1
|
Lafoux B, Fourcaud G, Hortion J, Soyer L, Journeaux A, Germain C, Reynard S, Cousseau H, Larignon C, Pietrosemoli N, Croze S, Lachuer J, Perthame E, Baize S. Expansion of myeloid suppressor cells and suppression of Lassa virus-specific T cells during fatal Lassa fever. PLoS Pathog 2025; 21:e1013111. [PMID: 40245043 PMCID: PMC12040235 DOI: 10.1371/journal.ppat.1013111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/29/2025] [Accepted: 04/08/2025] [Indexed: 04/19/2025] Open
Abstract
Lassa fever is a highly lethal hemorrhagic fever endemic to West Africa. In the absence of efficient prophylactic or therapeutic countermeasures, it poses a substantial threat to public health in this region. The pathophysiological mechanisms underlying the severity of the disease are poorly known because Lassa virus (LASV), its causative agent, has to be handled in BSL-4 laboratories and access to clinical samples is difficult. The control of Lassa fever is associated with a rapid and well-balanced immune response and viral clearance. However, severe disease is characterized by uncontrolled innate immune activation and symptoms reminiscent of sepsis and a cytokine storm. In a model of cynomolgus monkeys infected with two different strains of the virus, one causing moderate disease and the other a lethal outcome, we show that the control of LASV infection is characterized by the induction of a LASV-specific T-cell response, whereas severity is associated with the expansion of suppressive myeloid cells, alterations of the stromal network of secondary lymphoid organs, and the anergy of specific T cells. These results suggest that T cells are crucial for the control of LASV and that immunomodulatory therapeutics, such as checkpoint inhibitors, could contribute to new therapeutic strategies to treat Lassa fever. They also highlight how immunosuppressive mechanisms described in sepsis and cancer patients may play a role in the pathogenicity of Lassa fever, as well as in other similar hemorrhagic fevers.
Collapse
Affiliation(s)
- Blaise Lafoux
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Université Paris Cité, Lyon, France
- Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1 (UCBL), Institut National de la Santé de la Recherche Médicale (INSERM), Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique (CNRS), Lyon, France
| | - Gustave Fourcaud
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Université Paris Cité, Lyon, France
- Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1 (UCBL), Institut National de la Santé de la Recherche Médicale (INSERM), Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique (CNRS), Lyon, France
| | - Jimmy Hortion
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Université Paris Cité, Lyon, France
- Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1 (UCBL), Institut National de la Santé de la Recherche Médicale (INSERM), Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique (CNRS), Lyon, France
| | - Laura Soyer
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Université Paris Cité, Lyon, France
- Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1 (UCBL), Institut National de la Santé de la Recherche Médicale (INSERM), Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique (CNRS), Lyon, France
| | - Alexandra Journeaux
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Université Paris Cité, Lyon, France
- Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1 (UCBL), Institut National de la Santé de la Recherche Médicale (INSERM), Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique (CNRS), Lyon, France
| | - Clara Germain
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Université Paris Cité, Lyon, France
- Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1 (UCBL), Institut National de la Santé de la Recherche Médicale (INSERM), Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique (CNRS), Lyon, France
| | - Stéphanie Reynard
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Université Paris Cité, Lyon, France
- Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1 (UCBL), Institut National de la Santé de la Recherche Médicale (INSERM), Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique (CNRS), Lyon, France
| | - Hadrien Cousseau
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Université Paris Cité, Lyon, France
- Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1 (UCBL), Institut National de la Santé de la Recherche Médicale (INSERM), Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique (CNRS), Lyon, France
| | - Clémentine Larignon
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Université Paris Cité, Lyon, France
- Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1 (UCBL), Institut National de la Santé de la Recherche Médicale (INSERM), Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique (CNRS), Lyon, France
| | - Natalia Pietrosemoli
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université Paris Cité, Paris, France
| | - Séverine Croze
- ProfileXpert, SFR Santé Lyon-Est, UCBL, CNRS, INSERM, Lyon, France
| | - Joël Lachuer
- ProfileXpert, SFR Santé Lyon-Est, UCBL, CNRS, INSERM, Lyon, France
| | - Emeline Perthame
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université Paris Cité, Paris, France
| | - Sylvain Baize
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Université Paris Cité, Lyon, France
- Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1 (UCBL), Institut National de la Santé de la Recherche Médicale (INSERM), Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique (CNRS), Lyon, France
| |
Collapse
|
2
|
Tucker JS, Khan H, D’Orazio SEF. Lymph node stromal cells vary in susceptibility to infection but can support the intracellular growth of Listeria monocytogenes. J Leukoc Biol 2024; 116:132-145. [PMID: 38416405 PMCID: PMC11212796 DOI: 10.1093/jleuko/qiae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/26/2024] [Accepted: 02/13/2024] [Indexed: 02/29/2024] Open
Abstract
Lymph node stromal cells (LNSCs) are an often overlooked component of the immune system but play a crucial role in maintaining tissue homeostasis and orchestrating immune responses. Our understanding of the functions these cells serve in the context of bacterial infections remains limited. We previously showed that Listeria monocytogenes, a facultative intracellular foodborne bacterial pathogen, must replicate within an as-yet-unidentified cell type in the mesenteric lymph node (MLN) to spread systemically. Here, we show that L. monocytogenes could invade, escape from the vacuole, replicate exponentially, and induce a type I interferon response in the cytosol of 2 LNSC populations infected in vitro, fibroblastic reticular cells (FRCs) and blood endothelial cells (BECs). Infected FRCs and BECs also produced a significant chemokine and proinflammatory cytokine response after in vitro infection. Flow cytometric analysis confirmed that GFP+ L. monocytogenes were associated with a small percentage of MLN stromal cells in vivo following foodborne infection of mice. Using fluorescent microscopy, we showed that these cell-associated bacteria were intracellular L. monocytogenes and that the number of infected FRCs and BECs changed over the course of a 3-day infection in mice. Ex vivo culturing of these infected LNSC populations revealed viable, replicating bacteria that grew on agar plates. These results highlight the unexplored potential of FRCs and BECs to serve as suitable growth niches for L. monocytogenes during foodborne infection and to contribute to the proinflammatory environment within the MLN that promotes clearance of listeriosis.
