1
|
Bergerot B, Piscart C, Roussel JM. Tightly intertwined: Waterscapes prompt urgent reconsideration of aquatic insects and their role in agricultural landscapes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 966:178728. [PMID: 39922007 DOI: 10.1016/j.scitotenv.2025.178728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/19/2025] [Accepted: 02/02/2025] [Indexed: 02/10/2025]
Abstract
In landscape ecology, the waterscape refers to permanent or temporary, running or stagnant surface waters within a terrestrial area. Across ecosystem boundaries, aquatic organisms and nutrients can reach terrestrial ecosystems, as formalised by the meta-ecosystem theory. Recent studies on aquatic insects emerging from temperate streams suggest that the extent of their biomass and fluxes across agricultural landscapes may have been neglected until now. Following a conceptual and empirical approach, we presently discuss how the temporal dynamics of floods coupled with the emergence and aerial fluxes of aquatic insects suggests that the waterscape can largely overlap the landscape. Depending on the season, various species and biomasses of aquatic insects could interact with the receiving terrestrial ecosystems and ultimately support vital ecosystem services and functions such as pollination, soil fertilisation, and control of crop pests or facilitation of their natural enemies. In the current context of a global collapse of terrestrial insect populations, we call for an urgent research effort to include the temporal dimension of waterscapes into landscape models to estimate the fluxes of insects emerging from all kinds of aquatic ecosystems and quantify their role in the functioning of terrestrial ecosystems in agricultural landscapes.
Collapse
Affiliation(s)
- B Bergerot
- University of Rennes, CNRS, UMR 6553 ECOBIO, Rennes, France.
| | - C Piscart
- University of Rennes, CNRS, UMR 6553 ECOBIO, Rennes, France.
| | - J M Roussel
- DECOD (Ecosystem Dynamics and Sustainability), INRAE, Institut Agro, IFREMER, Rennes, France.
| |
Collapse
|
2
|
Miao HT, Salguero-Gómez R, Shea K, Keller JA, Zhang Z, He JS, Li SL. Differences in adult survival drive divergent demographic responses to warming on the Tibetan Plateau. Ecology 2025; 106:e4533. [PMID: 39989393 DOI: 10.1002/ecy.4533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 10/13/2024] [Accepted: 11/11/2024] [Indexed: 02/25/2025]
Abstract
A central question in biodiversity conservation is whether species will maintain viable populations under climate warming. Assessing species viability under climate warming requires demographic studies integrating vital rate responses to long-term warming throughout species' life cycles. However, studies of this nature are rare. Our integral projection models (IPMs), parameterized with demographic data, show differing responses of two functionally similar co-occurring species, Elymus nutans Griseb. and Helictotrichon tibeticum (Roshev.) Holub, to 10 years of in situ active warming by 2°C. Our IPMs estimated that the life expectancy is higher in H. tibeticum (6.7 years) than that in E. nutans (4.5 years) under ambient conditions, and the difference is larger under warmed conditions. We found that while warming decreased individual-level growth in both species, H. tibeticum, which has a longer life expectancy, compensated with increased survival, and thereby increased projected population-level growth under warming. Contrastingly, E. nutans, which has a shorter life expectancy, is projected to have decreased population-level performance. Furthermore, our elasticity analyses show that survival is the most important vital rate for population viability in both species under both ambient and warmed conditions. Moreover, our retrospective life table response experiment (LTRE) analysis reveals that the contrasting fates of the two species under warming mainly arise from the different responses of adult survival, which is significantly promoted in H. tibeticum but slightly reduced in E. nutans. Individual shrinkage occurred 1.6 fold more frequently under warming than ambient conditions for both species and made considerable negative contributions to their population growth rates in warmed plots. However, such negative effects are offset in H. tibeticum (but not E. nutans) by the positive contribution to population growth rate of the associated increased survival. Our results illustrate that the responses to climate warming may vary considerably between similar co-occurring species, and species with a demographically compensatory strategy may avoid population collapse. Furthermore, our study demonstrates the potential of using life-history traits to predict species' viability when facing warming, so as to inform biodiversity conservation under climate change.
Collapse
Affiliation(s)
- Hai-Tao Miao
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, and College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | | | - Katriona Shea
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Joseph A Keller
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Zhenhua Zhang
- Qinghai Haibei National Field Research Station of Alpine Grassland Ecosystem and Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Jin-Sheng He
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Shou-Li Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, and College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Salguero-Gómez R. More social species live longer, have longer generation times and longer reproductive windows. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220459. [PMID: 39463247 PMCID: PMC11513647 DOI: 10.1098/rstb.2022.0459] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/04/2024] [Accepted: 07/31/2024] [Indexed: 10/29/2024] Open
Abstract
The role of sociality in the demography of animals has become an intense focus of research in recent decades. However, efforts to understand the sociality-demography nexus have hitherto focused on single species or isolated taxonomic groups. Consequently, we lack generality regarding how sociality associates with demographic traits within the Animal Kingdom. Here, I propose a continuum of sociality, from solitary to tightly social, and test whether this continuum correlates with the key demographic properties of 152 species, from jellyfish to humans. After correction for body mass and phylogenetic relationships, I show that the sociality continuum is associated with key life history traits: more social species live longer, postpone maturity, have longer generation time and greater probability of achieving reproduction than solitary, gregarious, communal or colonial species. Contrary to the social buffering hypothesis, sociality does not result in more buffered populations. While more social species have a lower ability to benefit from disturbances, they display greater resistance than more solitary species. Finally, I also show that sociality does not shape reproductive or actuarial senescence rates. This cross-taxonomic examination of sociality across the demography of 13 taxonomic classes highlights key ways in which individual interactions shape most aspects of animal demography.This article is part of the discussion meeting issue 'Understanding age and society using natural populations'.
Collapse
|
4
|
Dobson FS, Koons DN, Saraux C, Tamian A, Oli MK, Viblanc VA. The Demographic Basis of Population Growth: A 32-Year Transient Life Table Response Experiment. Ecol Lett 2024; 27:e14512. [PMID: 39739323 DOI: 10.1111/ele.14512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 01/02/2025]
Abstract
It has recently been recognised that populations are rarely in demographic equilibrium, but rather in a 'transient' state. To examine how transient dynamics influence our empirical understanding of the links between changes in demographic rates and population growth, we conducted a 32-year study of Columbian ground squirrels. The population increased rapidly for 10 years, followed by a 2-year crash, and a gradual 19-year recovery. Transient life table response experiment (LTRE) analysis showed that demographic stochasticity accounted for approximately one-fourth of the variation in population growth, leaving the majority to be explained by environmental influences. These relatively small rodents appeared to have a slow pace of life. But unlike the general pattern for large mammals with slow life histories, ground squirrel survival did not exhibit low variation associated with environmental 'buffering'; instead, survival varied substantially over time and contributed substantially (78%) to changes in abundance over the long-term study, with minor contributions from reproduction and unstable stage structure.
Collapse
Affiliation(s)
- F Stephen Dobson
- Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - David N Koons
- Department of Fish, Wildlife, and Conservation Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | - Claire Saraux
- Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
| | - Anouch Tamian
- Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
| | - Madan K Oli
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, USA
| | | |
Collapse
|
5
|
Ma X, Dong R, Hughes A, Corlett RT, Svenning JC, Feng G. Population trends are more strongly linked to environmental change and species traits in birds than mammals. Proc Biol Sci 2024; 291:20241395. [PMID: 39471854 PMCID: PMC11521616 DOI: 10.1098/rspb.2024.1395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 07/31/2024] [Accepted: 09/05/2024] [Indexed: 11/01/2024] Open
Abstract
Changes in land use and climate directly impact species populations. Species with divergent characteristics may respond differently to these changes. Therefore, understanding species' responses to environmental changes is fundamental for alleviating biodiversity loss. However, the relationships between land use changes, climate changes, species' intrinsic traits and population changes at different spatial scales have not been tested. In this study, we analysed the effects of land use and climate changes from different time periods and species traits on the population change rates of 2195 bird and mammal populations in 577 species recorded in the Living Planet Database at global, tropical and temperate scales. We hypothesized that both bird and mammal populations will decline owing to climate and land use changes, especially phylogenetically young and small-bodied species. We found that bird population trends were more closely related to environmental changes and phylogenetic age than those of mammals at global and temperate scales. Mammal population trends were not significantly correlated with land use or climate changes but were with longevity at global and temperate scales. Given the divergent responses of bird and mammal populations to these explanatory variables, different conservation strategies should be considered for these taxa and for different regions.
Collapse
Affiliation(s)
- Xiaoming Ma
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology and the Candidate State Key Laboratory of Ministry of Science and Technology, School of Ecology and Environment, Inner Mongolia University, Hohhot010070, People's Republic of China
| | - Rongan Dong
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology and the Candidate State Key Laboratory of Ministry of Science and Technology, School of Ecology and Environment, Inner Mongolia University, Hohhot010070, People's Republic of China
- Ulanqab City Agriculture and Animal Husbandry Ecology and Resources Protection Center, Ulanqab, People's Republic of China
| | - Alice Hughes
- School of Biological Sciences, The University of Hong Kong, Hong Kong999077, Hong Kong
| | - Richard T. Corlett
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun666303, People's Republic of China
| | - Jens-Christian Svenning
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), Department of Biology, Aarhus University, Aarhus C8000, Denmark
| | - Gang Feng
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology and the Candidate State Key Laboratory of Ministry of Science and Technology, School of Ecology and Environment, Inner Mongolia University, Hohhot010070, People's Republic of China
| |
Collapse
|
6
|
Roy P, Rutter A, Gainer A, Haack E, Zeeb B. Survival and reproduction tests using springtails reveal weathered petroleum hydrocarbon soil toxicity in boreal ecozone. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:57920-57932. [PMID: 39302583 DOI: 10.1007/s11356-024-35012-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Survival and reproduction tests were conducted using two native springtail (subclass: Collembola) species to determine the toxicity of a fine-grained (< 0.005 - 0.425 mm) soil from an industrial site located in the Canadian boreal ecozone. Accidental petroleum hydrocarbon (PHC) release continuously occurred at this site until 1998, resulting in a total hydrocarbon concentration of 12,800 mg/kg (soil dry weight). Subfractions of the PHC-contaminated soil were characterized using Canadian Council of Ministers of the Environment Fractions, which are based on effective carbon numbers (nC). Fraction 2 (> nC10 to nC16) was measured at 8400 mg/kg and Fraction 3 (> nC16 to nC34) at 4250 mg/kg in the contaminated soil. Age-synchronized colonies of Folsomia candida and Proisotoma minuta were subject to 0%, 25%, 50%, 75%, and 100% relative contamination mixtures of the PHC-contaminated and background site soil (< 100 mg/kg total PHCs) for 28 and 21 days, respectively. Survival and reproduction decreased significantly (Kruskal-Wallis Tests: p < 0.05, df = 4.0) in treatments of the contaminated site soil compared to the background soil. In both species, the most significant decline in survival and reproduction occurred between the 0% and 25% contaminated soil. Toxicity responses in the two springtails were ascribed to the standardized test design, short lifespans, and high fecundity in both species. This study showed that 25 + years of soil weathering has not eliminated the toxicity of fine-grained PHC-contaminated soil on two native terrestrial springtail species. Adverse effects to springtail health were attributed to exposure to soils dominated by genotoxic PHC Fraction 2 compounds and slow weathering processes due to the cold climate at the site.
