1
|
Kamiki J, Gorgulho CM, Lérias JR, Maeurer MJ. Mucosal-associated invariant T-cells in pulmonary pathophysiology. Curr Opin Pulm Med 2025; 31:202-210. [PMID: 40104908 PMCID: PMC11957436 DOI: 10.1097/mcp.0000000000001163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
PURPOSE OF REVIEW Mucosal-associated invariant T-cells (MAIT) have been associated with lung cancer and pulmonary infections. The treatment of patients with cancer or infections includes host-directed therapies (HDTs). MAIT play a role in shaping the 'milieu interne' in cancer and infections and this review addresses the biology of MAIT in pulmonary pathophysiology. RECENT FINDINGS MAIT represent an attractive target for therapy in pulmonary malignancies and infections. T-cells are often difficult to exploit therapeutically due to the diversity of both T-cell receptor (TCR) repertoire and its ligandome. MAIT-cells are restricted by the major histocompatibility complex class I-related gene protein (MR1) that presents nondefined tumor-associated targets, bacterial products, vitamin and drug derivates. Due to their plasticity in gene expression, MAIT are able to conversely switch from IFN-γ to IL-17 production. Both cytokines play a key role in protective immune responses in infections and malignancies. MAIT-derived production of interleukin (IL)-17/TGF-β shapes the tumor micro-environment (TME), including tissue re-modelling leading to pulmonary fibrosis and recruitment of neutrophils. MAIT contribute to the gut-lung axis associated with clinical improved responses of patients with cancer to checkpoint inhibition therapy. MAIT are at the crossroad of HDTs targeting malignant and infected cells. Clinical presentations of overt inflammation, protective immune responses and tissue re-modeling are reviewed along the balance between Th1, Th2, Th9, and Th17 responses associated with immune-suppression or protective immune responses in infections. SUMMARY MAIT shape the TME in pulmonary malignancies and infections. Drugs targeting the TME and HDTs affect MAIT that can be explored to achieve improved clinical results while curbing overt tissue-damaging immune responses.
Collapse
Affiliation(s)
- Jéssica Kamiki
- ImmunoTherapy/ImmunoSurgery Laboratory, Cell Center at the Champalimaud Foundation, Lisbon, Portugal
| | | | | | | |
Collapse
|
2
|
Liu J, Wang H, Wang X, Jassem J, Si J, Liu Y, Jin J. Biological and clinical significance of circulating mucosal-associated invariant T cells in lung cancer. Transl Cancer Res 2025; 14:1995-2009. [PMID: 40224974 PMCID: PMC11985213 DOI: 10.21037/tcr-2025-178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 03/20/2025] [Indexed: 04/15/2025]
Abstract
Background Lung cancer is among the most common malignant tumors worldwide. Circulating mucosal-associated invariant T (cMAIT) cells play an important role in cancer. This study investigated the biological and clinical significance of cMAIT cells in lung cancer. Methods Fasting peripheral blood mononuclear cells (PBMCs) were extracted from 30 newly diagnosed lung cancer patients and 30 healthy controls. The percentages of cMAIT among the CD3+T cells, their absolute values, and subpopulation distribution in both groups were compared by flow cytometry. The correlations of cMAIT with the neutrophil-to-lymphocyte ratio (NLR) and the expression of programmed cell death-ligand 1 (PD-L1) were analyzed. Enzyme-linked immunosorbent assay (ELISA) was used to detect plasma interleukin-6 (IL-6), interleukin-8 (IL-8), and interferon-γ (IFN-γ) levels in lung cancer patients and healthy controls. The percentage of MAIT cells in the tumor tissues and adjacent normal lung tissues was measured by flow cytometry. Results The percentages and absolute values of the cMAIT in lung cancer patients were lower than in healthy subjects (P<0.001, P<0.01, respectively). The CD8+CD4- subgroup was dominant in both groups. There was no significant difference in percentages of the CD8+CD4- subgroup between lung cancer patients and healthy subjects (P=0.63), but the absolute values of CD8+CD4- cells were lower in lung cancer patients (P<0.05). The percentages and absolute values of cMAIT in lung cancer patients were negatively correlated with NLR (r=-0.537; P<0.01 and r=-0.423; P<0.05, respectively). The cMAIT cell percentage did not correlate with PD-L1 tumor expression (r=-0.1740; P=0.59) and with the PD-L1 expression level (P>0.99). No differences were found in the plasma IL-6, IL-8, and IFN-γ levels in lung cancer patients and healthy controls (P=0.63, P=0.052, P=0.13, respectively). The percentage of mucosal-associated invariant T (MAIT) cells in lung cancer tissues was higher than in the adjacent normal lung tissues (1.44% vs. 1.29%, P=0.044). Conclusions Lower percentage and absolute values of cMAIT in lung cancer patients may be due to their migration into tissues. The number of cMAIT in lung cancer patients may potentially be considered as a prognostic indicator.
Collapse
Affiliation(s)
- Jingjing Liu
- Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haoyu Wang
- Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaotao Wang
- Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jacek Jassem
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, Gdańsk, Poland
| | - Jiming Si
- Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuanhua Liu
- Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianjun Jin
- Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Wu Z, Chen X, Han F, Leeansyah E. MAIT cell homing in intestinal homeostasis and inflammation. SCIENCE ADVANCES 2025; 11:eadu4172. [PMID: 39919191 PMCID: PMC11804934 DOI: 10.1126/sciadv.adu4172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/08/2025] [Indexed: 02/09/2025]
Abstract
Mucosa-associated invariant T (MAIT) cells are a large population of unconventional T cells widely distributed in the human gastrointestinal tract. Their homing to the gut is central to maintaining mucosal homeostasis and immunity. This review discusses the potential mechanisms that guide MAIT cells to the intestinal mucosa during homeostasis and inflammation, emphasizing the roles of chemokines, chemokine receptors, and tissue adhesion molecules. The potential influence of the gut microbiota on MAIT cell homing to different regions of the human gut is also discussed. Last, we introduce how organoid technology offers a potentially valuable approach to advance our understanding of MAIT cell tissue homing by providing a more physiologically relevant model that mimics the human gut tissue. These models may enable a detailed investigation of the gut-specific homing mechanisms of MAIT cells. By understanding the regulation of MAIT cell homing to the human gut, potential avenues for therapeutic interventions targeting gut inflammatory conditions such as inflammatory bowel diseases (IBD) may emerge.
Collapse
Affiliation(s)
- Zhengyu Wu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xingchi Chen
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Fei Han
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Edwin Leeansyah
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
4
|
Yang S, Fan X, Yu W. Regulatory Mechanism of Protein Crotonylation and Its Relationship with Cancer. Cells 2024; 13:1812. [PMID: 39513918 PMCID: PMC11545499 DOI: 10.3390/cells13211812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/26/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Crotonylation is a recently discovered protein acyl modification that shares many enzymes with acetylation. However, it possesses a distinct regulatory mechanism and biological function due to its unique crotonyl structure. Since the discovery of crotonylation in 2011, numerous crotonylation sites have been identified in both histones and other proteins. In recent studies, crotonylation was found to play a role in various diseases and biological processes. This paper reviews the initial discovery and regulatory mechanisms of crotonylation, including various writer, reader, and eraser proteins. Finally, we emphasize the relationship of dysregulated protein crotonylation with eight common malignancies, including cervical, prostate, liver, and lung cancer, providing new potential therapeutic targets.
Collapse
Affiliation(s)
- Siyi Yang
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China;
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, China
| | - Xinyi Fan
- Faculty of Arts and Science, University of Toronto, Toronto, ON M5S 1A1, Canada;
| | - Wei Yu
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China;
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, China
| |
Collapse
|
5
|
Pan PH, Luo CW, Ting WC, Shiu BH, Huang JY, Tsai SCS, Lin FCF. Impact of Ascending HPV Infection on Colorectal Cancer Risk: Evidence from a Nationwide Study. Microorganisms 2024; 12:1746. [PMID: 39338421 PMCID: PMC11434182 DOI: 10.3390/microorganisms12091746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Colorectal cancer (CRC) is a prevalent and escalating health issue in Taiwan. This nationwide study delves into the relationship between Human Papillomavirus (HPV) infection and CRC risk, employing population datasets from 2007 to 2017. Cox regression analyses revealed a statistically significant hazard ratio (HR) of 1.73 (95% CI: 1.63-1.83) for CRC in HPV-positive patients, indicating a considerably elevated risk compared to non-infected individuals. Further, stratification by sex showed males with HPV have a higher CRC risk (HR = 1.49, 95% CI: 1.40-1.58) compared to females. Age-related analysis uncovered a progressive increase in CRC risk with advancing age (HR = 34.69 for over 80 years). The study of specific CRC subtypes showed varying risks: HR = 1.74 for the colon, HR = 1.64 for the rectum, and a notably higher HR = 4.72 for the anus. Comorbid conditions such as hypertension (HR = 1.26), diabetes mellitus (HR = 1.32), and abnormal liver function (HR = 1.18) also correlate with significantly increased CRC risks. These findings suggest that HPV is a significant risk factor for CRC, with disparities in risk based on anatomical location, demographic characteristics, and comorbidities, highlighting the need for intervention strategies and targeted prevention.
Collapse
Affiliation(s)
- Pin-Ho Pan
- Division of Pediatric Gastroenterology, Department of Pediatrics, Tungs' Taichung MetroHarbor Hospital, Taichung 43503, Taiwan
- Department of Post-Baccalaureate Medicine, National Chung Hsing University, Taichung 402202, Taiwan
| | - Ci-Wen Luo
- Department of Medical Research, Tungs' Taichung MetroHarbor Hospital, Taichung 43503, Taiwan
| | - Wen-Chien Ting
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Division of Colorectal Surgery, Department of Surgery, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Bei-Hao Shiu
- Division of Colorectal Surgery, Department of Surgery, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Jing-Yang Huang
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Stella Chin-Shaw Tsai
- Department of Post-Baccalaureate Medicine, National Chung Hsing University, Taichung 402202, Taiwan
- Superintendent Office, Tungs' Taichung MetroHarbor Hospital, Taichung 43503, Taiwan
- College of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan
| | - Frank Cheau-Feng Lin
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Surgery, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| |
Collapse
|
6
|
Wang S, Wang Z, Liu Z, Wu J. Prognostic value of four immune-related genes in lower-grade gliomas: a biomarker discovery study. Front Genet 2024; 15:1403587. [PMID: 39192888 PMCID: PMC11347950 DOI: 10.3389/fgene.2024.1403587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024] Open
Abstract
Introduction The tumor microenvironment and IRGs are highly correlated with tumor occurrence, progression, and prognosis. However, their roles in grade II and III gliomas, termed LGGs in this study, remain to be fully elucidated. Our research aims to develop immune-related features for risk stratification and prognosis prediction in LGG. Methods Using the ssGSEA method, we assessed the immune characteristics of the LGG population. We conducted differential analysis using LGG samples from the TCGA database and normal samples from GTEx, identifying 412 differentially expressed immune-related genes (DEIRGs). Subsequently, we utilized univariate Cox, LASSO, and multivariate Cox regression analyses to establish both a gene predictive model and a nomogram predictive model. Results Here, we found that the ESTIMATE score, immune score and stromal score of high-immunity, high-grade and isocitrate dehydrogenase (IDH) wild-type glioma were higher than those of the corresponding group, and the tumor purity was lower. Higher ESTIMATE scores, stromal scores and immune scores indicated a poor prognosis in patients with LGG. Our four-gene prognostic model demonstrated superior accuracy compared to other molecular features. Validation using the CGGA as a testing set and the combined TCGA and CGGA cohort confirmed its robust prognostic value. Additionally, a nomogram integrating the prognostic model and clinical variables showed enhanced predictive capability. Discussion Our study highlights the prognostic significance of the identified four DEIRGs (KLRC3, MR1, PDIA2, and RFXAP) in LGG patients. The predictive model and nomogram developed herein offer valuable tools for personalized treatment strategies in LGG. Future research should focus on further validating these findings and exploring the functional roles of these DEIRGs within the LGG tumor microenvironment.