Collapse
Affiliation(s)
- Jamila S. Tucker
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY
| | - Hiba Khan
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY
| | - Sarah E. F. D’Orazio
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY
| |
Collapse
|
3
|
Bennett AK, Richner M, Mun MD, Richner JM. Type I IFN stimulates lymph node stromal cells from adult and old mice during a West Nile virus infection. Aging Cell 2023; 22:e13796. [PMID: 36802099 PMCID: PMC10086524 DOI: 10.1111/acel.13796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/20/2023] Open
Abstract
Advanced age is a significant risk factor during viral infection due to an age-associated decline in the immune response. Older individuals are especially susceptible to severe neuroinvasive disease after West Nile virus (WNV) infection. Previous studies have characterized age-associated defects in hematopoietic immune cells during WNV infection that culminate in diminished antiviral immunity. Situated amongst immune cells in the draining lymph node (DLN) are structural networks of nonhematopoietic lymph node stromal cells (LNSCs). LNSCs are comprised of numerous, diverse subsets, with critical roles in the coordination of robust immune responses. The contributions of LNSCs to WNV immunity and immune senescence are unclear. Here, we examine LNSC responses to WNV within adult and old DLNs. Acute WNV infection triggered cellular infiltration and LNSC expansion in adults. Comparatively, aged DLNs exhibited diminished leukocyte accumulation, delayed LNSC expansion, and altered fibroblast and endothelial cell subset composition, signified by fewer LECs. We established an ex vivo culture system to probe LNSC function. Adult and old LNSCs both recognized an ongoing viral infection primarily through type I IFN signaling. Gene expression signatures were similar between adult and old LNSCs. Aged LNSCs were found to constitutively upregulate immediate early response genes. Collectively, these data suggest LNSCs uniquely respond to WNV infection. We are the first to report age-associated differences in LNSCs on the population and gene expression level during WNV infection. These changes may compromise antiviral immunity, leading to increased WNV disease in older individuals.
Collapse
Affiliation(s)
- Allison K. Bennett
- Department of Microbiology and ImmunologyUniversity of Illinois College of MedicineChicagoIllinoisUSA
| | - Michelle Richner
- Department of Microbiology and ImmunologyUniversity of Illinois College of MedicineChicagoIllinoisUSA
| | - Madeline D. Mun
- Department of Microbiology and ImmunologyUniversity of Illinois College of MedicineChicagoIllinoisUSA
| | - Justin M. Richner
- Department of Microbiology and ImmunologyUniversity of Illinois College of MedicineChicagoIllinoisUSA
| |
Collapse
|
4
|
Bennett AK, Richner M, Mun MD, Richner JM. Type I IFN stimulates lymph node stromal cells from adult and old mice during a West Nile virus infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.05.522898. [PMID: 36711838 PMCID: PMC9881888 DOI: 10.1101/2023.01.05.522898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Advanced age is a significant risk factor during viral infection due to an age-associated decline in the immune response. Older individuals are especially susceptible to severe neuroinvasive disease after West Nile virus (WNV) infection. Previous studies have characterized age-associated defects in hematopoietic immune cells during WNV infection that culminate in diminished antiviral immunity. Situated amongst immune cells in the draining lymph node (DLN) are structural networks of nonhematopoietic lymph node stromal cells (LNSCs). LNSCs are comprised of numerous, diverse subsets, with critical roles in the coordination of robust immune responses. The contributions of LNSCs to WNV immunity and immune senescence are unclear. Here, we examine LNSC responses to WNV within adult and old DLNs. Acute WNV infection triggered cellular infiltration and LNSC expansion in adult. Comparatively, aged DLNs exhibited diminished leukocyte accumulation, delayed LNSC expansion, and altered fibroblast and endothelial cell subset composition, signified by fewer LECs. We established an ex vivo culture system to probe LNSC function. Adult and old LNSCs both recognized an ongoing viral infection primarily through type I IFN signaling. Gene expression signatures were similar between adult and old LNSCs. Aged LNSCs were found to constitutively upregulate immediate early response genes. Collectively, these data suggest LNSCs uniquely respond to WNV infection. We are the first to report age-associated differences in LNSCs on the population- and gene expression-level during WNV infection. These changes may compromise antiviral immunity, leading to increased WNV disease in older individuals.
Collapse
|
5
|
Makris S, de Winde CM, Horsnell HL, Cantoral-Rebordinos JA, Finlay RE, Acton SE. Immune function and dysfunction are determined by lymphoid tissue efficacy. Dis Model Mech 2022; 15:dmm049256. [PMID: 35072206 PMCID: PMC8807573 DOI: 10.1242/dmm.049256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Lymphoid tissue returns to a steady state once each immune response is resolved, and although this occurs multiple times throughout life, its structural integrity and functionality remain unaffected. Stromal cells orchestrate cellular interactions within lymphoid tissue, and any changes to the microenvironment can have detrimental outcomes and drive disease. A breakdown in lymphoid tissue homeostasis can lead to a loss of tissue structure and function that can cause aberrant immune responses. This Review highlights recent advances in our understanding of lymphoid tissue function and remodelling in adaptive immunity and in disease states. We discuss the functional role of lymphoid tissue in disease progression and explore the changes to lymphoid tissue structure and function driven by infection, chronic inflammatory conditions and cancer. Understanding the role of lymphoid tissues in immune responses to a wide range of pathologies allows us to take a fuller systemic view of disease progression.