Collapse
Affiliation(s)
- Prama Roy
- School of Environmental Studies, Queen's University, Kingston, ON, K7L 3N6, Canada.
| | - Allison Rutter
- School of Environmental Studies, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Amy Gainer
- Clear-Site Solutions (Formerly With Advisian/Worley Canada Services), 9807 83 Ave, Edmonton, AB, Canada
| | - Elizabeth Haack
- Ecometrix Incorporated, 6800 Campobello Road, Mississauga, ON, L5N 2L8, Canada
| | - Barbara Zeeb
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON, K7K 7B4, Canada
| |
Collapse
|
7
|
Touzot L, Paniw M. Are some species more sensitive to environmental change than others? It may all depend on the context. J Anim Ecol 2024; 93:659-662. [PMID: 38650117 DOI: 10.1111/1365-2656.14084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/01/2024] [Indexed: 04/25/2024]
Abstract
Research Highlight: Rademaker, M., van Leeuwen, A., & Smallegange, I. M. (2024). Why we cannot always expect life history strategies to directly inform on sensitivity to environmental change. Journal of Animal Ecology, https://doi.org/10.1111/1365-2656.14050. Ecological studies have long delved into how organisms allocate energy between reproduction and somatic maintenance to maximize fitness. This allocation gives rise to various life-history strategies, and these strategies have been shown to predict how populations respond to environmental change, allowing us to generalize potential responses to increasing human pressures. Such predictions have, however, been made for a limited set of terrestrial taxa and typically do not explore how individual differences in life-history responses to environmental change scale to affect population-level responses. Using novel data on diverse fish species, Rademaker et al. (2024) construct models that link individual-level trade-offs in energy allocation under environmental change to population-level life-history strategies. A key finding in their study is that short-lived species are not more sensitive to environmental change-unlike results of previous studies. This study represents a new generation of work that underscores the complexity of predicting population responses to environmental shifts and suggests a need for a broader understanding of individual-level mechanisms. The results of Rademaker et al. (2024) encourage further mechanistic life-history analyses across a wider range of species and populations to validate the exciting findings and explore their implications across diverse ecological contexts.
Collapse
Affiliation(s)
- Laura Touzot
- Centre de Recherches sur les Ecosystèmes d'Altitude (CREA Mont-Blanc), Chamonix, France
| | - Maria Paniw
- Doñana Biological Station, Spanish National Research Council (EBD-CSIC), Sevilla, Spain
| |
Collapse
|
8
|
Bliard L, Paniw M, Childs DZ, Ozgul A. Population Dynamic Consequences of Context-Dependent Trade-Offs across Life Histories. Am Nat 2024; 203:681-694. [PMID: 38781530 DOI: 10.1086/730111] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
AbstractTrade-offs are central to life history theory and play a role in driving life history diversity. They arise from a finite amount of resources that need to be allocated among different functions by an organism. Yet covariation of demographic rates among individuals frequently do not reflect allocation trade-offs because of variation in resource acquisition. The covariation of traits among individuals can thus vary with the environment and often increases in benign environments. Surprisingly, little is known about how such context-dependent expression of trade-offs among individuals affect population dynamics across species with different life histories. To study their influence on population stability, we develop an individual-based simulation where covariation in demographic rates varies with the environment. We use it to simulate population dynamics for various life histories across the slow-fast pace-of-life continuum. We found that the population dynamics of slower life histories are relatively more sensitive to changes in covariation, regardless of the trade-off considered. Additionally, we found that the impact on population stability depends on which trade-off is considered, with opposite effects of intraindividual and intergenerational trade-offs. Last, the expression of different trade-offs can feed back to influence generation time through selection acting on individual heterogeneity within cohorts, ultimately affecting population dynamics.
Collapse
|
9
|
Zettlemoyer MA, Conner RJ, Seaver MM, Waddle E, DeMarche ML. A Long-Lived Alpine Perennial Advances Flowering under Warmer Conditions but Not Enough to Maintain Reproductive Success. Am Nat 2024; 203:E157-E174. [PMID: 38635358 DOI: 10.1086/729438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
AbstractAssessing whether phenological shifts in response to climate change confer a fitness advantage requires investigating the relationships among phenology, fitness, and environmental drivers of selection. Despite widely documented advancements in phenology with warming climate, we lack empirical estimates of how selection on phenology varies in response to continuous climate drivers or how phenological shifts in response to warming conditions affect fitness. We leverage an unusual long-term dataset with repeated, individual measurements of phenology and reproduction in a long-lived alpine plant. We analyze phenotypic plasticity in flowering phenology in relation to two climate drivers, snowmelt timing and growing degree days (GDDs). Plants flower earlier with increased GDDs and earlier snowmelt, and directional selection also favors earlier flowering under these conditions. However, reproduction still declines with warming and early snowmelt, even when flowering is early. Furthermore, the steepness of this reproductive decline increases dramatically with warming conditions, resulting in very little fruit production regardless of flowering time once GDDs exceed approximately 225 degree days or snowmelt occurs before May 15. Even though advancing phenology confers a fitness advantage relative to stasis, these shifts are insufficient to maintain reproduction under warming, highlighting limits to the potential benefits of phenological plasticity under climate change.
Collapse
|
10
|
Fowler JC, Ziegler S, Whitney KD, Rudgers JA, Miller TEX. Microbial symbionts buffer hosts from the demographic costs of environmental stochasticity. Ecol Lett 2024; 27:e14438. [PMID: 38783567 DOI: 10.1111/ele.14438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
Species' persistence in increasingly variable climates will depend on resilience against the fitness costs of environmental stochasticity. Most organisms host microbiota that shield against stressors. Here, we test the hypothesis that, by limiting exposure to temporally variable stressors, microbial symbionts reduce hosts' demographic variance. We parameterized stochastic population models using data from a 14-year symbiont-removal experiment including seven grass species that host Epichloë fungal endophytes. Results provide novel evidence that symbiotic benefits arise not only through improved mean fitness, but also through dampened inter-annual variance. Hosts with "fast" life-history traits benefited most from symbiont-mediated demographic buffering. Under current climate conditions, contributions of demographic buffering were modest compared to benefits to mean fitness. However, simulations of increased stochasticity amplified benefits of demographic buffering and made it the more important pathway of host-symbiont mutualism. Microbial-mediated variance buffering is likely an important, yet cryptic, mechanism of resilience in an increasingly variable world.
Collapse
Affiliation(s)
- Joshua C Fowler
- Department of BioSciences, Rice University, Houston, Texas, USA
- Department of Biology, University of Miami, Coral Gables, Florida, USA
| | - Shaun Ziegler
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Kenneth D Whitney
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Jennifer A Rudgers
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Tom E X Miller
- Department of BioSciences, Rice University, Houston, Texas, USA
| |
Collapse
|
11
|
Rademaker M, van Leeuwen A, Smallegange IM. Why we cannot always expect life history strategies to directly inform on sensitivity to environmental change. J Anim Ecol 2024; 93:348-366. [PMID: 38303132 DOI: 10.1111/1365-2656.14050] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 12/20/2023] [Indexed: 02/03/2024]
Abstract
Variation in life history traits in animals and plants can often be structured along major axes of life history strategies. The position of a species along these axes can inform on their sensitivity to environmental change. For example, species with slow life histories are found to be less sensitive in their long-term population responses to environmental change than species with fast life histories. This provides a tantalizing link between sets of traits and population responses to change, contained in a highly generalizable theoretical framework. Life history strategies are assumed to reflect the outcome of life history tradeoffs that, by their very nature, act at the individual level. Examples include the tradeoff between current and future reproductive success, and allocating energy into growth versus reproduction. But the importance of such tradeoffs in structuring population-level responses to environmental change remains understudied. We aim to increase our understanding of the link between individual-level life history tradeoffs and the structuring of life history strategies across species, as well as the underlying links to population responses to environmental change. We find that the classical association between lifehistory strategies and population responses to environmental change breaks down when accounting for individual-level tradeoffs and energy allocation. Therefore, projecting population responses to environmental change should not be inferred based only on a limited set of species traits. We summarize our perspective and a way forward in a conceptual framework.
Collapse
Affiliation(s)
- Mark Rademaker
- Department of Coastal Systems, Royal NIOZ and Utrecht University, Texel, The Netherlands
| | - Anieke van Leeuwen
- Department of Coastal Systems, Royal NIOZ and Utrecht University, Texel, The Netherlands
| | - Isabel M Smallegange
- School of Natural & Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
12
|
Brown C, Rodriguez Buritica S, Goldberg DE, Reichenbacher F, Venable DL, Webb RH, Wilder BT. One hundred and six years of change in a Sonoran Desert plant community: Impact of climate anomalies and trends in species sensitivities. Ecology 2024; 105:e4194. [PMID: 37882101 DOI: 10.1002/ecy.4194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 08/06/2023] [Accepted: 09/18/2023] [Indexed: 10/27/2023]
Abstract
A major restriction in predicting plant community response to future climate change is a lack of long-term data needed to properly assess species and community response to climate and identify a baseline to detect climate anomalies. Here, we use a 106-year dataset on a Sonoran Desert plant community to test the role of extreme temperature and precipitation anomalies on community dynamics at the decadal scale and over time. Additionally, we tested the climate sensitivity of 39 desert plant species and whether sensitivity was associated with growth form, longevity, geographic range, or local dominance. We found that desert plant communities had shifted directionally over the 106 years, but the climate had little influence on this directional change primarily due to nonlinear shifts in precipitation anomalies. Decadal-scale climate had the largest impact on species richness, species relative density, and total plant cover, explaining up to 26%, 45%, and 55% of the variance in each, respectively. Drought and the interaction between the frequency of freeze events and above-average summer precipitation were among the most influential climate factors. Increased drought frequency and wetter periods with frequent freeze events led to larger reductions in total plant cover, species richness, and the relative densities of dominant subshrubs Ambrosia deltoidea and Encelia farinosa. More than 80% of the tested species were sensitive to climate, but sensitivity was not associated with a species' local dominance, longevity, geographic range, or growth form. Some species appear to exhibit demographic buffering, where when they have a higher sensitivity to drought, they also tend to have a higher sensitivity to favorable (i.e., wetter and hotter) conditions. Overall, our results suggest that, while decadal-scale climate variation substantially impacts these desert plant communities, directional change in temperature over the last century has had little impact due to the relative importance of precipitation and drought. With projections of increased drought in this region, we may see reductions in total vegetation cover and species richness due to the loss of species, possibly through a breakdown in their ability to demographically buffer climatic variation, potentially changing community dynamics through a change in facilitative and competitive processes.
