1
|
Bay P, Martin-Loeches I, Haudebourg AF, Lê MP, Peytavin G, Rameix-Welti MA, Fourati S, de Prost N. How to manage antivirals in critically ill patients with influenza? Clin Microbiol Infect 2025:S1198-743X(25)00162-4. [PMID: 40204233 DOI: 10.1016/j.cmi.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/19/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND Influenza is a significant cause of morbidity and mortality, particularly in critically ill patients. The availability of effective antiviral therapies is pivotal in mitigating the severity and complications associated with influenza. OBJECTIVES This review evaluates the antivirals available for the treatment of severe influenza in critically ill patients, focusing on the strength of recommendations and levels of evidence derived from clinical trials, observational studies, and guidelines. The aim is to provide clinicians with evidence-based insights to optimize antiviral strategies in the intensive care unit setting. SOURCES A comprehensive literature search was conducted using PubMed, Embase, and Cochrane Library databases for studies published up to January 2025. Keywords included "antiviral therapy," "influenza," "critically ill patients," "oseltamivir," "peramivir," "zanamivir," "lanimavir," "baloxavir," and "favipiravir." Additional references were identified from the bibliographies of relevant articles. CONTENT The following topics are covered: antivirals available for treating influenza and evidence supporting their use in critically ill patients, pharmacokinetic issues of enteral oseltamivir administration in critically ill patients, and neuraminidase inhibitors resistance. IMPLICATIONS Neuraminidase inhibitors constitute the vast majority of antivirals currently prescribed for influenza. The most commonly prescribed neuraminidase inhibitor to date is oseltamivir. Although its efficacy in nonsevere cases of influenza is well established, the evidence for its efficacy in critically ill patients is based on less robust studies, as no randomized controlled trials have been conducted in this population. Limited data on oseltamivir pharmacokinetics is available in critically ill patients. The selection of A(H1N1)pdm09 resistant variants to oseltamivir is particularly problematic in critically ill patients hospitalized in intensive care units. Data on other antivirals, such as neuraminidase inhibitors (i.e. zanamivir, peramivir and laninamivir) or baloxavir marboxil in critically ill patients are scarce. Further research is needed to develop new drugs and assess their efficacy in critically ill patients and to better assess the effect of oseltamivir in this population.
Collapse
Affiliation(s)
- Pierre Bay
- Assistance Publique-Hôpitaux de Paris, CHU Henri Mondor-Albert Chenevier, Service de Médecine Intensive Réanimation, Créteil Cedex, France; Groupe de Recherche Clinique CARMAS, Université Paris Est-Créteil, Créteil, France; INSERM U955, Institut Mondor de Recherche Biomédicale, Créteil, France; INSERM U955, Team Viruses, Hepatology, Cancer, Créteil, France
| | - Ignacio Martin-Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization, (MICRO), St James' Hospital, Dublin, Ireland
| | - Anne-Fleur Haudebourg
- Assistance Publique-Hôpitaux de Paris, CHU Henri Mondor-Albert Chenevier, Service de Médecine Intensive Réanimation, Créteil Cedex, France; Groupe de Recherche Clinique CARMAS, Université Paris Est-Créteil, Créteil, France; INSERM U955, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - Minh P Lê
- Service de Pharmacologie, DMU Biologie et Génomique Médicale (BioGeM), Hôpital Bichat-Claude Bernard, Paris, France; INSERM UMR 1137, IAME, Paris, France
| | - Gilles Peytavin
- Service de Pharmacologie, DMU Biologie et Génomique Médicale (BioGeM), Hôpital Bichat-Claude Bernard, Paris, France; INSERM UMR 1137, IAME, Paris, France
| | - Marie-Anne Rameix-Welti
- Centre National de Référence Virus des Infections Respiratoires, Institut Pasteur, Université Paris Cité, Paris, France; M3P, Institut Pasteur, Université Paris-Saclay, Université de Versailles St. Quentin, Université Paris Cité, UMR 1173 (2I), INSERM, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Slim Fourati
- Groupe de Recherche Clinique CARMAS, Université Paris Est-Créteil, Créteil, France; INSERM U955, Institut Mondor de Recherche Biomédicale, Créteil, France; INSERM U955, Team Viruses, Hepatology, Cancer, Créteil, France; Department of Virology, Hôpitaux Universitaires Henri Mondor, Assistance Publique - Hôpitaux de Paris, Créteil, France
| | - Nicolas de Prost
- Assistance Publique-Hôpitaux de Paris, CHU Henri Mondor-Albert Chenevier, Service de Médecine Intensive Réanimation, Créteil Cedex, France; Groupe de Recherche Clinique CARMAS, Université Paris Est-Créteil, Créteil, France; INSERM U955, Institut Mondor de Recherche Biomédicale, Créteil, France; INSERM U955, Team Viruses, Hepatology, Cancer, Créteil, France.
| |
Collapse
|
2
|
Pang Y, Li H, Chen X, Cao Y, Jiang H, Huang J, Liu Y. A phase I, single-center, randomized, open-label, three-period crossover study to evaluate the drug-drug interaction between ZSP1273 and oseltamivir in healthy Chinese subjects. Antimicrob Agents Chemother 2025; 69:e0172924. [PMID: 39992105 PMCID: PMC11963566 DOI: 10.1128/aac.01729-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/28/2025] [Indexed: 02/25/2025] Open
Abstract
ZSP1273 is a novel small-molecule anti-influenza drug that targets the RNA polymerase PB2 subunit, while oseltamivir is the first-line medication that inhibits neuraminidase. ZSP1273 showed high efficacy against human influenza viruses both in vitro and in vivo, including oseltamivir-resistant strains in vitro. In future clinical applications, the combination of these two antiviral drugs with different mechanisms can reduce the potential for antiviral resistance that may arise from monotherapy. To evaluate the drug-drug interaction between ZSP1273 and oseltamivir by the pharmacokinetics and safety of co-administration in healthy subjects, a phase I, single-center, randomized, open-label, three-period crossover study was conducted. Thirty-six subjects enrolled were randomized in a 1:1:1 ratio into three crossover treatment sequences with oral administration detailed as follows: treatment A: ZSP1273 tablets 600 mg once daily (QD) for 5 days; treatment B: oseltamivir capsules 75 mg twice daily (BID) for 5 days; treatment C: ZSP1273 tablets 600 mg once daily (QD) + oseltamivir capsules 75 mg twice daily (BID) for 5 days. Plasma samples were collected from all subjects at scheduled time points after drug administration to measure the plasma concentrations of ZSP1273, oseltamivir, and its active metabolite oseltamivir carboxylate, for pharmacokinetic analysis. Compared with monotherapy, the geometric mean ratios (90% confidence intervals) of Cmax,ss, AUC0-t,ss, AUC0-τ,ss, and AUC0-∞,ss for ZSP1273 after co-administration were all within the ineffective boundary range of 80% to 125%, supporting that no drug-drug interaction occurs with ZSP1273. After co-administration, the AUC0-t,ss, AUC0-τ,ss, and AUC0-∞,ss of oseltamivir were all within 80% to 125%, while Cmax,ss decreased by 39.9%. The pharmacokinetic parameters above of oseltamivir carboxylate remained within 80%-125%, except only the lower bound of the 90% CI for Cmax,ss slightly below 80% (77.0%). Considering the rapid metabolism of oseltamivir into the active metabolite oseltamivir carboxylate and the minor impact of co-administration on the pharmacokinetic parameters of oseltamivir carboxylate, it is believed that no clinically significant drug-drug interaction was observed with the combination of these two drugs. During the trial, the safety and tolerability of both combination therapy and monotherapy were good, with no increased safety risks observed from the combination therapy.CLINICAL TRIALSThis study is registered with ClinicalTrials.gov as NCT05108051.
Collapse
Affiliation(s)
- Yanqing Pang
- Department of Phase I Clinical Research Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, Guangdong, China
| | - Haijun Li
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Xuemei Chen
- Department of Phase I Clinical Research Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, Guangdong, China
| | - Yingying Cao
- Department of Phase I Clinical Research Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, Guangdong, China
| | - Hui Jiang
- Department of Phase I Clinical Research Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, Guangdong, China
| | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Yiming Liu
- Department of Phase I Clinical Research Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, Guangdong, China
| |
Collapse
|
3
|
de Souza MM, Gini ALR, Moura JA, Scarim CB, Chin CM, dos Santos JL. Prodrug Approach as a Strategy to Enhance Drug Permeability. Pharmaceuticals (Basel) 2025; 18:297. [PMID: 40143076 PMCID: PMC11946379 DOI: 10.3390/ph18030297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/12/2025] [Accepted: 02/16/2025] [Indexed: 03/28/2025] Open
Abstract
Absorption and permeability are critical physicochemical parameters that must be balanced to achieve optimal drug uptake. These key factors are closely linked to the maximum absorbable dose required to provide appropriate plasma levels of drugs. Among the various strategies employed to enhance drug solubility and permeability, prodrug design stands out as a highly effective and versatile approach for improving physicochemical properties and enabling the optimization of biopharmaceutical and pharmacokinetic parameters while mitigating adverse effects. Prodrugs are compounds with reduced or no activity that, through bio-reversible chemical or enzymatic processes, release an active parental drug. The application of this technology has led to significant advancements in drug optimization during the design phase, and it offers broad potential for further development. Notably, approximately 13% of the drugs approved by the U.S. Food and Drug Administration (FDA) between 2012 and 2022 were prodrugs. In this review article, we will explore the application of prodrug strategies to enhance permeability, describing examples of market drugs. We also describe the use of the prodrug approach to optimize PROteolysis TArgeting Chimeras (PROTACs) permeability by using conjugation technologies. We will highlight some new technologies in prodrugs to enrich permeability properties, contributing to developing new effective and safe prodrugs.
Collapse
Affiliation(s)
- Mateus Mello de Souza
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (M.M.d.S.); (A.L.R.G.); (C.B.S.); (C.M.C.)
| | - Ana Luísa Rodriguez Gini
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (M.M.d.S.); (A.L.R.G.); (C.B.S.); (C.M.C.)
| | - Jhonnathan Alves Moura
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800-900, SP, Brazil;
| | - Cauê Benito Scarim
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (M.M.d.S.); (A.L.R.G.); (C.B.S.); (C.M.C.)
| | - Chung Man Chin
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (M.M.d.S.); (A.L.R.G.); (C.B.S.); (C.M.C.)
- Union of the Colleges of the Great Lakes (UNILAGO), School of Medicine, Advanced Research Center in Medicine (CEPAM), Sao Jose do Rio Preto 15030-070, SP, Brazil
| | - Jean Leandro dos Santos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (M.M.d.S.); (A.L.R.G.); (C.B.S.); (C.M.C.)
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800-900, SP, Brazil;
| |
Collapse
|
4
|
Yong J, Lu S, Lu C, Huang R. The Development History, Structural Composition, and Functions of Influenza Viruses and the Progress of Influenza Virus Inhibitors in Clinics and Clinical Trials. Mini Rev Med Chem 2025; 25:196-207. [PMID: 39113298 DOI: 10.2174/0113895575316416240724043949] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/10/2024] [Accepted: 06/11/2024] [Indexed: 02/25/2025]
Abstract
Flu is an acute respiratory disease caused by influenza viruses. The influenza viruses are classified as Alphainfluenzavirus (influenza A virus, IAV), Betainfluenzavirus (influenza B virus, IBV), Gammainfluenzavirus (influenza C virus, ICV), and Deltainfluenzavirus (influenza D virus, IDV) according to the antigenicity of nucleoproteins (NPs) and matrix (M) proteins in vivo. It is estimated that the seasonal influenza epidemics will cause about 3-5 million cases of serious illness and 290,000-650,000 deaths in the world every year, while influenza A virus is the leading cause of infection and death. Neuraminidase (NA) is one of the most critical targets for the development of anti-influenza virus drugs, and the main drugs clinically applied for the treatment of flu are neuraminidase inhibitors. However, various mutant strains have developed resistance to these inhibitors (For example, the substrains of H274Y in H1N1, H5N1, and E119V in H3N2 have developed resistance to Oseltamivir). Influenza viruses mutate frequently, and new substrains emerge constantly, and the pandemics caused by the new substrains will break out at any time. Therefore, it is urgent to develop new and wide-spectrum influenza virus inhibitors for overcoming the emerging influenza pandemic. Here, we focus on describing the progress of influenza virus inhibitors in clinics and clinical trials to provide a comprehensive reference for the researchers.