Collapse
Affiliation(s)
- Shuowen Wang
- Capital Institute of Pediatrics, Beijing, China
- Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zijun Wang
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Zhuo Liu
- Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jianxin Wu
- Capital Institute of Pediatrics, Beijing, China
- Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Zhang B, Chen P, Zhu J, Lu Y. The quantity, function and anti-tumor effect of Mucosal associated invariant T cells in patients with bladder cancer. Int Immunopharmacol 2024; 133:111892. [PMID: 38663315 DOI: 10.1016/j.intimp.2024.111892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Bladder cancer (BC), a prevalent malignancy in the urinary system, often poses challenges for effective treatment. Immunotherapy, harnessing the immune system, has exhibited promise in early-stage clinical trials. Mucosal associated invariant T (MAIT) cells, a subset of immune cells implicated in various diseases, including certain cancer, have yet to be explored in BC patients. We aimed to investigate the quantity, function, and anti-tumor effects of MAIT cells in BC patients. METHODS A total of 75 newly diagnosed BC patients and 183 healthy volunteers were included. Blood samples were collected and analyzed to evaluate the quantity and function of MAIT cells. Surgical resection provided BC tissues for further analysis, and the clinical features of BC tumors were collected and their relationship with MAIT cells was explored. RESULTS MAIT cells were identified in both healthy individuals and BC patients. The proportion of MAIT cells in the peripheral blood of BC patients did not significantly differ from that of healthy controls. However, the study revealed a correlation between the proportion of IFN-γ producing MAIT cells and tumor number and invasion in BC patients. Furthermore, MAIT cells exhibited cytotoxic effects on BC cells in vitro and in vivo. CONCLUSIONS This study sheds light on the role of MAIT cells in BC. While the quantity of MAIT cells showed no significant change in BC patients, their functional attributes and association with tumor characteristics suggest their potential as an immunotherapy target in BC treatment.
Collapse
Affiliation(s)
- Baodan Zhang
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Pengcheng Chen
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jie Zhu
- Department of Psychiatry, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yongyong Lu
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
8
|
Minina EP, Dianov DV, Sheetikov SA, Bogolyubova AV. CAR Cells beyond Classical CAR T Cells: Functional Properties and Prospects of Application. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:765-783. [PMID: 38880641 DOI: 10.1134/s0006297924050018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/23/2023] [Accepted: 12/02/2023] [Indexed: 06/18/2024]
Abstract
Chimeric antigen receptors (CARs) are genetically engineered receptors that recognize antigens and activate signaling cascades in a cell. Signal recognition and transmission are mediated by the CAR domains derived from different proteins. T cells carrying CARs against tumor-associated antigens have been used in the development of the CAR T cell therapy, a new approach to fighting malignant neoplasms. Despite its high efficacy in the treatment of oncohematological diseases, CAR T cell therapy has a number of disadvantages that could be avoided by using other types of leukocytes as effector cells. CARs can be expressed in a wide range of cells of adaptive and innate immunity with the emergence or improvement of cytotoxic properties. This review discusses the features of CAR function in different types of immune cells, with a particular focus on the results of preclinical and clinical efficacy studies and the safety of potential CAR cell products.
Collapse
Affiliation(s)
- Elizaveta P Minina
- National Medical Research Centre for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Dmitry V Dianov
- National Medical Research Centre for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Saveliy A Sheetikov
- National Medical Research Centre for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Apollinariya V Bogolyubova
- National Medical Research Centre for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia.
| |
Collapse
|
9
|
Li J, Zhao H, Lv G, Aimulajiang K, Li L, Lin R, Aji T. Phenotype and function of MAIT cells in patients with alveolar echinococcosis. Front Immunol 2024; 15:1343567. [PMID: 38550591 PMCID: PMC10973110 DOI: 10.3389/fimmu.2024.1343567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/29/2024] [Indexed: 04/02/2024] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are a subpopulation of unconventional T cells widely involved in chronic liver diseases. However, the potential role and regulating factors of MAIT cells in alveolar echinococcosis (AE), a zoonotic parasitic disease by Echinococcus multilocularis (E. multilocularis) larvae chronically parasitizing liver organs, has not yet been studied. Blood samples (n=29) and liver specimens (n=10) from AE patients were enrolled. The frequency, phenotype, and function of MAIT cells in peripheral blood and liver tissues of AE patients were detected by flow cytometry. The morphology and fibrosis of liver tissue were examined by histopathology and immunohistochemistry. The correlation between peripheral MAIT cell frequency and serologic markers was assessed by collecting clinicopathologic characteristics of AE patients. And the effect of in vitro stimulation with E. multilocularis antigen (Emp) on MAIT cells. In this study, MAIT cells are decreased in peripheral blood and increased in the close-to-lesion liver tissues, especially in areas of fibrosis. Circulating MAIT exhibited activation and exhaustion phenotypes, and intrahepatic MAIT cells showed increased activation phenotypes with increased IFN-γ and IL-17A, and high expression of CXCR5 chemokine receptor. Furthermore, the frequency of circulating MAIT cells was correlated with the size of the lesions and liver function in patients with AE. After excision of the lesion site, circulating MAIT cells returned to normal levels, and the serum cytokines IL-8, IL-12, and IL-18, associated with MAIT cell activation and apoptosis, were altered. Our results demonstrate the status of MAIT cell distribution, functional phenotype, and migration in peripheral blood and tissues of AE patients, highlighting their potential as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Jintian Li
- School of Public Healthy, Xinjiang Medical University, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hanyue Zhao
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Department of Hepatobiliary & Hydatid Disease, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Guodong Lv
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Kalibixiati Aimulajiang
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Liang Li
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Renyong Lin
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Department of Hepatobiliary & Hydatid Disease, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Tuerganaili Aji
- School of Public Healthy, Xinjiang Medical University, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Department of Hepatobiliary & Hydatid Disease, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
10
|
Yigit M, Basoglu OF, Unutmaz D. Mucosal-associated invariant T cells in cancer: dual roles, complex interactions and therapeutic potential. Front Immunol 2024; 15:1369236. [PMID: 38545100 PMCID: PMC10965779 DOI: 10.3389/fimmu.2024.1369236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/26/2024] [Indexed: 04/17/2024] Open
Abstract
Mucosal-associated invariant T (MAIT) cells play diverse roles in cancer, infectious diseases, and immunotherapy. This review explores their intricate involvement in cancer, from early detection to their dual functions in promoting inflammation and mediating anti-tumor responses. Within the solid tumor microenvironment (TME), MAIT cells can acquire an 'exhausted' state and secrete tumor-promoting cytokines. On the other hand, MAIT cells are highly cytotoxic, and there is evidence that they may have an anti-tumor immune response. The frequency of MAIT cells and their subsets has also been shown to have prognostic value in several cancer types. Recent innovative approaches, such as programming MAIT cells with chimeric antigen receptors (CARs), provide a novel and exciting approach to utilizing these cells in cell-based cancer immunotherapy. Because MAIT cells have a restricted T cell receptor (TCR) and recognize a common antigen, this also mitigates potential graft-versus-host disease (GVHD) and opens the possibility of using allogeneic MAIT cells as off-the-shelf cell therapies in cancer. Additionally, we outline the interactions of MAIT cells with the microbiome and their critical role in infectious diseases and how this may impact the tumor responses of these cells. Understanding these complex roles can lead to novel therapeutic strategies harnessing the targeting capabilities of MAIT cells.
Collapse
Affiliation(s)
- Mesut Yigit
- Human Immunology Laboratory, Acibadem University School of Medicine, Istanbul, Türkiye
| | - Omer Faruk Basoglu
- Human Immunology Laboratory, Acibadem University School of Medicine, Istanbul, Türkiye
| | - Derya Unutmaz
- Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| |
Collapse
|
11
|
Fukui C, Yamana S, Xue Y, Shirane M, Tsutsui H, Asahara K, Yoshitomi K, Ito T, Lestari T, Hasegawa E, Yawata N, Takeda A, Sonoda KH, Shibata K. Functions of mucosal associated invariant T cells in eye diseases. Front Immunol 2024; 15:1341180. [PMID: 38440736 PMCID: PMC10911089 DOI: 10.3389/fimmu.2024.1341180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/29/2024] [Indexed: 03/06/2024] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are a unique subset of T cells that recognizes metabolites derived from the vitamin B2 biosynthetic pathway. Since the identification of cognate antigens for MAIT cells, knowledge of the functions of MAIT cells in cancer, autoimmunity, and infectious diseases has been rapidly expanding. Recently, MAIT cells have been found to contribute to visual protection against autoimmunity in the eye. The protective functions of MAIT cells are induced by T-cell receptor (TCR)-mediated activation. However, the underlying mechanisms remain unclear. Thus, this mini-review aims to discuss our findings and the complexity of MAIT cell-mediated immune regulation in the eye.
Collapse
Affiliation(s)
- Chihiro Fukui
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoshi Yamana
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yanqi Xue
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mariko Shirane
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroki Tsutsui
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenichiro Asahara
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keiko Yoshitomi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takako Ito
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tantri Lestari
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eiichi Hasegawa
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nobuyo Yawata
- Department of Ocular Pathology and Imaging Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Atsunobu Takeda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kensuke Shibata
- Department of Ocular Pathology and Imaging Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Microbiology and Immunology, Graduate School of Medicine, Yamaguchi University, Ube, Japan
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| |
Collapse
|
12
|
Wei L, Chen Z, Lv Q. Mucosal-associated invariant T cells display both pathogenic and protective roles in patients with inflammatory bowel diseases. Amino Acids 2023; 55:1819-1827. [PMID: 37819474 DOI: 10.1007/s00726-023-03344-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023]
Abstract
An important subtype of the innate-like T lymphocytes is mucosal-associated invariant T (MAIT) cells expressing a semi-invariant T cell receptor α (TCR-α) chain. MAIT cells could be activated mainly by TCR engagement or cytokines. They have been found to have essential roles in various immune mediated. There have been growing preclinical and clinical findings that show an association between MAIT cells and the physiopathology of inflammatory bowel diseases (IBD). Of note, published reports demonstrate contradictory findings regarding the role of MAIT cells in IBD patients. A number of reports suggests a protective effect, whereas others show a pathogenic impact. The present review article aimed to explore and discuss the findings of experimental and clinical investigations evaluating the effects of MAIT cells in IBD subjects and animal models. Findings indicate that MAIT cells could exert opposite effects in the course of IBD, including an anti-inflammatory protective effect of blood circulating MAIT cells and an effector pathogenic effect of colonic MAIT cells. Another important finding is that blood levels of MAIT cells can be considered as a potential biomarker in IBD patients.
Collapse
Affiliation(s)
- Lei Wei
- Department of General Surgery, Pudong New District Gongli Hospital of Shanghai, Shanghai, 200120, China
| | - Zhigang Chen
- Department of General Surgery, Pudong New District Gongli Hospital of Shanghai, Shanghai, 200120, China
| | - Qiang Lv
- Department of General Surgery, Pudong New District Gongli Hospital of Shanghai, Shanghai, 200120, China.
| |
Collapse
|
13
|
Peng Q, Huang R, Wang H, Xiao H, Wang Y, Zhai Z, Wang Z. Immune characteristics and prognostic implications of mucosal-associated invariant T cells in acute myeloid leukemia. Cancer Immunol Immunother 2023; 72:4399-4414. [PMID: 37932426 PMCID: PMC10991463 DOI: 10.1007/s00262-023-03574-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023]
Abstract
Increasing evidence suggests that mucosal-associated invariant T cells (MAITs) play a crucial role in anti-tumor responses against various cancers. In this study, we investigated the immune characteristics of MAIT cells in patients with acute myeloid leukemia (AML). Using multi-parameter flow cytometry, we performed phenotypic and functional analysis of MAITs in peripheral blood or bone marrow samples collected from 131 patients with AML including 99 newly diagnosed, 18 remission, and 14 relapsed cases, as well as 69 healthy controls. We found that MAITs exhibit signs of aging and exhaustion, particularly in CD8+ MAITs subset, at newly diagnosis. MAITs exhibit an effector memory or terminally differentiated phenotype. Frequency and number of MAITs reflect AML cell genetic features, tumor burden, disease status, and treatment responsiveness. Moreover, MAITs exhibit a highly activated or even exhausted state, as indicated by upregulation of PD-1. Furthermore, impaired production of Th1-type cytokines and increased secretion of Th17-type cytokines, granzyme B, and perforin were observed in MAITs from AML patients. Additionally, MAITs shifted toward producing cytokines that promote tumor progression, such as IL-8. Lower frequency of MAITs was associated with poorer overall survival (OS), and multivariate analysis revealed that MAITs frequency < 2.12% was an independent prognostic factor affecting OS. Collectively, our findings suggest that MAITs may play a role in immune deficiency in AML, emphasizing their potential importance in AML pathogenesis and treatment. These discoveries provide a theoretical basis for the development of novel immunotherapeutic strategies in AML.