Collapse
Affiliation(s)
- Charlotte Brown
- Desert Laboratory on Tumamoc Hill, University of Arizona, Tucson, Arizona, USA
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | - Deborah E Goldberg
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Frank Reichenbacher
- Desert Laboratory on Tumamoc Hill, University of Arizona, Tucson, Arizona, USA
| | - D Lawrence Venable
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| | - Robert H Webb
- School of Natural Resources and Environment, University of Arizona, Tucson, Arizona, USA
| | - Benjamin T Wilder
- Next Generation Sonoran Desert Researchers (N-Gen), Tucson, Arizona, USA
| |
Collapse
|
13
|
Gascoigne SJL, Kajin M, Salguero-Gómez R. Criteria for buffering in ecological modeling. Trends Ecol Evol 2024; 39:116-118. [PMID: 38042645 DOI: 10.1016/j.tree.2023.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 12/04/2023]
Affiliation(s)
| | - Maja Kajin
- Department of Biology, South Parks Road, University of Oxford, Oxford, UK; Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Roberto Salguero-Gómez
- Department of Biology, South Parks Road, University of Oxford, Oxford, UK; National Laboratory for Grassland and Agro-ecosystems, Lanzhou University, Lanzhou, China
| |
Collapse
|
14
|
Christiansen DM, Römer G, Dahlgren JP, Borg M, Jones OR, Merinero S, Hylander K, Ehrlén J. High-resolution data are necessary to understand the effects of climate on plant population dynamics of a forest herb. Ecology 2024; 105:e4191. [PMID: 37878669 DOI: 10.1002/ecy.4191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/04/2023] [Accepted: 09/19/2023] [Indexed: 10/27/2023]
Abstract
Climate is assumed to strongly influence species distribution and abundance. Although the performance of many organisms is influenced by the climate in their immediate proximity, the climate data used to model their distributions often have a coarse spatial resolution. This is problematic because the local climate experienced by individuals might deviate substantially from the regional average. This problem is likely to be particularly important for sessile organisms like plants and in environments where small-scale variation in climate is large. To quantify the effect of local temperature on vital rates and population growth rates, we used temperature values measured at the local scale (in situ logger measures) and integral projection models with demographic data from 37 populations of the forest herb Lathyrus vernus across a wide latitudinal gradient in Sweden. To assess how the spatial resolution of temperature data influences assessments of climate effects, we compared effects from models using local data with models using regionally aggregated temperature data at several spatial resolutions (≥1 km). Using local temperature data, we found that spring frost reduced the asymptotic population growth rate in the first of two annual transitions and influenced survival in both transitions. Only one of the four regional estimates showed a similar negative effect of spring frost on population growth rate. Our results for a perennial forest herb show that analyses using regionally aggregated data often fail to identify the effects of climate on population dynamics. This emphasizes the importance of using organism-relevant estimates of climate when examining effects on individual performance and population dynamics, as well as when modeling species distributions. For sessile organisms that experience the environment over small spatial scales, this will require climate data at high spatial resolutions.
Collapse
Affiliation(s)
- Ditte M Christiansen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| | - Gesa Römer
- Interdisciplinary Centre on Population Dynamics (CPop), University of Southern Denmark, Odense M, Denmark
- Department of Biology, University of Southern Denmark, Odense M, Denmark
| | - Johan P Dahlgren
- Interdisciplinary Centre on Population Dynamics (CPop), University of Southern Denmark, Odense M, Denmark
- Department of Biology, University of Southern Denmark, Odense M, Denmark
| | - Malin Borg
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Owen R Jones
- Interdisciplinary Centre on Population Dynamics (CPop), University of Southern Denmark, Odense M, Denmark
- Department of Biology, University of Southern Denmark, Odense M, Denmark
| | - Sonia Merinero
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| | - Kristoffer Hylander
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| | - Johan Ehrlén
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| |
Collapse
|
15
|
Matsuura H. Biodemography as human-centered climate change research. BIODEMOGRAPHY AND SOCIAL BIOLOGY 2023; 68:113-114. [PMID: 37995327 DOI: 10.1080/19485565.2023.2287341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
|
16
|
Cant J, Reimer JD, Sommer B, Cook KM, Kim SW, Sims CA, Mezaki T, O'Flaherty C, Brooks M, Malcolm HA, Pandolfi JM, Salguero‐Gómez R, Beger M. Coral assemblages at higher latitudes favor short-term potential over long-term performance. Ecology 2023; 104:e4138. [PMID: 37458125 PMCID: PMC10909567 DOI: 10.1002/ecy.4138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 06/02/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
The persistent exposure of coral assemblages to more variable abiotic regimes is assumed to augment their resilience to future climatic variability. Yet, while the determinants of coral population resilience across species remain unknown, we are unable to predict the winners and losers across reef ecosystems exposed to increasingly variable conditions. Using annual surveys of 3171 coral individuals across Australia and Japan (2016-2019), we explore spatial variation across the short- and long-term dynamics of competitive, stress-tolerant, and weedy assemblages to evaluate how abiotic variability mediates the structural composition of coral assemblages. We illustrate how, by promoting short-term potential over long-term performance, coral assemblages can reduce their vulnerability to stochastic environments. However, compared to stress-tolerant, and weedy assemblages, competitive coral taxa display a reduced capacity for elevating their short-term potential. Accordingly, future climatic shifts threaten the structural complexity of coral assemblages in variable environments, emulating the degradation expected across global tropical reefs.
Collapse
Affiliation(s)
- James Cant
- Centre for Biological DiversityUniversity of St AndrewsSt AndrewsUK
- School of Biology, Faculty of Biological SciencesUniversity of LeedsLeedsUK
| | - James D. Reimer
- Molecular Invertebrate Systematics and Ecology LaboratoryGraduate School of Engineering and Science, University of the RyukyusNishiharaJapan
- Tropical Biosphere Research CentreUniversity of the RyukyusNishiharaJapan
| | - Brigitte Sommer
- School of Life and Environmental ScienceThe University of SydneyCamperdownNew South WalesAustralia
- School of Life SciencesUniversity of Technology SydneyUltimoNew South WalesAustralia
| | - Katie M. Cook
- School of Biology, Faculty of Biological SciencesUniversity of LeedsLeedsUK
- National Institute of Water and Atmospheric ResearchHamiltonNew Zealand
| | - Sun W. Kim
- Australian Research Council Centre of Excellence for Coral Reef Studies, School of Biological SciencesThe University of QueenslandBrisbaneQueenslandAustralia
| | - Carrie A. Sims
- Smithsonian Tropical Research InstitutePanama CityRepublic of Panama
| | - Takuma Mezaki
- Kuroshio Biological Research Foundation, Nishidomari, Otsuki‐choKochiJapan
| | | | - Maxime Brooks
- School of Biology, Faculty of Biological SciencesUniversity of LeedsLeedsUK
| | - Hamish A. Malcolm
- Fisheries Research, Department of Primary IndustriesCoffs HarbourNew South WalesAustralia
| | - John M. Pandolfi
- Australian Research Council Centre of Excellence for Coral Reef Studies, School of Biological SciencesThe University of QueenslandBrisbaneQueenslandAustralia
| | - Roberto Salguero‐Gómez
- Department of ZoologyUniversity of OxfordOxfordUK
- Centre for Biodiversity and Conservation Science, School of Biological SciencesUniversity of QueenslandBrisbaneQueenslandAustralia
- Max Planck Institute for Demographic ResearchRostockGermany
| | - Maria Beger
- School of Biology, Faculty of Biological SciencesUniversity of LeedsLeedsUK
- Centre for Biodiversity and Conservation Science, School of Biological SciencesUniversity of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
17
|
Kiebacher T, Meier M, Kipfer T, Roth T. Thermophilisation of communities differs between land plant lineages, land use types and elevation. Sci Rep 2023; 13:11395. [PMID: 37452104 PMCID: PMC10349125 DOI: 10.1038/s41598-023-38195-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
Bryophytes provide key ecosystem services at the global scale such as carbon storage and primary production in resource limited habitats, but compared to vascular plants knowledge on how these organisms face recent climate warming is fragmentary. This is particularly critical because bryophytes differ fundamentally from vascular plants in their ecophysiological and biological characteristics, so that community alterations most likely have different dynamics. In a comparative approach, we analysed thermophilisation of bryophyte and vascular plant communities in 1146 permanent plots distributed along an elevational gradient of nearly 3.000 m in Switzerland (Central Europe) that were visited in 5-years intervals between 2001 and 2021. We estimated thermophilisation from changes in unweighted mean temperature indicator values of species, compared it to expected thermophilisation rates given the shift of isotherms and addressed differences between the two lineages, major land use types (managed grasslands, forests, unmanaged open areas), life strategy types (long- and short-lived species) and in elevation. Thermophilisation of bryophyte communities was on average 2.1 times higher than of vascular plant communities and at high elevations it approximated the expected rate given the shift of isotherms. Thermophilisation of both, bryophyte and vascular plant communities was not driven by a loss of cryophilic species but by an increase in thermophilic and mesophilic species, indicating an in-filling process. Furthermore, our data show that thermophilisation is higher in managed grasslands than in forests. We suggest that the higher responsiveness of bryophytes compared to vascular plants depends on their poikilohydry and dispersal capacity and that lower thermophilisation of forests communities is related to the buffering effect of microclimatic conditions in the interior of forests. Our study emphasises the heterogeneity of climate warming effects on plants because response dynamics differ between taxonomic groups as well as between land use types and along elevational gradients.
Collapse
Affiliation(s)
- Thomas Kiebacher
- Department of Botany, Stuttgart State Museum of Natural History, Rosenstein 1, 70191, Stuttgart, Germany.