Collapse
Affiliation(s)
- Jianping Yong
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China
- Department of Natural Products Chemistry, Xiamen Institute of Rare-earth Materials, Chinese Academy of Sciences, Xiamen, Fujian, China
| | - Shaoji Lu
- Xiamen Tasman Bio-Tech Co., Ltd., Xiamen, Fujian, China
| | - Canzhong Lu
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China
- Department of Natural Products Chemistry, Xiamen Institute of Rare-earth Materials, Chinese Academy of Sciences, Xiamen, Fujian, China
| | - Ruiwen Huang
- Xiamen Tasman Bio-Tech Co., Ltd., Xiamen, Fujian, China
| |
Collapse
|
5
|
Wu K, Kwon SH, Zhou X, Fuller C, Wang X, Vadgama J, Wu Y. Overcoming Challenges in Small-Molecule Drug Bioavailability: A Review of Key Factors and Approaches. Int J Mol Sci 2024; 25:13121. [PMID: 39684832 PMCID: PMC11642056 DOI: 10.3390/ijms252313121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
The bioavailability of small-molecule drugs remains a critical challenge in pharmaceutical development, significantly impacting therapeutic efficacy and commercial viability. This review synthesizes recent advances in understanding and overcoming bioavailability limitations, focusing on key physicochemical and biological factors influencing drug absorption and distribution. We examine cutting-edge strategies for enhancing bioavailability, including innovative formulation approaches, rational structural modifications, and the application of artificial intelligence in drug design. The integration of nanotechnology, 3D printing, and stimuli-responsive delivery systems are highlighted as promising avenues for improving drug delivery. We discuss the importance of a holistic, multidisciplinary approach to bioavailability optimization, emphasizing early-stage consideration of ADME properties and the need for patient-centric design. This review also explores emerging technologies such as CRISPR-Cas9-mediated personalization and microbiome modulation for tailored bioavailability enhancement. Finally, we outline future research directions, including advanced predictive modeling, overcoming biological barriers, and addressing the challenges of emerging therapeutic modalities. By elucidating the complex interplay of factors affecting bioavailability, this review aims to guide future efforts in developing more effective and accessible small-molecule therapeutics.
Collapse
Affiliation(s)
- Ke Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90095, USA
- David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - Soon Hwan Kwon
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90095, USA
- David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - Xuhan Zhou
- Department of Pre-Biology, University of California, Santa Barbara (UCSB), Santa Barbara, CA 93106, USA
| | - Claire Fuller
- Department of Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xianyi Wang
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Jaydutt Vadgama
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90095, USA
- David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - Yong Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90095, USA
- David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
6
|
Azuma T, Usui M, Hasei T, Hayashi T. Occurrence and environmental fate of anti-influenza drugs in a subcatchment of the Yodo River Basin, Japan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176086. [PMID: 39260509 DOI: 10.1016/j.scitotenv.2024.176086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
Understanding the current situation and risk of environmental contamination by anti-influenza drugs in aquatic environments is key to prevent the unexpected emergence and spread of drug-resistant viruses. However, few reports have been focused on newer drugs that have recently been introduced in clinical settings. In this study, the behaviour of the prodrug baloxavir marboxil (BALM)-the active ingredient of Xofluza, an increasingly popular anti-influenza drug-and its pharmacologically active metabolite baloxavir (BAL) in the aquatic environment was evaluated. Additionally, their presence in urban rivers and a wastewater treatment plant (WWTP) in the Yodo River basin was investigated and compared with those of the major anti-influenza drugs used to date (favipiravir (FAV), peramivir (PER), laninamivir (LAN), and its active metabolite, laninamivir octanoate (LANO), oseltamivir (OSE), and its active metabolite, oseltamivir carboxylate (OSEC), and zanamivir (ZAN)) to comprehensively assess their environmental fate in the aquatic environment. The results clearly showed that BALM, FAV, and BAL were rapidly degraded through photolysis (2-h, 0.6-h, and 0.4-h half-lives, respectively), followed by LAN, which was gradually biodegraded (7-h half-life). In addition, BALM and BAL decreased by up to 47 % after 4 days and 34 % after 2 days of biodegradation in river water. However, the remaining conventional drugs, except for LANO (<1 % after 10 days), were persistent, being transported from the upstream to downstream sites. The LogKd values for the rates of sorption of BALM (0.5-1.6) and BAL (1.8-3.1) on river sediment were higher than those of conventional drugs (-0.5 to 1.7). Notably, all anti-influenza drugs were effectively removed by ozonation (>90-99.9 % removal) after biological treatment at a WWTP. Thus, these findings suggest the importance of introducing ozonation to reduce pollution loads in rivers and the environmental risks associated with drug-resistant viruses in aquatic environments, thereby promoting safe river environments.
Collapse
Affiliation(s)
- Takashi Azuma
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Masaru Usui
- Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunkyodai, Ebetsu, Hokkaido 069-8501, Japan
| | - Tomohiro Hasei
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Tetsuya Hayashi
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| |
Collapse
|
7
|
Shenk T, Kulp III JL, Chiang LW. Drugs Targeting Sirtuin 2 Exhibit Broad-Spectrum Anti-Infective Activity. Pharmaceuticals (Basel) 2024; 17:1298. [PMID: 39458938 PMCID: PMC11510315 DOI: 10.3390/ph17101298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/11/2024] [Accepted: 09/15/2024] [Indexed: 10/28/2024] Open
Abstract
Direct-acting anti-infective drugs target pathogen-coded gene products and are a highly successful therapeutic paradigm. However, they generally target a single pathogen or family of pathogens, and the targeted organisms can readily evolve resistance. Host-targeted agents can overcome these limitations. One family of host-targeted, anti-infective agents modulate human sirtuin 2 (SIRT2) enzyme activity. SIRT2 is one of seven human sirtuins, a family of NAD+-dependent protein deacylases. It is the only sirtuin that is found predominantly in the cytoplasm. Multiple, structurally distinct SIRT2-targeted, small molecules have been shown to inhibit the replication of both RNA and DNA viruses, as well as intracellular bacterial pathogens, in cell culture and in animal models of disease. Biochemical and X-ray structural studies indicate that most, and probably all, of these compounds act as allosteric modulators. These compounds appear to impact the replication cycles of intracellular pathogens at multiple levels to antagonize their replication and spread. Here, we review SIRT2 modulators reported to exhibit anti-infective activity, exploring their pharmacological action as anti-infectives and identifying questions in need of additional study as this family of anti-infective agents advances to the clinic.
Collapse
Affiliation(s)
- Thomas Shenk
- Evrys Bio, LLC, Pennsylvania Biotechnology Center, 3805 Old Easton Road, Doylestown, PA 18902, USA;
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - John L. Kulp III
- Conifer Point Pharmaceuticals, Pennsylvania Biotechnology Center, 3805 Old Easton Road, Doylestown, PA 18902, USA;
| | - Lillian W. Chiang
- Evrys Bio, LLC, Pennsylvania Biotechnology Center, 3805 Old Easton Road, Doylestown, PA 18902, USA;
| |
Collapse
|
8
|
Tan SPF, Tillmann A, Murby SJ, Rostami-Hodjegan A, Scotcher D, Galetin A. Albumin-Mediated Drug Uptake by Organic Anion Transporter 1/3 Is Real: Implications for the Prediction of Active Renal Secretion Clearance. Mol Pharm 2024; 21:4603-4617. [PMID: 39166754 PMCID: PMC11372837 DOI: 10.1021/acs.molpharmaceut.4c00504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Modulation of the transport-mediated active uptake by human serum albumin (HSA) for highly protein-bound substrates has been reported and improved the in vitro-to-in vivo extrapolation (IVIVE) of hepatic clearance. However, evidence for the relevance of such a phenomenon in the case of renal transporters is sparse. In this study, transport of renal organic anion transporter 1 or 3 (OAT1/3) substrates into conditionally immortalized proximal tubular epithelial cells transduced with OAT1/3 was measured in the presence and absence of 1 and 4% HSA while keeping the unbound substrate concentration constant (based on measured fraction unbound, fu,inc). In the presence of 4% HSA, the unbound intrinsic active uptake clearance (CLint,u,active) of six highly protein-bound substrates increased substantially relative to the HSA-free control (3.5- to 122-fold for the OAT1 CLint,u,active, and up to 28-fold for the OAT3 CLint,u,active). The albumin-mediated uptake effect (fold increase in CLint,u,active) was more pronounced with highly bound substrates compared to no effect seen for weakly protein-bound substrates adefovir (OAT1-specific) and oseltamivir carboxylate (OAT3-specific). The relationship between OAT1/3 CLint,u,active and fu,inc agreed with the facilitated-dissociation model; a relationship was established between the albumin-mediated fold change in CLint,u,active and fu,inc for both the OAT1 and OAT3, with implications for IVIVE modeling. The relative activity factor and the relative expression factor based on global proteomic quantification of in vitro OAT1/3 expression were applied for IVIVE of renal clearance. The inclusion of HSA improved the bottom-up prediction of the level of OAT1/3-mediated secretion and renal clearance (CLsec and CLr), in contrast to the underprediction observed with the control (HSA-free) scenario. For the first time, this study confirmed the presence of the albumin-mediated uptake effect with renal OAT1/3 transporters; the extent of the effect was more pronounced for highly protein-bound substrates. We recommend the inclusion of HSA in routine in vitro OAT1/3 assays due to considerable improvements in the IVIVE of CLsec and CLr.
Collapse
Affiliation(s)
- Shawn Pei Feng Tan
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester M13 9PL, U.K
| | - Annika Tillmann
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester M13 9PL, U.K
| | - Susan J Murby
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester M13 9PL, U.K
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester M13 9PL, U.K
- Certara Predictive Technologies (CPT), Certara Inc., 1 Concourse Way, Sheffield S1 2BJ, U.K
| | - Daniel Scotcher
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester M13 9PL, U.K
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester M13 9PL, U.K
| |
Collapse
|
9
|
Yu L, Huang X, Jiang M, Guo W, Li X, Huang F, You J. Design and evaluation of oseltamivir phosphate dual-phase extended-release tablets for the treatment of influenza. Int J Pharm 2024; 661:124364. [PMID: 38914352 DOI: 10.1016/j.ijpharm.2024.124364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/04/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024]
Abstract
In this study, once-daily extended-release tablets with dual-phase release of oseltamivir phosphate were developed for the treatment of influenza. The goal was to improve patient adherence and offer more therapeutic choices. The tablets were manufactured using wet granulation, bilayer tablet compression, and enteric membrane-controlled coating processes. Various polymers, such as hydroxypropyl methylcellulose (HPMC K100MCR, K15MCR, K4MCR, K100LV), enteric polymers (HPMC AS-LF, Eudragit L100-55) and membrane-controlled polymers (OPADRY® CA), were used either individually or in combination with other common excipients. The formulations include enteric-coated extended-release tablet (F1), hydrophilic matrix extended-release tablet (F2), semipermeable membrane-controlled release tablet (F3) and a combination extended-release tablet containing both enteric and hydrophilic matrix (F4). The in vitro drug release profile of each formulation was fitted to the first-order model, and the Ritger-Peppas model suggested that Fickian diffusion was the primary mechanism for drug release. Comparative bioequivalence studies with Tamiflu® (oseltamivir phosphate) capsules revealed that formulations F1, F2, and F3 did not achieve bioequivalence. However, under fed conditions, formulation F4 achieved bioequivalence with a relative bioavailability of 95.30% (90% CI, 88.83%-102.15%). This suggests that the formulation F4 tablet could potentially be a new treatment option for patients with influenza.
Collapse
Affiliation(s)
- Liping Yu
- State Key Laboratory of Anti-Infection Drug Development, Sunshine Lake Pharma Co., Ltd., Dong Guan 523871, PR China
| | - Xin Huang
- State Key Laboratory of Anti-Infection Drug Development, Sunshine Lake Pharma Co., Ltd., Dong Guan 523871, PR China
| | - Manhua Jiang
- State Key Laboratory of Anti-Infection Drug Development, Sunshine Lake Pharma Co., Ltd., Dong Guan 523871, PR China
| | - Wentao Guo
- State Key Laboratory of Anti-Infection Drug Development, Sunshine Lake Pharma Co., Ltd., Dong Guan 523871, PR China
| | - Xue Li
- State Key Laboratory of Anti-Infection Drug Development, Sunshine Lake Pharma Co., Ltd., Dong Guan 523871, PR China
| | - Fangfang Huang
- State Key Laboratory of Anti-Infection Drug Development, Sunshine Lake Pharma Co., Ltd., Dong Guan 523871, PR China
| | - Jinsong You
- State Key Laboratory of Anti-Infection Drug Development, Sunshine Lake Pharma Co., Ltd., Dong Guan 523871, PR China.
| |
Collapse
|
10
|
Gu C, Chen Y, Li H, Wang J, Liu S. Considerations when treating influenza infections with oseltamivir. Expert Opin Pharmacother 2024; 25:1301-1316. [PMID: 38995220 DOI: 10.1080/14656566.2024.2376660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
INTRODUCTION Since the coronavirus disease 2019-mandated social distancing policy has been lifted worldwide, the circulation of influenza is expected to resume. Currently, oseltamivir is approved as the first-line agent for influenza prevention and treatment. AREAS COVERED This paper reviews the updated evidence in the pharmacology, resistance mechanisms, clinical pharmacy management, and real-world data on oseltamivir for influenza. EXPERT OPINION Oseltamivir is an oral prodrug of oseltamivir carboxylate, an influenza A and B neuraminidase inhibitor. Recently, the therapeutic efficacy of oseltamivir has been demonstrated in several trials. Oseltamivir is generally well-tolerated but may lead to neuropsychiatric events and bleeding. Oseltamivir-resistant influenza virus has been associated with the H275Y mutation in the influenza A(H1N1)pdm09 virus, while most strains are still sensitive to oseltamivir. Dose adjustment for oseltamivir should be based on creatinine clearance and body weight in pediatric patients with renal failure. According to real-world data from Nanfang Hospital, the annual number of patients prescribed oseltamivir declined from 35,711 in 2019 to 8,971 in 2020, with marked increases in 2022 (20,213) and 2023 (18,071). Among the 206 inpatients, children aged < 6 years who were treated with oseltamivir had the shortest duration to defervescence.