Collapse
Affiliation(s)
- Spyridon Makris
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Charlotte M. de Winde
- Department for Molecular Cell Biology and Immunology, Amsterdam UMC, location VUmc, De Boelelaan 1108, 1081 HZ Amsterdam, Netherlands
| | - Harry L. Horsnell
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Jesús A. Cantoral-Rebordinos
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Rachel E. Finlay
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester M13 9PL, UK
| | - Sophie E. Acton
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
6
|
Grasso C, Pierie C, Mebius RE, van Baarsen LGM. Lymph node stromal cells: subsets and functions in health and disease. Trends Immunol 2021; 42:920-936. [PMID: 34521601 DOI: 10.1016/j.it.2021.08.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 02/04/2023]
Abstract
Lymph nodes (LNs) aid the interaction between lymphocytes and antigen-presenting cells, resulting in adequate and prolonged adaptive immune responses. LN stromal cells (LNSCs) are crucially involved in steering adaptive immune responses at different levels. Most knowledge on LNSCs has been obtained from mouse studies, and few studies indicate similarities with their human counterparts. Recent advances in single-cell technologies have revealed significant LNSC heterogeneity among different subsets with potential selective functions in immunity. This review provides an overview of current knowledge of LNSCs based on human and murine studies describing the role of these cells in health and disease.
Collapse
Affiliation(s)
- C Grasso
- Department of Rheumatology and Clinical Immunology, Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Rheumatology and Immunology Center (ARC), Academic Medical Center, Amsterdam, The Netherlands
| | - C Pierie
- Department of Rheumatology and Clinical Immunology, Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Rheumatology and Immunology Center (ARC), Academic Medical Center, Amsterdam, The Netherlands
| | - R E Mebius
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands.
| | - L G M van Baarsen
- Department of Rheumatology and Clinical Immunology, Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Rheumatology and Immunology Center (ARC), Academic Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Bellomo A, Gentek R, Golub R, Bajénoff M. Macrophage-fibroblast circuits in the spleen. Immunol Rev 2021; 302:104-125. [PMID: 34028841 DOI: 10.1111/imr.12979] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 12/22/2022]
Abstract
Macrophages are an integral part of all organs in the body, where they contribute to immune surveillance, protection, and tissue-specific homeostatic functions. This is facilitated by so-called niches composed of macrophages and their surrounding stroma. These niches structurally anchor macrophages and provide them with survival factors and tissue-specific signals that imprint their functional identity. In turn, macrophages ensure appropriate functioning of the niches they reside in. Macrophages thus form reciprocal, mutually beneficial circuits with their cellular niches. In this review, we explore how this concept applies to the spleen, a large secondary lymphoid organ whose primary functions are to filter the blood and regulate immunity. We first outline the splenic micro-anatomy, the different populations of splenic fibroblasts and macrophages and their respective contribution to protection of and key physiological processes occurring in the spleen. We then discuss firmly established and potential cellular circuits formed by splenic macrophages and fibroblasts, with an emphasis on the molecular cues underlying their crosstalk and their relevance to splenic functionality. Lastly, we conclude by considering how these macrophage-fibroblast circuits might be impaired by aging, and how understanding these changes might help identify novel therapeutic avenues with the potential of restoring splenic functions in the elderly.
Collapse
Affiliation(s)
- Alicia Bellomo
- CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Rebecca Gentek
- Centre for Inflammation Research & Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Rachel Golub
- Inserm U1223, Institut Pasteur, Paris, France.,Lymphopoiesis Unit, Institut Pasteur, Paris, France
| | - Marc Bajénoff
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| |
Collapse
|
8
|
Systemic viral spreading and defective host responses are associated with fatal Lassa fever in macaques. Commun Biol 2021; 4:27. [PMID: 33398113 PMCID: PMC7782745 DOI: 10.1038/s42003-020-01543-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
Lassa virus (LASV) is endemic in West Africa and induces a viral hemorrhagic fever (VHF) with up to 30% lethality among clinical cases. The mechanisms involved in control of Lassa fever or, in contrast, the ensuing catastrophic illness and death are poorly understood. We used the cynomolgus monkey model to reproduce the human disease with asymptomatic to mild or fatal disease. After initial replication at the inoculation site, LASV reached the secondary lymphoid organs. LASV did not spread further in nonfatal disease and was rapidly controlled by balanced innate and T-cell responses. Systemic viral dissemination occurred during severe disease. Massive replication, a cytokine/chemokine storm, defective T-cell responses, and multiorgan failure were observed. Clinical, biological, immunological, and transcriptomic parameters resembled those observed during septic-shock syndrome, suggesting that similar pathogenesis is induced during Lassa fever. The outcome appears to be determined early, as differentially expressed genes in PBMCs were associated with fatal and non-fatal Lassa fever outcome very early after infection. These results provide a full characterization and important insights into Lassa fever pathogenesis and could help to develop early diagnostic tools.
Collapse
|
9
|
Ebola virus disease: An emerging and re-emerging viral threat. J Autoimmun 2019; 106:102375. [PMID: 31806422 DOI: 10.1016/j.jaut.2019.102375] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 12/21/2022]
Abstract
The genus Ebolavirus from the family Filoviridae is composed of five species including Sudan ebolavirus, Reston ebolavirus, Bundibugyo ebolavirus, Taï Forest ebolavirus, and Ebola virus (previously known as Zaire ebolavirus). These viruses have a large non-segmented, negative-strand RNA of approximately 19 kb that encodes for glycoproteins (i.e., GP, sGP, ssGP), nucleoproteins, virion proteins (i.e., VP 24, 30,40) and an RNA dependent RNA polymerase. These viruses have become a global health concern because of mortality, their rapid dissemination, new outbreaks in West-Africa, and the emergence of a new condition known as "Post-Ebola virus disease syndrome" that resembles inflammatory and autoimmune conditions such as rheumatoid arthritis, systemic lupus erythematosus and spondyloarthritis with uveitis. However, there are many gaps in the understanding of the mechanisms that may induce the development of such autoimmune-like syndromes. Some of these mechanisms may include a high formation of neutrophil extracellular traps, an uncontrolled "cytokine storm", and the possible formation of auto-antibodies. The likely appearance of autoimmune phenomena in Ebola survivors suppose a new challenge in the management and control of this disease and opens a new field of research in a special subgroup of patients. Herein, the molecular biology, pathogenesis, clinical manifestations, and treatment of Ebola virus disease are reviewed and some strategies for control of disease are discussed.