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland.
| | - Markus Meier
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Tabea Kipfer
- Hintermann & Weber AG, Austrasse 2a, 4153, Reinach, Switzerland
| | - Tobias Roth
- Hintermann & Weber AG, Austrasse 2a, 4153, Reinach, Switzerland
- Zoological Institute, University of Basel, Basel, Switzerland
| |
Collapse
|
18
|
Enns GE, Jex B, Boyce MS. Diverse migration patterns and seasonal habitat use of Stone's sheep ( Ovis dalli stonei). PeerJ 2023; 11:e15215. [PMID: 37342360 PMCID: PMC10278595 DOI: 10.7717/peerj.15215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 03/20/2023] [Indexed: 06/22/2023] Open
Abstract
We describe temporal and spatial patterns of seasonal space-use and migration by 16 GPS-collared Stone's sheep (Ovis dalli stonei) from nine bands in the Cassiar Mountains of northern British Columbia, Canada. Our objectives were to identify the timing of spring and fall migrations, characterize summer and winter ranges, map and describe migration routes and use of stopover sites, and document altitudinal change across seasons. Our last objective was to assess individual migration strategies based on patterns of geographic migration, altitudinal migration, or residency. Median start and end dates of the spring migration were 12 and 17 Jun (range: 20 May to 05 Aug), and of the fall migration were 30 Aug and 22 Sep (range: 21 Aug to 07 Jan). The median area of winter and summer ranges for geographic migrants were 630.8 ha and 2,829.0 ha, respectively, with a broad range from about 233.6 to 10,196.2 ha. Individuals showed high fidelity to winter ranges over the limited duration of the study. The winter and summer ranges of most individuals (n = 15) were at moderate to high elevations with a median summer elevation of 1,709 m (1,563-1,827 m) and 1,673 m (1,478-1,751 m) that varied <150 m between ranges. Almost all collared females (n = 14) exhibited changes in elevation use that coincide with abbreviated altitudinal migration. Specifically, these females descended to lower spring elevations from their winter range (Δ > 150 m), and then gradually moved up to higher-elevation summer ranges (Δ > 150 m). In the fall, they descended to lower elevations (Δ > 100 m) before returning to their higher winter ranges. The median distance travelled along geographic migration routes was 16.3 km (range: 7.6-47.4 km). During the spring migration, most geographic migrants (n = 8) used at least one stopover site (median = 1.5, range: 0-4), while almost all migrants (n = 11) used stopover sites more frequently in the fall (median = 2.5, range: 0-6). Of the 13 migratory individuals that had at least one other collared individual in their band, most migrated at about the same time, occupied the same summer and winter ranges, used similar migration routes and stopover sites, and exhibited the same migration strategy. We found collared females exhibited four different migration strategies which mostly varied across bands. Migration strategies included long-distance geographic migrants (n = 5), short-distance geographic migrants (n = 5), vacillating migrants (n = 2), and abbreviated altitudinal migrants (n = 4). Different migratory strategies occurred within one band where one collared individual migrated and two did not. We conclude that female Stone's sheep in the Cassiar Mountains displayed a diverse assemblage of seasonal habitat use and migratory behaviors. By delineating seasonal ranges, migration routes and stopover sites, we identify potential areas of priority that can help inform land-use planning and preserve the native migrations of Stone's sheep in the region.
Collapse
Affiliation(s)
- Grace E. Enns
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- WSP Canada, Calgary, Alberta, Canada
| | - Bill Jex
- Fish & Wildlife Branch, British Columbia Ministry of Forests, Smithers, British Columbia, Canada
| | - Mark S. Boyce
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
19
|
Bernard C, Santos GS, Deere JA, Rodriguez-Caro R, Capdevila P, Kusch E, Gascoigne SJL, Jackson J, Salguero-Gómez R. MOSAIC - A Unified Trait Database to Complement Structured Population Models. Sci Data 2023; 10:335. [PMID: 37264011 PMCID: PMC10235418 DOI: 10.1038/s41597-023-02070-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 03/14/2023] [Indexed: 06/03/2023] Open
Abstract
Despite exponential growth in ecological data availability, broader interoperability amongst datasets is needed to unlock the potential of open access. Our understanding of the interface of demography and functional traits is well-positioned to benefit from such interoperability. Here, we introduce MOSAIC, an open-access trait database that unlocks the demographic potential stored in the COMADRE, COMPADRE, and PADRINO open-access databases. MOSAIC data were digitised and curated through a combination of existing datasets and new trait records sourced from primary literature. In its first release, MOSAIC (v. 1.0.0) includes 14 trait fields for 300 animal and plant species: biomass, height, growth determination, regeneration, sexual dimorphism, mating system, hermaphrodism, sequential hermaphrodism, dispersal capacity, type of dispersal, mode of dispersal, dispersal classes, volancy, and aquatic habitat dependency. MOSAIC includes species-level phylogenies for 1,359 species and population-specific climate data. We identify how database integration can improve our understanding of traits well-quantified in existing repositories and those that are poorly quantified (e.g., growth determination, modularity). MOSAIC highlights emerging challenges associated with standardising databases and demographic measures.
Collapse
Affiliation(s)
- Connor Bernard
- Department of Biology, University of Oxford, 11a Mansfield Rd, OX13SZ, Oxford, United Kingdom.
| | - Gabriel Silva Santos
- Department of Biology, University of Oxford, 11a Mansfield Rd, OX13SZ, Oxford, United Kingdom
- Department of Ecology, Rio de Janeiro State University, 20550-900, Rio de Janeiro, Brazil
- National Institute of the Atlantic Forest (INMA), 29650-000, Santa Teresa, Espírito Santo, Brazil
| | - Jacques A Deere
- Department of Biology, University of Oxford, 11a Mansfield Rd, OX13SZ, Oxford, United Kingdom
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1012 WX, Amsterdam, Netherlands
| | - Roberto Rodriguez-Caro
- Department of Biology, University of Oxford, 11a Mansfield Rd, OX13SZ, Oxford, United Kingdom
- Departamento de Biología Aplicada, Universidad Miguel Hernández. Av. Universidad, s/n, 03202, Elche (Alicante), Spain
| | - Pol Capdevila
- Department of Biology, University of Oxford, 11a Mansfield Rd, OX13SZ, Oxford, United Kingdom
- School of Biological Sciences, University of Bristol, 24 Tyndall Ave, Bristol, BS8 1TQ, United Kingdom
| | - Erik Kusch
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Arhus University, Aarhus, Denmark
- Section for Ecoinformatics & Biodiversity, Department of Biology, Arhus University, Aarhus, Denmark
| | - Samuel J L Gascoigne
- Department of Biology, University of Oxford, 11a Mansfield Rd, OX13SZ, Oxford, United Kingdom
| | - John Jackson
- Department of Biology, University of Oxford, 11a Mansfield Rd, OX13SZ, Oxford, United Kingdom
| | - Roberto Salguero-Gómez
- Department of Biology, University of Oxford, 11a Mansfield Rd, OX13SZ, Oxford, United Kingdom
- Centre for Biodiversity and Conservation Science, University of Queensland, St. Lucia, QLD, Australia
- Evolutionary Demography Laboratory, Max Plank Institute for Demographic Research, Rostock, Germany
| |
Collapse
|
20
|
Ozgul A, Fichtel C, Paniw M, Kappeler PM. Destabilizing effect of climate change on the persistence of a short-lived primate. Proc Natl Acad Sci U S A 2023; 120:e2214244120. [PMID: 36972440 PMCID: PMC10083614 DOI: 10.1073/pnas.2214244120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/15/2023] [Indexed: 03/29/2023] Open
Abstract
Seasonal tropical environments are among those regions that are the most affected by shifts in temperature and rainfall regimes under climate change, with potentially severe consequences for wildlife population persistence. This persistence is ultimately determined by complex demographic responses to multiple climatic drivers, yet these complexities have been little explored in tropical mammals. We use long-term, individual-based demographic data (1994 to 2020) from a short-lived primate in western Madagascar, the gray mouse lemur (Microcebus murinus), to investigate the demographic drivers of population persistence under observed shifts in seasonal temperature and rainfall. While rainfall during the wet season has been declining over the years, dry season temperatures have been increasing, with these trends projected to continue. These environmental changes resulted in lower survival and higher recruitment rates over time for gray mouse lemurs. Although the contrasting changes have prevented the study population from collapsing, the resulting increase in life-history speed has destabilized an otherwise stable population. Population projections under more recent rainfall and temperature levels predict an increase in population fluctuations and a corresponding increase in the extinction risk over the next five decades. Our analyses show that a relatively short-lived mammal with high reproductive output, representing a life history that is expected to closely track changes in its environment, can nonetheless be threatened by climate change.
Collapse
Affiliation(s)
- Arpat Ozgul
- Department of Evolutionary Biology and Environmental Studies, University of Zurich,8057Zurich, Switzerland
| | - Claudia Fichtel
- Behavioural Ecology and Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research,37077Göttingen, Germany
| | - Maria Paniw
- Department of Evolutionary Biology and Environmental Studies, University of Zurich,8057Zurich, Switzerland
- Department of Conservation Biology, Estación Biológica de Doñana (EBD-CSIC), Seville41001, Spain
| | - Peter M. Kappeler
- Behavioural Ecology and Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research,37077Göttingen, Germany
- Department of Sociobiology/Anthropology, Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, University of Göttingen,37077Göttingen, Germany
| |
Collapse
|
21
|
Conquet E, Ozgul A, Blumstein DT, Armitage KB, Oli MK, Martin JGA, Clutton-Brock TH, Paniw M. Demographic consequences of changes in environmental periodicity. Ecology 2023; 104:e3894. [PMID: 36208282 DOI: 10.1002/ecy.3894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 01/24/2023]
Abstract
The fate of natural populations is mediated by complex interactions among vital rates, which can vary within and among years. Although the effects of random, among-year variation in vital rates have been studied extensively, relatively little is known about how periodic, nonrandom variation in vital rates affects populations. This knowledge gap is potentially alarming as global environmental change is projected to alter common periodic variations, such as seasonality. We investigated the effects of changes in vital-rate periodicity on populations of three species representing different forms of adaptation to periodic environments: the yellow-bellied marmot (Marmota flaviventer), adapted to strong seasonality in snowfall; the meerkat (Suricata suricatta), adapted to inter-annual stochasticity as well as seasonal patterns in rainfall; and the dewy pine (Drosophyllum lusitanicum), adapted to fire regimes and periodic post-fire habitat succession. To assess how changes in periodicity affect population growth, we parameterized periodic matrix population models and projected population dynamics under different scenarios of perturbations in the strength of vital-rate periodicity. We assessed the effects of such perturbations on various metrics describing population dynamics, including the stochastic growth rate, log λS . Overall, perturbing the strength of periodicity had strong effects on population dynamics in all three study species. For the marmots, log λS decreased with increased seasonal differences in adult survival. For the meerkats, density dependence buffered the effects of perturbations of periodicity on log λS . Finally, dewy pines were negatively affected by changes in natural post-fire succession under stochastic or periodic fire regimes with fires occurring every 30 years, but were buffered by density dependence from such changes under presumed more frequent fires or large-scale disturbances. We show that changes in the strength of vital-rate periodicity can have diverse but strong effects on population dynamics across different life histories. Populations buffered from inter-annual vital-rate variation can be affected substantially by changes in environmentally driven vital-rate periodic patterns; however, the effects of such changes can be masked in analyses focusing on inter-annual variation. As most ecosystems are affected by periodic variations in the environment such as seasonality, assessing their contributions to population viability for future global-change research is crucial.