Collapse
Affiliation(s)
- Chunping Gu
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yi Chen
- Department of Pharmacy, The Seventh Affiliated Hospital, Southern Medical University, Foshan, China
| | - Haobin Li
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jinshen Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou, China
- MOE Innovation Center for Medical Basic Research on Inflammation and Immune Related Diseases, Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
Sailor-Longsworth E, Lutze RD, Ingersoll MA, Kelmann RG, Ly K, Currier D, Chen T, Zuo J, Teitz T. Oseltamivir (Tamiflu), a Commonly Prescribed Antiviral Drug, Mitigates Hearing Loss in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592815. [PMID: 38765999 PMCID: PMC11100672 DOI: 10.1101/2024.05.06.592815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Hearing loss affects up to 10% of all people worldwide, but currently there is only one FDA-approved drug for its prevention in a subgroup of cisplatin-treated pediatric patients. Here, we performed an unbiased screen of 1,300 FDA-approved drugs for protection against cisplatin-induced cell death in an inner ear cell line, and identified oseltamivir phosphate (brand name Tamiflu), a common influenza antiviral drug, as a top candidate. Oseltamivir phosphate was found to be otoprotective by oral delivery in multiple established cisplatin and noise exposure mouse models. The drug conferred permanent hearing protection of 15-25 dB SPL for both female and male mice. Oseltamivir treatment reduced in mice outer hair cells death after cisplatin treatment and mitigated cochlear synaptopathy after noise exposure. A potential binding protein, ERK1/2, associated with inflammation, was shown to be activated with cisplatin treatment and reduced by oseltamivir cotreatment in cochlear explants. Importantly, the number of infiltrating immune cells to the cochleae in mice post noise exposure, were significantly reduced with oseltamivir treatment, suggesting an anti-inflammatory mechanism of action. Our results support oseltamivir, a widespread drug for influenza with low side effects, as a promising otoprotective therapeutic candidate in both cisplatin chemotherapy and traumatic noise exposure.
Collapse
Affiliation(s)
- Emma Sailor-Longsworth
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Richard D. Lutze
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Matthew A. Ingersoll
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Regina G. Kelmann
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Kristina Ly
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Duane Currier
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Jian Zuo
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Tal Teitz
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| |
Collapse
|
12
|
Subbaiah MAM, Rautio J, Meanwell NA. Prodrugs as empowering tools in drug discovery and development: recent strategic applications of drug delivery solutions to mitigate challenges associated with lead compounds and drug candidates. Chem Soc Rev 2024; 53:2099-2210. [PMID: 38226865 DOI: 10.1039/d2cs00957a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The delivery of a drug to a specific organ or tissue at an efficacious concentration is the pharmacokinetic (PK) hallmark of promoting effective pharmacological action at a target site with an acceptable safety profile. Sub-optimal pharmaceutical or ADME profiles of drug candidates, which can often be a function of inherently poor physicochemical properties, pose significant challenges to drug discovery and development teams and may contribute to high compound attrition rates. Medicinal chemists have exploited prodrugs as an informed strategy to productively enhance the profiles of new chemical entities by optimizing the physicochemical, biopharmaceutical, and pharmacokinetic properties as well as selectively delivering a molecule to the site of action as a means of addressing a range of limitations. While discovery scientists have traditionally employed prodrugs to improve solubility and membrane permeability, the growing sophistication of prodrug technologies has enabled a significant expansion of their scope and applications as an empowering tool to mitigate a broad range of drug delivery challenges. Prodrugs have emerged as successful solutions to resolve non-linear exposure, inadequate exposure to support toxicological studies, pH-dependent absorption, high pill burden, formulation challenges, lack of feasibility of developing solid and liquid dosage forms, first-pass metabolism, high dosing frequency translating to reduced patient compliance and poor site-specific drug delivery. During the period 2012-2022, the US Food and Drug Administration (FDA) approved 50 prodrugs, which amounts to 13% of approved small molecule drugs, reflecting both the importance and success of implementing prodrug approaches in the pursuit of developing safe and effective drugs to address unmet medical needs.
Collapse
Affiliation(s)
- Murugaiah A M Subbaiah
- Department of Medicinal Chemistry, Biocon Bristol Myers Squibb R&D Centre, Biocon Park, Bommasandra Phase IV, Bangalore, PIN 560099, India.
| | - Jarkko Rautio
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Nicholas A Meanwell
- The Baruch S. Blumberg Institute, Doylestown, PA 18902, USA
- Department of Medicinal Chemistry, The College of Pharmacy, The University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
13
|
Luo X, Zhang Z, Mu R, Hu G, Liu L, Liu X. Simultaneously Predicting the Pharmacokinetics of CES1-Metabolized Drugs and Their Metabolites Using Physiologically Based Pharmacokinetic Model in Cirrhosis Subjects. Pharmaceutics 2024; 16:234. [PMID: 38399287 PMCID: PMC10893190 DOI: 10.3390/pharmaceutics16020234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Hepatic carboxylesterase 1 (CES1) metabolizes numerous prodrugs into active ingredients or direct-acting drugs into inactive metabolites. We aimed to develop a semi-physiologically based pharmacokinetic (semi-PBPK) model to simultaneously predict the pharmacokinetics of CES1 substrates and their active metabolites in liver cirrhosis (LC) patients. Six prodrugs (enalapril, benazepril, cilazapril, temocapril, perindopril and oseltamivir) and three direct-acting drugs (flumazenil, pethidine and remimazolam) were selected. Parameters such as organ blood flows, plasma-binding protein concentrations, functional liver volume, hepatic enzymatic activity, glomerular filtration rate (GFR) and gastrointestinal transit rate were integrated into the simulation. The pharmacokinetic profiles of these drugs and their active metabolites were simulated for 1000 virtual individuals. The developed semi-PBPK model, after validation in healthy individuals, was extrapolated to LC patients. Most of the observations fell within the 5th and 95th percentiles of simulations from 1000 virtual patients. The estimated AUC and Cmax were within 0.5-2-fold of the observed values. The sensitivity analysis showed that the decreased plasma exposure of active metabolites due to the decreased CES1 was partly attenuated by the decreased GFR. Conclusion: The developed PBPK model successfully predicted the pharmacokinetics of CES1 substrates and their metabolites in healthy individuals and LC patients, facilitating tailored dosing of CES1 substrates in LC patients.
Collapse
Affiliation(s)
| | | | | | | | - Li Liu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China; (X.L.); (Z.Z.); (R.M.); (G.H.)
| | - Xiaodong Liu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China; (X.L.); (Z.Z.); (R.M.); (G.H.)
| |
Collapse
|
14
|
Fodor E, Nagy RN, Nógrádi A, Toovey S, Kamal MA, Vadász P, Bencsik P, Görbe A, Ferdinandy P. An Observational Study on the Pharmacokinetics of Oseltamivir in Lactating Influenza Patients. Clin Pharmacol Ther 2024; 115:318-323. [PMID: 37975276 DOI: 10.1002/cpt.3107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
Influenza infection may lead to serious complications in the postpartum period, therefore, oseltamivir treatment in these patients and their breastfed infants is of great importance. However, the pharmacokinetics of oseltamivir in postpartum lactating women with acute influenza infection, and the consequent infant exposure to oseltamivir are still unknown, and these data would help in assessing risk and the need for dose adjustment in breastfed infants. Six lactating women with influenza-like symptoms, at a standard dose of 75 mg oral oseltamivir twice daily for 5 days, were recruited in this phase IV clinical study during the 2011/2012 H1N1 pandemic seasons. Breast milk/colostrum and venous blood samples were taken at multiple timepoints, maternal urine samples were obtained from total output within the 12-hour observational period following the seventh dose of oseltamivir. Oseltamivir phosphate (OP) reached a maximum 69.5 ± 29.4 ng/mL concentration in breast milk, higher than that found in the plasma, and showed elimination within ~ 8 hours. Oseltamivir carboxylate (active metabolite of OP) showed a lower, nearly steady-state concentration in breast milk during the observational period (maximum plasma concentration (Cmax ) = 38.4 ± 12.9 ng/mL). Based on estimated daily milk consumption of exclusively breastfed infants, their calculated daily exposure is < 0.1% of the infant dose of oseltamivir for treatment of influenza as per marketing authorization. Here, we provide the first maternal breast milk pharmacokinetic data for oral multiple-dose oseltamivir in lactating patients with influenza and showed that its concentration in the breast milk is not sufficient to reach a therapeutic dose for breastfed infants.
Collapse
Affiliation(s)
| | - Regina N Nagy
- MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | | | | | | | - Péter Vadász
- Department of Obstetrics and Gynecology, Selye János Hospital, Komárom, Hungary
| | - Péter Bencsik
- Pharmahungary Group, Szeged, Hungary
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Anikó Görbe
- Pharmahungary Group, Szeged, Hungary
- MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Péter Ferdinandy
- Pharmahungary Group, Szeged, Hungary
- MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| |
Collapse
|
15
|
Granda ML, Huang W, Yeung CK, Isoherranen N, Kestenbaum B. Predicting complex kidney drug handling using a physiologically-based pharmacokinetic model informed by biomarker-estimated secretory clearance and blood flow. Clin Transl Sci 2024; 17:e13678. [PMID: 37921258 PMCID: PMC10766039 DOI: 10.1111/cts.13678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/04/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023] Open
Abstract
Kidney function-adjusted drug dosing is currently based solely on the estimated glomerular filtration rate (GFR), however, kidney drug handling is accomplished by a combination of filtration, tubular secretion, and re-absorption. Mechanistic physiologically-based pharmacokinetic (PBPK) models recapitulate anatomic compartments to predict elimination from estimated perfusion, filtration, secretion, and re-absorption, but clinical applications are limited by a lack of empiric individual-level measurements of these functions. We adapted and validated a PBPK model to predict drug clearance from individual biomarker-based estimates of kidney perfusion and secretory clearance. We estimated organic anion transporter-mediated secretion via kynurenic acid clearance and kidney blood flow (KBF) via isovalerylglycine clearance in human participants, incorporating these measurements with GFR into the model to predict kidney drug clearance. We compared measured and model-predicted clearances of administered tenofovir and oseltamivir, which are cleared by both filtration and secretion. There were 27 outpatients (age 55 ± 15 years, mean iohexol-GFR [iGFR] 76 ± 31 mL/min/1.73 m2 ) in this drug clearance study. The mean observed and mechanistic model-predicted tenofovir clearances were 169 ± 102 mL/min and 163 ± 80 mL/min, respectively; estimated mean error of the mechanistic model was 37.1 mL/min (95% confidence interval [CI]: 24-52.9), compared to a mean error of 41.8 mL/min (95% CI: 25-61.6) from regression model. The mean observed and model-predicted oseltamivir carboxylate clearances were 183 ± 104 mL/min and 179 ± 89 mL/min, respectively; estimated mean error of the mechanistic model was 42.9 mL/min (95% CI: 29.7-56.4), versus error of 48.1 mL/min (95% CI: 31.2-67.3) from the regression model. Individualized estimates of tubular secretion and KBF improved the accuracy of PBPK model-predicted tenofovir and oseltamivir kidney clearances, suggesting the potential for biomarker-informed measures of kidney function to refine personalized drug dosing.