Collapse
|
10
|
Lymph node conduits transport virions for rapid T cell activation. Nat Immunol 2019; 20:602-612. [PMID: 30886418 PMCID: PMC6474694 DOI: 10.1038/s41590-019-0342-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 02/02/2019] [Indexed: 11/29/2022]
Abstract
Despite intense interest in antiviral T cell priming, the routes of virion movement in lymph nodes (LNs) are imperfectly understood. Current models fail to explain how virus-infected cells rapidly appear within the LN interior after viral infection. To better understand virion trafficking in the LN, we determined virion and infected-cell locations after vaccinia and Zika virus administration. Notably, many rapidly infected cells in the LN interior were adjacent to LN conduits. Using confocal and electron microscopy, we clearly visualized virions within conduits. Functionally, CD8+ T cells rapidly and preferentially associated with vaccinia virus-infected cells deeper in the LN, leading to T cell activation in the LN interior. These results reveal that it is possible for even large virions to flow through LN conduits and infect dendritic cells within the T cell zone to prime CD8+ T cells. Virions can access lymph node conduits.
Collapse
|
11
|
Hähnlein JS, Ramwadhdoebe TH, Semmelink JF, Choi IY, Berger FH, Maas M, Gerlag DM, Tak PP, Geijtenbeek TBH, van Baarsen LGM. Distinctive expression of T cell guiding molecules in human autoimmune lymph node stromal cells upon TLR3 triggering. Sci Rep 2018; 8:1736. [PMID: 29379035 PMCID: PMC5789053 DOI: 10.1038/s41598-018-19951-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 01/09/2018] [Indexed: 12/22/2022] Open
Abstract
Infections are implicated in autoimmunity. Autoantibodies are produced in lymphoid tissue where lymph node stromal cells (LNSCs) regulate lymphocyte function. Infections can alter the interaction between LNSCs and lymphocytes resulting in defective immune responses. In rheumatoid arthritis (RA) autoantibody production precedes clinical disease allowing identification of at risk individuals. We investigated the ability of human LNSCs derived from RA, RA-risk and healthy individuals to sense and respond to pathogens. Human LNSCs cultured directly from freshly collected lymph node biopsies expressed TLR1-9 with exception of TLR7. In all donors TLR3 triggering induced expression of ISGs, IL-6 and adhesion molecules like VCAM-1 and ICAM-1. Strikingly, T cell guiding chemokines CCL19 and IL-8 as well as the antiviral gene MxA were less induced upon TLR3 triggering in autoimmune LNSCs. This observed decrease, found already in LNSCs of RA-risk individuals, may lead to incorrect positioning of lymphocytes and aberrant immune responses during viral infections.
Collapse
Affiliation(s)
- Janine S Hähnlein
- Amsterdam Rheumatology & immunology Center (ARC), Clinical Immunology & Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Tamara H Ramwadhdoebe
- Amsterdam Rheumatology & immunology Center (ARC), Clinical Immunology & Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Johanna F Semmelink
- Amsterdam Rheumatology & immunology Center (ARC), Clinical Immunology & Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ivy Y Choi
- Amsterdam Rheumatology & immunology Center (ARC), Clinical Immunology & Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ferco H Berger
- Department of Radiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Mario Maas
- Department of Radiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Danielle M Gerlag
- Amsterdam Rheumatology & immunology Center (ARC), Clinical Immunology & Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Clinical Unit Cambridge, GlaxoSmithKline, Cambridge, UK
| | - Paul P Tak
- Amsterdam Rheumatology & immunology Center (ARC), Clinical Immunology & Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Ghent University, Ghent, Belgium
- University of Cambridge, Cambridge, UK
- GlaxoSmithKline, Stevenage, UK
| | - Teunis B H Geijtenbeek
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Lisa G M van Baarsen
- Amsterdam Rheumatology & immunology Center (ARC), Clinical Immunology & Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
12
|
Buechler MB, Turley SJ. A short field guide to fibroblast function in immunity. Semin Immunol 2017; 35:48-58. [PMID: 29198601 DOI: 10.1016/j.smim.2017.11.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/06/2017] [Indexed: 12/27/2022]
Abstract
Fibroblasts in secondary lymphoid organs, or fibroblastic reticular cells (FRC), are gate-keepers of immune responses. Here, we frame how these cells regulate immune responses via a three-part scheme in which FRC can setup, support or suppress immune responses. We also review how fibroblasts from non-lymphoid tissues influence immunity and highlight how they resemble and differ from FRC. Overall, we aim to focus attention on the emerging roles of lymphoid tissue and non-lymphoid tissue fibroblasts in control of innate and adaptive immunity.
Collapse
Affiliation(s)
- Matthew B Buechler
- Department of Cancer Immunology, Genentech, South San Francisco, CA 94080, United States
| | - Shannon J Turley
- Department of Cancer Immunology, Genentech, South San Francisco, CA 94080, United States.
| |
Collapse
|
13
|
Rodriguez S, Roussel M, Tarte K, Amé-Thomas P. Impact of Chronic Viral Infection on T-Cell Dependent Humoral Immune Response. Front Immunol 2017; 8:1434. [PMID: 29163507 PMCID: PMC5671495 DOI: 10.3389/fimmu.2017.01434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/16/2017] [Indexed: 12/15/2022] Open
Abstract
During the last decades, considerable efforts have been done to decipher mechanisms supported by microorganisms or viruses involved in the development, differentiation, and function of immune cells. Pathogens and their associated secretome as well as the continuous inflammation observed in chronic infection are shaping both innate and adaptive immunity. Secondary lymphoid organs are functional structures ensuring the mounting of adaptive immune response against microorganisms and viruses. Inside these organs, germinal centers (GCs) are the specialized sites where mature B-cell differentiation occurs leading to the release of high-affinity immunoglobulin (Ig)-secreting cells. Different steps are critical to complete B-cell differentiation process, including proliferation, somatic hypermutations in Ig variable genes, affinity-based selection, and class switch recombination. All these steps require intense interactions with cognate CD4+ helper T cells belonging to follicular helper lineage. Interestingly, pathogens can disturb this subtle machinery affecting the classical adaptive immune response. In this review, we describe how viruses could act directly on GC B cells, either through B-cell infection or by their contribution to B-cell cancer development and maintenance. In addition, we depict the indirect impact of viruses on B-cell response through infection of GC T cells and stromal cells, leading to immune response modulation.