Collapse
Affiliation(s)
- Eva Conquet
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Arpat Ozgul
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Daniel T Blumstein
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, USA.,The Rocky Mountain Biological Laboratory, Crested Butte, Colorado, USA
| | - Kenneth B Armitage
- Department of Ecology and Evolutionary Biology, The University of Kansas, Lawrence, Kansas, USA
| | - Madan K Oli
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, USA
| | - Julien G A Martin
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada.,School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Tim H Clutton-Brock
- Department of Zoology, University of Cambridge, Cambridge, UK.,Kalahari Research Trust, Kuruman River Reserve, Northern Cape, South Africa.,Mammal Research Institute, University of Pretoria, Pretoria, South Africa
| | - Maria Paniw
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,Department of Conservation and Global Change, Doñana Biological Station (EBD-CSIC), Seville, Spain
| |
Collapse
|
22
|
Vitt P, Finch J, Barak RS, Braum A, Frischie S, Redlinski I. Seed sourcing strategies for ecological restoration under climate change: A review of the current literature. FRONTIERS IN CONSERVATION SCIENCE 2022. [DOI: 10.3389/fcosc.2022.938110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Climate change continues to alter the seasonal timing and extremes of global temperature and precipitation patterns. These departures from historic conditions along with the predicted variability of future climates present a challenge to seed sourcing, or provenance strategy decisions, within the practice of ecological restoration. The “local is best” for seed sourcing paradigm is predicated upon the assumption that ecotypes are genetically adapted to their local environment. However, local adaptations are potentially being outpaced by climate change, and the ability of plant populations to naturally migrate or shift their distribution accordingly may be limited by habitat fragmentation. Restoration practitioners and natural area managers have a general understanding of the importance of matching the inherent adaptations of source populations with the current and/or future site conditions where those seeds or propagules are planted. However, for many species used in seed-based restoration, there is a lack of empirical evidence to guide seed sourcing decisions, which are critical for the longevity and ecological function of restored natural communities. With the goal of characterizing, synthesizing, and applying experimental research to guide restoration practice, we conducted a systematic review of the literature on provenance testing of taxa undertaken to inform seed sourcing strategies for climate resiliency. We found a strong bias in the choice of study organism: most studies have been conducted on tree species. We also found a strong bias regarding where this research has been conducted, with North America (52%) and Europe (31%) overrepresented. Experiments were designed to assess how propagule origin influences performance across both climatic (26%) and geographic (15%) distance, with some studies focused on determining how climate normal conditions (39%) impacted performance related to survivorship, growth and other parameters. We describe the patterns and gaps our review identified, highlight specific topics which require further research, and provide practical suggestions of immediate and longer-term tools that restoration practitioners can use to guide and build resilient natural communities under future climate scenarios.
Collapse
|
23
|
Ratcliffe H, Ahlering M, Carlson D, Vacek S, Allstadt A, Dee LE. Invasive species do not exploit early growing seasons in burned tallgrass prairies. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2641. [PMID: 35441427 DOI: 10.1002/eap.2641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 12/02/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Invasive species management is key to conserving critically threatened native prairie ecosystems. While prescribed burning is widely demonstrated to increase native diversity and suppress invasive species, elucidating the conditions under which burning is most effective remains an ongoing focus of applied prairie ecology research. Understanding how conservation management interacts with climate is increasingly pressing, because climate change is altering weather conditions and seasonal timing around the world. Increasingly early growing seasons due to climate change are shifting the timing and availability of resources and niche space, which may disproportionately advantage invasive species and influence the outcome of burning. We estimated the effects of burning, start time of the growing season, and their interaction on invasive species relative cover and frequency, two metrics for species abundance and dominance. We used 25 observed prairie sites and 853 observations of 267 transects spread throughout Minnesota, USA from 2010 to 2019 to conduct our analysis. Here, we show that burning reduced the abundance of invasive cool-season grasses, leading to reduced abundance of invasive species as a whole. This reduction persisted over time for invasive cover but quickly waned for their frequency of occurrence. Additionally, and contrary to expectations that early growing season starts benefit invasive species, we found evidence that later growing season starts increased the abundance of some invasive species. However, the effects of burning on plant communities were largely unaltered by the timing of the growing season, although earlier growing season starts weakened the effectiveness of burning on Kentucky bluegrass (Poa pratensis) and smooth brome (Bromus inermis), two of the most dominant invasive species in the region. Our results suggest that prescribed burning will likely continue to be a useful conservation tool in the context of earlier growing season starts, and that changes to growing season timing will not be a primary mechanism driving increased invasion due to climate change in these ecosystems. We propose that future research seek to better understand abiotic controls on invasive species phenology in managed systems and how burning intensity and timing interact with spring conditions.
Collapse
Affiliation(s)
- Hugh Ratcliffe
- Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, St. Paul, Minnesota, USA
| | | | - Daren Carlson
- Minnesota Department of Natural Resources, St. Paul, Minnesota, USA
| | - Sara Vacek
- US Fish and Wildlife Service, Morris, Minnesota, USA
| | | | - Laura E Dee
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
| |
Collapse
|
24
|
Le Coeur C, Yoccoz NG, Salguero-Gómez R, Vindenes Y. Life history adaptations to fluctuating environments: Combined effects of demographic buffering and lability. Ecol Lett 2022; 25:2107-2119. [PMID: 35986627 DOI: 10.1111/ele.14071] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/03/2022] [Accepted: 06/14/2022] [Indexed: 01/07/2023]
Abstract
Demographic buffering and lability have been identified as adaptive strategies to optimise fitness in a fluctuating environment. These are not mutually exclusive, however, we lack efficient methods to measure their relative importance for a given life history. Here, we decompose the stochastic growth rate (fitness) into components arising from nonlinear responses and variance-covariance of demographic parameters to an environmental driver, which allows studying joint effects of buffering and lability. We apply this decomposition for 154 animal matrix population models under different scenarios to explore how these main fitness components vary across life histories. Faster-living species appear more responsive to environmental fluctuations, either positively or negatively. They have the highest potential for strong adaptive demographic lability, while demographic buffering is a main strategy in slow-living species. Our decomposition provides a comprehensive framework to study how organisms adapt to variability through buffering and lability, and to predict species responses to climate change.
Collapse
Affiliation(s)
- Christie Le Coeur
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Nigel G Yoccoz
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | | | - Yngvild Vindenes
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
25
|
Shao J, Li G, Li Y, Zhou X. Intraspecific responses of plant productivity and crop yield to experimental warming: A global synthesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156685. [PMID: 35714738 DOI: 10.1016/j.scitotenv.2022.156685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/29/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Maintaining plant productivity and crop yield in a warming world requires local adaptation to new environment and selection of high-yield cultivars, which both depend on the genetically-based intraspecific differences in the plant response to warming (referred to as "genetically-based intraspecific responses"). However, how the genetically-based intraspecific responses mediate warming effects on plants remains unclear, especially at the global scale. Here, a dataset was compiled from 118 common-garden experiments to examine the responses of plant growth, productivity, and crop yield to warming among different ecotypes/genotypes/cultivars. Our results showed that the genetically-based intraspecific responses on average accounted for 34.7 % of the total variance in the warming responses across all the studies but with large variability (2 %-77 %). The intraspecific responses of plant productivity and crop yield were larger than those of organ level traits and biomass allocation, suggesting that plant growth was mainly achieved by iterating the relatively invariant terminal modules (e.g., leaves). The warming-induced changes in intraspecific variability of aboveground biomass were larger in woody plants, non-leguminous herbs, perennial herbs and noncrops than those in nonwoody, leguminous, annual and crop ones, respectively, indicating the potential important role of plant longevity in mediating the change in intraspecific variability. Moreover, larger intraspecific responses reduced the consistence of relative performance between control and warming treatments for both plant productivity and crop yield. These results highlight the unneglectable role of genetically-based intraspecific differences in plant responses to warming, indicating the difficulty of maintaining high crop yield and tree productivity under global climate change, and posing a grave threat to the food security and wood supply in the near future.
Collapse
Affiliation(s)
- Junjiong Shao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Gaobo Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Yan Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Xuhui Zhou
- Northeast Asia ecosystem Carbon sink research Center (NACC), Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China; Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
26
|
Larios L, Hallett LM. Incorporating temporal dynamics to enhance grazing management outcomes for a long‐lived species. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Loralee Larios
- Department of Botany and Plant Sciences University of California Riverside CA USA
| | - Lauren M. Hallett
- Department of Biology and Environmental Studies Program University of Oregon Eugene OR USA
| |
Collapse
|
27
|
McCloy MWD, Andringa RK, Grace JK. Resilience of Avian Communities to Urbanization and Climate Change: an Integrative Review. FRONTIERS IN CONSERVATION SCIENCE 2022. [DOI: 10.3389/fcosc.2022.918873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The concept of ecological resilience is widely used to assess how species and ecosystems respond to external stressors but is applied infrequently at the level of the community or to chronic, ongoing disturbances. In this review, we first discuss the concept of ecological resilience and methods for quantifying resilience in ecological studies. We then synthesize existing evidence for the resilience of avian communities to climate change and urbanization, two chronic disturbances that are driving global biodiversity loss, and conclude with recommendations for future directions. We only briefly discuss the theoretical framework behind ecological resilience and species-specific responses to these two major disturbances, because numerous reviews already exist on these topics. Current research suggests strong heterogeneity in the responses and resilience of bird communities to urbanization and climate change, although community disassembly and reassembly is high following both disturbances. To advance our understanding of community resilience to these disturbances, we recommend five areas of future study (1) the development of a standardized, comprehensive community resilience index that incorporates both adaptive capacity and measures of functional diversity, (2) measurement/modeling of both community resistance and recovery in response to disturbance, (3) multi-scale and/or multi-taxa studies that include three-way interactions between plants, animals, and climate, (4) studies that incorporate interactions between disturbances, and (5) increased understanding of interactions between ecological resilience and socio-ecological dynamics. Advancement in these areas will enhance our ability to predict and respond to the rapidly accelerating effects of climate change and urbanization.
Collapse
|
28
|
Jackson J, Le Coeur C, Jones O. Life-history predicts global population responses to the weather in terrestrial mammals. eLife 2022; 11:74161. [PMID: 35775734 PMCID: PMC9307275 DOI: 10.7554/elife.74161] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 06/30/2022] [Indexed: 11/26/2022] Open
Abstract
With the looming threat of abrupt ecological disruption due to a changing climate, predicting which species are most vulnerable to environmental change is critical. The life-history of a species is an evolved response to its environmental context, and therefore a promising candidate for explaining differences in climate-change responses. However, we need broad empirical assessments from across the world's ecosystems to explore the link between life history and climate-change responses. Here, we use long-term abundance records from 157 species of terrestrial mammals and a two-step Bayesian meta-regression framework to investigate the link between annual weather anomalies, population growth rates, and species-level life history. Overall, we found no directional effect of temperature or precipitation anomalies or variance on annual population growth rates. Furthermore, population responses to weather anomalies were not predicted by phylogenetic covariance, and instead there was more variability in weather responses for populations within a species. Crucially, however, long-lived mammals with smaller litter sizes had smaller absolute population responses to weather anomalies compared with their shorter living counterparts with larger litters. These results highlight the role of species-level life history in driving responses to the environment.