Collapse
Affiliation(s)
- Michael L. Granda
- Division of Nephrology, Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
- Kidney Research InstituteSeattleWashingtonUSA
| | - Weize Huang
- Clinical PharmacologyGenentech Inc.South San FranciscoCaliforniaUSA
- Department of Pharmaceutics, School of PharmacyUniversity of WashingtonSeattleWashingtonUSA
| | - Catherine K. Yeung
- Kidney Research InstituteSeattleWashingtonUSA
- Department of Pharmacy, School of PharmacyUniversity of WashingtonSeattleWashingtonUSA
| | - Nina Isoherranen
- Department of Pharmaceutics, School of PharmacyUniversity of WashingtonSeattleWashingtonUSA
| | - Bryan Kestenbaum
- Division of Nephrology, Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
- Kidney Research InstituteSeattleWashingtonUSA
| |
Collapse
|
16
|
Chaira T, Subramani C, Barman TK. ADME, Pharmacokinetic Scaling, Pharmacodynamic and Prediction of Human Dose and Regimen of Novel Antiviral Drugs. Pharmaceutics 2023; 15:pharmaceutics15041212. [PMID: 37111697 PMCID: PMC10146820 DOI: 10.3390/pharmaceutics15041212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The search for new drugs is an extremely time-consuming and expensive endeavour. Much of that time and money go into generating predictive human pharmacokinetic profiles from preclinical efficacy and safety animal data. These pharmacokinetic profiles are used to prioritize or minimize the attrition at later stages of the drug discovery process. In the area of antiviral drug research, these pharmacokinetic profiles are equally important for the optimization, estimation of half-life, determination of effective dose, and dosing regimen, in humans. In this article we have highlighted three important aspects of these profiles. First, the impact of plasma protein binding on two primary pharmacokinetic parameters-volume of distribution and clearance. Second, interdependence of primary parameters on unbound fraction of the drug. Third, the ability to extrapolate human pharmacokinetic parameters and concentration time profiles from animal profiles.
Collapse
Affiliation(s)
- Tridib Chaira
- Department of Pharmacology, SGT University, Gurugram 122505, Haryana, India
| | - Chandru Subramani
- Department of Pathology, Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Tarani Kanta Barman
- Department of Pathology, Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77550, USA
| |
Collapse
|
17
|
Batool S, Chokkakula S, Song MS. Influenza Treatment: Limitations of Antiviral Therapy and Advantages of Drug Combination Therapy. Microorganisms 2023; 11:183. [PMID: 36677475 PMCID: PMC9865513 DOI: 10.3390/microorganisms11010183] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/23/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Influenza infection is serious and debilitating for humans and animals. The influenza virus undergoes incessant mutation, segment recombination, and genome reassortment. As a result, new epidemics and pandemics are expected to emerge, making the elimination challenging of the disease. Antiviral therapy has been used for the treatment of influenza since the development of amantadine in the 1960s; however, its use is hampered by the emergence of novel strains and the development of drug resistance. Thus, combinational therapy with two or more antivirals or immunomodulators with different modes of action is the optimal strategy for the effective treatment of influenza infection. In this review, we describe current options for combination therapy, their performance, and constraints imposed by resistance, calling attention to the advantages of combination therapy against severe influenza infections. We also discuss the challenges of influenza therapy and the limitations of approved antiviral drugs.
Collapse
Affiliation(s)
| | | | - Min-Suk Song
- Department of Microbiology, Chungbuk National University, College of Medicine and Medical Research Institute, Cheongju 28644, Chungbuk, Republic of Korea
| |
Collapse
|
18
|
Agamennone M, Fantacuzzi M, Vivenzio G, Scala MC, Campiglia P, Superti F, Sala M. Antiviral Peptides as Anti-Influenza Agents. Int J Mol Sci 2022; 23:11433. [PMID: 36232735 PMCID: PMC9569631 DOI: 10.3390/ijms231911433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Influenza viruses represent a leading cause of high morbidity and mortality worldwide. Approaches for fighting flu are seasonal vaccines and some antiviral drugs. The development of the seasonal flu vaccine requires a great deal of effort, as careful studies are needed to select the strains to be included in each year's vaccine. Antiviral drugs available against Influenza virus infections have certain limitations due to the increased resistance rate and negative side effects. The highly mutative nature of these viruses leads to the emergence of new antigenic variants, against which the urgent development of new approaches for antiviral therapy is needed. Among these approaches, one of the emerging new fields of "peptide-based therapies" against Influenza viruses is being explored and looks promising. This review describes the recent findings on the antiviral activity, mechanism of action and therapeutic capability of antiviral peptides that bind HA, NA, PB1, and M2 as a means of countering Influenza virus infection.
Collapse
Affiliation(s)
- Mariangela Agamennone
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Marialuigia Fantacuzzi
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Giovanni Vivenzio
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Maria Carmina Scala
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Fabiana Superti
- National Centre for Innovative Technologies in Public Health, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Marina Sala
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| |
Collapse
|
19
|
A single-administration therapeutic interfering particle reduces SARS-CoV-2 viral shedding and pathogenesis in hamsters. Proc Natl Acad Sci U S A 2022; 119:e2204624119. [PMID: 36074824 PMCID: PMC9522362 DOI: 10.1073/pnas.2204624119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The high transmissibility of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a primary driver of the COVID-19 pandemic. While existing interventions prevent severe disease, they exhibit mixed efficacy in preventing transmission, presumably due to their limited antiviral effects in the respiratory mucosa, whereas interventions targeting the sites of viral replication might more effectively limit respiratory virus transmission. Recently, intranasally administered RNA-based therapeutic interfering particles (TIPs) were reported to suppress SARS-CoV-2 replication, exhibit a high barrier to resistance, and prevent serious disease in hamsters. Since TIPs intrinsically target the tissues with the highest viral replication burden (i.e., respiratory tissues for SARS-CoV-2), we tested the potential of TIP intervention to reduce SARS-CoV-2 shedding. Here, we report that a single, postexposure TIP dose lowers SARS-CoV-2 nasal shedding, and at 5 days postinfection, infectious virus shed is below detection limits in 4 out of 5 infected animals. Furthermore, TIPs reduce shedding of Delta variant or WA-1 from infected to uninfected hamsters. Cohoused "contact" animals exposed to infected, TIP-treated animals exhibited significantly lower viral loads, reduced inflammatory cytokines, no severe lung pathology, and shortened shedding duration compared to animals cohoused with untreated infected animals. TIPs may represent an effective countermeasure to limit SARS-CoV-2 transmission.
Collapse
|
20
|
A single-administration therapeutic interfering particle reduces SARS-CoV-2 viral shedding and pathogenesis in hamsters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022. [PMID: 35982679 DOI: 10.1101/2022.08.10.503534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The high transmissibility of SARS-CoV-2 is a primary driver of the COVID-19 pandemic. While existing interventions prevent severe disease, they exhibit mixed efficacy in preventing transmission, presumably due to their limited antiviral effects in the respiratory mucosa, whereas interventions targeting the sites of viral replication might more effectively limit respiratory virus transmission. Recently, intranasally administered RNA-based therapeutic interfering particles (TIPs) were reported to suppress SARS-CoV-2 replication, exhibit a high barrier to resistance, and prevent serious disease in hamsters. Since TIPs intrinsically target the tissues with the highest viral replication burden (i.e., respiratory tissues for SARS-CoV-2), we tested the potential of TIP intervention to reduce SARS-CoV-2 shedding. Here, we report that a single, post-exposure TIP dose lowers SARS-CoV-2 nasal shedding and at 5 days post-infection infectious virus shed is below detection limits in 4 out of 5 infected animals. Furthermore, TIPs reduce shedding of Delta variant or WA-1 from infected to uninfected hamsters. Co-housed 'contact' animals exposed to infected, TIP-treated, animals exhibited significantly lower viral loads, reduced inflammatory cytokines, no severe lung pathology, and shortened shedding duration compared to animals co-housed with untreated infected animals. TIPs may represent an effective countermeasure to limit SARS-CoV-2 transmission. Significance COVID-19 vaccines are exceptionally effective in preventing severe disease and death, but they have mixed efficacy in preventing virus transmission, consistent with established literature that parenteral vaccines for other viruses fail to prevent mucosal virus shedding or transmission. Likewise, small-molecule antivirals, while effective in reducing viral-disease pathogenesis, also appear to have inconsistent efficacy in preventing respiratory virus transmission including for SARS-CoV-2. Recently, we reported the discovery of a single-administration antiviral Therapeutic Interfering Particle (TIP) against SARS-CoV-2 that prevents severe disease in hamsters and exhibits a high genetic barrier to the evolution of resistance. Here, we report that TIP intervention also reduces SARS-CoV-2 transmission between hamsters.
Collapse
|
21
|
Medeiros JJS, Costa TM, Carmo MP, Nascimento DD, Lauro ENC, Oliveira CA, Duque MD, Prado LD. Efficient drug development of oseltamivir capsules based on process control, bioequivalence and PBPK modeling. Drug Dev Ind Pharm 2022; 48:146-157. [DOI: 10.1080/03639045.2022.2102647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Juliana J. S. Medeiros
- Coordenação de Desenvolvimento Tecnológico, Instituto de Tecnologia em Farmacos, Farmanguinhos, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Thiago M. Costa
- Laboratório de Tecnologia Farmacêutica, Instituto de Tecnologia em Farmacos, Farmanguinhos, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Mariana P. Carmo
- Laboratório de Tecnologia Farmacêutica, Instituto de Tecnologia em Farmacos, Farmanguinhos, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Diogo D. Nascimento
- Laboratório de Desenvolvimento e Validação Analítica, Instituto de Tecnologia em Farmacos, Farmanguinhos, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Eduardo N. C. Lauro
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Diadema, Brazil
| | - Camila A. Oliveira
- Laboratório de Desenvolvimento e Validação Analítica, Instituto de Tecnologia em Farmacos, Farmanguinhos, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Marcelo D. Duque
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Diadema, Brazil
| | - Livia D. Prado
- Laboratório de Desenvolvimento e Validação Analítica, Instituto de Tecnologia em Farmacos, Farmanguinhos, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
22
|
Świerczyńska M, Mirowska-Guzel DM, Pindelska E. Antiviral Drugs in Influenza. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19053018. [PMID: 35270708 PMCID: PMC8910682 DOI: 10.3390/ijerph19053018] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 11/30/2022]
Abstract
Flu is a serious health, medical, and economic problem, but no therapy is yet available that has satisfactory results and reduces the occurrence of these problems. Nearly 20 years after the registration of the previous therapy, baloxavir marboxil, a drug with a new mechanism of action, recently appeared on the market. This is a promising step in the fight against the influenza virus. This article presents the possibilities of using all available antiviral drugs specific for influenza A and B. We compare all currently recommended anti-influenza medications, considering their mechanisms of action, administration, indications, target groups, effectiveness, and safety profiles. We demonstrate that baloxavir marboxil presents a similar safety and efficacy profile to those of drugs already used in the treatment of influenza. Further research on combination therapy is highly recommended and may have promising results.
Collapse
Affiliation(s)
- Magdalena Świerczyńska
- Centre for Preclinical Research and Technology CePT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland;
| | - Dagmara M. Mirowska-Guzel
- Centre for Preclinical Research and Technology CePT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland;
- Correspondence: ; Tel.: +48-22-116-6160; Fax: +48-22-116-6202
| | - Edyta Pindelska
- Department of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B, 02-093 Warsaw, Poland;
| |
Collapse
|
23
|
Abstract
The neuraminidase (NA) of influenza A and B viruses plays a distinct role in viral replication and has a highly conserved catalytic site. Numerous sialic (neuraminic) acid analogs that competitively bind to the NA active site and potently inhibit enzyme activity have been synthesized and tested. Four NA inhibitors are now licensed in various parts of the world (zanamivir, oseltamivir, peramivir, and laninamivir) to treat influenza A and B infections. NA changes, naturally occurring or acquired under selective pressure, have been shown to reduce drug binding, thereby affecting the effectiveness of NA inhibitors. Drug resistance and other drawbacks have prompted the search for the next-generation NA-targeting therapeutics. One of the promising approaches is the identification of monoclonal antibodies (mAbs) targeting the conserved NA epitopes. Anti-NA mAbs demonstrate Fab-based antiviral activity supplemented with Fc-mediated immune effector functions. Antiviral Fc-conjugates offer another cutting-edge strategy that is based on a multimodal mechanism of action. These novel antiviral agents are composed of a small-molecule NA inhibitor and an Fc-region that simultaneously engages the immune system. The significant advancements made in recent years further support the value of NA as an attractive target for the antiviral development.