Collapse
Affiliation(s)
- Qian Peng
- Hematology Department, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui Province, People's Republic of China
- Hematologic Diseases Research Center of Anhui Medical University, Hefei, 230601, Anhui Province, People's Republic of China
| | - Renhua Huang
- Hematology Department, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui Province, People's Republic of China
- Hematologic Diseases Research Center of Anhui Medical University, Hefei, 230601, Anhui Province, People's Republic of China
| | - Huiping Wang
- Hematology Department, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui Province, People's Republic of China
- Hematologic Diseases Research Center of Anhui Medical University, Hefei, 230601, Anhui Province, People's Republic of China
| | - Hao Xiao
- Hematology Department, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui Province, People's Republic of China
- Hematologic Diseases Research Center of Anhui Medical University, Hefei, 230601, Anhui Province, People's Republic of China
| | - Yiping Wang
- Centre for Transplantation and Renal Research, Westmead Millennium Institute, The University of Sydney, Sydney, Australia
| | - Zhimin Zhai
- Hematology Department, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui Province, People's Republic of China.
- Hematologic Diseases Research Center of Anhui Medical University, Hefei, 230601, Anhui Province, People's Republic of China.
| | - Zhitao Wang
- Hematology Department, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui Province, People's Republic of China.
- Hematologic Diseases Research Center of Anhui Medical University, Hefei, 230601, Anhui Province, People's Republic of China.
| |
Collapse
|
14
|
Hou JY, Li N, Wang J, Gao LJ, Chang JS, Cao JM. Histone crotonylation of peripheral blood mononuclear cells is a potential biomarker for diagnosis of colorectal cancer. Epigenetics Chromatin 2023; 16:35. [PMID: 37749610 PMCID: PMC10521402 DOI: 10.1186/s13072-023-00509-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/17/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Blood-based tests have public appeal in screening cancers due to their minimally invasive nature, ability to integrate with other routine blood tests, and high compliance. This study aimed to investigate whether certain epigenetic modulation of peripheral blood mononuclear cells (PBMCs) could be a biomarker of colorectal cancer (CRC). RESULTS Western blotting of histones in the PBMCs from 40 colorectal cancer patients and 40 healthy controls was performed to identify the crotonylation sites of proteins. The correlation of crotonylation with tumor staging and diagnostic efficacy were analyzed. Crotonylation of H2BK12 (H2BK12cr) was identified significantly upregulated in the PBMCs of CRC patients compared to healthy controls, and were closely related to distant metastasis (P = 0.0478) and late TNM stage (P = 0.0201). Receiver operator characteristic curve (ROC) analysis demonstrated that the area under curve (AUC) of H2BK12cr was 0.8488, the sensitivity was 70%, and the specificity was 92.5%. The H2BK12cr parameter significantly increased the diagnostic effectiveness of CRC compared with the commercial carcinoembryonic antigen assays. CONCLUSIONS The H2BK12cr level in PBMCs of CRC patients has a potential to be a biomarker for distinguishing CRC patients from healthy controls with the advantages of easy operation and high diagnostic efficacy.
Collapse
Affiliation(s)
- Jia-Yi Hou
- Department of Clinical Laboratory, Shanxi Provincial Academy of Traditional Chinese Medicine, Taiyuan, China
| | - Ning Li
- Department of Gastrointestinal and Pancreatic Surgery and Hernia and Abdominal Surgery, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Jie Wang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Key Laboratory of Cellular Physiology of Shanxi Province, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Li-Juan Gao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Key Laboratory of Cellular Physiology of Shanxi Province, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Jia-Song Chang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Key Laboratory of Cellular Physiology of Shanxi Province, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Ji-Min Cao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Key Laboratory of Cellular Physiology of Shanxi Province, and the Department of Physiology, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
15
|
Grigoraș A, Amalinei C. Multi-Faceted Role of Cancer-Associated Adipocytes in Colorectal Cancer. Biomedicines 2023; 11:2401. [PMID: 37760840 PMCID: PMC10525260 DOI: 10.3390/biomedicines11092401] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed types of cancer, especially in obese patients, and the second cause of cancer-related death worldwide. Based on these data, extensive research has been performed over the last decades to decipher the pivotal role of the tumor microenvironment (TME) and its cellular and molecular components in CRC development and progression. In this regard, substantial progress has been made in the identification of cancer-associated adipocytes' (CAAs) characteristics, considering their active role in the CCR tumor niche, by releasing a panel of metabolites, growth factors, and inflammatory adipokines, which assist the cancer cells' development. Disposed in the tumor invasion front, CAAs exhibit a fibroblastic-like phenotype and establish a bidirectional molecular dialogue with colorectal tumor cells, which leads to functional changes in both cell types and contributes to tumor progression. CAAs also modulate the antitumor immune cells' response and promote metabolic reprogramming and chemotherapeutic resistance in colon cancer cells. This review aims to report recent cumulative data regarding the molecular mechanisms of CAAs' differentiation and their activity spectrum in the TME of CRC. A better understanding of CAAs and the molecular interplay between CAAs and tumor cells will provide insights into tumor biology and may open the perspective of new therapeutic opportunities in CRC patients.
Collapse
Affiliation(s)
- Adriana Grigoraș
- Department of Morphofunctional Sciences I, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Department of Histopathology, Institute of Legal Medicine, 700455 Iasi, Romania
| | - Cornelia Amalinei
- Department of Morphofunctional Sciences I, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Department of Histopathology, Institute of Legal Medicine, 700455 Iasi, Romania
| |
Collapse
|
16
|
Lv Y, Lin S, Liu M, Wang L, Wang X, Cui L, Xu J. Impacts of pre-existing diabetes mellitus on colorectal cancer in a mice model. Cancer Med 2023; 12:11641-11650. [PMID: 36999930 PMCID: PMC10242856 DOI: 10.1002/cam4.5868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/18/2023] [Accepted: 03/16/2023] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND Although diabetes mellitus (DM) is regarded as a risk factor of colorectal cancer (CRC), the impacts of pre-existing DM on CRC without drug intervention remain unknown. The purpose of this study was to investigate and analyze the effects of diabetes mellitus (DM) on colorectal cancer (CRC). And, to further explore the influencing factors and the mechanisms of DM affects CRC progression. METHODS In this study, we investigated the effects of DM on CRC progression in a streptozotocin-induced DM mice model. Furthermore, we evaluated the change of T cells levels using flow cytometry and indirect immunofluorescence. We assessed the alternation of gut microbiome and the transcriptional response using 16s rRNA sequencing and RNA-seq. RESULTS Results showed that the mice survival time was significantly decreased in CRC complicated with DM group (DM-CRC), compared with only tumor bearing mice (CRC group). Furthermore, we found that DM could affect the immune response by changing the infiltration of CD4+ T cells, CD8+ T cells and mucosal-associated invariant T cell (MAIT) in the CRC progression. In addition, DM could induce gut microbiome dysbiosis and change the transcriptional response in CRC complicated with DM. CONCLUSION For the first time, the effects of DM on CRC were systematically characterized in a mice model. Our findings highlight the effects of pre-existing DM on CRC, and these findings should facilitate further studies in exploring and developing potentially targeted therapy for CRC in diabetic patients. Our results suggest that the effects induced by DM should be considered in the treatment for CRC complicated with DM patients.
Collapse
Affiliation(s)
- Yangbo Lv
- Department of Colorectal SurgeryThe Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's HospitalZhejiangQuzhouChina
| | - Shuiquan Lin
- Department of Colorectal SurgeryThe Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's HospitalZhejiangQuzhouChina
| | - Mingsheng Liu
- Department of Colorectal SurgeryThe Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's HospitalZhejiangQuzhouChina
| | - Lihui Wang
- Department of Colorectal SurgeryThe Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's HospitalZhejiangQuzhouChina
| | - Xiaoyu Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Li Cui
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Jianguang Xu
- Department of GastroenterologyThe Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's HospitalZhejiangQuzhouChina
| |
Collapse
|
17
|
Li YR, Zhou K, Wilson M, Kramer A, Zhu Y, Dawson N, Yang L. Mucosal-associated invariant T cells for cancer immunotherapy. Mol Ther 2023; 31:631-646. [PMID: 36463401 PMCID: PMC10014234 DOI: 10.1016/j.ymthe.2022.11.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/07/2022] [Accepted: 11/29/2022] [Indexed: 12/09/2022] Open
Abstract
Human mucosal-associated invariant T (MAIT) cells are characterized by their expression of an invariant TCR α chain Vα7.2-Jα33/Jα20/Jα12 paired with a restricted TCR β chain. MAIT cells recognize microbial peptides presented by the highly conserved MHC class I-like molecule MR1 and bridge the innate and acquired immune systems to mediate augmented immune responses. Upon activation, MAIT cells rapidly proliferate, produce a variety of cytokines and cytotoxic molecules, and trigger efficient antitumor immunity. Administration of a representative MAIT cell ligand 5-OP-RU effectively activates MAIT cells and enhances their antitumor capacity. In this review, we introduce MAIT cell biology and their importance in antitumor immunity, summarize the current development of peripheral blood mononuclear cell-derived and stem cell-derived MAIT cell products for cancer treatment, and discuss the potential of genetic engineering of MAIT cells for off-the-shelf cancer immunotherapy.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kuangyi Zhou
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Matthew Wilson
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Adam Kramer
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yichen Zhu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Niels Dawson
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lili Yang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
18
|
Shi L, Lu J, Zhong D, Song M, Liu J, You W, Li WH, Lin L, Shi D, Chen Y. Clinicopathological and predictive value of MAIT cells in non-small cell lung cancer for immunotherapy. J Immunother Cancer 2023; 11:jitc-2022-005902. [PMID: 36657812 PMCID: PMC9853268 DOI: 10.1136/jitc-2022-005902] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2023] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Immune-checkpoint inhibitors (ICIs) remain ineffective in a large group of non-small cell lung cancer (NSCLC) patients. Mucosal-associated invariant T (MAIT) cells, a population of unconventional innate-like T lymphocytes abundant in the human body, play important roles in human malignancies. Little is known about the immune characteristics of MAIT cells in NSCLC and correlation with prognosis and response rate of ICIs treatment. METHODS To investigate the distribution, activation status, and function of MAIT cells in NSCLC patients and their correlations with anti-PD-1 immunotherapy, MAIT cells in peripheral blood, tumor and paratumor samples from NSCLC patients with or without anti-PD-1 immunotherapy were analyzed using flow cytometry and single-cell RNA-sequencing. RESULTS MAIT cells were enriched in the tumor lesions of NSCLC patients migrating from peripheral blood via the CCR6-CCL20 axis. Both peripheral and tumor-infiltrating MAIT cells displayed an exhausted phenotype with upregulated PD-1, TIM-3, and IL-17A while less IFN-γ. Anti-PD-1 therapy reversed the function of circulating MAIT cells with higher expression of IFN-γ and granzyme B. Subcluster MAIT-17s (defined as cells highly expressing exhausted and Th17-related genes) mainly infiltrated in the non-responsive tissues, while the subcluster MAIT-IFNGRs (cells expressing genes related to cytotoxic function) were mainly enriched in responsive tissues. Moreover, we found predictive value of circulating MAIT cells for anti-PD-1 immunotherapy in NSCLC patients. CONCLUSIONS MAIT cells shifted to an exhausted tumor-promoting phenotype in NSCLC patients and the circulating MAIT subset could be a predictor for patients who respond to anti-PD-1 immunotherapy.
Collapse
Affiliation(s)
- Lin Shi
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China,Department of Immunology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Gusu School, Nanjing Medical University, Nanjing, China
| | - Jinying Lu
- Department of Immunology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Gusu School, Nanjing Medical University, Nanjing, China,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Da Zhong
- Department of Immunology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Gusu School, Nanjing Medical University, Nanjing, China
| | - Meijuan Song
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jian Liu
- Department of Immunology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Gusu School, Nanjing Medical University, Nanjing, China,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Wenhua You
- Department of Immunology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Gusu School, Nanjing Medical University, Nanjing, China,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Wen-Hui Li
- Department of Hepatobiliary Surgery, The Yancheng School of Clinical Medicine of Nanjing Medical University, The Third People’s Hospital of Yancheng, Yancheng, China
| | - Lin Lin
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dongyan Shi
- Department of Immunology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Gusu School, Nanjing Medical University, Nanjing, China
| | - Yun Chen
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China,Department of Immunology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Gusu School, Nanjing Medical University, Nanjing, China,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
19
|
Treiner E. Mucosal-associated invariant T cells in hematological malignancies: Current knowledge, pending questions. Front Immunol 2023; 14:1160943. [PMID: 37020559 PMCID: PMC10067713 DOI: 10.3389/fimmu.2023.1160943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/06/2023] [Indexed: 04/07/2023] Open
Abstract
Non-classical HLA restricted T cell subsets such as γδ T and NK-T cells are showing promises for immune-based therapy of hematological malignancies. Mucosal-Associated Invariant T cells (MAIT) belong to this family of innate-like T cell subsets and are the focus of many studies on infectious diseases, owing to their unusual recognition of bacterial/fungal metabolites. Their ability to produce type 1 cytokines (IFNγ, TNFα) as well as cytotoxic effector molecules endows them with potential anti-tumor functions. However, their contribution to tumor surveillance in solid cancers is unclear, and only few studies have specifically focused on MAIT cells in blood cancers. In this review, we wish to recapitulate our current knowledge on MAIT cells biology in hematological neoplasms, at diagnosis and/or during treatment, as well as tentative approaches to target them as therapeutic tools. We also wish to take this opportunity to briefly elaborate on what we think are important question to address in this field, as well as potential limitations to overcome in order to make MAIT cells the basis of future, novel therapies for hematological cancers.