Collapse
Affiliation(s)
- John Jackson
- 2.Department of Zoology, University of Oxford, Oxford, United Kingdom
| | | | - Owen Jones
- Department of Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
29
|
Capdevila P, Stott I, Cant J, Beger M, Rowlands G, Grace M, Salguero‐Gómez R. Life history mediates the trade-offs among different components of demographic resilience. Ecol Lett 2022; 25:1566-1579. [PMID: 35334148 PMCID: PMC9314072 DOI: 10.1111/ele.14004] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 02/22/2022] [Accepted: 03/08/2022] [Indexed: 02/04/2023]
Abstract
Accelerating rates of biodiversity loss underscore the need to understand how species achieve resilience-the ability to resist and recover from a/biotic disturbances. Yet, the factors determining the resilience of species remain poorly understood, due to disagreements on its definition and the lack of large-scale analyses. Here, we investigate how the life history of 910 natural populations of animals and plants predicts their intrinsic ability to be resilient. We show that demographic resilience can be achieved through different combinations of compensation, resistance and recovery after a disturbance. We demonstrate that these resilience components are highly correlated with life history traits related to the species' pace of life and reproductive strategy. Species with longer generation times require longer recovery times post-disturbance, whilst those with greater reproductive capacity have greater resistance and compensation. Our findings highlight the key role of life history traits to understand species resilience, improving our ability to predict how natural populations cope with disturbance regimes.
Collapse
Affiliation(s)
- Pol Capdevila
- Zoology DepartmentOxford UniversityOxfordUK
- School of Biological SciencesUniversity of BristolBristolUK
| | - Iain Stott
- School of Life and Environmental SciencesUniversity of LincolnLincolnUK
| | - James Cant
- School of BiologyFaculty of Biological SciencesUniversity of LeedsLeedsUK
| | - Maria Beger
- School of BiologyFaculty of Biological SciencesUniversity of LeedsLeedsUK
- Centre for Biodiversity and Conservation ScienceSchool of Biological SciencesUniversity of QueenslandBrisbaneAustralia
| | | | | | - Roberto Salguero‐Gómez
- Zoology DepartmentOxford UniversityOxfordUK
- Centre for Biodiversity and Conservation ScienceSchool of Biological SciencesUniversity of QueenslandBrisbaneAustralia
- Max Planck Institute for Demographic ResearchRostockGermany
| |
Collapse
|
30
|
Perennials have evolved a greater resistance to exogenous H2O2 than annuals, consistent with the oxidative stress theory of aging. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01055-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Jenouvrier S, Long MC, Coste CFD, Holland M, Gamelon M, Yoccoz NG, Sæther B. Detecting climate signals in populations across life histories. GLOBAL CHANGE BIOLOGY 2022; 28:2236-2258. [PMID: 34931401 PMCID: PMC9303565 DOI: 10.1111/gcb.16041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Climate impacts are not always easily discerned in wild populations as detecting climate change signals in populations is challenged by stochastic noise associated with natural climate variability, variability in biotic and abiotic processes, and observation error in demographic rates. Detection of the impact of climate change on populations requires making a formal distinction between signals in the population associated with long-term climate trends from those generated by stochastic noise. The time of emergence (ToE) identifies when the signal of anthropogenic climate change can be quantitatively distinguished from natural climate variability. This concept has been applied extensively in the climate sciences, but has not been explored in the context of population dynamics. Here, we outline an approach to detecting climate-driven signals in populations based on an assessment of when climate change drives population dynamics beyond the envelope characteristic of stochastic variations in an unperturbed state. Specifically, we present a theoretical assessment of the time of emergence of climate-driven signals in population dynamics ( ToE pop ). We identify the dependence of ToE pop on the magnitude of both trends and variability in climate and also explore the effect of intrinsic demographic controls on ToE pop . We demonstrate that different life histories (fast species vs. slow species), demographic processes (survival, reproduction), and the relationships between climate and demographic rates yield population dynamics that filter climate trends and variability differently. We illustrate empirically how to detect the point in time when anthropogenic signals in populations emerge from stochastic noise for a species threatened by climate change: the emperor penguin. Finally, we propose six testable hypotheses and a road map for future research.
Collapse
Affiliation(s)
- Stéphanie Jenouvrier
- Biology DepartmentWoods Hole Oceanographic InstitutionWoods HoleMassachusettsUSA
| | | | - Christophe F. D. Coste
- Centre for Biodiversity DynamicsDepartment of BiologyNorwegian University of Science and TechnologyTrondheimNorway
| | - Marika Holland
- National Center for Atmospheric ResearchBoulderColoradoUSA
| | - Marlène Gamelon
- Centre for Biodiversity DynamicsDepartment of BiologyNorwegian University of Science and TechnologyTrondheimNorway
- Laboratoire de Biométrie et Biologie ÉvolutiveCNRSUnité Mixte de Recherche (UMR) 5558Université Lyon 1Université de LyonVilleurbanneFrance
| | - Nigel G. Yoccoz
- Department of Arctic and Marine BiologyUiT The Arctic University of NorwayTromsøNorway
| | - Bernt‐Erik Sæther
- Centre for Biodiversity DynamicsDepartment of BiologyNorwegian University of Science and TechnologyTrondheimNorway
| |
Collapse
|
32
|
Demographic and life history traits explain patterns in species vulnerability to extinction. PLoS One 2022; 17:e0263504. [PMID: 35196342 PMCID: PMC8865652 DOI: 10.1371/journal.pone.0263504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 01/20/2022] [Indexed: 11/19/2022] Open
Abstract
As ecosystems face disruption of community dynamics and habitat loss, the idea of determining ahead of time which species can become extinct is an important subject in conservation biology. A species’ vulnerability to extinction is dependent upon both intrinsic (life-history strategies, genetics) and extrinsic factors (environment, anthropogenic threats). Studies linking intrinsic traits to extinction risk have shown variable results, and to our knowledge, there has not been a systematic analysis looking at how demographic patterns in stage-specific survival and reproductive rates correlate to extinction risk. We used matrix projection models from the COMPADRE and COMADRE matrix databases and IUCN Red List status as our proxy of extinction risk to investigate if some demographic patterns are more vulnerable to extinction than others. We obtained data on demographic rates, phylogeny, and IUCN status for 159 species of herbaceous plants, trees, mammals, and birds. We calculated 14 demographic metrics related to different aspects of life history and elasticity values and analyzed whether they differ based on IUCN categories using conditional random forest analysis and phylogenetic generalized least square regressions. We mapped all species within the database, both with IUCN assessment and without, and overlaid them with biodiversity hotspots to investigate if there is bias within the assessed species and how many of the non-assessed species could use the demographic information recorded in COMPADRE and COMADRE for future IUCN assessments. We found that herbaceous perennials are more vulnerable when they mature early and have high juvenile survival rates; birds are more vulnerable with high progressive growth and reproduction; mammals are more vulnerable when they have longer generation times. These patterns may be used to assess relative vulnerability across species when lacking abundance or trend data.
Collapse
|
33
|
High-Resolution Transect Sampling and Multiple Scale Diversity Analyses for Evaluating Grassland Resilience to Climatic Extremes. LAND 2022. [DOI: 10.3390/land11030378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Diversity responses to climatic factors in plant communities are well understood from experiments, but less known in natural conditions due to the rarity of appropriate long-term observational data. In this paper, we use long-term transect data sampled annually in three natural grasslands of different species pools, soils, landscape contexts and land use histories. Analyzing these specific belt transect data of contiguous small sampling units enabled us to explore scale dependence and spatial synchrony of diversity patterns within and among sites. The 14-year study period covered several droughts, including one extreme event between 2011 and 2012. We demonstrated that all natural grasslands responded to droughts by considerable fluctuations of diversity, but, overall, they remained stable. The plant functional group of annuals showed high resilience at all sites, while perennials were resistant to droughts. Our results were robust to changing spatial scales of observations, and we also demonstrated that within-site spatial synchrony could be used as a sensitive indicator of external climatic effects. We propose the broad application of high-resolution belt transects for powerful and adaptive vegetation monitoring in the future.
Collapse
|
34
|
Schmid M, Paniw M, Postuma M, Ozgul A, Guillaume F. A tradeoff between robustness to environmental fluctuations and speed of evolution. Am Nat 2022; 200:E16-E35. [DOI: 10.1086/719654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
35
|
Scharf I, Segal D, Bar A, Gottlieb D. Negative effects of fluctuating temperatures around the optimal temperature on reproduction and survival of the red flour beetle. J Therm Biol 2022; 103:103165. [PMID: 35027185 DOI: 10.1016/j.jtherbio.2021.103165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/06/2021] [Accepted: 12/16/2021] [Indexed: 10/19/2022]
Abstract
Whereas the vast majority of animals in nature experience daily or seasonal thermal fluctuations, most laboratory experiments use constant temperatures. We examined the effect of fluctuating temperatures on reproduction and survival under starvation, two important components of fitness. We used the red flour beetle as a model organism, which is a significant pest in grain mills around the world. Fluctuations around the optimal temperature were always negative for the adult survival under starvation. The effect of thermal fluctuations on the number of offspring reaching adulthood was negative as well but increased with the extent of exposure. It was the strongest when the adult parents were kept and the offspring were raised under fluctuating temperatures. However, the later the offspring were exposed to fluctuations during their development, the weaker the effect of fluctuating temperatures was. Moreover, raising the parents under fluctuating temperatures but keeping them after pupation at constant temperatures fully alleviated the negative effects of fluctuations on the offspring. Finally, we demonstrate that keeping the parents a few days under fluctuating temperatures is required to induce negative effects on the number of offspring reaching adulthood. Our study disentangles between the effects of thermal fluctuations experienced during the parental and offspring stage thus contributing to the ongoing research of insects under fluctuating temperatures.
Collapse
Affiliation(s)
- Inon Scharf
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| | - Daniella Segal
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Adi Bar
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Daphna Gottlieb
- Department of Food Science, Institute of Post-Harvest and Food Science, The Volcani Center, ARO, Israel
| |
Collapse
|
36
|
Scott ER, Uriarte M, Bruna EM. Delayed effects of climate on vital rates lead to demographic divergence in Amazonian forest fragments. GLOBAL CHANGE BIOLOGY 2022; 28:463-479. [PMID: 34697872 DOI: 10.1111/gcb.15900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Deforestation often results in landscapes where remaining forest habitat is highly fragmented, with remnants of different sizes embedded in an often highly contrasting matrix. Local extinction of species from individual fragments is common, but the demographic mechanisms underlying these extinctions are poorly understood. It is often hypothesized that altered environmental conditions in fragments drive declines in reproduction, recruitment, or survivorship. The Amazon basin, in addition to experiencing continuing fragmentation, is experiencing climate change-related increases in the frequency and intensity of droughts and unusually wet periods. Whether plant populations in tropical forest fragments are particularly susceptible to extremes in precipitation remains unclear. Most studies of plants in fragments are relatively short (1-6 years), focus on a single life-history stage, and often do not compare to populations in continuous forest. Even fewer studies consider delayed effects of climate on demographic vital rates despite the importance of delayed effects in studies that consider them. Using a decade of demographic and climate data from an experimentally fragmented landscape in the Central Amazon, we assess the effects of climate on populations of an understory herb (Heliconia acuminata, Heliconiaceae). We used distributed lag nonlinear models to understand the delayed effects of climate (measured as standardized precipitation evapotranspiration index, SPEI) on survival, growth, and flowering. We detected delayed effects of climate up to 36 months. Extremes in SPEI in the previous year reduced survival, drought in the wet season 8-11 months prior to the February census increased growth, and drought two dry seasons prior increased flowering probability. Effects of extremes in precipitation on survival and growth were more pronounced in forest fragments compared to continuous forest. The complex delayed effects of climate and habitat fragmentation in our study point to the importance of long-term demography experiments in understanding the effects of anthropogenic change on plant populations.