Collapse
Affiliation(s)
- Larisa Gubareva
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30329-4027, USA
| | - Teena Mohan
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30329-4027, USA
| |
Collapse
|
24
|
Traccis F, Presciuttini R, Pani PP, Sinclair JMA, Leggio L, Agabio R. Alcohol-medication interactions: A systematic review and meta-analysis of placebo-controlled trials. Neurosci Biobehav Rev 2021; 132:519-541. [PMID: 34826511 DOI: 10.1016/j.neubiorev.2021.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 09/20/2021] [Accepted: 11/15/2021] [Indexed: 11/28/2022]
Abstract
Alcohol and other xenobiotics may limit the therapeutic effects of medications. We aimed at investigating alcohol-medication interactions (AMI) after the exclusion of confounding effects related to other xenobiotics. We performed a systematic review and meta-analysis of controlled studies comparing the effects induced by alcohol versus placebo on pharmacodynamic and/or pharmacokinetic parameters of approved medications. Certainty in the evidence of AMI was assessed when at least 3 independent studies and at least 200 participants were available. We included 107 articles (3097 participants): for diazepam, cannabis, opioids, and methylphenidate, we found significant AMI and enough data to assign the certainty of evidence. Alcohol consumption significantly increases the peak plasma concentration of diazepam (low certainty; almost 290 participants), cannabis (high certainty; almost 650 participants), opioids (low certainty; 560 participants), and methylphenidate (moderate certainty; 290 participants). For most medications, we found some AMI but not enough data to assign them the certainty grades; for some medications, we found no differences between alcohol and placebo in any outcomes evaluated. Our results add further evidence for interactions between alcohol and certain medications after the exclusion of confounding effects related to other xenobiotics. Physicians should advise patients who use these specific medications to avoid alcohol consumption. Further studies with appropriate control groups, enough female participants to investigate sex differences, and elderly population are needed to expand our knowledge in this field. Short phrases suitable for indexing terms.
Collapse
Affiliation(s)
- Francesco Traccis
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy.
| | - Riccardo Presciuttini
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy.
| | - Pier Paolo Pani
- Health Social Services Public Health Trust Sardinia, Cagliari, Italy.
| | | | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism, Division of Intramural Clinical and Basic Research, National Institutes of Health, Baltimore and Bethesda, MD, United States; Medication Development Program, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, United States; Center for Alcohol and Addiction Studies, Brown University, Providence, RI, United States; Division of Addiction Medicine, Department of Medicine, Johns Hopkins University, Baltimore, MD, United States; Department of Neuroscience, Georgetown University, Washington, DC, United States.
| | - Roberta Agabio
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy.
| |
Collapse
|
25
|
Ju H, Murugan NA, Hou L, Li P, Guizzo L, Zhang Y, Bertagnin C, Kong X, Kang D, Jia R, Ma X, Du R, Poongavanam V, Loregian A, Huang B, Liu X, Zhan P. Identification of C5-NH 2 Modified Oseltamivir Derivatives as Novel Influenza Neuraminidase Inhibitors with Highly Improved Antiviral Activities and Favorable Druggability. J Med Chem 2021; 64:17992-18009. [PMID: 34735766 DOI: 10.1021/acs.jmedchem.1c01366] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Our previous efforts have proved that modifications targeting the 150-cavity of influenza neuraminidase can achieve more potent and more selective inhibitors. In this work, four subseries of C5-NH2 modified oseltamivir derivatives were designed and synthesized to explore every region inside the 150-cavity. Among them, compound 23d was exceptionally potent against the whole panel of Group-1 NAs with IC50 values ranging from 0.26 to 0.73 nM, being 15-53 times better than oseltamivir carboxylate (OSC) and 7-11 times better than zanamivir. In cellular assays, 23d showed more potent or equipotent antiviral activities against corresponding virus strains compared to OSC with no cytotoxicity. Furthermore, 23d exhibited high metabolic stability in human liver microsomes (HLM) and low inhibitory effect on main cytochrome P450 enzymes. Notably, 23d displayed favorable druggability in vivo and potent antiviral efficacy in the embryonated egg model and mice model. Overall, 23d appears to be a promising candidate for the treatment of influenza virus infection.
Collapse
Affiliation(s)
- Han Ju
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, P.R. China
| | - N Arul Murugan
- Department of Computer Science, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm SE-10044 , Sweden
| | - Lingxin Hou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, P.R. China
| | - Ping Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Laura Guizzo
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, Padova 35121, Italy
| | - Ying Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, P.R. China
| | - Chiara Bertagnin
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, Padova 35121, Italy
| | - Xiujie Kong
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, P.R. China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, P.R. China
| | - Ruifang Jia
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, P.R. China
| | - Xiuli Ma
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, 202 North Gongye Road, Jinan, Shandong 250100, China
| | - Ruikun Du
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Vasanthanathan Poongavanam
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Arianna Loregian
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, Padova 35121, Italy
| | - Bing Huang
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, 202 North Gongye Road, Jinan, Shandong 250100, China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, P.R. China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
26
|
Campesi I, Racagni G, Franconi F. Just a Reflection: Does Drug Repurposing Perpetuate Sex-Gender Bias in the Safety Profile? Pharmaceuticals (Basel) 2021; 14:730. [PMID: 34451827 PMCID: PMC8402096 DOI: 10.3390/ph14080730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 02/08/2023] Open
Abstract
Vaccines constitute a strategy to reduce the burden of COVID-19, but the treatment of COVID-19 is still a challenge. The lack of approved drugs for severe COVID-19 makes repurposing or repositioning of approved drugs a relevant approach because it occurs at lower costs and in a shorter time. Most preclinical and clinical tests, including safety and pharmacokinetic profiles, were already performed. However, infective and inflammatory diseases such as COVID-19 are linked with hypoalbuminemia and downregulation of both phase I and phase II drug-metabolizing enzymes and transporters, which can occur in modifications of pharmacokinetics and consequentially of safety profiles. This appears to occur in a sex- and gender-specific way because of the sex and gender differences present in the immune system and inflammation, which, in turn, reflect on pharmacokinetic parameters. Therefore, to make better decisions about drug dosage regimens and to increases the safety profile in patients suffering from infective and inflammatory diseases such as COVID-19, it is urgently needed to study repurposing or repositioning drugs in men and in women paying attention to pharmacokinetics, especially for those drugs that are previously scarcely evaluated in women.
Collapse
Affiliation(s)
- Ilaria Campesi
- Department of Biomedical Science, University of Sassari, 07100 Sassari, Italy
- National Laboratory of Pharmacology and Gender Medicine, National Institute of Biostructure and Biosystem, 07100 Sassari, Italy;
| | - Giorgio Racagni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy;
| | - Flavia Franconi
- National Laboratory of Pharmacology and Gender Medicine, National Institute of Biostructure and Biosystem, 07100 Sassari, Italy;
| |
Collapse
|
27
|
Kuroda K, Li C, Dhangar K, Kumar M. Predicted occurrence, ecotoxicological risk and environmentally acquired resistance of antiviral drugs associated with COVID-19 in environmental waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 776:145740. [PMID: 33647647 PMCID: PMC7883697 DOI: 10.1016/j.scitotenv.2021.145740] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 05/18/2023]
Abstract
Antiviral drugs have been used to treat the ever-growing number of coronavirus disease, 2019 (COVID-19) patients. Consequently, unprecedented amounts of such drug residues discharging into ambient waters raise concerns on the potential ecotoxicological effects to aquatic lives, as well as development of antiviral drug-resistance in wildlife. Here, we estimated the occurrence, fate and ecotoxicological risk of 11 therapeutic agents suggested as drugs for COVID-19 treatment and their 13 metabolites in wastewater and environmental waters, based on drug consumption, physical-chemical property, and ecotoxicological and pharmacological data for the drugs, with the aid of quantitative structure-activity relationship (QSAR) modelling. Our results suggest that the removal efficiencies at conventional wastewater treatment plants will remain low (<20%) for half of the substances, and consequently, high drug residues (e.g. 7402 ng/L ribavirin, 4231 ng/L favipiravir, 730 ng/L lopinavir, 319 ng/L remdesivir; each combined for both unchanged forms and metabolites; and when each drug is administered to 100 patients out of 100,000 populations on a day) can be present in secondary effluents and persist in the environmental waters. Ecotoxicological risk in receiving river waters can be high (risk quotient >1) by a use of favipiravir, lopinavir, umifenovir and ritonavir, and medium (risk quotient >0.1) by a use of chloroquine, hydroxychloroquine, remdesivir, and ribavirin, while the risk will remain low (risk quotient <0.1) for dexamethasone and oseltamivir. The potential of wild animals acquiring antiviral drug resistance was estimated to be low. Our prediction suggests a pressing need for proper usage and waste management of antiviral drugs as well as for improving removal efficiencies of drug residues in wastewater.
Collapse
Affiliation(s)
- Keisuke Kuroda
- Department of Environmental and Civil Engineering, Toyama Prefectural University, Toyama 939 0398, Japan.
| | - Cong Li
- Department of Environmental and Civil Engineering, Toyama Prefectural University, Toyama 939 0398, Japan
| | - Kiran Dhangar
- Discipline of Earth Science, Indian Institute of Technology Gandhinagar, Gujarat 382 355, India
| | - Manish Kumar
- Discipline of Earth Science, Indian Institute of Technology Gandhinagar, Gujarat 382 355, India
| |
Collapse
|
28
|
Ağagündüz D, Çelik MN, Çıtar Dazıroğlu ME, Capasso R. Emergent Drug and Nutrition Interactions in COVID-19: A Comprehensive Narrative Review. Nutrients 2021; 13:1550. [PMID: 34064534 PMCID: PMC8147951 DOI: 10.3390/nu13051550] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 01/08/2023] Open
Abstract
Coronaviruses are a large family of viruses that are known to cause respiratory tract infections ranging from colds to more severe diseases, such as Middle East Respiratory Syndrome (MERS) and the Severe Acute Respiratory Syndrome (SARS). New Coronavirus Disease 2019 (COVID-19), which led to deaths as well as social and economic disruptions, is an ongoing worldwide pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Currently, there is no approved treatment for COVID-19. Hence, only supportive care has been approved by the World Health Organization (WHO) for now. Pharmacological agents used for the adjunctive treatment of COVID-19 following the current literature and clinical experiences include antiviral, anti-inflammatory, and anti-malaria drugs, and other traditional or untraditional treatments. However, it has been reported that the use of these drugs may have some negative effects and comorbidities. Moreover, the current data have indicated that the risk of drug-drug interactions may also be high in polypharmacy cases, especially in elderly people, some comorbidity situations, and intensive care unit (ICU) patients. It is highly possible that these situations can not only increase the risk of drug-drug interactions but also increase the risk of food/nutrition-drug interactions and affect the nutritional status. However, this issue has not yet been entirely discussed in the literature. In this review, current information on the possible mechanisms as well as pharmacokinetic and pharmacodynamic effects of some pharmacological agents used in the treatment of COVID-19 and/or their secondary interactions with nutrition were evaluated and some future directions were given.
Collapse
Affiliation(s)
- Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Emek, Ankara 06490, Turkey; (M.N.Ç.); (M.E.Ç.D.)
| | - Menşure Nur Çelik
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Emek, Ankara 06490, Turkey; (M.N.Ç.); (M.E.Ç.D.)
| | - Merve Esra Çıtar Dazıroğlu
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Emek, Ankara 06490, Turkey; (M.N.Ç.); (M.E.Ç.D.)
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy
| |
Collapse
|
29
|
Fricke-Galindo I, Falfán-Valencia R. Pharmacogenetics Approach for the Improvement of COVID-19 Treatment. Viruses 2021; 13:413. [PMID: 33807592 PMCID: PMC7998786 DOI: 10.3390/v13030413] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/22/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022] Open
Abstract
The treatment of coronavirus disease 2019 (COVID-19) has been a challenge. The efficacy of several drugs has been evaluated and variability in drug response has been observed. Pharmacogenetics could explain this variation and improve patients' outcomes with this complex disease; nevertheless, several disease-related issues must be carefully reviewed in the pharmacogenetic study of COVID-19 treatment. We aimed to describe the pharmacogenetic variants reported for drugs used for COVID-19 treatment (remdesivir, oseltamivir, lopinavir, ritonavir, azithromycin, chloroquine, hydroxychloroquine, ivermectin, and dexamethasone). In addition, other factors relevant to the design of pharmacogenetic studies were mentioned. Variants in CYP3A4, CYP3A5, CYP2C8, CY2D6, ABCB1, ABCC2, and SLCO1B1, among other variants, could be included in pharmacogenetic studies of COVID-19 treatment. Besides, nongenetic factors such as drug-drug interactions and inflammation should be considered in the search for personalized therapy of COVID-19.