Collapse
Affiliation(s)
- Stéphane Rodriguez
- UMR U1236, INSERM, Université de Rennes 1, Etablissement Français du Sang Bretagne, Equipe labellisée Ligue Contre le Cancer, LabEx IGO, Rennes, France.,Centre Hospitalier Universitaire de Rennes, pôle Biologie, Rennes, France
| | - Mikaël Roussel
- UMR U1236, INSERM, Université de Rennes 1, Etablissement Français du Sang Bretagne, Equipe labellisée Ligue Contre le Cancer, LabEx IGO, Rennes, France.,Centre Hospitalier Universitaire de Rennes, pôle Biologie, Rennes, France
| | - Karin Tarte
- UMR U1236, INSERM, Université de Rennes 1, Etablissement Français du Sang Bretagne, Equipe labellisée Ligue Contre le Cancer, LabEx IGO, Rennes, France.,Centre Hospitalier Universitaire de Rennes, pôle Biologie, Rennes, France
| | - Patricia Amé-Thomas
- UMR U1236, INSERM, Université de Rennes 1, Etablissement Français du Sang Bretagne, Equipe labellisée Ligue Contre le Cancer, LabEx IGO, Rennes, France.,Centre Hospitalier Universitaire de Rennes, pôle Biologie, Rennes, France
| |
Collapse
|
14
|
Abstract
Over the past decade, a series of discoveries relating to fibroblastic reticular cells (FRCs) — immunologically specialized myofibroblasts found in lymphoid tissue — has promoted these cells from benign bystanders to major players in the immune response. In this Review, we focus on recent advances regarding the immunobiology of lymph node-derived FRCs, presenting an updated view of crucial checkpoints during their development and their dynamic control of lymph node expansion and contraction during infection. We highlight the robust effects of FRCs on systemic B cell and T cell responses, and we present an emerging view of FRCs as drivers of pathology following acute and chronic viral infections. Lastly, we review emerging therapeutic advances that harness the immunoregulatory properties of FRCs.
Collapse
|
15
|
Bell TM, Bunton TE, Shaia CI, Raymond JW, Honnold SP, Donnelly GC, Shamblin JD, Wilkinson ER, Cashman KA. Pathogenesis of Bolivian Hemorrhagic Fever in Guinea Pigs. Vet Pathol 2015; 53:190-9. [PMID: 26139838 DOI: 10.1177/0300985815588609] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Machupo virus, the cause of Bolivian hemorrhagic fever, is a highly lethal viral hemorrhagic fever with no Food and Drug Administration-approved vaccines or therapeutics. This study evaluated the guinea pig as a model using the Machupo virus-Chicava strain administered via aerosol challenge. Guinea pigs (Cavia porcellus) were serially sampled to evaluate the temporal progression of infection, gross and histologic lesions, and sequential changes in serum chemistry and hematology. The incubation period was 5 to 12 days, and complete blood counts revealed leukopenia with lymphopenia and thrombocytopenia. Gross pathologic findings included congestion and hemorrhage of the gastrointestinal mucosa and serosa, noncollapsing lungs with fluid exudation, enlarged lymph nodes, and progressive pallor and friability of the liver. Histologic lesions consisted of foci of degeneration and cell death in the haired skin, liver, pancreas, adrenal glands, lymph nodes, tongue, esophagus, salivary glands, renal pelvis, small intestine, and large intestine. Lymphohistiocytic interstitial pneumonia was also present. Inflammation within the central nervous system, interpreted as nonsuppurative encephalitis, was histologically apparent approximately 16 days postexposure and was generally progressive. Macrophages in the tracheobronchial lymph node, on day 5 postexposure, were the first cells to demonstrate visible viral antigen. Viral antigen was detected throughout the lymphoid system by day 9 postexposure, followed by prominent spread within epithelial tissues and then brain. This study provides insight into the course of Machupo virus infection and supports the utility of guinea pigs as an additional animal model for vaccine and therapeutic development.
Collapse
Affiliation(s)
- T M Bell
- US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - T E Bunton
- US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA Eicarte LLC, Gettysburg, PA, USA
| | - C I Shaia
- US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA Joint Pathology Center, Silver Spring, MD, USA
| | - J W Raymond
- US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - S P Honnold
- US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - G C Donnelly
- US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - J D Shamblin
- US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - E R Wilkinson
- US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - K A Cashman
- US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| |
Collapse
|
16
|
Paweska JT, Jansen van Vuren P, Fenton KA, Graves K, Grobbelaar AA, Moolla N, Leman P, Weyer J, Storm N, McCulloch SD, Scott TP, Markotter W, Odendaal L, Clift SJ, Geisbert TW, Hale MJ, Kemp A. Lack of Marburg Virus Transmission From Experimentally Infected to Susceptible In-Contact Egyptian Fruit Bats. J Infect Dis 2015; 212 Suppl 2:S109-18. [PMID: 25838270 DOI: 10.1093/infdis/jiv132] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Egyptian fruit bats (Rousettus aegyptiacus) were inoculated subcutaneously (n = 22) with Marburg virus (MARV). No deaths, overt signs of morbidity, or gross lesions was identified, but microscopic pathological changes were seen in the liver of infected bats. The virus was detected in 15 different tissues and plasma but only sporadically in mucosal swab samples, urine, and fecal samples. Neither seroconversion nor viremia could be demonstrated in any of the in-contact susceptible bats (n = 14) up to 42 days after exposure to infected bats. In bats rechallenged (n = 4) on day 48 after infection, there was no viremia, and the virus could not be isolated from any of the tissues tested. This study confirmed that infection profiles are consistent with MARV replication in a reservoir host but failed to demonstrate MARV transmission through direct physical contact or indirectly via air. Bats develop strong protective immunity after infection with MARV.