Collapse
Affiliation(s)
- Eric R Scott
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, USA
| | - María Uriarte
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA
| | - Emilio M Bruna
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, USA
- Center for Latin American Studies, University of Florida, Gainesville, Florida, USA
- Biological Dynamics of Forest Fragments Project, INPA-PDBFF, Manaus, Amazonas, Brazil
| |
Collapse
|
37
|
Chaudhary V, Tietje WD, Polyakov AY, Rolland V, Oli MK. Factors driving California pocket mice ( Chaetodipus californicus) population dynamics. J Mammal 2021. [DOI: 10.1093/jmammal/gyab067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Understanding how demographic parameters respond to climatic variables is essential for predicting species’ response to changing environmental conditions. The California pocket mouse (Chaetodipus californicus) is an inhabitant of coastal-central California oak (Quercus spp.) woodland that is undergoing a rapid anthropogenic transformation while also facing effects of global climate change. We analyzed the population dynamics of the California pocket mouse by applying Pradel’s temporal symmetry model to a 10-year (2004 – 2013) capture–mark–recapture data set to estimate survival and recruitment rates and realized population growth rate. The overall monthly apparent survival probability (ϕ) was 0.76 ± 0.01 SE and was slightly higher in the dry season (0.79 ± 0.02 SE) than the wet season (0.74 ± 0.01 SE). Coefficients of variation (CV) of temperature and rainfall (with and without a one-season lag), average seasonal temperature, and regional climatic variation (El Niño index) positively influenced ϕ. Overall monthly recruitment rate (f) was 0.17 ± 0.01 SE but varied seasonally; f was substantially higher during the dry season (0.39 ± 0.04 SE) than the wet season (0.09 ± 0.02 SE). Average seasonal temperature, CV of temperature and rainfall (without a one-season lag), and total seasonal rainfall (with a one-season lag) positively influenced recruitment, whereas regional climatic variation (El Niño index), total seasonal rainfall (without a one-season lag), and CV of rainfall (with a one-season lag) had a negative effect on f. Monthly realized population growth rate (λ) was 1.00 ± 0.02 SE for the entire study period, but it varied temporally. Our study provides the first estimates of demographic parameters for the California pocket mouse and tests for the influence of climatic variables on these parameters. Although the California pocket mouse population remained relatively stable during our study (as indicated by λ = 1.00), changing climate and anthropogenic influences on California oak woodland could adversely influence demographic parameters and population dynamics and might also indicate effects of climate change on its ecologically sensitive habitat.
Collapse
Affiliation(s)
- Vratika Chaudhary
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| | - William D Tietje
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
| | - Anne Y Polyakov
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
| | - Virginie Rolland
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, USA
| | - Madan K Oli
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| |
Collapse
|
38
|
Oizumi R, Inaba H. Evolution of heterogeneity under constant and variable environments. PLoS One 2021; 16:e0257377. [PMID: 34516578 PMCID: PMC8437290 DOI: 10.1371/journal.pone.0257377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/31/2021] [Indexed: 11/23/2022] Open
Abstract
Various definitions of fitness are essentially based on the number of descendants of an allele or a phenotype after a sufficiently long time. However, these different definitions do not explicate the continuous evolution of life histories. Herein, we focus on the eigenfunction of an age-structured population model as fitness. The function generates an equation, called the Hamilton-Jacobi-Bellman equation, that achieves adaptive control of life history in terms of both the presence and absence of the density effect. Further, we introduce a perturbation method that applies the solution of this equation to the long-term logarithmic growth rate of a stochastic structured population model. We adopt this method to realize the adaptive control of heterogeneity for an optimal foraging problem in a variable environment as the analyzable example. The result indicates that the eigenfunction is involved in adaptive strategies under all the environments listed herein. Thus, we aim to systematize adaptive life histories in the presence of density effects and variable environments using the proposed objective function as a universal fitness candidate.
Collapse
Affiliation(s)
- Ryo Oizumi
- National Institute of Population and Social Security Research, Tokyo, Japan
| | - Hisashi Inaba
- Graduate School of Mathematical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
39
|
Oldfather MF, Van Den Elzen CL, Heffernan PM, Emery NC. Dispersal evolution in temporally variable environments: implications for plant range dynamics. AMERICAN JOURNAL OF BOTANY 2021; 108:1584-1594. [PMID: 34587290 DOI: 10.1002/ajb2.1739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 06/13/2023]
Abstract
Dispersal-the movement of an individual from the site of birth to a different site for reproduction-is an ecological and evolutionary driver of species ranges that shapes patterns of colonization, connectivity, gene flow, and adaptation. In plants, the traits that influence dispersal often vary within and among species, are heritable, and evolve in response to the fitness consequences of moving through heterogeneous landscapes. Spatial and temporal variation in the quality and quantity of habitat are important sources of selection on dispersal strategies across species ranges. While recent reviews have evaluated the interactions between spatial variation in habitat and dispersal dynamics, the extent to which geographic variation in temporal variability can also shape range-wide patterns in dispersal traits has not been synthesized. In this paper, we summarize key predictions from metapopulation models that evaluate how dispersal evolves in response to spatial and temporal habitat variability. Next, we compile empirical data that quantify temporal variability in plant demography and patterns of dispersal trait variation across species ranges to evaluate the hypothesis that higher temporal variability favors increased dispersal at plant range limits. We found some suggestive evidence supporting this hypothesis while more generally identifying a major gap in empirical work evaluating plant metapopulation dynamics across species ranges and geographic variation in dispersal traits. To address this gap, we propose several future research directions that would advance our understanding of the interplay between spatiotemporal variability and dispersal trait variation in shaping the dynamics of current and future species ranges.
Collapse
Affiliation(s)
- Meagan F Oldfather
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, CO 80309, USA
| | | | - Patrick M Heffernan
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, CO 80309, USA
| | - Nancy C Emery
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, CO 80309, USA
| |
Collapse
|
40
|
Lennon JT, den Hollander F, Wilke-Berenguer M, Blath J. Principles of seed banks and the emergence of complexity from dormancy. Nat Commun 2021; 12:4807. [PMID: 34376641 PMCID: PMC8355185 DOI: 10.1038/s41467-021-24733-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 07/02/2021] [Indexed: 02/07/2023] Open
Abstract
Across the tree of life, populations have evolved the capacity to contend with suboptimal conditions by engaging in dormancy, whereby individuals enter a reversible state of reduced metabolic activity. The resulting seed banks are complex, storing information and imparting memory that gives rise to multi-scale structures and networks spanning collections of cells to entire ecosystems. We outline the fundamental attributes and emergent phenomena associated with dormancy and seed banks, with the vision for a unifying and mathematically based framework that can address problems in the life sciences, ranging from global change to cancer biology.
Collapse
Affiliation(s)
- Jay T. Lennon
- grid.411377.70000 0001 0790 959XIndiana University, Department of Biology, Bloomington, USA
| | - Frank den Hollander
- grid.5132.50000 0001 2312 1970Universiteit Leiden, Mathematical Institute, Leiden, Netherlands
| | - Maite Wilke-Berenguer
- grid.7468.d0000 0001 2248 7639Humboldt-Universität zu Berlin, Institute of Mathematics, Berlin, Germany
| | - Jochen Blath
- grid.6734.60000 0001 2292 8254Technische Universität Berlin, Institute of Mathematics, Berlin, Germany
| |
Collapse
|
41
|
de Araujo Lira AF, Correia de Araújo JC, Dionisio-da-Silva W, de Albuquerque CMR. Life-history traits of the Brazilian litter-dwelling scorpion: post-embryonic development and reproductive behaviour in Ananteris mauryi Lourenço, 1982 (Scorpiones: Buthidae). J NAT HIST 2021. [DOI: 10.1080/00222933.2021.1925766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- André Felipe de Araujo Lira
- Programa de Pós-graduação em Biociência Animal Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | | | - Welton Dionisio-da-Silva
- Programa de Pós-graduação em Ciências Biológicas, Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, João Pessoa, Brazil
| | | |
Collapse
|
42
|
Jaiswal D, Pandey U, Mishra V, Pandey J. Integrating resilience with functional ecosystem measures: A novel paradigm for management decisions under multiple-stressor interplay in freshwater ecosystems. GLOBAL CHANGE BIOLOGY 2021; 27:3699-3717. [PMID: 33915017 DOI: 10.1111/gcb.15662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Moving beyond monitoring the state of water quality to understanding how the sensitive ecosystems "respond" to complex interplay of climatic and anthropogenic perturbations, and eventually the mechanisms that underpin alterations leading to transitional shifts is crucial for managing freshwater resources. The multiple disturbance dynamics-a single disturbance as opposed to multiple disturbances for recovery and other atrocities-alter aquatic ecosystem in multiple ways, yet the global models lack representation of key processes and feedbacks, impeding potential management decisions. Here, the procedure we have embarked for what is known about the biogeochemical and ecological functions in freshwaters in context of ecosystem resilience, feedbacks, stressors synergies, and compensatory dynamics, is highly relevant for process-based ecosystem models and for developing a novel paradigm toward potential management decisions. This review advocates the need for a more aggressive approach with improved understanding of changes in key ecosystem processes and mechanistic links thereof, regulating resilience and compensatory dynamics concordant with climate and anthropogenic perturbations across a wide range of spatio-temporal scales. This has relevance contexting climate change and anthropogenic pressures for developing proactive and adaptive management strategies for safeguarding freshwater resources and services they provide.
Collapse
Affiliation(s)
- Deepa Jaiswal
- Ganga River Ecology Research Laboratory, Environmental Science Division, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Usha Pandey
- Department of Botany, Faculty of Science and Technology, Mahatma Gandhi Kashividyapith University, Varanasi, India
| | - Vibha Mishra
- Department of Chemistry, Maulana Azad Institute of Humanity, Science and Technology, Sitapur, India
| | - Jitendra Pandey
- Ganga River Ecology Research Laboratory, Environmental Science Division, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
43
|
Wolkovich EM, Donahue MJ. How phenological tracking shapes species and communities in non-stationary environments. Biol Rev Camb Philos Soc 2021; 96:2810-2827. [PMID: 34288337 DOI: 10.1111/brv.12781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 01/27/2023]
Abstract
Climate change alters the environments of all species. Predicting species responses requires understanding how species track environmental change, and how such tracking shapes communities. Growing empirical evidence suggests that how species track phenologically - how an organism shifts the timing of major biological events in response to the environment - is linked to species performance and community structure. Such research tantalizingly suggests a potential framework to predict the winners and losers of climate change, and the future communities we can expect. But developing this framework requires far greater efforts to ground empirical studies of phenological tracking in relevant ecological theory. Here we review the concept of phenological tracking in empirical studies and through the lens of coexistence theory to show why a community-level perspective is critical to accurate predictions with climate change. While much current theory for tracking ignores the importance of a multi-species context, basic community assembly theory predicts that competition will drive variation in tracking and trade-offs with other traits. We highlight how existing community assembly theory can help understand tracking in stationary and non-stationary systems. But major advances in predicting the species- and community-level consequences of climate change will require advances in theoretical and empirical studies. We outline a path forward built on greater efforts to integrate priority effects into modern coexistence theory, improved empirical estimates of multivariate environmental change, and clearly defined estimates of phenological tracking and its underlying environmental cues.