Collapse
Affiliation(s)
| | - Ramcés Falfán-Valencia
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico;
| |
Collapse
|
30
|
Jones TE. Oseltamivir-Current Dosing Recommendations Reduce the Therapeutic Benefit in Patients With Mild to Moderate Renal Function and/or Large Body Mass: A Review of the Literature With Recommendations to Optimize Dosing, Including the Use of Therapeutic Drug Monitoring. Ther Drug Monit 2021; 43:103-107. [PMID: 32947554 DOI: 10.1097/ftd.0000000000000797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/01/2020] [Indexed: 11/25/2022]
Abstract
PURPOSE Oseltamivir is indicated for the treatment and prophylaxis of influenza infections. Achieving therapeutic concentrations EARLY in the course of the infection impacts greatly on the magnitude of benefit. Oseltamivir is renally cleared and dose reductions are advised for patients with renal impairment. The purpose of this review was to determine whether these dose reductions facilitate the early attainment of therapeutic concentrations. The review also examined the effect of body mass on the same outcome. METHOD Oseltamivir is administered as a prodrug and converted to the active carboxylate moiety in the liver. Published articles that included oseltamivir carboxylate (OC) pharmacokinetics in patients with renal impairment and those with large body mass were reviewed. Concentrations of OC achieved in the first 24 hours were compared with those from patients with normal renal function and body mass. RESULTS Studies that informed dosage regimens for patients with mild to moderately impaired renal function focused on attaining steady-state concentrations similar to those observed in patients with normal renal function. They overlooked the importance of achieving therapeutic concentrations EARLY in the course of the infection. As a result, many patients will not attain therapeutic concentrations until too late in the infection. This is also true for patients with a large body mass. CONCLUSIONS Current dosing advice for oseltamivir in patients with mild to moderate renal impairment and those with a larger body mass are likely to reduce (or even negate) its efficacy. The first dose should be 75 mg for patients with normal body mass and proportionately larger when body mass is larger. Subsequent doses should be reduced in proportion to the degree of renal impairment. Timely therapeutic drug monitoring can provide invaluable dosing (and other) information to the clinician treating patients with influenza and could improve patient outcomes.
Collapse
Affiliation(s)
- Terry E Jones
- Pharmacy Department, The Queen Elizabeth Hospital, Woodville, Australia
| |
Collapse
|
31
|
Cruz-Teran C, Tiruthani K, McSweeney M, Ma A, Pickles R, Lai SK. Challenges and opportunities for antiviral monoclonal antibodies as COVID-19 therapy. Adv Drug Deliv Rev 2021; 169:100-117. [PMID: 33309815 PMCID: PMC7833882 DOI: 10.1016/j.addr.2020.12.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/30/2020] [Accepted: 12/05/2020] [Indexed: 01/08/2023]
Abstract
To address the COVID-19 pandemic, there has been an unprecedented global effort to advance potent neutralizing mAbs against SARS-CoV-2 as therapeutics. However, historical efforts to advance antiviral monoclonal antibodies (mAbs) for the treatment of other respiratory infections have been met with categorical failures in the clinic. By investigating the mechanism by which SARS-CoV-2 and similar viruses spread within the lung, along with available biodistribution data for systemically injected mAb, we highlight the challenges faced by current antiviral mAbs for COVID-19. We summarize some of the leading mAbs currently in development, and present the evidence supporting inhaled delivery of antiviral mAb as an early intervention against COVID-19 that could prevent important pulmonary morbidities associated with the infection.
Collapse
Affiliation(s)
- Carlos Cruz-Teran
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Karthik Tiruthani
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Alice Ma
- UNC/NCSU Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Raymond Pickles
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Samuel K Lai
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Inhalon Biopharma, Durham, NC 27709, USA; UNC/NCSU Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
32
|
Arlauckas S, Oh N, Li R, Weissleder R, Miller MA. Macrophage imaging and subset analysis using single-cell RNA sequencing. Nanotheranostics 2021; 5:36-56. [PMID: 33391974 PMCID: PMC7738942 DOI: 10.7150/ntno.50185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
Macrophages have been associated with drug response and resistance in diverse settings, thus raising the possibility of using macrophage imaging as a companion diagnostic to inform personalized patient treatment strategies. Nanoparticle-based contrast agents are especially promising because they efficiently deliver fluorescent, magnetic, and/or radionuclide labels by leveraging the intrinsic capacity of macrophages to accumulate nanomaterials in their role as professional phagocytes. Unfortunately, current clinical imaging modalities are limited in their ability to quantify broad molecular programs that may explain (a) which particular cell subsets a given imaging agent is actually labeling, and (b) what mechanistic role those cells play in promoting drug response or resistance. Highly multiplexed single-cell approaches including single-cell RNA sequencing (scRNAseq) have emerged as resources to help answer these questions. In this review, we query recently published scRNAseq datasets to support companion macrophage imaging, with particular focus on using dextran-based nanoparticles to predict the action of anti-cancer nanotherapies and monoclonal antibodies.
Collapse
Affiliation(s)
- Sean Arlauckas
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA
| | - Nuri Oh
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA
| | - Ran Li
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA.,Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA.,Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA.,Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Miles A Miller
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA.,Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
33
|
Learning from past failures: Challenges with monoclonal antibody therapies for COVID-19. J Control Release 2020; 329:87-95. [PMID: 33276017 PMCID: PMC7836766 DOI: 10.1016/j.jconrel.2020.11.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/25/2020] [Accepted: 11/29/2020] [Indexed: 01/08/2023]
Abstract
COVID-19, the disease caused by infection with SARS-CoV-2, requires urgent development of therapeutic interventions. Due to their safety, specificity, and potential for rapid advancement into the clinic, monoclonal antibodies (mAbs) represent a highly promising class of antiviral or anti-inflammatory agents. Herein, by analyzing prior efforts to advance antiviral mAbs for other acute respiratory infections (ARIs), we highlight the challenges faced by mAb-based immunotherapies for COVID-19. We present evidence supporting early intervention immediately following a positive diagnosis via inhaled delivery of mAbs with vibrating mesh nebulizers as a promising approach for the treatment of COVID-19.
Collapse
|
34
|
Shimizu M, Fukami T, Ogawa H, Taniguchi T, Nomura Y, Nakajima M. Systematic Approach for Screening of Prodrugs: Evaluation Using Oseltamivir Analogues as Models. J Pharm Sci 2020; 110:925-934. [PMID: 33065127 DOI: 10.1016/j.xphs.2020.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 11/18/2022]
Abstract
Prodrug development is a common approach in drug development. In a recent study, we established a systematic strategy for selecting prodrugs with improved membrane permeability or solubility based on log D value, solubility in artificial intestinal fluids, membrane permeability, and metabolic instability. The purpose of this study was to evaluate the utility of this strategy using oseltamivir and 23 kinds of oseltamivir analogues having various types of side chain as well as their active metabolite, oseltamivir acid. Log D values of oseltamivir and analogues (2.0 to 4.9) were higher than that of oseltamivir acid (0.7), supporting the previous development of oseltamivir to improve permeability of oseltamivir acid. Solubilities of analogues in artificial intestinal fluids were over 80%, except the compound with the highest lipophilicity. Positive correlation was observed between membrane permeability and log D values of analogues. In metabolic profiles, species differences in the hydrolysis efficiency were observed depending on analogues. Using our strategy, it was demonstrated that oseltamivir and some analogues are appropriate prodrugs that could be advanced to in vivo pharmacokinetic studies, with selection of suitable animals. This study confirmed the utility of our strategy for narrowing down of candidate compounds to proceed into in vivo study.
Collapse
Affiliation(s)
- Mai Shimizu
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; Drug Metabolism and Pharmacokinetics Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Osaka, Japan.
| | - Tatsuki Fukami
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Hiroyuki Ogawa
- Chemical Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Osaka, Japan
| | - Toshio Taniguchi
- Drug Metabolism and Pharmacokinetics Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Osaka, Japan
| | - Yukihiro Nomura
- Drug Metabolism and Pharmacokinetics Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Osaka, Japan
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| |
Collapse
|
35
|
Bodo EC, Boucher EA, Shultz KH. Oseltamivir-Associated Supraventricular Tachycardia in an Infant. J Pediatr Pharmacol Ther 2020; 25:654-657. [PMID: 33041722 DOI: 10.5863/1551-6776-25.7.654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Oseltamivir is a neuraminidase inhibitor that is labeled for prophylaxis and treatment of influenza. We describe a previously healthy 4-month-old infant who tested positive for influenza A and was started on oseltamivir. One hour after receiving his first dose of oseltamivir, the infant had a diaphoretic episode and appeared grey and clammy. The infant was subsequently seen by the primary care physician and referred for admission to the hospital. Approximately 40 minutes after the second dose of oseltamivir in the hospital, the infant's heart rate rose to greater than 300 bpm. An electrocardiogram was suggestive of supraventricular tachycardia. At the time of the event, the infant received 2 doses of adenosine, and oseltamivir was discontinued prior to transfer to a tertiary facility for a higher level of care.
Collapse
|
36
|
Sturm S, Lemenuel-Diot A, Patel K, Gibiansky L, Bhardwaj R, Smith PF, Dang S, Zwanziger E, Nasmyth-Miller C, Ravva P. Pharmacologic effects of oseltamivir in immunocompromised adult patients as assessed by population PK/PD analysis and drug-disease modelling for dosing regimen optimization. Br J Clin Pharmacol 2020; 87:1359-1368. [PMID: 32808306 PMCID: PMC8246794 DOI: 10.1111/bcp.14523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 01/04/2023] Open
Abstract
Aim Pharmacologic effects were analysed to determine a dose recommendation for oseltamivir in immunocompromised (IC) adults with influenza. Methods Quantitative clinical pharmacology methods were applied to data from 160 adult IC patients (aged 18‐78 years) from two studies (NV20234, 150 patients; NV25118, 10 patients) who received oseltamivir 75‐200 mg twice daily for up to 10 days. An established population‐pharmacokinetic (PK) model with additional effects on oseltamivir and oseltamivir carboxylate (OC) clearance described the PK characteristics of oseltamivir in IC patients versus otherwise healthy (OwH) patients from previous clinical trials. Estimated PK parameters were used to evaluate exposure‐response relationships for virologic endpoints (time to cessation of viral shedding, viral load measures and treatment‐emergent resistance). A drug‐disease model characterized the viral kinetics of influenza accounting for the effect of OC on viral production. Results Oseltamivir clearance was 32.5% lower (95% confidence interval [CI], 26.1‐38.8) and OC clearance was 33.7% lower (95% CI, 23.2‐44.1) in IC versus OwH patients. No notable exposure‐response relationships were identified for exposures higher than those achieved after conventional dose oseltamivir 75 mg, which appeared to be close to the maximum effect of oseltamivir. Simulations of the drug‐disease model predicted that initiating treatment within 48 hours of symptom onset had maximum impact, and a treatment duration of 10 days was favourable over 3‐5 days to limit viral rebound. Conclusions Our findings support the use of conventional‐dose oseltamivir 75 mg twice daily for 10 days in the treatment of IC adult patients with influenza.
Collapse
Affiliation(s)
- Stefan Sturm
- Roche Innovation Center Basel, Roche Pharmaceutical Research and Early Development, Basel, Switzerland
| | - Annabelle Lemenuel-Diot
- Roche Innovation Center Basel, Roche Pharmaceutical Research and Early Development, Basel, Switzerland
| | | | | | | | | | - Steve Dang
- Roche Innovation Center New York, Roche Pharmaceutical Research and Early Development, New York, NY, USA
| | - Elke Zwanziger
- Roche Innovation Center Basel, Roche Pharmaceutical Research and Early Development, Basel, Switzerland
| | | | - Patanjali Ravva
- Roche Innovation Center New York, Roche Pharmaceutical Research and Early Development, New York, NY, USA
| |
Collapse
|
37
|
Efficacy and mechanism of actions of natural antimicrobial drugs. Pharmacol Ther 2020; 216:107671. [PMID: 32916205 DOI: 10.1016/j.pharmthera.2020.107671] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
Microbial infections have significantly increased over the last decades, and the mortality rates remain unacceptably high. The emergence of new resistance patterns and the spread of new viruses challenge the eradication of infectious diseases. The declining efficacy of antimicrobial drugs has become a global public health problem. Natural products derived from natural sources, such as plants, animals, and microorganisms, have significant efficacy for the treatment of infectious diseases accompanied by less adverse effects, synergy, and ability to overcome drug resistance. As the Chinese female scientist Youyou Tu received the Nobel Prize for the antimalarial drug artemisinin, antimicrobial drugs developed from Traditional Chinese Medicine are expected to receive increasing attention again. This review summarizes the antimicrobial agents derived from natural products approved for nearly 20 years and describes their efficacy and mode of action. The aim of this unit is to review the current status of antimicrobial drugs from natural products in order to increase the value of natural products as a source of novel drug candidates for infectious diseases.
