.); (C.-H.L.); (H.-H.H.)
| | - Chih-Heng Lin
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan; (C.-H.H.); (C.-H.L.); (H.-H.H.)
| | - Hsiao-Han Huang
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan; (C.-H.H.); (C.-H.L.); (H.-H.H.)
| | - Guo-Jane Tsai
- Center for Marine Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
- Correspondence:
| |
Collapse
|
45
|
Ameliorative Processes of Beta-Carotene in Streptozotocin-Induced Diabetic Vascular Dementia in Rats. Processes (Basel) 2022. [DOI: 10.3390/pr10071324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Beta-carotene (BC) is a precursor of vitamin A and an excellent antioxidant. It protects the vascular system. Vascular dementia (VaD) is one of the aging disorders causing memory dysfunction. The available medicines for the management of VaD are limited. The present study aimed to evaluate the ameliorative effect of BC in streptozotocin (STZ)-induced diabetic VaD in rats. Diabetic VaD was induced through the administration of nicotinamide (NA, 50 mg/kg; i.p.) and STZ (50 mg/kg; i.p.). The test compound BC (50 and 100 mg/kg; p.o.) and reference compound donepezil (1 mg/kg; p.o.) were administered for 15 consecutive days. Cognitive changes were assessed by transfer latency (TL) using the elevated plus maze (EPM) test. The changes in acetylcholinesterase (AChE) activity were estimated in the septohippocampal system of rat brains. The administration of STZ caused significant changes in cognitive functions (increased TL) as compared to the normal group. BC ameliorated the anxiety-related cognitive behavior and neurotransmitter (elevated AChE) changes provoked by diabetic VaD. Therefore, BC could be a potential therapeutic candidate in the management of VaD.
Collapse
|
46
|
Lim KG, Varatharajan R, Muthuraman A. The Attenuating Effect of Beta-Carotene on Streptozotocin Induced Diabetic Vascular Dementia Symptoms in Rats. Molecules 2022; 27:molecules27134293. [PMID: 35807538 PMCID: PMC9268603 DOI: 10.3390/molecules27134293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
This study investigated the ameliorative effects of beta-carotene (BC) on diabetes-associated vascular dementia and its action against biomolecule oxidation. The diabetic vascular dementia (VaD) was induced by administration of nicotinamide (NA; 50 mg/kg; i.p.) and streptozotocin (STZ; 50 mg/kg; i.p.). The test compound, BC (50 and 100 mg/kg; p.o.), and the reference compound, donepezil (DP) (1 mg/kg; p.o.), were administered for 15 consecutive days. Changes in learning and memory were assessed by escape latency time (ELT) and times spent in target quadrant (TSTQ) in the Morris water maze (MWM) test. The changes in neurotransmitter, i.e., acetylcholinesterase (AChE) and oxidative stress markers, i.e., thiobarbituric acid reactive substance (TBARS) and reduced glutathione (GSH), were estimated in hippocampal tissue of the rat brain. The administration of STZ caused significant deterioration of cognitive function (decreased ELT and raised the TSTQ) as compared to the normal group. Treatment with BC and DP diminished the increased AChE activity, TBARS level and decreased GSH level caused by STZ. Thus, BC ameliorates the diabetic vascular complications in VaD due to its potential anticholinergic, antioxidative and free radical scavenging actions.
Collapse
|
47
|
Gvazava IG, Karimova MV, Vasiliev AV, Vorotelyak EA. Type 2 Diabetes Mellitus: Pathogenic Features and Experimental Models in Rodents. Acta Naturae 2022; 14:57-68. [PMID: 36348712 PMCID: PMC9611859 DOI: 10.32607/actanaturae.11751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/19/2022] [Indexed: 11/20/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is the most common endocrine disorder (90%) in the world; it has numerous clinical, immunological, and genetic differences from type 1 diabetes mellitus. The pathogenesis of T2DM is complex and not fully clear. To date, animal models remain the main tool by which to study the pathophysiology and therapy of T2DM. Rodents are considered the best choice among animal models, because they are characterized by a small size, short induction period, easy diabetes induction, and economic efficiency. This review summarizes data on experimental models of T2DM that are currently used, evaluates their advantages and disadvantages vis-a-vis research, and describes in detail the factors that should be taken into account when using these models. Selection of a suitable model for tackling a particular issue is not always trivial; it affects study results and their interpretation.
Collapse
Affiliation(s)
- I. G. Gvazava
- Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| | - M. V. Karimova
- Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| | - A. V. Vasiliev
- Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334 Russia
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234 Russia
| | - E. A. Vorotelyak
- Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334 Russia
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234 Russia
| |
Collapse
|
48
|
Abu-Zaiton A, Alsohaili S, Aljamal A, Algaramseh A, Habash M, Abu-Zaitoo Y, Abu-Samak M. Physiological and Biochemical Changes in Diabetic Rats Treated with Combined Extracts of Artemisia herba-alba and Anabasis syriaca. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.1084.1092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
49
|
Kusuma RJ, Widada J, Huriyati E, Julia M. Therapeutic Effects of Modified Tempeh on Glycemic Control and Gut Microbiota Diversity in Diabetic Rats. CURRENT NUTRITION & FOOD SCIENCE 2022. [DOI: 10.2174/1573401318666220329101437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The role of the gut microbiota in improving glycemic control in diabetic patients is gaining attention. Tempeh is a fermented soy food from Indonesia that has antidiabetic and antidysbiotic effects. Interestingly, modification of tempeh processing by adding lactic acid bacteria has been reported to enhance the antidiabetic effect of tempeh.
Aim:
To evaluate the effects of modified tempeh on serum glucose, insulin, and gut microbiota diversity of diabetic rats.
Methods:
Modified tempeh was developed by adding lactic acid bacteria from fermented cassava during tempeh processing. Diabetes was induced by injection of streptozotocin nicotinamide. Normal tempeh or modified tempeh was added to the diet and replaced 15% or 30% of casein. Serum glucose and insulin were analyzed before and after 30 days of intervention. At the end of the experiment, the appendix was sampled for gut microbiota analysis.
Result:
Modified tempeh has a significantly higher number of lactic acid bacteria (9.99±0.09 versus 7.74±0.07 log CFU, p < 0.001) compared to normal tempeh. There was a significant difference (p < 0.01) in serum glucose and insulin after treatment. Both tempeh supplements increased the diversity of the gut microbiota. Gut microbiota diversity has a strong negative correlation with delta glucose (r=-0.63, p < 0.001) and delta insulin resistance index (r=-0.54, p=0.003).
Conclusion:
Modified tempeh has potential therapeutic antidiabetic activity, possibly through increased diversity of the gut microbiota.
Collapse
Affiliation(s)
- Rio Jati Kusuma
- Department of Nutrition and Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Doctorate Program of Medicine and Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Jaka Widada
- Department of Agricultural Microbiology, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Emy Huriyati
- Department of Nutrition and Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia;
- Doctorate Program of Medicine and Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Madarina Julia
- Doctorate Program of Medicine and Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia;
- Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
50
|
Putri BM, Wasita B, Febrinasari RP. The Effect of Combined Extracts of Sappan Wood (Caesalpinia sappan L.) and Gotu Kola (Centella asiatica L.) in Improving Diabetic Condition in Rats. JURNAL GIZI DAN PANGAN 2022. [DOI: 10.25182/jgp.2022.17.1.37-46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|