Collapse
Affiliation(s)
- Emmanuel Treiner
- Infinity, Inserm UMR1291, Toulouse, France
- University Toulouse 3, Toulouse, France
- Laboratory of Immunology, Toulouse University Hospital, Toulouse, France
- *Correspondence: Emmanuel Treiner,
| |
Collapse
|
20
|
Zhang H, Shen H, Zhou L, Xie L, Kong D, Wang H. Mucosal-Associated Invariant T Cells in the Digestive System: Defender or Destroyer? Cell Mol Gastroenterol Hepatol 2023; 15:809-819. [PMID: 36584816 PMCID: PMC9971522 DOI: 10.1016/j.jcmgh.2022.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 01/01/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells are a subset of innate T lymphocytes that express the semi-invariant T cell receptor and recognize riboflavin metabolites via the major histocompatibility complex class I-related protein. Given the abundance of MAIT cells in the human body, their role in human diseases has been increasingly studied in recent years. MAIT cells may serve as targets for clinical therapy. Specifically, this review discusses how MAIT cells are altered in gastric, esophageal, intestinal, and hepatobiliary diseases and describes their protective or pathogenic roles. A greater understanding of MAIT cells will provide a more favorable therapeutic approach for digestive diseases in the clinical field.
Collapse
Affiliation(s)
- Hejiao Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Haiyuan Shen
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Liangliang Zhou
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Linxi Xie
- School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Derun Kong
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China.
| |
Collapse
|
21
|
Mucosal-associated invariant T cells reduce and display tissue-resident phenotype with elevated IL-17 producing capacity in non-small cell lung cancer. Int Immunopharmacol 2022; 113:109461. [DOI: 10.1016/j.intimp.2022.109461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/28/2022] [Accepted: 11/12/2022] [Indexed: 11/25/2022]
|
22
|
Jia SN, Han YB, Yang R, Yang ZC. Chemokines in colon cancer progression. Semin Cancer Biol 2022; 86:400-407. [PMID: 35183412 DOI: 10.1016/j.semcancer.2022.02.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 01/27/2023]
Abstract
Colon cancer is a major human cancer accounting for about a tenth of all cancer cases thus making it among the top three cancers in terms of incidence as well as mortality. Metastasis to distant organs, particularly to liver, is the primary reason for associated mortality. Chemokines, the chemo-attractants for various immune cells, have increasingly been reported to be involved in cancer initiation and progression, including in colon cancer. Here we discuss the available knowledge on the role of several chemokines, such as, CCL2, CCL3, CCL5, CXCL1, CXCL2, CXCL8 in colon cancer progression. CCL20 is one chemokine with emerging evidence for its role in influencing colon cancer tumor microenvironment through the documents effects on fibroblasts, macrophages and immune cells. We focus on CCL20 and its receptor CCR6 as promising factors that affect multiple levels of colon cancer progression. They interact with several cytokines and TLR receptors leading to increased aggressiveness, as supported by multitude of evidence from in vitro, in vivo studies as well as human patient samples. CCL20-CCR6 bring about their biological effects through regulation of several signaling pathways, including, ERK and NF-κB pathways, in addition to the epithelial-mesenchymal transition. Signaling involving CCL20-CCR6 has profound effect on colon cancer hepatic metastasis. Combined with elevated CCL20 levels in colon tumors and metastatic patients, the above information points to a need for further evaluation of chemokines as diagnostic and/or prognostic biomarkers.
Collapse
Affiliation(s)
- Sheng-Nan Jia
- Department of HepatoPancreatoBiliary Medicine, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Ying-Bo Han
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Rui Yang
- Department of Gastroenterology, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Ze-Cheng Yang
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, 130000, China.
| |
Collapse
|
23
|
Gao MG, Zhao XS. Mining the multifunction of mucosal-associated invariant T cells in hematological malignancies and transplantation immunity: A promising hexagon soldier in immunomodulatory. Front Immunol 2022; 13:931764. [PMID: 36052080 PMCID: PMC9427077 DOI: 10.3389/fimmu.2022.931764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/25/2022] [Indexed: 12/05/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are evolutionarily conserved innate-like T cells capable of recognizing bacterial and fungal ligands derived from vitamin B biosynthesis. Under different stimulation conditions, MAIT cells can display different immune effector phenotypes, exerting immune regulation and anti-/protumor responses. Based on basic biological characteristics, including the enrichment of mucosal tissue, the secretion of mucosal repair protective factors (interleukin-17, etc.), and the activation of riboflavin metabolites by intestinal flora, MAIT cells may play an important role in the immune regulation effect of mucosal lesions or inflammation. At the same time, activated MAIT cells secrete granzyme B, perforin, interferon γ, and other toxic cytokines, which can mediate anti-tumor effects. In addition, since a variety of hematological malignancies express the targets of MAIT cell-specific effector molecules, MAIT cells are also a potentially attractive target for cell therapy or immunotherapy for hematological malignancies. In this review, we will provide an overview of MAIT research related to blood system diseases and discuss the possible immunomodulatory or anti-tumor roles that unique biological characteristics or effector phenotypes may play in hematological diseases.
Collapse
Affiliation(s)
- Meng-Ge Gao
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Su Zhao
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
- *Correspondence: Xiao-Su Zhao,
| |
Collapse
|
24
|
Upregulation of B3GNT3 is associated with immune infiltration and activation of NF-κB pathway in gynecologic cancers. J Reprod Immunol 2022; 152:103658. [DOI: 10.1016/j.jri.2022.103658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 11/21/2022]
|
25
|
MAIT cells and their implication in human oral diseases. Inflamm Res 2022; 71:1041-1054. [PMID: 35781343 DOI: 10.1007/s00011-022-01600-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE Mucosal-associated invariant T (MAIT) cells are unique innate-like T cells that are abundant in humans, accounting for 1-10% of circulating T cells and about 2% of total T cells in human oral cavity. MAIT cells can mount a strong immune response quickly without exogenous antigens and undergo a phenotypic transformation in the development of diseases. They produce cytokines involved in the Th1 and Th17 immune response and cytotoxic proteins, promote the dysfunction of autoreactive B cell and inhibit the function of NK cells. MAIT cells have been widely explored in autoimmune diseases, inflammatory diseases and tumors, and these mechanisms may also be involved in the pathogenesis of some oral diseases, while MAIT cells have not been systematically discussed in oral diseases. METHODS We searched PubMed/MEDLINE, EMBASE and Microsoft Bing databases to review and analyze relevant literatures on the impact of MAIT cells in the pathogenesis of human oral diseases. CONCLUSION Collected evidence elucidated the characteristics of MAIT cells and emphasized the potential roles of MAIT cells in oral lichen planus (OLP), chronic graft-versus-host disease (cGVHD), oral squamous cell carcinoma (OSCC), apical periodontitis (AP) and primary Sjogren's syndrome (pSS).
Collapse
|
26
|
Kim OS, Park KJ, Jin HM, Cho YN, Kim YS, Kwon SH, Koh JT, Ju JK, Kee SJ, Park YW. Activation and increased production of interleukin-17 and tumour necrosis factor-α of mucosal-associated invariant T cells in patients with periodontitis. J Clin Periodontol 2022; 49:706-716. [PMID: 35569027 DOI: 10.1111/jcpe.13648] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 04/08/2022] [Accepted: 05/10/2022] [Indexed: 12/28/2022]
Abstract
AIM Mucosal-associated invariant T (MAIT) cells are known to be resident in oral mucosal tissue, but their roles in periodontitis are unknown. This study aimed to examine the level and function of MAIT cells in periodontitis patients. MATERIALS AND METHODS Frequency, activation, and function of MAIT cells from 28 periodontitis patients and 28 healthy controls (HCs) were measured by flow cytometry. RESULTS Circulating MAIT cells were numerically reduced in periodontitis patients. Moreover, they exhibited higher expression of CD69 and annexin V, together with more increased production of interleukin (IL)-17 and tumour necrosis factor (TNF)-α, in periodontitis patients than in HCs. Interestingly, periodontitis patients had higher frequencies of MAIT cells in gingival tissue than in peripheral blood. In addition, circulating MAIT cells had elevated expression of tissue-homing chemokine receptors such as CCR6 and CXCR6, and the corresponding chemokines (i.e., CCL20 and CXCL16) were more strongly expressed in inflamed gingiva than in healthy gingiva. CONCLUSIONS This study demonstrates that circulating MAIT cells are numerically deficient with an activated profile toward the production of IL-17 and TNF-α in periodontitis patients. Furthermore, circulating MAIT cells have the potential to migrate to inflamed gingival tissues.
Collapse
Affiliation(s)
- Ok-Su Kim
- Department of Periodontology, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea.,Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Ki-Jeong Park
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Hye-Mi Jin
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Young-Nan Cho
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Ye Seul Kim
- Department of Periodontology, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Seung-Hee Kwon
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea.,Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Jeong-Tae Koh
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea.,Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Jae Kyun Ju
- Department of Surgery, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Seung-Jung Kee
- Department of Laboratory Medicine, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Yong-Wook Park
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| |
Collapse
|
27
|
Hernandez-Jaimes OA, Cazares-Olvera DV, Line J, Moreno-Eutimio MA, Gómez-Castro CZ, Naisbitt DJ, Castrejón-Flores JL. Advances in Our Understanding of the Interaction of Drugs with T-cells: Implications for the Discovery of Biomarkers in Severe Cutaneous Drug Reactions. Chem Res Toxicol 2022; 35:1162-1183. [PMID: 35704769 DOI: 10.1021/acs.chemrestox.1c00434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Drugs can activate different cells of the immune system and initiate an immune response that can lead to life-threatening diseases collectively known as severe cutaneous adverse reactions (SCARs). Antibiotics, anticonvulsants, and antiretrovirals are involved in the development of SCARs by the activation of αβ naïve T-cells. However, other subsets of lymphocytes known as nonconventional T-cells with a limited T-cell receptor repertoire and innate and adaptative functions also recognize drugs and drug-like molecules, but their role in the pathogenesis of SCARs has only just begun to be explored. Despite 30 years of advances in our understanding of the mechanisms in which drugs interact with T-cells and the pathways for tissue injury seen during T-cell activation, at present, the development of useful clinical biomarkers for SCARs or predictive preclinical in vitro assays that could identify immunogenic moieties during drug discovery is an unmet goal. Therefore, the present review focuses on (i) advances in the understanding of the pathogenesis of SCARs reactions, (ii) a description of the interaction of drugs with conventional and nonconventional T-cells, and (iii) the current state of soluble blood circulating biomarker candidates for SCARs.
Collapse
Affiliation(s)
| | - Diana Valeria Cazares-Olvera
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, México City 07340, México
| | - James Line
- MRC Centre for Drug Safety Science, Department of Pharmacology, University of Liverpool, Liverpool L69 3GE, United Kingdom
| | | | | | - Dean J Naisbitt
- MRC Centre for Drug Safety Science, Department of Pharmacology, University of Liverpool, Liverpool L69 3GE, United Kingdom
| | - José Luis Castrejón-Flores
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, México City 07340, México
| |
Collapse
|
28
|
Role of the Microbiota in Lung Cancer: Insights on Prevention and Treatment. Int J Mol Sci 2022; 23:ijms23116138. [PMID: 35682816 PMCID: PMC9181592 DOI: 10.3390/ijms23116138] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 02/07/2023] Open
Abstract
The microbiota is increasingly recognized as a critical player in cancer onset and progression and response to cancer chemotherapy treatment. In recent years, several preclinical and clinical studies have evidenced the involvement of microbiota in lung cancer, one of the world’s deadliest cancers. However, the mechanisms by which the microbiota can impact this type of cancer and patient survival and response to treatments remain poorly investigated. In this review, the peculiarities of the gut and lung microbial ecosystems have been highlighted, and recent findings illustrating the possible mechanisms underlying the microbiota–lung cancer interaction and the host immune response have been discussed. In addition, the mucosal immune system has been identified as a crucial communication frame to ease interactive dynamics between the immune system and the microbiota. Finally, the use of specific next-generation intestinal probiotic strains in counteracting airway diseases has been evaluated. We believe that restoring homeostasis and the balance of bacterial microflora should become part of the routine of integrated cancer interventions, using probiotics, prebiotics, and postbiotics, and promoting a healthy diet and lifestyle.