Collapse
|
38
|
Miao L, Mousa YM, Zhao L, Raines K, Seo P, Wu F. Using a Physiologically Based Pharmacokinetic Absorption Model to Establish Dissolution Bioequivalence Safe Space for Oseltamivir in Adult and Pediatric Populations. AAPS JOURNAL 2020; 22:107. [DOI: 10.1208/s12248-020-00493-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/28/2020] [Indexed: 11/30/2022]
|
39
|
Bialy D, Shelton H. Functional neuraminidase inhibitor resistance motifs in avian influenza A(H5Nx) viruses. Antiviral Res 2020; 182:104886. [PMID: 32750468 PMCID: PMC7534037 DOI: 10.1016/j.antiviral.2020.104886] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022]
Abstract
Neuraminidase inhibitors (NAIs) are antiviral agents recommended worldwide to treat or prevent influenza virus infections in humans. Past influenza virus pandemics seeded by zoonotic infection by avian influenza viruses (AIV) as well as the increasing number of human infections with AIV have shown the importance of having information about resistance to NAIs by avian NAs that could cross the species barrier. In this study we introduced four NAI resistance-associated mutations (N2 numbering) previously found in human infections into the NA of three current AIV subtypes of the H5Nx genotype that threaten the poultry industry and human health: highly pathogenic H5N8, H5N6 and H5N2. Using the established MUNANA assay we showed that a R292K substitution in H5N6 and H5N2 viruses significantly reduced susceptibility to three licenced NAIs: oseltamivir, zanamivir and peramivir. In contrast the mutations E119V, H274Y and N294S had more variable effects with NAI susceptibility being drug- and strain-specific. We measured the replicative fitness of NAI resistant H5N6 viruses and found that they replicated to comparable or significantly higher titres in primary chicken cells and in embryonated hens' eggs as compared to wild type - despite the NA activity of the viral neuraminidase proteins being reduced. The R292K and N294S drug resistant H5N6 viruses had single amino acid substitutions in their haemagglutinin (HA): Y98F and A189T, respectively (H3 numbering) which reduced receptor binding properties possibly balancing the reduced NA activity seen. Our results demonstrate that the H5Nx viruses can support drug resistance mutations that confer reduced susceptibility to licenced NAIs and that these H5N6 viruses did not show diminished replicative fitness in avian cell cultures. Our results support the requirement for on-going surveillance of these strains in bird populations to include motifs associated with human drug resistance.
Collapse
|
40
|
Chen L, Han X, Li Y, Zhang C, Xing X. Impact of early neuraminidase inhibitor treatment on clinical outcomes in patients with influenza B-related pneumonia: a multicenter cohort study. Eur J Clin Microbiol Infect Dis 2020; 39:1231-1238. [PMID: 32026193 DOI: 10.1007/s10096-020-03835-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/29/2020] [Indexed: 02/05/2023]
Abstract
The aim of this study is to evaluate the impact of early (within 2 days after disease onset) neuraminidase inhibitor (NAI) administration on clinical outcomes in patients with laboratory-confirmed influenza B-related pneumonia (FluB-p). This was a multicenter study conducted from 1 January 2013 to 1 May 2019. Data of immunocompetent adult and adolescent FluB-p patients hospitalized at five different teaching hospitals in China were retrospectively collected, including demographic and clinical features as well as clinical and treatment outcomes. Univariate and multivariate logistic regression analyses were performed to assess the effects of early NAI administration on clinical outcomes in FluB-p patients. In total, 386 hospitalized patients with community-onset FluB-p were included in this study, of whom 39.6% (153/386) were treated with NAI early. After adjusting for the weighted propensity scores of treatment, systemic corticosteroid, and antibiotic uses, the results of multivariate logistic regression model indicated that early NAI treatment was associated with the decreased risks of invasive ventilation [odd ratio (OR) 0.325, 95% confidence interval (CI) 0.123-0.858; p = 0.023), admittance to intensive care unit (OR 0.425, 95% CI 0.204-0.882; p = 0.022), and 30-day mortality (OR 0.416, 95% CI 0.184-0.944, p = 0.036)] in FluB-p patients. In addition, the multivariate logistic regression analysis revealed that early NAI treatment (OR 0.306, 95% CI 0.063-0.618; p = 0.010) was an independent predictor for 30-day mortality in patients with FluB-p. Early NAI treatment was associated with better clinical outcomes in FluB-p patients, which supports the recommendations of its use in severe influenza illness.
Collapse
Affiliation(s)
- Liang Chen
- Department of Infectious Disease, Beijing Jishuitan Hospital, 4th Medical College of Peking University, Beijing, China.
| | - Xiudi Han
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, Qingdao City, Shandong Province, China
| | - YanLi Li
- Department of Infectious Diseases and Clinical Microbiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Chunxiao Zhang
- Department of Pulmonary and Critical Care Medicine, Beijing Huimin Hospital, Beijing, China
| | - Xiqian Xing
- Department of Pulmonary and Critical Care Medicine, The Second People's Hospital of Yunnan Province, Kunming City, Yunnan Province, China
| |
Collapse
|
41
|
Fujiwara K, Yamamoto Y, Saita T, Matsufuji S. Metabolism and disposition of oseltamivir (OS) in rats, determined by immunohistochemistry with monospecific antibody for OS or its active metabolite oseltamivir carboxylate (OC): A possibility of transporters dividing the drugs' excretion into the bile and kidney. Pharmacol Res Perspect 2020; 8:e00597. [PMID: 32489006 PMCID: PMC7266928 DOI: 10.1002/prp2.597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/12/2020] [Accepted: 04/15/2020] [Indexed: 01/19/2023] Open
Abstract
Among any drugs, no comparative pharmacological study on how prodrug and its active metabolite behave in animal bodies is available. Immunohistochemistry (IHCs) using newly prepared two monoclonal antibodies, AOS‐96 and AOC‐160, monospecific for oseltamivir (OS) and its metabolite oseltamivir carboxylate (OC) were developed, simultaneously detecting the uptake or excretion of OS and OC in the intestine, liver, and kidney of rats to which OS was orally administered. In the intestine, IHC for OS revealed OS highly distributed to the absorptive epithelia with heavily stained cytoplasmic small granules (CSGs). IHC for OC showed that OC also distributed highly in the epithelia, but without CSGs, suggesting that OS was partly converted to OC in the cells. In the liver, OS distributed in the hepatocytes and on their bile capillaries, as well as on the lumina from the bile capillaries to the interlobular bile ducts. OC distributed in the whole cell of the hepatocytes, but without CSGs nor on any lumina through the interlobular bile ducts. In the kidney, a few levels of OS distributed in the cytoplasm of almost all the renal tubule cells, but they contained numerous CSGs. In contrast, OC distributed highly in the proximal tubules, but very slightly in the lower renal tubules of the nephrons. Thus, it was concluded that the two drugs behave in completely different ways in rat bodies. This paper also discusses a possibility of the correlation of OS or OC levels in tissue cells with their known transporters.
Collapse
Affiliation(s)
- Kunio Fujiwara
- Department of Applied Life Science, Faculty of Biotechnology and Life Science, Sojo University, Kumamoto, Japan
| | - Yutaro Yamamoto
- Department of Applied Life Science, Faculty of Biotechnology and Life Science, Sojo University, Kumamoto, Japan
| | - Tetsuya Saita
- Department of Applied Life Science, Faculty of Biotechnology and Life Science, Sojo University, Kumamoto, Japan
| | - Senya Matsufuji
- Department of Molecular Biology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
42
|
Chen WY, Wu YT, Lin HC, Ieong MI, Lee BH. Impact of long-term parental exposure to Tamiflu metabolites on the development medaka offspring (Oryzias latipes). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114146. [PMID: 32062464 DOI: 10.1016/j.envpol.2020.114146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/25/2019] [Accepted: 02/06/2020] [Indexed: 05/07/2023]
Abstract
Despite the widespread use of the antiviral drug, Tamiflu®, little is known about the long-term toxic effects of drug or its metabolites in an aquatic ecosystem. This study integrated epidemiological and ecotoxicological methods to determine environmentally relevant concentrations of Tamiflu. A model based on the species medaka (Oryzias latipes) was then used to determine the health status and reproductivity of adults exposed to the drug as well as the embryonic development of offspring. The proposed ecotoxicological model was also used to quantitatively and qualitatively evaluate the toxicodynamic parameters related to egg production, hatchability, and development. Our results revealed that at an environmentally relevant exposure, Tamiflu and its metabolites had no adverse effects on growth, survival, or fecundity of adult medaka. Nonetheless, we observed a reduction in hatchability under exposure to 300 μg L-1 and a reduction in body length under exposure exceeding 90 μg L-1. Under exposure to 300 μg L-1, the estimated spawning time to reach 50% of the maximum percentage of cumulative egg production (ET50) far exceeded that of the control group (without exposure to Tamiflu). We also observed a ∼ 3-fold decrease in maximum egg hatching (Emax). Based on an integrated epidemiological and ecotoxicological model, predictions of environmental concentrations of Tamiflu and its metabolites revealed that the influenza subtypes associated with increases in environmental concentrations: A(H3N2) > A(H1N1) > type B (in order of their effects). We also determined that A(H3N2) posed a potential risk to hatchability and development. Note however, the environmental concentrations of Tamiflu and its metabolites in most countries are lower than the effect concentrations derived in this study, indicating no hazards for aquatic environments. We recommend the use of hatchability and embryonic development as indicators in assessing the effects of long-term parental exposure to Tamiflu metabolites.
Collapse
Affiliation(s)
- Wei-Yu Chen
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Yen-Ting Wu
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsing-Chieh Lin
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Meng-Ian Ieong
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Bing-Heng Lee
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
43
|
Chen Y, Ke M, Xu J, Lin C. Simulation of the Pharmacokinetics of Oseltamivir and Its Active Metabolite in Normal Populations and Patients with Hepatic Cirrhosis Using Physiologically Based Pharmacokinetic Modeling. AAPS PharmSciTech 2020; 21:98. [PMID: 32128656 DOI: 10.1208/s12249-020-1638-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/12/2020] [Indexed: 12/15/2022] Open
Abstract
Oseltamivir is a neuraminidase inhibitor widely used to treat and prevent influenza A and B infections, although its safety and pharmacokinetics have not been evaluated in patients with severe hepatic impairment. A physiologically based pharmacokinetic (PBPK) model of the prodrug oseltamivir and its active metabolite, oseltamivir carboxylate (OC), was established and validated to simulate their disposition in adults and predict the exposure in patients with Child-Pugh C cirrhosis (CP-C). The simulated results from PBPK modeling and the observed data after oral administration of various oseltamivir regimens were consistent according to the fold error values of less than 2. Furthermore, the clinical observations published in the literature were comparable with our pharmacokinetic predictions. In patients with CP-C, the oseltamivir Cmax was approximately 2-fold increased, and its AUC was approximately 6-fold higher compared with those in normal subjects. In contrast, the AUC of OC in CP-C patients did not differ significantly from that in normal subjects, whereas its Cmax was reduced by approximately 30% in the patients. Examination of drug exposure in different health conditions indicated that the oseltamivir exposure was significantly increased in conditions with elevated cirrhosis severity, which might be associated with a higher risk of adverse drug effects, e.g., neuropsychiatric adverse events (NPAEs). In conclusion, the pharmacokinetics of oseltamivir and OC were correctly predicted by PBPK modeling. The model further predicted that the pharmacokinetics of oseltamivir might be altered in liver cirrhosis, depending on the degree of severity.
Collapse
|
44
|
Gibiansky L, Ravva P, Parrott NJ, Bhardwaj R, Zwanziger E, Grimsey P, Clinch B, Sturm S. Mechanistic Population Pharmacokinetic Model of Oseltamivir and Oseltamivir Carboxylate Accounting for Physiological Changes to Predict Exposures in Neonates and Infants. Clin Pharmacol Ther 2020; 108:126-135. [PMID: 31957010 PMCID: PMC7325316 DOI: 10.1002/cpt.1791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/04/2020] [Indexed: 11/12/2022]
Abstract
A mechanistic population‐pharmacokinetic model was developed to predict oseltamivir exposures in neonates and infants accounting for physiological changes during the first 2 years of life. The model included data from 13 studies, comprising 436 subjects with normal renal function (317 pediatric subjects (≥ 38 weeks postmenstrual age (PMA), ≥ 13 days old) and 119 adult subjects < 40 years). Concentration–time profiles of oseltamivir and its active metabolite, oseltamivir carboxylate (OC), were characterized by a four‐compartment model, with absorption described by three additional compartments. Renal maturational changes were implemented by description of OC clearance with allometric function of weight and Hill function of PMA. Clearance of OC increased with weight up to 43 kg (allometric coefficient 0.75). Half the adult OC clearance was reached at a PMA of 45.6 weeks (95% confidence interval (CI) 41.6–49.6) with a Hill coefficient of 2.35 (95% CI 1.67–3.04). The model supports the European Union/United States‐approved 3 mg/kg twice‐daily oseltamivir dose for infants < 1 year (PMA ≥ 38 weeks) and allows prediction of exposures in preterm neonates.