Collapse
Affiliation(s)
- Janusz T Paweska
- Centre for Emerging and Zoonotic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Sandringham School of Pathology, Faculty of Health Sciences, University of the Witwatersrand Department of Microbiology and Plant Pathology
| | - Petrus Jansen van Vuren
- Centre for Emerging and Zoonotic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Sandringham Department of Microbiology and Plant Pathology
| | - Karla A Fenton
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory
| | - Kerry Graves
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory
| | - Antoinette A Grobbelaar
- Centre for Emerging and Zoonotic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Sandringham
| | - Naazneen Moolla
- Centre for Emerging and Zoonotic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Sandringham
| | - Patricia Leman
- Centre for Emerging and Zoonotic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Sandringham
| | - Jacqueline Weyer
- Centre for Emerging and Zoonotic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Sandringham Department of Microbiology and Plant Pathology
| | - Nadia Storm
- Centre for Emerging and Zoonotic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Sandringham
| | | | | | | | - Lieza Odendaal
- Department of Paraclinical Sciences, Faculty of Veterinary Science University of Pretoria, South Africa
| | - Sarah J Clift
- Department of Paraclinical Sciences, Faculty of Veterinary Science University of Pretoria, South Africa
| | - Thomas W Geisbert
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory
| | - Martin J Hale
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand National Health Laboratory Service, Johannesburg
| | - Alan Kemp
- Centre for Emerging and Zoonotic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Sandringham
| |
Collapse
|
17
|
Kindrachuk J, Wahl-Jensen V, Safronetz D, Trost B, Hoenen T, Arsenault R, Feldmann F, Traynor D, Postnikova E, Kusalik A, Napper S, Blaney JE, Feldmann H, Jahrling PB. Ebola virus modulates transforming growth factor β signaling and cellular markers of mesenchyme-like transition in hepatocytes. J Virol 2014; 88:9877-92. [PMID: 24942569 PMCID: PMC4136307 DOI: 10.1128/jvi.01410-14] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 06/09/2014] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED Ebola virus (EBOV) causes a severe hemorrhagic disease in humans and nonhuman primates, with a median case fatality rate of 78.4%. Although EBOV is considered a public health concern, there is a relative paucity of information regarding the modulation of the functional host response during infection. We employed temporal kinome analysis to investigate the relative early, intermediate, and late host kinome responses to EBOV infection in human hepatocytes. Pathway overrepresentation analysis and functional network analysis of kinome data revealed that transforming growth factor (TGF-β)-mediated signaling responses were temporally modulated in response to EBOV infection. Upregulation of TGF-β signaling in the kinome data sets correlated with the upregulation of TGF-β secretion from EBOV-infected cells. Kinase inhibitors targeting TGF-β signaling, or additional cell receptors and downstream signaling pathway intermediates identified from our kinome analysis, also inhibited EBOV replication. Further, the inhibition of select cell signaling intermediates identified from our kinome analysis provided partial protection in a lethal model of EBOV infection. To gain perspective on the cellular consequence of TGF-β signaling modulation during EBOV infection, we assessed cellular markers associated with upregulation of TGF-β signaling. We observed upregulation of matrix metalloproteinase 9, N-cadherin, and fibronectin expression with concomitant reductions in the expression of E-cadherin and claudin-1, responses that are standard characteristics of an epithelium-to-mesenchyme-like transition. Additionally, we identified phosphorylation events downstream of TGF-β that may contribute to this process. From these observations, we propose a model for a broader role of TGF-β-mediated signaling responses in the pathogenesis of Ebola virus disease. IMPORTANCE Ebola virus (EBOV), formerly Zaire ebolavirus, causes a severe hemorrhagic disease in humans and nonhuman primates and is the most lethal Ebola virus species, with case fatality rates of up to 90%. Although EBOV is considered a worldwide concern, many questions remain regarding EBOV molecular pathogenesis. As it is appreciated that many cellular processes are regulated through kinase-mediated phosphorylation events, we employed temporal kinome analysis to investigate the functional responses of human hepatocytes to EBOV infection. Administration of kinase inhibitors targeting signaling pathway intermediates identified in our kinome analysis inhibited viral replication in vitro and reduced EBOV pathogenesis in vivo. Further analysis of our data also demonstrated that EBOV infection modulated TGF-β-mediated signaling responses and promoted "mesenchyme-like" phenotypic changes. Taken together, these results demonstrated that EBOV infection specifically modulates TGF-β-mediated signaling responses in epithelial cells and may have broader implications in EBOV pathogenesis.
Collapse
Affiliation(s)
- Jason Kindrachuk
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Victoria Wahl-Jensen
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA National Biodefense Analysis and Countermeasures Center, Frederick, Maryland, USA
| | - David Safronetz
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Brett Trost
- Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Thomas Hoenen
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Ryan Arsenault
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Dawn Traynor
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Elena Postnikova
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Anthony Kusalik
- Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Scott Napper
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Joseph E Blaney
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Peter B Jahrling
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| |
Collapse
|
18
|
Multifunctional roles of reticular fibroblastic cells: more than meets the eye? J Immunol Res 2014; 2014:402038. [PMID: 24829927 PMCID: PMC4009236 DOI: 10.1155/2014/402038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/25/2014] [Accepted: 03/25/2014] [Indexed: 01/28/2023] Open
Abstract
Fibroblastic reticular cells (FRCs) are stromal cells found in secondary lymphoid organ. Despite its structural function in the lymph nodes being well established, recent studies indicate that the FRCs also play a key role in immunological processes, associated with cell transit, immune response, and cells activation quality, and contribute to peripheral tolerance. To this end, we focus this review on lymph nodes FRC characterization and discuss functional aspects such as production of cytokines and chemokines and their involvement in the immune response, seeking to establish whether certain subsets have a more functional specialization.