Collapse
|
29
|
Zimmer CL, Filipovic I, Cornillet M, O'Rourke CJ, Berglin L, Jansson H, Sun D, Strauss O, Hertwig L, Johansson H, von Seth E, Sparrelid E, Dias J, Glaumann H, Melum E, Ellis EC, Sandberg JK, Andersen JB, Bergquist A, Björkström NK. Mucosal-associated invariant T-cell tumor infiltration predicts long-term survival in cholangiocarcinoma. Hepatology 2022; 75:1154-1168. [PMID: 34719787 DOI: 10.1002/hep.32222] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/17/2021] [Accepted: 10/28/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Cholangiocarcinoma (CCA) is a malignancy arising from biliary epithelial cells of intra- and extrahepatic bile ducts with dismal prognosis and few nonsurgical treatments available. Despite recent success in the immunotherapy-based treatment of many tumor types, this has not been successfully translated to CCA. Mucosal-associated invariant T (MAIT) cells are cytotoxic innate-like T cells highly enriched in the human liver, where they are located in close proximity to the biliary epithelium. Here, we aimed to comprehensively characterize MAIT cells in intrahepatic (iCCA) and perihilar CCA (pCCA). APPROACH AND RESULTS Liver tissue from patients with CCA was used to study immune cells, including MAIT cells, in tumor-affected and surrounding tissue by immunohistochemistry, RNA-sequencing, and multicolor flow cytometry. The iCCA and pCCA tumor microenvironment was characterized by the presence of both cytotoxic T cells and high numbers of regulatory T cells. In contrast, MAIT cells were heterogenously lost from tumors compared to the surrounding liver tissue. This loss possibly occurred in response to increased bacterial burden within tumors. The residual intratumoral MAIT cell population exhibited phenotypic and transcriptomic alterations, but a preserved receptor repertoire for interaction with tumor cells. Finally, the high presence of MAIT cells in livers of iCCA patients predicted long-term survival in two independent cohorts and was associated with a favorable antitumor immune signature. CONCLUSIONS MAIT cell tumor infiltration associates with favorable immunological fitness and predicts survival in CCA.
Collapse
Affiliation(s)
- Christine L Zimmer
- Center for Infectious Medicine, Department of Medicine HuddingeKarolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Iva Filipovic
- Center for Infectious Medicine, Department of Medicine HuddingeKarolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Martin Cornillet
- Center for Infectious Medicine, Department of Medicine HuddingeKarolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Colm J O'Rourke
- Biotech Research and Innovation Centre (BRIC)Department of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Lena Berglin
- Center for Infectious Medicine, Department of Medicine HuddingeKarolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Hannes Jansson
- Division of SurgeryDepartment of Clinical Science, Intervention and TechnologyKarolinska InstitutetKarolinska University HospitalStockholmSweden
| | - Dan Sun
- Center for Infectious Medicine, Department of Medicine HuddingeKarolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Otto Strauss
- Center for Infectious Medicine, Department of Medicine HuddingeKarolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Laura Hertwig
- Center for Infectious Medicine, Department of Medicine HuddingeKarolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Helene Johansson
- Division of Transplantation SurgeryCLINTECKarolinka Institutet and Department of TransplantationKarolinska University HospitalStockholmSweden
| | - Erik von Seth
- Division of Upper GI DiseasesKarolinska University HospitalStockholmSweden
- Unit of Gastroenterology and RheumatologyDepartment of Medicine HuddingeKarolinska InstitutetKarolinska University HospitalStockholmSweden
| | - Ernesto Sparrelid
- Division of SurgeryDepartment of Clinical Science, Intervention and TechnologyKarolinska InstitutetKarolinska University HospitalStockholmSweden
| | - Joana Dias
- Center for Infectious Medicine, Department of Medicine HuddingeKarolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Hans Glaumann
- Department of MedicineClinical Pathology and CytologyKarolinska University HospitalStockholmSweden
| | - Espen Melum
- Norwegian PSC Research CenterDepartment of Transplantation MedicineDivision of SurgeryInflammatory Diseases and TransplantationOslo University Hospital RikshospitaletOsloNorway
- Research Institute of Internal MedicineDivision of SurgeryInflammatory Diseases and TransplantationOslo University HospitalOsloNorway
- Institute of Clinical MedicineFaculty of MedicineUniversity of OsloOsloNorway
- Section of GastroenterologyDepartment of Transplantation MedicineDivision of SurgeryInflammatory Diseases and TransplantationOslo University Hospital RikshospitaletOsloNorway
- Hybrid Technology Hub-Centre of ExcellenceInstitute of Basic Medical SciencesFaculty of MedicineUniversity of OsloOsloNorway
| | - Ewa C Ellis
- Division of Transplantation SurgeryCLINTECKarolinka Institutet and Department of TransplantationKarolinska University HospitalStockholmSweden
| | - Johan K Sandberg
- Center for Infectious Medicine, Department of Medicine HuddingeKarolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Jesper B Andersen
- Biotech Research and Innovation Centre (BRIC)Department of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Annika Bergquist
- Division of Upper GI DiseasesKarolinska University HospitalStockholmSweden
- Unit of Gastroenterology and RheumatologyDepartment of Medicine HuddingeKarolinska InstitutetKarolinska University HospitalStockholmSweden
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine HuddingeKarolinska Institutet, Karolinska University HospitalStockholmSweden
| |
Collapse
|
30
|
Engineering-Induced Pluripotent Stem Cells for Cancer Immunotherapy. Cancers (Basel) 2022; 14:cancers14092266. [PMID: 35565395 PMCID: PMC9100203 DOI: 10.3390/cancers14092266] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/23/2022] [Accepted: 04/29/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Induced pluripotent stem cells (iPSCs) that can be genetically engineered and differentiated into different types of immune cells, providing an unlimited resource for developing off-the-shelf cell therapies. Here, we present a comprehensive review that describes the current stages of iPSC-based cell therapies, including iPSC-derived T, nature killer (NK), invariant natural killer T (iNKT), gamma delta T (γδ T), mucosal-associated invariant T (MAIT) cells, and macrophages (Mφs). Abstract Cell-based immunotherapy, such as chimeric antigen receptor (CAR) T cell therapy, has revolutionized the treatment of hematological malignancies, especially in patients who are refractory to other therapies. However, there are critical obstacles that hinder the widespread clinical applications of current autologous therapies, such as high cost, challenging large-scale manufacturing, and inaccessibility to the therapy for lymphopenia patients. Therefore, it is in great demand to generate the universal off-the-shelf cell products with significant scalability. Human induced pluripotent stem cells (iPSCs) provide an “unlimited supply” for cell therapy because of their unique self-renewal properties and the capacity to be genetically engineered. iPSCs can be differentiated into different immune cells, such as T cells, natural killer (NK) cells, invariant natural killer T (iNKT) cells, gamma delta T (γδ T), mucosal-associated invariant T (MAIT) cells, and macrophages (Mφs). In this review, we describe iPSC-based allogeneic cell therapy, the different culture methods of generating iPSC-derived immune cells (e.g., iPSC-T, iPSC-NK, iPSC-iNKT, iPSC-γδT, iPSC-MAIT and iPSC-Mφ), as well as the recent advances in iPSC-T and iPSC-NK cell therapies, particularly in combinations with CAR-engineering. We also discuss the current challenges and the future perspectives in this field towards the foreseeable applications of iPSC-based immune therapy.
Collapse
|
31
|
Sugimoto C, Murakami Y, Ishii E, Fujita H, Wakao H. Reprogramming and redifferentiation of mucosal-associated invariant T cells reveal tumor inhibitory activity. eLife 2022; 11:70848. [PMID: 35379387 PMCID: PMC8983048 DOI: 10.7554/elife.70848] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 03/08/2022] [Indexed: 12/15/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells belong to a family of innate-like T cells that bridge innate and adaptive immunities. Although MAIT cells have been implicated in tumor immunity, it currently remains unclear whether they function as tumor-promoting or inhibitory cells. Therefore, we herein used induced pluripotent stem cell (iPSC) technology to investigate this issue. Murine MAIT cells were reprogrammed into iPSCs and redifferentiated towards MAIT-like cells (m-reMAIT cells). m-reMAIT cells were activated by an agonist in the presence and absence of antigen-presenting cells and MR1-tetramer, a reagent to detect MAIT cells. This activation accompanied protein tyrosine phosphorylation and the production of T helper (Th)1, Th2, and Th17 cytokines and inflammatory chemokines. Upon adoptive transfer, m-reMAIT cells migrated to different organs with maturation in mice. Furthermore, m-reMAIT cells inhibited tumor growth in the lung metastasis model and prolonged mouse survival upon tumor inoculation through the NK cell-mediated reinforcement of cytolytic activity. Collectively, the present results demonstrated the utility and role of m-reMAIT cells in tumor immunity and provide insights into the function of MAIT cells in immunity.
Collapse
Affiliation(s)
- Chie Sugimoto
- Host Defense Division, Research Center for Advanced Medical Science, Dokkyo Medical University, Mibu, Japan
| | - Yukie Murakami
- Host Defense Division, Research Center for Advanced Medical Science, Dokkyo Medical University, Mibu, Japan
| | - Eisuke Ishii
- Department of Dermatology, School of Medicine, Dokkyo Medical University, Mibu, Japan
| | - Hiroyoshi Fujita
- Host Defense Division, Research Center for Advanced Medical Science, Dokkyo Medical University, Mibu, Japan
| | - Hiroshi Wakao
- Host Defense Division, Research Center for Advanced Medical Science, Dokkyo Medical University, Mibu, Japan
| |
Collapse
|
32
|
Johnson DN, Ruan Z, Petley EV, Devi S, Holz LE, Uldrich AP, Mak JYW, Hor JL, Mueller SN, McCluskey J, Fairlie DP, Darcy PK, Beavis PA, Heath WR, Godfrey DI. Differential location of NKT and MAIT cells within lymphoid tissue. Sci Rep 2022; 12:4034. [PMID: 35260653 PMCID: PMC8904549 DOI: 10.1038/s41598-022-07704-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 01/17/2022] [Indexed: 11/17/2022] Open
Abstract
Natural Killer T (NKT) cells and Mucosal-Associated Invariant T (MAIT) cells are innate-like T cells that express semi-invariant αβ T cell receptors (TCRs) through which they recognise CD1d and MR1 molecules, respectively, in complex with specific ligands. These cells play important roles in health and disease in many organs, but their precise intra-organ location is not well established. Here, using CD1d and MR1 tetramer staining techniques, we describe the precise location of NKT and MAIT cells in lymphoid and peripheral organs. Within the thymus, NKT cells were concentrated in the medullary side of the corticomedullary junction. In spleen and lymph nodes, NKT cells were mainly localised within T cell zones, although following in vivo activation with the potent NKT-cell ligand α-GalCer, they expanded throughout the spleen. MAIT cells were clearly detectable in Vα19 TCR transgenic mice and were rare but detectable in lymphoid tissue of non-transgenic mice. In contrast to NKT cells, MAIT cells were more closely associated with the B cell zone and red pulp of the spleen. Accordingly, we have provided an extensive analysis of the in situ localisation of NKT and MAIT cells and suggest differences between the intra-organ location of these two cell types.
Collapse
Affiliation(s)
- Darryl N Johnson
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, 3010, Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Zheng Ruan
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Emma V Petley
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Sapna Devi
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, 3010, Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Lauren E Holz
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, 3010, Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Adam P Uldrich
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, 3010, Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jeffrey Y W Mak
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jyh Liang Hor
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, 3010, Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Scott N Mueller
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, 3010, Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Parkville, VIC, 3010, Australia
| | - James McCluskey
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, 3010, Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Parkville, VIC, 3010, Australia
| | - David P Fairlie
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Phillip K Darcy
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Paul A Beavis
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - William R Heath
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, 3010, Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Dale I Godfrey
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, 3010, Australia. .,Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
33
|
Wu W, Liang X, Li H, Huang X, Wan C, Xie Q, Liu Z. Landscape of T Cells in NK-AML(M4/M5) Revealed by Single-Cell Sequencing. J Leukoc Biol 2022; 112:745-758. [PMID: 35258858 DOI: 10.1002/jlb.5a0721-396rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 02/15/2022] [Indexed: 12/11/2022] Open
Abstract
Normal karyotype acute myeloid leukemia (NK-AML) is a highly heterogeneous malignancy that resides within a complex immune microenvironment, complicating efforts to reveal the interaction between leukemia cells and immune cells. Understanding tumor-infiltrating T cells is crucial to the advancement of immune therapies and the improvement of the prognosis for NK-AML patients. We performed single-cell RNA sequencing on bone marrow cells from 5 NK-AML (M4/M5) patients and 1 normal donor and paired single-cell T cell receptor (TCR) sequencing on single T cells. As a result, we identified 8 T cell clusters based on the gene expression characteristics of each subset in NK-AML and described their developmental trajectories. In NK-AML patients, specific clusters, such as mucosal-associated invariant T cells (MAITs), were preferentially enriched and potentially clonally expanded. These transcriptome and TCR data analyses provide valuable insights and rich resources for understanding the immune environment of NK-AML.