Collapse
Affiliation(s)
- E M Wolkovich
- Forest & Conservation Sciences, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Megan J Donahue
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kān'eohe, HI, 96744, U.S.A
| |
Collapse
|
44
|
Louthan AM, Peterson ML, Shoemaker LG. Climate sensitivity across latitude: scaling physiology to communities. Trends Ecol Evol 2021; 36:931-942. [PMID: 34275657 DOI: 10.1016/j.tree.2021.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/08/2021] [Accepted: 05/19/2021] [Indexed: 11/25/2022]
Abstract
While we know climate change will impact individuals, populations, and communities, we lack a cross-scale synthesis for understanding global variation in climate change impacts and predicting their ecological effects. Studies of latitudinal variation in individuals' thermal responses have developed primarily in isolation from studies of natural populations' warming responses. Further, it is unclear whether latitudinal variation in temperature-dependent population responses will manifest into latitudinal patterns in community stability. Integrating across scales, we discuss the key drivers of latitudinal variation in climate change effects, with the goal of identifying key pieces of information necessary to predict warming effects in natural communities. We propose two experimental approaches synthesizing latitudinal variability in climate change impacts across scales of biological organization.
Collapse
Affiliation(s)
- Allison M Louthan
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA.
| | - Megan L Peterson
- Plant Biology Department, University of Georgia, Athens, GA, 30602, USA
| | | |
Collapse
|
45
|
Reed PB, Bridgham SD, Pfeifer-Meister LE, Peterson ML, Johnson BR, Roy BA, Bailes GT, Nelson AA, Morris WF, Doak DF. Climate warming threatens the persistence of a community of disturbance-adapted native annual plants. Ecology 2021; 102:e03464. [PMID: 34236709 DOI: 10.1002/ecy.3464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/29/2021] [Accepted: 05/13/2021] [Indexed: 01/15/2023]
Abstract
With ongoing climate change, populations are expected to exhibit shifts in demographic performance that will alter where a species can persist. This presents unique challenges for managing plant populations and may require ongoing interventions, including in situ management or introduction into new locations. However, few studies have examined how climate change may affect plant demographic performance for a suite of species, or how effective management actions could be in mitigating climate change effects. Over the course of two experiments spanning 6 yr and four sites across a latitudinal gradient in the Pacific Northwest, United States, we manipulated temperature, precipitation, and disturbance intensity, and quantified effects on the demography of eight native annual prairie species. Each year we planted seeds and monitored germination, survival, and reproduction. We found that disturbance strongly influenced demographic performance and that seven of the eight species had increasingly poor performance with warmer conditions. Across species and sites, we observed 11% recruitment (the proportion of seeds planted that survived to reproduction) following high disturbance, but just 3.9% and 2.3% under intermediate and low disturbance, respectively. Moreover, mean seed production following high disturbance was often more than tenfold greater than under intermediate and low disturbance. Importantly, most species exhibited precipitous declines in their population growth rates (λ) under warmer-than-ambient experimental conditions and may require more frequent disturbance intervention to sustain populations. Aristida oligantha, a C4 grass, was the only species to have λ increase with warmer conditions. These results suggest that rising temperatures may cause many native annual plant species to decline, highlighting the urgency for adaptive management practices that facilitate their restoration or introduction to newly suitable locations. Frequent and intense disturbances are critical to reduce competitors and promote native annuals' persistence, but even such efforts may prove futile under future climate regimes.
Collapse
Affiliation(s)
- Paul B Reed
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, 97403, USA
| | - Scott D Bridgham
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, 97403, USA
| | | | - Megan L Peterson
- Plant Biology Department, University of Georgia, Athens, Georgia, 30606, USA
| | - Bart R Johnson
- Department of Landscape Architecture, University of Oregon, Eugene, Oregon, 97403, USA
| | - Bitty A Roy
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, 97403, USA
| | - Graham T Bailes
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, 97403, USA
| | - Aaron A Nelson
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, 97403, USA
| | - William F Morris
- Biology Department, Duke University, Durham, North Carolina, 27708, USA
| | - Daniel F Doak
- Environmental Studies Program, University of Colorado Boulder, Boulder, Colorado, 80309, USA
| |
Collapse
|
46
|
Climate change and plant biodiversity in Himalaya, India. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2021. [DOI: 10.1007/s43538-021-00034-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
47
|
Williams NF, McRae L, Freeman R, Capdevila P, Clements CF. Scaling the extinction vortex: Body size as a predictor of population dynamics close to extinction events. Ecol Evol 2021; 11:7069-7079. [PMID: 34141276 PMCID: PMC8207159 DOI: 10.1002/ece3.7555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 11/25/2022] Open
Abstract
Mutual reinforcement between abiotic and biotic factors can drive small populations into a catastrophic downward spiral to extinction-a process known as the "extinction vortex." However, empirical studies investigating extinction dynamics in relation to species' traits have been lacking.We assembled a database of 35 vertebrate populations monitored to extirpation over a period of at least ten years, represented by 32 different species, including 25 birds, five mammals, and two reptiles. We supplemented these population time series with species-specific mean adult body size to investigate whether this key intrinsic trait affects the dynamics of populations declining toward extinction.We performed three analyses to quantify the effects of adult body size on three characteristics of population dynamics: time to extinction, population growth rate, and residual variability in population growth rate.Our results provide support for the existence of extinction vortex dynamics in extirpated populations. We show that populations typically decline nonlinearly to extinction, while both the rate of population decline and variability in population growth rate increase as extinction is approached. Our results also suggest that smaller-bodied species are particularly prone to the extinction vortex, with larger increases in rates of population decline and population growth rate variability when compared to larger-bodied species.Our results reaffirm and extend our understanding of extinction dynamics in real-life extirpated populations. In particular, we suggest that smaller-bodied species may be at greater risk of rapid collapse to extinction than larger-bodied species, and thus, management of smaller-bodied species should focus on maintaining higher population abundances as a priority.
Collapse
Affiliation(s)
| | - Louise McRae
- Institute of ZoologyZoological Society of LondonLondonUK
| | - Robin Freeman
- Institute of ZoologyZoological Society of LondonLondonUK
| | - Pol Capdevila
- School of Biological SciencesUniversity of BristolBristolUK
| | | |
Collapse
|
48
|
Rodríguez‐Caro RC, Capdevila P, Graciá E, Barbosa JM, Giménez A, Salguero‐Gómez R. The limits of demographic buffering in coping with environmental variation. OIKOS 2021. [DOI: 10.1111/oik.08343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Roberto C. Rodríguez‐Caro
- Depto de Biología Aplicada, Univ. Miguel Hernández Elche Alicante Spain
- Dept of Zoology, Oxford Univ. Oxford UK
| | - Pol Capdevila
- Dept of Zoology, Oxford Univ. Oxford UK
- School of Biological Sciences, Univ. of Bristol Bristol UK
| | - Eva Graciá
- Depto de Biología Aplicada, Univ. Miguel Hernández Elche Alicante Spain
- Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO‐UMH), Univ. Miguel Hernández Spain
| | - Jomar M. Barbosa
- Depto de Biología Aplicada, Univ. Miguel Hernández Elche Alicante Spain
- Dept of Conservation Biology, Estación Biológica de Doñana, C.S.I.C. Seville Spain
| | - Andrés Giménez
- Depto de Biología Aplicada, Univ. Miguel Hernández Elche Alicante Spain
- Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO‐UMH), Univ. Miguel Hernández Spain
| | - Rob Salguero‐Gómez
- Dept of Zoology, Oxford Univ. Oxford UK
- Centre for Biodiversity and Conservation Science, Univ. of Queensland St Lucia QLD Australia
| |
Collapse
|
49
|
García MB, Silva JL, Tejero P, Pardo I. Detecting early‐warning signals of concern in plant populations with a Citizen Science network. Are threatened and other priority species for conservation performing worse? J Appl Ecol 2021. [DOI: 10.1111/1365-2664.13890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Pablo Tejero
- Pyrenean Institute of Ecology (CSIC) Zaragoza Spain
| | - Iker Pardo
- Pyrenean Institute of Ecology (CSIC) Zaragoza Spain
| |
Collapse
|
50
|
Sritharan MS, Hemmings FA, Moles AT. Few changes in native Australian alpine plant morphology, despite substantial local climate change. Ecol Evol 2021; 11:4854-4865. [PMID: 33976853 PMCID: PMC8093687 DOI: 10.1002/ece3.7392] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/01/2022] Open
Abstract
Rapid evolution is likely to be an important mechanism allowing native species to adapt to changed environmental conditions. Many Northern Hemisphere species have undergone substantial recent changes in phenology and morphology. However, we have little information about how native species in the Southern Hemisphere are responding to climate change. We used herbarium specimens from 21 native alpine plant species in Kosciuszko National Park, Australia, to make over 1,500 measurements of plant size, leaf thickness, leaf mass per area, leaf shape, and leaf size across the last 126 years. Only two out of 21 species (9%) showed significant changes in any of the measured traits. The number of changes we observed was not significantly different to what we would expect by chance alone, based on the number of analyses performed. This lack of change is not attributable to methodology-an earlier study using the same methods found significant changes in 70% of species introduced to southeast Australia. Australia's native alpine plants do not appear to be adapting to changed conditions, and because of the low elevation of Australia's mountains, they do not have much scope for uphill migration. Thus, our findings suggest that Australia's native alpine plants are at even greater risk in the face of future climate change than was previously understood.
Collapse
Affiliation(s)
- Meena S. Sritharan
- Fenner School of Environment & SocietyANU College of ScienceAustralian National UniversityActonACTAustralia
- Evolution & Ecology Research CentreSchool of Biological, Earth and Environmental SciencesUNSW SydneySydneyNSWAustralia
| | - Frank A. Hemmings
- Evolution & Ecology Research CentreSchool of Biological, Earth and Environmental SciencesUNSW SydneySydneyNSWAustralia
| | - Angela T. Moles
- Evolution & Ecology Research CentreSchool of Biological, Earth and Environmental SciencesUNSW SydneySydneyNSWAustralia
| |
Collapse
|