Collapse
|
19
|
The pathogenesis of severe fever with thrombocytopenia syndrome virus infection in alpha/beta interferon knockout mice: insights into the pathologic mechanisms of a new viral hemorrhagic fever. J Virol 2013; 88:1781-6. [PMID: 24257618 DOI: 10.1128/jvi.02277-13] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) is a newly discovered Phlebovirus causing an emerging hemorrhagic fever in East Asia, with reported case fatality rates up to 30%. Despite the high case fatality rate and large number of persons at risk of infection, the pathobiology of the disease is unknown, and no effective animal model has been available for investigating its pathogenesis. We have studied mice and hamsters as potential small-animal models of SFTSV infection following subcutaneous, intraperitoneal, or intracerebral inoculation. Animal tissues were processed for viral load determination, histopathology, immunohistochemistry, and confocal microscopic studies. We found that immunocompetent adult mice and hamsters did not become ill after SFTSV infection. However, alpha/beta interferon receptor knockout (IFNAR(-/-)) mice were highly susceptible to SFTSV infection, and all mice died within 3 to 4 days after subcutaneous inoculation of 10(6) focus-forming units of SFTSV. Histologic examination of tissues of IFNAR(-/-) mice infected with SFTSV showed no detectable lesions. In contrast, by immunohistochemistry virus antigen was found in liver, intestine, kidney, spleen, lymphoid tissue, and brain, but not in the lungs. Mesenteric lymph nodes and spleen were the most heavily infected tissues. Quantitative reverse transcription-PCR (RT-PCR) confirmed the presence of virus in these tissues. Confocal microscopy showed that SFTSV colocalized with reticular cells but did not colocalize with dendritic cells, monocytes/macrophages, neutrophils, or endothelium. Our results indicate that SFTSV multiplied in all organs except for lungs and that mesenteric lymph nodes and spleen were the most heavily infected tissues. The major target cells of SFTSV appear to be reticular cells in lymphoid tissues of intestine and spleen.
Collapse
|
20
|
Twenhafel NA, Mattix ME, Johnson JC, Robinson CG, Pratt WD, Cashman KA, Wahl-Jensen V, Terry C, Olinger GG, Hensley LE, Honko AN. Pathology of experimental aerosol Zaire ebolavirus infection in rhesus macaques. Vet Pathol 2012; 50:514-29. [PMID: 23262834 DOI: 10.1177/0300985812469636] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There is limited knowledge of the pathogenesis of human ebolavirus infections and no reported human cases acquired by the aerosol route. There is a threat of ebolavirus as an aerosolized biological weapon, and this study evaluated the pathogenesis of aerosol infection in 18 rhesus macaques. Important and unique findings include early infection of the respiratory lymphoid tissues, early fibrin deposition in the splenic white pulp, and perivasculitis and vasculitis in superficial dermal blood vessels of haired skin with rash. Initial infection occurred in the respiratory lymphoid tissues, fibroblastic reticular cells, dendritic cells, alveolar macrophages, and blood monocytes. Virus spread to regional lymph nodes, where significant viral replication occurred. Virus secondarily infected many additional blood monocytes and spread from the respiratory tissues to multiple organs, including the liver and spleen. Viremia, increased temperature, lymphocytopenia, neutrophilia, thrombocytopenia, and increased alanine aminotransferase, aspartate aminotransferase, γ-glutamyl transpeptidase, total bilirubin, serum urea nitrogen, creatinine, and hypoalbuminemia were measurable mid to late infection. Infection progressed rapidly with whole-body destruction of lymphoid tissues, hepatic necrosis, vasculitis, hemorrhage, and extravascular fibrin accumulation. Hypothermia and thrombocytopenia were noted in late stages with the development of disseminated intravascular coagulation and shock. This study provides unprecedented insight into pathogenesis of human aerosol Zaire ebolavirus infection and suggests development of a medical countermeasure to aerosol infection will be a great challenge due to massive early infection of respiratory lymphoid tissues. Rhesus macaques may be used as a model of aerosol infection that will allow the development of lifesaving medical countermeasures under the Food and Drug Administration's animal rule.
Collapse
Affiliation(s)
- N A Twenhafel
- Pathology Division, US Army Medical Research Institute of Infectious Diseases, 1425 Porter St, Fort Detrick, MD 21702-5011, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Paweska JT, Jansen van Vuren P, Masumu J, Leman PA, Grobbelaar AA, Birkhead M, Clift S, Swanepoel R, Kemp A. Virological and serological findings in Rousettus aegyptiacus experimentally inoculated with vero cells-adapted hogan strain of Marburg virus. PLoS One 2012; 7:e45479. [PMID: 23029039 PMCID: PMC3444458 DOI: 10.1371/journal.pone.0045479] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 08/20/2012] [Indexed: 12/16/2022] Open
Abstract
The Egyptian fruit bat, Rousettus aegyptiacus, is currently regarded as a potential reservoir host for Marburg virus (MARV). However, the modes of transmission, the level of viral replication, tissue tropism and viral shedding pattern remains to be described. Captive-bred R. aegyptiacus, including adult males, females and pups were exposed to MARV by different inoculation routes. Blood, tissues, feces and urine from 9 bats inoculated by combination of nasal and oral routes were all negative for the virus and ELISA IgG antibody could not be demonstrated for up to 21 days post inoculation (p.i.). In 21 bats inoculated by a combination of intraperitoneal/subcutaneous route, viremia and the presence of MARV in different tissues was detected on days 2-9 p.i., and IgG antibody on days 9-21 p.i. In 3 bats inoculated subcutaneously, viremia was detected on days 5 and 8 (termination of experiment), with virus isolation from different organs. MARV could not be detected in urine, feces or oral swabs in any of the 3 experimental groups. However, it was detected in tissues which might contribute to horizontal or vertical transmission, e.g. lung, intestines, kidney, bladder, salivary glands, and female reproductive tract. Viremia lasting at least 5 days could also facilitate MARV mechanical transmission by blood sucking arthropods and infections of susceptible vertebrate hosts by direct contact with infected blood. All bats were clinically normal and no gross pathology was identified on post mortem examination. This work confirms the susceptibility of R. aegyptiacus to infection with MARV irrespective of sex and age and contributes to establishing a bat-filovirus experimental model. Further studies are required to uncover the mode of MARV transmission, and to investigate the putative role of R. aegyptiacus as a reservoir host.