Collapse
Affiliation(s)
- Wenqi Wu
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaolin Liang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Huiqun Li
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoke Huang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Chengyao Wan
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qiongni Xie
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhenfang Liu
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
34
|
Singh P, Szaraz-Szeles M, Mezei Z, Barath S, Hevessy Z. Age-dependent frequency of unconventional T cells in a healthy adult Caucasian population: a combinational study of invariant natural killer T cells, γδ T cells, and mucosa-associated invariant T cells. GeroScience 2022; 44:2047-2060. [PMID: 35038082 PMCID: PMC8763133 DOI: 10.1007/s11357-022-00515-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/11/2022] [Indexed: 12/04/2022] Open
Abstract
Unconventional T cells show distinct and unique features during antigen recognition as well as other immune responses. Their decrease in frequency is associated with various autoimmune disorders, allergy, inflammation, and cancer. The landscape frequency of the unconventional T cells altogether (iNKT, γδ T, and MAIT) is largely unestablished leading to various challenges affecting diagnosis and research in this field. In this study, we have established the age group–wise frequency of iNKT, γδ T, and MAIT cells altogether on a total of 203 healthy adult samples of the Caucasian population. The results revealed that iNKT cells were 0.095%, γδ T cells were 2.175%, and MAIT cells were 2.99% of the total T cell population. γδ and MAIT cell frequency is higher in younger age groups than elderly; however, there is no statistically significant difference in the frequency of iNKT cells. Furthermore, γδ and MAIT cells were negatively correlating with age, supporting immunosenescence, unlike iNKT cells. Our finding could be used for further age-wise investigation of various pathological conditions such as cancer and their prognosis, autoimmune diseases and their pathogenicity.
Collapse
Affiliation(s)
- Parvind Singh
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032, Debrecen, Hungary
| | - Marianna Szaraz-Szeles
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032, Debrecen, Hungary
| | - Zoltan Mezei
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032, Debrecen, Hungary
| | - Sandor Barath
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032, Debrecen, Hungary
| | - Zsuzsanna Hevessy
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032, Debrecen, Hungary.
| |
Collapse
|
35
|
Díaz‐Basabe A, Burrello C, Lattanzi G, Botti F, Carrara A, Cassinotti E, Caprioli F, Facciotti F. Human intestinal and circulating invariant natural killer T cells are cytotoxic against colorectal cancer cells via the perforin-granzyme pathway. Mol Oncol 2021; 15:3385-3403. [PMID: 34535957 PMCID: PMC8637555 DOI: 10.1002/1878-0261.13104] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/01/2021] [Accepted: 09/16/2021] [Indexed: 11/05/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are lipid-specific T lymphocytes endowed with cytotoxic activities and are thus considered important in antitumor immunity. While several studies have demonstrated iNKT cell cytotoxicity against different tumors, very little is known about their cell-killing activities in human colorectal cancer (CRC). Our aim was to assess whether human iNKT cells are cytotoxic against colon cancer cells and the mechanisms underlying this activity. For this purpose, we generated stable iNKT cell lines from peripheral blood and colon specimens and used NK-92 and peripheral blood natural killer cells as cell-mediated cytotoxicity controls. In vitro cytotoxicity was assessed using a panel of well-characterized human CRC cell lines, and the cellular requirements for iNKT cell cytotoxic functions were evaluated. We demonstrated that both intestinal and circulating iNKT cells were cytotoxic against the entire panel of CRC lines, as well as against freshly isolated patient-derived colonic epithelial cancer cells. Perforin and/or granzyme inhibition impaired iNKT cell cytotoxicity, whereas T-cell receptor (TCR) signaling was a less stringent requirement for efficient killing. This study is the first evidence of tissue-derived iNKT cell cytotoxic activity in humans, as it shows that iNKT cells depend on the perforin-granzyme pathway and both adaptive and innate signal recognition for proper elimination of colon cancer cells.
Collapse
Affiliation(s)
- Angélica Díaz‐Basabe
- Department of Experimental OncologyIEO European Institute of Oncology IRCCSMilanItaly
- Department of Oncology and Hemato‐oncologyUniversità degli Studi di MilanoMilanItaly
| | - Claudia Burrello
- Department of Experimental OncologyIEO European Institute of Oncology IRCCSMilanItaly
| | - Georgia Lattanzi
- Department of Experimental OncologyIEO European Institute of Oncology IRCCSMilanItaly
- Department of Oncology and Hemato‐oncologyUniversità degli Studi di MilanoMilanItaly
| | - Fiorenzo Botti
- Department of Pathophysiology and TransplantationUniversità degli Studi di MilanoMilanItaly
- Department of SurgeryFondazione IRCCS Cà GrandaOspedale Maggiore PoliclinicoMilanItaly
| | - Alberto Carrara
- Department of Pathophysiology and TransplantationUniversità degli Studi di MilanoMilanItaly
- Department of SurgeryFondazione IRCCS Cà GrandaOspedale Maggiore PoliclinicoMilanItaly
| | - Elisa Cassinotti
- Department of Pathophysiology and TransplantationUniversità degli Studi di MilanoMilanItaly
| | - Flavio Caprioli
- Department of Pathophysiology and TransplantationUniversità degli Studi di MilanoMilanItaly
- Gastroenterology and Endoscopy UnitFondazione IRCCS Cà GrandaOspedale Maggiore PoliclinicoMilanItaly
| | - Federica Facciotti
- Department of Experimental OncologyIEO European Institute of Oncology IRCCSMilanItaly
| |
Collapse
|
36
|
Huang W, Ye D, He W, He X, Shi X, Gao Y. Activated but impaired IFN-γ production of mucosal-associated invariant T cells in patients with hepatocellular carcinoma. J Immunother Cancer 2021; 9:jitc-2021-003685. [PMID: 34789552 PMCID: PMC8601081 DOI: 10.1136/jitc-2021-003685] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2021] [Indexed: 11/21/2022] Open
Abstract
Objective Mucosal-associated invariant T (MAIT) cells are innate T cells with immunoregulatory activity and were recently found to be associated with various tumor types. The role of intrasinusoidal MAIT cells in hepatocellular carcinoma (HCC) has not been fully characterized. Design Peripheral blood samples were obtained from patients with HCC and healthy controls. Liver-associated mononuclear cells (LMCs) were collected from liver perfusions of donors and patients with HCC undergoing liver transplantation. Blood and liver perfusates from patients with HCC were analyzed by flow cytometry for CD3 +CD161+Vα7.2+MAIT cell frequency, phenotype, and function. Results There were fewer MAIT cells in the peripheral blood and liver of patients with HCC than in the healthy controls. Interferon-γ (IFN-γ) production by these cells was also reduced. Peripheral MAIT cells showed upregulation of HLA-DR (Human Leukocyte Antigen DR) and the inhibitory molecule PD-1 (Programmed Cell Death Protein 1), but no significant differences in upregulation were found in intrasinusoidal MAIT cells. MAIT cells were significantly enriched in the liver relative to that in the peripheral blood of patients with HCC. High levels of activation markers and exhaustion markers including HLA-DR, CD69, and PD-1 were observed in LMCs of patients with HCC but not in the peripheral blood. Single-cell RNA sequencing revealed that intrasinusoidal MAIT cells exhibited distinct features in patients with HCC and the controls. Conclusion Our study showed that alterations in MAIT cells are associated with HCC. The distinct activity and function of MAIT cells in the peripheral blood and liver of patients with HCC might suggest a potential role of these cells in disease pathogenesis.
Collapse
Affiliation(s)
- Wenyong Huang
- Organ Transplantation Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.,Department of Pathology, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Dongmei Ye
- Organ Transplantation Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wenjing He
- Organ Transplantation Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xiaoshun He
- Organ Transplantation Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xiaomin Shi
- Organ Transplantation Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China .,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yifang Gao
- Organ Transplantation Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China .,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
37
|
Gao MG, Hong Y, Zhao XY, Pan XA, Sun YQ, Kong J, Wang ZD, Wang FR, Wang JZ, Yan CH, Wang Y, Huang XJ, Zhao XS. The Potential Roles of Mucosa-Associated Invariant T Cells in the Pathogenesis of Gut Graft-Versus-Host Disease After Hematopoietic Stem Cell Transplantation. Front Immunol 2021; 12:720354. [PMID: 34539656 PMCID: PMC8448388 DOI: 10.3389/fimmu.2021.720354] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/16/2021] [Indexed: 12/19/2022] Open
Abstract
Gut acute graft-versus-host disease (aGVHD) is a serious complication after allogeneic hematopoietic stem cell transplantation (allo-HSCT) and is associated with high mortality. Mucosa-associated invariant T (MAIT) cells are a group of innate-like T cells enriched in the intestine that can be activated by riboflavin metabolites from various microorganisms. However, little is known about the function or mechanism of action of MAIT cells in the occurrence of gut aGVHD in humans. In our study, multiparameter flow cytometry (FCM) was used to evaluate the number of MAIT cells and functional cytokines. 16S V34 region amplicon sequencing analysis was used to analyze the intestinal flora of transplant patients. In vitro stimulation and coculture assays were used to study the activation and function of MAIT cells. The number and distribution of MAIT cells in intestinal tissues were analyzed by immunofluorescence technology. Our study showed that the number and frequency of MAIT cells in infused grafts in gut aGVHD patients were lower than those in no-gut aGVHD patients. Recipients with a high number of MAITs in infused grafts had a higher abundance of intestinal flora in the early posttransplantation period (+14 days). At the onset of gut aGVHD, the number of MAIT cells decreased in peripheral blood, and the activation marker CD69, chemokine receptors CXCR3 and CXCR4, and transcription factors Rorγt and T-bet tended to increase. Furthermore, when gut aGVHD occurred, the proportion of MAIT17 was higher than that of MAIT1. The abundance of intestinal flora with non-riboflavin metabolic pathways tended to increase in gut aGVHD patients. MAIT cells secreted more granzyme B, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ under the interleukin (IL)-12/IL-18 stimulation [non-T-cell receptor (TCR) signal] and secreted most of the IL-17 under the cluster of differentiation (CD)3/CD28 stimulation (TCR signal). MAIT cells inhibited the proliferation of CD4+ T cells in vitro. In conclusion, the lower number of MAIT cells in infused grafts was related to the higher incidence of gut aGVHD, and the number of MAIT cells in grafts may affect the composition of the intestinal flora of recipients early after transplantation. The flora of the riboflavin metabolism pathway activated MAIT cells and promoted the expression of intestinal protective factors to affect the occurrence of gut aGVHD in humans.
Collapse
Affiliation(s)
- Meng-Ge Gao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yan Hong
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiang-Yu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Xin-An Pan
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yu-Qian Sun
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Jun Kong
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Zhi-Dong Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Feng-Rong Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Jing-Zhi Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Chen-Hua Yan
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Xiao-Su Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
38
|
Comont T, Nicolau-Travers ML, Bertoli S, Recher C, Vergez F, Treiner E. MAIT cells numbers and frequencies in patients with acute myeloid leukemia at diagnosis: association with cytogenetic profile and gene mutations. Cancer Immunol Immunother 2021; 71:875-887. [PMID: 34477901 DOI: 10.1007/s00262-021-03037-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 08/16/2021] [Indexed: 12/17/2022]
Abstract
Harnessing or monitoring immune cells is actually a major topic in pre-clinical and clinical studies in acute myeloid leukemia (AML). Mucosal-Associated Invariant T cells (MAIT) constitute one of the largest subset of innate-like, cytotoxic T cell subsets in humans. Despite some papers suggesting a role for MAIT cells in cancer, their specific involvement remains unclear, especially in myeloid malignancies. This prospective monocentric study included 216 patients with a newly diagnosed AML. Circulating MAIT cells were quantified by flow cytometry at diagnosis and during intensive chemotherapy. We observed that circulating MAIT cells show a specific decline in AML patients at diagnosis compared to healthy donors. Post-induction monitored patients presented with a drastic drop in MAIT cell numbers, with recovery after one month. We also found correlation between decrease in MAIT cells number and adverse cytogenetic profile. FLT3-ITD and IDH ½ mutations were associated with higher MAIT cell numbers. Patients with high level of activated MAIT cells are under-represented within patients with a favorable cytogenetic profile, and over-represented among patients with IDH1 mutations or bi-allelic CEBPA mutations. We show for the first time that circulating MAIT cells are affected in newly diagnosed AML patients, suggesting a link between MAIT cells and AML progression. Our work fosters new studies to deepen our knowledge about the role of MAIT cells in cancer.