Collapse
Affiliation(s)
| | - Patanjali Ravva
- Roche Innovation Center New York, Roche Pharmaceutical Research and Early Development, New York, New York, USA.,Pfizer Inc, Global Clinical Pharmacology, New York, New York, USA
| | - Neil J Parrott
- Roche Innovation Center Basel, Roche Pharmaceutical Research and Early Development, Basel, Switzerland
| | - Rajinder Bhardwaj
- Integrated Drug Development, Certara Strategic Consulting, Parsippany, New Jersey, USA
| | - Elke Zwanziger
- Roche Innovation Center Basel, Roche Pharmaceutical Research and Early Development, Basel, Switzerland
| | - Paul Grimsey
- Roche Innovation Center Welwyn, Roche Pharmaceutical Research and Early Development, Welwyn Garden City, UK
| | - Barry Clinch
- Roche Products Limited, Product Development, Welwyn Garden City, UK
| | - Stefan Sturm
- Roche Innovation Center Basel, Roche Pharmaceutical Research and Early Development, Basel, Switzerland
| |
Collapse
|
45
|
Park JG, Ye C, Piepenbrink MS, Nogales A, Wang H, Shuen M, Meyers AJ, Martinez-Sobrido L, Kobie JJ. A Broad and Potent H1-Specific Human Monoclonal Antibody Produced in Plants Prevents Influenza Virus Infection and Transmission in Guinea Pigs. Viruses 2020; 12:E167. [PMID: 32024281 PMCID: PMC7077299 DOI: 10.3390/v12020167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/25/2020] [Accepted: 01/30/2020] [Indexed: 12/22/2022] Open
Abstract
Although seasonal influenza vaccines block most predominant influenza types and subtypes, humans still remain vulnerable to waves of seasonal and new potential pandemic influenza viruses for which no immunity may exist because of viral antigenic drift and/or shift. Previously, we described a human monoclonal antibody (hMAb), KPF1, which was produced in human embryonic kidney 293T cells (KPF1-HEK) with broad and potent neutralizing activity against H1N1 influenza A viruses (IAV) in vitro, and prophylactic and therapeutic activities in vivo. In this study, we produced hMAb KPF1 in tobacco plants (KPF1-Antx) and demonstrated how the plant-produced KPF1-Antx hMAb possesses similar biological activity compared with the mammalian-produced KPF1-HEK hMAb. KPF1-Antx hMAb showed broad binding to recombinant HA proteins and H1N1 IAV, including A/California/04/2009 (pH1N1) in vitro, which was comparable to that observed with KPF1-HEK hMAb. Importantly, prophylactic administration of KPF1-Antx hMAb to guinea pigs prevented pH1N1 infection and transmission in both prophylactic and therapeutic experiments, substantiating its clinical potential to prevent and treat H1N1 infections. Collectively, this study demonstrated, for the first time, a plant-produced influenza hMAb with in vitro and in vivo activity against influenza virus. Because of the many advantages of plant-produced hMAbs, such as rapid batch production, low cost, and the absence of mammalian cell products, they represent an alternative strategy for the production of immunotherapeutics for the treatment of influenza viral infections, including emerging seasonal and/or pandemic strains.
Collapse
Affiliation(s)
- Jun-Gyu Park
- Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA; (J.-G.P.); (C.Y.); (A.N.)
| | - Chengjin Ye
- Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA; (J.-G.P.); (C.Y.); (A.N.)
| | - Michael S. Piepenbrink
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham 845 19th Street South, Birmingham, AL 35294, USA;
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA; (J.-G.P.); (C.Y.); (A.N.)
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación en Sanidad Animal (INIA-CISA), 28130 Madrid, Spain
| | - Haifeng Wang
- PlantForm Corporation, 1920 Yonge St., Suite 200, Toronto, ON M4S 3E2, Canada; (H.W.); (M.S.)
| | - Michael Shuen
- PlantForm Corporation, 1920 Yonge St., Suite 200, Toronto, ON M4S 3E2, Canada; (H.W.); (M.S.)
| | - Ashley J. Meyers
- AntoXa Corporation, 1920 Yonge St., Suite 200, Toronto, ON M4S 3E2, Canada;
| | - Luis Martinez-Sobrido
- Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA; (J.-G.P.); (C.Y.); (A.N.)
| | - James J. Kobie
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham 845 19th Street South, Birmingham, AL 35294, USA;
| |
Collapse
|
46
|
Sireesha D, Ajitha M, Narayana KR. Simultaneous Bioanalysis of Prodrug Oseltamivir and its Metabolite Oseltamivir Carboxylic Acid in Human Plasma by LC/MS/MS Method and its Application to Disposition Kinetics. CURR PHARM ANAL 2020. [DOI: 10.2174/1573412914666181011125120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Introduction:
A selective, sensitive, precise and rapid analytical method using liquid chromatography-
tandem mass spectrometry (LC/MS/MS) for simultaneous determination of oseltamivir and
oseltamivir carboxylic acid in plasma has been developed and validated, using oseltamivir-D5 and oseltamivir
acid-D3 as internal standards.
Methods:
The analytes were extracted from 300μL of human plasma using solid phase extraction technique.
A mixture of methanol and 0.1% formic acid (60:40, v/v) was used as mobile phase at a flow rate
of 0.7mL/min, to separate the analytes on Zorbax SB-C18 (50x4.6mm, 3.5μm) analytical column.
Results:
The calibration curves obtained were linear over the concentration ranges of 0.5-200ng/mL and
2.0-800ng/mL for oseltamivir and oseltamivir carboxylic acid respectively. A run time of 2.5min makes
it possible to analyze more than 350 plasma samples in a day, thereby increasing the productivity.
Conclusion:
The present method was applied successfully to a clinical pharmacokinetic study in South
Indian male subjects with 75mg oseltamivir phosphate capsule under fasting conditions and the results
were authenticated by incurred sample reanalysis.
Collapse
Affiliation(s)
- Dodda Sireesha
- Department of Pharmaceutical Sciences, IST, JNTUH, Hyderabad, Telangana, India
| | - Makula Ajitha
- Department of Pharmaceutical Sciences, IST, JNTUH, Hyderabad, Telangana, India
| | | |
Collapse
|
47
|
Loukotková L, Basavarajappa M, Lumen A, Roberts R, Mattison D, Morris SM, Fisher J, Beland FA, Gamboa da Costa G. Pharmacokinetics of oseltamivir phosphate and oseltamivir carboxylate in non-pregnant and pregnant rhesus monkeys. Regul Toxicol Pharmacol 2020; 112:104569. [PMID: 31927005 DOI: 10.1016/j.yrtph.2019.104569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/24/2019] [Indexed: 11/25/2022]
Abstract
Oseltamivir is an antiviral drug approved to treat influenza in humans. Although the dosing regimen of this drug is well established for non-pregnant patients, it is not clear if the significant physiological alterations associated with pregnancy affect the pharmacokinetics of oseltamivir and, thus, warrant different dosing regimens to assure efficacy. In this study, we investigated the suitability of rhesus macaques as an animal model for studying oseltamivir pharmacokinetics during all trimesters of pregnancy in comparison to pre-pregnant conditions. Specifically, we compared the pharmacokinetics of oseltamivir and its pharmacologically active metabolite oseltamivir carboxylate in rhesus monkeys after intravenous and nasogastric administration of 2.5 mg oseltamivir phosphate/kg body weight given prior to and during the first, second, and third trimesters of pregnancy. Pregnancy had only a modest effect upon the pharmacokinetic parameters of oseltamivir and oseltamivir carboxylate. Monkeys treated intravenously in the third trimester had a reduction in Vd and CL, compared to non-pregnant monkeys. These changes did not occur in the other two trimesters. Pregnant monkeys treated intravenously had 20-25% decrease in AUC0-∞ of oseltamivir carboxylate and a corresponding increase in Vd and CL. Pregnant monkeys treated nasogastrically with oseltamivir phosphate demonstrated a pattern that recapitulated intravenous dosing. Taken together these data indicate that rhesus monkeys are an acceptable model for studying drug-pregnancy interactions.
Collapse
Affiliation(s)
- Lucie Loukotková
- FDA National Center for Toxicological Research, Jefferson, AR, USA
| | | | - Annie Lumen
- FDA National Center for Toxicological Research, Jefferson, AR, USA
| | - Rosemary Roberts
- FDA Center for Drug Evaluation and Research, Silver Spring, MD, USA
| | - Donald Mattison
- Risk Sciences International, Ottawa, Ontario, Canada and Hilton Head Island, SC USA and University of Ottawa, Ontario, Canada
| | - Suzanne M Morris
- FDA National Center for Toxicological Research, Jefferson, AR, USA
| | - Jeffrey Fisher
- FDA National Center for Toxicological Research, Jefferson, AR, USA
| | | | | |
Collapse
|
48
|
Abstract
We performed a prospective cohort study to investigate oseltamivir administration in critically ill children. We found that enteric tube administration of oseltamivir resulted in lower concentrations of its active metabolite compared with oral delivery. These findings could have significant clinical implications, and more studies are required to better understand the effects of administration route on potential lower systemic metabolite exposure.
Collapse
|
49
|
Zhang Y, Lyu C, Fong SYK, Wang Q, Li C, Ho NJ, Chan KS, Yan X, Zuo Z. Evaluation of potential herb-drug interactions between oseltamivir and commonly used anti-influenza Chinese medicinal herbs. JOURNAL OF ETHNOPHARMACOLOGY 2019; 243:112097. [PMID: 31325600 PMCID: PMC7125811 DOI: 10.1016/j.jep.2019.112097] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/21/2019] [Accepted: 07/16/2019] [Indexed: 05/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE According to Traditional Chinese Medicine theory, influenza is categorized as a warm disease or Wen Bing. The Wen Bing formulas, such as Yin-Qiao-San and Sang-Ju-Yin, are still first-line herbal therapies in combating variant influenza virus. To continue our study on the pharmacokinetic and pharmacodynamic interactions between Wen Bing formulas and oseltamivir (OS), the first-line western drug for the treatment of influenza, further interactions between OS and the eight single herbs and their relevant marker components from Wen Bing formulas were investigated in the current study. AIM OF STUDY To establish an in-vitro screening platform for investigation of the potential anti-influenza herbs/herbal components that may have pharmacokinetic and pharmacodynamic interactions with OS. MATERIALS AND METHODS To screen potential inhibition on OS hydrolysis, 1 μg/mL of OS is incubated with herbs/herbal components in diluted rat plasma, microsomes and human recombinant carboxylesterase 1(hCE1) under optimized conditions. MDCK-WT and MDCK-MDR1 cell lines are utilized to identify potential modification on P-gp mediated transport of OS by herbs/herbal components. Caco-2 cells with and without Gly-Sar inhibition are performed to study the uptake of OS via PEPT1 transporters. Modification on OAT3 mediated transport is verified by the uptake of OS on HEK293-MOCK/HEK293-OAT3 cells. Anti-virus effects were evaluated using plaque reduction assay on H1N1 and H3N2 viruses. Potential pharmacokinetic and pharmacodynamic interaction between OS (30 mg/kg) and the selected herb, Radix Scutellariae (RS), at 300-600 mg/kg were carried out on rats. All samples are analyzed by an LC/MS/MS method for the contents of OS and OSA. A mechanistic PK model was developed to interpret the HDI between OS and RS in rats. RESULTS Our developed platform was successfully applied to screen the eight herbal extracts and their ten marker components on metabolic inhibition of OS and modification of OS transport mediated by P-gp, OAT3 and PEPT1. Results from six in-vitro experiments were analyzed after converting raw data from each experiment to corresponding fold-change (FC) values, based on which Radix Scutellariae (RS) were selected to have the most HDI potential with OS. By analyzing the plasma and urine pharmacokinetic data after co-administration of OS with a standardized RS extract in rats using an integrated population pharmacokinetics model, it is suggested that RS could inhibit OS hydrolysis during absorption and increase the absorbed fraction of OS, which leads to the increased ratio of OS concentration versus that of OSA in both rat plasma and urine. Never the less, the anti-virus effects of 2.5 h post-dose rat plasma were not influenced by co-administration of OS with RS. CONCLUSION A six-dimension in-vitro screening platform has been developed and successfully applied to find RS as a potential herb that would influence the co-administrated OS in rats. Although co-administered RS could inhibit OS hydrolysis during absorption and increase the absorbed fraction of OS, which lead to the increased ratio of OS concentration versus that of OSA in both rat plasma and urine, the anti-virus effect of OS was not influenced by co-administered RS.
Collapse
Affiliation(s)
- Yufeng Zhang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region.
| | - Chunming Lyu
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region.
| | - Sophia Yui Kau Fong
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region.
| | - Qian Wang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region.
| | - Chenrui Li
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region.
| | - Nicolas James Ho
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region.
| | - Kay Sheung Chan
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region.
| | - Xiaoyu Yan
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region.
| | - Zhong Zuo
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region.
| |
Collapse
|
50
|
Laizure SC, Parker RB. Is genetic variability in carboxylesterase-1 and carboxylesterase-2 drug metabolism an important component of personalized medicine? Xenobiotica 2019; 50:92-100. [DOI: 10.1080/00498254.2019.1678078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- S. Casey Laizure
- Department of Clinical Pharmacy & Translational Science, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Robert B Parker
- Department of Clinical Pharmacy & Translational Science, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|