Collapse
Affiliation(s)
- Janusz T Paweska
- Center for Emerging and Zoonotic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham, South Africa.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Marburg and Ebola viruses cause a severe hemorrhagic disease in humans with high fatality rates. Early target cells of filoviruses are monocytes, macrophages, and dendritic cells. The infection spreads to the liver, spleen and later other organs by blood and lymph flow. A hallmark of filovirus infection is the depletion of non-infected lymphocytes; however, the molecular mechanisms leading to the observed bystander lymphocyte apoptosis are poorly understood. Also, there is limited knowledge about the fate of infected cells in filovirus disease. In this review we will explore what is known about the intracellular events leading to virus amplification and cell damage in filovirus infection. Furthermore, we will discuss how cellular dysfunction and cell death may correlate with disease pathogenesis.
Collapse
Affiliation(s)
- Judith Olejnik
- Department of Microbiology, School of Medicine, Boston University, 72 East Concord Street, Boston, MA 02118, USA; E-Mails: (J.O.); (R.B.C.)
- National Emerging Infectious Diseases Laboratories Institute, Boston University, 72 East Concord Street, Boston, MA 02118, USA
| | - Elena Ryabchikova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Science, Pr. Lavrent’eva, 8, Novosibirsk 630090, Russian Federation; E-Mail:
| | - Ronald B. Corley
- Department of Microbiology, School of Medicine, Boston University, 72 East Concord Street, Boston, MA 02118, USA; E-Mails: (J.O.); (R.B.C.)
- National Emerging Infectious Diseases Laboratories Institute, Boston University, 72 East Concord Street, Boston, MA 02118, USA
| | - Elke Mühlberger
- Department of Microbiology, School of Medicine, Boston University, 72 East Concord Street, Boston, MA 02118, USA; E-Mails: (J.O.); (R.B.C.)
- National Emerging Infectious Diseases Laboratories Institute, Boston University, 72 East Concord Street, Boston, MA 02118, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-617-638-0336; Fax: +1-617-638-4286
| |
Collapse
|
23
|
Fritz JH, Gommerman JL. Cytokine/stromal cell networks and lymphoid tissue environments. J Interferon Cytokine Res 2010; 31:277-89. [PMID: 21133813 DOI: 10.1089/jir.2010.0121] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Initiation of an effective adaptive immune response against a foreign pathogen requires orchestrated encounters between lymphocytes and antigen-presenting cells. The tissues of the lymphoid system provide the ideal environment for increasing the efficiency of these encounters. Within the spleen, the mucosal-associated lymphoid tissues, and the lymph nodes, an intricate network of stromal cells, collagen fibers, and extracellular matrix exists that effectively compartmentalizes immune cells as they transit through these tissues. The stromal cells within lymphoid tissues are by no means homogenous, and it is now clear that these cells are not merely sessile bystanders during immune responses. Indeed, stromal cells within lymphoid tissues are the source of important cytokines and chemokines that guide and polarize immune cells. Here, we review the cytokines that maintain the integrity of this important stromal scaffold system within the lymphoid tissue, paying particular attention to the Lymphotoxin pathway, which is an important player in stromal cell biology. How cytokines maintain the organization of lymphoid tissues during development, in the adult animal, during inflammation and during disease will be discussed in sequence, and the clinical implications of targeting cytokines that regulate lymphoid tissue stroma will be considered.
Collapse
Affiliation(s)
- Jörg H Fritz
- Department of Immunology, University of Toronto , Toronto, Ontario, Canada
| | | |
Collapse
|
24
|
Mueller SN, Germain RN. Stromal cell contributions to the homeostasis and functionality of the immune system. Nat Rev Immunol 2009; 9:618-29. [PMID: 19644499 PMCID: PMC2785037 DOI: 10.1038/nri2588] [Citation(s) in RCA: 397] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A defining characteristic of the immune system is the constant movement of many of its constituent cells through the secondary lymphoid tissues, mainly the spleen and lymph nodes, where crucial interactions that underlie homeostatic regulation, peripheral tolerance and the effective development of adaptive immune responses take place. What has only recently been recognized is the role that non-haematopoietic stromal elements have in many aspects of immune cell migration, activation and survival. In this Review, we summarize our current understanding of lymphoid compartment stromal cells, examine their possible heterogeneity, discuss how these cells contribute to immune homeostasis and the efficient initiation of adaptive immune responses, and highlight how targeting of these elements by some pathogens can influence the host immune response.
Collapse
Affiliation(s)
- Scott N Mueller
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, 3010 Victoria, Australia.
| | | |
Collapse
|
25
|
Steele KE, Anderson AO, Mohamadzadeh M. Fibroblastic reticular cells and their role in viral hemorrhagic fevers. Expert Rev Anti Infect Ther 2009; 7:423-35. [PMID: 19400762 DOI: 10.1586/eri.09.13] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Viral hemorrhagic fevers (VHFs) caused by Ebola, Marburg and Lassa viruses often manifest as multiple organ dysfunction and hemorrhagic shock with high mortality. These viruses target numerous cell types, including monocytes and dendritic cells, which are primary early targets that mediate critical pathogenetic processes. This review focuses on fibroblastic reticular cells (FRCs), another prevalent infected cell type that is known as a key regulator of circulatory and immune functions. Viral infection of FRCs could have debilitating effects in secondary lymphoid organs and various other tissues. FRCs may also contribute to the spread of these deadly viruses throughout the body. Here, we review the salient features of these VHFs and the biology of FRCs, emphasizing the potential role of these cells in VHFs and the rapid deterioration of immune and hemovascular sytems that are characteristic of such acute infections.
Collapse
Affiliation(s)
- Keith E Steele
- Division of Pathology, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD 21702, USA.
| | | | | |
Collapse
|