Collapse
Affiliation(s)
- Thibault Comont
- Department of Internal Medicine, IUCT-Oncopole, CHU Toulouse, Toulouse, France
- Laboratory of Hematology, IUCT-Oncopole, CHU Toulouse, Toulouse, France
- Cancer Research Center of Toulouse, Unité Mixte de Recherche (UMR) 1037 INSERM, ERL5294 Centre National de La Recherche Scientifique, Toulouse, France
| | | | - Sarah Bertoli
- Cancer Research Center of Toulouse, Unité Mixte de Recherche (UMR) 1037 INSERM, ERL5294 Centre National de La Recherche Scientifique, Toulouse, France
- Department of Clinical Hematology, IUCT-Oncopole, CHU Toulouse, Toulouse, France
- University Paul Sabatier III, Toulouse, France
| | - Christian Recher
- Cancer Research Center of Toulouse, Unité Mixte de Recherche (UMR) 1037 INSERM, ERL5294 Centre National de La Recherche Scientifique, Toulouse, France
- Department of Clinical Hematology, IUCT-Oncopole, CHU Toulouse, Toulouse, France
- University Paul Sabatier III, Toulouse, France
| | - Francois Vergez
- Laboratory of Hematology, IUCT-Oncopole, CHU Toulouse, Toulouse, France
- Cancer Research Center of Toulouse, Unité Mixte de Recherche (UMR) 1037 INSERM, ERL5294 Centre National de La Recherche Scientifique, Toulouse, France
- University Paul Sabatier III, Toulouse, France
| | - Emmanuel Treiner
- Laboratory of Immunology, CHU Toulouse, Toulouse, France.
- University Paul Sabatier III, Toulouse, France.
- Infinity, Inserm UMR1291, 330 Avenue de Grande Bretagne, 31000, Toulouse, France.
| |
Collapse
|
39
|
Petley EV, Koay HF, Henderson MA, Sek K, Todd KL, Keam SP, Lai J, House IG, Li J, Zethoven M, Chen AXY, Oliver AJ, Michie J, Freeman AJ, Giuffrida L, Chan JD, Pizzolla A, Mak JYW, McCulloch TR, Souza-Fonseca-Guimaraes F, Kearney CJ, Millen R, Ramsay RG, Huntington ND, McCluskey J, Oliaro J, Fairlie DP, Neeson PJ, Godfrey DI, Beavis PA, Darcy PK. MAIT cells regulate NK cell-mediated tumor immunity. Nat Commun 2021; 12:4746. [PMID: 34362900 PMCID: PMC8346465 DOI: 10.1038/s41467-021-25009-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 07/19/2021] [Indexed: 02/07/2023] Open
Abstract
The function of MR1-restricted mucosal-associated invariant T (MAIT) cells in tumor immunity is unclear. Here we show that MAIT cell-deficient mice have enhanced NK cell-dependent control of metastatic B16F10 tumor growth relative to control mice. Analyses of this interplay in human tumor samples reveal that high expression of a MAIT cell gene signature negatively impacts the prognostic significance of NK cells. Paradoxically, pre-pulsing tumors with MAIT cell antigens, or activating MAIT cells in vivo, enhances anti-tumor immunity in B16F10 and E0771 mouse tumor models, including in the context of established metastasis. These effects are associated with enhanced NK cell responses and increased expression of both IFN-γ-dependent and inflammatory genes in NK cells. Importantly, activated human MAIT cells also promote the function of NK cells isolated from patient tumor samples. Our results thus describe an activation-dependent, MAIT cell-mediated regulation of NK cells, and suggest a potential therapeutic avenue for cancer treatment.
Collapse
Affiliation(s)
- Emma V Petley
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Hui-Fern Koay
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, VIC, Australia
| | - Melissa A Henderson
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Kevin Sek
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Kirsten L Todd
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Simon P Keam
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
- Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Junyun Lai
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Imran G House
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Jasmine Li
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Magnus Zethoven
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
- Bioinformatics Core Facility, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Amanda X Y Chen
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Amanda J Oliver
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Jessica Michie
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Andrew J Freeman
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Lauren Giuffrida
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Jack D Chan
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Angela Pizzolla
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Jeffrey Y W Mak
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Timothy R McCulloch
- University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | | | - Conor J Kearney
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Rosemary Millen
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Robert G Ramsay
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Nicholas D Huntington
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
- Division of Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Biomedicine Discovery Institute and the Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - James McCluskey
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Jane Oliaro
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
- Department of Immunology, Monash University, Melbourne, VIC, Australia
| | - David P Fairlie
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Paul J Neeson
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Dale I Godfrey
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, VIC, Australia.
| | - Paul A Beavis
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.
- Department of Pathology, University of Melbourne, Melbourne, VIC, Australia.
| | - Phillip K Darcy
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.
- Biomedicine Discovery Institute and the Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia.
- Department of Pathology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
40
|
Hanson ED, Bates LC, Harrell EP, Bartlett DB, Lee JT, Wagoner CW, Alzer MS, Amatuli DJ, Jensen BC, Deal AM, Muss HB, Nyrop KA, Battaglini CL. Exercise training partially rescues impaired mucosal associated invariant t-cell mobilization in breast cancer survivors compared to healthy older women. Exp Gerontol 2021; 152:111454. [PMID: 34146655 DOI: 10.1016/j.exger.2021.111454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/21/2022]
Abstract
Exercise may attenuate immunosenescence with aging that appears to be accelerated following breast cancer treatment, although limited data on specific cell types exists and acute and chronic exercise have been investigated independently in older adults. PURPOSE To determine the mucosal associated invariant T (MAIT) cell response to acute exercise before (PRE) and after (POST) 16 weeks of exercise training in breast cancer survivors (BCS) and healthy older women (CON). METHODS Age-matched BCS and CON performed 45 min of intermittent cycling at 60% peak power output wattage. Blood samples were obtained at rest, immediately (0 h) and 1 h after exercise to determine MAIT cell counts, frequency, and intracellular cytokine expression. RESULTS At PRE, MAIT cell counts were greater in CON (137%) than BCS at 0 h (46%, p < 0.001), with increased MAIT cell frequency in CON but not BCS. TNFα+ and IFNγ+ MAIT cell counts increased at 0 h by ~120% in CON (p < 0.001), while BCS counts and frequencies were unchanged. Similar deficits were observed in CD3+ and CD3+ CD8+ cells. At POST, exercise-induced mobilization and egress of MAIT cell counts and frequency showed trends towards improvement in BCS that approached levels in CON. Independent of group, TNFα frequency trended to improve (p = 0.053). CONCLUSIONS MAIT mobilization in older BCS following acute exercise was attenuated; however, exercise training may partially rescue these initial deficits, including greater sensitivity to mitogenic stimulation. Using acute exercise before and after interventions provides a unique approach to identify age- and cancer-related immuno-dysfunction that is less apparent at rest.
Collapse
Affiliation(s)
- Erik D Hanson
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America.
| | - Lauren C Bates
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Elizabeth P Harrell
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - David B Bartlett
- Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC, USA
| | - Jordan T Lee
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Chad W Wagoner
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Mohamdod S Alzer
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Dean J Amatuli
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Brian C Jensen
- Division of Cardiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Allison M Deal
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Hyman B Muss
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Department of Hematology Oncology, University of North Carolina, Chapel Hill, NC, United States of America
| | - Kirsten A Nyrop
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Department of Hematology Oncology, University of North Carolina, Chapel Hill, NC, United States of America
| | - Claudio L Battaglini
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| |
Collapse
|
41
|
OVOL2 attenuates the expression of MAP3K8 to suppress epithelial mesenchymal transition in colorectal cancer. Pathol Res Pract 2021; 224:153493. [PMID: 34098198 DOI: 10.1016/j.prp.2021.153493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/16/2021] [Accepted: 05/20/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Inactivation of members of the OVO-like family of C2H2 zinc-finger transcription factor 2 (OVOL2) is increased after colorectal cancer (CRC) metastasis. This study investigated the functional roles and clinical relevance of OVOL2 and its downstream factors in colorectal carcinogenesis. METHODS Transcriptome RNA sequencing (RNA-seq) of HCT116 cells overexpressing OVOL2 and SW480 cells silencing OVOL2 were conducted. We cross-checked the Chromatin Immunoprecipitation sequencing (ChIP-seq, GSM1239518) positive peaks and RNA-seq differential expression genes (DEGs). In vitro functional assays, including wound-healing assay and transwell assay, were performed. The RNA expression (n = 597) and protein expression (n = 93) of OVOL2- mitogen-activated protein kinase kinase kinase 8 (MAP3K8)-C-X-C Motif Chemokine Ligand 16 (CXCL16) were evaluated in human CRC and adjacent normal tissues. CXCL16 levels in cell culture supernatants and serum samples obtained from 29 colon polyps patients and 24 CRC patients were measured using ELISA. RESULTS We found that OVOL2 inhibited the migration and epithelial mesenchymal transition (EMT) of CRC cells by blocking the MAP3K8/AKT/NF-κB signaling pathway, and also decreased levels of CXCL16, a chemokine downstream of the MAP3K8/AKT/NF-κB signaling pathway. Furthermore, patient tumor tissue samples showed a lower level of in situ OVOL2 (P = 0.005) and higher CXCL16 (P = 0.001) levels, compared to adjacent normal tissues. Survival analyses revealed that both OVOL2 (logrank P = 0.063) and CXCL16 (logrank P = 0.048) were associated with overall survival (OS) and were independent prognostic factors for CRC. Additionally, OVOL2 and CXCL16 were found to be prognostically relevant (logrank P = 0.038). CXCL16 may serve as a potential diagnostic biomarker for CRC (P = 0.010). CONCLUSIONS The OVOL2/ MAP3K8/CXCL16 axis is a key player in colonic tumorigenesis and metastasis, and may be a potential diagnostic and prognostic biomarker.
Collapse
|
42
|
Wen X, Zhang X, Nian S, Wei G, Guo X, Yu H, Xie X, Ye Y, Yuan Q. Title of article: Mucosal-associated invariant T cells in lung diseases. Int Immunopharmacol 2021; 94:107485. [PMID: 33647824 PMCID: PMC7909906 DOI: 10.1016/j.intimp.2021.107485] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/30/2022]
Abstract
The lungs are directly connected to the external environment, which makes them more vulnerable to infection and injury. They are protected by the respiratory epithelium and immune cells to maintain a dynamic balance. Both innate and adaptive immune cells are involved in the pathogenesis of lung diseases. Mucosal-associated invariant T (MAIT) cells are a subset of unconventional T cells, which have attracted increasing attention in recent years. Although MAIT cells account for a small part of the total immune cells in the lungs, evidence suggests that these cells are activated by T cell receptors and/or cytokine receptors and mediate immune response. They play an important role in immunosurveillance and immunity against microbial infection, and recent studies have shown that subsets of MAIT cells play a role in promoting pulmonary inflammation. Emerging data indicate that MAIT cells are involved in the immune response against SARS-CoV-2 and possible immunopathogenesis in COVID-19. Here, we introduce MAIT cell biology to clarify their role in the immune response. Then we review MAIT cells in human and murine lung diseases, including asthma, chronic obstructive pulmonary disease, pneumonia, pulmonary tuberculosis and lung cancer, and discuss their possible protective and pathological effects. MAIT cells represent an attractive marker and potential therapeutic target for disease progression, thus providing new strategies for the treatment of lung diseases.
Collapse
Affiliation(s)
- Xue Wen
- Public Center of Experimental Technology, The School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Department of Laboratory Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Xingli Zhang
- Public Center of Experimental Technology, The School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Siji Nian
- Public Center of Experimental Technology, The School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Gang Wei
- Department of Cardiology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Xiyuan Guo
- Public Center of Experimental Technology, The School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Hong Yu
- Public Center of Experimental Technology, The School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Xiang Xie
- Public Center of Experimental Technology, The School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Yingchun Ye
- Public Center of Experimental Technology, The School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Qing Yuan
- Public Center of Experimental Technology, The School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| |
Collapse
|
43
|
Mucosal Associated Invariant T Cells in Cancer-Friend or Foe? Cancers (Basel) 2021; 13:cancers13071582. [PMID: 33808058 PMCID: PMC8036566 DOI: 10.3390/cancers13071582] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 12/18/2022] Open
Abstract
Mucosal associated invariant T (MAIT) cells are a population of unconventional T cells which can bridge the innate and adaptive immune systems. Well-described roles for MAIT cells include host protection against invading bacteria, fungi and viruses. Upon activation, MAIT cells become prolific effector cells, capable of producing a range of cytokines and lytic molecules. In addition to their anti-microbial role, MAIT cells have been implicated in immune responses to cancer, with opposing beneficial and pathogenic roles reported. On the one hand, MAIT cells can home to the site of the tumour in many human cancers and can produce anti-tumour molecules. On the other, MAIT cells can display defective phenotypes in certain cancers and produce pro-tumour molecules. In this review, we discuss the current literature on the diverse roles for MAIT cells in cancer, outlining their frequencies, functions and associations with N staging and prognosis. We also discuss potential mechanisms underpinning cancer-related alterations in MAIT cells and highlight therapeutic approaches to harness or target MAIT cells in cancer.
Collapse
|
44
|
MAIT Cells: Partners or Enemies in Cancer Immunotherapy? Cancers (Basel) 2021; 13:cancers13071502. [PMID: 33805904 PMCID: PMC8037823 DOI: 10.3390/cancers13071502] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Unconventional T cells have recently come under intense scrutiny because of their innate-like effector functions and unique antigen specificity, suggesting their potential importance in antitumor immunity. MAIT cells, one such population of unconventional T cell, have been shown to significantly influence bacterial infections, parasitic and fungal infections, viral infections, autoimmune and other inflammatory diseases, and, as discussed thoroughly in this review, various cancers. This review aims to merge accumulating evidence, tease apart the complexities of MAIT cell biology in different malignancies, and discuss how these may impact clinical outcomes. While it is clear that MAIT cells can impact the tumor microenvironment, the nature of these interactions varies depending on the type of cancer, subset of MAIT cell, patient demographic, microbiome composition, and the type of therapy administered. This review examines the impact of these variables on MAIT cells and discusses outstanding questions within the field. Abstract A recent boom in mucosal-associated invariant T (MAIT) cell research has identified relationships between MAIT cell abundance, function, and clinical outcomes in various malignancies. As they express a variety of immune checkpoint receptors and ligands, and possess strong cytotoxic functions, MAIT cells are an attractive new subject in the field of tumor immunology. MAIT cells are a class of innate-like T cells that express a semi-invariant T cell antigen receptor (TCR) that recognizes microbially derived non-peptide antigens presented by the non-polymorphic MHC class-1 like molecule, MR1. In this review, we outline the current (and often contradictory) evidence exploring MAIT cell biology and how MAIT cells impact clinical outcomes in different human cancers, as well as what role they may have in cancer immunotherapy.
Collapse
|
45
|
Andrlová H, van den Brink MRM, Markey KA. An Unconventional View of T Cell Reconstitution After Allogeneic Hematopoietic Cell Transplantation. Front Oncol 2021; 10:608923. [PMID: 33680931 PMCID: PMC7930482 DOI: 10.3389/fonc.2020.608923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/31/2020] [Indexed: 01/02/2023] Open
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is performed as curative-intent therapy for hematologic malignancies and non-malignant hematologic, immunological and metabolic disorders, however, its broader implementation is limited by high rates of transplantation-related complications and a 2-year mortality that approaches 50%. Robust reconstitution of a functioning innate and adaptive immune system is a critical contributor to good long-term patient outcomes, primarily to prevent and overcome post-transplantation infectious complications and ensure adequate graft-versus-leukemia effects. There is increasing evidence that unconventional T cells may have an important immunomodulatory role after allo-HCT, which may be at least partially dependent on the post-transplantation intestinal microbiome. Here we discuss the role of immune reconstitution in allo-HCT outcome, focusing on unconventional T cells, specifically mucosal-associated invariant T (MAIT) cells, γδ (gd) T cells, and invariant NK T (iNKT) cells. We provide an overview of the mechanistic preclinical and associative clinical studies that have been performed. We also discuss the emerging role of the intestinal microbiome with regard to hematopoietic function and overall immune reconstitution.
Collapse
Affiliation(s)
- Hana Andrlová
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Marcel R. M. van den Brink
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Division of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Kate A. Markey
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Division of Medicine, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
46
|
Wang H, Chen Z, McCluskey J, Corbett AJ. Mouse models illuminate MAIT cell biology. Mol Immunol 2021; 130:55-63. [PMID: 33360377 PMCID: PMC7855494 DOI: 10.1016/j.molimm.2020.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/02/2020] [Indexed: 12/14/2022]
Abstract
The field of mucosal-associated invariant T cell (MAIT) biology has grown rapidly since the identification of the vitamin-B-based antigens recognised by these specialised T cells. Over the past few years, our understanding of the complexities of MAIT cell function has developed, as they find their place among the other better known cells of the immune system. Key questions relate to understanding when MAIT cells help, when they hinder or cause harm, and when they do not matter. Exploiting mouse strains that differ in MAIT cell numbers, leveraged by specific detection of MAIT cells using MR1-tetramers, it has now been shown that MAIT cells play important immune roles in settings that include bacterial and viral infections, autoimmune diseases and cancer. We have also learnt much about their development, modes of activation and response to commensal microbiota, and begun to try ways to manipulate MAIT cells to improve disease outcomes. Here we review recent studies that have assessed MAIT cells in models of disease.
Collapse
Affiliation(s)
- Huimeng Wang
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia; State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Zhenjun Chen
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Alexandra J Corbett
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.
| |
Collapse
|
47
|
Cho YN, Jeong HS, Park KJ, Kim HS, Kim EH, Jin HM, Jung HJ, Ju JK, Choi SE, Kang JH, Park DJ, Kim TJ, Lee SS, Kee SJ, Park YW. Altered distribution and enhanced osteoclastogenesis of mucosal-associated invariant T cells in gouty arthritis. Rheumatology (Oxford) 2021; 59:2124-2134. [PMID: 32087015 DOI: 10.1093/rheumatology/keaa020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 01/08/2020] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE This study was designed to investigate the role of mucosal-associated invariant T (MAIT) cells in gouty arthritis (GA) and their effects on osteoclastogenesis. METHODS Patients with GA (n = 61), subjects with hyperuricaemia (n = 11) and healthy controls (n = 30) were enrolled in this study. MAIT cells, cytokines, CD69, programmed death-1 (PD-1) and lymphocyte-activation gene 3 (LAG-3) levels were measured by flow cytometry. In vitro osteoclastogenesis experiments were performed using peripheral blood mononuclear cells in the presence of M-CSF and RANK ligand. RESULTS Circulating MAIT cell levels were significantly reduced in GA patients. However, their capacities for IFN-γ, IL-17 and TNF-α production were preserved. Expression levels of CD69, PD-1 and LAG-3 in MAIT cells were found to be elevated in GA patients. In particular, CD69 expression in circulating MAIT cells was increased by stimulation with MSU crystals, suggesting that deposition of MSU crystals might contribute to MAIT cell activation. Interestingly, MAIT cells were found to be accumulated in synovial fluid and infiltrated into gouty tophus tissues within joints. Furthermore, activated MAIT cells secreted pro-resorptive cytokines (i.e. IL-6, IL-17 and TNF-α) and facilitated osteoclastogenesis. CONCLUSION This study demonstrates that circulating MAIT cells are activated and numerically deficient in GA patients. In addition, MAIT cells have the potential to migrate to inflamed tissues and induce osteoclastogenesis. These findings provide an important role of MAIT cells in the pathogenesis of inflammation and bone destruction in GA patients.
Collapse
Affiliation(s)
- Young-Nan Cho
- Department of RheumatologyChonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Hae-Seong Jeong
- Department of RheumatologyChonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Ki-Jeong Park
- Department of RheumatologyChonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Hyung-Seok Kim
- Department of Forensic MedicineChonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Eun-Hee Kim
- Department of Forensic MedicineChonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Hye-Mi Jin
- Department of RheumatologyChonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Hyun-Ju Jung
- Department of RheumatologyChonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Jae Kyun Ju
- Department of Surgery, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Sung-Eun Choi
- Department of RheumatologyChonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Ji-Hyoun Kang
- Department of RheumatologyChonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Dong-Jin Park
- Department of RheumatologyChonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Tae-Jong Kim
- Department of RheumatologyChonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Shin-Seok Lee
- Department of RheumatologyChonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Seung-Jung Kee
- Department of Laboratory Medicine, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Yong-Wook Park
- Department of RheumatologyChonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| |
Collapse
|
48
|
Shao C, Zhu C, Zhu Y, Hao J, Li Y, Hu H, Si L, Zhong F, Wang X, Wang H. Decrease of peripheral blood mucosal-associated invariant T cells and impaired serum Granzyme-B production in patients with gastric cancer. Cell Biosci 2021; 11:12. [PMID: 33422137 PMCID: PMC7796455 DOI: 10.1186/s13578-020-00518-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 06/17/2020] [Indexed: 02/08/2023] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are an invariant T cell subset, which have been reported to play an antimicrobial role in infectious diseases. However, little is known about it in malignant diseases and tumors, especially in gastric cancer (GC). So in this study, we aim to examine the frequency, phenotype, partial functional capacity and clinical relevance of this cells from GC patients’ peripheral blood by flow cytometry. It was shown that the frequency of peripheral blood MAIT cells was negatively correlated with their increasing age in healthy adults. Importantly, comparing to the healthy controls (HC), the frequency and the absolute number of MAIT cells from GC patients’ peripheral blood with or without chemotherapy were both significantly lower than those. For the phenotype, the proportion of CD4−MAIT cell subset in GC patients without chemotherapy was lower than in HC, but higher than in GC patients with chemotherapy. Whereas, the proportion of CD4−CD8+MAIT cell subset in GC patients without chemotherapy was significantly lower than that in HC. Finally, the level of Granzyme-B (GrB), a molecule associated with MAIT cells was markedly lower in GC patients. But the correlation between the serum levels of GC-associated tumor antigens and the percentages of MAIT cells in GC patients was not observed. In conclusion, our study shows the decreased frequency, changed phenotypes and partial potentially impaired function of MAIT cells in GC patients, suggesting a possible MAIT cell-based immunological surveillance of GC.
Collapse
Affiliation(s)
- Chunyan Shao
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.,Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China
| | - Chenwen Zhu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yun Zhu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Jiqing Hao
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yongxiang Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Huaqing Hu
- Health Management Center, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Li Si
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Fei Zhong
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China. .,Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China.
| | - Xuefu Wang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, 230032, China.
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China. .,School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, 230032, China. .,Institute of Liver Diseases, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
49
|
Translating Unconventional T Cells and Their Roles in Leukemia Antitumor Immunity. J Immunol Res 2021; 2021:6633824. [PMID: 33506055 PMCID: PMC7808823 DOI: 10.1155/2021/6633824] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022] Open
Abstract
Recently, cell-mediated immune response in malignant neoplasms has become the focus in immunotherapy against cancer. However, in leukemia, most studies on the cytotoxic potential of T cells have concentrated only on T cells that recognize peptide antigens (Ag) presented by polymorphic molecules of the major histocompatibility complex (MHC). This ignores the great potential of unconventional T cell populations, which include gamma-delta T cells (γδ), natural killer T cells (NKT), and mucosal-associated invariant T cells (MAIT). Collectively, these T cell populations can recognize lipid antigens, specially modified peptides and small molecule metabolites, in addition to having several other advantages, which can provide more effective applications in cancer immunotherapy. In recent years, these cell populations have been associated with a repertoire of anti- or protumor responses and play important roles in the dynamics of solid tumors and hematological malignancies, thus, encouraging the development of new investigations in the area. This review focuses on the current knowledge regarding the role of unconventional T cell populations in the antitumor immune response in leukemia and discusses why further studies on the immunotherapeutic potential of these cells are needed.
Collapse
|
50
|
MAIT cells, guardians of skin and mucosa? Mucosal Immunol 2021; 14:803-814. [PMID: 33753874 PMCID: PMC7983967 DOI: 10.1038/s41385-021-00391-w] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023]
Abstract
Mucosal Associated Invariant T (MAIT) cells are evolutionary conserved innate-like T cells able to recognize bacterial and fungal ligands derived from vitamin B biosynthesis. These cells are particularly present in liver and blood but also populate mucosal sites including skin, oral, intestinal, respiratory, and urogenital tracts that are in contact with the environment and microbiota of their host. Growing evidence suggests important involvement of MAIT cells in safeguarding the mucosa against external microbial threats. Simultaneously, mucosal MAIT cells have been implicated in immune and inflammatory pathologies affecting these organs. Here, we review the specificities of mucosal MAIT cells, their functions in the protection and maintenance of mucosal barriers, and their interactions with other mucosal cells.
Collapse
|